@@ -1,762 +1,841 | |||
|
1 | 1 | import numpy |
|
2 | 2 | |
|
3 | 3 | from jroproc_base import ProcessingUnit, Operation |
|
4 | 4 | from model.data.jrodata import Voltage |
|
5 | from Carbon.Fonts import times | |
|
5 | 6 | |
|
6 | 7 | class VoltageProc(ProcessingUnit): |
|
7 | 8 | |
|
8 | 9 | |
|
9 | 10 | def __init__(self): |
|
10 | 11 | |
|
11 | 12 | ProcessingUnit.__init__(self) |
|
12 | 13 | |
|
13 | 14 | # self.objectDict = {} |
|
14 | 15 | self.dataOut = Voltage() |
|
15 | 16 | self.flip = 1 |
|
16 | 17 | |
|
17 | 18 | def run(self): |
|
18 | 19 | if self.dataIn.type == 'AMISR': |
|
19 | 20 | self.__updateObjFromAmisrInput() |
|
20 | 21 | |
|
21 | 22 | if self.dataIn.type == 'Voltage': |
|
22 | 23 | self.dataOut.copy(self.dataIn) |
|
23 | 24 | |
|
24 | 25 | # self.dataOut.copy(self.dataIn) |
|
25 | 26 | |
|
26 | 27 | def __updateObjFromAmisrInput(self): |
|
27 | 28 | |
|
28 | 29 | self.dataOut.timeZone = self.dataIn.timeZone |
|
29 | 30 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
30 | 31 | self.dataOut.errorCount = self.dataIn.errorCount |
|
31 | 32 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
32 | 33 | |
|
33 | 34 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
34 | 35 | self.dataOut.data = self.dataIn.data |
|
35 | 36 | self.dataOut.utctime = self.dataIn.utctime |
|
36 | 37 | self.dataOut.channelList = self.dataIn.channelList |
|
37 | 38 | self.dataOut.timeInterval = self.dataIn.timeInterval |
|
38 | 39 | self.dataOut.heightList = self.dataIn.heightList |
|
39 | 40 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
40 | 41 | |
|
41 | 42 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
42 | 43 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
43 | 44 | self.dataOut.frequency = self.dataIn.frequency |
|
44 | 45 | |
|
45 | 46 | self.dataOut.azimuth = self.dataIn.azimuth |
|
46 | 47 | self.dataOut.zenith = self.dataIn.zenith |
|
47 | 48 | |
|
48 | 49 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
49 | 50 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
50 | 51 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
51 | 52 | # |
|
52 | 53 | # pass# |
|
53 | 54 | # |
|
54 | 55 | # def init(self): |
|
55 | 56 | # |
|
56 | 57 | # |
|
57 | 58 | # if self.dataIn.type == 'AMISR': |
|
58 | 59 | # self.__updateObjFromAmisrInput() |
|
59 | 60 | # |
|
60 | 61 | # if self.dataIn.type == 'Voltage': |
|
61 | 62 | # self.dataOut.copy(self.dataIn) |
|
62 | 63 | # # No necesita copiar en cada init() los atributos de dataIn |
|
63 | 64 | # # la copia deberia hacerse por cada nuevo bloque de datos |
|
64 | 65 | |
|
65 | 66 | def selectChannels(self, channelList): |
|
66 | 67 | |
|
67 | 68 | channelIndexList = [] |
|
68 | 69 | |
|
69 | 70 | for channel in channelList: |
|
70 | 71 | index = self.dataOut.channelList.index(channel) |
|
71 | 72 | channelIndexList.append(index) |
|
72 | 73 | |
|
73 | 74 | self.selectChannelsByIndex(channelIndexList) |
|
74 | 75 | |
|
75 | 76 | def selectChannelsByIndex(self, channelIndexList): |
|
76 | 77 | """ |
|
77 | 78 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
78 | 79 | |
|
79 | 80 | Input: |
|
80 | 81 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
81 | 82 | |
|
82 | 83 | Affected: |
|
83 | 84 | self.dataOut.data |
|
84 | 85 | self.dataOut.channelIndexList |
|
85 | 86 | self.dataOut.nChannels |
|
86 | 87 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
87 | 88 | self.dataOut.systemHeaderObj.numChannels |
|
88 | 89 | self.dataOut.m_ProcessingHeader.blockSize |
|
89 | 90 | |
|
90 | 91 | Return: |
|
91 | 92 | None |
|
92 | 93 | """ |
|
93 | 94 | |
|
94 | 95 | for channelIndex in channelIndexList: |
|
95 | 96 | if channelIndex not in self.dataOut.channelIndexList: |
|
96 | 97 | print channelIndexList |
|
97 | 98 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
98 | 99 | |
|
99 | 100 | # nChannels = len(channelIndexList) |
|
100 | ||
|
101 | data = self.dataOut.data[channelIndexList,:] | |
|
101 | if dataOut.flagDataAsBlock: | |
|
102 | """ | |
|
103 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
|
104 | """ | |
|
105 | data = self.dataOut.data[channelIndexList,:,:] | |
|
106 | else: | |
|
107 | data = self.dataOut.data[channelIndexList,:] | |
|
102 | 108 | |
|
103 | 109 | self.dataOut.data = data |
|
104 | 110 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
105 | 111 | # self.dataOut.nChannels = nChannels |
|
106 | 112 | |
|
107 | 113 | return 1 |
|
108 | 114 | |
|
109 | 115 | def selectHeights(self, minHei=None, maxHei=None): |
|
110 | 116 | """ |
|
111 | 117 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
112 | 118 | minHei <= height <= maxHei |
|
113 | 119 | |
|
114 | 120 | Input: |
|
115 | 121 | minHei : valor minimo de altura a considerar |
|
116 | 122 | maxHei : valor maximo de altura a considerar |
|
117 | 123 | |
|
118 | 124 | Affected: |
|
119 | 125 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
120 | 126 | |
|
121 | 127 | Return: |
|
122 | 128 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
123 | 129 | """ |
|
124 | 130 | |
|
125 | 131 | if minHei == None: |
|
126 | 132 | minHei = self.dataOut.heightList[0] |
|
127 | 133 | |
|
128 | 134 | if maxHei == None: |
|
129 | 135 | maxHei = self.dataOut.heightList[-1] |
|
130 | 136 | |
|
131 | 137 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
132 | 138 | raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) |
|
133 | 139 | |
|
134 | 140 | |
|
135 | 141 | if (maxHei > self.dataOut.heightList[-1]): |
|
136 | 142 | maxHei = self.dataOut.heightList[-1] |
|
137 | 143 | # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) |
|
138 | 144 | |
|
139 | 145 | minIndex = 0 |
|
140 | 146 | maxIndex = 0 |
|
141 | 147 | heights = self.dataOut.heightList |
|
142 | 148 | |
|
143 | 149 | inda = numpy.where(heights >= minHei) |
|
144 | 150 | indb = numpy.where(heights <= maxHei) |
|
145 | 151 | |
|
146 | 152 | try: |
|
147 | 153 | minIndex = inda[0][0] |
|
148 | 154 | except: |
|
149 | 155 | minIndex = 0 |
|
150 | 156 | |
|
151 | 157 | try: |
|
152 | 158 | maxIndex = indb[0][-1] |
|
153 | 159 | except: |
|
154 | 160 | maxIndex = len(heights) |
|
155 | 161 | |
|
156 | 162 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
157 | 163 | |
|
158 | 164 | return 1 |
|
159 | 165 | |
|
160 | 166 | |
|
161 | 167 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
162 | 168 | """ |
|
163 | 169 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
164 | 170 | minIndex <= index <= maxIndex |
|
165 | 171 | |
|
166 | 172 | Input: |
|
167 | 173 | minIndex : valor de indice minimo de altura a considerar |
|
168 | 174 | maxIndex : valor de indice maximo de altura a considerar |
|
169 | 175 | |
|
170 | 176 | Affected: |
|
171 | 177 | self.dataOut.data |
|
172 | 178 | self.dataOut.heightList |
|
173 | 179 | |
|
174 | 180 | Return: |
|
175 | 181 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
176 | 182 | """ |
|
177 | 183 | |
|
178 | 184 | if (minIndex < 0) or (minIndex > maxIndex): |
|
179 | 185 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
180 | 186 | |
|
181 | 187 | if (maxIndex >= self.dataOut.nHeights): |
|
182 | 188 | maxIndex = self.dataOut.nHeights-1 |
|
183 | 189 | # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
184 | 190 | |
|
185 | 191 | # nHeights = maxIndex - minIndex + 1 |
|
186 | 192 | |
|
187 | 193 | #voltage |
|
188 | data = self.dataOut.data[:,minIndex:maxIndex+1] | |
|
194 | if dataOut.flagDataAsBlock: | |
|
195 | """ | |
|
196 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
|
197 | """ | |
|
198 | data = self.dataOut.data[:,minIndex:maxIndex+1,:] | |
|
199 | else: | |
|
200 | data = self.dataOut.data[:,minIndex:maxIndex+1] | |
|
189 | 201 | |
|
190 | 202 | # firstHeight = self.dataOut.heightList[minIndex] |
|
191 | 203 | |
|
192 | 204 | self.dataOut.data = data |
|
193 | 205 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
194 | 206 | |
|
195 | 207 | return 1 |
|
196 | 208 | |
|
197 | 209 | |
|
198 | 210 | def filterByHeights(self, window, axis=1): |
|
211 | ||
|
199 | 212 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
200 | 213 | |
|
201 | 214 | if window == None: |
|
202 | 215 | window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
203 | 216 | |
|
204 | 217 | newdelta = deltaHeight * window |
|
205 |
r = self.dataOut. |
|
|
206 | if axis == 1: | |
|
207 | buffer = self.dataOut.data[:,0:self.dataOut.data.shape[axis]-r] | |
|
208 | buffer = buffer.reshape(self.dataOut.data.shape[0],self.dataOut.data.shape[axis]/window,window) | |
|
209 | buffer = numpy.sum(buffer,axis+1) | |
|
210 | ||
|
211 | elif axis == 2: | |
|
212 | buffer = self.dataOut.data[:, :, 0:self.dataOut.data.shape[axis]-r] | |
|
213 | buffer = buffer.reshape(self.dataOut.data.shape[0],self.dataOut.data.shape[1],self.dataOut.data.shape[axis]/window,window) | |
|
214 | buffer = numpy.sum(buffer,axis+1) | |
|
218 | r = self.dataOut.nHeights % window | |
|
215 | 219 | |
|
216 | else: | |
|
217 | raise ValueError, "axis value should be 1 or 2, the input value %d is not valid" % (axis) | |
|
220 | if dataOut.flagDataAsBlock: | |
|
221 | """ | |
|
222 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
|
223 | """ | |
|
224 | buffer = self.dataOut.data[:, :, 0:self.dataOut.nHeights-r] | |
|
225 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nHeights,self.dataOut.nHeights/window,window) | |
|
226 | buffer = numpy.sum(buffer,3) | |
|
218 | 227 | |
|
228 | else: | |
|
229 | buffer = self.dataOut.data[:,0:self.dataOut.nHeights-r] | |
|
230 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nHeights/window,window) | |
|
231 | buffer = numpy.sum(buffer,2) | |
|
232 | ||
|
219 | 233 | self.dataOut.data = buffer.copy() |
|
220 | 234 | self.dataOut.heightList = numpy.arange(self.dataOut.heightList[0],newdelta*(self.dataOut.nHeights-r)/window,newdelta) |
|
221 | 235 | self.dataOut.windowOfFilter = window |
|
222 | 236 | |
|
223 | 237 | return 1 |
|
224 | 238 | |
|
225 | def deFlip(self): | |
|
226 | self.dataOut.data *= self.flip | |
|
227 | self.flip *= -1. | |
|
239 | def deFlip(self, channelList = []): | |
|
240 | ||
|
241 | data = self.dataOut.data.copy() | |
|
242 | ||
|
243 | if self.dataOut.flagDataAsBlock: | |
|
244 | flip = self.flip | |
|
245 | profileList = range(self.dataOut.nProfiles) | |
|
246 | ||
|
247 | if channelList == []: | |
|
248 | for thisProfile in profileList: | |
|
249 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip | |
|
250 | flip *= -1.0 | |
|
251 | else: | |
|
252 | for thisChannel in channelList: | |
|
253 | for thisProfile in profileList: | |
|
254 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip | |
|
255 | flip *= -1.0 | |
|
256 | ||
|
257 | self.flip = flip | |
|
258 | ||
|
259 | else: | |
|
260 | if channelList == []: | |
|
261 | data[:,:] = data[:,:]*self.flip | |
|
262 | else: | |
|
263 | for thisChannel in channelList: | |
|
264 | data[thisChannel,:] = data[thisChannel,:]*self.flip | |
|
265 | ||
|
266 | self.flip *= -1. | |
|
267 | ||
|
268 | self.dataOut.data = data | |
|
269 | ||
|
270 | ||
|
228 | 271 | |
|
229 | 272 | def setRadarFrequency(self, frequency=None): |
|
273 | ||
|
230 | 274 | if frequency != None: |
|
231 | 275 | self.dataOut.frequency = frequency |
|
232 | 276 | |
|
233 | 277 | return 1 |
|
234 | 278 | |
|
235 | 279 | class CohInt(Operation): |
|
236 | 280 | |
|
237 | 281 | isConfig = False |
|
238 | 282 | |
|
239 | 283 | __profIndex = 0 |
|
240 | 284 | __withOverapping = False |
|
241 | 285 | |
|
242 | 286 | __byTime = False |
|
243 | 287 | __initime = None |
|
244 | 288 | __lastdatatime = None |
|
245 | 289 | __integrationtime = None |
|
246 | 290 | |
|
247 | 291 | __buffer = None |
|
248 | 292 | |
|
249 | 293 | __dataReady = False |
|
250 | 294 | |
|
251 | 295 | n = None |
|
252 | 296 | |
|
253 | 297 | |
|
254 | 298 | def __init__(self): |
|
255 | 299 | |
|
256 | 300 | Operation.__init__(self) |
|
257 | 301 | |
|
258 | 302 | # self.isConfig = False |
|
259 | 303 | |
|
260 | 304 | def setup(self, n=None, timeInterval=None, overlapping=False, byblock=False): |
|
261 | 305 | """ |
|
262 | 306 | Set the parameters of the integration class. |
|
263 | 307 | |
|
264 | 308 | Inputs: |
|
265 | 309 | |
|
266 | 310 | n : Number of coherent integrations |
|
267 | 311 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
268 | 312 | overlapping : |
|
269 | 313 | |
|
270 | 314 | """ |
|
271 | 315 | |
|
272 | 316 | self.__initime = None |
|
273 | 317 | self.__lastdatatime = 0 |
|
274 | 318 | self.__buffer = None |
|
275 | 319 | self.__dataReady = False |
|
276 | 320 | self.byblock = byblock |
|
277 | 321 | |
|
278 | 322 | if n == None and timeInterval == None: |
|
279 | 323 | raise ValueError, "n or timeInterval should be specified ..." |
|
280 | 324 | |
|
281 | 325 | if n != None: |
|
282 | 326 | self.n = n |
|
283 | 327 | self.__byTime = False |
|
284 | 328 | else: |
|
285 | 329 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
286 | 330 | self.n = 9999 |
|
287 | 331 | self.__byTime = True |
|
288 | 332 | |
|
289 | 333 | if overlapping: |
|
290 | 334 | self.__withOverapping = True |
|
291 | 335 | self.__buffer = None |
|
292 | 336 | else: |
|
293 | 337 | self.__withOverapping = False |
|
294 | 338 | self.__buffer = 0 |
|
295 | 339 | |
|
296 | 340 | self.__profIndex = 0 |
|
297 | 341 | |
|
298 | 342 | def putData(self, data): |
|
299 | 343 | |
|
300 | 344 | """ |
|
301 | 345 | Add a profile to the __buffer and increase in one the __profileIndex |
|
302 | 346 | |
|
303 | 347 | """ |
|
304 | 348 | |
|
305 | 349 | if not self.__withOverapping: |
|
306 | 350 | self.__buffer += data.copy() |
|
307 | 351 | self.__profIndex += 1 |
|
308 | 352 | return |
|
309 | 353 | |
|
310 | 354 | #Overlapping data |
|
311 | 355 | nChannels, nHeis = data.shape |
|
312 | 356 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
313 | 357 | |
|
314 | 358 | #If the buffer is empty then it takes the data value |
|
315 | 359 | if self.__buffer == None: |
|
316 | 360 | self.__buffer = data |
|
317 | 361 | self.__profIndex += 1 |
|
318 | 362 | return |
|
319 | 363 | |
|
320 | 364 | #If the buffer length is lower than n then stakcing the data value |
|
321 | 365 | if self.__profIndex < self.n: |
|
322 | 366 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
323 | 367 | self.__profIndex += 1 |
|
324 | 368 | return |
|
325 | 369 | |
|
326 | 370 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
327 | 371 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
328 | 372 | self.__buffer[self.n-1] = data |
|
329 | 373 | self.__profIndex = self.n |
|
330 | 374 | return |
|
331 | 375 | |
|
332 | 376 | |
|
333 | 377 | def pushData(self): |
|
334 | 378 | """ |
|
335 | 379 | Return the sum of the last profiles and the profiles used in the sum. |
|
336 | 380 | |
|
337 | 381 | Affected: |
|
338 | 382 | |
|
339 | 383 | self.__profileIndex |
|
340 | 384 | |
|
341 | 385 | """ |
|
342 | 386 | |
|
343 | 387 | if not self.__withOverapping: |
|
344 | 388 | data = self.__buffer |
|
345 | 389 | n = self.__profIndex |
|
346 | 390 | |
|
347 | 391 | self.__buffer = 0 |
|
348 | 392 | self.__profIndex = 0 |
|
349 | 393 | |
|
350 | 394 | return data, n |
|
351 | 395 | |
|
352 | 396 | #Integration with Overlapping |
|
353 | 397 | data = numpy.sum(self.__buffer, axis=0) |
|
354 | 398 | n = self.__profIndex |
|
355 | 399 | |
|
356 | 400 | return data, n |
|
357 | 401 | |
|
358 | 402 | def byProfiles(self, data): |
|
359 | 403 | |
|
360 | 404 | self.__dataReady = False |
|
361 | 405 | avgdata = None |
|
362 | 406 | # n = None |
|
363 | 407 | |
|
364 | 408 | self.putData(data) |
|
365 | 409 | |
|
366 | 410 | if self.__profIndex == self.n: |
|
367 | 411 | |
|
368 | 412 | avgdata, n = self.pushData() |
|
369 | 413 | self.__dataReady = True |
|
370 | 414 | |
|
371 | 415 | return avgdata |
|
372 | 416 | |
|
373 | 417 | def byTime(self, data, datatime): |
|
374 | 418 | |
|
375 | 419 | self.__dataReady = False |
|
376 | 420 | avgdata = None |
|
377 | 421 | n = None |
|
378 | 422 | |
|
379 | 423 | self.putData(data) |
|
380 | 424 | |
|
381 | 425 | if (datatime - self.__initime) >= self.__integrationtime: |
|
382 | 426 | avgdata, n = self.pushData() |
|
383 | 427 | self.n = n |
|
384 | 428 | self.__dataReady = True |
|
385 | 429 | |
|
386 | 430 | return avgdata |
|
387 | 431 | |
|
388 | 432 | def integrate(self, data, datatime=None): |
|
389 | 433 | |
|
390 | 434 | if self.__initime == None: |
|
391 | 435 | self.__initime = datatime |
|
392 | 436 | |
|
393 | 437 | if self.__byTime: |
|
394 | 438 | avgdata = self.byTime(data, datatime) |
|
395 | 439 | else: |
|
396 | 440 | avgdata = self.byProfiles(data) |
|
397 | 441 | |
|
398 | 442 | |
|
399 | 443 | self.__lastdatatime = datatime |
|
400 | 444 | |
|
401 | 445 | if avgdata == None: |
|
402 | 446 | return None, None |
|
403 | 447 | |
|
404 | 448 | avgdatatime = self.__initime |
|
405 | 449 | |
|
406 | 450 | deltatime = datatime -self.__lastdatatime |
|
407 | 451 | |
|
408 | 452 | if not self.__withOverapping: |
|
409 | 453 | self.__initime = datatime |
|
410 | 454 | else: |
|
411 | 455 | self.__initime += deltatime |
|
412 | 456 | |
|
413 | 457 | return avgdata, avgdatatime |
|
414 | 458 | |
|
415 | 459 | def integrateByBlock(self, dataOut): |
|
460 | ||
|
416 | 461 | times = int(dataOut.data.shape[1]/self.n) |
|
417 | 462 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
418 | 463 | |
|
419 | 464 | id_min = 0 |
|
420 | 465 | id_max = self.n |
|
421 | 466 | |
|
422 | 467 | for i in range(times): |
|
423 | 468 | junk = dataOut.data[:,id_min:id_max,:] |
|
424 | 469 | avgdata[:,i,:] = junk.sum(axis=1) |
|
425 | 470 | id_min += self.n |
|
426 | 471 | id_max += self.n |
|
427 | 472 | |
|
428 | 473 | timeInterval = dataOut.ippSeconds*self.n |
|
429 | 474 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
430 | 475 | self.__dataReady = True |
|
431 | 476 | return avgdata, avgdatatime |
|
432 | 477 | |
|
433 | 478 | def run(self, dataOut, **kwargs): |
|
434 | 479 | |
|
435 | 480 | if not self.isConfig: |
|
436 | 481 | self.setup(**kwargs) |
|
437 | 482 | self.isConfig = True |
|
438 | 483 | |
|
439 | if self.byblock: | |
|
484 | if dataOut.flagDataAsBlock: | |
|
485 | """ | |
|
486 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
|
487 | """ | |
|
440 | 488 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
441 | 489 | else: |
|
442 | 490 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
443 | 491 | |
|
444 | 492 | # dataOut.timeInterval *= n |
|
445 | 493 | dataOut.flagNoData = True |
|
446 | 494 | |
|
447 | 495 | if self.__dataReady: |
|
448 | 496 | dataOut.data = avgdata |
|
449 | 497 | dataOut.nCohInt *= self.n |
|
450 | 498 | dataOut.utctime = avgdatatime |
|
451 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt | |
|
499 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt | |
|
452 | 500 | dataOut.flagNoData = False |
|
453 | 501 | |
|
454 | 502 | class Decoder(Operation): |
|
455 | 503 | |
|
456 | 504 | isConfig = False |
|
457 | 505 | __profIndex = 0 |
|
458 | 506 | |
|
459 | 507 | code = None |
|
460 | 508 | |
|
461 | 509 | nCode = None |
|
462 | 510 | nBaud = None |
|
463 | 511 | |
|
464 | 512 | |
|
465 | 513 | def __init__(self): |
|
466 | 514 | |
|
467 | 515 | Operation.__init__(self) |
|
468 | 516 | |
|
469 | 517 | self.times = None |
|
470 | 518 | self.osamp = None |
|
471 | self.__setValues = False | |
|
472 |
|
|
|
519 | # self.__setValues = False | |
|
520 | self.isConfig = False | |
|
473 | 521 | |
|
474 |
def setup(self, code, s |
|
|
522 | def setup(self, code, osamp, dataOut): | |
|
475 | 523 | |
|
476 | 524 | self.__profIndex = 0 |
|
477 | 525 | |
|
478 | 526 | self.code = code |
|
479 | 527 | |
|
480 | 528 | self.nCode = len(code) |
|
481 | 529 | self.nBaud = len(code[0]) |
|
482 | 530 | |
|
483 |
if |
|
|
484 | self.times = times | |
|
485 | ||
|
486 | if ((osamp != None) and (osamp >1)): | |
|
531 | if (osamp != None) and (osamp >1): | |
|
487 | 532 | self.osamp = osamp |
|
488 | self.code = numpy.repeat(code, repeats=self.osamp,axis=1) | |
|
533 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) | |
|
489 | 534 | self.nBaud = self.nBaud*self.osamp |
|
490 | 535 | |
|
491 | if len(shape) == 2: | |
|
492 | self.__nChannels, self.__nHeis = shape | |
|
536 | self.__nChannels = dataOut.nChannels | |
|
537 | self.__nProfiles = dataOut.nProfiles | |
|
538 | self.__nHeis = dataOut.nHeights | |
|
539 | ||
|
540 | if dataOut.flagDataAsBlock: | |
|
493 | 541 | |
|
542 | self.ndatadec = self.__nHeis - self.nBaud + 1 | |
|
543 | ||
|
544 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) | |
|
545 | ||
|
546 | else: | |
|
547 | ||
|
494 | 548 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
495 | 549 | |
|
496 | 550 | __codeBuffer[:,0:self.nBaud] = self.code |
|
497 | 551 | |
|
498 | 552 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
499 | 553 | |
|
500 | 554 | self.ndatadec = self.__nHeis - self.nBaud + 1 |
|
501 | 555 | |
|
502 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) | |
|
503 | else: | |
|
504 | self.__nChannels, self.__nProfiles, self.__nHeis = shape | |
|
505 | ||
|
506 | self.ndatadec = self.__nHeis - self.nBaud + 1 | |
|
507 | ||
|
508 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) | |
|
509 | ||
|
556 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) | |
|
510 | 557 | |
|
511 | ||
|
512 | 558 | def convolutionInFreq(self, data): |
|
513 | 559 | |
|
514 | 560 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
515 | 561 | |
|
516 | 562 | fft_data = numpy.fft.fft(data, axis=1) |
|
517 | 563 | |
|
518 | 564 | conv = fft_data*fft_code |
|
519 | 565 | |
|
520 | 566 | data = numpy.fft.ifft(conv,axis=1) |
|
521 | 567 | |
|
522 | 568 | datadec = data[:,:-self.nBaud+1] |
|
523 | 569 | |
|
524 | 570 | return datadec |
|
525 | 571 | |
|
526 | 572 | def convolutionInFreqOpt(self, data): |
|
527 | 573 | |
|
528 | 574 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
529 | 575 | |
|
530 | 576 | data = cfunctions.decoder(fft_code, data) |
|
531 | 577 | |
|
532 | 578 | datadec = data[:,:-self.nBaud+1] |
|
533 | 579 | |
|
534 | 580 | return datadec |
|
535 | 581 | |
|
536 | 582 | def convolutionInTime(self, data): |
|
537 | 583 | |
|
538 | 584 | code = self.code[self.__profIndex] |
|
539 | 585 | |
|
540 | 586 | for i in range(self.__nChannels): |
|
541 | 587 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='valid') |
|
542 | 588 | |
|
543 | 589 | return self.datadecTime |
|
544 | 590 | |
|
545 | 591 | def convolutionByBlockInTime(self, data): |
|
546 | junk = numpy.lib.stride_tricks.as_strided(self.code, (self.times, self.code.size), (0, self.code.itemsize)) | |
|
592 | ||
|
593 | repetitions = self.__nProfiles / self.nCode | |
|
594 | ||
|
595 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) | |
|
547 | 596 | junk = junk.flatten() |
|
548 |
code_block = numpy.reshape(junk, (self.nCode* |
|
|
597 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) | |
|
549 | 598 | |
|
550 | 599 | for i in range(self.__nChannels): |
|
551 | 600 | for j in range(self.__nProfiles): |
|
552 | 601 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='valid') |
|
553 | 602 | |
|
554 | 603 | return self.datadecTime |
|
555 | 604 | |
|
556 | 605 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, times=None, osamp=None): |
|
557 | ||
|
558 | if code == None: | |
|
559 | code = dataOut.code | |
|
560 | else: | |
|
561 | code = numpy.array(code).reshape(nCode,nBaud) | |
|
562 | ||
|
563 | 606 | |
|
564 | ||
|
565 | 607 | if not self.isConfig: |
|
566 | 608 | |
|
567 | self.setup(code, dataOut.data.shape, times, osamp) | |
|
609 | if code == None: | |
|
610 | code = dataOut.code | |
|
611 | else: | |
|
612 | code = numpy.array(code).reshape(nCode,nBaud) | |
|
568 | 613 | |
|
569 | dataOut.code = code | |
|
570 | dataOut.nCode = nCode | |
|
571 | dataOut.nBaud = nBaud | |
|
572 | dataOut.radarControllerHeaderObj.code = code | |
|
573 | dataOut.radarControllerHeaderObj.nCode = nCode | |
|
574 | dataOut.radarControllerHeaderObj.nBaud = nBaud | |
|
614 | self.setup(code, osamp, dataOut) | |
|
575 | 615 | |
|
576 | 616 | self.isConfig = True |
|
617 | ||
|
618 | if dataOut.flagDataAsBlock: | |
|
619 | """ | |
|
620 | Decoding when data have been read as block, | |
|
621 | """ | |
|
622 | datadec = self.convolutionByBlockInTime(dataOut.data) | |
|
577 | 623 | |
|
578 | if mode == 0: | |
|
579 | datadec = self.convolutionInTime(dataOut.data) | |
|
580 | ||
|
581 |
|
|
|
582 | datadec = self.convolutionInFreq(dataOut.data) | |
|
583 | ||
|
584 | if mode == 2: | |
|
585 | datadec = self.convolutionInFreqOpt(dataOut.data) | |
|
624 | else: | |
|
625 | """ | |
|
626 | Decoding when data have been read profile by profile | |
|
627 | """ | |
|
628 | if mode == 0: | |
|
629 | datadec = self.convolutionInTime(dataOut.data) | |
|
630 | ||
|
631 | if mode == 1: | |
|
632 | datadec = self.convolutionInFreq(dataOut.data) | |
|
586 | 633 | |
|
587 |
if mode == |
|
|
588 |
datadec = self.convolution |
|
|
634 | if mode == 2: | |
|
635 | datadec = self.convolutionInFreqOpt(dataOut.data) | |
|
589 | 636 | |
|
590 | if not(self.__setValues): | |
|
591 |
|
|
|
592 |
|
|
|
593 | dataOut.nBaud = self.nBaud | |
|
594 |
|
|
|
595 |
|
|
|
596 | dataOut.radarControllerHeaderObj.nBaud = self.nBaud | |
|
597 | #self.__setValues = True | |
|
637 | dataOut.code = code | |
|
638 | dataOut.nCode = nCode | |
|
639 | dataOut.nBaud = nBaud | |
|
640 | dataOut.radarControllerHeaderObj.code = code | |
|
641 | dataOut.radarControllerHeaderObj.nCode = nCode | |
|
642 | dataOut.radarControllerHeaderObj.nBaud = nBaud | |
|
598 | 643 | |
|
599 | 644 | dataOut.data = datadec |
|
600 | 645 | |
|
601 | 646 | dataOut.heightList = dataOut.heightList[0:self.ndatadec] |
|
602 | 647 | |
|
603 |
dataOut.flagDecodeData = True #asumo q la data |
|
|
648 | dataOut.flagDecodeData = True #asumo q la data esta decodificada | |
|
604 | 649 | |
|
605 | 650 | if self.__profIndex == self.nCode-1: |
|
606 | 651 | self.__profIndex = 0 |
|
607 | 652 | return 1 |
|
608 | 653 | |
|
609 | 654 | self.__profIndex += 1 |
|
610 | 655 | |
|
611 | 656 | return 1 |
|
612 | 657 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
613 | 658 | |
|
614 | 659 | |
|
615 | 660 | class ProfileConcat(Operation): |
|
616 | 661 | |
|
617 | 662 | isConfig = False |
|
618 | 663 | buffer = None |
|
619 | 664 | |
|
620 | 665 | def __init__(self): |
|
621 | 666 | |
|
622 | 667 | Operation.__init__(self) |
|
623 | 668 | self.profileIndex = 0 |
|
624 | 669 | |
|
625 | 670 | def reset(self): |
|
626 | 671 | self.buffer = numpy.zeros_like(self.buffer) |
|
627 | 672 | self.start_index = 0 |
|
628 | 673 | self.times = 1 |
|
629 | 674 | |
|
630 | 675 | def setup(self, data, m, n=1): |
|
631 | 676 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
632 | 677 | self.profiles = data.shape[1] |
|
633 | 678 | self.start_index = 0 |
|
634 | 679 | self.times = 1 |
|
635 | 680 | |
|
636 | 681 | def concat(self, data): |
|
637 | 682 | |
|
638 | 683 | self.buffer[:,self.start_index:self.profiles*self.times] = data.copy() |
|
639 | 684 | self.start_index = self.start_index + self.profiles |
|
640 | 685 | |
|
641 | 686 | def run(self, dataOut, m): |
|
642 | 687 | |
|
643 | 688 | dataOut.flagNoData = True |
|
644 | 689 | |
|
645 | 690 | if not self.isConfig: |
|
646 | 691 | self.setup(dataOut.data, m, 1) |
|
647 | 692 | self.isConfig = True |
|
693 | ||
|
694 | if dataOut.flagDataAsBlock: | |
|
695 | ||
|
696 | raise ValueError, "ProfileConcat can only be used when voltage have been read profile by profiel, getBlock = False" | |
|
648 | 697 | |
|
649 | self.concat(dataOut.data) | |
|
650 | self.times += 1 | |
|
651 |
|
|
|
652 | dataOut.data = self.buffer | |
|
653 | self.reset() | |
|
654 | dataOut.flagNoData = False | |
|
655 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas | |
|
656 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
|
657 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * 5 | |
|
658 |
|
|
|
698 | else: | |
|
699 | self.concat(dataOut.data) | |
|
700 | self.times += 1 | |
|
701 | if self.times > m: | |
|
702 | dataOut.data = self.buffer | |
|
703 | self.reset() | |
|
704 | dataOut.flagNoData = False | |
|
705 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas | |
|
706 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
|
707 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * 5 | |
|
708 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) | |
|
659 | 709 | |
|
660 | 710 | class ProfileSelector(Operation): |
|
661 | 711 | |
|
662 | 712 | profileIndex = None |
|
663 | 713 | # Tamanho total de los perfiles |
|
664 | 714 | nProfiles = None |
|
665 | 715 | |
|
666 | 716 | def __init__(self): |
|
667 | 717 | |
|
668 | 718 | Operation.__init__(self) |
|
669 | 719 | self.profileIndex = 0 |
|
670 | 720 | |
|
671 | 721 | def incIndex(self): |
|
672 | 722 | self.profileIndex += 1 |
|
673 | 723 | |
|
674 | 724 | if self.profileIndex >= self.nProfiles: |
|
675 | 725 | self.profileIndex = 0 |
|
676 | 726 | |
|
677 | 727 | def isProfileInRange(self, minIndex, maxIndex): |
|
678 | 728 | |
|
679 | 729 | if self.profileIndex < minIndex: |
|
680 | 730 | return False |
|
681 | 731 | |
|
682 | 732 | if self.profileIndex > maxIndex: |
|
683 | 733 | return False |
|
684 | 734 | |
|
685 | 735 | return True |
|
686 | 736 | |
|
687 | 737 | def isProfileInList(self, profileList): |
|
688 | 738 | |
|
689 | 739 | if self.profileIndex not in profileList: |
|
690 | 740 | return False |
|
691 | 741 | |
|
692 | 742 | return True |
|
693 | 743 | |
|
694 | 744 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False): |
|
745 | ||
|
746 | """ | |
|
747 | ProfileSelector: | |
|
695 | 748 |
|
|
749 | """ | |
|
750 | ||
|
696 | 751 | dataOut.flagNoData = True |
|
697 | 752 | self.nProfiles = dataOut.nProfiles |
|
698 | 753 | |
|
699 | if byblock: | |
|
700 | ||
|
754 | if dataOut.flagDataAsBlock: | |
|
755 | """ | |
|
756 | data dimension = [nChannels, nProfiles, nHeis] | |
|
757 | """ | |
|
701 | 758 | if profileList != None: |
|
702 | 759 | dataOut.data = dataOut.data[:,profileList,:] |
|
703 | pass | |
|
760 | dataOut.nProfiles = len(profileList) | |
|
704 | 761 | else: |
|
705 | 762 | pmin = profileRangeList[0] |
|
706 | 763 | pmax = profileRangeList[1] |
|
707 | 764 | dataOut.data = dataOut.data[:,pmin:pmax+1,:] |
|
765 | dataOut.nProfiles = pmax - pmin + 1 | |
|
766 | ||
|
767 | ||
|
708 | 768 | dataOut.flagNoData = False |
|
709 | 769 | self.profileIndex = 0 |
|
710 |
|
|
|
711 | ||
|
712 | if profileList != None: | |
|
713 | if self.isProfileInList(profileList): | |
|
714 | dataOut.flagNoData = False | |
|
715 | ||
|
716 |
|
|
|
717 |
|
|
|
718 | ||
|
719 | ||
|
720 | elif profileRangeList != None: | |
|
721 | minIndex = profileRangeList[0] | |
|
722 | maxIndex = profileRangeList[1] | |
|
723 | if self.isProfileInRange(minIndex, maxIndex): | |
|
724 | dataOut.flagNoData = False | |
|
770 | ||
|
771 | return True | |
|
772 | ||
|
773 | else: | |
|
774 | """ | |
|
775 | data dimension = [nChannels, nHeis] | |
|
776 | ||
|
777 | """ | |
|
778 | if profileList != None: | |
|
725 | 779 | |
|
726 | self.incIndex() | |
|
727 | return 1 | |
|
728 | elif beam != None: #beam is only for AMISR data | |
|
729 | if self.isProfileInList(dataOut.beamRangeDict[beam]): | |
|
730 | dataOut.flagNoData = False | |
|
780 | if self.isProfileInList(profileList): | |
|
781 | dataOut.flagNoData = False | |
|
782 | ||
|
783 | self.incIndex() | |
|
784 | return 1 | |
|
785 | ||
|
786 | ||
|
787 | if profileRangeList != None: | |
|
731 | 788 | |
|
732 | self.incIndex() | |
|
733 | return 1 | |
|
734 | ||
|
735 | else: | |
|
736 | raise ValueError, "ProfileSelector needs profileList or profileRangeList" | |
|
789 | minIndex = profileRangeList[0] | |
|
790 | maxIndex = profileRangeList[1] | |
|
791 | if self.isProfileInRange(minIndex, maxIndex): | |
|
792 | dataOut.flagNoData = False | |
|
793 | ||
|
794 | self.incIndex() | |
|
795 | return 1 | |
|
796 | ||
|
797 | if beam != None: #beam is only for AMISR data | |
|
798 | if self.isProfileInList(dataOut.beamRangeDict[beam]): | |
|
799 | dataOut.flagNoData = False | |
|
800 | ||
|
801 | self.incIndex() | |
|
802 | return 1 | |
|
803 | ||
|
804 | raise ValueError, "ProfileSelector needs profileList or profileRangeList" | |
|
737 | 805 | |
|
738 | 806 | return 0 |
|
739 | 807 | |
|
740 | 808 | |
|
741 | 809 | |
|
742 | 810 | class Reshaper(Operation): |
|
743 | 811 | |
|
744 | 812 | def __init__(self): |
|
745 | 813 | |
|
746 | 814 | Operation.__init__(self) |
|
747 | 815 | self.updateNewHeights = True |
|
748 | 816 | |
|
749 | 817 | def run(self, dataOut, shape): |
|
750 | 818 | |
|
819 | if not dataOut.flagDataAsBlock: | |
|
820 | raise ValueError, "Reshaper can only be used when voltage have been read as Block, getBlock = True" | |
|
821 | ||
|
822 | if len(shape) != 3: | |
|
823 | raise ValueError, "shape len should be equal to 3, (nChannels, nProfiles, nHeis)" | |
|
824 | ||
|
751 | 825 | shape_tuple = tuple(shape) |
|
752 | 826 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
753 | 827 | dataOut.flagNoData = False |
|
754 | 828 | |
|
755 | 829 | if self.updateNewHeights: |
|
756 | 830 | |
|
757 | 831 | old_nheights = dataOut.nHeights |
|
758 | 832 | new_nheights = dataOut.data.shape[2] |
|
759 | 833 | factor = 1.0*new_nheights / old_nheights |
|
834 | ||
|
760 | 835 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
836 | ||
|
761 | 837 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * factor |
|
762 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) No newline at end of file | |
|
838 | ||
|
839 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) | |
|
840 | ||
|
841 | dataOut.nProfiles = dataOut.data.shape[1] No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now