##// END OF EJS Templates
Merge branch 'schain_mp' of http://jro-dev.igp.gob.pe/rhodecode/schain into schain_mp
José Chávez -
r926:29cb7ad6679f merge
parent child
Show More
@@ -1,1323 +1,1325
1 '''
1 '''
2 Created on September , 2012
2 Created on September , 2012
3 @author:
3 @author:
4 '''
4 '''
5
5
6 import sys
6 import sys
7 import ast
7 import ast
8 import datetime
8 import datetime
9 import traceback
9 import traceback
10 import math
10 import math
11 from multiprocessing import Process, Queue, cpu_count
11 from multiprocessing import Process, Queue, cpu_count
12
12
13 import schainpy
13 import schainpy
14 import schainpy.admin
14 import schainpy.admin
15
15
16 from xml.etree.ElementTree import ElementTree, Element, SubElement, tostring
16 from xml.etree.ElementTree import ElementTree, Element, SubElement, tostring
17 from xml.dom import minidom
17 from xml.dom import minidom
18
18
19 from schainpy.model import *
19 from schainpy.model import *
20 from time import sleep
20 from time import sleep
21
21
22 def prettify(elem):
22 def prettify(elem):
23 """Return a pretty-printed XML string for the Element.
23 """Return a pretty-printed XML string for the Element.
24 """
24 """
25 rough_string = tostring(elem, 'utf-8')
25 rough_string = tostring(elem, 'utf-8')
26 reparsed = minidom.parseString(rough_string)
26 reparsed = minidom.parseString(rough_string)
27 return reparsed.toprettyxml(indent=" ")
27 return reparsed.toprettyxml(indent=" ")
28
28
29 def multiSchain(child, nProcess=cpu_count(), startDate=None, endDate=None, receiver=None):
29 def multiSchain(child, nProcess=cpu_count(), startDate=None, endDate=None, by_day=False):
30 skip = 0
30 skip = 0
31 cursor = 0
31 cursor = 0
32 nFiles = None
32 nFiles = None
33 processes = []
33 processes = []
34
34
35
35
36
36
37
37
38 dt1 = datetime.datetime.strptime(startDate, '%Y/%m/%d')
38 dt1 = datetime.datetime.strptime(startDate, '%Y/%m/%d')
39 dt2 = datetime.datetime.strptime(endDate, '%Y/%m/%d')
39 dt2 = datetime.datetime.strptime(endDate, '%Y/%m/%d')
40 days = (dt2 - dt1).days
40 days = (dt2 - dt1).days
41 print days
41
42 for day in range(days+1):
42 for day in range(days+1):
43 skip = 0
43 skip = 0
44 cursor = 0
44 cursor = 0
45 q = Queue()
45 q = Queue()
46 processes = []
46 processes = []
47 dt = (dt1 + datetime.timedelta(day)).strftime('%Y/%m/%d')
47 dt = (dt1 + datetime.timedelta(day)).strftime('%Y/%m/%d')
48 firstProcess = Process(target=child, args=(cursor, skip, q, dt))
48 firstProcess = Process(target=child, args=(cursor, skip, q, dt))
49 firstProcess.start()
49 firstProcess.start()
50 if by_day:
51 continue
50 nFiles = q.get()
52 nFiles = q.get()
51 firstProcess.terminate()
53 firstProcess.terminate()
52 skip = int(math.ceil(nFiles/nProcess))
54 skip = int(math.ceil(nFiles/nProcess))
53 while True:
55 while True:
54 processes.append(Process(target=child, args=(cursor, skip, q, dt)))
56 processes.append(Process(target=child, args=(cursor, skip, q, dt)))
55 processes[cursor].start()
57 processes[cursor].start()
56 if nFiles < cursor*skip:
58 if nFiles < cursor*skip:
57 break
59 break
58 cursor += 1
60 cursor += 1
59
61
60 def beforeExit(exctype, value, trace):
62 def beforeExit(exctype, value, trace):
61 for process in processes:
63 for process in processes:
62 process.terminate()
64 process.terminate()
63 process.join()
65 process.join()
64 print traceback.print_tb(trace)
66 print traceback.print_tb(trace)
65
67
66 sys.excepthook = beforeExit
68 sys.excepthook = beforeExit
67
69
68 for process in processes:
70 for process in processes:
69 process.join()
71 process.join()
70 process.terminate()
72 process.terminate()
71 sys.exit()
73 sys.exit()
72
74
73
75
74 class ParameterConf():
76 class ParameterConf():
75
77
76 id = None
78 id = None
77 name = None
79 name = None
78 value = None
80 value = None
79 format = None
81 format = None
80
82
81 __formated_value = None
83 __formated_value = None
82
84
83 ELEMENTNAME = 'Parameter'
85 ELEMENTNAME = 'Parameter'
84
86
85 def __init__(self):
87 def __init__(self):
86
88
87 self.format = 'str'
89 self.format = 'str'
88
90
89 def getElementName(self):
91 def getElementName(self):
90
92
91 return self.ELEMENTNAME
93 return self.ELEMENTNAME
92
94
93 def getValue(self):
95 def getValue(self):
94
96
95 value = self.value
97 value = self.value
96 format = self.format
98 format = self.format
97
99
98 if self.__formated_value != None:
100 if self.__formated_value != None:
99
101
100 return self.__formated_value
102 return self.__formated_value
101
103
102 if format == 'obj':
104 if format == 'obj':
103 return value
105 return value
104
106
105 if format == 'str':
107 if format == 'str':
106 self.__formated_value = str(value)
108 self.__formated_value = str(value)
107 return self.__formated_value
109 return self.__formated_value
108
110
109 if value == '':
111 if value == '':
110 raise ValueError, "%s: This parameter value is empty" %self.name
112 raise ValueError, "%s: This parameter value is empty" %self.name
111
113
112 if format == 'list':
114 if format == 'list':
113 strList = value.split(',')
115 strList = value.split(',')
114
116
115 self.__formated_value = strList
117 self.__formated_value = strList
116
118
117 return self.__formated_value
119 return self.__formated_value
118
120
119 if format == 'intlist':
121 if format == 'intlist':
120 """
122 """
121 Example:
123 Example:
122 value = (0,1,2)
124 value = (0,1,2)
123 """
125 """
124
126
125 new_value = ast.literal_eval(value)
127 new_value = ast.literal_eval(value)
126
128
127 if type(new_value) not in (tuple, list):
129 if type(new_value) not in (tuple, list):
128 new_value = [int(new_value)]
130 new_value = [int(new_value)]
129
131
130 self.__formated_value = new_value
132 self.__formated_value = new_value
131
133
132 return self.__formated_value
134 return self.__formated_value
133
135
134 if format == 'floatlist':
136 if format == 'floatlist':
135 """
137 """
136 Example:
138 Example:
137 value = (0.5, 1.4, 2.7)
139 value = (0.5, 1.4, 2.7)
138 """
140 """
139
141
140 new_value = ast.literal_eval(value)
142 new_value = ast.literal_eval(value)
141
143
142 if type(new_value) not in (tuple, list):
144 if type(new_value) not in (tuple, list):
143 new_value = [float(new_value)]
145 new_value = [float(new_value)]
144
146
145 self.__formated_value = new_value
147 self.__formated_value = new_value
146
148
147 return self.__formated_value
149 return self.__formated_value
148
150
149 if format == 'date':
151 if format == 'date':
150 strList = value.split('/')
152 strList = value.split('/')
151 intList = [int(x) for x in strList]
153 intList = [int(x) for x in strList]
152 date = datetime.date(intList[0], intList[1], intList[2])
154 date = datetime.date(intList[0], intList[1], intList[2])
153
155
154 self.__formated_value = date
156 self.__formated_value = date
155
157
156 return self.__formated_value
158 return self.__formated_value
157
159
158 if format == 'time':
160 if format == 'time':
159 strList = value.split(':')
161 strList = value.split(':')
160 intList = [int(x) for x in strList]
162 intList = [int(x) for x in strList]
161 time = datetime.time(intList[0], intList[1], intList[2])
163 time = datetime.time(intList[0], intList[1], intList[2])
162
164
163 self.__formated_value = time
165 self.__formated_value = time
164
166
165 return self.__formated_value
167 return self.__formated_value
166
168
167 if format == 'pairslist':
169 if format == 'pairslist':
168 """
170 """
169 Example:
171 Example:
170 value = (0,1),(1,2)
172 value = (0,1),(1,2)
171 """
173 """
172
174
173 new_value = ast.literal_eval(value)
175 new_value = ast.literal_eval(value)
174
176
175 if type(new_value) not in (tuple, list):
177 if type(new_value) not in (tuple, list):
176 raise ValueError, "%s has to be a tuple or list of pairs" %value
178 raise ValueError, "%s has to be a tuple or list of pairs" %value
177
179
178 if type(new_value[0]) not in (tuple, list):
180 if type(new_value[0]) not in (tuple, list):
179 if len(new_value) != 2:
181 if len(new_value) != 2:
180 raise ValueError, "%s has to be a tuple or list of pairs" %value
182 raise ValueError, "%s has to be a tuple or list of pairs" %value
181 new_value = [new_value]
183 new_value = [new_value]
182
184
183 for thisPair in new_value:
185 for thisPair in new_value:
184 if len(thisPair) != 2:
186 if len(thisPair) != 2:
185 raise ValueError, "%s has to be a tuple or list of pairs" %value
187 raise ValueError, "%s has to be a tuple or list of pairs" %value
186
188
187 self.__formated_value = new_value
189 self.__formated_value = new_value
188
190
189 return self.__formated_value
191 return self.__formated_value
190
192
191 if format == 'multilist':
193 if format == 'multilist':
192 """
194 """
193 Example:
195 Example:
194 value = (0,1,2),(3,4,5)
196 value = (0,1,2),(3,4,5)
195 """
197 """
196 multiList = ast.literal_eval(value)
198 multiList = ast.literal_eval(value)
197
199
198 if type(multiList[0]) == int:
200 if type(multiList[0]) == int:
199 multiList = ast.literal_eval("(" + value + ")")
201 multiList = ast.literal_eval("(" + value + ")")
200
202
201 self.__formated_value = multiList
203 self.__formated_value = multiList
202
204
203 return self.__formated_value
205 return self.__formated_value
204
206
205 if format == 'bool':
207 if format == 'bool':
206 value = int(value)
208 value = int(value)
207
209
208 if format == 'int':
210 if format == 'int':
209 value = float(value)
211 value = float(value)
210
212
211 format_func = eval(format)
213 format_func = eval(format)
212
214
213 self.__formated_value = format_func(value)
215 self.__formated_value = format_func(value)
214
216
215 return self.__formated_value
217 return self.__formated_value
216
218
217 def updateId(self, new_id):
219 def updateId(self, new_id):
218
220
219 self.id = str(new_id)
221 self.id = str(new_id)
220
222
221 def setup(self, id, name, value, format='str'):
223 def setup(self, id, name, value, format='str'):
222
224
223 self.id = str(id)
225 self.id = str(id)
224 self.name = name
226 self.name = name
225 if format == 'obj':
227 if format == 'obj':
226 self.value = value
228 self.value = value
227 else:
229 else:
228 self.value = str(value)
230 self.value = str(value)
229 self.format = str.lower(format)
231 self.format = str.lower(format)
230
232
231 self.getValue()
233 self.getValue()
232
234
233 return 1
235 return 1
234
236
235 def update(self, name, value, format='str'):
237 def update(self, name, value, format='str'):
236
238
237 self.name = name
239 self.name = name
238 self.value = str(value)
240 self.value = str(value)
239 self.format = format
241 self.format = format
240
242
241 def makeXml(self, opElement):
243 def makeXml(self, opElement):
242 if self.name not in ('queue',):
244 if self.name not in ('queue',):
243 parmElement = SubElement(opElement, self.ELEMENTNAME)
245 parmElement = SubElement(opElement, self.ELEMENTNAME)
244 parmElement.set('id', str(self.id))
246 parmElement.set('id', str(self.id))
245 parmElement.set('name', self.name)
247 parmElement.set('name', self.name)
246 parmElement.set('value', self.value)
248 parmElement.set('value', self.value)
247 parmElement.set('format', self.format)
249 parmElement.set('format', self.format)
248
250
249 def readXml(self, parmElement):
251 def readXml(self, parmElement):
250
252
251 self.id = parmElement.get('id')
253 self.id = parmElement.get('id')
252 self.name = parmElement.get('name')
254 self.name = parmElement.get('name')
253 self.value = parmElement.get('value')
255 self.value = parmElement.get('value')
254 self.format = str.lower(parmElement.get('format'))
256 self.format = str.lower(parmElement.get('format'))
255
257
256 #Compatible with old signal chain version
258 #Compatible with old signal chain version
257 if self.format == 'int' and self.name == 'idfigure':
259 if self.format == 'int' and self.name == 'idfigure':
258 self.name = 'id'
260 self.name = 'id'
259
261
260 def printattr(self):
262 def printattr(self):
261
263
262 print "Parameter[%s]: name = %s, value = %s, format = %s" %(self.id, self.name, self.value, self.format)
264 print "Parameter[%s]: name = %s, value = %s, format = %s" %(self.id, self.name, self.value, self.format)
263
265
264 class OperationConf():
266 class OperationConf():
265
267
266 id = None
268 id = None
267 name = None
269 name = None
268 priority = None
270 priority = None
269 type = None
271 type = None
270
272
271 parmConfObjList = []
273 parmConfObjList = []
272
274
273 ELEMENTNAME = 'Operation'
275 ELEMENTNAME = 'Operation'
274
276
275 def __init__(self):
277 def __init__(self):
276
278
277 self.id = '0'
279 self.id = '0'
278 self.name = None
280 self.name = None
279 self.priority = None
281 self.priority = None
280 self.type = 'self'
282 self.type = 'self'
281
283
282
284
283 def __getNewId(self):
285 def __getNewId(self):
284
286
285 return int(self.id)*10 + len(self.parmConfObjList) + 1
287 return int(self.id)*10 + len(self.parmConfObjList) + 1
286
288
287 def updateId(self, new_id):
289 def updateId(self, new_id):
288
290
289 self.id = str(new_id)
291 self.id = str(new_id)
290
292
291 n = 1
293 n = 1
292 for parmObj in self.parmConfObjList:
294 for parmObj in self.parmConfObjList:
293
295
294 idParm = str(int(new_id)*10 + n)
296 idParm = str(int(new_id)*10 + n)
295 parmObj.updateId(idParm)
297 parmObj.updateId(idParm)
296
298
297 n += 1
299 n += 1
298
300
299 def getElementName(self):
301 def getElementName(self):
300
302
301 return self.ELEMENTNAME
303 return self.ELEMENTNAME
302
304
303 def getParameterObjList(self):
305 def getParameterObjList(self):
304
306
305 return self.parmConfObjList
307 return self.parmConfObjList
306
308
307 def getParameterObj(self, parameterName):
309 def getParameterObj(self, parameterName):
308
310
309 for parmConfObj in self.parmConfObjList:
311 for parmConfObj in self.parmConfObjList:
310
312
311 if parmConfObj.name != parameterName:
313 if parmConfObj.name != parameterName:
312 continue
314 continue
313
315
314 return parmConfObj
316 return parmConfObj
315
317
316 return None
318 return None
317
319
318 def getParameterObjfromValue(self, parameterValue):
320 def getParameterObjfromValue(self, parameterValue):
319
321
320 for parmConfObj in self.parmConfObjList:
322 for parmConfObj in self.parmConfObjList:
321
323
322 if parmConfObj.getValue() != parameterValue:
324 if parmConfObj.getValue() != parameterValue:
323 continue
325 continue
324
326
325 return parmConfObj.getValue()
327 return parmConfObj.getValue()
326
328
327 return None
329 return None
328
330
329 def getParameterValue(self, parameterName):
331 def getParameterValue(self, parameterName):
330
332
331 parameterObj = self.getParameterObj(parameterName)
333 parameterObj = self.getParameterObj(parameterName)
332
334
333 # if not parameterObj:
335 # if not parameterObj:
334 # return None
336 # return None
335
337
336 value = parameterObj.getValue()
338 value = parameterObj.getValue()
337
339
338 return value
340 return value
339
341
340
342
341 def getKwargs(self):
343 def getKwargs(self):
342
344
343 kwargs = {}
345 kwargs = {}
344
346
345 for parmConfObj in self.parmConfObjList:
347 for parmConfObj in self.parmConfObjList:
346 if self.name == 'run' and parmConfObj.name == 'datatype':
348 if self.name == 'run' and parmConfObj.name == 'datatype':
347 continue
349 continue
348
350
349 kwargs[parmConfObj.name] = parmConfObj.getValue()
351 kwargs[parmConfObj.name] = parmConfObj.getValue()
350
352
351 return kwargs
353 return kwargs
352
354
353 def setup(self, id, name, priority, type):
355 def setup(self, id, name, priority, type):
354
356
355 self.id = str(id)
357 self.id = str(id)
356 self.name = name
358 self.name = name
357 self.type = type
359 self.type = type
358 self.priority = priority
360 self.priority = priority
359
361
360 self.parmConfObjList = []
362 self.parmConfObjList = []
361
363
362 def removeParameters(self):
364 def removeParameters(self):
363
365
364 for obj in self.parmConfObjList:
366 for obj in self.parmConfObjList:
365 del obj
367 del obj
366
368
367 self.parmConfObjList = []
369 self.parmConfObjList = []
368
370
369 def addParameter(self, name, value, format='str'):
371 def addParameter(self, name, value, format='str'):
370
372
371 id = self.__getNewId()
373 id = self.__getNewId()
372
374
373 parmConfObj = ParameterConf()
375 parmConfObj = ParameterConf()
374 if not parmConfObj.setup(id, name, value, format):
376 if not parmConfObj.setup(id, name, value, format):
375 return None
377 return None
376
378
377 self.parmConfObjList.append(parmConfObj)
379 self.parmConfObjList.append(parmConfObj)
378
380
379 return parmConfObj
381 return parmConfObj
380
382
381 def changeParameter(self, name, value, format='str'):
383 def changeParameter(self, name, value, format='str'):
382
384
383 parmConfObj = self.getParameterObj(name)
385 parmConfObj = self.getParameterObj(name)
384 parmConfObj.update(name, value, format)
386 parmConfObj.update(name, value, format)
385
387
386 return parmConfObj
388 return parmConfObj
387
389
388 def makeXml(self, procUnitElement):
390 def makeXml(self, procUnitElement):
389
391
390 opElement = SubElement(procUnitElement, self.ELEMENTNAME)
392 opElement = SubElement(procUnitElement, self.ELEMENTNAME)
391 opElement.set('id', str(self.id))
393 opElement.set('id', str(self.id))
392 opElement.set('name', self.name)
394 opElement.set('name', self.name)
393 opElement.set('type', self.type)
395 opElement.set('type', self.type)
394 opElement.set('priority', str(self.priority))
396 opElement.set('priority', str(self.priority))
395
397
396 for parmConfObj in self.parmConfObjList:
398 for parmConfObj in self.parmConfObjList:
397 parmConfObj.makeXml(opElement)
399 parmConfObj.makeXml(opElement)
398
400
399 def readXml(self, opElement):
401 def readXml(self, opElement):
400
402
401 self.id = opElement.get('id')
403 self.id = opElement.get('id')
402 self.name = opElement.get('name')
404 self.name = opElement.get('name')
403 self.type = opElement.get('type')
405 self.type = opElement.get('type')
404 self.priority = opElement.get('priority')
406 self.priority = opElement.get('priority')
405
407
406 #Compatible with old signal chain version
408 #Compatible with old signal chain version
407 #Use of 'run' method instead 'init'
409 #Use of 'run' method instead 'init'
408 if self.type == 'self' and self.name == 'init':
410 if self.type == 'self' and self.name == 'init':
409 self.name = 'run'
411 self.name = 'run'
410
412
411 self.parmConfObjList = []
413 self.parmConfObjList = []
412
414
413 parmElementList = opElement.iter(ParameterConf().getElementName())
415 parmElementList = opElement.iter(ParameterConf().getElementName())
414
416
415 for parmElement in parmElementList:
417 for parmElement in parmElementList:
416 parmConfObj = ParameterConf()
418 parmConfObj = ParameterConf()
417 parmConfObj.readXml(parmElement)
419 parmConfObj.readXml(parmElement)
418
420
419 #Compatible with old signal chain version
421 #Compatible with old signal chain version
420 #If an 'plot' OPERATION is found, changes name operation by the value of its type PARAMETER
422 #If an 'plot' OPERATION is found, changes name operation by the value of its type PARAMETER
421 if self.type != 'self' and self.name == 'Plot':
423 if self.type != 'self' and self.name == 'Plot':
422 if parmConfObj.format == 'str' and parmConfObj.name == 'type':
424 if parmConfObj.format == 'str' and parmConfObj.name == 'type':
423 self.name = parmConfObj.value
425 self.name = parmConfObj.value
424 continue
426 continue
425
427
426 self.parmConfObjList.append(parmConfObj)
428 self.parmConfObjList.append(parmConfObj)
427
429
428 def printattr(self):
430 def printattr(self):
429
431
430 print "%s[%s]: name = %s, type = %s, priority = %s" %(self.ELEMENTNAME,
432 print "%s[%s]: name = %s, type = %s, priority = %s" %(self.ELEMENTNAME,
431 self.id,
433 self.id,
432 self.name,
434 self.name,
433 self.type,
435 self.type,
434 self.priority)
436 self.priority)
435
437
436 for parmConfObj in self.parmConfObjList:
438 for parmConfObj in self.parmConfObjList:
437 parmConfObj.printattr()
439 parmConfObj.printattr()
438
440
439 def createObject(self, plotter_queue=None):
441 def createObject(self, plotter_queue=None):
440
442
441
443
442 if self.type == 'self':
444 if self.type == 'self':
443 raise ValueError, "This operation type cannot be created"
445 raise ValueError, "This operation type cannot be created"
444
446
445 if self.type == 'plotter':
447 if self.type == 'plotter':
446 #Plotter(plotter_name)
448 #Plotter(plotter_name)
447 if not plotter_queue:
449 if not plotter_queue:
448 raise ValueError, "plotter_queue is not defined. Use:\nmyProject = Project()\nmyProject.setPlotterQueue(plotter_queue)"
450 raise ValueError, "plotter_queue is not defined. Use:\nmyProject = Project()\nmyProject.setPlotterQueue(plotter_queue)"
449
451
450 opObj = Plotter(self.name, plotter_queue)
452 opObj = Plotter(self.name, plotter_queue)
451
453
452 if self.type == 'external' or self.type == 'other':
454 if self.type == 'external' or self.type == 'other':
453
455
454 className = eval(self.name)
456 className = eval(self.name)
455 kwargs = self.getKwargs()
457 kwargs = self.getKwargs()
456
458
457 opObj = className(**kwargs)
459 opObj = className(**kwargs)
458
460
459 return opObj
461 return opObj
460
462
461
463
462 class ProcUnitConf():
464 class ProcUnitConf():
463
465
464 id = None
466 id = None
465 name = None
467 name = None
466 datatype = None
468 datatype = None
467 inputId = None
469 inputId = None
468 parentId = None
470 parentId = None
469
471
470 opConfObjList = []
472 opConfObjList = []
471
473
472 procUnitObj = None
474 procUnitObj = None
473 opObjList = []
475 opObjList = []
474
476
475 ELEMENTNAME = 'ProcUnit'
477 ELEMENTNAME = 'ProcUnit'
476
478
477 def __init__(self):
479 def __init__(self):
478
480
479 self.id = None
481 self.id = None
480 self.datatype = None
482 self.datatype = None
481 self.name = None
483 self.name = None
482 self.inputId = None
484 self.inputId = None
483
485
484 self.opConfObjList = []
486 self.opConfObjList = []
485
487
486 self.procUnitObj = None
488 self.procUnitObj = None
487 self.opObjDict = {}
489 self.opObjDict = {}
488
490
489 def __getPriority(self):
491 def __getPriority(self):
490
492
491 return len(self.opConfObjList)+1
493 return len(self.opConfObjList)+1
492
494
493 def __getNewId(self):
495 def __getNewId(self):
494
496
495 return int(self.id)*10 + len(self.opConfObjList) + 1
497 return int(self.id)*10 + len(self.opConfObjList) + 1
496
498
497 def getElementName(self):
499 def getElementName(self):
498
500
499 return self.ELEMENTNAME
501 return self.ELEMENTNAME
500
502
501 def getId(self):
503 def getId(self):
502
504
503 return self.id
505 return self.id
504
506
505 def updateId(self, new_id, parentId=parentId):
507 def updateId(self, new_id, parentId=parentId):
506
508
507
509
508 new_id = int(parentId)*10 + (int(self.id) % 10)
510 new_id = int(parentId)*10 + (int(self.id) % 10)
509 new_inputId = int(parentId)*10 + (int(self.inputId) % 10)
511 new_inputId = int(parentId)*10 + (int(self.inputId) % 10)
510
512
511 #If this proc unit has not inputs
513 #If this proc unit has not inputs
512 if self.inputId == '0':
514 if self.inputId == '0':
513 new_inputId = 0
515 new_inputId = 0
514
516
515 n = 1
517 n = 1
516 for opConfObj in self.opConfObjList:
518 for opConfObj in self.opConfObjList:
517
519
518 idOp = str(int(new_id)*10 + n)
520 idOp = str(int(new_id)*10 + n)
519 opConfObj.updateId(idOp)
521 opConfObj.updateId(idOp)
520
522
521 n += 1
523 n += 1
522
524
523 self.parentId = str(parentId)
525 self.parentId = str(parentId)
524 self.id = str(new_id)
526 self.id = str(new_id)
525 self.inputId = str(new_inputId)
527 self.inputId = str(new_inputId)
526
528
527
529
528 def getInputId(self):
530 def getInputId(self):
529
531
530 return self.inputId
532 return self.inputId
531
533
532 def getOperationObjList(self):
534 def getOperationObjList(self):
533
535
534 return self.opConfObjList
536 return self.opConfObjList
535
537
536 def getOperationObj(self, name=None):
538 def getOperationObj(self, name=None):
537
539
538 for opConfObj in self.opConfObjList:
540 for opConfObj in self.opConfObjList:
539
541
540 if opConfObj.name != name:
542 if opConfObj.name != name:
541 continue
543 continue
542
544
543 return opConfObj
545 return opConfObj
544
546
545 return None
547 return None
546
548
547 def getOpObjfromParamValue(self, value=None):
549 def getOpObjfromParamValue(self, value=None):
548
550
549 for opConfObj in self.opConfObjList:
551 for opConfObj in self.opConfObjList:
550 if opConfObj.getParameterObjfromValue(parameterValue=value) != value:
552 if opConfObj.getParameterObjfromValue(parameterValue=value) != value:
551 continue
553 continue
552 return opConfObj
554 return opConfObj
553 return None
555 return None
554
556
555 def getProcUnitObj(self):
557 def getProcUnitObj(self):
556
558
557 return self.procUnitObj
559 return self.procUnitObj
558
560
559 def setup(self, id, name, datatype, inputId, parentId=None):
561 def setup(self, id, name, datatype, inputId, parentId=None):
560
562
561 #Compatible with old signal chain version
563 #Compatible with old signal chain version
562 if datatype==None and name==None:
564 if datatype==None and name==None:
563 raise ValueError, "datatype or name should be defined"
565 raise ValueError, "datatype or name should be defined"
564
566
565 if name==None:
567 if name==None:
566 if 'Proc' in datatype:
568 if 'Proc' in datatype:
567 name = datatype
569 name = datatype
568 else:
570 else:
569 name = '%sProc' %(datatype)
571 name = '%sProc' %(datatype)
570
572
571 if datatype==None:
573 if datatype==None:
572 datatype = name.replace('Proc','')
574 datatype = name.replace('Proc','')
573
575
574 self.id = str(id)
576 self.id = str(id)
575 self.name = name
577 self.name = name
576 self.datatype = datatype
578 self.datatype = datatype
577 self.inputId = inputId
579 self.inputId = inputId
578 self.parentId = parentId
580 self.parentId = parentId
579
581
580 self.opConfObjList = []
582 self.opConfObjList = []
581
583
582 self.addOperation(name='run', optype='self')
584 self.addOperation(name='run', optype='self')
583
585
584 def removeOperations(self):
586 def removeOperations(self):
585
587
586 for obj in self.opConfObjList:
588 for obj in self.opConfObjList:
587 del obj
589 del obj
588
590
589 self.opConfObjList = []
591 self.opConfObjList = []
590 self.addOperation(name='run')
592 self.addOperation(name='run')
591
593
592 def addParameter(self, **kwargs):
594 def addParameter(self, **kwargs):
593 '''
595 '''
594 Add parameters to "run" operation
596 Add parameters to "run" operation
595 '''
597 '''
596 opObj = self.opConfObjList[0]
598 opObj = self.opConfObjList[0]
597
599
598 opObj.addParameter(**kwargs)
600 opObj.addParameter(**kwargs)
599
601
600 return opObj
602 return opObj
601
603
602 def addOperation(self, name, optype='self'):
604 def addOperation(self, name, optype='self'):
603
605
604 id = self.__getNewId()
606 id = self.__getNewId()
605 priority = self.__getPriority()
607 priority = self.__getPriority()
606
608
607 opConfObj = OperationConf()
609 opConfObj = OperationConf()
608 opConfObj.setup(id, name=name, priority=priority, type=optype)
610 opConfObj.setup(id, name=name, priority=priority, type=optype)
609
611
610 self.opConfObjList.append(opConfObj)
612 self.opConfObjList.append(opConfObj)
611
613
612 return opConfObj
614 return opConfObj
613
615
614 def makeXml(self, projectElement):
616 def makeXml(self, projectElement):
615
617
616 procUnitElement = SubElement(projectElement, self.ELEMENTNAME)
618 procUnitElement = SubElement(projectElement, self.ELEMENTNAME)
617 procUnitElement.set('id', str(self.id))
619 procUnitElement.set('id', str(self.id))
618 procUnitElement.set('name', self.name)
620 procUnitElement.set('name', self.name)
619 procUnitElement.set('datatype', self.datatype)
621 procUnitElement.set('datatype', self.datatype)
620 procUnitElement.set('inputId', str(self.inputId))
622 procUnitElement.set('inputId', str(self.inputId))
621
623
622 for opConfObj in self.opConfObjList:
624 for opConfObj in self.opConfObjList:
623 opConfObj.makeXml(procUnitElement)
625 opConfObj.makeXml(procUnitElement)
624
626
625 def readXml(self, upElement):
627 def readXml(self, upElement):
626
628
627 self.id = upElement.get('id')
629 self.id = upElement.get('id')
628 self.name = upElement.get('name')
630 self.name = upElement.get('name')
629 self.datatype = upElement.get('datatype')
631 self.datatype = upElement.get('datatype')
630 self.inputId = upElement.get('inputId')
632 self.inputId = upElement.get('inputId')
631
633
632 if self.ELEMENTNAME == "ReadUnit":
634 if self.ELEMENTNAME == "ReadUnit":
633 self.datatype = self.datatype.replace("Reader", "")
635 self.datatype = self.datatype.replace("Reader", "")
634
636
635 if self.ELEMENTNAME == "ProcUnit":
637 if self.ELEMENTNAME == "ProcUnit":
636 self.datatype = self.datatype.replace("Proc", "")
638 self.datatype = self.datatype.replace("Proc", "")
637
639
638 if self.inputId == 'None':
640 if self.inputId == 'None':
639 self.inputId = '0'
641 self.inputId = '0'
640
642
641 self.opConfObjList = []
643 self.opConfObjList = []
642
644
643 opElementList = upElement.iter(OperationConf().getElementName())
645 opElementList = upElement.iter(OperationConf().getElementName())
644
646
645 for opElement in opElementList:
647 for opElement in opElementList:
646 opConfObj = OperationConf()
648 opConfObj = OperationConf()
647 opConfObj.readXml(opElement)
649 opConfObj.readXml(opElement)
648 self.opConfObjList.append(opConfObj)
650 self.opConfObjList.append(opConfObj)
649
651
650 def printattr(self):
652 def printattr(self):
651
653
652 print "%s[%s]: name = %s, datatype = %s, inputId = %s" %(self.ELEMENTNAME,
654 print "%s[%s]: name = %s, datatype = %s, inputId = %s" %(self.ELEMENTNAME,
653 self.id,
655 self.id,
654 self.name,
656 self.name,
655 self.datatype,
657 self.datatype,
656 self.inputId)
658 self.inputId)
657
659
658 for opConfObj in self.opConfObjList:
660 for opConfObj in self.opConfObjList:
659 opConfObj.printattr()
661 opConfObj.printattr()
660
662
661
663
662 def getKwargs(self):
664 def getKwargs(self):
663
665
664 opObj = self.opConfObjList[0]
666 opObj = self.opConfObjList[0]
665 kwargs = opObj.getKwargs()
667 kwargs = opObj.getKwargs()
666
668
667 return kwargs
669 return kwargs
668
670
669 def createObjects(self, plotter_queue=None):
671 def createObjects(self, plotter_queue=None):
670
672
671 className = eval(self.name)
673 className = eval(self.name)
672 kwargs = self.getKwargs()
674 kwargs = self.getKwargs()
673 procUnitObj = className(**kwargs)
675 procUnitObj = className(**kwargs)
674
676
675 for opConfObj in self.opConfObjList:
677 for opConfObj in self.opConfObjList:
676
678
677 if opConfObj.type=='self' and self.name=='run':
679 if opConfObj.type=='self' and self.name=='run':
678 continue
680 continue
679 elif opConfObj.type=='self':
681 elif opConfObj.type=='self':
680 procUnitObj.addOperationKwargs(opConfObj.id, **opConfObj.getKwargs())
682 procUnitObj.addOperationKwargs(opConfObj.id, **opConfObj.getKwargs())
681 continue
683 continue
682
684
683 opObj = opConfObj.createObject(plotter_queue)
685 opObj = opConfObj.createObject(plotter_queue)
684
686
685 self.opObjDict[opConfObj.id] = opObj
687 self.opObjDict[opConfObj.id] = opObj
686
688
687 procUnitObj.addOperation(opObj, opConfObj.id)
689 procUnitObj.addOperation(opObj, opConfObj.id)
688
690
689 self.procUnitObj = procUnitObj
691 self.procUnitObj = procUnitObj
690
692
691 return procUnitObj
693 return procUnitObj
692
694
693 def run(self):
695 def run(self):
694
696
695 is_ok = False
697 is_ok = False
696
698
697 for opConfObj in self.opConfObjList:
699 for opConfObj in self.opConfObjList:
698
700
699 kwargs = {}
701 kwargs = {}
700 for parmConfObj in opConfObj.getParameterObjList():
702 for parmConfObj in opConfObj.getParameterObjList():
701 if opConfObj.name == 'run' and parmConfObj.name == 'datatype':
703 if opConfObj.name == 'run' and parmConfObj.name == 'datatype':
702 continue
704 continue
703
705
704 kwargs[parmConfObj.name] = parmConfObj.getValue()
706 kwargs[parmConfObj.name] = parmConfObj.getValue()
705
707
706 #ini = time.time()
708 #ini = time.time()
707
709
708 #print "\tRunning the '%s' operation with %s" %(opConfObj.name, opConfObj.id)
710 #print "\tRunning the '%s' operation with %s" %(opConfObj.name, opConfObj.id)
709 sts = self.procUnitObj.call(opType = opConfObj.type,
711 sts = self.procUnitObj.call(opType = opConfObj.type,
710 opName = opConfObj.name,
712 opName = opConfObj.name,
711 opId = opConfObj.id,
713 opId = opConfObj.id,
712 )
714 )
713
715
714 # total_time = time.time() - ini
716 # total_time = time.time() - ini
715 #
717 #
716 # if total_time > 0.002:
718 # if total_time > 0.002:
717 # print "%s::%s took %f seconds" %(self.name, opConfObj.name, total_time)
719 # print "%s::%s took %f seconds" %(self.name, opConfObj.name, total_time)
718
720
719 is_ok = is_ok or sts
721 is_ok = is_ok or sts
720
722
721 return is_ok
723 return is_ok
722
724
723 def close(self):
725 def close(self):
724
726
725 for opConfObj in self.opConfObjList:
727 for opConfObj in self.opConfObjList:
726 if opConfObj.type == 'self':
728 if opConfObj.type == 'self':
727 continue
729 continue
728
730
729 opObj = self.procUnitObj.getOperationObj(opConfObj.id)
731 opObj = self.procUnitObj.getOperationObj(opConfObj.id)
730 opObj.close()
732 opObj.close()
731
733
732 self.procUnitObj.close()
734 self.procUnitObj.close()
733
735
734 return
736 return
735
737
736 class ReadUnitConf(ProcUnitConf):
738 class ReadUnitConf(ProcUnitConf):
737
739
738 path = None
740 path = None
739 startDate = None
741 startDate = None
740 endDate = None
742 endDate = None
741 startTime = None
743 startTime = None
742 endTime = None
744 endTime = None
743
745
744 ELEMENTNAME = 'ReadUnit'
746 ELEMENTNAME = 'ReadUnit'
745
747
746 def __init__(self):
748 def __init__(self):
747
749
748 self.id = None
750 self.id = None
749 self.datatype = None
751 self.datatype = None
750 self.name = None
752 self.name = None
751 self.inputId = None
753 self.inputId = None
752
754
753 self.parentId = None
755 self.parentId = None
754
756
755 self.opConfObjList = []
757 self.opConfObjList = []
756 self.opObjList = []
758 self.opObjList = []
757
759
758 def getElementName(self):
760 def getElementName(self):
759
761
760 return self.ELEMENTNAME
762 return self.ELEMENTNAME
761
763
762 def setup(self, id, name, datatype, path, startDate="", endDate="", startTime="", endTime="", parentId=None, queue=None, **kwargs):
764 def setup(self, id, name, datatype, path, startDate="", endDate="", startTime="", endTime="", parentId=None, queue=None, **kwargs):
763
765
764 #Compatible with old signal chain version
766 #Compatible with old signal chain version
765 if datatype==None and name==None:
767 if datatype==None and name==None:
766 raise ValueError, "datatype or name should be defined"
768 raise ValueError, "datatype or name should be defined"
767
769
768 if name==None:
770 if name==None:
769 if 'Reader' in datatype:
771 if 'Reader' in datatype:
770 name = datatype
772 name = datatype
771 else:
773 else:
772 name = '%sReader' %(datatype)
774 name = '%sReader' %(datatype)
773
775
774 if datatype==None:
776 if datatype==None:
775 datatype = name.replace('Reader','')
777 datatype = name.replace('Reader','')
776
778
777 self.id = id
779 self.id = id
778 self.name = name
780 self.name = name
779 self.datatype = datatype
781 self.datatype = datatype
780
782
781 self.path = os.path.abspath(path)
783 self.path = os.path.abspath(path)
782 self.startDate = startDate
784 self.startDate = startDate
783 self.endDate = endDate
785 self.endDate = endDate
784 self.startTime = startTime
786 self.startTime = startTime
785 self.endTime = endTime
787 self.endTime = endTime
786
788
787 self.inputId = '0'
789 self.inputId = '0'
788 self.parentId = parentId
790 self.parentId = parentId
789 self.queue = queue
791 self.queue = queue
790 self.addRunOperation(**kwargs)
792 self.addRunOperation(**kwargs)
791
793
792 def update(self, datatype, path, startDate, endDate, startTime, endTime, parentId=None, name=None, **kwargs):
794 def update(self, datatype, path, startDate, endDate, startTime, endTime, parentId=None, name=None, **kwargs):
793
795
794 #Compatible with old signal chain version
796 #Compatible with old signal chain version
795 if datatype==None and name==None:
797 if datatype==None and name==None:
796 raise ValueError, "datatype or name should be defined"
798 raise ValueError, "datatype or name should be defined"
797
799
798 if name==None:
800 if name==None:
799 if 'Reader' in datatype:
801 if 'Reader' in datatype:
800 name = datatype
802 name = datatype
801 else:
803 else:
802 name = '%sReader' %(datatype)
804 name = '%sReader' %(datatype)
803
805
804 if datatype==None:
806 if datatype==None:
805 datatype = name.replace('Reader','')
807 datatype = name.replace('Reader','')
806
808
807 self.datatype = datatype
809 self.datatype = datatype
808 self.name = name
810 self.name = name
809 self.path = path
811 self.path = path
810 self.startDate = startDate
812 self.startDate = startDate
811 self.endDate = endDate
813 self.endDate = endDate
812 self.startTime = startTime
814 self.startTime = startTime
813 self.endTime = endTime
815 self.endTime = endTime
814
816
815 self.inputId = '0'
817 self.inputId = '0'
816 self.parentId = parentId
818 self.parentId = parentId
817
819
818 self.updateRunOperation(**kwargs)
820 self.updateRunOperation(**kwargs)
819
821
820 def removeOperations(self):
822 def removeOperations(self):
821
823
822 for obj in self.opConfObjList:
824 for obj in self.opConfObjList:
823 del obj
825 del obj
824
826
825 self.opConfObjList = []
827 self.opConfObjList = []
826
828
827 def addRunOperation(self, **kwargs):
829 def addRunOperation(self, **kwargs):
828
830
829 opObj = self.addOperation(name = 'run', optype = 'self')
831 opObj = self.addOperation(name = 'run', optype = 'self')
830
832
831 opObj.addParameter(name='datatype' , value=self.datatype, format='str')
833 opObj.addParameter(name='datatype' , value=self.datatype, format='str')
832 opObj.addParameter(name='path' , value=self.path, format='str')
834 opObj.addParameter(name='path' , value=self.path, format='str')
833 opObj.addParameter(name='startDate' , value=self.startDate, format='date')
835 opObj.addParameter(name='startDate' , value=self.startDate, format='date')
834 opObj.addParameter(name='endDate' , value=self.endDate, format='date')
836 opObj.addParameter(name='endDate' , value=self.endDate, format='date')
835 opObj.addParameter(name='startTime' , value=self.startTime, format='time')
837 opObj.addParameter(name='startTime' , value=self.startTime, format='time')
836 opObj.addParameter(name='endTime' , value=self.endTime, format='time')
838 opObj.addParameter(name='endTime' , value=self.endTime, format='time')
837 opObj.addParameter(name='queue' , value=self.queue, format='obj')
839 opObj.addParameter(name='queue' , value=self.queue, format='obj')
838
840
839 for key, value in kwargs.items():
841 for key, value in kwargs.items():
840 opObj.addParameter(name=key, value=value, format=type(value).__name__)
842 opObj.addParameter(name=key, value=value, format=type(value).__name__)
841
843
842 return opObj
844 return opObj
843
845
844 def updateRunOperation(self, **kwargs):
846 def updateRunOperation(self, **kwargs):
845
847
846 opObj = self.getOperationObj(name = 'run')
848 opObj = self.getOperationObj(name = 'run')
847 opObj.removeParameters()
849 opObj.removeParameters()
848
850
849 opObj.addParameter(name='datatype' , value=self.datatype, format='str')
851 opObj.addParameter(name='datatype' , value=self.datatype, format='str')
850 opObj.addParameter(name='path' , value=self.path, format='str')
852 opObj.addParameter(name='path' , value=self.path, format='str')
851 opObj.addParameter(name='startDate' , value=self.startDate, format='date')
853 opObj.addParameter(name='startDate' , value=self.startDate, format='date')
852 opObj.addParameter(name='endDate' , value=self.endDate, format='date')
854 opObj.addParameter(name='endDate' , value=self.endDate, format='date')
853 opObj.addParameter(name='startTime' , value=self.startTime, format='time')
855 opObj.addParameter(name='startTime' , value=self.startTime, format='time')
854 opObj.addParameter(name='endTime' , value=self.endTime, format='time')
856 opObj.addParameter(name='endTime' , value=self.endTime, format='time')
855
857
856 for key, value in kwargs.items():
858 for key, value in kwargs.items():
857 opObj.addParameter(name=key, value=value, format=type(value).__name__)
859 opObj.addParameter(name=key, value=value, format=type(value).__name__)
858
860
859 return opObj
861 return opObj
860
862
861 # def makeXml(self, projectElement):
863 # def makeXml(self, projectElement):
862 #
864 #
863 # procUnitElement = SubElement(projectElement, self.ELEMENTNAME)
865 # procUnitElement = SubElement(projectElement, self.ELEMENTNAME)
864 # procUnitElement.set('id', str(self.id))
866 # procUnitElement.set('id', str(self.id))
865 # procUnitElement.set('name', self.name)
867 # procUnitElement.set('name', self.name)
866 # procUnitElement.set('datatype', self.datatype)
868 # procUnitElement.set('datatype', self.datatype)
867 # procUnitElement.set('inputId', str(self.inputId))
869 # procUnitElement.set('inputId', str(self.inputId))
868 #
870 #
869 # for opConfObj in self.opConfObjList:
871 # for opConfObj in self.opConfObjList:
870 # opConfObj.makeXml(procUnitElement)
872 # opConfObj.makeXml(procUnitElement)
871
873
872 def readXml(self, upElement):
874 def readXml(self, upElement):
873
875
874 self.id = upElement.get('id')
876 self.id = upElement.get('id')
875 self.name = upElement.get('name')
877 self.name = upElement.get('name')
876 self.datatype = upElement.get('datatype')
878 self.datatype = upElement.get('datatype')
877 self.inputId = upElement.get('inputId')
879 self.inputId = upElement.get('inputId')
878
880
879 if self.ELEMENTNAME == "ReadUnit":
881 if self.ELEMENTNAME == "ReadUnit":
880 self.datatype = self.datatype.replace("Reader", "")
882 self.datatype = self.datatype.replace("Reader", "")
881
883
882 if self.inputId == 'None':
884 if self.inputId == 'None':
883 self.inputId = '0'
885 self.inputId = '0'
884
886
885 self.opConfObjList = []
887 self.opConfObjList = []
886
888
887 opElementList = upElement.iter(OperationConf().getElementName())
889 opElementList = upElement.iter(OperationConf().getElementName())
888
890
889 for opElement in opElementList:
891 for opElement in opElementList:
890 opConfObj = OperationConf()
892 opConfObj = OperationConf()
891 opConfObj.readXml(opElement)
893 opConfObj.readXml(opElement)
892 self.opConfObjList.append(opConfObj)
894 self.opConfObjList.append(opConfObj)
893
895
894 if opConfObj.name == 'run':
896 if opConfObj.name == 'run':
895 self.path = opConfObj.getParameterValue('path')
897 self.path = opConfObj.getParameterValue('path')
896 self.startDate = opConfObj.getParameterValue('startDate')
898 self.startDate = opConfObj.getParameterValue('startDate')
897 self.endDate = opConfObj.getParameterValue('endDate')
899 self.endDate = opConfObj.getParameterValue('endDate')
898 self.startTime = opConfObj.getParameterValue('startTime')
900 self.startTime = opConfObj.getParameterValue('startTime')
899 self.endTime = opConfObj.getParameterValue('endTime')
901 self.endTime = opConfObj.getParameterValue('endTime')
900
902
901 class Project():
903 class Project():
902
904
903 id = None
905 id = None
904 name = None
906 name = None
905 description = None
907 description = None
906 filename = None
908 filename = None
907
909
908 procUnitConfObjDict = None
910 procUnitConfObjDict = None
909
911
910 ELEMENTNAME = 'Project'
912 ELEMENTNAME = 'Project'
911
913
912 plotterQueue = None
914 plotterQueue = None
913
915
914 def __init__(self, plotter_queue=None):
916 def __init__(self, plotter_queue=None):
915
917
916 self.id = None
918 self.id = None
917 self.name = None
919 self.name = None
918 self.description = None
920 self.description = None
919
921
920 self.plotterQueue = plotter_queue
922 self.plotterQueue = plotter_queue
921
923
922 self.procUnitConfObjDict = {}
924 self.procUnitConfObjDict = {}
923
925
924 def __getNewId(self):
926 def __getNewId(self):
925
927
926 idList = self.procUnitConfObjDict.keys()
928 idList = self.procUnitConfObjDict.keys()
927
929
928 id = int(self.id)*10
930 id = int(self.id)*10
929
931
930 while True:
932 while True:
931 id += 1
933 id += 1
932
934
933 if str(id) in idList:
935 if str(id) in idList:
934 continue
936 continue
935
937
936 break
938 break
937
939
938 return str(id)
940 return str(id)
939
941
940 def getElementName(self):
942 def getElementName(self):
941
943
942 return self.ELEMENTNAME
944 return self.ELEMENTNAME
943
945
944 def getId(self):
946 def getId(self):
945
947
946 return self.id
948 return self.id
947
949
948 def updateId(self, new_id):
950 def updateId(self, new_id):
949
951
950 self.id = str(new_id)
952 self.id = str(new_id)
951
953
952 keyList = self.procUnitConfObjDict.keys()
954 keyList = self.procUnitConfObjDict.keys()
953 keyList.sort()
955 keyList.sort()
954
956
955 n = 1
957 n = 1
956 newProcUnitConfObjDict = {}
958 newProcUnitConfObjDict = {}
957
959
958 for procKey in keyList:
960 for procKey in keyList:
959
961
960 procUnitConfObj = self.procUnitConfObjDict[procKey]
962 procUnitConfObj = self.procUnitConfObjDict[procKey]
961 idProcUnit = str(int(self.id)*10 + n)
963 idProcUnit = str(int(self.id)*10 + n)
962 procUnitConfObj.updateId(idProcUnit, parentId = self.id)
964 procUnitConfObj.updateId(idProcUnit, parentId = self.id)
963
965
964 newProcUnitConfObjDict[idProcUnit] = procUnitConfObj
966 newProcUnitConfObjDict[idProcUnit] = procUnitConfObj
965 n += 1
967 n += 1
966
968
967 self.procUnitConfObjDict = newProcUnitConfObjDict
969 self.procUnitConfObjDict = newProcUnitConfObjDict
968
970
969 def setup(self, id, name, description):
971 def setup(self, id, name, description):
970
972
971 self.id = str(id)
973 self.id = str(id)
972 self.name = name
974 self.name = name
973 self.description = description
975 self.description = description
974
976
975 def update(self, name, description):
977 def update(self, name, description):
976
978
977 self.name = name
979 self.name = name
978 self.description = description
980 self.description = description
979
981
980 def addReadUnit(self, id=None, datatype=None, name=None, **kwargs):
982 def addReadUnit(self, id=None, datatype=None, name=None, **kwargs):
981
983
982 if id is None:
984 if id is None:
983 idReadUnit = self.__getNewId()
985 idReadUnit = self.__getNewId()
984 else:
986 else:
985 idReadUnit = str(id)
987 idReadUnit = str(id)
986
988
987 readUnitConfObj = ReadUnitConf()
989 readUnitConfObj = ReadUnitConf()
988 readUnitConfObj.setup(idReadUnit, name, datatype, parentId=self.id, **kwargs)
990 readUnitConfObj.setup(idReadUnit, name, datatype, parentId=self.id, **kwargs)
989
991
990 self.procUnitConfObjDict[readUnitConfObj.getId()] = readUnitConfObj
992 self.procUnitConfObjDict[readUnitConfObj.getId()] = readUnitConfObj
991
993
992 return readUnitConfObj
994 return readUnitConfObj
993
995
994 def addProcUnit(self, inputId='0', datatype=None, name=None):
996 def addProcUnit(self, inputId='0', datatype=None, name=None):
995
997
996 idProcUnit = self.__getNewId()
998 idProcUnit = self.__getNewId()
997
999
998 procUnitConfObj = ProcUnitConf()
1000 procUnitConfObj = ProcUnitConf()
999 procUnitConfObj.setup(idProcUnit, name, datatype, inputId, parentId=self.id)
1001 procUnitConfObj.setup(idProcUnit, name, datatype, inputId, parentId=self.id)
1000
1002
1001 self.procUnitConfObjDict[procUnitConfObj.getId()] = procUnitConfObj
1003 self.procUnitConfObjDict[procUnitConfObj.getId()] = procUnitConfObj
1002
1004
1003 return procUnitConfObj
1005 return procUnitConfObj
1004
1006
1005 def removeProcUnit(self, id):
1007 def removeProcUnit(self, id):
1006
1008
1007 if id in self.procUnitConfObjDict.keys():
1009 if id in self.procUnitConfObjDict.keys():
1008 self.procUnitConfObjDict.pop(id)
1010 self.procUnitConfObjDict.pop(id)
1009
1011
1010 def getReadUnitId(self):
1012 def getReadUnitId(self):
1011
1013
1012 readUnitConfObj = self.getReadUnitObj()
1014 readUnitConfObj = self.getReadUnitObj()
1013
1015
1014 return readUnitConfObj.id
1016 return readUnitConfObj.id
1015
1017
1016 def getReadUnitObj(self):
1018 def getReadUnitObj(self):
1017
1019
1018 for obj in self.procUnitConfObjDict.values():
1020 for obj in self.procUnitConfObjDict.values():
1019 if obj.getElementName() == "ReadUnit":
1021 if obj.getElementName() == "ReadUnit":
1020 return obj
1022 return obj
1021
1023
1022 return None
1024 return None
1023
1025
1024 def getProcUnitObj(self, id=None, name=None):
1026 def getProcUnitObj(self, id=None, name=None):
1025
1027
1026 if id != None:
1028 if id != None:
1027 return self.procUnitConfObjDict[id]
1029 return self.procUnitConfObjDict[id]
1028
1030
1029 if name != None:
1031 if name != None:
1030 return self.getProcUnitObjByName(name)
1032 return self.getProcUnitObjByName(name)
1031
1033
1032 return None
1034 return None
1033
1035
1034 def getProcUnitObjByName(self, name):
1036 def getProcUnitObjByName(self, name):
1035
1037
1036 for obj in self.procUnitConfObjDict.values():
1038 for obj in self.procUnitConfObjDict.values():
1037 if obj.name == name:
1039 if obj.name == name:
1038 return obj
1040 return obj
1039
1041
1040 return None
1042 return None
1041
1043
1042 def procUnitItems(self):
1044 def procUnitItems(self):
1043
1045
1044 return self.procUnitConfObjDict.items()
1046 return self.procUnitConfObjDict.items()
1045
1047
1046 def makeXml(self):
1048 def makeXml(self):
1047
1049
1048 projectElement = Element('Project')
1050 projectElement = Element('Project')
1049 projectElement.set('id', str(self.id))
1051 projectElement.set('id', str(self.id))
1050 projectElement.set('name', self.name)
1052 projectElement.set('name', self.name)
1051 projectElement.set('description', self.description)
1053 projectElement.set('description', self.description)
1052
1054
1053 for procUnitConfObj in self.procUnitConfObjDict.values():
1055 for procUnitConfObj in self.procUnitConfObjDict.values():
1054 procUnitConfObj.makeXml(projectElement)
1056 procUnitConfObj.makeXml(projectElement)
1055
1057
1056 self.projectElement = projectElement
1058 self.projectElement = projectElement
1057
1059
1058 def writeXml(self, filename=None):
1060 def writeXml(self, filename=None):
1059
1061
1060 if filename == None:
1062 if filename == None:
1061 if self.filename:
1063 if self.filename:
1062 filename = self.filename
1064 filename = self.filename
1063 else:
1065 else:
1064 filename = "schain.xml"
1066 filename = "schain.xml"
1065
1067
1066 if not filename:
1068 if not filename:
1067 print "filename has not been defined. Use setFilename(filename) for do it."
1069 print "filename has not been defined. Use setFilename(filename) for do it."
1068 return 0
1070 return 0
1069
1071
1070 abs_file = os.path.abspath(filename)
1072 abs_file = os.path.abspath(filename)
1071
1073
1072 if not os.access(os.path.dirname(abs_file), os.W_OK):
1074 if not os.access(os.path.dirname(abs_file), os.W_OK):
1073 print "No write permission on %s" %os.path.dirname(abs_file)
1075 print "No write permission on %s" %os.path.dirname(abs_file)
1074 return 0
1076 return 0
1075
1077
1076 if os.path.isfile(abs_file) and not(os.access(abs_file, os.W_OK)):
1078 if os.path.isfile(abs_file) and not(os.access(abs_file, os.W_OK)):
1077 print "File %s already exists and it could not be overwriten" %abs_file
1079 print "File %s already exists and it could not be overwriten" %abs_file
1078 return 0
1080 return 0
1079
1081
1080 self.makeXml()
1082 self.makeXml()
1081
1083
1082 ElementTree(self.projectElement).write(abs_file, method='xml')
1084 ElementTree(self.projectElement).write(abs_file, method='xml')
1083
1085
1084 self.filename = abs_file
1086 self.filename = abs_file
1085
1087
1086 return 1
1088 return 1
1087
1089
1088 def readXml(self, filename = None):
1090 def readXml(self, filename = None):
1089
1091
1090 if not filename:
1092 if not filename:
1091 print "filename is not defined"
1093 print "filename is not defined"
1092 return 0
1094 return 0
1093
1095
1094 abs_file = os.path.abspath(filename)
1096 abs_file = os.path.abspath(filename)
1095
1097
1096 if not os.path.isfile(abs_file):
1098 if not os.path.isfile(abs_file):
1097 print "%s file does not exist" %abs_file
1099 print "%s file does not exist" %abs_file
1098 return 0
1100 return 0
1099
1101
1100 self.projectElement = None
1102 self.projectElement = None
1101 self.procUnitConfObjDict = {}
1103 self.procUnitConfObjDict = {}
1102
1104
1103 try:
1105 try:
1104 self.projectElement = ElementTree().parse(abs_file)
1106 self.projectElement = ElementTree().parse(abs_file)
1105 except:
1107 except:
1106 print "Error reading %s, verify file format" %filename
1108 print "Error reading %s, verify file format" %filename
1107 return 0
1109 return 0
1108
1110
1109 self.project = self.projectElement.tag
1111 self.project = self.projectElement.tag
1110
1112
1111 self.id = self.projectElement.get('id')
1113 self.id = self.projectElement.get('id')
1112 self.name = self.projectElement.get('name')
1114 self.name = self.projectElement.get('name')
1113 self.description = self.projectElement.get('description')
1115 self.description = self.projectElement.get('description')
1114
1116
1115 readUnitElementList = self.projectElement.iter(ReadUnitConf().getElementName())
1117 readUnitElementList = self.projectElement.iter(ReadUnitConf().getElementName())
1116
1118
1117 for readUnitElement in readUnitElementList:
1119 for readUnitElement in readUnitElementList:
1118 readUnitConfObj = ReadUnitConf()
1120 readUnitConfObj = ReadUnitConf()
1119 readUnitConfObj.readXml(readUnitElement)
1121 readUnitConfObj.readXml(readUnitElement)
1120
1122
1121 if readUnitConfObj.parentId == None:
1123 if readUnitConfObj.parentId == None:
1122 readUnitConfObj.parentId = self.id
1124 readUnitConfObj.parentId = self.id
1123
1125
1124 self.procUnitConfObjDict[readUnitConfObj.getId()] = readUnitConfObj
1126 self.procUnitConfObjDict[readUnitConfObj.getId()] = readUnitConfObj
1125
1127
1126 procUnitElementList = self.projectElement.iter(ProcUnitConf().getElementName())
1128 procUnitElementList = self.projectElement.iter(ProcUnitConf().getElementName())
1127
1129
1128 for procUnitElement in procUnitElementList:
1130 for procUnitElement in procUnitElementList:
1129 procUnitConfObj = ProcUnitConf()
1131 procUnitConfObj = ProcUnitConf()
1130 procUnitConfObj.readXml(procUnitElement)
1132 procUnitConfObj.readXml(procUnitElement)
1131
1133
1132 if procUnitConfObj.parentId == None:
1134 if procUnitConfObj.parentId == None:
1133 procUnitConfObj.parentId = self.id
1135 procUnitConfObj.parentId = self.id
1134
1136
1135 self.procUnitConfObjDict[procUnitConfObj.getId()] = procUnitConfObj
1137 self.procUnitConfObjDict[procUnitConfObj.getId()] = procUnitConfObj
1136
1138
1137 self.filename = abs_file
1139 self.filename = abs_file
1138
1140
1139 return 1
1141 return 1
1140
1142
1141 def printattr(self):
1143 def printattr(self):
1142
1144
1143 print "Project[%s]: name = %s, description = %s" %(self.id,
1145 print "Project[%s]: name = %s, description = %s" %(self.id,
1144 self.name,
1146 self.name,
1145 self.description)
1147 self.description)
1146
1148
1147 for procUnitConfObj in self.procUnitConfObjDict.values():
1149 for procUnitConfObj in self.procUnitConfObjDict.values():
1148 procUnitConfObj.printattr()
1150 procUnitConfObj.printattr()
1149
1151
1150 def createObjects(self):
1152 def createObjects(self):
1151
1153
1152 for procUnitConfObj in self.procUnitConfObjDict.values():
1154 for procUnitConfObj in self.procUnitConfObjDict.values():
1153 procUnitConfObj.createObjects(self.plotterQueue)
1155 procUnitConfObj.createObjects(self.plotterQueue)
1154
1156
1155 def __connect(self, objIN, thisObj):
1157 def __connect(self, objIN, thisObj):
1156
1158
1157 thisObj.setInput(objIN.getOutputObj())
1159 thisObj.setInput(objIN.getOutputObj())
1158
1160
1159 def connectObjects(self):
1161 def connectObjects(self):
1160
1162
1161 for thisPUConfObj in self.procUnitConfObjDict.values():
1163 for thisPUConfObj in self.procUnitConfObjDict.values():
1162
1164
1163 inputId = thisPUConfObj.getInputId()
1165 inputId = thisPUConfObj.getInputId()
1164
1166
1165 if int(inputId) == 0:
1167 if int(inputId) == 0:
1166 continue
1168 continue
1167
1169
1168 #Get input object
1170 #Get input object
1169 puConfINObj = self.procUnitConfObjDict[inputId]
1171 puConfINObj = self.procUnitConfObjDict[inputId]
1170 puObjIN = puConfINObj.getProcUnitObj()
1172 puObjIN = puConfINObj.getProcUnitObj()
1171
1173
1172 #Get current object
1174 #Get current object
1173 thisPUObj = thisPUConfObj.getProcUnitObj()
1175 thisPUObj = thisPUConfObj.getProcUnitObj()
1174
1176
1175 self.__connect(puObjIN, thisPUObj)
1177 self.__connect(puObjIN, thisPUObj)
1176
1178
1177 def __handleError(self, procUnitConfObj, send_email=True):
1179 def __handleError(self, procUnitConfObj, send_email=True):
1178
1180
1179 import socket
1181 import socket
1180
1182
1181 err = traceback.format_exception(sys.exc_info()[0],
1183 err = traceback.format_exception(sys.exc_info()[0],
1182 sys.exc_info()[1],
1184 sys.exc_info()[1],
1183 sys.exc_info()[2])
1185 sys.exc_info()[2])
1184
1186
1185 print "***** Error occurred in %s *****" %(procUnitConfObj.name)
1187 print "***** Error occurred in %s *****" %(procUnitConfObj.name)
1186 print "***** %s" %err[-1]
1188 print "***** %s" %err[-1]
1187
1189
1188 message = "".join(err)
1190 message = "".join(err)
1189
1191
1190 sys.stderr.write(message)
1192 sys.stderr.write(message)
1191
1193
1192 if not send_email:
1194 if not send_email:
1193 return
1195 return
1194
1196
1195 subject = "SChain v%s: Error running %s\n" %(schainpy.__version__, procUnitConfObj.name)
1197 subject = "SChain v%s: Error running %s\n" %(schainpy.__version__, procUnitConfObj.name)
1196
1198
1197 subtitle = "%s: %s\n" %(procUnitConfObj.getElementName() ,procUnitConfObj.name)
1199 subtitle = "%s: %s\n" %(procUnitConfObj.getElementName() ,procUnitConfObj.name)
1198 subtitle += "Hostname: %s\n" %socket.gethostbyname(socket.gethostname())
1200 subtitle += "Hostname: %s\n" %socket.gethostbyname(socket.gethostname())
1199 subtitle += "Working directory: %s\n" %os.path.abspath("./")
1201 subtitle += "Working directory: %s\n" %os.path.abspath("./")
1200 subtitle += "Configuration file: %s\n" %self.filename
1202 subtitle += "Configuration file: %s\n" %self.filename
1201 subtitle += "Time: %s\n" %str(datetime.datetime.now())
1203 subtitle += "Time: %s\n" %str(datetime.datetime.now())
1202
1204
1203 readUnitConfObj = self.getReadUnitObj()
1205 readUnitConfObj = self.getReadUnitObj()
1204 if readUnitConfObj:
1206 if readUnitConfObj:
1205 subtitle += "\nInput parameters:\n"
1207 subtitle += "\nInput parameters:\n"
1206 subtitle += "[Data path = %s]\n" %readUnitConfObj.path
1208 subtitle += "[Data path = %s]\n" %readUnitConfObj.path
1207 subtitle += "[Data type = %s]\n" %readUnitConfObj.datatype
1209 subtitle += "[Data type = %s]\n" %readUnitConfObj.datatype
1208 subtitle += "[Start date = %s]\n" %readUnitConfObj.startDate
1210 subtitle += "[Start date = %s]\n" %readUnitConfObj.startDate
1209 subtitle += "[End date = %s]\n" %readUnitConfObj.endDate
1211 subtitle += "[End date = %s]\n" %readUnitConfObj.endDate
1210 subtitle += "[Start time = %s]\n" %readUnitConfObj.startTime
1212 subtitle += "[Start time = %s]\n" %readUnitConfObj.startTime
1211 subtitle += "[End time = %s]\n" %readUnitConfObj.endTime
1213 subtitle += "[End time = %s]\n" %readUnitConfObj.endTime
1212
1214
1213 adminObj = schainpy.admin.SchainNotify()
1215 adminObj = schainpy.admin.SchainNotify()
1214 adminObj.sendAlert(message=message,
1216 adminObj.sendAlert(message=message,
1215 subject=subject,
1217 subject=subject,
1216 subtitle=subtitle,
1218 subtitle=subtitle,
1217 filename=self.filename)
1219 filename=self.filename)
1218
1220
1219 def isPaused(self):
1221 def isPaused(self):
1220 return 0
1222 return 0
1221
1223
1222 def isStopped(self):
1224 def isStopped(self):
1223 return 0
1225 return 0
1224
1226
1225 def runController(self):
1227 def runController(self):
1226 """
1228 """
1227 returns 0 when this process has been stopped, 1 otherwise
1229 returns 0 when this process has been stopped, 1 otherwise
1228 """
1230 """
1229
1231
1230 if self.isPaused():
1232 if self.isPaused():
1231 print "Process suspended"
1233 print "Process suspended"
1232
1234
1233 while True:
1235 while True:
1234 sleep(0.1)
1236 sleep(0.1)
1235
1237
1236 if not self.isPaused():
1238 if not self.isPaused():
1237 break
1239 break
1238
1240
1239 if self.isStopped():
1241 if self.isStopped():
1240 break
1242 break
1241
1243
1242 print "Process reinitialized"
1244 print "Process reinitialized"
1243
1245
1244 if self.isStopped():
1246 if self.isStopped():
1245 print "Process stopped"
1247 print "Process stopped"
1246 return 0
1248 return 0
1247
1249
1248 return 1
1250 return 1
1249
1251
1250 def setFilename(self, filename):
1252 def setFilename(self, filename):
1251
1253
1252 self.filename = filename
1254 self.filename = filename
1253
1255
1254 def setPlotterQueue(self, plotter_queue):
1256 def setPlotterQueue(self, plotter_queue):
1255
1257
1256 raise NotImplementedError, "Use schainpy.controller_api.ControllerThread instead Project class"
1258 raise NotImplementedError, "Use schainpy.controller_api.ControllerThread instead Project class"
1257
1259
1258 def getPlotterQueue(self):
1260 def getPlotterQueue(self):
1259
1261
1260 raise NotImplementedError, "Use schainpy.controller_api.ControllerThread instead Project class"
1262 raise NotImplementedError, "Use schainpy.controller_api.ControllerThread instead Project class"
1261
1263
1262 def useExternalPlotter(self):
1264 def useExternalPlotter(self):
1263
1265
1264 raise NotImplementedError, "Use schainpy.controller_api.ControllerThread instead Project class"
1266 raise NotImplementedError, "Use schainpy.controller_api.ControllerThread instead Project class"
1265
1267
1266 def run(self):
1268 def run(self):
1267
1269
1268 print
1270 print
1269 print "*"*60
1271 print "*"*60
1270 print " Starting SIGNAL CHAIN PROCESSING v%s " %schainpy.__version__
1272 print " Starting SIGNAL CHAIN PROCESSING v%s " %schainpy.__version__
1271 print "*"*60
1273 print "*"*60
1272 print
1274 print
1273
1275
1274 keyList = self.procUnitConfObjDict.keys()
1276 keyList = self.procUnitConfObjDict.keys()
1275 keyList.sort()
1277 keyList.sort()
1276
1278
1277 while(True):
1279 while(True):
1278
1280
1279 is_ok = False
1281 is_ok = False
1280
1282
1281 for procKey in keyList:
1283 for procKey in keyList:
1282 # print "Running the '%s' process with %s" %(procUnitConfObj.name, procUnitConfObj.id)
1284 # print "Running the '%s' process with %s" %(procUnitConfObj.name, procUnitConfObj.id)
1283
1285
1284 procUnitConfObj = self.procUnitConfObjDict[procKey]
1286 procUnitConfObj = self.procUnitConfObjDict[procKey]
1285
1287
1286 try:
1288 try:
1287 sts = procUnitConfObj.run()
1289 sts = procUnitConfObj.run()
1288 is_ok = is_ok or sts
1290 is_ok = is_ok or sts
1289 except KeyboardInterrupt:
1291 except KeyboardInterrupt:
1290 is_ok = False
1292 is_ok = False
1291 break
1293 break
1292 except ValueError, e:
1294 except ValueError, e:
1293 sleep(0.5)
1295 sleep(0.5)
1294 self.__handleError(procUnitConfObj, send_email=True)
1296 self.__handleError(procUnitConfObj, send_email=True)
1295 is_ok = False
1297 is_ok = False
1296 break
1298 break
1297 except:
1299 except:
1298 sleep(0.5)
1300 sleep(0.5)
1299 self.__handleError(procUnitConfObj)
1301 self.__handleError(procUnitConfObj)
1300 is_ok = False
1302 is_ok = False
1301 break
1303 break
1302
1304
1303 #If every process unit finished so end process
1305 #If every process unit finished so end process
1304 if not(is_ok):
1306 if not(is_ok):
1305 # print "Every process unit have finished"
1307 # print "Every process unit have finished"
1306 break
1308 break
1307
1309
1308 if not self.runController():
1310 if not self.runController():
1309 break
1311 break
1310
1312
1311 #Closing every process
1313 #Closing every process
1312 for procKey in keyList:
1314 for procKey in keyList:
1313 procUnitConfObj = self.procUnitConfObjDict[procKey]
1315 procUnitConfObj = self.procUnitConfObjDict[procKey]
1314 procUnitConfObj.close()
1316 procUnitConfObj.close()
1315
1317
1316 print "Process finished"
1318 print "Process finished"
1317
1319
1318 def start(self):
1320 def start(self):
1319
1321
1320 self.writeXml()
1322 self.writeXml()
1321 self.createObjects()
1323 self.createObjects()
1322 self.connectObjects()
1324 self.connectObjects()
1323 self.run()
1325 self.run()
@@ -1,1218 +1,1222
1 '''
1 '''
2
2
3 $Author: murco $
3 $Author: murco $
4 $Id: JROData.py 173 2012-11-20 15:06:21Z murco $
4 $Id: JROData.py 173 2012-11-20 15:06:21Z murco $
5 '''
5 '''
6
6
7 import copy
7 import copy
8 import numpy
8 import numpy
9 import datetime
9 import datetime
10
10
11 from jroheaderIO import SystemHeader, RadarControllerHeader
11 from jroheaderIO import SystemHeader, RadarControllerHeader
12 from schainpy import cSchain
12 from schainpy import cSchain
13
13
14
14
15 def getNumpyDtype(dataTypeCode):
15 def getNumpyDtype(dataTypeCode):
16
16
17 if dataTypeCode == 0:
17 if dataTypeCode == 0:
18 numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')])
18 numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')])
19 elif dataTypeCode == 1:
19 elif dataTypeCode == 1:
20 numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')])
20 numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')])
21 elif dataTypeCode == 2:
21 elif dataTypeCode == 2:
22 numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')])
22 numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')])
23 elif dataTypeCode == 3:
23 elif dataTypeCode == 3:
24 numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')])
24 numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')])
25 elif dataTypeCode == 4:
25 elif dataTypeCode == 4:
26 numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')])
26 numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')])
27 elif dataTypeCode == 5:
27 elif dataTypeCode == 5:
28 numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')])
28 numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')])
29 else:
29 else:
30 raise ValueError, 'dataTypeCode was not defined'
30 raise ValueError, 'dataTypeCode was not defined'
31
31
32 return numpyDtype
32 return numpyDtype
33
33
34 def getDataTypeCode(numpyDtype):
34 def getDataTypeCode(numpyDtype):
35
35
36 if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]):
36 if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]):
37 datatype = 0
37 datatype = 0
38 elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]):
38 elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]):
39 datatype = 1
39 datatype = 1
40 elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]):
40 elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]):
41 datatype = 2
41 datatype = 2
42 elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]):
42 elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]):
43 datatype = 3
43 datatype = 3
44 elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]):
44 elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]):
45 datatype = 4
45 datatype = 4
46 elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]):
46 elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]):
47 datatype = 5
47 datatype = 5
48 else:
48 else:
49 datatype = None
49 datatype = None
50
50
51 return datatype
51 return datatype
52
52
53 def hildebrand_sekhon(data, navg):
53 def hildebrand_sekhon(data, navg):
54 """
54 """
55 This method is for the objective determination of the noise level in Doppler spectra. This
55 This method is for the objective determination of the noise level in Doppler spectra. This
56 implementation technique is based on the fact that the standard deviation of the spectral
56 implementation technique is based on the fact that the standard deviation of the spectral
57 densities is equal to the mean spectral density for white Gaussian noise
57 densities is equal to the mean spectral density for white Gaussian noise
58
58
59 Inputs:
59 Inputs:
60 Data : heights
60 Data : heights
61 navg : numbers of averages
61 navg : numbers of averages
62
62
63 Return:
63 Return:
64 -1 : any error
64 -1 : any error
65 anoise : noise's level
65 anoise : noise's level
66 """
66 """
67
67
68 sortdata = numpy.sort(data,axis=None)
68 sortdata = numpy.sort(data,axis=None)
69 # lenOfData = len(sortdata)
69 # lenOfData = len(sortdata)
70 # nums_min = lenOfData*0.2
70 # nums_min = lenOfData*0.2
71 #
71 #
72 # if nums_min <= 5:
72 # if nums_min <= 5:
73 # nums_min = 5
73 # nums_min = 5
74 #
74 #
75 # sump = 0.
75 # sump = 0.
76 #
76 #
77 # sumq = 0.
77 # sumq = 0.
78 #
78 #
79 # j = 0
79 # j = 0
80 #
80 #
81 # cont = 1
81 # cont = 1
82 #
82 #
83 # while((cont==1)and(j<lenOfData)):
83 # while((cont==1)and(j<lenOfData)):
84 #
84 #
85 # sump += sortdata[j]
85 # sump += sortdata[j]
86 #
86 #
87 # sumq += sortdata[j]**2
87 # sumq += sortdata[j]**2
88 #
88 #
89 # if j > nums_min:
89 # if j > nums_min:
90 # rtest = float(j)/(j-1) + 1.0/navg
90 # rtest = float(j)/(j-1) + 1.0/navg
91 # if ((sumq*j) > (rtest*sump**2)):
91 # if ((sumq*j) > (rtest*sump**2)):
92 # j = j - 1
92 # j = j - 1
93 # sump = sump - sortdata[j]
93 # sump = sump - sortdata[j]
94 # sumq = sumq - sortdata[j]**2
94 # sumq = sumq - sortdata[j]**2
95 # cont = 0
95 # cont = 0
96 #
96 #
97 # j += 1
97 # j += 1
98 #
98 #
99 # lnoise = sump /j
99 # lnoise = sump /j
100 #
100 #
101 # return lnoise
101 # return lnoise
102
102
103 return cSchain.hildebrand_sekhon(sortdata, navg)
103 return cSchain.hildebrand_sekhon(sortdata, navg)
104
104
105
105
106 class Beam:
106 class Beam:
107
107
108 def __init__(self):
108 def __init__(self):
109 self.codeList = []
109 self.codeList = []
110 self.azimuthList = []
110 self.azimuthList = []
111 self.zenithList = []
111 self.zenithList = []
112
112
113 class GenericData(object):
113 class GenericData(object):
114
114
115 flagNoData = True
115 flagNoData = True
116
116
117 def __init__(self):
117 def __init__(self):
118
118
119 raise NotImplementedError
119 raise NotImplementedError
120
120
121 def copy(self, inputObj=None):
121 def copy(self, inputObj=None):
122
122
123 if inputObj == None:
123 if inputObj == None:
124 return copy.deepcopy(self)
124 return copy.deepcopy(self)
125
125
126 for key in inputObj.__dict__.keys():
126 for key in inputObj.__dict__.keys():
127
127
128 attribute = inputObj.__dict__[key]
128 attribute = inputObj.__dict__[key]
129
129
130 #If this attribute is a tuple or list
130 #If this attribute is a tuple or list
131 if type(inputObj.__dict__[key]) in (tuple, list):
131 if type(inputObj.__dict__[key]) in (tuple, list):
132 self.__dict__[key] = attribute[:]
132 self.__dict__[key] = attribute[:]
133 continue
133 continue
134
134
135 #If this attribute is another object or instance
135 #If this attribute is another object or instance
136 if hasattr(attribute, '__dict__'):
136 if hasattr(attribute, '__dict__'):
137 self.__dict__[key] = attribute.copy()
137 self.__dict__[key] = attribute.copy()
138 continue
138 continue
139
139
140 self.__dict__[key] = inputObj.__dict__[key]
140 self.__dict__[key] = inputObj.__dict__[key]
141
141
142 def deepcopy(self):
142 def deepcopy(self):
143
143
144 return copy.deepcopy(self)
144 return copy.deepcopy(self)
145
145
146 def isEmpty(self):
146 def isEmpty(self):
147
147
148 return self.flagNoData
148 return self.flagNoData
149
149
150 class JROData(GenericData):
150 class JROData(GenericData):
151
151
152 # m_BasicHeader = BasicHeader()
152 # m_BasicHeader = BasicHeader()
153 # m_ProcessingHeader = ProcessingHeader()
153 # m_ProcessingHeader = ProcessingHeader()
154
154
155 systemHeaderObj = SystemHeader()
155 systemHeaderObj = SystemHeader()
156
156
157 radarControllerHeaderObj = RadarControllerHeader()
157 radarControllerHeaderObj = RadarControllerHeader()
158
158
159 # data = None
159 # data = None
160
160
161 type = None
161 type = None
162
162
163 datatype = None #dtype but in string
163 datatype = None #dtype but in string
164
164
165 # dtype = None
165 # dtype = None
166
166
167 # nChannels = None
167 # nChannels = None
168
168
169 # nHeights = None
169 # nHeights = None
170
170
171 nProfiles = None
171 nProfiles = None
172
172
173 heightList = None
173 heightList = None
174
174
175 channelList = None
175 channelList = None
176
176
177 flagDiscontinuousBlock = False
177 flagDiscontinuousBlock = False
178
178
179 useLocalTime = False
179 useLocalTime = False
180
180
181 utctime = None
181 utctime = None
182
182
183 timeZone = None
183 timeZone = None
184
184
185 dstFlag = None
185 dstFlag = None
186
186
187 errorCount = None
187 errorCount = None
188
188
189 blocksize = None
189 blocksize = None
190
190
191 # nCode = None
191 # nCode = None
192 #
192 #
193 # nBaud = None
193 # nBaud = None
194 #
194 #
195 # code = None
195 # code = None
196
196
197 flagDecodeData = False #asumo q la data no esta decodificada
197 flagDecodeData = False #asumo q la data no esta decodificada
198
198
199 flagDeflipData = False #asumo q la data no esta sin flip
199 flagDeflipData = False #asumo q la data no esta sin flip
200
200
201 flagShiftFFT = False
201 flagShiftFFT = False
202
202
203 # ippSeconds = None
203 # ippSeconds = None
204
204
205 # timeInterval = None
205 # timeInterval = None
206
206
207 nCohInt = None
207 nCohInt = None
208
208
209 # noise = None
209 # noise = None
210
210
211 windowOfFilter = 1
211 windowOfFilter = 1
212
212
213 #Speed of ligth
213 #Speed of ligth
214 C = 3e8
214 C = 3e8
215
215
216 frequency = 49.92e6
216 frequency = 49.92e6
217
217
218 realtime = False
218 realtime = False
219
219
220 beacon_heiIndexList = None
220 beacon_heiIndexList = None
221
221
222 last_block = None
222 last_block = None
223
223
224 blocknow = None
224 blocknow = None
225
225
226 azimuth = None
226 azimuth = None
227
227
228 zenith = None
228 zenith = None
229
229
230 beam = Beam()
230 beam = Beam()
231
231
232 profileIndex = None
232 profileIndex = None
233
233
234 def __init__(self):
234 def __init__(self):
235
235
236 raise NotImplementedError
236 raise NotImplementedError
237
237
238 def getNoise(self):
238 def getNoise(self):
239
239
240 raise NotImplementedError
240 raise NotImplementedError
241
241
242 def getNChannels(self):
242 def getNChannels(self):
243
243
244 return len(self.channelList)
244 return len(self.channelList)
245
245
246 def getChannelIndexList(self):
246 def getChannelIndexList(self):
247
247
248 return range(self.nChannels)
248 return range(self.nChannels)
249
249
250 def getNHeights(self):
250 def getNHeights(self):
251
251
252 return len(self.heightList)
252 return len(self.heightList)
253
253
254 def getHeiRange(self, extrapoints=0):
254 def getHeiRange(self, extrapoints=0):
255
255
256 heis = self.heightList
256 heis = self.heightList
257 # deltah = self.heightList[1] - self.heightList[0]
257 # deltah = self.heightList[1] - self.heightList[0]
258 #
258 #
259 # heis.append(self.heightList[-1])
259 # heis.append(self.heightList[-1])
260
260
261 return heis
261 return heis
262
262
263 def getDeltaH(self):
263 def getDeltaH(self):
264
264
265 delta = self.heightList[1] - self.heightList[0]
265 delta = self.heightList[1] - self.heightList[0]
266
266
267 return delta
267 return delta
268
268
269 def getltctime(self):
269 def getltctime(self):
270
270
271 if self.useLocalTime:
271 if self.useLocalTime:
272 return self.utctime - self.timeZone*60
272 return self.utctime - self.timeZone*60
273
273
274 return self.utctime
274 return self.utctime
275
275
276 def getDatatime(self):
276 def getDatatime(self):
277
277
278 datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime)
278 datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime)
279 return datatimeValue
279 return datatimeValue
280
280
281 def getTimeRange(self):
281 def getTimeRange(self):
282
282
283 datatime = []
283 datatime = []
284
284
285 datatime.append(self.ltctime)
285 datatime.append(self.ltctime)
286 datatime.append(self.ltctime + self.timeInterval+1)
286 datatime.append(self.ltctime + self.timeInterval+1)
287
287
288 datatime = numpy.array(datatime)
288 datatime = numpy.array(datatime)
289
289
290 return datatime
290 return datatime
291
291
292 def getFmaxTimeResponse(self):
292 def getFmaxTimeResponse(self):
293
293
294 period = (10**-6)*self.getDeltaH()/(0.15)
294 period = (10**-6)*self.getDeltaH()/(0.15)
295
295
296 PRF = 1./(period * self.nCohInt)
296 PRF = 1./(period * self.nCohInt)
297
297
298 fmax = PRF
298 fmax = PRF
299
299
300 return fmax
300 return fmax
301
301
302 def getFmax(self):
302 def getFmax(self):
303
303
304 PRF = 1./(self.ippSeconds * self.nCohInt)
304 PRF = 1./(self.ippSeconds * self.nCohInt)
305
305
306 fmax = PRF
306 fmax = PRF
307
307
308 return fmax
308 return fmax
309
309
310 def getVmax(self):
310 def getVmax(self):
311
311
312 _lambda = self.C/self.frequency
312 _lambda = self.C/self.frequency
313
313
314 vmax = self.getFmax() * _lambda/2
314 vmax = self.getFmax() * _lambda/2
315
315
316 return vmax
316 return vmax
317
317
318 def get_ippSeconds(self):
318 def get_ippSeconds(self):
319 '''
319 '''
320 '''
320 '''
321 return self.radarControllerHeaderObj.ippSeconds
321 return self.radarControllerHeaderObj.ippSeconds
322
322
323 def set_ippSeconds(self, ippSeconds):
323 def set_ippSeconds(self, ippSeconds):
324 '''
324 '''
325 '''
325 '''
326
326
327 self.radarControllerHeaderObj.ippSeconds = ippSeconds
327 self.radarControllerHeaderObj.ippSeconds = ippSeconds
328
328
329 return
329 return
330
330
331 def get_dtype(self):
331 def get_dtype(self):
332 '''
332 '''
333 '''
333 '''
334 return getNumpyDtype(self.datatype)
334 return getNumpyDtype(self.datatype)
335
335
336 def set_dtype(self, numpyDtype):
336 def set_dtype(self, numpyDtype):
337 '''
337 '''
338 '''
338 '''
339
339
340 self.datatype = getDataTypeCode(numpyDtype)
340 self.datatype = getDataTypeCode(numpyDtype)
341
341
342 def get_code(self):
342 def get_code(self):
343 '''
343 '''
344 '''
344 '''
345 return self.radarControllerHeaderObj.code
345 return self.radarControllerHeaderObj.code
346
346
347 def set_code(self, code):
347 def set_code(self, code):
348 '''
348 '''
349 '''
349 '''
350 self.radarControllerHeaderObj.code = code
350 self.radarControllerHeaderObj.code = code
351
351
352 return
352 return
353
353
354 def get_ncode(self):
354 def get_ncode(self):
355 '''
355 '''
356 '''
356 '''
357 return self.radarControllerHeaderObj.nCode
357 return self.radarControllerHeaderObj.nCode
358
358
359 def set_ncode(self, nCode):
359 def set_ncode(self, nCode):
360 '''
360 '''
361 '''
361 '''
362 self.radarControllerHeaderObj.nCode = nCode
362 self.radarControllerHeaderObj.nCode = nCode
363
363
364 return
364 return
365
365
366 def get_nbaud(self):
366 def get_nbaud(self):
367 '''
367 '''
368 '''
368 '''
369 return self.radarControllerHeaderObj.nBaud
369 return self.radarControllerHeaderObj.nBaud
370
370
371 def set_nbaud(self, nBaud):
371 def set_nbaud(self, nBaud):
372 '''
372 '''
373 '''
373 '''
374 self.radarControllerHeaderObj.nBaud = nBaud
374 self.radarControllerHeaderObj.nBaud = nBaud
375
375
376 return
376 return
377
377
378 nChannels = property(getNChannels, "I'm the 'nChannel' property.")
378 nChannels = property(getNChannels, "I'm the 'nChannel' property.")
379 channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.")
379 channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.")
380 nHeights = property(getNHeights, "I'm the 'nHeights' property.")
380 nHeights = property(getNHeights, "I'm the 'nHeights' property.")
381 #noise = property(getNoise, "I'm the 'nHeights' property.")
381 #noise = property(getNoise, "I'm the 'nHeights' property.")
382 datatime = property(getDatatime, "I'm the 'datatime' property")
382 datatime = property(getDatatime, "I'm the 'datatime' property")
383 ltctime = property(getltctime, "I'm the 'ltctime' property")
383 ltctime = property(getltctime, "I'm the 'ltctime' property")
384 ippSeconds = property(get_ippSeconds, set_ippSeconds)
384 ippSeconds = property(get_ippSeconds, set_ippSeconds)
385 dtype = property(get_dtype, set_dtype)
385 dtype = property(get_dtype, set_dtype)
386 # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
386 # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
387 code = property(get_code, set_code)
387 code = property(get_code, set_code)
388 nCode = property(get_ncode, set_ncode)
388 nCode = property(get_ncode, set_ncode)
389 nBaud = property(get_nbaud, set_nbaud)
389 nBaud = property(get_nbaud, set_nbaud)
390
390
391 class Voltage(JROData):
391 class Voltage(JROData):
392
392
393 #data es un numpy array de 2 dmensiones (canales, alturas)
393 #data es un numpy array de 2 dmensiones (canales, alturas)
394 data = None
394 data = None
395
395
396 def __init__(self):
396 def __init__(self):
397 '''
397 '''
398 Constructor
398 Constructor
399 '''
399 '''
400
400
401 self.useLocalTime = True
401 self.useLocalTime = True
402
402
403 self.radarControllerHeaderObj = RadarControllerHeader()
403 self.radarControllerHeaderObj = RadarControllerHeader()
404
404
405 self.systemHeaderObj = SystemHeader()
405 self.systemHeaderObj = SystemHeader()
406
406
407 self.type = "Voltage"
407 self.type = "Voltage"
408
408
409 self.data = None
409 self.data = None
410
410
411 # self.dtype = None
411 # self.dtype = None
412
412
413 # self.nChannels = 0
413 # self.nChannels = 0
414
414
415 # self.nHeights = 0
415 # self.nHeights = 0
416
416
417 self.nProfiles = None
417 self.nProfiles = None
418
418
419 self.heightList = None
419 self.heightList = None
420
420
421 self.channelList = None
421 self.channelList = None
422
422
423 # self.channelIndexList = None
423 # self.channelIndexList = None
424
424
425 self.flagNoData = True
425 self.flagNoData = True
426
426
427 self.flagDiscontinuousBlock = False
427 self.flagDiscontinuousBlock = False
428
428
429 self.utctime = None
429 self.utctime = None
430
430
431 self.timeZone = None
431 self.timeZone = None
432
432
433 self.dstFlag = None
433 self.dstFlag = None
434
434
435 self.errorCount = None
435 self.errorCount = None
436
436
437 self.nCohInt = None
437 self.nCohInt = None
438
438
439 self.blocksize = None
439 self.blocksize = None
440
440
441 self.flagDecodeData = False #asumo q la data no esta decodificada
441 self.flagDecodeData = False #asumo q la data no esta decodificada
442
442
443 self.flagDeflipData = False #asumo q la data no esta sin flip
443 self.flagDeflipData = False #asumo q la data no esta sin flip
444
444
445 self.flagShiftFFT = False
445 self.flagShiftFFT = False
446
446
447 self.flagDataAsBlock = False #Asumo que la data es leida perfil a perfil
447 self.flagDataAsBlock = False #Asumo que la data es leida perfil a perfil
448
448
449 self.profileIndex = 0
449 self.profileIndex = 0
450
450
451 def getNoisebyHildebrand(self, channel = None):
451 def getNoisebyHildebrand(self, channel = None):
452 """
452 """
453 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
453 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
454
454
455 Return:
455 Return:
456 noiselevel
456 noiselevel
457 """
457 """
458
458
459 if channel != None:
459 if channel != None:
460 data = self.data[channel]
460 data = self.data[channel]
461 nChannels = 1
461 nChannels = 1
462 else:
462 else:
463 data = self.data
463 data = self.data
464 nChannels = self.nChannels
464 nChannels = self.nChannels
465
465
466 noise = numpy.zeros(nChannels)
466 noise = numpy.zeros(nChannels)
467 power = data * numpy.conjugate(data)
467 power = data * numpy.conjugate(data)
468
468
469 for thisChannel in range(nChannels):
469 for thisChannel in range(nChannels):
470 if nChannels == 1:
470 if nChannels == 1:
471 daux = power[:].real
471 daux = power[:].real
472 else:
472 else:
473 daux = power[thisChannel,:].real
473 daux = power[thisChannel,:].real
474 noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt)
474 noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt)
475
475
476 return noise
476 return noise
477
477
478 def getNoise(self, type = 1, channel = None):
478 def getNoise(self, type = 1, channel = None):
479
479
480 if type == 1:
480 if type == 1:
481 noise = self.getNoisebyHildebrand(channel)
481 noise = self.getNoisebyHildebrand(channel)
482
482
483 return noise
483 return noise
484
484
485 def getPower(self, channel = None):
485 def getPower(self, channel = None):
486
486
487 if channel != None:
487 if channel != None:
488 data = self.data[channel]
488 data = self.data[channel]
489 else:
489 else:
490 data = self.data
490 data = self.data
491
491
492 power = data * numpy.conjugate(data)
492 power = data * numpy.conjugate(data)
493 powerdB = 10*numpy.log10(power.real)
493 powerdB = 10*numpy.log10(power.real)
494 powerdB = numpy.squeeze(powerdB)
494 powerdB = numpy.squeeze(powerdB)
495
495
496 return powerdB
496 return powerdB
497
497
498 def getTimeInterval(self):
498 def getTimeInterval(self):
499
499
500 timeInterval = self.ippSeconds * self.nCohInt
500 timeInterval = self.ippSeconds * self.nCohInt
501
501
502 return timeInterval
502 return timeInterval
503
503
504 noise = property(getNoise, "I'm the 'nHeights' property.")
504 noise = property(getNoise, "I'm the 'nHeights' property.")
505 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
505 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
506
506
507 class Spectra(JROData):
507 class Spectra(JROData):
508
508
509 #data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas)
509 #data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas)
510 data_spc = None
510 data_spc = None
511
511
512 #data cspc es un numpy array de 2 dmensiones (canales, pares, alturas)
512 #data cspc es un numpy array de 2 dmensiones (canales, pares, alturas)
513 data_cspc = None
513 data_cspc = None
514
514
515 #data dc es un numpy array de 2 dmensiones (canales, alturas)
515 #data dc es un numpy array de 2 dmensiones (canales, alturas)
516 data_dc = None
516 data_dc = None
517
517
518 #data power
518 #data power
519 data_pwr = None
519 data_pwr = None
520
520
521 nFFTPoints = None
521 nFFTPoints = None
522
522
523 # nPairs = None
523 # nPairs = None
524
524
525 pairsList = None
525 pairsList = None
526
526
527 nIncohInt = None
527 nIncohInt = None
528
528
529 wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia
529 wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia
530
530
531 nCohInt = None #se requiere para determinar el valor de timeInterval
531 nCohInt = None #se requiere para determinar el valor de timeInterval
532
532
533 ippFactor = None
533 ippFactor = None
534
534
535 profileIndex = 0
535 profileIndex = 0
536
536
537 plotting = "spectra"
537 plotting = "spectra"
538
538
539 def __init__(self):
539 def __init__(self):
540 '''
540 '''
541 Constructor
541 Constructor
542 '''
542 '''
543
543
544 self.useLocalTime = True
544 self.useLocalTime = True
545
545
546 self.radarControllerHeaderObj = RadarControllerHeader()
546 self.radarControllerHeaderObj = RadarControllerHeader()
547
547
548 self.systemHeaderObj = SystemHeader()
548 self.systemHeaderObj = SystemHeader()
549
549
550 self.type = "Spectra"
550 self.type = "Spectra"
551
551
552 # self.data = None
552 # self.data = None
553
553
554 # self.dtype = None
554 # self.dtype = None
555
555
556 # self.nChannels = 0
556 # self.nChannels = 0
557
557
558 # self.nHeights = 0
558 # self.nHeights = 0
559
559
560 self.nProfiles = None
560 self.nProfiles = None
561
561
562 self.heightList = None
562 self.heightList = None
563
563
564 self.channelList = None
564 self.channelList = None
565
565
566 # self.channelIndexList = None
566 # self.channelIndexList = None
567
567
568 self.pairsList = None
568 self.pairsList = None
569
569
570 self.flagNoData = True
570 self.flagNoData = True
571
571
572 self.flagDiscontinuousBlock = False
572 self.flagDiscontinuousBlock = False
573
573
574 self.utctime = None
574 self.utctime = None
575
575
576 self.nCohInt = None
576 self.nCohInt = None
577
577
578 self.nIncohInt = None
578 self.nIncohInt = None
579
579
580 self.blocksize = None
580 self.blocksize = None
581
581
582 self.nFFTPoints = None
582 self.nFFTPoints = None
583
583
584 self.wavelength = None
584 self.wavelength = None
585
585
586 self.flagDecodeData = False #asumo q la data no esta decodificada
586 self.flagDecodeData = False #asumo q la data no esta decodificada
587
587
588 self.flagDeflipData = False #asumo q la data no esta sin flip
588 self.flagDeflipData = False #asumo q la data no esta sin flip
589
589
590 self.flagShiftFFT = False
590 self.flagShiftFFT = False
591
591
592 self.ippFactor = 1
592 self.ippFactor = 1
593
593
594 #self.noise = None
594 #self.noise = None
595
595
596 self.beacon_heiIndexList = []
596 self.beacon_heiIndexList = []
597
597
598 self.noise_estimation = None
598 self.noise_estimation = None
599
599
600
600
601 def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None):
601 def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None):
602 """
602 """
603 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
603 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
604
604
605 Return:
605 Return:
606 noiselevel
606 noiselevel
607 """
607 """
608
608
609 noise = numpy.zeros(self.nChannels)
609 noise = numpy.zeros(self.nChannels)
610
610
611 for channel in range(self.nChannels):
611 for channel in range(self.nChannels):
612 daux = self.data_spc[channel,xmin_index:xmax_index,ymin_index:ymax_index]
612 daux = self.data_spc[channel,xmin_index:xmax_index,ymin_index:ymax_index]
613 noise[channel] = hildebrand_sekhon(daux, self.nIncohInt)
613 noise[channel] = hildebrand_sekhon(daux, self.nIncohInt)
614
614
615 return noise
615 return noise
616
616
617 def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None):
617 def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None):
618
618
619 if self.noise_estimation is not None:
619 if self.noise_estimation is not None:
620 return self.noise_estimation #this was estimated by getNoise Operation defined in jroproc_spectra.py
620 return self.noise_estimation #this was estimated by getNoise Operation defined in jroproc_spectra.py
621 else:
621 else:
622 noise = self.getNoisebyHildebrand(xmin_index, xmax_index, ymin_index, ymax_index)
622 noise = self.getNoisebyHildebrand(xmin_index, xmax_index, ymin_index, ymax_index)
623 return noise
623 return noise
624
624
625 def getFreqRangeTimeResponse(self, extrapoints=0):
625 def getFreqRangeTimeResponse(self, extrapoints=0):
626
626
627 deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints*self.ippFactor)
627 deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints*self.ippFactor)
628 freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2
628 freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2
629
629
630 return freqrange
630 return freqrange
631
631
632 def getAcfRange(self, extrapoints=0):
632 def getAcfRange(self, extrapoints=0):
633
633
634 deltafreq = 10./(self.getFmax() / (self.nFFTPoints*self.ippFactor))
634 deltafreq = 10./(self.getFmax() / (self.nFFTPoints*self.ippFactor))
635 freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2
635 freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2
636
636
637 return freqrange
637 return freqrange
638
638
639 def getFreqRange(self, extrapoints=0):
639 def getFreqRange(self, extrapoints=0):
640
640
641 deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor)
641 deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor)
642 freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2
642 freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2
643
643
644 return freqrange
644 return freqrange
645
645
646 def getVelRange(self, extrapoints=0):
646 def getVelRange(self, extrapoints=0):
647
647
648 deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor)
648 deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor)
649 velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) #- deltav/2
649 velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) #- deltav/2
650
650
651 return velrange
651 return velrange
652
652
653 def getNPairs(self):
653 def getNPairs(self):
654
654
655 return len(self.pairsList)
655 return len(self.pairsList)
656
656
657 def getPairsIndexList(self):
657 def getPairsIndexList(self):
658
658
659 return range(self.nPairs)
659 return range(self.nPairs)
660
660
661 def getNormFactor(self):
661 def getNormFactor(self):
662
662
663 pwcode = 1
663 pwcode = 1
664
664
665 if self.flagDecodeData:
665 if self.flagDecodeData:
666 pwcode = numpy.sum(self.code[0]**2)
666 pwcode = numpy.sum(self.code[0]**2)
667 #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter
667 #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter
668 normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter
668 normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter
669
669
670 return normFactor
670 return normFactor
671
671
672 def getFlagCspc(self):
672 def getFlagCspc(self):
673
673
674 if self.data_cspc is None:
674 if self.data_cspc is None:
675 return True
675 return True
676
676
677 return False
677 return False
678
678
679 def getFlagDc(self):
679 def getFlagDc(self):
680
680
681 if self.data_dc is None:
681 if self.data_dc is None:
682 return True
682 return True
683
683
684 return False
684 return False
685
685
686 def getTimeInterval(self):
686 def getTimeInterval(self):
687
687
688 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles
688 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles
689
689
690 return timeInterval
690 return timeInterval
691
691
692 def getPower(self):
692 def getPower(self):
693
693
694 factor = self.normFactor
694 factor = self.normFactor
695 z = self.data_spc/factor
695 z = self.data_spc/factor
696 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
696 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
697 avg = numpy.average(z, axis=1)
697 avg = numpy.average(z, axis=1)
698
698
699 return 10*numpy.log10(avg)
699 return 10*numpy.log10(avg)
700
700
701 def getCoherence(self, pairsList=None, phase=False):
701 def getCoherence(self, pairsList=None, phase=False):
702
702
703 z = []
703 z = []
704 if pairsList is None:
704 if pairsList is None:
705 pairsIndexList = self.pairsIndexList
705 pairsIndexList = self.pairsIndexList
706 else:
706 else:
707 pairsIndexList = []
707 pairsIndexList = []
708 for pair in pairsList:
708 for pair in pairsList:
709 if pair not in self.pairsList:
709 if pair not in self.pairsList:
710 raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair)
710 raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair)
711 pairsIndexList.append(self.pairsList.index(pair))
711 pairsIndexList.append(self.pairsList.index(pair))
712 for i in range(len(pairsIndexList)):
712 for i in range(len(pairsIndexList)):
713 pair = self.pairsList[pairsIndexList[i]]
713 pair = self.pairsList[pairsIndexList[i]]
714 ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0)
714 ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0)
715 powa = numpy.average(self.data_spc[pair[0], :, :], axis=0)
715 powa = numpy.average(self.data_spc[pair[0], :, :], axis=0)
716 powb = numpy.average(self.data_spc[pair[1], :, :], axis=0)
716 powb = numpy.average(self.data_spc[pair[1], :, :], axis=0)
717 avgcoherenceComplex = ccf/numpy.sqrt(powa*powb)
717 avgcoherenceComplex = ccf/numpy.sqrt(powa*powb)
718 if phase:
718 if phase:
719 data = numpy.arctan2(avgcoherenceComplex.imag,
719 data = numpy.arctan2(avgcoherenceComplex.imag,
720 avgcoherenceComplex.real)*180/numpy.pi
720 avgcoherenceComplex.real)*180/numpy.pi
721 else:
721 else:
722 data = numpy.abs(avgcoherenceComplex)
722 data = numpy.abs(avgcoherenceComplex)
723
723
724 z.append(data)
724 z.append(data)
725
725
726 return numpy.array(z)
726 return numpy.array(z)
727
727
728 def setValue(self, value):
728 def setValue(self, value):
729
729
730 print "This property should not be initialized"
730 print "This property should not be initialized"
731
731
732 return
732 return
733
733
734 nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.")
734 nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.")
735 pairsIndexList = property(getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.")
735 pairsIndexList = property(getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.")
736 normFactor = property(getNormFactor, setValue, "I'm the 'getNormFactor' property.")
736 normFactor = property(getNormFactor, setValue, "I'm the 'getNormFactor' property.")
737 flag_cspc = property(getFlagCspc, setValue)
737 flag_cspc = property(getFlagCspc, setValue)
738 flag_dc = property(getFlagDc, setValue)
738 flag_dc = property(getFlagDc, setValue)
739 noise = property(getNoise, setValue, "I'm the 'nHeights' property.")
739 noise = property(getNoise, setValue, "I'm the 'nHeights' property.")
740 timeInterval = property(getTimeInterval, setValue, "I'm the 'timeInterval' property")
740 timeInterval = property(getTimeInterval, setValue, "I'm the 'timeInterval' property")
741
741
742 class SpectraHeis(Spectra):
742 class SpectraHeis(Spectra):
743
743
744 data_spc = None
744 data_spc = None
745
745
746 data_cspc = None
746 data_cspc = None
747
747
748 data_dc = None
748 data_dc = None
749
749
750 nFFTPoints = None
750 nFFTPoints = None
751
751
752 # nPairs = None
752 # nPairs = None
753
753
754 pairsList = None
754 pairsList = None
755
755
756 nCohInt = None
756 nCohInt = None
757
757
758 nIncohInt = None
758 nIncohInt = None
759
759
760 def __init__(self):
760 def __init__(self):
761
761
762 self.radarControllerHeaderObj = RadarControllerHeader()
762 self.radarControllerHeaderObj = RadarControllerHeader()
763
763
764 self.systemHeaderObj = SystemHeader()
764 self.systemHeaderObj = SystemHeader()
765
765
766 self.type = "SpectraHeis"
766 self.type = "SpectraHeis"
767
767
768 # self.dtype = None
768 # self.dtype = None
769
769
770 # self.nChannels = 0
770 # self.nChannels = 0
771
771
772 # self.nHeights = 0
772 # self.nHeights = 0
773
773
774 self.nProfiles = None
774 self.nProfiles = None
775
775
776 self.heightList = None
776 self.heightList = None
777
777
778 self.channelList = None
778 self.channelList = None
779
779
780 # self.channelIndexList = None
780 # self.channelIndexList = None
781
781
782 self.flagNoData = True
782 self.flagNoData = True
783
783
784 self.flagDiscontinuousBlock = False
784 self.flagDiscontinuousBlock = False
785
785
786 # self.nPairs = 0
786 # self.nPairs = 0
787
787
788 self.utctime = None
788 self.utctime = None
789
789
790 self.blocksize = None
790 self.blocksize = None
791
791
792 self.profileIndex = 0
792 self.profileIndex = 0
793
793
794 self.nCohInt = 1
794 self.nCohInt = 1
795
795
796 self.nIncohInt = 1
796 self.nIncohInt = 1
797
797
798 def getNormFactor(self):
798 def getNormFactor(self):
799 pwcode = 1
799 pwcode = 1
800 if self.flagDecodeData:
800 if self.flagDecodeData:
801 pwcode = numpy.sum(self.code[0]**2)
801 pwcode = numpy.sum(self.code[0]**2)
802
802
803 normFactor = self.nIncohInt*self.nCohInt*pwcode
803 normFactor = self.nIncohInt*self.nCohInt*pwcode
804
804
805 return normFactor
805 return normFactor
806
806
807 def getTimeInterval(self):
807 def getTimeInterval(self):
808
808
809 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt
809 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt
810
810
811 return timeInterval
811 return timeInterval
812
812
813 normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.")
813 normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.")
814 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
814 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
815
815
816 class Fits(JROData):
816 class Fits(JROData):
817
817
818 heightList = None
818 heightList = None
819
819
820 channelList = None
820 channelList = None
821
821
822 flagNoData = True
822 flagNoData = True
823
823
824 flagDiscontinuousBlock = False
824 flagDiscontinuousBlock = False
825
825
826 useLocalTime = False
826 useLocalTime = False
827
827
828 utctime = None
828 utctime = None
829
829
830 timeZone = None
830 timeZone = None
831
831
832 # ippSeconds = None
832 # ippSeconds = None
833
833
834 # timeInterval = None
834 # timeInterval = None
835
835
836 nCohInt = None
836 nCohInt = None
837
837
838 nIncohInt = None
838 nIncohInt = None
839
839
840 noise = None
840 noise = None
841
841
842 windowOfFilter = 1
842 windowOfFilter = 1
843
843
844 #Speed of ligth
844 #Speed of ligth
845 C = 3e8
845 C = 3e8
846
846
847 frequency = 49.92e6
847 frequency = 49.92e6
848
848
849 realtime = False
849 realtime = False
850
850
851
851
852 def __init__(self):
852 def __init__(self):
853
853
854 self.type = "Fits"
854 self.type = "Fits"
855
855
856 self.nProfiles = None
856 self.nProfiles = None
857
857
858 self.heightList = None
858 self.heightList = None
859
859
860 self.channelList = None
860 self.channelList = None
861
861
862 # self.channelIndexList = None
862 # self.channelIndexList = None
863
863
864 self.flagNoData = True
864 self.flagNoData = True
865
865
866 self.utctime = None
866 self.utctime = None
867
867
868 self.nCohInt = 1
868 self.nCohInt = 1
869
869
870 self.nIncohInt = 1
870 self.nIncohInt = 1
871
871
872 self.useLocalTime = True
872 self.useLocalTime = True
873
873
874 self.profileIndex = 0
874 self.profileIndex = 0
875
875
876 # self.utctime = None
876 # self.utctime = None
877 # self.timeZone = None
877 # self.timeZone = None
878 # self.ltctime = None
878 # self.ltctime = None
879 # self.timeInterval = None
879 # self.timeInterval = None
880 # self.header = None
880 # self.header = None
881 # self.data_header = None
881 # self.data_header = None
882 # self.data = None
882 # self.data = None
883 # self.datatime = None
883 # self.datatime = None
884 # self.flagNoData = False
884 # self.flagNoData = False
885 # self.expName = ''
885 # self.expName = ''
886 # self.nChannels = None
886 # self.nChannels = None
887 # self.nSamples = None
887 # self.nSamples = None
888 # self.dataBlocksPerFile = None
888 # self.dataBlocksPerFile = None
889 # self.comments = ''
889 # self.comments = ''
890 #
890 #
891
891
892
892
893 def getltctime(self):
893 def getltctime(self):
894
894
895 if self.useLocalTime:
895 if self.useLocalTime:
896 return self.utctime - self.timeZone*60
896 return self.utctime - self.timeZone*60
897
897
898 return self.utctime
898 return self.utctime
899
899
900 def getDatatime(self):
900 def getDatatime(self):
901
901
902 datatime = datetime.datetime.utcfromtimestamp(self.ltctime)
902 datatime = datetime.datetime.utcfromtimestamp(self.ltctime)
903 return datatime
903 return datatime
904
904
905 def getTimeRange(self):
905 def getTimeRange(self):
906
906
907 datatime = []
907 datatime = []
908
908
909 datatime.append(self.ltctime)
909 datatime.append(self.ltctime)
910 datatime.append(self.ltctime + self.timeInterval)
910 datatime.append(self.ltctime + self.timeInterval)
911
911
912 datatime = numpy.array(datatime)
912 datatime = numpy.array(datatime)
913
913
914 return datatime
914 return datatime
915
915
916 def getHeiRange(self):
916 def getHeiRange(self):
917
917
918 heis = self.heightList
918 heis = self.heightList
919
919
920 return heis
920 return heis
921
921
922 def getNHeights(self):
922 def getNHeights(self):
923
923
924 return len(self.heightList)
924 return len(self.heightList)
925
925
926 def getNChannels(self):
926 def getNChannels(self):
927
927
928 return len(self.channelList)
928 return len(self.channelList)
929
929
930 def getChannelIndexList(self):
930 def getChannelIndexList(self):
931
931
932 return range(self.nChannels)
932 return range(self.nChannels)
933
933
934 def getNoise(self, type = 1):
934 def getNoise(self, type = 1):
935
935
936 #noise = numpy.zeros(self.nChannels)
936 #noise = numpy.zeros(self.nChannels)
937
937
938 if type == 1:
938 if type == 1:
939 noise = self.getNoisebyHildebrand()
939 noise = self.getNoisebyHildebrand()
940
940
941 if type == 2:
941 if type == 2:
942 noise = self.getNoisebySort()
942 noise = self.getNoisebySort()
943
943
944 if type == 3:
944 if type == 3:
945 noise = self.getNoisebyWindow()
945 noise = self.getNoisebyWindow()
946
946
947 return noise
947 return noise
948
948
949 def getTimeInterval(self):
949 def getTimeInterval(self):
950
950
951 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt
951 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt
952
952
953 return timeInterval
953 return timeInterval
954
954
955 datatime = property(getDatatime, "I'm the 'datatime' property")
955 datatime = property(getDatatime, "I'm the 'datatime' property")
956 nHeights = property(getNHeights, "I'm the 'nHeights' property.")
956 nHeights = property(getNHeights, "I'm the 'nHeights' property.")
957 nChannels = property(getNChannels, "I'm the 'nChannel' property.")
957 nChannels = property(getNChannels, "I'm the 'nChannel' property.")
958 channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.")
958 channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.")
959 noise = property(getNoise, "I'm the 'nHeights' property.")
959 noise = property(getNoise, "I'm the 'nHeights' property.")
960
960
961 ltctime = property(getltctime, "I'm the 'ltctime' property")
961 ltctime = property(getltctime, "I'm the 'ltctime' property")
962 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
962 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
963
963
964
964
965 class Correlation(JROData):
965 class Correlation(JROData):
966
966
967 noise = None
967 noise = None
968
968
969 SNR = None
969 SNR = None
970
970
971 #--------------------------------------------------
971 #--------------------------------------------------
972
972
973 mode = None
973 mode = None
974
974
975 split = False
975 split = False
976
976
977 data_cf = None
977 data_cf = None
978
978
979 lags = None
979 lags = None
980
980
981 lagRange = None
981 lagRange = None
982
982
983 pairsList = None
983 pairsList = None
984
984
985 normFactor = None
985 normFactor = None
986
986
987 #--------------------------------------------------
987 #--------------------------------------------------
988
988
989 # calculateVelocity = None
989 # calculateVelocity = None
990
990
991 nLags = None
991 nLags = None
992
992
993 nPairs = None
993 nPairs = None
994
994
995 nAvg = None
995 nAvg = None
996
996
997
997
998 def __init__(self):
998 def __init__(self):
999 '''
999 '''
1000 Constructor
1000 Constructor
1001 '''
1001 '''
1002 self.radarControllerHeaderObj = RadarControllerHeader()
1002 self.radarControllerHeaderObj = RadarControllerHeader()
1003
1003
1004 self.systemHeaderObj = SystemHeader()
1004 self.systemHeaderObj = SystemHeader()
1005
1005
1006 self.type = "Correlation"
1006 self.type = "Correlation"
1007
1007
1008 self.data = None
1008 self.data = None
1009
1009
1010 self.dtype = None
1010 self.dtype = None
1011
1011
1012 self.nProfiles = None
1012 self.nProfiles = None
1013
1013
1014 self.heightList = None
1014 self.heightList = None
1015
1015
1016 self.channelList = None
1016 self.channelList = None
1017
1017
1018 self.flagNoData = True
1018 self.flagNoData = True
1019
1019
1020 self.flagDiscontinuousBlock = False
1020 self.flagDiscontinuousBlock = False
1021
1021
1022 self.utctime = None
1022 self.utctime = None
1023
1023
1024 self.timeZone = None
1024 self.timeZone = None
1025
1025
1026 self.dstFlag = None
1026 self.dstFlag = None
1027
1027
1028 self.errorCount = None
1028 self.errorCount = None
1029
1029
1030 self.blocksize = None
1030 self.blocksize = None
1031
1031
1032 self.flagDecodeData = False #asumo q la data no esta decodificada
1032 self.flagDecodeData = False #asumo q la data no esta decodificada
1033
1033
1034 self.flagDeflipData = False #asumo q la data no esta sin flip
1034 self.flagDeflipData = False #asumo q la data no esta sin flip
1035
1035
1036 self.pairsList = None
1036 self.pairsList = None
1037
1037
1038 self.nPoints = None
1038 self.nPoints = None
1039
1039
1040 def getPairsList(self):
1040 def getPairsList(self):
1041
1041
1042 return self.pairsList
1042 return self.pairsList
1043
1043
1044 def getNoise(self, mode = 2):
1044 def getNoise(self, mode = 2):
1045
1045
1046 indR = numpy.where(self.lagR == 0)[0][0]
1046 indR = numpy.where(self.lagR == 0)[0][0]
1047 indT = numpy.where(self.lagT == 0)[0][0]
1047 indT = numpy.where(self.lagT == 0)[0][0]
1048
1048
1049 jspectra0 = self.data_corr[:,:,indR,:]
1049 jspectra0 = self.data_corr[:,:,indR,:]
1050 jspectra = copy.copy(jspectra0)
1050 jspectra = copy.copy(jspectra0)
1051
1051
1052 num_chan = jspectra.shape[0]
1052 num_chan = jspectra.shape[0]
1053 num_hei = jspectra.shape[2]
1053 num_hei = jspectra.shape[2]
1054
1054
1055 freq_dc = jspectra.shape[1]/2
1055 freq_dc = jspectra.shape[1]/2
1056 ind_vel = numpy.array([-2,-1,1,2]) + freq_dc
1056 ind_vel = numpy.array([-2,-1,1,2]) + freq_dc
1057
1057
1058 if ind_vel[0]<0:
1058 if ind_vel[0]<0:
1059 ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof
1059 ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof
1060
1060
1061 if mode == 1:
1061 if mode == 1:
1062 jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION
1062 jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION
1063
1063
1064 if mode == 2:
1064 if mode == 2:
1065
1065
1066 vel = numpy.array([-2,-1,1,2])
1066 vel = numpy.array([-2,-1,1,2])
1067 xx = numpy.zeros([4,4])
1067 xx = numpy.zeros([4,4])
1068
1068
1069 for fil in range(4):
1069 for fil in range(4):
1070 xx[fil,:] = vel[fil]**numpy.asarray(range(4))
1070 xx[fil,:] = vel[fil]**numpy.asarray(range(4))
1071
1071
1072 xx_inv = numpy.linalg.inv(xx)
1072 xx_inv = numpy.linalg.inv(xx)
1073 xx_aux = xx_inv[0,:]
1073 xx_aux = xx_inv[0,:]
1074
1074
1075 for ich in range(num_chan):
1075 for ich in range(num_chan):
1076 yy = jspectra[ich,ind_vel,:]
1076 yy = jspectra[ich,ind_vel,:]
1077 jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy)
1077 jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy)
1078
1078
1079 junkid = jspectra[ich,freq_dc,:]<=0
1079 junkid = jspectra[ich,freq_dc,:]<=0
1080 cjunkid = sum(junkid)
1080 cjunkid = sum(junkid)
1081
1081
1082 if cjunkid.any():
1082 if cjunkid.any():
1083 jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2
1083 jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2
1084
1084
1085 noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:]
1085 noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:]
1086
1086
1087 return noise
1087 return noise
1088
1088
1089 def getTimeInterval(self):
1089 def getTimeInterval(self):
1090
1090
1091 timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles
1091 timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles
1092
1092
1093 return timeInterval
1093 return timeInterval
1094
1094
1095 def splitFunctions(self):
1095 def splitFunctions(self):
1096
1096
1097 pairsList = self.pairsList
1097 pairsList = self.pairsList
1098 ccf_pairs = []
1098 ccf_pairs = []
1099 acf_pairs = []
1099 acf_pairs = []
1100 ccf_ind = []
1100 ccf_ind = []
1101 acf_ind = []
1101 acf_ind = []
1102 for l in range(len(pairsList)):
1102 for l in range(len(pairsList)):
1103 chan0 = pairsList[l][0]
1103 chan0 = pairsList[l][0]
1104 chan1 = pairsList[l][1]
1104 chan1 = pairsList[l][1]
1105
1105
1106 #Obteniendo pares de Autocorrelacion
1106 #Obteniendo pares de Autocorrelacion
1107 if chan0 == chan1:
1107 if chan0 == chan1:
1108 acf_pairs.append(chan0)
1108 acf_pairs.append(chan0)
1109 acf_ind.append(l)
1109 acf_ind.append(l)
1110 else:
1110 else:
1111 ccf_pairs.append(pairsList[l])
1111 ccf_pairs.append(pairsList[l])
1112 ccf_ind.append(l)
1112 ccf_ind.append(l)
1113
1113
1114 data_acf = self.data_cf[acf_ind]
1114 data_acf = self.data_cf[acf_ind]
1115 data_ccf = self.data_cf[ccf_ind]
1115 data_ccf = self.data_cf[ccf_ind]
1116
1116
1117 return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf
1117 return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf
1118
1118
1119 def getNormFactor(self):
1119 def getNormFactor(self):
1120 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions()
1120 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions()
1121 acf_pairs = numpy.array(acf_pairs)
1121 acf_pairs = numpy.array(acf_pairs)
1122 normFactor = numpy.zeros((self.nPairs,self.nHeights))
1122 normFactor = numpy.zeros((self.nPairs,self.nHeights))
1123
1123
1124 for p in range(self.nPairs):
1124 for p in range(self.nPairs):
1125 pair = self.pairsList[p]
1125 pair = self.pairsList[p]
1126
1126
1127 ch0 = pair[0]
1127 ch0 = pair[0]
1128 ch1 = pair[1]
1128 ch1 = pair[1]
1129
1129
1130 ch0_max = numpy.max(data_acf[acf_pairs==ch0,:,:], axis=1)
1130 ch0_max = numpy.max(data_acf[acf_pairs==ch0,:,:], axis=1)
1131 ch1_max = numpy.max(data_acf[acf_pairs==ch1,:,:], axis=1)
1131 ch1_max = numpy.max(data_acf[acf_pairs==ch1,:,:], axis=1)
1132 normFactor[p,:] = numpy.sqrt(ch0_max*ch1_max)
1132 normFactor[p,:] = numpy.sqrt(ch0_max*ch1_max)
1133
1133
1134 return normFactor
1134 return normFactor
1135
1135
1136 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
1136 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
1137 normFactor = property(getNormFactor, "I'm the 'normFactor property'")
1137 normFactor = property(getNormFactor, "I'm the 'normFactor property'")
1138
1138
1139 class Parameters(Spectra):
1139 class Parameters(Spectra):
1140
1140
1141 experimentInfo = None #Information about the experiment
1141 experimentInfo = None #Information about the experiment
1142
1142
1143 #Information from previous data
1143 #Information from previous data
1144
1144
1145 inputUnit = None #Type of data to be processed
1145 inputUnit = None #Type of data to be processed
1146
1146
1147 operation = None #Type of operation to parametrize
1147 operation = None #Type of operation to parametrize
1148
1148
1149 #normFactor = None #Normalization Factor
1149 #normFactor = None #Normalization Factor
1150
1150
1151 groupList = None #List of Pairs, Groups, etc
1151 groupList = None #List of Pairs, Groups, etc
1152
1152
1153 #Parameters
1153 #Parameters
1154
1154
1155 data_param = None #Parameters obtained
1155 data_param = None #Parameters obtained
1156
1156
1157 data_pre = None #Data Pre Parametrization
1157 data_pre = None #Data Pre Parametrization
1158
1158
1159 data_SNR = None #Signal to Noise Ratio
1159 data_SNR = None #Signal to Noise Ratio
1160
1160
1161 # heightRange = None #Heights
1161 # heightRange = None #Heights
1162
1162
1163 abscissaList = None #Abscissa, can be velocities, lags or time
1163 abscissaList = None #Abscissa, can be velocities, lags or time
1164
1164
1165 #noise = None #Noise Potency
1165 # noise = None #Noise Potency
1166
1166
1167 utctimeInit = None #Initial UTC time
1167 utctimeInit = None #Initial UTC time
1168
1168
1169 paramInterval = None #Time interval to calculate Parameters in seconds
1169 paramInterval = None #Time interval to calculate Parameters in seconds
1170
1170
1171 useLocalTime = True
1171 useLocalTime = True
1172
1172
1173 #Fitting
1173 #Fitting
1174
1174
1175 data_error = None #Error of the estimation
1175 data_error = None #Error of the estimation
1176
1176
1177 constants = None
1177 constants = None
1178
1178
1179 library = None
1179 library = None
1180
1180
1181 #Output signal
1181 #Output signal
1182
1182
1183 outputInterval = None #Time interval to calculate output signal in seconds
1183 outputInterval = None #Time interval to calculate output signal in seconds
1184
1184
1185 data_output = None #Out signal
1185 data_output = None #Out signal
1186
1186
1187 nAvg = None
1187 nAvg = None
1188
1188
1189 noise_estimation = None
1189 noise_estimation = None
1190
1190
1191
1191
1192 def __init__(self):
1192 def __init__(self):
1193 '''
1193 '''
1194 Constructor
1194 Constructor
1195 '''
1195 '''
1196 self.radarControllerHeaderObj = RadarControllerHeader()
1196 self.radarControllerHeaderObj = RadarControllerHeader()
1197
1197
1198 self.systemHeaderObj = SystemHeader()
1198 self.systemHeaderObj = SystemHeader()
1199
1199
1200 self.type = "Parameters"
1200 self.type = "Parameters"
1201
1201
1202 def getTimeRange1(self, interval):
1202 def getTimeRange1(self, interval):
1203
1203
1204 datatime = []
1204 datatime = []
1205
1205
1206 if self.useLocalTime:
1206 if self.useLocalTime:
1207 time1 = self.utctimeInit - self.timeZone*60
1207 time1 = self.utctimeInit - self.timeZone*60
1208 else:
1208 else:
1209 time1 = self.utctimeInit
1209 time1 = self.utctimeInit
1210
1210
1211 # datatime.append(self.utctimeInit)
1211 # datatime.append(self.utctimeInit)
1212 # datatime.append(self.utctimeInit + self.outputInterval)
1212 # datatime.append(self.utctimeInit + self.outputInterval)
1213 datatime.append(time1)
1213 datatime.append(time1)
1214 datatime.append(time1 + interval)
1214 datatime.append(time1 + interval)
1215
1215
1216 datatime = numpy.array(datatime)
1216 datatime = numpy.array(datatime)
1217
1217
1218 return datatime
1218 return datatime
1219
1220 def getTimeInterval(self):
1221
1222 return self.paramInterval
@@ -1,604 +1,690
1
1
2 import os
2 import os
3 import zmq
3 import zmq
4 import time
4 import time
5 import numpy
5 import numpy
6 import datetime
6 import datetime
7 import numpy as np
7 import numpy as np
8 import matplotlib.pyplot as plt
8 import matplotlib.pyplot as plt
9 from mpl_toolkits.axes_grid1 import make_axes_locatable
9 from mpl_toolkits.axes_grid1 import make_axes_locatable
10 from matplotlib.ticker import FuncFormatter, LinearLocator
10 from matplotlib.ticker import FuncFormatter, LinearLocator
11 from multiprocessing import Process
11 from multiprocessing import Process
12
12
13 from schainpy.model.proc.jroproc_base import Operation
13 from schainpy.model.proc.jroproc_base import Operation
14
14
15 #plt.ion()
15 #plt.ion()
16
16
17 func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime('%H:%M'))
17 func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime('%H:%M'))
18
18
19 d1970 = datetime.datetime(1970,1,1)
19 d1970 = datetime.datetime(1970,1,1)
20
20
21 class PlotData(Operation, Process):
21 class PlotData(Operation, Process):
22
22
23 CODE = 'Figure'
23 CODE = 'Figure'
24 colormap = 'jro'
24 colormap = 'jro'
25 CONFLATE = True
25 CONFLATE = True
26 __MAXNUMX = 80
26 __MAXNUMX = 80
27 __MAXNUMY = 80
27 __MAXNUMY = 80
28 __missing = 1E30
28 __missing = 1E30
29
29
30 def __init__(self, **kwargs):
30 def __init__(self, **kwargs):
31
31
32 Operation.__init__(self, plot=True, **kwargs)
32 Operation.__init__(self, plot=True, **kwargs)
33 Process.__init__(self)
33 Process.__init__(self)
34 self.kwargs['code'] = self.CODE
34 self.kwargs['code'] = self.CODE
35 self.mp = False
35 self.mp = False
36 self.dataOut = None
36 self.dataOut = None
37 self.isConfig = False
37 self.isConfig = False
38 self.figure = None
38 self.figure = None
39 self.axes = []
39 self.axes = []
40 self.localtime = kwargs.pop('localtime', True)
40 self.localtime = kwargs.pop('localtime', True)
41 self.show = kwargs.get('show', True)
41 self.show = kwargs.get('show', True)
42 self.save = kwargs.get('save', False)
42 self.save = kwargs.get('save', False)
43 self.colormap = kwargs.get('colormap', self.colormap)
43 self.colormap = kwargs.get('colormap', self.colormap)
44 self.colormap_coh = kwargs.get('colormap_coh', 'jet')
44 self.colormap_coh = kwargs.get('colormap_coh', 'jet')
45 self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r')
45 self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r')
46 self.showprofile = kwargs.get('showprofile', True)
46 self.showprofile = kwargs.get('showprofile', True)
47 self.title = kwargs.get('wintitle', '')
47 self.title = kwargs.get('wintitle', '')
48 self.xaxis = kwargs.get('xaxis', 'frequency')
48 self.xaxis = kwargs.get('xaxis', 'frequency')
49 self.zmin = kwargs.get('zmin', None)
49 self.zmin = kwargs.get('zmin', None)
50 self.zmax = kwargs.get('zmax', None)
50 self.zmax = kwargs.get('zmax', None)
51 self.xmin = kwargs.get('xmin', None)
51 self.xmin = kwargs.get('xmin', None)
52 self.xmax = kwargs.get('xmax', None)
52 self.xmax = kwargs.get('xmax', None)
53 self.xrange = kwargs.get('xrange', 24)
53 self.xrange = kwargs.get('xrange', 24)
54 self.ymin = kwargs.get('ymin', None)
54 self.ymin = kwargs.get('ymin', None)
55 self.ymax = kwargs.get('ymax', None)
55 self.ymax = kwargs.get('ymax', None)
56 self.throttle_value = 5
56 self.throttle_value = 5
57
57
58 def fill_gaps(self, x_buffer, y_buffer, z_buffer):
58 def fill_gaps(self, x_buffer, y_buffer, z_buffer):
59
59
60 if x_buffer.shape[0] < 2:
60 if x_buffer.shape[0] < 2:
61 return x_buffer, y_buffer, z_buffer
61 return x_buffer, y_buffer, z_buffer
62
62
63 deltas = x_buffer[1:] - x_buffer[0:-1]
63 deltas = x_buffer[1:] - x_buffer[0:-1]
64 x_median = np.median(deltas)
64 x_median = np.median(deltas)
65
65
66 index = np.where(deltas > 5*x_median)
66 index = np.where(deltas > 5*x_median)
67
67
68 if len(index[0]) != 0:
68 if len(index[0]) != 0:
69 z_buffer[::, index[0], ::] = self.__missing
69 z_buffer[::, index[0], ::] = self.__missing
70 z_buffer = np.ma.masked_inside(z_buffer,
70 z_buffer = np.ma.masked_inside(z_buffer,
71 0.99*self.__missing,
71 0.99*self.__missing,
72 1.01*self.__missing)
72 1.01*self.__missing)
73
73
74 return x_buffer, y_buffer, z_buffer
74 return x_buffer, y_buffer, z_buffer
75
75
76 def decimate(self):
76 def decimate(self):
77
77
78 # dx = int(len(self.x)/self.__MAXNUMX) + 1
78 # dx = int(len(self.x)/self.__MAXNUMX) + 1
79 dy = int(len(self.y)/self.__MAXNUMY) + 1
79 dy = int(len(self.y)/self.__MAXNUMY) + 1
80
80
81 # x = self.x[::dx]
81 # x = self.x[::dx]
82 x = self.x
82 x = self.x
83 y = self.y[::dy]
83 y = self.y[::dy]
84 z = self.z[::, ::, ::dy]
84 z = self.z[::, ::, ::dy]
85
85
86 return x, y, z
86 return x, y, z
87
87
88 def __plot(self):
88 def __plot(self):
89
89
90 print 'plotting...{}'.format(self.CODE)
90 print 'plotting...{}'.format(self.CODE)
91
91
92 if self.show:
92 if self.show:
93 self.figure.show()
93 self.figure.show()
94
94
95 self.plot()
95 self.plot()
96 plt.tight_layout()
96 plt.tight_layout()
97 self.figure.canvas.manager.set_window_title('{} {} - Date:{}'.format(self.title, self.CODE.upper(),
97 self.figure.canvas.manager.set_window_title('{} {} - Date:{}'.format(self.title, self.CODE.upper(),
98 datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')))
98 datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')))
99
99
100 if self.save:
100 if self.save:
101 figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE,
101 figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE,
102 datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')))
102 datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')))
103 print 'Saving figure: {}'.format(figname)
103 print 'Saving figure: {}'.format(figname)
104 self.figure.savefig(figname)
104 self.figure.savefig(figname)
105
105
106 self.figure.canvas.draw()
106 self.figure.canvas.draw()
107
107
108 def plot(self):
108 def plot(self):
109
109
110 print 'plotting...{}'.format(self.CODE.upper())
110 print 'plotting...{}'.format(self.CODE.upper())
111 return
111 return
112
112
113 def run(self):
113 def run(self):
114
114
115 print '[Starting] {}'.format(self.name)
115 print '[Starting] {}'.format(self.name)
116 context = zmq.Context()
116 context = zmq.Context()
117 receiver = context.socket(zmq.SUB)
117 receiver = context.socket(zmq.SUB)
118 receiver.setsockopt(zmq.SUBSCRIBE, '')
118 receiver.setsockopt(zmq.SUBSCRIBE, '')
119 receiver.setsockopt(zmq.CONFLATE, self.CONFLATE)
119 receiver.setsockopt(zmq.CONFLATE, self.CONFLATE)
120 receiver.connect("ipc:///tmp/zmq.plots")
120 receiver.connect("ipc:///tmp/zmq.plots")
121
121
122 while True:
122 while True:
123 try:
123 try:
124 self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK)
124 self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK)
125 self.dataOut = self.data['dataOut']
125 self.dataOut = self.data['dataOut']
126 self.times = self.data['times']
126 self.times = self.data['times']
127 self.times.sort()
127 self.times.sort()
128 self.throttle_value = self.data['throttle']
128 self.throttle_value = self.data['throttle']
129 self.min_time = self.times[0]
129 self.min_time = self.times[0]
130 self.max_time = self.times[-1]
130 self.max_time = self.times[-1]
131
131
132 if self.isConfig is False:
132 if self.isConfig is False:
133 self.setup()
133 self.setup()
134 self.isConfig = True
134 self.isConfig = True
135 self.__plot()
135 self.__plot()
136
136
137 if self.data['ENDED'] is True:
137 if self.data['ENDED'] is True:
138 self.isConfig = False
138 self.isConfig = False
139
139
140 except zmq.Again as e:
140 except zmq.Again as e:
141 print 'Waiting for data...'
141 print 'Waiting for data...'
142 plt.pause(self.throttle_value)
142 plt.pause(self.throttle_value)
143
143
144 def close(self):
144 def close(self):
145 if self.dataOut:
145 if self.dataOut:
146 self.__plot()
146 self.__plot()
147
147
148
148
149 class PlotSpectraData(PlotData):
149 class PlotSpectraData(PlotData):
150
150
151 CODE = 'spc'
151 CODE = 'spc'
152 colormap = 'jro'
152 colormap = 'jro'
153 CONFLATE = False
153 CONFLATE = False
154
154
155 def setup(self):
155 def setup(self):
156
156
157 ncolspan = 1
157 ncolspan = 1
158 colspan = 1
158 colspan = 1
159 self.ncols = int(numpy.sqrt(self.dataOut.nChannels)+0.9)
159 self.ncols = int(numpy.sqrt(self.dataOut.nChannels)+0.9)
160 self.nrows = int(self.dataOut.nChannels*1./self.ncols + 0.9)
160 self.nrows = int(self.dataOut.nChannels*1./self.ncols + 0.9)
161 self.width = 3.6*self.ncols
161 self.width = 3.6*self.ncols
162 self.height = 3.2*self.nrows
162 self.height = 3.2*self.nrows
163 if self.showprofile:
163 if self.showprofile:
164 ncolspan = 3
164 ncolspan = 3
165 colspan = 2
165 colspan = 2
166 self.width += 1.2*self.ncols
166 self.width += 1.2*self.ncols
167
167
168 self.ylabel = 'Range [Km]'
168 self.ylabel = 'Range [Km]'
169 self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
169 self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
170
170
171 if self.figure is None:
171 if self.figure is None:
172 self.figure = plt.figure(figsize=(self.width, self.height),
172 self.figure = plt.figure(figsize=(self.width, self.height),
173 edgecolor='k',
173 edgecolor='k',
174 facecolor='w')
174 facecolor='w')
175 else:
175 else:
176 self.figure.clf()
176 self.figure.clf()
177
177
178 n = 0
178 n = 0
179 for y in range(self.nrows):
179 for y in range(self.nrows):
180 for x in range(self.ncols):
180 for x in range(self.ncols):
181 if n >= self.dataOut.nChannels:
181 if n >= self.dataOut.nChannels:
182 break
182 break
183 ax = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan), 1, colspan)
183 ax = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan), 1, colspan)
184 if self.showprofile:
184 if self.showprofile:
185 ax.ax_profile = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan+colspan), 1, 1)
185 ax.ax_profile = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan+colspan), 1, 1)
186
186
187 ax.firsttime = True
187 ax.firsttime = True
188 self.axes.append(ax)
188 self.axes.append(ax)
189 n += 1
189 n += 1
190
190
191 def plot(self):
191 def plot(self):
192
192
193 if self.xaxis == "frequency":
193 if self.xaxis == "frequency":
194 x = self.dataOut.getFreqRange(1)/1000.
194 x = self.dataOut.getFreqRange(1)/1000.
195 xlabel = "Frequency (kHz)"
195 xlabel = "Frequency (kHz)"
196 elif self.xaxis == "time":
196 elif self.xaxis == "time":
197 x = self.dataOut.getAcfRange(1)
197 x = self.dataOut.getAcfRange(1)
198 xlabel = "Time (ms)"
198 xlabel = "Time (ms)"
199 else:
199 else:
200 x = self.dataOut.getVelRange(1)
200 x = self.dataOut.getVelRange(1)
201 xlabel = "Velocity (m/s)"
201 xlabel = "Velocity (m/s)"
202
202
203 y = self.dataOut.getHeiRange()
203 y = self.dataOut.getHeiRange()
204 z = self.data[self.CODE]
204 z = self.data[self.CODE]
205
205
206 for n, ax in enumerate(self.axes):
206 for n, ax in enumerate(self.axes):
207
207
208 if ax.firsttime:
208 if ax.firsttime:
209 self.xmax = self.xmax if self.xmax else np.nanmax(x)
209 self.xmax = self.xmax if self.xmax else np.nanmax(x)
210 self.xmin = self.xmin if self.xmin else -self.xmax
210 self.xmin = self.xmin if self.xmin else -self.xmax
211 self.ymin = self.ymin if self.ymin else np.nanmin(y)
211 self.ymin = self.ymin if self.ymin else np.nanmin(y)
212 self.ymax = self.ymax if self.ymax else np.nanmax(y)
212 self.ymax = self.ymax if self.ymax else np.nanmax(y)
213 self.zmin = self.zmin if self.zmin else np.nanmin(z)
213 self.zmin = self.zmin if self.zmin else np.nanmin(z)
214 self.zmax = self.zmax if self.zmax else np.nanmax(z)
214 self.zmax = self.zmax if self.zmax else np.nanmax(z)
215 ax.plot = ax.pcolormesh(x, y, z[n].T,
215 ax.plot = ax.pcolormesh(x, y, z[n].T,
216 vmin=self.zmin,
216 vmin=self.zmin,
217 vmax=self.zmax,
217 vmax=self.zmax,
218 cmap=plt.get_cmap(self.colormap)
218 cmap=plt.get_cmap(self.colormap)
219 )
219 )
220 divider = make_axes_locatable(ax)
220 divider = make_axes_locatable(ax)
221 cax = divider.new_horizontal(size='3%', pad=0.05)
221 cax = divider.new_horizontal(size='3%', pad=0.05)
222 self.figure.add_axes(cax)
222 self.figure.add_axes(cax)
223 plt.colorbar(ax.plot, cax)
223 plt.colorbar(ax.plot, cax)
224
224
225 ax.set_xlim(self.xmin, self.xmax)
225 ax.set_xlim(self.xmin, self.xmax)
226 ax.set_ylim(self.ymin, self.ymax)
226 ax.set_ylim(self.ymin, self.ymax)
227
227
228 ax.set_ylabel(self.ylabel)
228 ax.set_ylabel(self.ylabel)
229 ax.set_xlabel(xlabel)
229 ax.set_xlabel(xlabel)
230
230
231 ax.firsttime = False
231 ax.firsttime = False
232
232
233 if self.showprofile:
233 if self.showprofile:
234 ax.plot_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0]
234 ax.plot_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0]
235 ax.ax_profile.set_xlim(self.zmin, self.zmax)
235 ax.ax_profile.set_xlim(self.zmin, self.zmax)
236 ax.ax_profile.set_ylim(self.ymin, self.ymax)
236 ax.ax_profile.set_ylim(self.ymin, self.ymax)
237 ax.ax_profile.set_xlabel('dB')
237 ax.ax_profile.set_xlabel('dB')
238 ax.ax_profile.grid(b=True, axis='x')
238 ax.ax_profile.grid(b=True, axis='x')
239 ax.plot_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y,
239 ax.plot_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y,
240 color="k", linestyle="dashed", lw=2)[0]
240 color="k", linestyle="dashed", lw=2)[0]
241 [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()]
241 [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()]
242 else:
242 else:
243 ax.plot.set_array(z[n].T.ravel())
243 ax.plot.set_array(z[n].T.ravel())
244 if self.showprofile:
244 if self.showprofile:
245 ax.plot_profile.set_data(self.data['rti'][self.max_time][n], y)
245 ax.plot_profile.set_data(self.data['rti'][self.max_time][n], y)
246 ax.plot_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y)
246 ax.plot_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y)
247
247
248 ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]),
248 ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]),
249 size=8)
249 size=8)
250 self.saveTime = self.max_time
250 self.saveTime = self.max_time
251
251
252
252
253 class PlotCrossSpectraData(PlotData):
253 class PlotCrossSpectraData(PlotData):
254
254
255 CODE = 'cspc'
255 CODE = 'cspc'
256 zmin_coh = None
256 zmin_coh = None
257 zmax_coh = None
257 zmax_coh = None
258 zmin_phase = None
258 zmin_phase = None
259 zmax_phase = None
259 zmax_phase = None
260 CONFLATE = False
260 CONFLATE = False
261
261
262 def setup(self):
262 def setup(self):
263
263
264 ncolspan = 1
264 ncolspan = 1
265 colspan = 1
265 colspan = 1
266 self.ncols = 2
266 self.ncols = 2
267 self.nrows = self.dataOut.nPairs
267 self.nrows = self.dataOut.nPairs
268 self.width = 3.6*self.ncols
268 self.width = 3.6*self.ncols
269 self.height = 3.2*self.nrows
269 self.height = 3.2*self.nrows
270
270
271 self.ylabel = 'Range [Km]'
271 self.ylabel = 'Range [Km]'
272 self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
272 self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
273
273
274 if self.figure is None:
274 if self.figure is None:
275 self.figure = plt.figure(figsize=(self.width, self.height),
275 self.figure = plt.figure(figsize=(self.width, self.height),
276 edgecolor='k',
276 edgecolor='k',
277 facecolor='w')
277 facecolor='w')
278 else:
278 else:
279 self.figure.clf()
279 self.figure.clf()
280
280
281 for y in range(self.nrows):
281 for y in range(self.nrows):
282 for x in range(self.ncols):
282 for x in range(self.ncols):
283 ax = plt.subplot2grid((self.nrows, self.ncols), (y, x), 1, 1)
283 ax = plt.subplot2grid((self.nrows, self.ncols), (y, x), 1, 1)
284 ax.firsttime = True
284 ax.firsttime = True
285 self.axes.append(ax)
285 self.axes.append(ax)
286
286
287 def plot(self):
287 def plot(self):
288
288
289 if self.xaxis == "frequency":
289 if self.xaxis == "frequency":
290 x = self.dataOut.getFreqRange(1)/1000.
290 x = self.dataOut.getFreqRange(1)/1000.
291 xlabel = "Frequency (kHz)"
291 xlabel = "Frequency (kHz)"
292 elif self.xaxis == "time":
292 elif self.xaxis == "time":
293 x = self.dataOut.getAcfRange(1)
293 x = self.dataOut.getAcfRange(1)
294 xlabel = "Time (ms)"
294 xlabel = "Time (ms)"
295 else:
295 else:
296 x = self.dataOut.getVelRange(1)
296 x = self.dataOut.getVelRange(1)
297 xlabel = "Velocity (m/s)"
297 xlabel = "Velocity (m/s)"
298
298
299 y = self.dataOut.getHeiRange()
299 y = self.dataOut.getHeiRange()
300 z_coh = self.data['cspc_coh']
300 z_coh = self.data['cspc_coh']
301 z_phase = self.data['cspc_phase']
301 z_phase = self.data['cspc_phase']
302
302
303 for n in range(self.nrows):
303 for n in range(self.nrows):
304 ax = self.axes[2*n]
304 ax = self.axes[2*n]
305 ax1 = self.axes[2*n+1]
305 ax1 = self.axes[2*n+1]
306 if ax.firsttime:
306 if ax.firsttime:
307 self.xmax = self.xmax if self.xmax else np.nanmax(x)
307 self.xmax = self.xmax if self.xmax else np.nanmax(x)
308 self.xmin = self.xmin if self.xmin else -self.xmax
308 self.xmin = self.xmin if self.xmin else -self.xmax
309 self.ymin = self.ymin if self.ymin else np.nanmin(y)
309 self.ymin = self.ymin if self.ymin else np.nanmin(y)
310 self.ymax = self.ymax if self.ymax else np.nanmax(y)
310 self.ymax = self.ymax if self.ymax else np.nanmax(y)
311 self.zmin_coh = self.zmin_coh if self.zmin_coh else 0.0
311 self.zmin_coh = self.zmin_coh if self.zmin_coh else 0.0
312 self.zmax_coh = self.zmax_coh if self.zmax_coh else 1.0
312 self.zmax_coh = self.zmax_coh if self.zmax_coh else 1.0
313 self.zmin_phase = self.zmin_phase if self.zmin_phase else -180
313 self.zmin_phase = self.zmin_phase if self.zmin_phase else -180
314 self.zmax_phase = self.zmax_phase if self.zmax_phase else 180
314 self.zmax_phase = self.zmax_phase if self.zmax_phase else 180
315
315
316 ax.plot = ax.pcolormesh(x, y, z_coh[n].T,
316 ax.plot = ax.pcolormesh(x, y, z_coh[n].T,
317 vmin=self.zmin_coh,
317 vmin=self.zmin_coh,
318 vmax=self.zmax_coh,
318 vmax=self.zmax_coh,
319 cmap=plt.get_cmap(self.colormap_coh)
319 cmap=plt.get_cmap(self.colormap_coh)
320 )
320 )
321 divider = make_axes_locatable(ax)
321 divider = make_axes_locatable(ax)
322 cax = divider.new_horizontal(size='3%', pad=0.05)
322 cax = divider.new_horizontal(size='3%', pad=0.05)
323 self.figure.add_axes(cax)
323 self.figure.add_axes(cax)
324 plt.colorbar(ax.plot, cax)
324 plt.colorbar(ax.plot, cax)
325
325
326 ax.set_xlim(self.xmin, self.xmax)
326 ax.set_xlim(self.xmin, self.xmax)
327 ax.set_ylim(self.ymin, self.ymax)
327 ax.set_ylim(self.ymin, self.ymax)
328
328
329 ax.set_ylabel(self.ylabel)
329 ax.set_ylabel(self.ylabel)
330 ax.set_xlabel(xlabel)
330 ax.set_xlabel(xlabel)
331 ax.firsttime = False
331 ax.firsttime = False
332
332
333 ax1.plot = ax1.pcolormesh(x, y, z_phase[n].T,
333 ax1.plot = ax1.pcolormesh(x, y, z_phase[n].T,
334 vmin=self.zmin_phase,
334 vmin=self.zmin_phase,
335 vmax=self.zmax_phase,
335 vmax=self.zmax_phase,
336 cmap=plt.get_cmap(self.colormap_phase)
336 cmap=plt.get_cmap(self.colormap_phase)
337 )
337 )
338 divider = make_axes_locatable(ax1)
338 divider = make_axes_locatable(ax1)
339 cax = divider.new_horizontal(size='3%', pad=0.05)
339 cax = divider.new_horizontal(size='3%', pad=0.05)
340 self.figure.add_axes(cax)
340 self.figure.add_axes(cax)
341 plt.colorbar(ax1.plot, cax)
341 plt.colorbar(ax1.plot, cax)
342
342
343 ax1.set_xlim(self.xmin, self.xmax)
343 ax1.set_xlim(self.xmin, self.xmax)
344 ax1.set_ylim(self.ymin, self.ymax)
344 ax1.set_ylim(self.ymin, self.ymax)
345
345
346 ax1.set_ylabel(self.ylabel)
346 ax1.set_ylabel(self.ylabel)
347 ax1.set_xlabel(xlabel)
347 ax1.set_xlabel(xlabel)
348 ax1.firsttime = False
348 ax1.firsttime = False
349 else:
349 else:
350 ax.plot.set_array(z_coh[n].T.ravel())
350 ax.plot.set_array(z_coh[n].T.ravel())
351 ax1.plot.set_array(z_phase[n].T.ravel())
351 ax1.plot.set_array(z_phase[n].T.ravel())
352
352
353 ax.set_title('Coherence Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8)
353 ax.set_title('Coherence Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8)
354 ax1.set_title('Phase Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8)
354 ax1.set_title('Phase Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8)
355 self.saveTime = self.max_time
355 self.saveTime = self.max_time
356
356
357
357
358 class PlotSpectraMeanData(PlotSpectraData):
358 class PlotSpectraMeanData(PlotSpectraData):
359
359
360 CODE = 'spc_mean'
360 CODE = 'spc_mean'
361 colormap = 'jet'
361 colormap = 'jet'
362
362
363 def plot(self):
363 def plot(self):
364
364
365 if self.xaxis == "frequency":
365 if self.xaxis == "frequency":
366 x = self.dataOut.getFreqRange(1)/1000.
366 x = self.dataOut.getFreqRange(1)/1000.
367 xlabel = "Frequency (kHz)"
367 xlabel = "Frequency (kHz)"
368 elif self.xaxis == "time":
368 elif self.xaxis == "time":
369 x = self.dataOut.getAcfRange(1)
369 x = self.dataOut.getAcfRange(1)
370 xlabel = "Time (ms)"
370 xlabel = "Time (ms)"
371 else:
371 else:
372 x = self.dataOut.getVelRange(1)
372 x = self.dataOut.getVelRange(1)
373 xlabel = "Velocity (m/s)"
373 xlabel = "Velocity (m/s)"
374
374
375 y = self.dataOut.getHeiRange()
375 y = self.dataOut.getHeiRange()
376 z = self.data['spc']
376 z = self.data['spc']
377 mean = self.data['mean'][self.max_time]
377 mean = self.data['mean'][self.max_time]
378
378
379 for n, ax in enumerate(self.axes):
379 for n, ax in enumerate(self.axes):
380
380
381 if ax.firsttime:
381 if ax.firsttime:
382 self.xmax = self.xmax if self.xmax else np.nanmax(x)
382 self.xmax = self.xmax if self.xmax else np.nanmax(x)
383 self.xmin = self.xmin if self.xmin else -self.xmax
383 self.xmin = self.xmin if self.xmin else -self.xmax
384 self.ymin = self.ymin if self.ymin else np.nanmin(y)
384 self.ymin = self.ymin if self.ymin else np.nanmin(y)
385 self.ymax = self.ymax if self.ymax else np.nanmax(y)
385 self.ymax = self.ymax if self.ymax else np.nanmax(y)
386 self.zmin = self.zmin if self.zmin else np.nanmin(z)
386 self.zmin = self.zmin if self.zmin else np.nanmin(z)
387 self.zmax = self.zmax if self.zmax else np.nanmax(z)
387 self.zmax = self.zmax if self.zmax else np.nanmax(z)
388 ax.plt = ax.pcolormesh(x, y, z[n].T,
388 ax.plt = ax.pcolormesh(x, y, z[n].T,
389 vmin=self.zmin,
389 vmin=self.zmin,
390 vmax=self.zmax,
390 vmax=self.zmax,
391 cmap=plt.get_cmap(self.colormap)
391 cmap=plt.get_cmap(self.colormap)
392 )
392 )
393 ax.plt_dop = ax.plot(mean[n], y,
393 ax.plt_dop = ax.plot(mean[n], y,
394 color='k')[0]
394 color='k')[0]
395
395
396 divider = make_axes_locatable(ax)
396 divider = make_axes_locatable(ax)
397 cax = divider.new_horizontal(size='3%', pad=0.05)
397 cax = divider.new_horizontal(size='3%', pad=0.05)
398 self.figure.add_axes(cax)
398 self.figure.add_axes(cax)
399 plt.colorbar(ax.plt, cax)
399 plt.colorbar(ax.plt, cax)
400
400
401 ax.set_xlim(self.xmin, self.xmax)
401 ax.set_xlim(self.xmin, self.xmax)
402 ax.set_ylim(self.ymin, self.ymax)
402 ax.set_ylim(self.ymin, self.ymax)
403
403
404 ax.set_ylabel(self.ylabel)
404 ax.set_ylabel(self.ylabel)
405 ax.set_xlabel(xlabel)
405 ax.set_xlabel(xlabel)
406
406
407 ax.firsttime = False
407 ax.firsttime = False
408
408
409 if self.showprofile:
409 if self.showprofile:
410 ax.plt_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0]
410 ax.plt_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0]
411 ax.ax_profile.set_xlim(self.zmin, self.zmax)
411 ax.ax_profile.set_xlim(self.zmin, self.zmax)
412 ax.ax_profile.set_ylim(self.ymin, self.ymax)
412 ax.ax_profile.set_ylim(self.ymin, self.ymax)
413 ax.ax_profile.set_xlabel('dB')
413 ax.ax_profile.set_xlabel('dB')
414 ax.ax_profile.grid(b=True, axis='x')
414 ax.ax_profile.grid(b=True, axis='x')
415 ax.plt_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y,
415 ax.plt_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y,
416 color="k", linestyle="dashed", lw=2)[0]
416 color="k", linestyle="dashed", lw=2)[0]
417 [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()]
417 [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()]
418 else:
418 else:
419 ax.plt.set_array(z[n].T.ravel())
419 ax.plt.set_array(z[n].T.ravel())
420 ax.plt_dop.set_data(mean[n], y)
420 ax.plt_dop.set_data(mean[n], y)
421 if self.showprofile:
421 if self.showprofile:
422 ax.plt_profile.set_data(self.data['rti'][self.max_time][n], y)
422 ax.plt_profile.set_data(self.data['rti'][self.max_time][n], y)
423 ax.plt_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y)
423 ax.plt_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y)
424
424
425 ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]),
425 ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]),
426 size=8)
426 size=8)
427 self.saveTime = self.max_time
427 self.saveTime = self.max_time
428
428
429
429
430 class PlotRTIData(PlotData):
430 class PlotRTIData(PlotData):
431
431
432 CODE = 'rti'
432 CODE = 'rti'
433 colormap = 'jro'
433 colormap = 'jro'
434
434
435 def setup(self):
435 def setup(self):
436 self.ncols = 1
436 self.ncols = 1
437 self.nrows = self.dataOut.nChannels
437 self.nrows = self.dataOut.nChannels
438 self.width = 10
438 self.width = 10
439 self.height = 2.2*self.nrows if self.nrows<6 else 12
439 self.height = 2.2*self.nrows if self.nrows<6 else 12
440 if self.nrows==1:
440 if self.nrows==1:
441 self.height += 1
441 self.height += 1
442 self.ylabel = 'Range [Km]'
442 self.ylabel = 'Range [Km]'
443 self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
443 self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
444
444
445 if self.figure is None:
445 if self.figure is None:
446 self.figure = plt.figure(figsize=(self.width, self.height),
446 self.figure = plt.figure(figsize=(self.width, self.height),
447 edgecolor='k',
447 edgecolor='k',
448 facecolor='w')
448 facecolor='w')
449 else:
449 else:
450 self.figure.clf()
450 self.figure.clf()
451 self.axes = []
451 self.axes = []
452
452
453 for n in range(self.nrows):
453 for n in range(self.nrows):
454 ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
454 ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
455 ax.firsttime = True
455 ax.firsttime = True
456 self.axes.append(ax)
456 self.axes.append(ax)
457
457
458 def plot(self):
458 def plot(self):
459
459
460 self.x = np.array(self.times)
460 self.x = np.array(self.times)
461 self.y = self.dataOut.getHeiRange()
461 self.y = self.dataOut.getHeiRange()
462 self.z = []
462 self.z = []
463
463
464 for ch in range(self.nrows):
464 for ch in range(self.nrows):
465 self.z.append([self.data[self.CODE][t][ch] for t in self.times])
465 self.z.append([self.data[self.CODE][t][ch] for t in self.times])
466
466
467 self.z = np.array(self.z)
467 self.z = np.array(self.z)
468 for n, ax in enumerate(self.axes):
468 for n, ax in enumerate(self.axes):
469
469
470 x, y, z = self.fill_gaps(*self.decimate())
470 x, y, z = self.fill_gaps(*self.decimate())
471 xmin = self.min_time
471 xmin = self.min_time
472 xmax = xmin+self.xrange*60*60
472 xmax = xmin+self.xrange*60*60
473 if ax.firsttime:
473 if ax.firsttime:
474 self.ymin = self.ymin if self.ymin else np.nanmin(self.y)
474 self.ymin = self.ymin if self.ymin else np.nanmin(self.y)
475 self.ymax = self.ymax if self.ymax else np.nanmax(self.y)
475 self.ymax = self.ymax if self.ymax else np.nanmax(self.y)
476 self.zmin = self.zmin if self.zmin else np.nanmin(self.z)
476 self.zmin = self.zmin if self.zmin else np.nanmin(self.z)
477 self.zmax = self.zmax if self.zmax else np.nanmax(self.z)
477 self.zmax = self.zmax if self.zmax else np.nanmax(self.z)
478 plot = ax.pcolormesh(x, y, z[n].T,
478 plot = ax.pcolormesh(x, y, z[n].T,
479 vmin=self.zmin,
479 vmin=self.zmin,
480 vmax=self.zmax,
480 vmax=self.zmax,
481 cmap=plt.get_cmap(self.colormap)
481 cmap=plt.get_cmap(self.colormap)
482 )
482 )
483 divider = make_axes_locatable(ax)
483 divider = make_axes_locatable(ax)
484 cax = divider.new_horizontal(size='2%', pad=0.05)
484 cax = divider.new_horizontal(size='2%', pad=0.05)
485 self.figure.add_axes(cax)
485 self.figure.add_axes(cax)
486 plt.colorbar(plot, cax)
486 plt.colorbar(plot, cax)
487 ax.set_ylim(self.ymin, self.ymax)
487 ax.set_ylim(self.ymin, self.ymax)
488
488
489 ax.xaxis.set_major_formatter(FuncFormatter(func))
489 ax.xaxis.set_major_formatter(FuncFormatter(func))
490 ax.xaxis.set_major_locator(LinearLocator(6))
490 ax.xaxis.set_major_locator(LinearLocator(6))
491
491
492 ax.set_ylabel(self.ylabel)
492 ax.set_ylabel(self.ylabel)
493
493
494 # if self.xmin is None:
494 # if self.xmin is None:
495 # xmin = self.min_time
495 # xmin = self.min_time
496 # else:
496 # else:
497 # xmin = (datetime.datetime.combine(self.dataOut.datatime.date(),
497 # xmin = (datetime.datetime.combine(self.dataOut.datatime.date(),
498 # datetime.time(self.xmin, 0, 0))-d1970).total_seconds()
498 # datetime.time(self.xmin, 0, 0))-d1970).total_seconds()
499
499
500 ax.set_xlim(xmin, xmax)
500 ax.set_xlim(xmin, xmax)
501 ax.firsttime = False
501 ax.firsttime = False
502 else:
502 else:
503 ax.collections.remove(ax.collections[0])
503 ax.collections.remove(ax.collections[0])
504 ax.set_xlim(xmin, xmax)
504 ax.set_xlim(xmin, xmax)
505 plot = ax.pcolormesh(x, y, z[n].T,
505 plot = ax.pcolormesh(x, y, z[n].T,
506 vmin=self.zmin,
506 vmin=self.zmin,
507 vmax=self.zmax,
507 vmax=self.zmax,
508 cmap=plt.get_cmap(self.colormap)
508 cmap=plt.get_cmap(self.colormap)
509 )
509 )
510 ax.set_title('{} {}'.format(self.titles[n],
510 ax.set_title('{} {}'.format(self.titles[n],
511 datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')),
511 datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')),
512 size=8)
512 size=8)
513
513
514 self.saveTime = self.min_time
514 self.saveTime = self.min_time
515
515
516
516
517 class PlotCOHData(PlotRTIData):
517 class PlotCOHData(PlotRTIData):
518
518
519 CODE = 'coh'
519 CODE = 'coh'
520
520
521 def setup(self):
521 def setup(self):
522
522
523 self.ncols = 1
523 self.ncols = 1
524 self.nrows = self.dataOut.nPairs
524 self.nrows = self.dataOut.nPairs
525 self.width = 10
525 self.width = 10
526 self.height = 2.2*self.nrows if self.nrows<6 else 12
526 self.height = 2.2*self.nrows if self.nrows<6 else 12
527 if self.nrows==1:
527 if self.nrows==1:
528 self.height += 1
528 self.height += 1
529 self.ylabel = 'Range [Km]'
529 self.ylabel = 'Range [Km]'
530 self.titles = ['{} Ch{} * Ch{}'.format(self.CODE.upper(), x[0], x[1]) for x in self.dataOut.pairsList]
530 self.titles = ['{} Ch{} * Ch{}'.format(self.CODE.upper(), x[0], x[1]) for x in self.dataOut.pairsList]
531
531
532 if self.figure is None:
532 if self.figure is None:
533 self.figure = plt.figure(figsize=(self.width, self.height),
533 self.figure = plt.figure(figsize=(self.width, self.height),
534 edgecolor='k',
534 edgecolor='k',
535 facecolor='w')
535 facecolor='w')
536 else:
536 else:
537 self.figure.clf()
537 self.figure.clf()
538 self.axes = []
538 self.axes = []
539
539
540 for n in range(self.nrows):
540 for n in range(self.nrows):
541 ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
541 ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
542 ax.firsttime = True
542 ax.firsttime = True
543 self.axes.append(ax)
543 self.axes.append(ax)
544
544
545
545
546 class PlotNoiseData(PlotData):
546 class PlotNoiseData(PlotData):
547 CODE = 'noise'
547 CODE = 'noise'
548
548
549 def setup(self):
549 def setup(self):
550
550
551 self.ncols = 1
551 self.ncols = 1
552 self.nrows = 1
552 self.nrows = 1
553 self.width = 10
553 self.width = 10
554 self.height = 3.2
554 self.height = 3.2
555 self.ylabel = 'Intensity [dB]'
555 self.ylabel = 'Intensity [dB]'
556 self.titles = ['Noise']
556 self.titles = ['Noise']
557
557
558 if self.figure is None:
558 if self.figure is None:
559 self.figure = plt.figure(figsize=(self.width, self.height),
559 self.figure = plt.figure(figsize=(self.width, self.height),
560 edgecolor='k',
560 edgecolor='k',
561 facecolor='w')
561 facecolor='w')
562 else:
562 else:
563 self.figure.clf()
563 self.figure.clf()
564 self.axes = []
564 self.axes = []
565
565
566 self.ax = self.figure.add_subplot(self.nrows, self.ncols, 1)
566 self.ax = self.figure.add_subplot(self.nrows, self.ncols, 1)
567 self.ax.firsttime = True
567 self.ax.firsttime = True
568
568
569 def plot(self):
569 def plot(self):
570
570
571 x = self.times
571 x = self.times
572 xmin = self.min_time
572 xmin = self.min_time
573 xmax = xmin+self.xrange*60*60
573 xmax = xmin+self.xrange*60*60
574 if self.ax.firsttime:
574 if self.ax.firsttime:
575 for ch in self.dataOut.channelList:
575 for ch in self.dataOut.channelList:
576 y = [self.data[self.CODE][t][ch] for t in self.times]
576 y = [self.data[self.CODE][t][ch] for t in self.times]
577 self.ax.plot(x, y, lw=1, label='Ch{}'.format(ch))
577 self.ax.plot(x, y, lw=1, label='Ch{}'.format(ch))
578 self.ax.firsttime = False
578 self.ax.firsttime = False
579 self.ax.xaxis.set_major_formatter(FuncFormatter(func))
579 self.ax.xaxis.set_major_formatter(FuncFormatter(func))
580 self.ax.xaxis.set_major_locator(LinearLocator(6))
580 self.ax.xaxis.set_major_locator(LinearLocator(6))
581 self.ax.set_ylabel(self.ylabel)
581 self.ax.set_ylabel(self.ylabel)
582 plt.legend()
582 plt.legend()
583 else:
583 else:
584 for ch in self.dataOut.channelList:
584 for ch in self.dataOut.channelList:
585 y = [self.data[self.CODE][t][ch] for t in self.times]
585 y = [self.data[self.CODE][t][ch] for t in self.times]
586 self.ax.lines[ch].set_data(x, y)
586 self.ax.lines[ch].set_data(x, y)
587
587
588 self.ax.set_xlim(xmin, xmax)
588 self.ax.set_xlim(xmin, xmax)
589 self.ax.set_ylim(min(y)-5, max(y)+5)
589 self.ax.set_ylim(min(y)-5, max(y)+5)
590 self.saveTime = self.min_time
590 self.saveTime = self.min_time
591
591
592
592
593 class PlotWindProfilerData(PlotRTIData):
594 CODE = 'wind'
595 colormap = 'seismic'
596
597 def setup(self):
598 self.ncols = 1
599 self.nrows = self.dataOut.data_output.shape[0]
600 self.width = 10
601 self.height = 2.2*self.nrows
602 self.ylabel = 'Height [Km]'
603 self.titles = ['Zonal' ,'Meridional', 'Vertical']
604 self.clabels = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)']
605 self.windFactor = [1, 1, 100]
606
607 if self.figure is None:
608 self.figure = plt.figure(figsize=(self.width, self.height),
609 edgecolor='k',
610 facecolor='w')
611 else:
612 self.figure.clf()
613 self.axes = []
614
615 for n in range(self.nrows):
616 ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
617 ax.firsttime = True
618 self.axes.append(ax)
619
620 def plot(self):
621
622 self.x = np.array(self.times)
623 self.y = self.dataOut.heightList
624 self.z = []
625
626 for ch in range(self.nrows):
627 self.z.append([self.data[self.CODE][t][ch] for t in self.times])
628
629 self.z = np.array(self.z)
630 self.z = numpy.ma.masked_invalid(self.z)
631
632 cmap=plt.get_cmap(self.colormap)
633 cmap.set_bad('white', 1.)
634
635 for n, ax in enumerate(self.axes):
636 x, y, z = self.fill_gaps(*self.decimate())
637 xmin = self.min_time
638 xmax = xmin+self.xrange*60*60
639 if ax.firsttime:
640 self.ymin = self.ymin if self.ymin else np.nanmin(self.y)
641 self.ymax = self.ymax if self.ymax else np.nanmax(self.y)
642 self.zmax = self.zmax if self.zmax else numpy.nanmax(abs(self.z[:-1, :]))
643 self.zmin = self.zmin if self.zmin else -self.zmax
644
645 plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n],
646 vmin=self.zmin,
647 vmax=self.zmax,
648 cmap=cmap
649 )
650 divider = make_axes_locatable(ax)
651 cax = divider.new_horizontal(size='2%', pad=0.05)
652 cax.set_ylabel(self.clabels[n])
653 self.figure.add_axes(cax)
654 plt.colorbar(plot, cax)
655 ax.set_ylim(self.ymin, self.ymax)
656
657 ax.xaxis.set_major_formatter(FuncFormatter(func))
658 ax.xaxis.set_major_locator(LinearLocator(6))
659
660 ax.set_ylabel(self.ylabel)
661
662 ax.set_xlim(xmin, xmax)
663 ax.firsttime = False
664 else:
665 ax.collections.remove(ax.collections[0])
666 ax.set_xlim(xmin, xmax)
667 plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n],
668 vmin=self.zmin,
669 vmax=self.zmax,
670 cmap=plt.get_cmap(self.colormap)
671 )
672 ax.set_title('{} {}'.format(self.titles[n],
673 datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')),
674 size=8)
675
676 self.saveTime = self.min_time
677
678
593 class PlotSNRData(PlotRTIData):
679 class PlotSNRData(PlotRTIData):
594 CODE = 'snr'
680 CODE = 'snr'
595 colormap = 'jet'
681 colormap = 'jet'
596
682
597 class PlotDOPData(PlotRTIData):
683 class PlotDOPData(PlotRTIData):
598 CODE = 'dop'
684 CODE = 'dop'
599 colormap = 'jet'
685 colormap = 'jet'
600
686
601
687
602 class PlotPHASEData(PlotCOHData):
688 class PlotPHASEData(PlotCOHData):
603 CODE = 'phase'
689 CODE = 'phase'
604 colormap = 'seismic'
690 colormap = 'seismic'
@@ -1,2749 +1,2749
1 import numpy
1 import numpy
2 import math
2 import math
3 from scipy import optimize, interpolate, signal, stats, ndimage
3 from scipy import optimize, interpolate, signal, stats, ndimage
4 import re
4 import re
5 import datetime
5 import datetime
6 import copy
6 import copy
7 import sys
7 import sys
8 import importlib
8 import importlib
9 import itertools
9 import itertools
10
10
11 from jroproc_base import ProcessingUnit, Operation
11 from jroproc_base import ProcessingUnit, Operation
12 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
12 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
13
13
14
14
15 class ParametersProc(ProcessingUnit):
15 class ParametersProc(ProcessingUnit):
16
16
17 nSeconds = None
17 nSeconds = None
18
18
19 def __init__(self):
19 def __init__(self):
20 ProcessingUnit.__init__(self)
20 ProcessingUnit.__init__(self)
21
21
22 # self.objectDict = {}
22 # self.objectDict = {}
23 self.buffer = None
23 self.buffer = None
24 self.firstdatatime = None
24 self.firstdatatime = None
25 self.profIndex = 0
25 self.profIndex = 0
26 self.dataOut = Parameters()
26 self.dataOut = Parameters()
27
27
28 def __updateObjFromInput(self):
28 def __updateObjFromInput(self):
29
29
30 self.dataOut.inputUnit = self.dataIn.type
30 self.dataOut.inputUnit = self.dataIn.type
31
31
32 self.dataOut.timeZone = self.dataIn.timeZone
32 self.dataOut.timeZone = self.dataIn.timeZone
33 self.dataOut.dstFlag = self.dataIn.dstFlag
33 self.dataOut.dstFlag = self.dataIn.dstFlag
34 self.dataOut.errorCount = self.dataIn.errorCount
34 self.dataOut.errorCount = self.dataIn.errorCount
35 self.dataOut.useLocalTime = self.dataIn.useLocalTime
35 self.dataOut.useLocalTime = self.dataIn.useLocalTime
36
36
37 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
37 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
38 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
38 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
39 self.dataOut.channelList = self.dataIn.channelList
39 self.dataOut.channelList = self.dataIn.channelList
40 self.dataOut.heightList = self.dataIn.heightList
40 self.dataOut.heightList = self.dataIn.heightList
41 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
41 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
42 # self.dataOut.nHeights = self.dataIn.nHeights
42 # self.dataOut.nHeights = self.dataIn.nHeights
43 # self.dataOut.nChannels = self.dataIn.nChannels
43 # self.dataOut.nChannels = self.dataIn.nChannels
44 self.dataOut.nBaud = self.dataIn.nBaud
44 self.dataOut.nBaud = self.dataIn.nBaud
45 self.dataOut.nCode = self.dataIn.nCode
45 self.dataOut.nCode = self.dataIn.nCode
46 self.dataOut.code = self.dataIn.code
46 self.dataOut.code = self.dataIn.code
47 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
47 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
48 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
48 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
49 # self.dataOut.utctime = self.firstdatatime
49 # self.dataOut.utctime = self.firstdatatime
50 self.dataOut.utctime = self.dataIn.utctime
50 self.dataOut.utctime = self.dataIn.utctime
51 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
51 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
52 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
52 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
53 self.dataOut.nCohInt = self.dataIn.nCohInt
53 self.dataOut.nCohInt = self.dataIn.nCohInt
54 # self.dataOut.nIncohInt = 1
54 # self.dataOut.nIncohInt = 1
55 self.dataOut.ippSeconds = self.dataIn.ippSeconds
55 self.dataOut.ippSeconds = self.dataIn.ippSeconds
56 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
56 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
57 # self.dataOut.timeInterval = self.dataIn.timeInterval
57 # self.dataOut.timeInterval = self.dataIn.timeInterval
58 self.dataOut.heightList = self.dataIn.getHeiRange()
58 self.dataOut.heightList = self.dataIn.getHeiRange()
59 self.dataOut.frequency = self.dataIn.frequency
59 self.dataOut.frequency = self.dataIn.frequency
60 #self.dataOut.noise = self.dataIn.noise
60 #self.dataOut.noise = self.dataIn.noise
61
61
62 def run(self):
62 def run(self):
63
63
64 #---------------------- Voltage Data ---------------------------
64 #---------------------- Voltage Data ---------------------------
65
65
66 if self.dataIn.type == "Voltage":
66 if self.dataIn.type == "Voltage":
67
67
68 self.__updateObjFromInput()
68 self.__updateObjFromInput()
69 self.dataOut.data_pre = self.dataIn.data.copy()
69 self.dataOut.data_pre = self.dataIn.data.copy()
70 self.dataOut.flagNoData = False
70 self.dataOut.flagNoData = False
71 self.dataOut.utctimeInit = self.dataIn.utctime
71 self.dataOut.utctimeInit = self.dataIn.utctime
72 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
72 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
73 return
73 return
74
74
75 #---------------------- Spectra Data ---------------------------
75 #---------------------- Spectra Data ---------------------------
76
76
77 if self.dataIn.type == "Spectra":
77 if self.dataIn.type == "Spectra":
78
78
79 self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc)
79 self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc)
80 self.dataOut.data_spc = self.dataIn.data_spc
80 self.dataOut.data_spc = self.dataIn.data_spc
81 self.dataOut.data_cspc = self.dataIn.data_cspc
81 self.dataOut.data_cspc = self.dataIn.data_cspc
82 self.dataOut.nProfiles = self.dataIn.nProfiles
82 self.dataOut.nProfiles = self.dataIn.nProfiles
83 self.dataOut.nIncohInt = self.dataIn.nIncohInt
83 self.dataOut.nIncohInt = self.dataIn.nIncohInt
84 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
84 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
85 self.dataOut.ippFactor = self.dataIn.ippFactor
85 self.dataOut.ippFactor = self.dataIn.ippFactor
86 #self.dataOut.normFactor = self.dataIn.getNormFactor()
86 #self.dataOut.normFactor = self.dataIn.getNormFactor()
87 self.dataOut.pairsList = self.dataIn.pairsList
87 self.dataOut.pairsList = self.dataIn.pairsList
88 self.dataOut.groupList = self.dataIn.pairsList
88 self.dataOut.groupList = self.dataIn.pairsList
89 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
89 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
90 self.dataOut.flagNoData = False
90 self.dataOut.flagNoData = False
91
91
92 #---------------------- Correlation Data ---------------------------
92 #---------------------- Correlation Data ---------------------------
93
93
94 if self.dataIn.type == "Correlation":
94 if self.dataIn.type == "Correlation":
95 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
95 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
96
96
97 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
97 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
98 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
98 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
99 self.dataOut.groupList = (acf_pairs, ccf_pairs)
99 self.dataOut.groupList = (acf_pairs, ccf_pairs)
100
100
101 self.dataOut.abscissaList = self.dataIn.lagRange
101 self.dataOut.abscissaList = self.dataIn.lagRange
102 self.dataOut.noise = self.dataIn.noise
102 self.dataOut.noise = self.dataIn.noise
103 self.dataOut.data_SNR = self.dataIn.SNR
103 self.dataOut.data_SNR = self.dataIn.SNR
104 self.dataOut.flagNoData = False
104 self.dataOut.flagNoData = False
105 self.dataOut.nAvg = self.dataIn.nAvg
105 self.dataOut.nAvg = self.dataIn.nAvg
106
106
107 #---------------------- Parameters Data ---------------------------
107 #---------------------- Parameters Data ---------------------------
108
108
109 if self.dataIn.type == "Parameters":
109 if self.dataIn.type == "Parameters":
110 self.dataOut.copy(self.dataIn)
110 self.dataOut.copy(self.dataIn)
111 self.dataOut.utctimeInit = self.dataIn.utctime
111 self.dataOut.utctimeInit = self.dataIn.utctime
112 self.dataOut.flagNoData = False
112 self.dataOut.flagNoData = False
113
113
114 return True
114 return True
115
115
116 self.__updateObjFromInput()
116 self.__updateObjFromInput()
117 self.dataOut.utctimeInit = self.dataIn.utctime
117 self.dataOut.utctimeInit = self.dataIn.utctime
118 self.dataOut.paramInterval = self.dataIn.timeInterval
118 self.dataOut.paramInterval = self.dataIn.timeInterval
119
119
120 return
120 return
121
121
122 class SpectralMoments(Operation):
122 class SpectralMoments(Operation):
123
123
124 '''
124 '''
125 Function SpectralMoments()
125 Function SpectralMoments()
126
126
127 Calculates moments (power, mean, standard deviation) and SNR of the signal
127 Calculates moments (power, mean, standard deviation) and SNR of the signal
128
128
129 Type of dataIn: Spectra
129 Type of dataIn: Spectra
130
130
131 Configuration Parameters:
131 Configuration Parameters:
132
132
133 dirCosx : Cosine director in X axis
133 dirCosx : Cosine director in X axis
134 dirCosy : Cosine director in Y axis
134 dirCosy : Cosine director in Y axis
135
135
136 elevation :
136 elevation :
137 azimuth :
137 azimuth :
138
138
139 Input:
139 Input:
140 channelList : simple channel list to select e.g. [2,3,7]
140 channelList : simple channel list to select e.g. [2,3,7]
141 self.dataOut.data_pre : Spectral data
141 self.dataOut.data_pre : Spectral data
142 self.dataOut.abscissaList : List of frequencies
142 self.dataOut.abscissaList : List of frequencies
143 self.dataOut.noise : Noise level per channel
143 self.dataOut.noise : Noise level per channel
144
144
145 Affected:
145 Affected:
146 self.dataOut.data_param : Parameters per channel
146 self.dataOut.data_param : Parameters per channel
147 self.dataOut.data_SNR : SNR per channel
147 self.dataOut.data_SNR : SNR per channel
148
148
149 '''
149 '''
150
150
151 def run(self, dataOut):
151 def run(self, dataOut):
152
152
153 #dataOut.data_pre = dataOut.data_pre[0]
153 #dataOut.data_pre = dataOut.data_pre[0]
154 data = dataOut.data_pre[0]
154 data = dataOut.data_pre[0]
155 absc = dataOut.abscissaList[:-1]
155 absc = dataOut.abscissaList[:-1]
156 noise = dataOut.noise
156 noise = dataOut.noise
157 nChannel = data.shape[0]
157 nChannel = data.shape[0]
158 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
158 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
159
159
160 for ind in range(nChannel):
160 for ind in range(nChannel):
161 data_param[ind,:,:] = self.__calculateMoments(data[ind,:,:], absc, noise[ind])
161 data_param[ind,:,:] = self.__calculateMoments(data[ind,:,:], absc, noise[ind])
162
162
163 dataOut.data_param = data_param[:,1:,:]
163 dataOut.data_param = data_param[:,1:,:]
164 dataOut.data_SNR = data_param[:,0]
164 dataOut.data_SNR = data_param[:,0]
165 dataOut.data_DOP = data_param[:,1]
165 dataOut.data_DOP = data_param[:,1]
166 dataOut.data_MEAN = data_param[:,2]
166 dataOut.data_MEAN = data_param[:,2]
167 dataOut.data_STD = data_param[:,3]
167 dataOut.data_STD = data_param[:,3]
168 return
168 return
169
169
170 def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
170 def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
171
171
172 if (nicoh is None): nicoh = 1
172 if (nicoh is None): nicoh = 1
173 if (graph is None): graph = 0
173 if (graph is None): graph = 0
174 if (smooth is None): smooth = 0
174 if (smooth is None): smooth = 0
175 elif (self.smooth < 3): smooth = 0
175 elif (self.smooth < 3): smooth = 0
176
176
177 if (type1 is None): type1 = 0
177 if (type1 is None): type1 = 0
178 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
178 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
179 if (snrth is None): snrth = -3
179 if (snrth is None): snrth = -3
180 if (dc is None): dc = 0
180 if (dc is None): dc = 0
181 if (aliasing is None): aliasing = 0
181 if (aliasing is None): aliasing = 0
182 if (oldfd is None): oldfd = 0
182 if (oldfd is None): oldfd = 0
183 if (wwauto is None): wwauto = 0
183 if (wwauto is None): wwauto = 0
184
184
185 if (n0 < 1.e-20): n0 = 1.e-20
185 if (n0 < 1.e-20): n0 = 1.e-20
186
186
187 freq = oldfreq
187 freq = oldfreq
188 vec_power = numpy.zeros(oldspec.shape[1])
188 vec_power = numpy.zeros(oldspec.shape[1])
189 vec_fd = numpy.zeros(oldspec.shape[1])
189 vec_fd = numpy.zeros(oldspec.shape[1])
190 vec_w = numpy.zeros(oldspec.shape[1])
190 vec_w = numpy.zeros(oldspec.shape[1])
191 vec_snr = numpy.zeros(oldspec.shape[1])
191 vec_snr = numpy.zeros(oldspec.shape[1])
192
192
193 for ind in range(oldspec.shape[1]):
193 for ind in range(oldspec.shape[1]):
194
194
195 spec = oldspec[:,ind]
195 spec = oldspec[:,ind]
196 aux = spec*fwindow
196 aux = spec*fwindow
197 max_spec = aux.max()
197 max_spec = aux.max()
198 m = list(aux).index(max_spec)
198 m = list(aux).index(max_spec)
199
199
200 #Smooth
200 #Smooth
201 if (smooth == 0): spec2 = spec
201 if (smooth == 0): spec2 = spec
202 else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
202 else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
203
203
204 # Calculo de Momentos
204 # Calculo de Momentos
205 bb = spec2[range(m,spec2.size)]
205 bb = spec2[range(m,spec2.size)]
206 bb = (bb<n0).nonzero()
206 bb = (bb<n0).nonzero()
207 bb = bb[0]
207 bb = bb[0]
208
208
209 ss = spec2[range(0,m + 1)]
209 ss = spec2[range(0,m + 1)]
210 ss = (ss<n0).nonzero()
210 ss = (ss<n0).nonzero()
211 ss = ss[0]
211 ss = ss[0]
212
212
213 if (bb.size == 0):
213 if (bb.size == 0):
214 bb0 = spec.size - 1 - m
214 bb0 = spec.size - 1 - m
215 else:
215 else:
216 bb0 = bb[0] - 1
216 bb0 = bb[0] - 1
217 if (bb0 < 0):
217 if (bb0 < 0):
218 bb0 = 0
218 bb0 = 0
219
219
220 if (ss.size == 0): ss1 = 1
220 if (ss.size == 0): ss1 = 1
221 else: ss1 = max(ss) + 1
221 else: ss1 = max(ss) + 1
222
222
223 if (ss1 > m): ss1 = m
223 if (ss1 > m): ss1 = m
224
224
225 valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1
225 valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1
226 power = ((spec2[valid] - n0)*fwindow[valid]).sum()
226 power = ((spec2[valid] - n0)*fwindow[valid]).sum()
227 fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power
227 fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power
228 w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power)
228 w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power)
229 snr = (spec2.mean()-n0)/n0
229 snr = (spec2.mean()-n0)/n0
230
230
231 if (snr < 1.e-20) :
231 if (snr < 1.e-20) :
232 snr = 1.e-20
232 snr = 1.e-20
233
233
234 vec_power[ind] = power
234 vec_power[ind] = power
235 vec_fd[ind] = fd
235 vec_fd[ind] = fd
236 vec_w[ind] = w
236 vec_w[ind] = w
237 vec_snr[ind] = snr
237 vec_snr[ind] = snr
238
238
239 moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
239 moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
240 return moments
240 return moments
241
241
242 #------------------ Get SA Parameters --------------------------
242 #------------------ Get SA Parameters --------------------------
243
243
244 def GetSAParameters(self):
244 def GetSAParameters(self):
245 #SA en frecuencia
245 #SA en frecuencia
246 pairslist = self.dataOut.groupList
246 pairslist = self.dataOut.groupList
247 num_pairs = len(pairslist)
247 num_pairs = len(pairslist)
248
248
249 vel = self.dataOut.abscissaList
249 vel = self.dataOut.abscissaList
250 spectra = self.dataOut.data_pre[0]
250 spectra = self.dataOut.data_pre[0]
251 cspectra = self.dataOut.data_pre[1]
251 cspectra = self.dataOut.data_pre[1]
252 delta_v = vel[1] - vel[0]
252 delta_v = vel[1] - vel[0]
253
253
254 #Calculating the power spectrum
254 #Calculating the power spectrum
255 spc_pow = numpy.sum(spectra, 3)*delta_v
255 spc_pow = numpy.sum(spectra, 3)*delta_v
256 #Normalizing Spectra
256 #Normalizing Spectra
257 norm_spectra = spectra/spc_pow
257 norm_spectra = spectra/spc_pow
258 #Calculating the norm_spectra at peak
258 #Calculating the norm_spectra at peak
259 max_spectra = numpy.max(norm_spectra, 3)
259 max_spectra = numpy.max(norm_spectra, 3)
260
260
261 #Normalizing Cross Spectra
261 #Normalizing Cross Spectra
262 norm_cspectra = numpy.zeros(cspectra.shape)
262 norm_cspectra = numpy.zeros(cspectra.shape)
263
263
264 for i in range(num_chan):
264 for i in range(num_chan):
265 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
265 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
266
266
267 max_cspectra = numpy.max(norm_cspectra,2)
267 max_cspectra = numpy.max(norm_cspectra,2)
268 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
268 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
269
269
270 for i in range(num_pairs):
270 for i in range(num_pairs):
271 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
271 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
272 #------------------- Get Lags ----------------------------------
272 #------------------- Get Lags ----------------------------------
273
273
274 class SALags(Operation):
274 class SALags(Operation):
275 '''
275 '''
276 Function GetMoments()
276 Function GetMoments()
277
277
278 Input:
278 Input:
279 self.dataOut.data_pre
279 self.dataOut.data_pre
280 self.dataOut.abscissaList
280 self.dataOut.abscissaList
281 self.dataOut.noise
281 self.dataOut.noise
282 self.dataOut.normFactor
282 self.dataOut.normFactor
283 self.dataOut.data_SNR
283 self.dataOut.data_SNR
284 self.dataOut.groupList
284 self.dataOut.groupList
285 self.dataOut.nChannels
285 self.dataOut.nChannels
286
286
287 Affected:
287 Affected:
288 self.dataOut.data_param
288 self.dataOut.data_param
289
289
290 '''
290 '''
291 def run(self, dataOut):
291 def run(self, dataOut):
292 data_acf = dataOut.data_pre[0]
292 data_acf = dataOut.data_pre[0]
293 data_ccf = dataOut.data_pre[1]
293 data_ccf = dataOut.data_pre[1]
294 normFactor_acf = dataOut.normFactor[0]
294 normFactor_acf = dataOut.normFactor[0]
295 normFactor_ccf = dataOut.normFactor[1]
295 normFactor_ccf = dataOut.normFactor[1]
296 pairs_acf = dataOut.groupList[0]
296 pairs_acf = dataOut.groupList[0]
297 pairs_ccf = dataOut.groupList[1]
297 pairs_ccf = dataOut.groupList[1]
298
298
299 nHeights = dataOut.nHeights
299 nHeights = dataOut.nHeights
300 absc = dataOut.abscissaList
300 absc = dataOut.abscissaList
301 noise = dataOut.noise
301 noise = dataOut.noise
302 SNR = dataOut.data_SNR
302 SNR = dataOut.data_SNR
303 nChannels = dataOut.nChannels
303 nChannels = dataOut.nChannels
304 # pairsList = dataOut.groupList
304 # pairsList = dataOut.groupList
305 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
305 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
306
306
307 for l in range(len(pairs_acf)):
307 for l in range(len(pairs_acf)):
308 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
308 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
309
309
310 for l in range(len(pairs_ccf)):
310 for l in range(len(pairs_ccf)):
311 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
311 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
312
312
313 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
313 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
314 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
314 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
315 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
315 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
316 return
316 return
317
317
318 # def __getPairsAutoCorr(self, pairsList, nChannels):
318 # def __getPairsAutoCorr(self, pairsList, nChannels):
319 #
319 #
320 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
320 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
321 #
321 #
322 # for l in range(len(pairsList)):
322 # for l in range(len(pairsList)):
323 # firstChannel = pairsList[l][0]
323 # firstChannel = pairsList[l][0]
324 # secondChannel = pairsList[l][1]
324 # secondChannel = pairsList[l][1]
325 #
325 #
326 # #Obteniendo pares de Autocorrelacion
326 # #Obteniendo pares de Autocorrelacion
327 # if firstChannel == secondChannel:
327 # if firstChannel == secondChannel:
328 # pairsAutoCorr[firstChannel] = int(l)
328 # pairsAutoCorr[firstChannel] = int(l)
329 #
329 #
330 # pairsAutoCorr = pairsAutoCorr.astype(int)
330 # pairsAutoCorr = pairsAutoCorr.astype(int)
331 #
331 #
332 # pairsCrossCorr = range(len(pairsList))
332 # pairsCrossCorr = range(len(pairsList))
333 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
333 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
334 #
334 #
335 # return pairsAutoCorr, pairsCrossCorr
335 # return pairsAutoCorr, pairsCrossCorr
336
336
337 def __calculateTaus(self, data_acf, data_ccf, lagRange):
337 def __calculateTaus(self, data_acf, data_ccf, lagRange):
338
338
339 lag0 = data_acf.shape[1]/2
339 lag0 = data_acf.shape[1]/2
340 #Funcion de Autocorrelacion
340 #Funcion de Autocorrelacion
341 mean_acf = stats.nanmean(data_acf, axis = 0)
341 mean_acf = stats.nanmean(data_acf, axis = 0)
342
342
343 #Obtencion Indice de TauCross
343 #Obtencion Indice de TauCross
344 ind_ccf = data_ccf.argmax(axis = 1)
344 ind_ccf = data_ccf.argmax(axis = 1)
345 #Obtencion Indice de TauAuto
345 #Obtencion Indice de TauAuto
346 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
346 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
347 ccf_lag0 = data_ccf[:,lag0,:]
347 ccf_lag0 = data_ccf[:,lag0,:]
348
348
349 for i in range(ccf_lag0.shape[0]):
349 for i in range(ccf_lag0.shape[0]):
350 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
350 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
351
351
352 #Obtencion de TauCross y TauAuto
352 #Obtencion de TauCross y TauAuto
353 tau_ccf = lagRange[ind_ccf]
353 tau_ccf = lagRange[ind_ccf]
354 tau_acf = lagRange[ind_acf]
354 tau_acf = lagRange[ind_acf]
355
355
356 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
356 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
357
357
358 tau_ccf[Nan1,Nan2] = numpy.nan
358 tau_ccf[Nan1,Nan2] = numpy.nan
359 tau_acf[Nan1,Nan2] = numpy.nan
359 tau_acf[Nan1,Nan2] = numpy.nan
360 tau = numpy.vstack((tau_ccf,tau_acf))
360 tau = numpy.vstack((tau_ccf,tau_acf))
361
361
362 return tau
362 return tau
363
363
364 def __calculateLag1Phase(self, data, lagTRange):
364 def __calculateLag1Phase(self, data, lagTRange):
365 data1 = stats.nanmean(data, axis = 0)
365 data1 = stats.nanmean(data, axis = 0)
366 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
366 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
367
367
368 phase = numpy.angle(data1[lag1,:])
368 phase = numpy.angle(data1[lag1,:])
369
369
370 return phase
370 return phase
371
371
372 class SpectralFitting(Operation):
372 class SpectralFitting(Operation):
373 '''
373 '''
374 Function GetMoments()
374 Function GetMoments()
375
375
376 Input:
376 Input:
377 Output:
377 Output:
378 Variables modified:
378 Variables modified:
379 '''
379 '''
380
380
381 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
381 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
382
382
383
383
384 if path != None:
384 if path != None:
385 sys.path.append(path)
385 sys.path.append(path)
386 self.dataOut.library = importlib.import_module(file)
386 self.dataOut.library = importlib.import_module(file)
387
387
388 #To be inserted as a parameter
388 #To be inserted as a parameter
389 groupArray = numpy.array(groupList)
389 groupArray = numpy.array(groupList)
390 # groupArray = numpy.array([[0,1],[2,3]])
390 # groupArray = numpy.array([[0,1],[2,3]])
391 self.dataOut.groupList = groupArray
391 self.dataOut.groupList = groupArray
392
392
393 nGroups = groupArray.shape[0]
393 nGroups = groupArray.shape[0]
394 nChannels = self.dataIn.nChannels
394 nChannels = self.dataIn.nChannels
395 nHeights=self.dataIn.heightList.size
395 nHeights=self.dataIn.heightList.size
396
396
397 #Parameters Array
397 #Parameters Array
398 self.dataOut.data_param = None
398 self.dataOut.data_param = None
399
399
400 #Set constants
400 #Set constants
401 constants = self.dataOut.library.setConstants(self.dataIn)
401 constants = self.dataOut.library.setConstants(self.dataIn)
402 self.dataOut.constants = constants
402 self.dataOut.constants = constants
403 M = self.dataIn.normFactor
403 M = self.dataIn.normFactor
404 N = self.dataIn.nFFTPoints
404 N = self.dataIn.nFFTPoints
405 ippSeconds = self.dataIn.ippSeconds
405 ippSeconds = self.dataIn.ippSeconds
406 K = self.dataIn.nIncohInt
406 K = self.dataIn.nIncohInt
407 pairsArray = numpy.array(self.dataIn.pairsList)
407 pairsArray = numpy.array(self.dataIn.pairsList)
408
408
409 #List of possible combinations
409 #List of possible combinations
410 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
410 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
411 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
411 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
412
412
413 if getSNR:
413 if getSNR:
414 listChannels = groupArray.reshape((groupArray.size))
414 listChannels = groupArray.reshape((groupArray.size))
415 listChannels.sort()
415 listChannels.sort()
416 noise = self.dataIn.getNoise()
416 noise = self.dataIn.getNoise()
417 self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
417 self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
418
418
419 for i in range(nGroups):
419 for i in range(nGroups):
420 coord = groupArray[i,:]
420 coord = groupArray[i,:]
421
421
422 #Input data array
422 #Input data array
423 data = self.dataIn.data_spc[coord,:,:]/(M*N)
423 data = self.dataIn.data_spc[coord,:,:]/(M*N)
424 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
424 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
425
425
426 #Cross Spectra data array for Covariance Matrixes
426 #Cross Spectra data array for Covariance Matrixes
427 ind = 0
427 ind = 0
428 for pairs in listComb:
428 for pairs in listComb:
429 pairsSel = numpy.array([coord[x],coord[y]])
429 pairsSel = numpy.array([coord[x],coord[y]])
430 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
430 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
431 ind += 1
431 ind += 1
432 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
432 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
433 dataCross = dataCross**2/K
433 dataCross = dataCross**2/K
434
434
435 for h in range(nHeights):
435 for h in range(nHeights):
436 # print self.dataOut.heightList[h]
436 # print self.dataOut.heightList[h]
437
437
438 #Input
438 #Input
439 d = data[:,h]
439 d = data[:,h]
440
440
441 #Covariance Matrix
441 #Covariance Matrix
442 D = numpy.diag(d**2/K)
442 D = numpy.diag(d**2/K)
443 ind = 0
443 ind = 0
444 for pairs in listComb:
444 for pairs in listComb:
445 #Coordinates in Covariance Matrix
445 #Coordinates in Covariance Matrix
446 x = pairs[0]
446 x = pairs[0]
447 y = pairs[1]
447 y = pairs[1]
448 #Channel Index
448 #Channel Index
449 S12 = dataCross[ind,:,h]
449 S12 = dataCross[ind,:,h]
450 D12 = numpy.diag(S12)
450 D12 = numpy.diag(S12)
451 #Completing Covariance Matrix with Cross Spectras
451 #Completing Covariance Matrix with Cross Spectras
452 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
452 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
453 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
453 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
454 ind += 1
454 ind += 1
455 Dinv=numpy.linalg.inv(D)
455 Dinv=numpy.linalg.inv(D)
456 L=numpy.linalg.cholesky(Dinv)
456 L=numpy.linalg.cholesky(Dinv)
457 LT=L.T
457 LT=L.T
458
458
459 dp = numpy.dot(LT,d)
459 dp = numpy.dot(LT,d)
460
460
461 #Initial values
461 #Initial values
462 data_spc = self.dataIn.data_spc[coord,:,h]
462 data_spc = self.dataIn.data_spc[coord,:,h]
463
463
464 if (h>0)and(error1[3]<5):
464 if (h>0)and(error1[3]<5):
465 p0 = self.dataOut.data_param[i,:,h-1]
465 p0 = self.dataOut.data_param[i,:,h-1]
466 else:
466 else:
467 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
467 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
468
468
469 try:
469 try:
470 #Least Squares
470 #Least Squares
471 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
471 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
472 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
472 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
473 #Chi square error
473 #Chi square error
474 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
474 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
475 #Error with Jacobian
475 #Error with Jacobian
476 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
476 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
477 except:
477 except:
478 minp = p0*numpy.nan
478 minp = p0*numpy.nan
479 error0 = numpy.nan
479 error0 = numpy.nan
480 error1 = p0*numpy.nan
480 error1 = p0*numpy.nan
481
481
482 #Save
482 #Save
483 if self.dataOut.data_param is None:
483 if self.dataOut.data_param is None:
484 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
484 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
485 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
485 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
486
486
487 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
487 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
488 self.dataOut.data_param[i,:,h] = minp
488 self.dataOut.data_param[i,:,h] = minp
489 return
489 return
490
490
491 def __residFunction(self, p, dp, LT, constants):
491 def __residFunction(self, p, dp, LT, constants):
492
492
493 fm = self.dataOut.library.modelFunction(p, constants)
493 fm = self.dataOut.library.modelFunction(p, constants)
494 fmp=numpy.dot(LT,fm)
494 fmp=numpy.dot(LT,fm)
495
495
496 return dp-fmp
496 return dp-fmp
497
497
498 def __getSNR(self, z, noise):
498 def __getSNR(self, z, noise):
499
499
500 avg = numpy.average(z, axis=1)
500 avg = numpy.average(z, axis=1)
501 SNR = (avg.T-noise)/noise
501 SNR = (avg.T-noise)/noise
502 SNR = SNR.T
502 SNR = SNR.T
503 return SNR
503 return SNR
504
504
505 def __chisq(p,chindex,hindex):
505 def __chisq(p,chindex,hindex):
506 #similar to Resid but calculates CHI**2
506 #similar to Resid but calculates CHI**2
507 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
507 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
508 dp=numpy.dot(LT,d)
508 dp=numpy.dot(LT,d)
509 fmp=numpy.dot(LT,fm)
509 fmp=numpy.dot(LT,fm)
510 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
510 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
511 return chisq
511 return chisq
512
512
513 class WindProfiler(Operation):
513 class WindProfiler(Operation):
514
514
515 __isConfig = False
515 __isConfig = False
516
516
517 __initime = None
517 __initime = None
518 __lastdatatime = None
518 __lastdatatime = None
519 __integrationtime = None
519 __integrationtime = None
520
520
521 __buffer = None
521 __buffer = None
522
522
523 __dataReady = False
523 __dataReady = False
524
524
525 __firstdata = None
525 __firstdata = None
526
526
527 n = None
527 n = None
528
528
529 def __calculateCosDir(self, elev, azim):
529 def __calculateCosDir(self, elev, azim):
530 zen = (90 - elev)*numpy.pi/180
530 zen = (90 - elev)*numpy.pi/180
531 azim = azim*numpy.pi/180
531 azim = azim*numpy.pi/180
532 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
532 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
533 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
533 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
534
534
535 signX = numpy.sign(numpy.cos(azim))
535 signX = numpy.sign(numpy.cos(azim))
536 signY = numpy.sign(numpy.sin(azim))
536 signY = numpy.sign(numpy.sin(azim))
537
537
538 cosDirX = numpy.copysign(cosDirX, signX)
538 cosDirX = numpy.copysign(cosDirX, signX)
539 cosDirY = numpy.copysign(cosDirY, signY)
539 cosDirY = numpy.copysign(cosDirY, signY)
540 return cosDirX, cosDirY
540 return cosDirX, cosDirY
541
541
542 def __calculateAngles(self, theta_x, theta_y, azimuth):
542 def __calculateAngles(self, theta_x, theta_y, azimuth):
543
543
544 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
544 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
545 zenith_arr = numpy.arccos(dir_cosw)
545 zenith_arr = numpy.arccos(dir_cosw)
546 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
546 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
547
547
548 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
548 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
549 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
549 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
550
550
551 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
551 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
552
552
553 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
553 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
554
554
555 #
555 #
556 if horOnly:
556 if horOnly:
557 A = numpy.c_[dir_cosu,dir_cosv]
557 A = numpy.c_[dir_cosu,dir_cosv]
558 else:
558 else:
559 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
559 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
560 A = numpy.asmatrix(A)
560 A = numpy.asmatrix(A)
561 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
561 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
562
562
563 return A1
563 return A1
564
564
565 def __correctValues(self, heiRang, phi, velRadial, SNR):
565 def __correctValues(self, heiRang, phi, velRadial, SNR):
566 listPhi = phi.tolist()
566 listPhi = phi.tolist()
567 maxid = listPhi.index(max(listPhi))
567 maxid = listPhi.index(max(listPhi))
568 minid = listPhi.index(min(listPhi))
568 minid = listPhi.index(min(listPhi))
569
569
570 rango = range(len(phi))
570 rango = range(len(phi))
571 # rango = numpy.delete(rango,maxid)
571 # rango = numpy.delete(rango,maxid)
572
572
573 heiRang1 = heiRang*math.cos(phi[maxid])
573 heiRang1 = heiRang*math.cos(phi[maxid])
574 heiRangAux = heiRang*math.cos(phi[minid])
574 heiRangAux = heiRang*math.cos(phi[minid])
575 indOut = (heiRang1 < heiRangAux[0]).nonzero()
575 indOut = (heiRang1 < heiRangAux[0]).nonzero()
576 heiRang1 = numpy.delete(heiRang1,indOut)
576 heiRang1 = numpy.delete(heiRang1,indOut)
577
577
578 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
578 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
579 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
579 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
580
580
581 for i in rango:
581 for i in rango:
582 x = heiRang*math.cos(phi[i])
582 x = heiRang*math.cos(phi[i])
583 y1 = velRadial[i,:]
583 y1 = velRadial[i,:]
584 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
584 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
585
585
586 x1 = heiRang1
586 x1 = heiRang1
587 y11 = f1(x1)
587 y11 = f1(x1)
588
588
589 y2 = SNR[i,:]
589 y2 = SNR[i,:]
590 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
590 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
591 y21 = f2(x1)
591 y21 = f2(x1)
592
592
593 velRadial1[i,:] = y11
593 velRadial1[i,:] = y11
594 SNR1[i,:] = y21
594 SNR1[i,:] = y21
595
595
596 return heiRang1, velRadial1, SNR1
596 return heiRang1, velRadial1, SNR1
597
597
598 def __calculateVelUVW(self, A, velRadial):
598 def __calculateVelUVW(self, A, velRadial):
599
599
600 #Operacion Matricial
600 #Operacion Matricial
601 # velUVW = numpy.zeros((velRadial.shape[1],3))
601 # velUVW = numpy.zeros((velRadial.shape[1],3))
602 # for ind in range(velRadial.shape[1]):
602 # for ind in range(velRadial.shape[1]):
603 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
603 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
604 # velUVW = velUVW.transpose()
604 # velUVW = velUVW.transpose()
605 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
605 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
606 velUVW[:,:] = numpy.dot(A,velRadial)
606 velUVW[:,:] = numpy.dot(A,velRadial)
607
607
608
608
609 return velUVW
609 return velUVW
610
610
611 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
611 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
612
612
613 def techniqueDBS(self, kwargs):
613 def techniqueDBS(self, kwargs):
614 """
614 """
615 Function that implements Doppler Beam Swinging (DBS) technique.
615 Function that implements Doppler Beam Swinging (DBS) technique.
616
616
617 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
617 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
618 Direction correction (if necessary), Ranges and SNR
618 Direction correction (if necessary), Ranges and SNR
619
619
620 Output: Winds estimation (Zonal, Meridional and Vertical)
620 Output: Winds estimation (Zonal, Meridional and Vertical)
621
621
622 Parameters affected: Winds, height range, SNR
622 Parameters affected: Winds, height range, SNR
623 """
623 """
624 velRadial0 = kwargs['velRadial']
624 velRadial0 = kwargs['velRadial']
625 heiRang = kwargs['heightList']
625 heiRang = kwargs['heightList']
626 SNR0 = kwargs['SNR']
626 SNR0 = kwargs['SNR']
627
627
628 if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'):
628 if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'):
629 theta_x = numpy.array(kwargs['dirCosx'])
629 theta_x = numpy.array(kwargs['dirCosx'])
630 theta_y = numpy.array(kwargs['dirCosy'])
630 theta_y = numpy.array(kwargs['dirCosy'])
631 else:
631 else:
632 elev = numpy.array(kwargs['elevation'])
632 elev = numpy.array(kwargs['elevation'])
633 azim = numpy.array(kwargs['azimuth'])
633 azim = numpy.array(kwargs['azimuth'])
634 theta_x, theta_y = self.__calculateCosDir(elev, azim)
634 theta_x, theta_y = self.__calculateCosDir(elev, azim)
635 azimuth = kwargs['correctAzimuth']
635 azimuth = kwargs['correctAzimuth']
636 if kwargs.has_key('horizontalOnly'):
636 if kwargs.has_key('horizontalOnly'):
637 horizontalOnly = kwargs['horizontalOnly']
637 horizontalOnly = kwargs['horizontalOnly']
638 else: horizontalOnly = False
638 else: horizontalOnly = False
639 if kwargs.has_key('correctFactor'):
639 if kwargs.has_key('correctFactor'):
640 correctFactor = kwargs['correctFactor']
640 correctFactor = kwargs['correctFactor']
641 else: correctFactor = 1
641 else: correctFactor = 1
642 if kwargs.has_key('channelList'):
642 if kwargs.has_key('channelList'):
643 channelList = kwargs['channelList']
643 channelList = kwargs['channelList']
644 if len(channelList) == 2:
644 if len(channelList) == 2:
645 horizontalOnly = True
645 horizontalOnly = True
646 arrayChannel = numpy.array(channelList)
646 arrayChannel = numpy.array(channelList)
647 param = param[arrayChannel,:,:]
647 param = param[arrayChannel,:,:]
648 theta_x = theta_x[arrayChannel]
648 theta_x = theta_x[arrayChannel]
649 theta_y = theta_y[arrayChannel]
649 theta_y = theta_y[arrayChannel]
650
650
651 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
651 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
652 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
652 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
653 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
653 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
654
654
655 #Calculo de Componentes de la velocidad con DBS
655 #Calculo de Componentes de la velocidad con DBS
656 winds = self.__calculateVelUVW(A,velRadial1)
656 winds = self.__calculateVelUVW(A,velRadial1)
657
657
658 return winds, heiRang1, SNR1
658 return winds, heiRang1, SNR1
659
659
660 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
660 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
661
661
662 nPairs = len(pairs_ccf)
662 nPairs = len(pairs_ccf)
663 posx = numpy.asarray(posx)
663 posx = numpy.asarray(posx)
664 posy = numpy.asarray(posy)
664 posy = numpy.asarray(posy)
665
665
666 #Rotacion Inversa para alinear con el azimuth
666 #Rotacion Inversa para alinear con el azimuth
667 if azimuth!= None:
667 if azimuth!= None:
668 azimuth = azimuth*math.pi/180
668 azimuth = azimuth*math.pi/180
669 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
669 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
670 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
670 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
671 else:
671 else:
672 posx1 = posx
672 posx1 = posx
673 posy1 = posy
673 posy1 = posy
674
674
675 #Calculo de Distancias
675 #Calculo de Distancias
676 distx = numpy.zeros(nPairs)
676 distx = numpy.zeros(nPairs)
677 disty = numpy.zeros(nPairs)
677 disty = numpy.zeros(nPairs)
678 dist = numpy.zeros(nPairs)
678 dist = numpy.zeros(nPairs)
679 ang = numpy.zeros(nPairs)
679 ang = numpy.zeros(nPairs)
680
680
681 for i in range(nPairs):
681 for i in range(nPairs):
682 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
682 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
683 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
683 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
684 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
684 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
685 ang[i] = numpy.arctan2(disty[i],distx[i])
685 ang[i] = numpy.arctan2(disty[i],distx[i])
686
686
687 return distx, disty, dist, ang
687 return distx, disty, dist, ang
688 #Calculo de Matrices
688 #Calculo de Matrices
689 # nPairs = len(pairs)
689 # nPairs = len(pairs)
690 # ang1 = numpy.zeros((nPairs, 2, 1))
690 # ang1 = numpy.zeros((nPairs, 2, 1))
691 # dist1 = numpy.zeros((nPairs, 2, 1))
691 # dist1 = numpy.zeros((nPairs, 2, 1))
692 #
692 #
693 # for j in range(nPairs):
693 # for j in range(nPairs):
694 # dist1[j,0,0] = dist[pairs[j][0]]
694 # dist1[j,0,0] = dist[pairs[j][0]]
695 # dist1[j,1,0] = dist[pairs[j][1]]
695 # dist1[j,1,0] = dist[pairs[j][1]]
696 # ang1[j,0,0] = ang[pairs[j][0]]
696 # ang1[j,0,0] = ang[pairs[j][0]]
697 # ang1[j,1,0] = ang[pairs[j][1]]
697 # ang1[j,1,0] = ang[pairs[j][1]]
698 #
698 #
699 # return distx,disty, dist1,ang1
699 # return distx,disty, dist1,ang1
700
700
701
701
702 def __calculateVelVer(self, phase, lagTRange, _lambda):
702 def __calculateVelVer(self, phase, lagTRange, _lambda):
703
703
704 Ts = lagTRange[1] - lagTRange[0]
704 Ts = lagTRange[1] - lagTRange[0]
705 velW = -_lambda*phase/(4*math.pi*Ts)
705 velW = -_lambda*phase/(4*math.pi*Ts)
706
706
707 return velW
707 return velW
708
708
709 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
709 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
710 nPairs = tau1.shape[0]
710 nPairs = tau1.shape[0]
711 nHeights = tau1.shape[1]
711 nHeights = tau1.shape[1]
712 vel = numpy.zeros((nPairs,3,nHeights))
712 vel = numpy.zeros((nPairs,3,nHeights))
713 dist1 = numpy.reshape(dist, (dist.size,1))
713 dist1 = numpy.reshape(dist, (dist.size,1))
714
714
715 angCos = numpy.cos(ang)
715 angCos = numpy.cos(ang)
716 angSin = numpy.sin(ang)
716 angSin = numpy.sin(ang)
717
717
718 vel0 = dist1*tau1/(2*tau2**2)
718 vel0 = dist1*tau1/(2*tau2**2)
719 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
719 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
720 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
720 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
721
721
722 ind = numpy.where(numpy.isinf(vel))
722 ind = numpy.where(numpy.isinf(vel))
723 vel[ind] = numpy.nan
723 vel[ind] = numpy.nan
724
724
725 return vel
725 return vel
726
726
727 # def __getPairsAutoCorr(self, pairsList, nChannels):
727 # def __getPairsAutoCorr(self, pairsList, nChannels):
728 #
728 #
729 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
729 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
730 #
730 #
731 # for l in range(len(pairsList)):
731 # for l in range(len(pairsList)):
732 # firstChannel = pairsList[l][0]
732 # firstChannel = pairsList[l][0]
733 # secondChannel = pairsList[l][1]
733 # secondChannel = pairsList[l][1]
734 #
734 #
735 # #Obteniendo pares de Autocorrelacion
735 # #Obteniendo pares de Autocorrelacion
736 # if firstChannel == secondChannel:
736 # if firstChannel == secondChannel:
737 # pairsAutoCorr[firstChannel] = int(l)
737 # pairsAutoCorr[firstChannel] = int(l)
738 #
738 #
739 # pairsAutoCorr = pairsAutoCorr.astype(int)
739 # pairsAutoCorr = pairsAutoCorr.astype(int)
740 #
740 #
741 # pairsCrossCorr = range(len(pairsList))
741 # pairsCrossCorr = range(len(pairsList))
742 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
742 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
743 #
743 #
744 # return pairsAutoCorr, pairsCrossCorr
744 # return pairsAutoCorr, pairsCrossCorr
745
745
746 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
746 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
747 def techniqueSA(self, kwargs):
747 def techniqueSA(self, kwargs):
748
748
749 """
749 """
750 Function that implements Spaced Antenna (SA) technique.
750 Function that implements Spaced Antenna (SA) technique.
751
751
752 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
752 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
753 Direction correction (if necessary), Ranges and SNR
753 Direction correction (if necessary), Ranges and SNR
754
754
755 Output: Winds estimation (Zonal, Meridional and Vertical)
755 Output: Winds estimation (Zonal, Meridional and Vertical)
756
756
757 Parameters affected: Winds
757 Parameters affected: Winds
758 """
758 """
759 position_x = kwargs['positionX']
759 position_x = kwargs['positionX']
760 position_y = kwargs['positionY']
760 position_y = kwargs['positionY']
761 azimuth = kwargs['azimuth']
761 azimuth = kwargs['azimuth']
762
762
763 if kwargs.has_key('correctFactor'):
763 if kwargs.has_key('correctFactor'):
764 correctFactor = kwargs['correctFactor']
764 correctFactor = kwargs['correctFactor']
765 else:
765 else:
766 correctFactor = 1
766 correctFactor = 1
767
767
768 groupList = kwargs['groupList']
768 groupList = kwargs['groupList']
769 pairs_ccf = groupList[1]
769 pairs_ccf = groupList[1]
770 tau = kwargs['tau']
770 tau = kwargs['tau']
771 _lambda = kwargs['_lambda']
771 _lambda = kwargs['_lambda']
772
772
773 #Cross Correlation pairs obtained
773 #Cross Correlation pairs obtained
774 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
774 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
775 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
775 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
776 # pairsSelArray = numpy.array(pairsSelected)
776 # pairsSelArray = numpy.array(pairsSelected)
777 # pairs = []
777 # pairs = []
778 #
778 #
779 # #Wind estimation pairs obtained
779 # #Wind estimation pairs obtained
780 # for i in range(pairsSelArray.shape[0]/2):
780 # for i in range(pairsSelArray.shape[0]/2):
781 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
781 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
782 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
782 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
783 # pairs.append((ind1,ind2))
783 # pairs.append((ind1,ind2))
784
784
785 indtau = tau.shape[0]/2
785 indtau = tau.shape[0]/2
786 tau1 = tau[:indtau,:]
786 tau1 = tau[:indtau,:]
787 tau2 = tau[indtau:-1,:]
787 tau2 = tau[indtau:-1,:]
788 # tau1 = tau1[pairs,:]
788 # tau1 = tau1[pairs,:]
789 # tau2 = tau2[pairs,:]
789 # tau2 = tau2[pairs,:]
790 phase1 = tau[-1,:]
790 phase1 = tau[-1,:]
791
791
792 #---------------------------------------------------------------------
792 #---------------------------------------------------------------------
793 #Metodo Directo
793 #Metodo Directo
794 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
794 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
795 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
795 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
796 winds = stats.nanmean(winds, axis=0)
796 winds = stats.nanmean(winds, axis=0)
797 #---------------------------------------------------------------------
797 #---------------------------------------------------------------------
798 #Metodo General
798 #Metodo General
799 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
799 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
800 # #Calculo Coeficientes de Funcion de Correlacion
800 # #Calculo Coeficientes de Funcion de Correlacion
801 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
801 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
802 # #Calculo de Velocidades
802 # #Calculo de Velocidades
803 # winds = self.calculateVelUV(F,G,A,B,H)
803 # winds = self.calculateVelUV(F,G,A,B,H)
804
804
805 #---------------------------------------------------------------------
805 #---------------------------------------------------------------------
806 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
806 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
807 winds = correctFactor*winds
807 winds = correctFactor*winds
808 return winds
808 return winds
809
809
810 def __checkTime(self, currentTime, paramInterval, outputInterval):
810 def __checkTime(self, currentTime, paramInterval, outputInterval):
811
811
812 dataTime = currentTime + paramInterval
812 dataTime = currentTime + paramInterval
813 deltaTime = dataTime - self.__initime
813 deltaTime = dataTime - self.__initime
814
814
815 if deltaTime >= outputInterval or deltaTime < 0:
815 if deltaTime >= outputInterval or deltaTime < 0:
816 self.__dataReady = True
816 self.__dataReady = True
817 return
817 return
818
818
819 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax, binkm=2):
819 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax, binkm=2):
820 '''
820 '''
821 Function that implements winds estimation technique with detected meteors.
821 Function that implements winds estimation technique with detected meteors.
822
822
823 Input: Detected meteors, Minimum meteor quantity to wind estimation
823 Input: Detected meteors, Minimum meteor quantity to wind estimation
824
824
825 Output: Winds estimation (Zonal and Meridional)
825 Output: Winds estimation (Zonal and Meridional)
826
826
827 Parameters affected: Winds
827 Parameters affected: Winds
828 '''
828 '''
829 # print arrayMeteor.shape
829 # print arrayMeteor.shape
830 #Settings
830 #Settings
831 nInt = (heightMax - heightMin)/binkm
831 nInt = (heightMax - heightMin)/binkm
832 # print nInt
832 # print nInt
833 nInt = int(nInt)
833 nInt = int(nInt)
834 # print nInt
834 # print nInt
835 winds = numpy.zeros((2,nInt))*numpy.nan
835 winds = numpy.zeros((2,nInt))*numpy.nan
836
836
837 #Filter errors
837 #Filter errors
838 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
838 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
839 finalMeteor = arrayMeteor[error,:]
839 finalMeteor = arrayMeteor[error,:]
840
840
841 #Meteor Histogram
841 #Meteor Histogram
842 finalHeights = finalMeteor[:,2]
842 finalHeights = finalMeteor[:,2]
843 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
843 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
844 nMeteorsPerI = hist[0]
844 nMeteorsPerI = hist[0]
845 heightPerI = hist[1]
845 heightPerI = hist[1]
846
846
847 #Sort of meteors
847 #Sort of meteors
848 indSort = finalHeights.argsort()
848 indSort = finalHeights.argsort()
849 finalMeteor2 = finalMeteor[indSort,:]
849 finalMeteor2 = finalMeteor[indSort,:]
850
850
851 # Calculating winds
851 # Calculating winds
852 ind1 = 0
852 ind1 = 0
853 ind2 = 0
853 ind2 = 0
854
854
855 for i in range(nInt):
855 for i in range(nInt):
856 nMet = nMeteorsPerI[i]
856 nMet = nMeteorsPerI[i]
857 ind1 = ind2
857 ind1 = ind2
858 ind2 = ind1 + nMet
858 ind2 = ind1 + nMet
859
859
860 meteorAux = finalMeteor2[ind1:ind2,:]
860 meteorAux = finalMeteor2[ind1:ind2,:]
861
861
862 if meteorAux.shape[0] >= meteorThresh:
862 if meteorAux.shape[0] >= meteorThresh:
863 vel = meteorAux[:, 6]
863 vel = meteorAux[:, 6]
864 zen = meteorAux[:, 4]*numpy.pi/180
864 zen = meteorAux[:, 4]*numpy.pi/180
865 azim = meteorAux[:, 3]*numpy.pi/180
865 azim = meteorAux[:, 3]*numpy.pi/180
866
866
867 n = numpy.cos(zen)
867 n = numpy.cos(zen)
868 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
868 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
869 # l = m*numpy.tan(azim)
869 # l = m*numpy.tan(azim)
870 l = numpy.sin(zen)*numpy.sin(azim)
870 l = numpy.sin(zen)*numpy.sin(azim)
871 m = numpy.sin(zen)*numpy.cos(azim)
871 m = numpy.sin(zen)*numpy.cos(azim)
872
872
873 A = numpy.vstack((l, m)).transpose()
873 A = numpy.vstack((l, m)).transpose()
874 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
874 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
875 windsAux = numpy.dot(A1, vel)
875 windsAux = numpy.dot(A1, vel)
876
876
877 winds[0,i] = windsAux[0]
877 winds[0,i] = windsAux[0]
878 winds[1,i] = windsAux[1]
878 winds[1,i] = windsAux[1]
879
879
880 return winds, heightPerI[:-1]
880 return winds, heightPerI[:-1]
881
881
882 def techniqueNSM_SA(self, **kwargs):
882 def techniqueNSM_SA(self, **kwargs):
883 metArray = kwargs['metArray']
883 metArray = kwargs['metArray']
884 heightList = kwargs['heightList']
884 heightList = kwargs['heightList']
885 timeList = kwargs['timeList']
885 timeList = kwargs['timeList']
886
886
887 rx_location = kwargs['rx_location']
887 rx_location = kwargs['rx_location']
888 groupList = kwargs['groupList']
888 groupList = kwargs['groupList']
889 azimuth = kwargs['azimuth']
889 azimuth = kwargs['azimuth']
890 dfactor = kwargs['dfactor']
890 dfactor = kwargs['dfactor']
891 k = kwargs['k']
891 k = kwargs['k']
892
892
893 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
893 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
894 d = dist*dfactor
894 d = dist*dfactor
895 #Phase calculation
895 #Phase calculation
896 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
896 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
897
897
898 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
898 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
899
899
900 velEst = numpy.zeros((heightList.size,2))*numpy.nan
900 velEst = numpy.zeros((heightList.size,2))*numpy.nan
901 azimuth1 = azimuth1*numpy.pi/180
901 azimuth1 = azimuth1*numpy.pi/180
902
902
903 for i in range(heightList.size):
903 for i in range(heightList.size):
904 h = heightList[i]
904 h = heightList[i]
905 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
905 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
906 metHeight = metArray1[indH,:]
906 metHeight = metArray1[indH,:]
907 if metHeight.shape[0] >= 2:
907 if metHeight.shape[0] >= 2:
908 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
908 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
909 iazim = metHeight[:,1].astype(int)
909 iazim = metHeight[:,1].astype(int)
910 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
910 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
911 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
911 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
912 A = numpy.asmatrix(A)
912 A = numpy.asmatrix(A)
913 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
913 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
914 velHor = numpy.dot(A1,velAux)
914 velHor = numpy.dot(A1,velAux)
915
915
916 velEst[i,:] = numpy.squeeze(velHor)
916 velEst[i,:] = numpy.squeeze(velHor)
917 return velEst
917 return velEst
918
918
919 def __getPhaseSlope(self, metArray, heightList, timeList):
919 def __getPhaseSlope(self, metArray, heightList, timeList):
920 meteorList = []
920 meteorList = []
921 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
921 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
922 #Putting back together the meteor matrix
922 #Putting back together the meteor matrix
923 utctime = metArray[:,0]
923 utctime = metArray[:,0]
924 uniqueTime = numpy.unique(utctime)
924 uniqueTime = numpy.unique(utctime)
925
925
926 phaseDerThresh = 0.5
926 phaseDerThresh = 0.5
927 ippSeconds = timeList[1] - timeList[0]
927 ippSeconds = timeList[1] - timeList[0]
928 sec = numpy.where(timeList>1)[0][0]
928 sec = numpy.where(timeList>1)[0][0]
929 nPairs = metArray.shape[1] - 6
929 nPairs = metArray.shape[1] - 6
930 nHeights = len(heightList)
930 nHeights = len(heightList)
931
931
932 for t in uniqueTime:
932 for t in uniqueTime:
933 metArray1 = metArray[utctime==t,:]
933 metArray1 = metArray[utctime==t,:]
934 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
934 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
935 tmet = metArray1[:,1].astype(int)
935 tmet = metArray1[:,1].astype(int)
936 hmet = metArray1[:,2].astype(int)
936 hmet = metArray1[:,2].astype(int)
937
937
938 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
938 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
939 metPhase[:,:] = numpy.nan
939 metPhase[:,:] = numpy.nan
940 metPhase[:,hmet,tmet] = metArray1[:,6:].T
940 metPhase[:,hmet,tmet] = metArray1[:,6:].T
941
941
942 #Delete short trails
942 #Delete short trails
943 metBool = ~numpy.isnan(metPhase[0,:,:])
943 metBool = ~numpy.isnan(metPhase[0,:,:])
944 heightVect = numpy.sum(metBool, axis = 1)
944 heightVect = numpy.sum(metBool, axis = 1)
945 metBool[heightVect<sec,:] = False
945 metBool[heightVect<sec,:] = False
946 metPhase[:,heightVect<sec,:] = numpy.nan
946 metPhase[:,heightVect<sec,:] = numpy.nan
947
947
948 #Derivative
948 #Derivative
949 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
949 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
950 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
950 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
951 metPhase[phDerAux] = numpy.nan
951 metPhase[phDerAux] = numpy.nan
952
952
953 #--------------------------METEOR DETECTION -----------------------------------------
953 #--------------------------METEOR DETECTION -----------------------------------------
954 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
954 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
955
955
956 for p in numpy.arange(nPairs):
956 for p in numpy.arange(nPairs):
957 phase = metPhase[p,:,:]
957 phase = metPhase[p,:,:]
958 phDer = metDer[p,:,:]
958 phDer = metDer[p,:,:]
959
959
960 for h in indMet:
960 for h in indMet:
961 height = heightList[h]
961 height = heightList[h]
962 phase1 = phase[h,:] #82
962 phase1 = phase[h,:] #82
963 phDer1 = phDer[h,:]
963 phDer1 = phDer[h,:]
964
964
965 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
965 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
966
966
967 indValid = numpy.where(~numpy.isnan(phase1))[0]
967 indValid = numpy.where(~numpy.isnan(phase1))[0]
968 initMet = indValid[0]
968 initMet = indValid[0]
969 endMet = 0
969 endMet = 0
970
970
971 for i in range(len(indValid)-1):
971 for i in range(len(indValid)-1):
972
972
973 #Time difference
973 #Time difference
974 inow = indValid[i]
974 inow = indValid[i]
975 inext = indValid[i+1]
975 inext = indValid[i+1]
976 idiff = inext - inow
976 idiff = inext - inow
977 #Phase difference
977 #Phase difference
978 phDiff = numpy.abs(phase1[inext] - phase1[inow])
978 phDiff = numpy.abs(phase1[inext] - phase1[inow])
979
979
980 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
980 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
981 sizeTrail = inow - initMet + 1
981 sizeTrail = inow - initMet + 1
982 if sizeTrail>3*sec: #Too short meteors
982 if sizeTrail>3*sec: #Too short meteors
983 x = numpy.arange(initMet,inow+1)*ippSeconds
983 x = numpy.arange(initMet,inow+1)*ippSeconds
984 y = phase1[initMet:inow+1]
984 y = phase1[initMet:inow+1]
985 ynnan = ~numpy.isnan(y)
985 ynnan = ~numpy.isnan(y)
986 x = x[ynnan]
986 x = x[ynnan]
987 y = y[ynnan]
987 y = y[ynnan]
988 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
988 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
989 ylin = x*slope + intercept
989 ylin = x*slope + intercept
990 rsq = r_value**2
990 rsq = r_value**2
991 if rsq > 0.5:
991 if rsq > 0.5:
992 vel = slope#*height*1000/(k*d)
992 vel = slope#*height*1000/(k*d)
993 estAux = numpy.array([utctime,p,height, vel, rsq])
993 estAux = numpy.array([utctime,p,height, vel, rsq])
994 meteorList.append(estAux)
994 meteorList.append(estAux)
995 initMet = inext
995 initMet = inext
996 metArray2 = numpy.array(meteorList)
996 metArray2 = numpy.array(meteorList)
997
997
998 return metArray2
998 return metArray2
999
999
1000 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
1000 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
1001
1001
1002 azimuth1 = numpy.zeros(len(pairslist))
1002 azimuth1 = numpy.zeros(len(pairslist))
1003 dist = numpy.zeros(len(pairslist))
1003 dist = numpy.zeros(len(pairslist))
1004
1004
1005 for i in range(len(rx_location)):
1005 for i in range(len(rx_location)):
1006 ch0 = pairslist[i][0]
1006 ch0 = pairslist[i][0]
1007 ch1 = pairslist[i][1]
1007 ch1 = pairslist[i][1]
1008
1008
1009 diffX = rx_location[ch0][0] - rx_location[ch1][0]
1009 diffX = rx_location[ch0][0] - rx_location[ch1][0]
1010 diffY = rx_location[ch0][1] - rx_location[ch1][1]
1010 diffY = rx_location[ch0][1] - rx_location[ch1][1]
1011 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
1011 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
1012 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
1012 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
1013
1013
1014 azimuth1 -= azimuth0
1014 azimuth1 -= azimuth0
1015 return azimuth1, dist
1015 return azimuth1, dist
1016
1016
1017 def techniqueNSM_DBS(self, **kwargs):
1017 def techniqueNSM_DBS(self, **kwargs):
1018 metArray = kwargs['metArray']
1018 metArray = kwargs['metArray']
1019 heightList = kwargs['heightList']
1019 heightList = kwargs['heightList']
1020 timeList = kwargs['timeList']
1020 timeList = kwargs['timeList']
1021 zenithList = kwargs['zenithList']
1021 zenithList = kwargs['zenithList']
1022 nChan = numpy.max(cmet) + 1
1022 nChan = numpy.max(cmet) + 1
1023 nHeights = len(heightList)
1023 nHeights = len(heightList)
1024
1024
1025 utctime = metArray[:,0]
1025 utctime = metArray[:,0]
1026 cmet = metArray[:,1]
1026 cmet = metArray[:,1]
1027 hmet = metArray1[:,3].astype(int)
1027 hmet = metArray1[:,3].astype(int)
1028 h1met = heightList[hmet]*zenithList[cmet]
1028 h1met = heightList[hmet]*zenithList[cmet]
1029 vmet = metArray1[:,5]
1029 vmet = metArray1[:,5]
1030
1030
1031 for i in range(nHeights - 1):
1031 for i in range(nHeights - 1):
1032 hmin = heightList[i]
1032 hmin = heightList[i]
1033 hmax = heightList[i + 1]
1033 hmax = heightList[i + 1]
1034
1034
1035 vthisH = vmet[(h1met>=hmin) & (h1met<hmax)]
1035 vthisH = vmet[(h1met>=hmin) & (h1met<hmax)]
1036
1036
1037
1037
1038
1038
1039 return data_output
1039 return data_output
1040
1040
1041 def run(self, dataOut, technique, **kwargs):
1041 def run(self, dataOut, technique, **kwargs):
1042
1042
1043 param = dataOut.data_param
1043 param = dataOut.data_param
1044 if dataOut.abscissaList != None:
1044 if dataOut.abscissaList != None:
1045 absc = dataOut.abscissaList[:-1]
1045 absc = dataOut.abscissaList[:-1]
1046 noise = dataOut.noise
1046 #noise = dataOut.noise
1047 heightList = dataOut.heightList
1047 heightList = dataOut.heightList
1048 SNR = dataOut.data_SNR
1048 SNR = dataOut.data_SNR
1049
1049
1050 if technique == 'DBS':
1050 if technique == 'DBS':
1051
1051
1052 kwargs['velRadial'] = param[:,1,:] #Radial velocity
1052 kwargs['velRadial'] = param[:,1,:] #Radial velocity
1053 kwargs['heightList'] = heightList
1053 kwargs['heightList'] = heightList
1054 kwargs['SNR'] = SNR
1054 kwargs['SNR'] = SNR
1055
1055
1056 dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function
1056 dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function
1057 dataOut.utctimeInit = dataOut.utctime
1057 dataOut.utctimeInit = dataOut.utctime
1058 dataOut.outputInterval = dataOut.paramInterval
1058 dataOut.outputInterval = dataOut.paramInterval
1059
1059
1060 elif technique == 'SA':
1060 elif technique == 'SA':
1061
1061
1062 #Parameters
1062 #Parameters
1063 # position_x = kwargs['positionX']
1063 # position_x = kwargs['positionX']
1064 # position_y = kwargs['positionY']
1064 # position_y = kwargs['positionY']
1065 # azimuth = kwargs['azimuth']
1065 # azimuth = kwargs['azimuth']
1066 #
1066 #
1067 # if kwargs.has_key('crosspairsList'):
1067 # if kwargs.has_key('crosspairsList'):
1068 # pairs = kwargs['crosspairsList']
1068 # pairs = kwargs['crosspairsList']
1069 # else:
1069 # else:
1070 # pairs = None
1070 # pairs = None
1071 #
1071 #
1072 # if kwargs.has_key('correctFactor'):
1072 # if kwargs.has_key('correctFactor'):
1073 # correctFactor = kwargs['correctFactor']
1073 # correctFactor = kwargs['correctFactor']
1074 # else:
1074 # else:
1075 # correctFactor = 1
1075 # correctFactor = 1
1076
1076
1077 # tau = dataOut.data_param
1077 # tau = dataOut.data_param
1078 # _lambda = dataOut.C/dataOut.frequency
1078 # _lambda = dataOut.C/dataOut.frequency
1079 # pairsList = dataOut.groupList
1079 # pairsList = dataOut.groupList
1080 # nChannels = dataOut.nChannels
1080 # nChannels = dataOut.nChannels
1081
1081
1082 kwargs['groupList'] = dataOut.groupList
1082 kwargs['groupList'] = dataOut.groupList
1083 kwargs['tau'] = dataOut.data_param
1083 kwargs['tau'] = dataOut.data_param
1084 kwargs['_lambda'] = dataOut.C/dataOut.frequency
1084 kwargs['_lambda'] = dataOut.C/dataOut.frequency
1085 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
1085 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
1086 dataOut.data_output = self.techniqueSA(kwargs)
1086 dataOut.data_output = self.techniqueSA(kwargs)
1087 dataOut.utctimeInit = dataOut.utctime
1087 dataOut.utctimeInit = dataOut.utctime
1088 dataOut.outputInterval = dataOut.timeInterval
1088 dataOut.outputInterval = dataOut.timeInterval
1089
1089
1090 elif technique == 'Meteors':
1090 elif technique == 'Meteors':
1091 dataOut.flagNoData = True
1091 dataOut.flagNoData = True
1092 self.__dataReady = False
1092 self.__dataReady = False
1093
1093
1094 if kwargs.has_key('nHours'):
1094 if kwargs.has_key('nHours'):
1095 nHours = kwargs['nHours']
1095 nHours = kwargs['nHours']
1096 else:
1096 else:
1097 nHours = 1
1097 nHours = 1
1098
1098
1099 if kwargs.has_key('meteorsPerBin'):
1099 if kwargs.has_key('meteorsPerBin'):
1100 meteorThresh = kwargs['meteorsPerBin']
1100 meteorThresh = kwargs['meteorsPerBin']
1101 else:
1101 else:
1102 meteorThresh = 6
1102 meteorThresh = 6
1103
1103
1104 if kwargs.has_key('hmin'):
1104 if kwargs.has_key('hmin'):
1105 hmin = kwargs['hmin']
1105 hmin = kwargs['hmin']
1106 else: hmin = 70
1106 else: hmin = 70
1107 if kwargs.has_key('hmax'):
1107 if kwargs.has_key('hmax'):
1108 hmax = kwargs['hmax']
1108 hmax = kwargs['hmax']
1109 else: hmax = 110
1109 else: hmax = 110
1110
1110
1111 if kwargs.has_key('BinKm'):
1111 if kwargs.has_key('BinKm'):
1112 binkm = kwargs['BinKm']
1112 binkm = kwargs['BinKm']
1113 else:
1113 else:
1114 binkm = 2
1114 binkm = 2
1115
1115
1116 dataOut.outputInterval = nHours*3600
1116 dataOut.outputInterval = nHours*3600
1117
1117
1118 if self.__isConfig == False:
1118 if self.__isConfig == False:
1119 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
1119 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
1120 #Get Initial LTC time
1120 #Get Initial LTC time
1121 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
1121 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
1122 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
1122 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
1123
1123
1124 self.__isConfig = True
1124 self.__isConfig = True
1125
1125
1126 if self.__buffer is None:
1126 if self.__buffer is None:
1127 self.__buffer = dataOut.data_param
1127 self.__buffer = dataOut.data_param
1128 self.__firstdata = copy.copy(dataOut)
1128 self.__firstdata = copy.copy(dataOut)
1129
1129
1130 else:
1130 else:
1131 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
1131 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
1132
1132
1133 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
1133 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
1134
1134
1135 if self.__dataReady:
1135 if self.__dataReady:
1136 dataOut.utctimeInit = self.__initime
1136 dataOut.utctimeInit = self.__initime
1137
1137
1138 self.__initime += dataOut.outputInterval #to erase time offset
1138 self.__initime += dataOut.outputInterval #to erase time offset
1139
1139
1140 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax, binkm)
1140 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax, binkm)
1141 dataOut.flagNoData = False
1141 dataOut.flagNoData = False
1142 self.__buffer = None
1142 self.__buffer = None
1143
1143
1144 elif technique == 'Meteors1':
1144 elif technique == 'Meteors1':
1145 dataOut.flagNoData = True
1145 dataOut.flagNoData = True
1146 self.__dataReady = False
1146 self.__dataReady = False
1147
1147
1148 if kwargs.has_key('nMins'):
1148 if kwargs.has_key('nMins'):
1149 nMins = kwargs['nMins']
1149 nMins = kwargs['nMins']
1150 else: nMins = 20
1150 else: nMins = 20
1151 if kwargs.has_key('rx_location'):
1151 if kwargs.has_key('rx_location'):
1152 rx_location = kwargs['rx_location']
1152 rx_location = kwargs['rx_location']
1153 else: rx_location = [(0,1),(1,1),(1,0)]
1153 else: rx_location = [(0,1),(1,1),(1,0)]
1154 if kwargs.has_key('azimuth'):
1154 if kwargs.has_key('azimuth'):
1155 azimuth = kwargs['azimuth']
1155 azimuth = kwargs['azimuth']
1156 else: azimuth = 51
1156 else: azimuth = 51
1157 if kwargs.has_key('dfactor'):
1157 if kwargs.has_key('dfactor'):
1158 dfactor = kwargs['dfactor']
1158 dfactor = kwargs['dfactor']
1159 if kwargs.has_key('mode'):
1159 if kwargs.has_key('mode'):
1160 mode = kwargs['mode']
1160 mode = kwargs['mode']
1161 else: mode = 'SA'
1161 else: mode = 'SA'
1162
1162
1163 #Borrar luego esto
1163 #Borrar luego esto
1164 if dataOut.groupList is None:
1164 if dataOut.groupList is None:
1165 dataOut.groupList = [(0,1),(0,2),(1,2)]
1165 dataOut.groupList = [(0,1),(0,2),(1,2)]
1166 groupList = dataOut.groupList
1166 groupList = dataOut.groupList
1167 C = 3e8
1167 C = 3e8
1168 freq = 50e6
1168 freq = 50e6
1169 lamb = C/freq
1169 lamb = C/freq
1170 k = 2*numpy.pi/lamb
1170 k = 2*numpy.pi/lamb
1171
1171
1172 timeList = dataOut.abscissaList
1172 timeList = dataOut.abscissaList
1173 heightList = dataOut.heightList
1173 heightList = dataOut.heightList
1174
1174
1175 if self.__isConfig == False:
1175 if self.__isConfig == False:
1176 dataOut.outputInterval = nMins*60
1176 dataOut.outputInterval = nMins*60
1177 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
1177 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
1178 #Get Initial LTC time
1178 #Get Initial LTC time
1179 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
1179 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
1180 minuteAux = initime.minute
1180 minuteAux = initime.minute
1181 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
1181 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
1182 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
1182 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
1183
1183
1184 self.__isConfig = True
1184 self.__isConfig = True
1185
1185
1186 if self.__buffer is None:
1186 if self.__buffer is None:
1187 self.__buffer = dataOut.data_param
1187 self.__buffer = dataOut.data_param
1188 self.__firstdata = copy.copy(dataOut)
1188 self.__firstdata = copy.copy(dataOut)
1189
1189
1190 else:
1190 else:
1191 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
1191 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
1192
1192
1193 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
1193 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
1194
1194
1195 if self.__dataReady:
1195 if self.__dataReady:
1196 dataOut.utctimeInit = self.__initime
1196 dataOut.utctimeInit = self.__initime
1197 self.__initime += dataOut.outputInterval #to erase time offset
1197 self.__initime += dataOut.outputInterval #to erase time offset
1198
1198
1199 metArray = self.__buffer
1199 metArray = self.__buffer
1200 if mode == 'SA':
1200 if mode == 'SA':
1201 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
1201 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
1202 elif mode == 'DBS':
1202 elif mode == 'DBS':
1203 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList)
1203 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList)
1204 dataOut.data_output = dataOut.data_output.T
1204 dataOut.data_output = dataOut.data_output.T
1205 dataOut.flagNoData = False
1205 dataOut.flagNoData = False
1206 self.__buffer = None
1206 self.__buffer = None
1207
1207
1208 return
1208 return
1209
1209
1210 class EWDriftsEstimation(Operation):
1210 class EWDriftsEstimation(Operation):
1211
1211
1212
1212
1213 def __correctValues(self, heiRang, phi, velRadial, SNR):
1213 def __correctValues(self, heiRang, phi, velRadial, SNR):
1214 listPhi = phi.tolist()
1214 listPhi = phi.tolist()
1215 maxid = listPhi.index(max(listPhi))
1215 maxid = listPhi.index(max(listPhi))
1216 minid = listPhi.index(min(listPhi))
1216 minid = listPhi.index(min(listPhi))
1217
1217
1218 rango = range(len(phi))
1218 rango = range(len(phi))
1219 # rango = numpy.delete(rango,maxid)
1219 # rango = numpy.delete(rango,maxid)
1220
1220
1221 heiRang1 = heiRang*math.cos(phi[maxid])
1221 heiRang1 = heiRang*math.cos(phi[maxid])
1222 heiRangAux = heiRang*math.cos(phi[minid])
1222 heiRangAux = heiRang*math.cos(phi[minid])
1223 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1223 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1224 heiRang1 = numpy.delete(heiRang1,indOut)
1224 heiRang1 = numpy.delete(heiRang1,indOut)
1225
1225
1226 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1226 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1227 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1227 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1228
1228
1229 for i in rango:
1229 for i in rango:
1230 x = heiRang*math.cos(phi[i])
1230 x = heiRang*math.cos(phi[i])
1231 y1 = velRadial[i,:]
1231 y1 = velRadial[i,:]
1232 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1232 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1233
1233
1234 x1 = heiRang1
1234 x1 = heiRang1
1235 y11 = f1(x1)
1235 y11 = f1(x1)
1236
1236
1237 y2 = SNR[i,:]
1237 y2 = SNR[i,:]
1238 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1238 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1239 y21 = f2(x1)
1239 y21 = f2(x1)
1240
1240
1241 velRadial1[i,:] = y11
1241 velRadial1[i,:] = y11
1242 SNR1[i,:] = y21
1242 SNR1[i,:] = y21
1243
1243
1244 return heiRang1, velRadial1, SNR1
1244 return heiRang1, velRadial1, SNR1
1245
1245
1246 def run(self, dataOut, zenith, zenithCorrection):
1246 def run(self, dataOut, zenith, zenithCorrection):
1247 heiRang = dataOut.heightList
1247 heiRang = dataOut.heightList
1248 velRadial = dataOut.data_param[:,3,:]
1248 velRadial = dataOut.data_param[:,3,:]
1249 SNR = dataOut.data_SNR
1249 SNR = dataOut.data_SNR
1250
1250
1251 zenith = numpy.array(zenith)
1251 zenith = numpy.array(zenith)
1252 zenith -= zenithCorrection
1252 zenith -= zenithCorrection
1253 zenith *= numpy.pi/180
1253 zenith *= numpy.pi/180
1254
1254
1255 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
1255 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
1256
1256
1257 alp = zenith[0]
1257 alp = zenith[0]
1258 bet = zenith[1]
1258 bet = zenith[1]
1259
1259
1260 w_w = velRadial1[0,:]
1260 w_w = velRadial1[0,:]
1261 w_e = velRadial1[1,:]
1261 w_e = velRadial1[1,:]
1262
1262
1263 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
1263 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
1264 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
1264 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
1265
1265
1266 winds = numpy.vstack((u,w))
1266 winds = numpy.vstack((u,w))
1267
1267
1268 dataOut.heightList = heiRang1
1268 dataOut.heightList = heiRang1
1269 dataOut.data_output = winds
1269 dataOut.data_output = winds
1270 dataOut.data_SNR = SNR1
1270 dataOut.data_SNR = SNR1
1271
1271
1272 dataOut.utctimeInit = dataOut.utctime
1272 dataOut.utctimeInit = dataOut.utctime
1273 dataOut.outputInterval = dataOut.timeInterval
1273 dataOut.outputInterval = dataOut.timeInterval
1274 return
1274 return
1275
1275
1276 #--------------- Non Specular Meteor ----------------
1276 #--------------- Non Specular Meteor ----------------
1277
1277
1278 class NonSpecularMeteorDetection(Operation):
1278 class NonSpecularMeteorDetection(Operation):
1279
1279
1280 def run(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
1280 def run(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
1281 data_acf = self.dataOut.data_pre[0]
1281 data_acf = self.dataOut.data_pre[0]
1282 data_ccf = self.dataOut.data_pre[1]
1282 data_ccf = self.dataOut.data_pre[1]
1283
1283
1284 lamb = self.dataOut.C/self.dataOut.frequency
1284 lamb = self.dataOut.C/self.dataOut.frequency
1285 tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt
1285 tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt
1286 paramInterval = self.dataOut.paramInterval
1286 paramInterval = self.dataOut.paramInterval
1287
1287
1288 nChannels = data_acf.shape[0]
1288 nChannels = data_acf.shape[0]
1289 nLags = data_acf.shape[1]
1289 nLags = data_acf.shape[1]
1290 nProfiles = data_acf.shape[2]
1290 nProfiles = data_acf.shape[2]
1291 nHeights = self.dataOut.nHeights
1291 nHeights = self.dataOut.nHeights
1292 nCohInt = self.dataOut.nCohInt
1292 nCohInt = self.dataOut.nCohInt
1293 sec = numpy.round(nProfiles/self.dataOut.paramInterval)
1293 sec = numpy.round(nProfiles/self.dataOut.paramInterval)
1294 heightList = self.dataOut.heightList
1294 heightList = self.dataOut.heightList
1295 ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg
1295 ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg
1296 utctime = self.dataOut.utctime
1296 utctime = self.dataOut.utctime
1297
1297
1298 self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
1298 self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
1299
1299
1300 #------------------------ SNR --------------------------------------
1300 #------------------------ SNR --------------------------------------
1301 power = data_acf[:,0,:,:].real
1301 power = data_acf[:,0,:,:].real
1302 noise = numpy.zeros(nChannels)
1302 noise = numpy.zeros(nChannels)
1303 SNR = numpy.zeros(power.shape)
1303 SNR = numpy.zeros(power.shape)
1304 for i in range(nChannels):
1304 for i in range(nChannels):
1305 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
1305 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
1306 SNR[i] = (power[i]-noise[i])/noise[i]
1306 SNR[i] = (power[i]-noise[i])/noise[i]
1307 SNRm = numpy.nanmean(SNR, axis = 0)
1307 SNRm = numpy.nanmean(SNR, axis = 0)
1308 SNRdB = 10*numpy.log10(SNR)
1308 SNRdB = 10*numpy.log10(SNR)
1309
1309
1310 if mode == 'SA':
1310 if mode == 'SA':
1311 nPairs = data_ccf.shape[0]
1311 nPairs = data_ccf.shape[0]
1312 #---------------------- Coherence and Phase --------------------------
1312 #---------------------- Coherence and Phase --------------------------
1313 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
1313 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
1314 # phase1 = numpy.copy(phase)
1314 # phase1 = numpy.copy(phase)
1315 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
1315 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
1316
1316
1317 for p in range(nPairs):
1317 for p in range(nPairs):
1318 ch0 = self.dataOut.groupList[p][0]
1318 ch0 = self.dataOut.groupList[p][0]
1319 ch1 = self.dataOut.groupList[p][1]
1319 ch1 = self.dataOut.groupList[p][1]
1320 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
1320 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
1321 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
1321 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
1322 # phase1[p,:,:] = numpy.angle(ccf) #median filter
1322 # phase1[p,:,:] = numpy.angle(ccf) #median filter
1323 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
1323 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
1324 # coh1[p,:,:] = numpy.abs(ccf) #median filter
1324 # coh1[p,:,:] = numpy.abs(ccf) #median filter
1325 coh = numpy.nanmax(coh1, axis = 0)
1325 coh = numpy.nanmax(coh1, axis = 0)
1326 # struc = numpy.ones((5,1))
1326 # struc = numpy.ones((5,1))
1327 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
1327 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
1328 #---------------------- Radial Velocity ----------------------------
1328 #---------------------- Radial Velocity ----------------------------
1329 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
1329 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
1330 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
1330 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
1331
1331
1332 if allData:
1332 if allData:
1333 boolMetFin = ~numpy.isnan(SNRm)
1333 boolMetFin = ~numpy.isnan(SNRm)
1334 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
1334 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
1335 else:
1335 else:
1336 #------------------------ Meteor mask ---------------------------------
1336 #------------------------ Meteor mask ---------------------------------
1337 # #SNR mask
1337 # #SNR mask
1338 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
1338 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
1339 #
1339 #
1340 # #Erase small objects
1340 # #Erase small objects
1341 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
1341 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
1342 #
1342 #
1343 # auxEEJ = numpy.sum(boolMet1,axis=0)
1343 # auxEEJ = numpy.sum(boolMet1,axis=0)
1344 # indOver = auxEEJ>nProfiles*0.8 #Use this later
1344 # indOver = auxEEJ>nProfiles*0.8 #Use this later
1345 # indEEJ = numpy.where(indOver)[0]
1345 # indEEJ = numpy.where(indOver)[0]
1346 # indNEEJ = numpy.where(~indOver)[0]
1346 # indNEEJ = numpy.where(~indOver)[0]
1347 #
1347 #
1348 # boolMetFin = boolMet1
1348 # boolMetFin = boolMet1
1349 #
1349 #
1350 # if indEEJ.size > 0:
1350 # if indEEJ.size > 0:
1351 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
1351 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
1352 #
1352 #
1353 # boolMet2 = coh > cohThresh
1353 # boolMet2 = coh > cohThresh
1354 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
1354 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
1355 #
1355 #
1356 # #Final Meteor mask
1356 # #Final Meteor mask
1357 # boolMetFin = boolMet1|boolMet2
1357 # boolMetFin = boolMet1|boolMet2
1358
1358
1359 #Coherence mask
1359 #Coherence mask
1360 boolMet1 = coh > 0.75
1360 boolMet1 = coh > 0.75
1361 struc = numpy.ones((30,1))
1361 struc = numpy.ones((30,1))
1362 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
1362 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
1363
1363
1364 #Derivative mask
1364 #Derivative mask
1365 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
1365 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
1366 boolMet2 = derPhase < 0.2
1366 boolMet2 = derPhase < 0.2
1367 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
1367 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
1368 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
1368 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
1369 boolMet2 = ndimage.median_filter(boolMet2,size=5)
1369 boolMet2 = ndimage.median_filter(boolMet2,size=5)
1370 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
1370 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
1371 # #Final mask
1371 # #Final mask
1372 # boolMetFin = boolMet2
1372 # boolMetFin = boolMet2
1373 boolMetFin = boolMet1&boolMet2
1373 boolMetFin = boolMet1&boolMet2
1374 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
1374 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
1375 #Creating data_param
1375 #Creating data_param
1376 coordMet = numpy.where(boolMetFin)
1376 coordMet = numpy.where(boolMetFin)
1377
1377
1378 tmet = coordMet[0]
1378 tmet = coordMet[0]
1379 hmet = coordMet[1]
1379 hmet = coordMet[1]
1380
1380
1381 data_param = numpy.zeros((tmet.size, 6 + nPairs))
1381 data_param = numpy.zeros((tmet.size, 6 + nPairs))
1382 data_param[:,0] = utctime
1382 data_param[:,0] = utctime
1383 data_param[:,1] = tmet
1383 data_param[:,1] = tmet
1384 data_param[:,2] = hmet
1384 data_param[:,2] = hmet
1385 data_param[:,3] = SNRm[tmet,hmet]
1385 data_param[:,3] = SNRm[tmet,hmet]
1386 data_param[:,4] = velRad[tmet,hmet]
1386 data_param[:,4] = velRad[tmet,hmet]
1387 data_param[:,5] = coh[tmet,hmet]
1387 data_param[:,5] = coh[tmet,hmet]
1388 data_param[:,6:] = phase[:,tmet,hmet].T
1388 data_param[:,6:] = phase[:,tmet,hmet].T
1389
1389
1390 elif mode == 'DBS':
1390 elif mode == 'DBS':
1391 self.dataOut.groupList = numpy.arange(nChannels)
1391 self.dataOut.groupList = numpy.arange(nChannels)
1392
1392
1393 #Radial Velocities
1393 #Radial Velocities
1394 # phase = numpy.angle(data_acf[:,1,:,:])
1394 # phase = numpy.angle(data_acf[:,1,:,:])
1395 phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
1395 phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
1396 velRad = phase*lamb/(4*numpy.pi*tSamp)
1396 velRad = phase*lamb/(4*numpy.pi*tSamp)
1397
1397
1398 #Spectral width
1398 #Spectral width
1399 acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
1399 acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
1400 acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
1400 acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
1401
1401
1402 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
1402 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
1403 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
1403 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
1404 if allData:
1404 if allData:
1405 boolMetFin = ~numpy.isnan(SNRdB)
1405 boolMetFin = ~numpy.isnan(SNRdB)
1406 else:
1406 else:
1407 #SNR
1407 #SNR
1408 boolMet1 = (SNRdB>SNRthresh) #SNR mask
1408 boolMet1 = (SNRdB>SNRthresh) #SNR mask
1409 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
1409 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
1410
1410
1411 #Radial velocity
1411 #Radial velocity
1412 boolMet2 = numpy.abs(velRad) < 30
1412 boolMet2 = numpy.abs(velRad) < 30
1413 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
1413 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
1414
1414
1415 #Spectral Width
1415 #Spectral Width
1416 boolMet3 = spcWidth < 30
1416 boolMet3 = spcWidth < 30
1417 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
1417 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
1418 # boolMetFin = self.__erase_small(boolMet1, 10,5)
1418 # boolMetFin = self.__erase_small(boolMet1, 10,5)
1419 boolMetFin = boolMet1&boolMet2&boolMet3
1419 boolMetFin = boolMet1&boolMet2&boolMet3
1420
1420
1421 #Creating data_param
1421 #Creating data_param
1422 coordMet = numpy.where(boolMetFin)
1422 coordMet = numpy.where(boolMetFin)
1423
1423
1424 cmet = coordMet[0]
1424 cmet = coordMet[0]
1425 tmet = coordMet[1]
1425 tmet = coordMet[1]
1426 hmet = coordMet[2]
1426 hmet = coordMet[2]
1427
1427
1428 data_param = numpy.zeros((tmet.size, 7))
1428 data_param = numpy.zeros((tmet.size, 7))
1429 data_param[:,0] = utctime
1429 data_param[:,0] = utctime
1430 data_param[:,1] = cmet
1430 data_param[:,1] = cmet
1431 data_param[:,2] = tmet
1431 data_param[:,2] = tmet
1432 data_param[:,3] = hmet
1432 data_param[:,3] = hmet
1433 data_param[:,4] = SNR[cmet,tmet,hmet].T
1433 data_param[:,4] = SNR[cmet,tmet,hmet].T
1434 data_param[:,5] = velRad[cmet,tmet,hmet].T
1434 data_param[:,5] = velRad[cmet,tmet,hmet].T
1435 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
1435 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
1436
1436
1437 # self.dataOut.data_param = data_int
1437 # self.dataOut.data_param = data_int
1438 if len(data_param) == 0:
1438 if len(data_param) == 0:
1439 self.dataOut.flagNoData = True
1439 self.dataOut.flagNoData = True
1440 else:
1440 else:
1441 self.dataOut.data_param = data_param
1441 self.dataOut.data_param = data_param
1442
1442
1443 def __erase_small(self, binArray, threshX, threshY):
1443 def __erase_small(self, binArray, threshX, threshY):
1444 labarray, numfeat = ndimage.measurements.label(binArray)
1444 labarray, numfeat = ndimage.measurements.label(binArray)
1445 binArray1 = numpy.copy(binArray)
1445 binArray1 = numpy.copy(binArray)
1446
1446
1447 for i in range(1,numfeat + 1):
1447 for i in range(1,numfeat + 1):
1448 auxBin = (labarray==i)
1448 auxBin = (labarray==i)
1449 auxSize = auxBin.sum()
1449 auxSize = auxBin.sum()
1450
1450
1451 x,y = numpy.where(auxBin)
1451 x,y = numpy.where(auxBin)
1452 widthX = x.max() - x.min()
1452 widthX = x.max() - x.min()
1453 widthY = y.max() - y.min()
1453 widthY = y.max() - y.min()
1454
1454
1455 #width X: 3 seg -> 12.5*3
1455 #width X: 3 seg -> 12.5*3
1456 #width Y:
1456 #width Y:
1457
1457
1458 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
1458 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
1459 binArray1[auxBin] = False
1459 binArray1[auxBin] = False
1460
1460
1461 return binArray1
1461 return binArray1
1462
1462
1463 #--------------- Specular Meteor ----------------
1463 #--------------- Specular Meteor ----------------
1464
1464
1465 class SMDetection(Operation):
1465 class SMDetection(Operation):
1466 '''
1466 '''
1467 Function DetectMeteors()
1467 Function DetectMeteors()
1468 Project developed with paper:
1468 Project developed with paper:
1469 HOLDSWORTH ET AL. 2004
1469 HOLDSWORTH ET AL. 2004
1470
1470
1471 Input:
1471 Input:
1472 self.dataOut.data_pre
1472 self.dataOut.data_pre
1473
1473
1474 centerReceiverIndex: From the channels, which is the center receiver
1474 centerReceiverIndex: From the channels, which is the center receiver
1475
1475
1476 hei_ref: Height reference for the Beacon signal extraction
1476 hei_ref: Height reference for the Beacon signal extraction
1477 tauindex:
1477 tauindex:
1478 predefinedPhaseShifts: Predefined phase offset for the voltge signals
1478 predefinedPhaseShifts: Predefined phase offset for the voltge signals
1479
1479
1480 cohDetection: Whether to user Coherent detection or not
1480 cohDetection: Whether to user Coherent detection or not
1481 cohDet_timeStep: Coherent Detection calculation time step
1481 cohDet_timeStep: Coherent Detection calculation time step
1482 cohDet_thresh: Coherent Detection phase threshold to correct phases
1482 cohDet_thresh: Coherent Detection phase threshold to correct phases
1483
1483
1484 noise_timeStep: Noise calculation time step
1484 noise_timeStep: Noise calculation time step
1485 noise_multiple: Noise multiple to define signal threshold
1485 noise_multiple: Noise multiple to define signal threshold
1486
1486
1487 multDet_timeLimit: Multiple Detection Removal time limit in seconds
1487 multDet_timeLimit: Multiple Detection Removal time limit in seconds
1488 multDet_rangeLimit: Multiple Detection Removal range limit in km
1488 multDet_rangeLimit: Multiple Detection Removal range limit in km
1489
1489
1490 phaseThresh: Maximum phase difference between receiver to be consider a meteor
1490 phaseThresh: Maximum phase difference between receiver to be consider a meteor
1491 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
1491 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
1492
1492
1493 hmin: Minimum Height of the meteor to use it in the further wind estimations
1493 hmin: Minimum Height of the meteor to use it in the further wind estimations
1494 hmax: Maximum Height of the meteor to use it in the further wind estimations
1494 hmax: Maximum Height of the meteor to use it in the further wind estimations
1495 azimuth: Azimuth angle correction
1495 azimuth: Azimuth angle correction
1496
1496
1497 Affected:
1497 Affected:
1498 self.dataOut.data_param
1498 self.dataOut.data_param
1499
1499
1500 Rejection Criteria (Errors):
1500 Rejection Criteria (Errors):
1501 0: No error; analysis OK
1501 0: No error; analysis OK
1502 1: SNR < SNR threshold
1502 1: SNR < SNR threshold
1503 2: angle of arrival (AOA) ambiguously determined
1503 2: angle of arrival (AOA) ambiguously determined
1504 3: AOA estimate not feasible
1504 3: AOA estimate not feasible
1505 4: Large difference in AOAs obtained from different antenna baselines
1505 4: Large difference in AOAs obtained from different antenna baselines
1506 5: echo at start or end of time series
1506 5: echo at start or end of time series
1507 6: echo less than 5 examples long; too short for analysis
1507 6: echo less than 5 examples long; too short for analysis
1508 7: echo rise exceeds 0.3s
1508 7: echo rise exceeds 0.3s
1509 8: echo decay time less than twice rise time
1509 8: echo decay time less than twice rise time
1510 9: large power level before echo
1510 9: large power level before echo
1511 10: large power level after echo
1511 10: large power level after echo
1512 11: poor fit to amplitude for estimation of decay time
1512 11: poor fit to amplitude for estimation of decay time
1513 12: poor fit to CCF phase variation for estimation of radial drift velocity
1513 12: poor fit to CCF phase variation for estimation of radial drift velocity
1514 13: height unresolvable echo: not valid height within 70 to 110 km
1514 13: height unresolvable echo: not valid height within 70 to 110 km
1515 14: height ambiguous echo: more then one possible height within 70 to 110 km
1515 14: height ambiguous echo: more then one possible height within 70 to 110 km
1516 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
1516 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
1517 16: oscilatory echo, indicating event most likely not an underdense echo
1517 16: oscilatory echo, indicating event most likely not an underdense echo
1518
1518
1519 17: phase difference in meteor Reestimation
1519 17: phase difference in meteor Reestimation
1520
1520
1521 Data Storage:
1521 Data Storage:
1522 Meteors for Wind Estimation (8):
1522 Meteors for Wind Estimation (8):
1523 Utc Time | Range Height
1523 Utc Time | Range Height
1524 Azimuth Zenith errorCosDir
1524 Azimuth Zenith errorCosDir
1525 VelRad errorVelRad
1525 VelRad errorVelRad
1526 Phase0 Phase1 Phase2 Phase3
1526 Phase0 Phase1 Phase2 Phase3
1527 TypeError
1527 TypeError
1528
1528
1529 '''
1529 '''
1530
1530
1531 def run(self, dataOut, hei_ref = None, tauindex = 0,
1531 def run(self, dataOut, hei_ref = None, tauindex = 0,
1532 phaseOffsets = None,
1532 phaseOffsets = None,
1533 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
1533 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
1534 noise_timeStep = 4, noise_multiple = 4,
1534 noise_timeStep = 4, noise_multiple = 4,
1535 multDet_timeLimit = 1, multDet_rangeLimit = 3,
1535 multDet_timeLimit = 1, multDet_rangeLimit = 3,
1536 phaseThresh = 20, SNRThresh = 5,
1536 phaseThresh = 20, SNRThresh = 5,
1537 hmin = 50, hmax=150, azimuth = 0,
1537 hmin = 50, hmax=150, azimuth = 0,
1538 channelPositions = None) :
1538 channelPositions = None) :
1539
1539
1540
1540
1541 #Getting Pairslist
1541 #Getting Pairslist
1542 if channelPositions is None:
1542 if channelPositions is None:
1543 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
1543 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
1544 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
1544 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
1545 meteorOps = SMOperations()
1545 meteorOps = SMOperations()
1546 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
1546 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
1547 heiRang = dataOut.getHeiRange()
1547 heiRang = dataOut.getHeiRange()
1548 #Get Beacon signal - No Beacon signal anymore
1548 #Get Beacon signal - No Beacon signal anymore
1549 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
1549 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
1550 #
1550 #
1551 # if hei_ref != None:
1551 # if hei_ref != None:
1552 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
1552 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
1553 #
1553 #
1554
1554
1555
1555
1556 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
1556 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
1557 # see if the user put in pre defined phase shifts
1557 # see if the user put in pre defined phase shifts
1558 voltsPShift = dataOut.data_pre.copy()
1558 voltsPShift = dataOut.data_pre.copy()
1559
1559
1560 # if predefinedPhaseShifts != None:
1560 # if predefinedPhaseShifts != None:
1561 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
1561 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
1562 #
1562 #
1563 # # elif beaconPhaseShifts:
1563 # # elif beaconPhaseShifts:
1564 # # #get hardware phase shifts using beacon signal
1564 # # #get hardware phase shifts using beacon signal
1565 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
1565 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
1566 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
1566 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
1567 #
1567 #
1568 # else:
1568 # else:
1569 # hardwarePhaseShifts = numpy.zeros(5)
1569 # hardwarePhaseShifts = numpy.zeros(5)
1570 #
1570 #
1571 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
1571 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
1572 # for i in range(self.dataOut.data_pre.shape[0]):
1572 # for i in range(self.dataOut.data_pre.shape[0]):
1573 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
1573 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
1574
1574
1575 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
1575 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
1576
1576
1577 #Remove DC
1577 #Remove DC
1578 voltsDC = numpy.mean(voltsPShift,1)
1578 voltsDC = numpy.mean(voltsPShift,1)
1579 voltsDC = numpy.mean(voltsDC,1)
1579 voltsDC = numpy.mean(voltsDC,1)
1580 for i in range(voltsDC.shape[0]):
1580 for i in range(voltsDC.shape[0]):
1581 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
1581 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
1582
1582
1583 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
1583 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
1584 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
1584 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
1585
1585
1586 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
1586 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
1587 #Coherent Detection
1587 #Coherent Detection
1588 if cohDetection:
1588 if cohDetection:
1589 #use coherent detection to get the net power
1589 #use coherent detection to get the net power
1590 cohDet_thresh = cohDet_thresh*numpy.pi/180
1590 cohDet_thresh = cohDet_thresh*numpy.pi/180
1591 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
1591 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
1592
1592
1593 #Non-coherent detection!
1593 #Non-coherent detection!
1594 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
1594 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
1595 #********** END OF COH/NON-COH POWER CALCULATION**********************
1595 #********** END OF COH/NON-COH POWER CALCULATION**********************
1596
1596
1597 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
1597 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
1598 #Get noise
1598 #Get noise
1599 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
1599 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
1600 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
1600 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
1601 #Get signal threshold
1601 #Get signal threshold
1602 signalThresh = noise_multiple*noise
1602 signalThresh = noise_multiple*noise
1603 #Meteor echoes detection
1603 #Meteor echoes detection
1604 listMeteors = self.__findMeteors(powerNet, signalThresh)
1604 listMeteors = self.__findMeteors(powerNet, signalThresh)
1605 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
1605 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
1606
1606
1607 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
1607 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
1608 #Parameters
1608 #Parameters
1609 heiRange = dataOut.getHeiRange()
1609 heiRange = dataOut.getHeiRange()
1610 rangeInterval = heiRange[1] - heiRange[0]
1610 rangeInterval = heiRange[1] - heiRange[0]
1611 rangeLimit = multDet_rangeLimit/rangeInterval
1611 rangeLimit = multDet_rangeLimit/rangeInterval
1612 timeLimit = multDet_timeLimit/dataOut.timeInterval
1612 timeLimit = multDet_timeLimit/dataOut.timeInterval
1613 #Multiple detection removals
1613 #Multiple detection removals
1614 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
1614 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
1615 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
1615 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
1616
1616
1617 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
1617 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
1618 #Parameters
1618 #Parameters
1619 phaseThresh = phaseThresh*numpy.pi/180
1619 phaseThresh = phaseThresh*numpy.pi/180
1620 thresh = [phaseThresh, noise_multiple, SNRThresh]
1620 thresh = [phaseThresh, noise_multiple, SNRThresh]
1621 #Meteor reestimation (Errors N 1, 6, 12, 17)
1621 #Meteor reestimation (Errors N 1, 6, 12, 17)
1622 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
1622 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
1623 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
1623 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
1624 #Estimation of decay times (Errors N 7, 8, 11)
1624 #Estimation of decay times (Errors N 7, 8, 11)
1625 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
1625 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
1626 #******************* END OF METEOR REESTIMATION *******************
1626 #******************* END OF METEOR REESTIMATION *******************
1627
1627
1628 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
1628 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
1629 #Calculating Radial Velocity (Error N 15)
1629 #Calculating Radial Velocity (Error N 15)
1630 radialStdThresh = 10
1630 radialStdThresh = 10
1631 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
1631 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
1632
1632
1633 if len(listMeteors4) > 0:
1633 if len(listMeteors4) > 0:
1634 #Setting New Array
1634 #Setting New Array
1635 date = dataOut.utctime
1635 date = dataOut.utctime
1636 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
1636 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
1637
1637
1638 #Correcting phase offset
1638 #Correcting phase offset
1639 if phaseOffsets != None:
1639 if phaseOffsets != None:
1640 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
1640 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
1641 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
1641 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
1642
1642
1643 #Second Pairslist
1643 #Second Pairslist
1644 pairsList = []
1644 pairsList = []
1645 pairx = (0,1)
1645 pairx = (0,1)
1646 pairy = (2,3)
1646 pairy = (2,3)
1647 pairsList.append(pairx)
1647 pairsList.append(pairx)
1648 pairsList.append(pairy)
1648 pairsList.append(pairy)
1649
1649
1650 jph = numpy.array([0,0,0,0])
1650 jph = numpy.array([0,0,0,0])
1651 h = (hmin,hmax)
1651 h = (hmin,hmax)
1652 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
1652 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
1653
1653
1654 # #Calculate AOA (Error N 3, 4)
1654 # #Calculate AOA (Error N 3, 4)
1655 # #JONES ET AL. 1998
1655 # #JONES ET AL. 1998
1656 # error = arrayParameters[:,-1]
1656 # error = arrayParameters[:,-1]
1657 # AOAthresh = numpy.pi/8
1657 # AOAthresh = numpy.pi/8
1658 # phases = -arrayParameters[:,9:13]
1658 # phases = -arrayParameters[:,9:13]
1659 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
1659 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
1660 #
1660 #
1661 # #Calculate Heights (Error N 13 and 14)
1661 # #Calculate Heights (Error N 13 and 14)
1662 # error = arrayParameters[:,-1]
1662 # error = arrayParameters[:,-1]
1663 # Ranges = arrayParameters[:,2]
1663 # Ranges = arrayParameters[:,2]
1664 # zenith = arrayParameters[:,5]
1664 # zenith = arrayParameters[:,5]
1665 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
1665 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
1666 # error = arrayParameters[:,-1]
1666 # error = arrayParameters[:,-1]
1667 #********************* END OF PARAMETERS CALCULATION **************************
1667 #********************* END OF PARAMETERS CALCULATION **************************
1668
1668
1669 #***************************+ PASS DATA TO NEXT STEP **********************
1669 #***************************+ PASS DATA TO NEXT STEP **********************
1670 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
1670 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
1671 dataOut.data_param = arrayParameters
1671 dataOut.data_param = arrayParameters
1672
1672
1673 if arrayParameters is None:
1673 if arrayParameters is None:
1674 dataOut.flagNoData = True
1674 dataOut.flagNoData = True
1675 else:
1675 else:
1676 dataOut.flagNoData = True
1676 dataOut.flagNoData = True
1677
1677
1678 return
1678 return
1679
1679
1680 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
1680 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
1681
1681
1682 minIndex = min(newheis[0])
1682 minIndex = min(newheis[0])
1683 maxIndex = max(newheis[0])
1683 maxIndex = max(newheis[0])
1684
1684
1685 voltage = voltage0[:,:,minIndex:maxIndex+1]
1685 voltage = voltage0[:,:,minIndex:maxIndex+1]
1686 nLength = voltage.shape[1]/n
1686 nLength = voltage.shape[1]/n
1687 nMin = 0
1687 nMin = 0
1688 nMax = 0
1688 nMax = 0
1689 phaseOffset = numpy.zeros((len(pairslist),n))
1689 phaseOffset = numpy.zeros((len(pairslist),n))
1690
1690
1691 for i in range(n):
1691 for i in range(n):
1692 nMax += nLength
1692 nMax += nLength
1693 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
1693 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
1694 phaseCCF = numpy.mean(phaseCCF, axis = 2)
1694 phaseCCF = numpy.mean(phaseCCF, axis = 2)
1695 phaseOffset[:,i] = phaseCCF.transpose()
1695 phaseOffset[:,i] = phaseCCF.transpose()
1696 nMin = nMax
1696 nMin = nMax
1697 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
1697 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
1698
1698
1699 #Remove Outliers
1699 #Remove Outliers
1700 factor = 2
1700 factor = 2
1701 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
1701 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
1702 dw = numpy.std(wt,axis = 1)
1702 dw = numpy.std(wt,axis = 1)
1703 dw = dw.reshape((dw.size,1))
1703 dw = dw.reshape((dw.size,1))
1704 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
1704 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
1705 phaseOffset[ind] = numpy.nan
1705 phaseOffset[ind] = numpy.nan
1706 phaseOffset = stats.nanmean(phaseOffset, axis=1)
1706 phaseOffset = stats.nanmean(phaseOffset, axis=1)
1707
1707
1708 return phaseOffset
1708 return phaseOffset
1709
1709
1710 def __shiftPhase(self, data, phaseShift):
1710 def __shiftPhase(self, data, phaseShift):
1711 #this will shift the phase of a complex number
1711 #this will shift the phase of a complex number
1712 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
1712 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
1713 return dataShifted
1713 return dataShifted
1714
1714
1715 def __estimatePhaseDifference(self, array, pairslist):
1715 def __estimatePhaseDifference(self, array, pairslist):
1716 nChannel = array.shape[0]
1716 nChannel = array.shape[0]
1717 nHeights = array.shape[2]
1717 nHeights = array.shape[2]
1718 numPairs = len(pairslist)
1718 numPairs = len(pairslist)
1719 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
1719 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
1720 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
1720 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
1721
1721
1722 #Correct phases
1722 #Correct phases
1723 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
1723 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
1724 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
1724 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
1725
1725
1726 if indDer[0].shape[0] > 0:
1726 if indDer[0].shape[0] > 0:
1727 for i in range(indDer[0].shape[0]):
1727 for i in range(indDer[0].shape[0]):
1728 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
1728 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
1729 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
1729 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
1730
1730
1731 # for j in range(numSides):
1731 # for j in range(numSides):
1732 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
1732 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
1733 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
1733 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
1734 #
1734 #
1735 #Linear
1735 #Linear
1736 phaseInt = numpy.zeros((numPairs,1))
1736 phaseInt = numpy.zeros((numPairs,1))
1737 angAllCCF = phaseCCF[:,[0,1,3,4],0]
1737 angAllCCF = phaseCCF[:,[0,1,3,4],0]
1738 for j in range(numPairs):
1738 for j in range(numPairs):
1739 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
1739 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
1740 phaseInt[j] = fit[1]
1740 phaseInt[j] = fit[1]
1741 #Phase Differences
1741 #Phase Differences
1742 phaseDiff = phaseInt - phaseCCF[:,2,:]
1742 phaseDiff = phaseInt - phaseCCF[:,2,:]
1743 phaseArrival = phaseInt.reshape(phaseInt.size)
1743 phaseArrival = phaseInt.reshape(phaseInt.size)
1744
1744
1745 #Dealias
1745 #Dealias
1746 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
1746 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
1747 # indAlias = numpy.where(phaseArrival > numpy.pi)
1747 # indAlias = numpy.where(phaseArrival > numpy.pi)
1748 # phaseArrival[indAlias] -= 2*numpy.pi
1748 # phaseArrival[indAlias] -= 2*numpy.pi
1749 # indAlias = numpy.where(phaseArrival < -numpy.pi)
1749 # indAlias = numpy.where(phaseArrival < -numpy.pi)
1750 # phaseArrival[indAlias] += 2*numpy.pi
1750 # phaseArrival[indAlias] += 2*numpy.pi
1751
1751
1752 return phaseDiff, phaseArrival
1752 return phaseDiff, phaseArrival
1753
1753
1754 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
1754 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
1755 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
1755 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
1756 #find the phase shifts of each channel over 1 second intervals
1756 #find the phase shifts of each channel over 1 second intervals
1757 #only look at ranges below the beacon signal
1757 #only look at ranges below the beacon signal
1758 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
1758 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
1759 numBlocks = int(volts.shape[1]/numProfPerBlock)
1759 numBlocks = int(volts.shape[1]/numProfPerBlock)
1760 numHeights = volts.shape[2]
1760 numHeights = volts.shape[2]
1761 nChannel = volts.shape[0]
1761 nChannel = volts.shape[0]
1762 voltsCohDet = volts.copy()
1762 voltsCohDet = volts.copy()
1763
1763
1764 pairsarray = numpy.array(pairslist)
1764 pairsarray = numpy.array(pairslist)
1765 indSides = pairsarray[:,1]
1765 indSides = pairsarray[:,1]
1766 # indSides = numpy.array(range(nChannel))
1766 # indSides = numpy.array(range(nChannel))
1767 # indSides = numpy.delete(indSides, indCenter)
1767 # indSides = numpy.delete(indSides, indCenter)
1768 #
1768 #
1769 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
1769 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
1770 listBlocks = numpy.array_split(volts, numBlocks, 1)
1770 listBlocks = numpy.array_split(volts, numBlocks, 1)
1771
1771
1772 startInd = 0
1772 startInd = 0
1773 endInd = 0
1773 endInd = 0
1774
1774
1775 for i in range(numBlocks):
1775 for i in range(numBlocks):
1776 startInd = endInd
1776 startInd = endInd
1777 endInd = endInd + listBlocks[i].shape[1]
1777 endInd = endInd + listBlocks[i].shape[1]
1778
1778
1779 arrayBlock = listBlocks[i]
1779 arrayBlock = listBlocks[i]
1780 # arrayBlockCenter = listCenter[i]
1780 # arrayBlockCenter = listCenter[i]
1781
1781
1782 #Estimate the Phase Difference
1782 #Estimate the Phase Difference
1783 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
1783 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
1784 #Phase Difference RMS
1784 #Phase Difference RMS
1785 arrayPhaseRMS = numpy.abs(phaseDiff)
1785 arrayPhaseRMS = numpy.abs(phaseDiff)
1786 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
1786 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
1787 indPhase = numpy.where(phaseRMSaux==4)
1787 indPhase = numpy.where(phaseRMSaux==4)
1788 #Shifting
1788 #Shifting
1789 if indPhase[0].shape[0] > 0:
1789 if indPhase[0].shape[0] > 0:
1790 for j in range(indSides.size):
1790 for j in range(indSides.size):
1791 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
1791 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
1792 voltsCohDet[:,startInd:endInd,:] = arrayBlock
1792 voltsCohDet[:,startInd:endInd,:] = arrayBlock
1793
1793
1794 return voltsCohDet
1794 return voltsCohDet
1795
1795
1796 def __calculateCCF(self, volts, pairslist ,laglist):
1796 def __calculateCCF(self, volts, pairslist ,laglist):
1797
1797
1798 nHeights = volts.shape[2]
1798 nHeights = volts.shape[2]
1799 nPoints = volts.shape[1]
1799 nPoints = volts.shape[1]
1800 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
1800 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
1801
1801
1802 for i in range(len(pairslist)):
1802 for i in range(len(pairslist)):
1803 volts1 = volts[pairslist[i][0]]
1803 volts1 = volts[pairslist[i][0]]
1804 volts2 = volts[pairslist[i][1]]
1804 volts2 = volts[pairslist[i][1]]
1805
1805
1806 for t in range(len(laglist)):
1806 for t in range(len(laglist)):
1807 idxT = laglist[t]
1807 idxT = laglist[t]
1808 if idxT >= 0:
1808 if idxT >= 0:
1809 vStacked = numpy.vstack((volts2[idxT:,:],
1809 vStacked = numpy.vstack((volts2[idxT:,:],
1810 numpy.zeros((idxT, nHeights),dtype='complex')))
1810 numpy.zeros((idxT, nHeights),dtype='complex')))
1811 else:
1811 else:
1812 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
1812 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
1813 volts2[:(nPoints + idxT),:]))
1813 volts2[:(nPoints + idxT),:]))
1814 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
1814 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
1815
1815
1816 vStacked = None
1816 vStacked = None
1817 return voltsCCF
1817 return voltsCCF
1818
1818
1819 def __getNoise(self, power, timeSegment, timeInterval):
1819 def __getNoise(self, power, timeSegment, timeInterval):
1820 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
1820 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
1821 numBlocks = int(power.shape[0]/numProfPerBlock)
1821 numBlocks = int(power.shape[0]/numProfPerBlock)
1822 numHeights = power.shape[1]
1822 numHeights = power.shape[1]
1823
1823
1824 listPower = numpy.array_split(power, numBlocks, 0)
1824 listPower = numpy.array_split(power, numBlocks, 0)
1825 noise = numpy.zeros((power.shape[0], power.shape[1]))
1825 noise = numpy.zeros((power.shape[0], power.shape[1]))
1826 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
1826 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
1827
1827
1828 startInd = 0
1828 startInd = 0
1829 endInd = 0
1829 endInd = 0
1830
1830
1831 for i in range(numBlocks): #split por canal
1831 for i in range(numBlocks): #split por canal
1832 startInd = endInd
1832 startInd = endInd
1833 endInd = endInd + listPower[i].shape[0]
1833 endInd = endInd + listPower[i].shape[0]
1834
1834
1835 arrayBlock = listPower[i]
1835 arrayBlock = listPower[i]
1836 noiseAux = numpy.mean(arrayBlock, 0)
1836 noiseAux = numpy.mean(arrayBlock, 0)
1837 # noiseAux = numpy.median(noiseAux)
1837 # noiseAux = numpy.median(noiseAux)
1838 # noiseAux = numpy.mean(arrayBlock)
1838 # noiseAux = numpy.mean(arrayBlock)
1839 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
1839 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
1840
1840
1841 noiseAux1 = numpy.mean(arrayBlock)
1841 noiseAux1 = numpy.mean(arrayBlock)
1842 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
1842 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
1843
1843
1844 return noise, noise1
1844 return noise, noise1
1845
1845
1846 def __findMeteors(self, power, thresh):
1846 def __findMeteors(self, power, thresh):
1847 nProf = power.shape[0]
1847 nProf = power.shape[0]
1848 nHeights = power.shape[1]
1848 nHeights = power.shape[1]
1849 listMeteors = []
1849 listMeteors = []
1850
1850
1851 for i in range(nHeights):
1851 for i in range(nHeights):
1852 powerAux = power[:,i]
1852 powerAux = power[:,i]
1853 threshAux = thresh[:,i]
1853 threshAux = thresh[:,i]
1854
1854
1855 indUPthresh = numpy.where(powerAux > threshAux)[0]
1855 indUPthresh = numpy.where(powerAux > threshAux)[0]
1856 indDNthresh = numpy.where(powerAux <= threshAux)[0]
1856 indDNthresh = numpy.where(powerAux <= threshAux)[0]
1857
1857
1858 j = 0
1858 j = 0
1859
1859
1860 while (j < indUPthresh.size - 2):
1860 while (j < indUPthresh.size - 2):
1861 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
1861 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
1862 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
1862 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
1863 indDNthresh = indDNthresh[indDNAux]
1863 indDNthresh = indDNthresh[indDNAux]
1864
1864
1865 if (indDNthresh.size > 0):
1865 if (indDNthresh.size > 0):
1866 indEnd = indDNthresh[0] - 1
1866 indEnd = indDNthresh[0] - 1
1867 indInit = indUPthresh[j] if isinstance(indUPthresh[j], (int, float)) else indUPthresh[j][0] ##CHECK!!!!
1867 indInit = indUPthresh[j] if isinstance(indUPthresh[j], (int, float)) else indUPthresh[j][0] ##CHECK!!!!
1868
1868
1869 meteor = powerAux[indInit:indEnd + 1]
1869 meteor = powerAux[indInit:indEnd + 1]
1870 indPeak = meteor.argmax() + indInit
1870 indPeak = meteor.argmax() + indInit
1871 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
1871 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
1872
1872
1873 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
1873 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
1874 j = numpy.where(indUPthresh == indEnd)[0] + 1
1874 j = numpy.where(indUPthresh == indEnd)[0] + 1
1875 else: j+=1
1875 else: j+=1
1876 else: j+=1
1876 else: j+=1
1877
1877
1878 return listMeteors
1878 return listMeteors
1879
1879
1880 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
1880 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
1881
1881
1882 arrayMeteors = numpy.asarray(listMeteors)
1882 arrayMeteors = numpy.asarray(listMeteors)
1883 listMeteors1 = []
1883 listMeteors1 = []
1884
1884
1885 while arrayMeteors.shape[0] > 0:
1885 while arrayMeteors.shape[0] > 0:
1886 FLAs = arrayMeteors[:,4]
1886 FLAs = arrayMeteors[:,4]
1887 maxFLA = FLAs.argmax()
1887 maxFLA = FLAs.argmax()
1888 listMeteors1.append(arrayMeteors[maxFLA,:])
1888 listMeteors1.append(arrayMeteors[maxFLA,:])
1889
1889
1890 MeteorInitTime = arrayMeteors[maxFLA,1]
1890 MeteorInitTime = arrayMeteors[maxFLA,1]
1891 MeteorEndTime = arrayMeteors[maxFLA,3]
1891 MeteorEndTime = arrayMeteors[maxFLA,3]
1892 MeteorHeight = arrayMeteors[maxFLA,0]
1892 MeteorHeight = arrayMeteors[maxFLA,0]
1893
1893
1894 #Check neighborhood
1894 #Check neighborhood
1895 maxHeightIndex = MeteorHeight + rangeLimit
1895 maxHeightIndex = MeteorHeight + rangeLimit
1896 minHeightIndex = MeteorHeight - rangeLimit
1896 minHeightIndex = MeteorHeight - rangeLimit
1897 minTimeIndex = MeteorInitTime - timeLimit
1897 minTimeIndex = MeteorInitTime - timeLimit
1898 maxTimeIndex = MeteorEndTime + timeLimit
1898 maxTimeIndex = MeteorEndTime + timeLimit
1899
1899
1900 #Check Heights
1900 #Check Heights
1901 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
1901 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
1902 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
1902 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
1903 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
1903 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
1904
1904
1905 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
1905 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
1906
1906
1907 return listMeteors1
1907 return listMeteors1
1908
1908
1909 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
1909 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
1910 numHeights = volts.shape[2]
1910 numHeights = volts.shape[2]
1911 nChannel = volts.shape[0]
1911 nChannel = volts.shape[0]
1912
1912
1913 thresholdPhase = thresh[0]
1913 thresholdPhase = thresh[0]
1914 thresholdNoise = thresh[1]
1914 thresholdNoise = thresh[1]
1915 thresholdDB = float(thresh[2])
1915 thresholdDB = float(thresh[2])
1916
1916
1917 thresholdDB1 = 10**(thresholdDB/10)
1917 thresholdDB1 = 10**(thresholdDB/10)
1918 pairsarray = numpy.array(pairslist)
1918 pairsarray = numpy.array(pairslist)
1919 indSides = pairsarray[:,1]
1919 indSides = pairsarray[:,1]
1920
1920
1921 pairslist1 = list(pairslist)
1921 pairslist1 = list(pairslist)
1922 pairslist1.append((0,4))
1922 pairslist1.append((0,4))
1923 pairslist1.append((1,3))
1923 pairslist1.append((1,3))
1924
1924
1925 listMeteors1 = []
1925 listMeteors1 = []
1926 listPowerSeries = []
1926 listPowerSeries = []
1927 listVoltageSeries = []
1927 listVoltageSeries = []
1928 #volts has the war data
1928 #volts has the war data
1929
1929
1930 if frequency == 30.175e6:
1930 if frequency == 30.175e6:
1931 timeLag = 45*10**-3
1931 timeLag = 45*10**-3
1932 else:
1932 else:
1933 timeLag = 15*10**-3
1933 timeLag = 15*10**-3
1934 lag = int(numpy.ceil(timeLag/timeInterval))
1934 lag = int(numpy.ceil(timeLag/timeInterval))
1935
1935
1936 for i in range(len(listMeteors)):
1936 for i in range(len(listMeteors)):
1937
1937
1938 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
1938 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
1939 meteorAux = numpy.zeros(16)
1939 meteorAux = numpy.zeros(16)
1940
1940
1941 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
1941 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
1942 mHeight = int(listMeteors[i][0])
1942 mHeight = int(listMeteors[i][0])
1943 mStart = int(listMeteors[i][1])
1943 mStart = int(listMeteors[i][1])
1944 mPeak = int(listMeteors[i][2])
1944 mPeak = int(listMeteors[i][2])
1945 mEnd = int(listMeteors[i][3])
1945 mEnd = int(listMeteors[i][3])
1946
1946
1947 #get the volt data between the start and end times of the meteor
1947 #get the volt data between the start and end times of the meteor
1948 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
1948 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
1949 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
1949 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
1950
1950
1951 #3.6. Phase Difference estimation
1951 #3.6. Phase Difference estimation
1952 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
1952 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
1953
1953
1954 #3.7. Phase difference removal & meteor start, peak and end times reestimated
1954 #3.7. Phase difference removal & meteor start, peak and end times reestimated
1955 #meteorVolts0.- all Channels, all Profiles
1955 #meteorVolts0.- all Channels, all Profiles
1956 meteorVolts0 = volts[:,:,mHeight]
1956 meteorVolts0 = volts[:,:,mHeight]
1957 meteorThresh = noise[:,mHeight]*thresholdNoise
1957 meteorThresh = noise[:,mHeight]*thresholdNoise
1958 meteorNoise = noise[:,mHeight]
1958 meteorNoise = noise[:,mHeight]
1959 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
1959 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
1960 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
1960 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
1961
1961
1962 #Times reestimation
1962 #Times reestimation
1963 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
1963 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
1964 if mStart1.size > 0:
1964 if mStart1.size > 0:
1965 mStart1 = mStart1[-1] + 1
1965 mStart1 = mStart1[-1] + 1
1966
1966
1967 else:
1967 else:
1968 mStart1 = mPeak
1968 mStart1 = mPeak
1969
1969
1970 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
1970 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
1971 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
1971 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
1972 if mEndDecayTime1.size == 0:
1972 if mEndDecayTime1.size == 0:
1973 mEndDecayTime1 = powerNet0.size
1973 mEndDecayTime1 = powerNet0.size
1974 else:
1974 else:
1975 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
1975 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
1976 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
1976 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
1977
1977
1978 #meteorVolts1.- all Channels, from start to end
1978 #meteorVolts1.- all Channels, from start to end
1979 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
1979 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
1980 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
1980 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
1981 if meteorVolts2.shape[1] == 0:
1981 if meteorVolts2.shape[1] == 0:
1982 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
1982 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
1983 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
1983 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
1984 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
1984 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
1985 ##################### END PARAMETERS REESTIMATION #########################
1985 ##################### END PARAMETERS REESTIMATION #########################
1986
1986
1987 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
1987 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
1988 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
1988 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
1989 if meteorVolts2.shape[1] > 0:
1989 if meteorVolts2.shape[1] > 0:
1990 #Phase Difference re-estimation
1990 #Phase Difference re-estimation
1991 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
1991 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
1992 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
1992 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
1993 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
1993 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
1994 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
1994 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
1995 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
1995 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
1996
1996
1997 #Phase Difference RMS
1997 #Phase Difference RMS
1998 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
1998 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
1999 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
1999 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
2000 #Data from Meteor
2000 #Data from Meteor
2001 mPeak1 = powerNet1.argmax() + mStart1
2001 mPeak1 = powerNet1.argmax() + mStart1
2002 mPeakPower1 = powerNet1.max()
2002 mPeakPower1 = powerNet1.max()
2003 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
2003 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
2004 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
2004 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
2005 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
2005 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
2006 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
2006 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
2007 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
2007 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
2008 #Vectorize
2008 #Vectorize
2009 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
2009 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
2010 meteorAux[7:11] = phaseDiffint[0:4]
2010 meteorAux[7:11] = phaseDiffint[0:4]
2011
2011
2012 #Rejection Criterions
2012 #Rejection Criterions
2013 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
2013 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
2014 meteorAux[-1] = 17
2014 meteorAux[-1] = 17
2015 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
2015 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
2016 meteorAux[-1] = 1
2016 meteorAux[-1] = 1
2017
2017
2018
2018
2019 else:
2019 else:
2020 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
2020 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
2021 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
2021 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
2022 PowerSeries = 0
2022 PowerSeries = 0
2023
2023
2024 listMeteors1.append(meteorAux)
2024 listMeteors1.append(meteorAux)
2025 listPowerSeries.append(PowerSeries)
2025 listPowerSeries.append(PowerSeries)
2026 listVoltageSeries.append(meteorVolts1)
2026 listVoltageSeries.append(meteorVolts1)
2027
2027
2028 return listMeteors1, listPowerSeries, listVoltageSeries
2028 return listMeteors1, listPowerSeries, listVoltageSeries
2029
2029
2030 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
2030 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
2031
2031
2032 threshError = 10
2032 threshError = 10
2033 #Depending if it is 30 or 50 MHz
2033 #Depending if it is 30 or 50 MHz
2034 if frequency == 30.175e6:
2034 if frequency == 30.175e6:
2035 timeLag = 45*10**-3
2035 timeLag = 45*10**-3
2036 else:
2036 else:
2037 timeLag = 15*10**-3
2037 timeLag = 15*10**-3
2038 lag = int(numpy.ceil(timeLag/timeInterval))
2038 lag = int(numpy.ceil(timeLag/timeInterval))
2039
2039
2040 listMeteors1 = []
2040 listMeteors1 = []
2041
2041
2042 for i in range(len(listMeteors)):
2042 for i in range(len(listMeteors)):
2043 meteorPower = listPower[i]
2043 meteorPower = listPower[i]
2044 meteorAux = listMeteors[i]
2044 meteorAux = listMeteors[i]
2045
2045
2046 if meteorAux[-1] == 0:
2046 if meteorAux[-1] == 0:
2047
2047
2048 try:
2048 try:
2049 indmax = meteorPower.argmax()
2049 indmax = meteorPower.argmax()
2050 indlag = indmax + lag
2050 indlag = indmax + lag
2051
2051
2052 y = meteorPower[indlag:]
2052 y = meteorPower[indlag:]
2053 x = numpy.arange(0, y.size)*timeLag
2053 x = numpy.arange(0, y.size)*timeLag
2054
2054
2055 #first guess
2055 #first guess
2056 a = y[0]
2056 a = y[0]
2057 tau = timeLag
2057 tau = timeLag
2058 #exponential fit
2058 #exponential fit
2059 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
2059 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
2060 y1 = self.__exponential_function(x, *popt)
2060 y1 = self.__exponential_function(x, *popt)
2061 #error estimation
2061 #error estimation
2062 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
2062 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
2063
2063
2064 decayTime = popt[1]
2064 decayTime = popt[1]
2065 riseTime = indmax*timeInterval
2065 riseTime = indmax*timeInterval
2066 meteorAux[11:13] = [decayTime, error]
2066 meteorAux[11:13] = [decayTime, error]
2067
2067
2068 #Table items 7, 8 and 11
2068 #Table items 7, 8 and 11
2069 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
2069 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
2070 meteorAux[-1] = 7
2070 meteorAux[-1] = 7
2071 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
2071 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
2072 meteorAux[-1] = 8
2072 meteorAux[-1] = 8
2073 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
2073 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
2074 meteorAux[-1] = 11
2074 meteorAux[-1] = 11
2075
2075
2076
2076
2077 except:
2077 except:
2078 meteorAux[-1] = 11
2078 meteorAux[-1] = 11
2079
2079
2080
2080
2081 listMeteors1.append(meteorAux)
2081 listMeteors1.append(meteorAux)
2082
2082
2083 return listMeteors1
2083 return listMeteors1
2084
2084
2085 #Exponential Function
2085 #Exponential Function
2086
2086
2087 def __exponential_function(self, x, a, tau):
2087 def __exponential_function(self, x, a, tau):
2088 y = a*numpy.exp(-x/tau)
2088 y = a*numpy.exp(-x/tau)
2089 return y
2089 return y
2090
2090
2091 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
2091 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
2092
2092
2093 pairslist1 = list(pairslist)
2093 pairslist1 = list(pairslist)
2094 pairslist1.append((0,4))
2094 pairslist1.append((0,4))
2095 pairslist1.append((1,3))
2095 pairslist1.append((1,3))
2096 numPairs = len(pairslist1)
2096 numPairs = len(pairslist1)
2097 #Time Lag
2097 #Time Lag
2098 timeLag = 45*10**-3
2098 timeLag = 45*10**-3
2099 c = 3e8
2099 c = 3e8
2100 lag = numpy.ceil(timeLag/timeInterval)
2100 lag = numpy.ceil(timeLag/timeInterval)
2101 freq = 30.175e6
2101 freq = 30.175e6
2102
2102
2103 listMeteors1 = []
2103 listMeteors1 = []
2104
2104
2105 for i in range(len(listMeteors)):
2105 for i in range(len(listMeteors)):
2106 meteorAux = listMeteors[i]
2106 meteorAux = listMeteors[i]
2107 if meteorAux[-1] == 0:
2107 if meteorAux[-1] == 0:
2108 mStart = listMeteors[i][1]
2108 mStart = listMeteors[i][1]
2109 mPeak = listMeteors[i][2]
2109 mPeak = listMeteors[i][2]
2110 mLag = mPeak - mStart + lag
2110 mLag = mPeak - mStart + lag
2111
2111
2112 #get the volt data between the start and end times of the meteor
2112 #get the volt data between the start and end times of the meteor
2113 meteorVolts = listVolts[i]
2113 meteorVolts = listVolts[i]
2114 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
2114 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
2115
2115
2116 #Get CCF
2116 #Get CCF
2117 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
2117 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
2118
2118
2119 #Method 2
2119 #Method 2
2120 slopes = numpy.zeros(numPairs)
2120 slopes = numpy.zeros(numPairs)
2121 time = numpy.array([-2,-1,1,2])*timeInterval
2121 time = numpy.array([-2,-1,1,2])*timeInterval
2122 angAllCCF = numpy.angle(allCCFs[:,[0,4,2,3],0])
2122 angAllCCF = numpy.angle(allCCFs[:,[0,4,2,3],0])
2123
2123
2124 #Correct phases
2124 #Correct phases
2125 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
2125 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
2126 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2126 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2127
2127
2128 if indDer[0].shape[0] > 0:
2128 if indDer[0].shape[0] > 0:
2129 for i in range(indDer[0].shape[0]):
2129 for i in range(indDer[0].shape[0]):
2130 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
2130 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
2131 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
2131 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
2132
2132
2133 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
2133 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
2134 for j in range(numPairs):
2134 for j in range(numPairs):
2135 fit = stats.linregress(time, angAllCCF[j,:])
2135 fit = stats.linregress(time, angAllCCF[j,:])
2136 slopes[j] = fit[0]
2136 slopes[j] = fit[0]
2137
2137
2138 #Remove Outlier
2138 #Remove Outlier
2139 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
2139 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
2140 # slopes = numpy.delete(slopes,indOut)
2140 # slopes = numpy.delete(slopes,indOut)
2141 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
2141 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
2142 # slopes = numpy.delete(slopes,indOut)
2142 # slopes = numpy.delete(slopes,indOut)
2143
2143
2144 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
2144 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
2145 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
2145 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
2146 meteorAux[-2] = radialError
2146 meteorAux[-2] = radialError
2147 meteorAux[-3] = radialVelocity
2147 meteorAux[-3] = radialVelocity
2148
2148
2149 #Setting Error
2149 #Setting Error
2150 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
2150 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
2151 if numpy.abs(radialVelocity) > 200:
2151 if numpy.abs(radialVelocity) > 200:
2152 meteorAux[-1] = 15
2152 meteorAux[-1] = 15
2153 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
2153 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
2154 elif radialError > radialStdThresh:
2154 elif radialError > radialStdThresh:
2155 meteorAux[-1] = 12
2155 meteorAux[-1] = 12
2156
2156
2157 listMeteors1.append(meteorAux)
2157 listMeteors1.append(meteorAux)
2158 return listMeteors1
2158 return listMeteors1
2159
2159
2160 def __setNewArrays(self, listMeteors, date, heiRang):
2160 def __setNewArrays(self, listMeteors, date, heiRang):
2161
2161
2162 #New arrays
2162 #New arrays
2163 arrayMeteors = numpy.array(listMeteors)
2163 arrayMeteors = numpy.array(listMeteors)
2164 arrayParameters = numpy.zeros((len(listMeteors), 13))
2164 arrayParameters = numpy.zeros((len(listMeteors), 13))
2165
2165
2166 #Date inclusion
2166 #Date inclusion
2167 # date = re.findall(r'\((.*?)\)', date)
2167 # date = re.findall(r'\((.*?)\)', date)
2168 # date = date[0].split(',')
2168 # date = date[0].split(',')
2169 # date = map(int, date)
2169 # date = map(int, date)
2170 #
2170 #
2171 # if len(date)<6:
2171 # if len(date)<6:
2172 # date.append(0)
2172 # date.append(0)
2173 #
2173 #
2174 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
2174 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
2175 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
2175 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
2176 arrayDate = numpy.tile(date, (len(listMeteors)))
2176 arrayDate = numpy.tile(date, (len(listMeteors)))
2177
2177
2178 #Meteor array
2178 #Meteor array
2179 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
2179 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
2180 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
2180 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
2181
2181
2182 #Parameters Array
2182 #Parameters Array
2183 arrayParameters[:,0] = arrayDate #Date
2183 arrayParameters[:,0] = arrayDate #Date
2184 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
2184 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
2185 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
2185 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
2186 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
2186 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
2187 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
2187 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
2188
2188
2189
2189
2190 return arrayParameters
2190 return arrayParameters
2191
2191
2192 class CorrectSMPhases(Operation):
2192 class CorrectSMPhases(Operation):
2193
2193
2194 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
2194 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
2195
2195
2196 arrayParameters = dataOut.data_param
2196 arrayParameters = dataOut.data_param
2197 pairsList = []
2197 pairsList = []
2198 pairx = (0,1)
2198 pairx = (0,1)
2199 pairy = (2,3)
2199 pairy = (2,3)
2200 pairsList.append(pairx)
2200 pairsList.append(pairx)
2201 pairsList.append(pairy)
2201 pairsList.append(pairy)
2202 jph = numpy.zeros(4)
2202 jph = numpy.zeros(4)
2203
2203
2204 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2204 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2205 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2205 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2206 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
2206 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
2207
2207
2208 meteorOps = SMOperations()
2208 meteorOps = SMOperations()
2209 if channelPositions is None:
2209 if channelPositions is None:
2210 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2210 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2211 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2211 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2212
2212
2213 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2213 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2214 h = (hmin,hmax)
2214 h = (hmin,hmax)
2215
2215
2216 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2216 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2217
2217
2218 dataOut.data_param = arrayParameters
2218 dataOut.data_param = arrayParameters
2219 return
2219 return
2220
2220
2221 class SMPhaseCalibration(Operation):
2221 class SMPhaseCalibration(Operation):
2222
2222
2223 __buffer = None
2223 __buffer = None
2224
2224
2225 __initime = None
2225 __initime = None
2226
2226
2227 __dataReady = False
2227 __dataReady = False
2228
2228
2229 __isConfig = False
2229 __isConfig = False
2230
2230
2231 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
2231 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
2232
2232
2233 dataTime = currentTime + paramInterval
2233 dataTime = currentTime + paramInterval
2234 deltaTime = dataTime - initTime
2234 deltaTime = dataTime - initTime
2235
2235
2236 if deltaTime >= outputInterval or deltaTime < 0:
2236 if deltaTime >= outputInterval or deltaTime < 0:
2237 return True
2237 return True
2238
2238
2239 return False
2239 return False
2240
2240
2241 def __getGammas(self, pairs, d, phases):
2241 def __getGammas(self, pairs, d, phases):
2242 gammas = numpy.zeros(2)
2242 gammas = numpy.zeros(2)
2243
2243
2244 for i in range(len(pairs)):
2244 for i in range(len(pairs)):
2245
2245
2246 pairi = pairs[i]
2246 pairi = pairs[i]
2247
2247
2248 phip3 = phases[:,pairi[1]]
2248 phip3 = phases[:,pairi[1]]
2249 d3 = d[pairi[1]]
2249 d3 = d[pairi[1]]
2250 phip2 = phases[:,pairi[0]]
2250 phip2 = phases[:,pairi[0]]
2251 d2 = d[pairi[0]]
2251 d2 = d[pairi[0]]
2252 #Calculating gamma
2252 #Calculating gamma
2253 # jdcos = alp1/(k*d1)
2253 # jdcos = alp1/(k*d1)
2254 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
2254 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
2255 jgamma = -phip2*d3/d2 - phip3
2255 jgamma = -phip2*d3/d2 - phip3
2256 jgamma = numpy.angle(numpy.exp(1j*jgamma))
2256 jgamma = numpy.angle(numpy.exp(1j*jgamma))
2257 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
2257 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
2258 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
2258 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
2259
2259
2260 #Revised distribution
2260 #Revised distribution
2261 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
2261 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
2262
2262
2263 #Histogram
2263 #Histogram
2264 nBins = 64.0
2264 nBins = 64.0
2265 rmin = -0.5*numpy.pi
2265 rmin = -0.5*numpy.pi
2266 rmax = 0.5*numpy.pi
2266 rmax = 0.5*numpy.pi
2267 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
2267 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
2268
2268
2269 meteorsY = phaseHisto[0]
2269 meteorsY = phaseHisto[0]
2270 phasesX = phaseHisto[1][:-1]
2270 phasesX = phaseHisto[1][:-1]
2271 width = phasesX[1] - phasesX[0]
2271 width = phasesX[1] - phasesX[0]
2272 phasesX += width/2
2272 phasesX += width/2
2273
2273
2274 #Gaussian aproximation
2274 #Gaussian aproximation
2275 bpeak = meteorsY.argmax()
2275 bpeak = meteorsY.argmax()
2276 peak = meteorsY.max()
2276 peak = meteorsY.max()
2277 jmin = bpeak - 5
2277 jmin = bpeak - 5
2278 jmax = bpeak + 5 + 1
2278 jmax = bpeak + 5 + 1
2279
2279
2280 if jmin<0:
2280 if jmin<0:
2281 jmin = 0
2281 jmin = 0
2282 jmax = 6
2282 jmax = 6
2283 elif jmax > meteorsY.size:
2283 elif jmax > meteorsY.size:
2284 jmin = meteorsY.size - 6
2284 jmin = meteorsY.size - 6
2285 jmax = meteorsY.size
2285 jmax = meteorsY.size
2286
2286
2287 x0 = numpy.array([peak,bpeak,50])
2287 x0 = numpy.array([peak,bpeak,50])
2288 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
2288 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
2289
2289
2290 #Gammas
2290 #Gammas
2291 gammas[i] = coeff[0][1]
2291 gammas[i] = coeff[0][1]
2292
2292
2293 return gammas
2293 return gammas
2294
2294
2295 def __residualFunction(self, coeffs, y, t):
2295 def __residualFunction(self, coeffs, y, t):
2296
2296
2297 return y - self.__gauss_function(t, coeffs)
2297 return y - self.__gauss_function(t, coeffs)
2298
2298
2299 def __gauss_function(self, t, coeffs):
2299 def __gauss_function(self, t, coeffs):
2300
2300
2301 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
2301 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
2302
2302
2303 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
2303 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
2304 meteorOps = SMOperations()
2304 meteorOps = SMOperations()
2305 nchan = 4
2305 nchan = 4
2306 pairx = pairsList[0]
2306 pairx = pairsList[0]
2307 pairy = pairsList[1]
2307 pairy = pairsList[1]
2308 center_xangle = 0
2308 center_xangle = 0
2309 center_yangle = 0
2309 center_yangle = 0
2310 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
2310 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
2311 ntimes = len(range_angle)
2311 ntimes = len(range_angle)
2312
2312
2313 nstepsx = 20.0
2313 nstepsx = 20.0
2314 nstepsy = 20.0
2314 nstepsy = 20.0
2315
2315
2316 for iz in range(ntimes):
2316 for iz in range(ntimes):
2317 min_xangle = -range_angle[iz]/2 + center_xangle
2317 min_xangle = -range_angle[iz]/2 + center_xangle
2318 max_xangle = range_angle[iz]/2 + center_xangle
2318 max_xangle = range_angle[iz]/2 + center_xangle
2319 min_yangle = -range_angle[iz]/2 + center_yangle
2319 min_yangle = -range_angle[iz]/2 + center_yangle
2320 max_yangle = range_angle[iz]/2 + center_yangle
2320 max_yangle = range_angle[iz]/2 + center_yangle
2321
2321
2322 inc_x = (max_xangle-min_xangle)/nstepsx
2322 inc_x = (max_xangle-min_xangle)/nstepsx
2323 inc_y = (max_yangle-min_yangle)/nstepsy
2323 inc_y = (max_yangle-min_yangle)/nstepsy
2324
2324
2325 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
2325 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
2326 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
2326 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
2327 penalty = numpy.zeros((nstepsx,nstepsy))
2327 penalty = numpy.zeros((nstepsx,nstepsy))
2328 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
2328 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
2329 jph = numpy.zeros(nchan)
2329 jph = numpy.zeros(nchan)
2330
2330
2331 # Iterations looking for the offset
2331 # Iterations looking for the offset
2332 for iy in range(int(nstepsy)):
2332 for iy in range(int(nstepsy)):
2333 for ix in range(int(nstepsx)):
2333 for ix in range(int(nstepsx)):
2334 jph[pairy[1]] = alpha_y[iy]
2334 jph[pairy[1]] = alpha_y[iy]
2335 jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
2335 jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
2336
2336
2337 jph[pairx[1]] = alpha_x[ix]
2337 jph[pairx[1]] = alpha_x[ix]
2338 jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
2338 jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
2339
2339
2340 jph_array[:,ix,iy] = jph
2340 jph_array[:,ix,iy] = jph
2341
2341
2342 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
2342 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
2343 error = meteorsArray1[:,-1]
2343 error = meteorsArray1[:,-1]
2344 ind1 = numpy.where(error==0)[0]
2344 ind1 = numpy.where(error==0)[0]
2345 penalty[ix,iy] = ind1.size
2345 penalty[ix,iy] = ind1.size
2346
2346
2347 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
2347 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
2348 phOffset = jph_array[:,i,j]
2348 phOffset = jph_array[:,i,j]
2349
2349
2350 center_xangle = phOffset[pairx[1]]
2350 center_xangle = phOffset[pairx[1]]
2351 center_yangle = phOffset[pairy[1]]
2351 center_yangle = phOffset[pairy[1]]
2352
2352
2353 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
2353 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
2354 phOffset = phOffset*180/numpy.pi
2354 phOffset = phOffset*180/numpy.pi
2355 return phOffset
2355 return phOffset
2356
2356
2357
2357
2358 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
2358 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
2359
2359
2360 dataOut.flagNoData = True
2360 dataOut.flagNoData = True
2361 self.__dataReady = False
2361 self.__dataReady = False
2362 dataOut.outputInterval = nHours*3600
2362 dataOut.outputInterval = nHours*3600
2363
2363
2364 if self.__isConfig == False:
2364 if self.__isConfig == False:
2365 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2365 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2366 #Get Initial LTC time
2366 #Get Initial LTC time
2367 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2367 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2368 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2368 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2369
2369
2370 self.__isConfig = True
2370 self.__isConfig = True
2371
2371
2372 if self.__buffer is None:
2372 if self.__buffer is None:
2373 self.__buffer = dataOut.data_param.copy()
2373 self.__buffer = dataOut.data_param.copy()
2374
2374
2375 else:
2375 else:
2376 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2376 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2377
2377
2378 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2378 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2379
2379
2380 if self.__dataReady:
2380 if self.__dataReady:
2381 dataOut.utctimeInit = self.__initime
2381 dataOut.utctimeInit = self.__initime
2382 self.__initime += dataOut.outputInterval #to erase time offset
2382 self.__initime += dataOut.outputInterval #to erase time offset
2383
2383
2384 freq = dataOut.frequency
2384 freq = dataOut.frequency
2385 c = dataOut.C #m/s
2385 c = dataOut.C #m/s
2386 lamb = c/freq
2386 lamb = c/freq
2387 k = 2*numpy.pi/lamb
2387 k = 2*numpy.pi/lamb
2388 azimuth = 0
2388 azimuth = 0
2389 h = (hmin, hmax)
2389 h = (hmin, hmax)
2390 pairs = ((0,1),(2,3))
2390 pairs = ((0,1),(2,3))
2391
2391
2392 if channelPositions is None:
2392 if channelPositions is None:
2393 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2393 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2394 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2394 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2395 meteorOps = SMOperations()
2395 meteorOps = SMOperations()
2396 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2396 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2397
2397
2398 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
2398 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
2399
2399
2400 meteorsArray = self.__buffer
2400 meteorsArray = self.__buffer
2401 error = meteorsArray[:,-1]
2401 error = meteorsArray[:,-1]
2402 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
2402 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
2403 ind1 = numpy.where(boolError)[0]
2403 ind1 = numpy.where(boolError)[0]
2404 meteorsArray = meteorsArray[ind1,:]
2404 meteorsArray = meteorsArray[ind1,:]
2405 meteorsArray[:,-1] = 0
2405 meteorsArray[:,-1] = 0
2406 phases = meteorsArray[:,8:12]
2406 phases = meteorsArray[:,8:12]
2407
2407
2408 #Calculate Gammas
2408 #Calculate Gammas
2409 gammas = self.__getGammas(pairs, distances, phases)
2409 gammas = self.__getGammas(pairs, distances, phases)
2410 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
2410 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
2411 #Calculate Phases
2411 #Calculate Phases
2412 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
2412 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
2413 phasesOff = phasesOff.reshape((1,phasesOff.size))
2413 phasesOff = phasesOff.reshape((1,phasesOff.size))
2414 dataOut.data_output = -phasesOff
2414 dataOut.data_output = -phasesOff
2415 dataOut.flagNoData = False
2415 dataOut.flagNoData = False
2416 dataOut.channelList = pairslist0
2416 dataOut.channelList = pairslist0
2417 self.__buffer = None
2417 self.__buffer = None
2418
2418
2419
2419
2420 return
2420 return
2421
2421
2422 class SMOperations():
2422 class SMOperations():
2423
2423
2424 def __init__(self):
2424 def __init__(self):
2425
2425
2426 return
2426 return
2427
2427
2428 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
2428 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
2429
2429
2430 arrayParameters = arrayParameters0.copy()
2430 arrayParameters = arrayParameters0.copy()
2431 hmin = h[0]
2431 hmin = h[0]
2432 hmax = h[1]
2432 hmax = h[1]
2433
2433
2434 #Calculate AOA (Error N 3, 4)
2434 #Calculate AOA (Error N 3, 4)
2435 #JONES ET AL. 1998
2435 #JONES ET AL. 1998
2436 AOAthresh = numpy.pi/8
2436 AOAthresh = numpy.pi/8
2437 error = arrayParameters[:,-1]
2437 error = arrayParameters[:,-1]
2438 phases = -arrayParameters[:,8:12] + jph
2438 phases = -arrayParameters[:,8:12] + jph
2439 # phases = numpy.unwrap(phases)
2439 # phases = numpy.unwrap(phases)
2440 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
2440 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
2441
2441
2442 #Calculate Heights (Error N 13 and 14)
2442 #Calculate Heights (Error N 13 and 14)
2443 error = arrayParameters[:,-1]
2443 error = arrayParameters[:,-1]
2444 Ranges = arrayParameters[:,1]
2444 Ranges = arrayParameters[:,1]
2445 zenith = arrayParameters[:,4]
2445 zenith = arrayParameters[:,4]
2446 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
2446 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
2447
2447
2448 #----------------------- Get Final data ------------------------------------
2448 #----------------------- Get Final data ------------------------------------
2449 # error = arrayParameters[:,-1]
2449 # error = arrayParameters[:,-1]
2450 # ind1 = numpy.where(error==0)[0]
2450 # ind1 = numpy.where(error==0)[0]
2451 # arrayParameters = arrayParameters[ind1,:]
2451 # arrayParameters = arrayParameters[ind1,:]
2452
2452
2453 return arrayParameters
2453 return arrayParameters
2454
2454
2455 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
2455 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
2456
2456
2457 arrayAOA = numpy.zeros((phases.shape[0],3))
2457 arrayAOA = numpy.zeros((phases.shape[0],3))
2458 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
2458 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
2459
2459
2460 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
2460 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
2461 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
2461 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
2462 arrayAOA[:,2] = cosDirError
2462 arrayAOA[:,2] = cosDirError
2463
2463
2464 azimuthAngle = arrayAOA[:,0]
2464 azimuthAngle = arrayAOA[:,0]
2465 zenithAngle = arrayAOA[:,1]
2465 zenithAngle = arrayAOA[:,1]
2466
2466
2467 #Setting Error
2467 #Setting Error
2468 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
2468 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
2469 error[indError] = 0
2469 error[indError] = 0
2470 #Number 3: AOA not fesible
2470 #Number 3: AOA not fesible
2471 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
2471 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
2472 error[indInvalid] = 3
2472 error[indInvalid] = 3
2473 #Number 4: Large difference in AOAs obtained from different antenna baselines
2473 #Number 4: Large difference in AOAs obtained from different antenna baselines
2474 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
2474 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
2475 error[indInvalid] = 4
2475 error[indInvalid] = 4
2476 return arrayAOA, error
2476 return arrayAOA, error
2477
2477
2478 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
2478 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
2479
2479
2480 #Initializing some variables
2480 #Initializing some variables
2481 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
2481 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
2482 ang_aux = ang_aux.reshape(1,ang_aux.size)
2482 ang_aux = ang_aux.reshape(1,ang_aux.size)
2483
2483
2484 cosdir = numpy.zeros((arrayPhase.shape[0],2))
2484 cosdir = numpy.zeros((arrayPhase.shape[0],2))
2485 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
2485 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
2486
2486
2487
2487
2488 for i in range(2):
2488 for i in range(2):
2489 ph0 = arrayPhase[:,pairsList[i][0]]
2489 ph0 = arrayPhase[:,pairsList[i][0]]
2490 ph1 = arrayPhase[:,pairsList[i][1]]
2490 ph1 = arrayPhase[:,pairsList[i][1]]
2491 d0 = distances[pairsList[i][0]]
2491 d0 = distances[pairsList[i][0]]
2492 d1 = distances[pairsList[i][1]]
2492 d1 = distances[pairsList[i][1]]
2493
2493
2494 ph0_aux = ph0 + ph1
2494 ph0_aux = ph0 + ph1
2495 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
2495 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
2496 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
2496 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
2497 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
2497 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
2498 #First Estimation
2498 #First Estimation
2499 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
2499 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
2500
2500
2501 #Most-Accurate Second Estimation
2501 #Most-Accurate Second Estimation
2502 phi1_aux = ph0 - ph1
2502 phi1_aux = ph0 - ph1
2503 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
2503 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
2504 #Direction Cosine 1
2504 #Direction Cosine 1
2505 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
2505 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
2506
2506
2507 #Searching the correct Direction Cosine
2507 #Searching the correct Direction Cosine
2508 cosdir0_aux = cosdir0[:,i]
2508 cosdir0_aux = cosdir0[:,i]
2509 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
2509 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
2510 #Minimum Distance
2510 #Minimum Distance
2511 cosDiff = (cosdir1 - cosdir0_aux)**2
2511 cosDiff = (cosdir1 - cosdir0_aux)**2
2512 indcos = cosDiff.argmin(axis = 1)
2512 indcos = cosDiff.argmin(axis = 1)
2513 #Saving Value obtained
2513 #Saving Value obtained
2514 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
2514 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
2515
2515
2516 return cosdir0, cosdir
2516 return cosdir0, cosdir
2517
2517
2518 def __calculateAOA(self, cosdir, azimuth):
2518 def __calculateAOA(self, cosdir, azimuth):
2519 cosdirX = cosdir[:,0]
2519 cosdirX = cosdir[:,0]
2520 cosdirY = cosdir[:,1]
2520 cosdirY = cosdir[:,1]
2521
2521
2522 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
2522 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
2523 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
2523 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
2524 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
2524 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
2525
2525
2526 return angles
2526 return angles
2527
2527
2528 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
2528 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
2529
2529
2530 Ramb = 375 #Ramb = c/(2*PRF)
2530 Ramb = 375 #Ramb = c/(2*PRF)
2531 Re = 6371 #Earth Radius
2531 Re = 6371 #Earth Radius
2532 heights = numpy.zeros(Ranges.shape)
2532 heights = numpy.zeros(Ranges.shape)
2533
2533
2534 R_aux = numpy.array([0,1,2])*Ramb
2534 R_aux = numpy.array([0,1,2])*Ramb
2535 R_aux = R_aux.reshape(1,R_aux.size)
2535 R_aux = R_aux.reshape(1,R_aux.size)
2536
2536
2537 Ranges = Ranges.reshape(Ranges.size,1)
2537 Ranges = Ranges.reshape(Ranges.size,1)
2538
2538
2539 Ri = Ranges + R_aux
2539 Ri = Ranges + R_aux
2540 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
2540 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
2541
2541
2542 #Check if there is a height between 70 and 110 km
2542 #Check if there is a height between 70 and 110 km
2543 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
2543 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
2544 ind_h = numpy.where(h_bool == 1)[0]
2544 ind_h = numpy.where(h_bool == 1)[0]
2545
2545
2546 hCorr = hi[ind_h, :]
2546 hCorr = hi[ind_h, :]
2547 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
2547 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
2548
2548
2549 hCorr = hi[ind_hCorr]
2549 hCorr = hi[ind_hCorr]
2550 heights[ind_h] = hCorr
2550 heights[ind_h] = hCorr
2551
2551
2552 #Setting Error
2552 #Setting Error
2553 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
2553 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
2554 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
2554 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
2555 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
2555 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
2556 error[indError] = 0
2556 error[indError] = 0
2557 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
2557 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
2558 error[indInvalid2] = 14
2558 error[indInvalid2] = 14
2559 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
2559 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
2560 error[indInvalid1] = 13
2560 error[indInvalid1] = 13
2561
2561
2562 return heights, error
2562 return heights, error
2563
2563
2564 def getPhasePairs(self, channelPositions):
2564 def getPhasePairs(self, channelPositions):
2565 chanPos = numpy.array(channelPositions)
2565 chanPos = numpy.array(channelPositions)
2566 listOper = list(itertools.combinations(range(5),2))
2566 listOper = list(itertools.combinations(range(5),2))
2567
2567
2568 distances = numpy.zeros(4)
2568 distances = numpy.zeros(4)
2569 axisX = []
2569 axisX = []
2570 axisY = []
2570 axisY = []
2571 distX = numpy.zeros(3)
2571 distX = numpy.zeros(3)
2572 distY = numpy.zeros(3)
2572 distY = numpy.zeros(3)
2573 ix = 0
2573 ix = 0
2574 iy = 0
2574 iy = 0
2575
2575
2576 pairX = numpy.zeros((2,2))
2576 pairX = numpy.zeros((2,2))
2577 pairY = numpy.zeros((2,2))
2577 pairY = numpy.zeros((2,2))
2578
2578
2579 for i in range(len(listOper)):
2579 for i in range(len(listOper)):
2580 pairi = listOper[i]
2580 pairi = listOper[i]
2581
2581
2582 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
2582 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
2583
2583
2584 if posDif[0] == 0:
2584 if posDif[0] == 0:
2585 axisY.append(pairi)
2585 axisY.append(pairi)
2586 distY[iy] = posDif[1]
2586 distY[iy] = posDif[1]
2587 iy += 1
2587 iy += 1
2588 elif posDif[1] == 0:
2588 elif posDif[1] == 0:
2589 axisX.append(pairi)
2589 axisX.append(pairi)
2590 distX[ix] = posDif[0]
2590 distX[ix] = posDif[0]
2591 ix += 1
2591 ix += 1
2592
2592
2593 for i in range(2):
2593 for i in range(2):
2594 if i==0:
2594 if i==0:
2595 dist0 = distX
2595 dist0 = distX
2596 axis0 = axisX
2596 axis0 = axisX
2597 else:
2597 else:
2598 dist0 = distY
2598 dist0 = distY
2599 axis0 = axisY
2599 axis0 = axisY
2600
2600
2601 side = numpy.argsort(dist0)[:-1]
2601 side = numpy.argsort(dist0)[:-1]
2602 axis0 = numpy.array(axis0)[side,:]
2602 axis0 = numpy.array(axis0)[side,:]
2603 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
2603 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
2604 axis1 = numpy.unique(numpy.reshape(axis0,4))
2604 axis1 = numpy.unique(numpy.reshape(axis0,4))
2605 side = axis1[axis1 != chanC]
2605 side = axis1[axis1 != chanC]
2606 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
2606 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
2607 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
2607 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
2608 if diff1<0:
2608 if diff1<0:
2609 chan2 = side[0]
2609 chan2 = side[0]
2610 d2 = numpy.abs(diff1)
2610 d2 = numpy.abs(diff1)
2611 chan1 = side[1]
2611 chan1 = side[1]
2612 d1 = numpy.abs(diff2)
2612 d1 = numpy.abs(diff2)
2613 else:
2613 else:
2614 chan2 = side[1]
2614 chan2 = side[1]
2615 d2 = numpy.abs(diff2)
2615 d2 = numpy.abs(diff2)
2616 chan1 = side[0]
2616 chan1 = side[0]
2617 d1 = numpy.abs(diff1)
2617 d1 = numpy.abs(diff1)
2618
2618
2619 if i==0:
2619 if i==0:
2620 chanCX = chanC
2620 chanCX = chanC
2621 chan1X = chan1
2621 chan1X = chan1
2622 chan2X = chan2
2622 chan2X = chan2
2623 distances[0:2] = numpy.array([d1,d2])
2623 distances[0:2] = numpy.array([d1,d2])
2624 else:
2624 else:
2625 chanCY = chanC
2625 chanCY = chanC
2626 chan1Y = chan1
2626 chan1Y = chan1
2627 chan2Y = chan2
2627 chan2Y = chan2
2628 distances[2:4] = numpy.array([d1,d2])
2628 distances[2:4] = numpy.array([d1,d2])
2629 # axisXsides = numpy.reshape(axisX[ix,:],4)
2629 # axisXsides = numpy.reshape(axisX[ix,:],4)
2630 #
2630 #
2631 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
2631 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
2632 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
2632 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
2633 #
2633 #
2634 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
2634 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
2635 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
2635 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
2636 # channel25X = int(pairX[0,ind25X])
2636 # channel25X = int(pairX[0,ind25X])
2637 # channel20X = int(pairX[1,ind20X])
2637 # channel20X = int(pairX[1,ind20X])
2638 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
2638 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
2639 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
2639 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
2640 # channel25Y = int(pairY[0,ind25Y])
2640 # channel25Y = int(pairY[0,ind25Y])
2641 # channel20Y = int(pairY[1,ind20Y])
2641 # channel20Y = int(pairY[1,ind20Y])
2642
2642
2643 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
2643 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
2644 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
2644 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
2645
2645
2646 return pairslist, distances
2646 return pairslist, distances
2647 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
2647 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
2648 #
2648 #
2649 # arrayAOA = numpy.zeros((phases.shape[0],3))
2649 # arrayAOA = numpy.zeros((phases.shape[0],3))
2650 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
2650 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
2651 #
2651 #
2652 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
2652 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
2653 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
2653 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
2654 # arrayAOA[:,2] = cosDirError
2654 # arrayAOA[:,2] = cosDirError
2655 #
2655 #
2656 # azimuthAngle = arrayAOA[:,0]
2656 # azimuthAngle = arrayAOA[:,0]
2657 # zenithAngle = arrayAOA[:,1]
2657 # zenithAngle = arrayAOA[:,1]
2658 #
2658 #
2659 # #Setting Error
2659 # #Setting Error
2660 # #Number 3: AOA not fesible
2660 # #Number 3: AOA not fesible
2661 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
2661 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
2662 # error[indInvalid] = 3
2662 # error[indInvalid] = 3
2663 # #Number 4: Large difference in AOAs obtained from different antenna baselines
2663 # #Number 4: Large difference in AOAs obtained from different antenna baselines
2664 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
2664 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
2665 # error[indInvalid] = 4
2665 # error[indInvalid] = 4
2666 # return arrayAOA, error
2666 # return arrayAOA, error
2667 #
2667 #
2668 # def __getDirectionCosines(self, arrayPhase, pairsList):
2668 # def __getDirectionCosines(self, arrayPhase, pairsList):
2669 #
2669 #
2670 # #Initializing some variables
2670 # #Initializing some variables
2671 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
2671 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
2672 # ang_aux = ang_aux.reshape(1,ang_aux.size)
2672 # ang_aux = ang_aux.reshape(1,ang_aux.size)
2673 #
2673 #
2674 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
2674 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
2675 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
2675 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
2676 #
2676 #
2677 #
2677 #
2678 # for i in range(2):
2678 # for i in range(2):
2679 # #First Estimation
2679 # #First Estimation
2680 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
2680 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
2681 # #Dealias
2681 # #Dealias
2682 # indcsi = numpy.where(phi0_aux > numpy.pi)
2682 # indcsi = numpy.where(phi0_aux > numpy.pi)
2683 # phi0_aux[indcsi] -= 2*numpy.pi
2683 # phi0_aux[indcsi] -= 2*numpy.pi
2684 # indcsi = numpy.where(phi0_aux < -numpy.pi)
2684 # indcsi = numpy.where(phi0_aux < -numpy.pi)
2685 # phi0_aux[indcsi] += 2*numpy.pi
2685 # phi0_aux[indcsi] += 2*numpy.pi
2686 # #Direction Cosine 0
2686 # #Direction Cosine 0
2687 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
2687 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
2688 #
2688 #
2689 # #Most-Accurate Second Estimation
2689 # #Most-Accurate Second Estimation
2690 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
2690 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
2691 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
2691 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
2692 # #Direction Cosine 1
2692 # #Direction Cosine 1
2693 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
2693 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
2694 #
2694 #
2695 # #Searching the correct Direction Cosine
2695 # #Searching the correct Direction Cosine
2696 # cosdir0_aux = cosdir0[:,i]
2696 # cosdir0_aux = cosdir0[:,i]
2697 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
2697 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
2698 # #Minimum Distance
2698 # #Minimum Distance
2699 # cosDiff = (cosdir1 - cosdir0_aux)**2
2699 # cosDiff = (cosdir1 - cosdir0_aux)**2
2700 # indcos = cosDiff.argmin(axis = 1)
2700 # indcos = cosDiff.argmin(axis = 1)
2701 # #Saving Value obtained
2701 # #Saving Value obtained
2702 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
2702 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
2703 #
2703 #
2704 # return cosdir0, cosdir
2704 # return cosdir0, cosdir
2705 #
2705 #
2706 # def __calculateAOA(self, cosdir, azimuth):
2706 # def __calculateAOA(self, cosdir, azimuth):
2707 # cosdirX = cosdir[:,0]
2707 # cosdirX = cosdir[:,0]
2708 # cosdirY = cosdir[:,1]
2708 # cosdirY = cosdir[:,1]
2709 #
2709 #
2710 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
2710 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
2711 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
2711 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
2712 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
2712 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
2713 #
2713 #
2714 # return angles
2714 # return angles
2715 #
2715 #
2716 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
2716 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
2717 #
2717 #
2718 # Ramb = 375 #Ramb = c/(2*PRF)
2718 # Ramb = 375 #Ramb = c/(2*PRF)
2719 # Re = 6371 #Earth Radius
2719 # Re = 6371 #Earth Radius
2720 # heights = numpy.zeros(Ranges.shape)
2720 # heights = numpy.zeros(Ranges.shape)
2721 #
2721 #
2722 # R_aux = numpy.array([0,1,2])*Ramb
2722 # R_aux = numpy.array([0,1,2])*Ramb
2723 # R_aux = R_aux.reshape(1,R_aux.size)
2723 # R_aux = R_aux.reshape(1,R_aux.size)
2724 #
2724 #
2725 # Ranges = Ranges.reshape(Ranges.size,1)
2725 # Ranges = Ranges.reshape(Ranges.size,1)
2726 #
2726 #
2727 # Ri = Ranges + R_aux
2727 # Ri = Ranges + R_aux
2728 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
2728 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
2729 #
2729 #
2730 # #Check if there is a height between 70 and 110 km
2730 # #Check if there is a height between 70 and 110 km
2731 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
2731 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
2732 # ind_h = numpy.where(h_bool == 1)[0]
2732 # ind_h = numpy.where(h_bool == 1)[0]
2733 #
2733 #
2734 # hCorr = hi[ind_h, :]
2734 # hCorr = hi[ind_h, :]
2735 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
2735 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
2736 #
2736 #
2737 # hCorr = hi[ind_hCorr]
2737 # hCorr = hi[ind_hCorr]
2738 # heights[ind_h] = hCorr
2738 # heights[ind_h] = hCorr
2739 #
2739 #
2740 # #Setting Error
2740 # #Setting Error
2741 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
2741 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
2742 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
2742 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
2743 #
2743 #
2744 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
2744 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
2745 # error[indInvalid2] = 14
2745 # error[indInvalid2] = 14
2746 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
2746 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
2747 # error[indInvalid1] = 13
2747 # error[indInvalid1] = 13
2748 #
2748 #
2749 # return heights, error
2749 # return heights, error
@@ -1,437 +1,445
1 '''
1 '''
2 @author: Juan C. Espinoza
2 @author: Juan C. Espinoza
3 '''
3 '''
4
4
5 import time
5 import time
6 import json
6 import json
7 import numpy
7 import numpy
8 import paho.mqtt.client as mqtt
8 import paho.mqtt.client as mqtt
9 import zmq
9 import zmq
10 import cPickle as pickle
10 import cPickle as pickle
11 import datetime
11 import datetime
12 from zmq.utils.monitor import recv_monitor_message
12 from zmq.utils.monitor import recv_monitor_message
13 from functools import wraps
13 from functools import wraps
14 from threading import Thread
14 from threading import Thread
15 from multiprocessing import Process
15 from multiprocessing import Process
16
16
17 from schainpy.model.proc.jroproc_base import Operation, ProcessingUnit
17 from schainpy.model.proc.jroproc_base import Operation, ProcessingUnit
18
18
19 MAXNUMX = 100
19 MAXNUMX = 100
20 MAXNUMY = 100
20 MAXNUMY = 100
21
21
22 class PrettyFloat(float):
22 class PrettyFloat(float):
23 def __repr__(self):
23 def __repr__(self):
24 return '%.2f' % self
24 return '%.2f' % self
25
25
26 def roundFloats(obj):
26 def roundFloats(obj):
27 if isinstance(obj, list):
27 if isinstance(obj, list):
28 return map(roundFloats, obj)
28 return map(roundFloats, obj)
29 elif isinstance(obj, float):
29 elif isinstance(obj, float):
30 return round(obj, 2)
30 return round(obj, 2)
31
31
32 def decimate(z):
32 def decimate(z):
33 # dx = int(len(self.x)/self.__MAXNUMX) + 1
33 # dx = int(len(self.x)/self.__MAXNUMX) + 1
34
34
35 dy = int(len(z[0])/MAXNUMY) + 1
35 dy = int(len(z[0])/MAXNUMY) + 1
36
36
37 return z[::, ::dy]
37 return z[::, ::dy]
38
38
39 class throttle(object):
39 class throttle(object):
40 """Decorator that prevents a function from being called more than once every
40 """Decorator that prevents a function from being called more than once every
41 time period.
41 time period.
42 To create a function that cannot be called more than once a minute, but
42 To create a function that cannot be called more than once a minute, but
43 will sleep until it can be called:
43 will sleep until it can be called:
44 @throttle(minutes=1)
44 @throttle(minutes=1)
45 def foo():
45 def foo():
46 pass
46 pass
47
47
48 for i in range(10):
48 for i in range(10):
49 foo()
49 foo()
50 print "This function has run %s times." % i
50 print "This function has run %s times." % i
51 """
51 """
52
52
53 def __init__(self, seconds=0, minutes=0, hours=0):
53 def __init__(self, seconds=0, minutes=0, hours=0):
54 self.throttle_period = datetime.timedelta(
54 self.throttle_period = datetime.timedelta(
55 seconds=seconds, minutes=minutes, hours=hours
55 seconds=seconds, minutes=minutes, hours=hours
56 )
56 )
57
57
58 self.time_of_last_call = datetime.datetime.min
58 self.time_of_last_call = datetime.datetime.min
59
59
60 def __call__(self, fn):
60 def __call__(self, fn):
61 @wraps(fn)
61 @wraps(fn)
62 def wrapper(*args, **kwargs):
62 def wrapper(*args, **kwargs):
63 now = datetime.datetime.now()
63 now = datetime.datetime.now()
64 time_since_last_call = now - self.time_of_last_call
64 time_since_last_call = now - self.time_of_last_call
65 time_left = self.throttle_period - time_since_last_call
65 time_left = self.throttle_period - time_since_last_call
66
66
67 if time_left > datetime.timedelta(seconds=0):
67 if time_left > datetime.timedelta(seconds=0):
68 return
68 return
69
69
70 self.time_of_last_call = datetime.datetime.now()
70 self.time_of_last_call = datetime.datetime.now()
71 return fn(*args, **kwargs)
71 return fn(*args, **kwargs)
72
72
73 return wrapper
73 return wrapper
74
74
75
75
76 class PublishData(Operation):
76 class PublishData(Operation):
77 """Clase publish."""
77 """Clase publish."""
78
78
79 def __init__(self, **kwargs):
79 def __init__(self, **kwargs):
80 """Inicio."""
80 """Inicio."""
81 Operation.__init__(self, **kwargs)
81 Operation.__init__(self, **kwargs)
82 self.isConfig = False
82 self.isConfig = False
83 self.client = None
83 self.client = None
84 self.zeromq = None
84 self.zeromq = None
85 self.mqtt = None
85 self.mqtt = None
86
86
87 def on_disconnect(self, client, userdata, rc):
87 def on_disconnect(self, client, userdata, rc):
88 if rc != 0:
88 if rc != 0:
89 print("Unexpected disconnection.")
89 print("Unexpected disconnection.")
90 self.connect()
90 self.connect()
91
91
92 def connect(self):
92 def connect(self):
93 print 'trying to connect'
93 print 'trying to connect'
94 try:
94 try:
95 self.client.connect(
95 self.client.connect(
96 host=self.host,
96 host=self.host,
97 port=self.port,
97 port=self.port,
98 keepalive=60*10,
98 keepalive=60*10,
99 bind_address='')
99 bind_address='')
100 self.client.loop_start()
100 self.client.loop_start()
101 # self.client.publish(
101 # self.client.publish(
102 # self.topic + 'SETUP',
102 # self.topic + 'SETUP',
103 # json.dumps(setup),
103 # json.dumps(setup),
104 # retain=True
104 # retain=True
105 # )
105 # )
106 except:
106 except:
107 print "MQTT Conection error."
107 print "MQTT Conection error."
108 self.client = False
108 self.client = False
109
109
110 def setup(self, port=1883, username=None, password=None, clientId="user", zeromq=1, **kwargs):
110 def setup(self, port=1883, username=None, password=None, clientId="user", zeromq=1, **kwargs):
111 self.counter = 0
111 self.counter = 0
112 self.topic = kwargs.get('topic', 'schain')
112 self.topic = kwargs.get('topic', 'schain')
113 self.delay = kwargs.get('delay', 0)
113 self.delay = kwargs.get('delay', 0)
114 self.plottype = kwargs.get('plottype', 'spectra')
114 self.plottype = kwargs.get('plottype', 'spectra')
115 self.host = kwargs.get('host', "10.10.10.82")
115 self.host = kwargs.get('host', "10.10.10.82")
116 self.port = kwargs.get('port', 3000)
116 self.port = kwargs.get('port', 3000)
117 self.clientId = clientId
117 self.clientId = clientId
118 self.cnt = 0
118 self.cnt = 0
119 self.zeromq = zeromq
119 self.zeromq = zeromq
120 self.mqtt = kwargs.get('plottype', 0)
120 self.mqtt = kwargs.get('plottype', 0)
121 self.client = None
121 self.client = None
122 setup = []
122 setup = []
123 if mqtt is 1:
123 if mqtt is 1:
124 self.client = mqtt.Client(
124 self.client = mqtt.Client(
125 client_id=self.clientId + self.topic + 'SCHAIN',
125 client_id=self.clientId + self.topic + 'SCHAIN',
126 clean_session=True)
126 clean_session=True)
127 self.client.on_disconnect = self.on_disconnect
127 self.client.on_disconnect = self.on_disconnect
128 self.connect()
128 self.connect()
129 for plot in self.plottype:
129 for plot in self.plottype:
130 setup.append({
130 setup.append({
131 'plot': plot,
131 'plot': plot,
132 'topic': self.topic + plot,
132 'topic': self.topic + plot,
133 'title': getattr(self, plot + '_' + 'title', False),
133 'title': getattr(self, plot + '_' + 'title', False),
134 'xlabel': getattr(self, plot + '_' + 'xlabel', False),
134 'xlabel': getattr(self, plot + '_' + 'xlabel', False),
135 'ylabel': getattr(self, plot + '_' + 'ylabel', False),
135 'ylabel': getattr(self, plot + '_' + 'ylabel', False),
136 'xrange': getattr(self, plot + '_' + 'xrange', False),
136 'xrange': getattr(self, plot + '_' + 'xrange', False),
137 'yrange': getattr(self, plot + '_' + 'yrange', False),
137 'yrange': getattr(self, plot + '_' + 'yrange', False),
138 'zrange': getattr(self, plot + '_' + 'zrange', False),
138 'zrange': getattr(self, plot + '_' + 'zrange', False),
139 })
139 })
140 if zeromq is 1:
140 if zeromq is 1:
141 context = zmq.Context()
141 context = zmq.Context()
142 self.zmq_socket = context.socket(zmq.PUSH)
142 self.zmq_socket = context.socket(zmq.PUSH)
143 server = kwargs.get('server', 'zmq.pipe')
143 server = kwargs.get('server', 'zmq.pipe')
144
144
145 if 'tcp://' in server:
145 if 'tcp://' in server:
146 address = server
146 address = server
147 else:
147 else:
148 address = 'ipc:///tmp/%s' % server
148 address = 'ipc:///tmp/%s' % server
149
149
150 self.zmq_socket.connect(address)
150 self.zmq_socket.connect(address)
151 time.sleep(1)
151 time.sleep(1)
152
152
153 def publish_data(self):
153 def publish_data(self):
154 self.dataOut.finished = False
154 self.dataOut.finished = False
155 if self.mqtt is 1:
155 if self.mqtt is 1:
156 yData = self.dataOut.heightList[:2].tolist()
156 yData = self.dataOut.heightList[:2].tolist()
157 if self.plottype == 'spectra':
157 if self.plottype == 'spectra':
158 data = getattr(self.dataOut, 'data_spc')
158 data = getattr(self.dataOut, 'data_spc')
159 z = data/self.dataOut.normFactor
159 z = data/self.dataOut.normFactor
160 zdB = 10*numpy.log10(z)
160 zdB = 10*numpy.log10(z)
161 xlen, ylen = zdB[0].shape
161 xlen, ylen = zdB[0].shape
162 dx = int(xlen/MAXNUMX) + 1
162 dx = int(xlen/MAXNUMX) + 1
163 dy = int(ylen/MAXNUMY) + 1
163 dy = int(ylen/MAXNUMY) + 1
164 Z = [0 for i in self.dataOut.channelList]
164 Z = [0 for i in self.dataOut.channelList]
165 for i in self.dataOut.channelList:
165 for i in self.dataOut.channelList:
166 Z[i] = zdB[i][::dx, ::dy].tolist()
166 Z[i] = zdB[i][::dx, ::dy].tolist()
167 payload = {
167 payload = {
168 'timestamp': self.dataOut.utctime,
168 'timestamp': self.dataOut.utctime,
169 'data': roundFloats(Z),
169 'data': roundFloats(Z),
170 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList],
170 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList],
171 'interval': self.dataOut.getTimeInterval(),
171 'interval': self.dataOut.getTimeInterval(),
172 'type': self.plottype,
172 'type': self.plottype,
173 'yData': yData
173 'yData': yData
174 }
174 }
175 # print payload
175 # print payload
176
176
177 elif self.plottype in ('rti', 'power'):
177 elif self.plottype in ('rti', 'power'):
178 data = getattr(self.dataOut, 'data_spc')
178 data = getattr(self.dataOut, 'data_spc')
179 z = data/self.dataOut.normFactor
179 z = data/self.dataOut.normFactor
180 avg = numpy.average(z, axis=1)
180 avg = numpy.average(z, axis=1)
181 avgdB = 10*numpy.log10(avg)
181 avgdB = 10*numpy.log10(avg)
182 xlen, ylen = z[0].shape
182 xlen, ylen = z[0].shape
183 dy = numpy.floor(ylen/self.__MAXNUMY) + 1
183 dy = numpy.floor(ylen/self.__MAXNUMY) + 1
184 AVG = [0 for i in self.dataOut.channelList]
184 AVG = [0 for i in self.dataOut.channelList]
185 for i in self.dataOut.channelList:
185 for i in self.dataOut.channelList:
186 AVG[i] = avgdB[i][::dy].tolist()
186 AVG[i] = avgdB[i][::dy].tolist()
187 payload = {
187 payload = {
188 'timestamp': self.dataOut.utctime,
188 'timestamp': self.dataOut.utctime,
189 'data': roundFloats(AVG),
189 'data': roundFloats(AVG),
190 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList],
190 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList],
191 'interval': self.dataOut.getTimeInterval(),
191 'interval': self.dataOut.getTimeInterval(),
192 'type': self.plottype,
192 'type': self.plottype,
193 'yData': yData
193 'yData': yData
194 }
194 }
195 elif self.plottype == 'noise':
195 elif self.plottype == 'noise':
196 noise = self.dataOut.getNoise()/self.dataOut.normFactor
196 noise = self.dataOut.getNoise()/self.dataOut.normFactor
197 noisedB = 10*numpy.log10(noise)
197 noisedB = 10*numpy.log10(noise)
198 payload = {
198 payload = {
199 'timestamp': self.dataOut.utctime,
199 'timestamp': self.dataOut.utctime,
200 'data': roundFloats(noisedB.reshape(-1, 1).tolist()),
200 'data': roundFloats(noisedB.reshape(-1, 1).tolist()),
201 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList],
201 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList],
202 'interval': self.dataOut.getTimeInterval(),
202 'interval': self.dataOut.getTimeInterval(),
203 'type': self.plottype,
203 'type': self.plottype,
204 'yData': yData
204 'yData': yData
205 }
205 }
206 elif self.plottype == 'snr':
206 elif self.plottype == 'snr':
207 data = getattr(self.dataOut, 'data_SNR')
207 data = getattr(self.dataOut, 'data_SNR')
208 avgdB = 10*numpy.log10(data)
208 avgdB = 10*numpy.log10(data)
209
209
210 ylen = data[0].size
210 ylen = data[0].size
211 dy = numpy.floor(ylen/self.__MAXNUMY) + 1
211 dy = numpy.floor(ylen/self.__MAXNUMY) + 1
212 AVG = [0 for i in self.dataOut.channelList]
212 AVG = [0 for i in self.dataOut.channelList]
213 for i in self.dataOut.channelList:
213 for i in self.dataOut.channelList:
214 AVG[i] = avgdB[i][::dy].tolist()
214 AVG[i] = avgdB[i][::dy].tolist()
215 payload = {
215 payload = {
216 'timestamp': self.dataOut.utctime,
216 'timestamp': self.dataOut.utctime,
217 'data': roundFloats(AVG),
217 'data': roundFloats(AVG),
218 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList],
218 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList],
219 'type': self.plottype,
219 'type': self.plottype,
220 'yData': yData
220 'yData': yData
221 }
221 }
222 else:
222 else:
223 print "Tipo de grafico invalido"
223 print "Tipo de grafico invalido"
224 payload = {
224 payload = {
225 'data': 'None',
225 'data': 'None',
226 'timestamp': 'None',
226 'timestamp': 'None',
227 'type': None
227 'type': None
228 }
228 }
229 # print 'Publishing data to {}'.format(self.host)
229 # print 'Publishing data to {}'.format(self.host)
230 self.client.publish(self.topic + self.plottype, json.dumps(payload), qos=0)
230 self.client.publish(self.topic + self.plottype, json.dumps(payload), qos=0)
231
231
232 if self.zeromq is 1:
232 if self.zeromq is 1:
233 print '[Sending] {} - {}'.format(self.dataOut.type, self.dataOut.datatime)
233 print '[Sending] {} - {}'.format(self.dataOut.type, self.dataOut.datatime)
234 self.zmq_socket.send_pyobj(self.dataOut)
234 self.zmq_socket.send_pyobj(self.dataOut)
235
235
236 def run(self, dataOut, **kwargs):
236 def run(self, dataOut, **kwargs):
237 self.dataOut = dataOut
237 self.dataOut = dataOut
238 if not self.isConfig:
238 if not self.isConfig:
239 self.setup(**kwargs)
239 self.setup(**kwargs)
240 self.isConfig = True
240 self.isConfig = True
241
241
242 self.publish_data()
242 self.publish_data()
243 time.sleep(self.delay)
243 time.sleep(self.delay)
244
244
245 def close(self):
245 def close(self):
246 if self.zeromq is 1:
246 if self.zeromq is 1:
247 self.dataOut.finished = True
247 self.dataOut.finished = True
248 self.zmq_socket.send_pyobj(self.dataOut)
248 # self.zmq_socket.send_pyobj(self.dataOut) CHECK IT!!!
249
249
250 if self.client:
250 if self.client:
251 self.client.loop_stop()
251 self.client.loop_stop()
252 self.client.disconnect()
252 self.client.disconnect()
253
253
254
254
255 class ReceiverData(ProcessingUnit, Process):
255 class ReceiverData(ProcessingUnit, Process):
256
256
257 throttle_value = 5
257 throttle_value = 5
258
258
259 def __init__(self, **kwargs):
259 def __init__(self, **kwargs):
260
260
261 ProcessingUnit.__init__(self, **kwargs)
261 ProcessingUnit.__init__(self, **kwargs)
262 Process.__init__(self)
262 Process.__init__(self)
263 self.mp = False
263 self.mp = False
264 self.isConfig = False
264 self.isConfig = False
265 self.isWebConfig = False
265 self.isWebConfig = False
266 self.plottypes =[]
266 self.plottypes =[]
267 self.connections = 0
267 self.connections = 0
268 server = kwargs.get('server', 'zmq.pipe')
268 server = kwargs.get('server', 'zmq.pipe')
269 plot_server = kwargs.get('plot_server', 'zmq.web')
269 plot_server = kwargs.get('plot_server', 'zmq.web')
270 if 'tcp://' in server:
270 if 'tcp://' in server:
271 address = server
271 address = server
272 else:
272 else:
273 address = 'ipc:///tmp/%s' % server
273 address = 'ipc:///tmp/%s' % server
274
274
275 if 'tcp://' in plot_server:
275 if 'tcp://' in plot_server:
276 plot_address = plot_server
276 plot_address = plot_server
277 else:
277 else:
278 plot_address = 'ipc:///tmp/%s' % plot_server
278 plot_address = 'ipc:///tmp/%s' % plot_server
279
279
280 self.address = address
280 self.address = address
281 self.plot_address = plot_address
281 self.plot_address = plot_address
282 self.plottypes = [s.strip() for s in kwargs.get('plottypes', 'rti').split(',')]
282 self.plottypes = [s.strip() for s in kwargs.get('plottypes', 'rti').split(',')]
283 self.realtime = kwargs.get('realtime', False)
283 self.realtime = kwargs.get('realtime', False)
284 self.throttle_value = kwargs.get('throttle', 5)
284 self.throttle_value = kwargs.get('throttle', 5)
285 self.sendData = self.initThrottle(self.throttle_value)
285 self.sendData = self.initThrottle(self.throttle_value)
286 self.setup()
286 self.setup()
287
287
288 def setup(self):
288 def setup(self):
289
289
290 self.data = {}
290 self.data = {}
291 self.data['times'] = []
291 self.data['times'] = []
292 for plottype in self.plottypes:
292 for plottype in self.plottypes:
293 self.data[plottype] = {}
293 self.data[plottype] = {}
294 self.data['noise'] = {}
294 self.data['noise'] = {}
295 self.data['throttle'] = self.throttle_value
295 self.data['throttle'] = self.throttle_value
296 self.data['ENDED'] = False
296 self.data['ENDED'] = False
297 self.isConfig = True
297 self.isConfig = True
298 self.data_web = {}
298 self.data_web = {}
299
299
300 def event_monitor(self, monitor):
300 def event_monitor(self, monitor):
301
301
302 events = {}
302 events = {}
303
303
304 for name in dir(zmq):
304 for name in dir(zmq):
305 if name.startswith('EVENT_'):
305 if name.startswith('EVENT_'):
306 value = getattr(zmq, name)
306 value = getattr(zmq, name)
307 events[value] = name
307 events[value] = name
308
308
309 while monitor.poll():
309 while monitor.poll():
310 evt = recv_monitor_message(monitor)
310 evt = recv_monitor_message(monitor)
311 if evt['event'] == 32:
311 if evt['event'] == 32:
312 self.connections += 1
312 self.connections += 1
313 if evt['event'] == 512:
313 if evt['event'] == 512:
314 pass
314 pass
315 if self.connections == 0 and self.started is True:
315 if self.connections == 0 and self.started is True:
316 self.ended = True
316 self.ended = True
317 # send('ENDED')
317
318 evt.update({'description': events[evt['event']]})
318 evt.update({'description': events[evt['event']]})
319
319
320 if evt['event'] == zmq.EVENT_MONITOR_STOPPED:
320 if evt['event'] == zmq.EVENT_MONITOR_STOPPED:
321 break
321 break
322 monitor.close()
322 monitor.close()
323 print("event monitor thread done!")
323 print("event monitor thread done!")
324
324
325 def initThrottle(self, throttle_value):
325 def initThrottle(self, throttle_value):
326
326
327 @throttle(seconds=throttle_value)
327 @throttle(seconds=throttle_value)
328 def sendDataThrottled(fn_sender, data):
328 def sendDataThrottled(fn_sender, data):
329 fn_sender(data)
329 fn_sender(data)
330
330
331 return sendDataThrottled
331 return sendDataThrottled
332
332
333 def send(self, data):
333 def send(self, data):
334 # print '[sending] data=%s size=%s' % (data.keys(), len(data['times']))
334 # print '[sending] data=%s size=%s' % (data.keys(), len(data['times']))
335 self.sender.send_pyobj(data)
335 self.sender.send_pyobj(data)
336
336
337 def update(self):
337 def update(self):
338
338 t = self.dataOut.utctime
339 t = self.dataOut.utctime
340
341 if t in self.data['times']:
342 return
343
339 self.data['times'].append(t)
344 self.data['times'].append(t)
340 self.data['dataOut'] = self.dataOut
345 self.data['dataOut'] = self.dataOut
346
341 for plottype in self.plottypes:
347 for plottype in self.plottypes:
342 if plottype == 'spc':
348 if plottype == 'spc':
343 z = self.dataOut.data_spc/self.dataOut.normFactor
349 z = self.dataOut.data_spc/self.dataOut.normFactor
344 self.data[plottype] = 10*numpy.log10(z)
350 self.data[plottype] = 10*numpy.log10(z)
345 self.data['noise'][t] = 10*numpy.log10(self.dataOut.getNoise()/self.dataOut.normFactor)
351 self.data['noise'][t] = 10*numpy.log10(self.dataOut.getNoise()/self.dataOut.normFactor)
346 if plottype == 'cspc':
352 if plottype == 'cspc':
347 jcoherence = self.dataOut.data_cspc/numpy.sqrt(self.dataOut.data_spc*self.dataOut.data_spc)
353 jcoherence = self.dataOut.data_cspc/numpy.sqrt(self.dataOut.data_spc*self.dataOut.data_spc)
348 self.data['cspc_coh'] = numpy.abs(jcoherence)
354 self.data['cspc_coh'] = numpy.abs(jcoherence)
349 self.data['cspc_phase'] = numpy.arctan2(jcoherence.imag, jcoherence.real)*180/numpy.pi
355 self.data['cspc_phase'] = numpy.arctan2(jcoherence.imag, jcoherence.real)*180/numpy.pi
350 if plottype == 'rti':
356 if plottype == 'rti':
351 self.data[plottype][t] = self.dataOut.getPower()
357 self.data[plottype][t] = self.dataOut.getPower()
352 if plottype == 'snr':
358 if plottype == 'snr':
353 self.data[plottype][t] = 10*numpy.log10(self.dataOut.data_SNR)
359 self.data[plottype][t] = 10*numpy.log10(self.dataOut.data_SNR)
354 if plottype == 'dop':
360 if plottype == 'dop':
355 self.data[plottype][t] = 10*numpy.log10(self.dataOut.data_DOP)
361 self.data[plottype][t] = 10*numpy.log10(self.dataOut.data_DOP)
356 if plottype == 'mean':
362 if plottype == 'mean':
357 self.data[plottype][t] = self.dataOut.data_MEAN
363 self.data[plottype][t] = self.dataOut.data_MEAN
358 if plottype == 'std':
364 if plottype == 'std':
359 self.data[plottype][t] = self.dataOut.data_STD
365 self.data[plottype][t] = self.dataOut.data_STD
360 if plottype == 'coh':
366 if plottype == 'coh':
361 self.data[plottype][t] = self.dataOut.getCoherence()
367 self.data[plottype][t] = self.dataOut.getCoherence()
362 if plottype == 'phase':
368 if plottype == 'phase':
363 self.data[plottype][t] = self.dataOut.getCoherence(phase=True)
369 self.data[plottype][t] = self.dataOut.getCoherence(phase=True)
370 if plottype == 'wind':
371 self.data[plottype][t] = self.dataOut.data_output
364 if self.realtime:
372 if self.realtime:
365 self.data_web['timestamp'] = t
373 self.data_web['timestamp'] = t
366 if plottype == 'spc':
374 if plottype == 'spc':
367 self.data_web[plottype] = roundFloats(decimate(self.data[plottype]).tolist())
375 self.data_web[plottype] = roundFloats(decimate(self.data[plottype]).tolist())
368 elif plottype == 'cspc':
376 elif plottype == 'cspc':
369 self.data_web['cspc_coh'] = roundFloats(decimate(self.data['cspc_coh']).tolist())
377 self.data_web['cspc_coh'] = roundFloats(decimate(self.data['cspc_coh']).tolist())
370 self.data_web['cspc_phase'] = roundFloats(decimate(self.data['cspc_phase']).tolist())
378 self.data_web['cspc_phase'] = roundFloats(decimate(self.data['cspc_phase']).tolist())
371 elif plottype == 'noise':
379 elif plottype == 'noise':
372 self.data_web['noise'] = roundFloats(self.data['noise'][t].tolist())
380 self.data_web['noise'] = roundFloats(self.data['noise'][t].tolist())
373 else:
381 else:
374 self.data_web[plottype] = roundFloats(decimate(self.data[plottype][t]).tolist())
382 self.data_web[plottype] = roundFloats(decimate(self.data[plottype][t]).tolist())
375 self.data_web['interval'] = self.dataOut.getTimeInterval()
383 self.data_web['interval'] = self.dataOut.getTimeInterval()
376 self.data_web['type'] = plottype
384 self.data_web['type'] = plottype
377
385
378 def run(self):
386 def run(self):
379
387
380 print '[Starting] {} from {}'.format(self.name, self.address)
388 print '[Starting] {} from {}'.format(self.name, self.address)
381
389
382 self.context = zmq.Context()
390 self.context = zmq.Context()
383 self.receiver = self.context.socket(zmq.PULL)
391 self.receiver = self.context.socket(zmq.PULL)
384 self.receiver.bind(self.address)
392 self.receiver.bind(self.address)
385 monitor = self.receiver.get_monitor_socket()
393 monitor = self.receiver.get_monitor_socket()
386 self.sender = self.context.socket(zmq.PUB)
394 self.sender = self.context.socket(zmq.PUB)
387 if self.realtime:
395 if self.realtime:
388 self.sender_web = self.context.socket(zmq.PUB)
396 self.sender_web = self.context.socket(zmq.PUB)
389 self.sender_web.connect(self.plot_address)
397 self.sender_web.connect(self.plot_address)
390 time.sleep(1)
398 time.sleep(1)
391 self.sender.bind("ipc:///tmp/zmq.plots")
399 self.sender.bind("ipc:///tmp/zmq.plots")
392
400
393 t = Thread(target=self.event_monitor, args=(monitor,))
401 t = Thread(target=self.event_monitor, args=(monitor,))
394 t.start()
402 t.start()
395
403
396 while True:
404 while True:
397 self.dataOut = self.receiver.recv_pyobj()
405 self.dataOut = self.receiver.recv_pyobj()
398 # print '[Receiving] {} - {}'.format(self.dataOut.type,
406 # print '[Receiving] {} - {}'.format(self.dataOut.type,
399 # self.dataOut.datatime.ctime())
407 # self.dataOut.datatime.ctime())
400
408
401 self.update()
409 self.update()
402
410
403 if self.dataOut.finished is True:
411 if self.dataOut.finished is True:
404 self.send(self.data)
412 self.send(self.data)
405 self.connections -= 1
413 self.connections -= 1
406 if self.connections == 0 and self.started:
414 if self.connections == 0 and self.started:
407 self.ended = True
415 self.ended = True
408 self.data['ENDED'] = True
416 self.data['ENDED'] = True
409 self.send(self.data)
417 self.send(self.data)
410 self.setup()
418 self.setup()
411 else:
419 else:
412 if self.realtime:
420 if self.realtime:
413 self.send(self.data)
421 self.send(self.data)
414 self.sender_web.send_string(json.dumps(self.data_web))
422 self.sender_web.send_string(json.dumps(self.data_web))
415 else:
423 else:
416 self.sendData(self.send, self.data)
424 self.sendData(self.send, self.data)
417 self.started = True
425 self.started = True
418
426
419 return
427 return
420
428
421 def sendToWeb(self):
429 def sendToWeb(self):
422
430
423 if not self.isWebConfig:
431 if not self.isWebConfig:
424 context = zmq.Context()
432 context = zmq.Context()
425 sender_web_config = context.socket(zmq.PUB)
433 sender_web_config = context.socket(zmq.PUB)
426 if 'tcp://' in self.plot_address:
434 if 'tcp://' in self.plot_address:
427 dum, address, port = self.plot_address.split(':')
435 dum, address, port = self.plot_address.split(':')
428 conf_address = '{}:{}:{}'.format(dum, address, int(port)+1)
436 conf_address = '{}:{}:{}'.format(dum, address, int(port)+1)
429 else:
437 else:
430 conf_address = self.plot_address + '.config'
438 conf_address = self.plot_address + '.config'
431 sender_web_config.bind(conf_address)
439 sender_web_config.bind(conf_address)
432 time.sleep(1)
440 time.sleep(1)
433 for kwargs in self.operationKwargs.values():
441 for kwargs in self.operationKwargs.values():
434 if 'plot' in kwargs:
442 if 'plot' in kwargs:
435 print '[Sending] Config data to web for {}'.format(kwargs['code'].upper())
443 print '[Sending] Config data to web for {}'.format(kwargs['code'].upper())
436 sender_web_config.send_string(json.dumps(kwargs))
444 sender_web_config.send_string(json.dumps(kwargs))
437 self.isWebConfig = True
445 self.isWebConfig = True
General Comments 0
You need to be logged in to leave comments. Login now