@@ -1,691 +1,697 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import warnings |
|
4 | 4 | import numpy |
|
5 | 5 | from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter |
|
6 | 6 | |
|
7 | 7 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
8 | 8 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
9 | 9 | from schainpy.utils import log |
|
10 | 10 | |
|
11 | 11 | |
|
12 | 12 | EARTH_RADIUS = 6.3710e3 |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | def antenna_to_cartesian(ranges, azimuths, elevations): |
|
16 | 16 | """ |
|
17 | 17 | Return Cartesian coordinates from antenna coordinates. |
|
18 | 18 | |
|
19 | 19 | Parameters |
|
20 | 20 | ---------- |
|
21 | 21 | ranges : array |
|
22 | 22 | Distances to the center of the radar gates (bins) in kilometers. |
|
23 | 23 | azimuths : array |
|
24 | 24 | Azimuth angle of the radar in degrees. |
|
25 | 25 | elevations : array |
|
26 | 26 | Elevation angle of the radar in degrees. |
|
27 | 27 | |
|
28 | 28 | Returns |
|
29 | 29 | ------- |
|
30 | 30 | x, y, z : array |
|
31 | 31 | Cartesian coordinates in meters from the radar. |
|
32 | 32 | |
|
33 | 33 | Notes |
|
34 | 34 | ----- |
|
35 | 35 | The calculation for Cartesian coordinate is adapted from equations |
|
36 | 36 | 2.28(b) and 2.28(c) of Doviak and Zrnic [1]_ assuming a |
|
37 | 37 | standard atmosphere (4/3 Earth's radius model). |
|
38 | 38 | |
|
39 | 39 | .. math:: |
|
40 | 40 | |
|
41 | 41 | z = \\sqrt{r^2+R^2+2*r*R*sin(\\theta_e)} - R |
|
42 | 42 | |
|
43 | 43 | s = R * arcsin(\\frac{r*cos(\\theta_e)}{R+z}) |
|
44 | 44 | |
|
45 | 45 | x = s * sin(\\theta_a) |
|
46 | 46 | |
|
47 | 47 | y = s * cos(\\theta_a) |
|
48 | 48 | |
|
49 | 49 | Where r is the distance from the radar to the center of the gate, |
|
50 | 50 | :math:`\\theta_a` is the azimuth angle, :math:`\\theta_e` is the |
|
51 | 51 | elevation angle, s is the arc length, and R is the effective radius |
|
52 | 52 | of the earth, taken to be 4/3 the mean radius of earth (6371 km). |
|
53 | 53 | |
|
54 | 54 | References |
|
55 | 55 | ---------- |
|
56 | 56 | .. [1] Doviak and Zrnic, Doppler Radar and Weather Observations, Second |
|
57 | 57 | Edition, 1993, p. 21. |
|
58 | 58 | |
|
59 | 59 | """ |
|
60 | 60 | theta_e = numpy.deg2rad(elevations) # elevation angle in radians. |
|
61 | 61 | theta_a = numpy.deg2rad(azimuths) # azimuth angle in radians. |
|
62 | 62 | R = 6371.0 * 1000.0 * 4.0 / 3.0 # effective radius of earth in meters. |
|
63 | 63 | r = ranges * 1000.0 # distances to gates in meters. |
|
64 | 64 | |
|
65 | 65 | z = (r ** 2 + R ** 2 + 2.0 * r * R * numpy.sin(theta_e)) ** 0.5 - R |
|
66 | 66 | s = R * numpy.arcsin(r * numpy.cos(theta_e) / (R + z)) # arc length in m. |
|
67 | 67 | x = s * numpy.sin(theta_a) |
|
68 | 68 | y = s * numpy.cos(theta_a) |
|
69 | 69 | return x, y, z |
|
70 | 70 | |
|
71 | 71 | def cartesian_to_geographic_aeqd(x, y, lon_0, lat_0, R=EARTH_RADIUS): |
|
72 | 72 | """ |
|
73 | 73 | Azimuthal equidistant Cartesian to geographic coordinate transform. |
|
74 | 74 | |
|
75 | 75 | Transform a set of Cartesian/Cartographic coordinates (x, y) to |
|
76 | 76 | geographic coordinate system (lat, lon) using a azimuthal equidistant |
|
77 | 77 | map projection [1]_. |
|
78 | 78 | |
|
79 | 79 | .. math:: |
|
80 | 80 | |
|
81 | 81 | lat = \\arcsin(\\cos(c) * \\sin(lat_0) + |
|
82 | 82 | (y * \\sin(c) * \\cos(lat_0) / \\rho)) |
|
83 | 83 | |
|
84 | 84 | lon = lon_0 + \\arctan2( |
|
85 | 85 | x * \\sin(c), |
|
86 | 86 | \\rho * \\cos(lat_0) * \\cos(c) - y * \\sin(lat_0) * \\sin(c)) |
|
87 | 87 | |
|
88 | 88 | \\rho = \\sqrt(x^2 + y^2) |
|
89 | 89 | |
|
90 | 90 | c = \\rho / R |
|
91 | 91 | |
|
92 | 92 | Where x, y are the Cartesian position from the center of projection; |
|
93 | 93 | lat, lon the corresponding latitude and longitude; lat_0, lon_0 are the |
|
94 | 94 | latitude and longitude of the center of the projection; R is the radius of |
|
95 | 95 | the earth (defaults to ~6371 km). lon is adjusted to be between -180 and |
|
96 | 96 | 180. |
|
97 | 97 | |
|
98 | 98 | Parameters |
|
99 | 99 | ---------- |
|
100 | 100 | x, y : array-like |
|
101 | 101 | Cartesian coordinates in the same units as R, typically meters. |
|
102 | 102 | lon_0, lat_0 : float |
|
103 | 103 | Longitude and latitude, in degrees, of the center of the projection. |
|
104 | 104 | R : float, optional |
|
105 | 105 | Earth radius in the same units as x and y. The default value is in |
|
106 | 106 | units of meters. |
|
107 | 107 | |
|
108 | 108 | Returns |
|
109 | 109 | ------- |
|
110 | 110 | lon, lat : array |
|
111 | 111 | Longitude and latitude of Cartesian coordinates in degrees. |
|
112 | 112 | |
|
113 | 113 | References |
|
114 | 114 | ---------- |
|
115 | 115 | .. [1] Snyder, J. P. Map Projections--A Working Manual. U. S. Geological |
|
116 | 116 | Survey Professional Paper 1395, 1987, pp. 191-202. |
|
117 | 117 | |
|
118 | 118 | """ |
|
119 | 119 | x = numpy.atleast_1d(numpy.asarray(x)) |
|
120 | 120 | y = numpy.atleast_1d(numpy.asarray(y)) |
|
121 | 121 | |
|
122 | 122 | lat_0_rad = numpy.deg2rad(lat_0) |
|
123 | 123 | lon_0_rad = numpy.deg2rad(lon_0) |
|
124 | 124 | |
|
125 | 125 | rho = numpy.sqrt(x*x + y*y) |
|
126 | 126 | c = rho / R |
|
127 | 127 | |
|
128 | 128 | with warnings.catch_warnings(): |
|
129 | 129 | # division by zero may occur here but is properly addressed below so |
|
130 | 130 | # the warnings can be ignored |
|
131 | 131 | warnings.simplefilter("ignore", RuntimeWarning) |
|
132 | 132 | lat_rad = numpy.arcsin(numpy.cos(c) * numpy.sin(lat_0_rad) + |
|
133 | 133 | y * numpy.sin(c) * numpy.cos(lat_0_rad) / rho) |
|
134 | 134 | lat_deg = numpy.rad2deg(lat_rad) |
|
135 | 135 | # fix cases where the distance from the center of the projection is zero |
|
136 | 136 | lat_deg[rho == 0] = lat_0 |
|
137 | 137 | |
|
138 | 138 | x1 = x * numpy.sin(c) |
|
139 | 139 | x2 = rho*numpy.cos(lat_0_rad)*numpy.cos(c) - y*numpy.sin(lat_0_rad)*numpy.sin(c) |
|
140 | 140 | lon_rad = lon_0_rad + numpy.arctan2(x1, x2) |
|
141 | 141 | lon_deg = numpy.rad2deg(lon_rad) |
|
142 | 142 | # Longitudes should be from -180 to 180 degrees |
|
143 | 143 | lon_deg[lon_deg > 180] -= 360. |
|
144 | 144 | lon_deg[lon_deg < -180] += 360. |
|
145 | 145 | |
|
146 | 146 | return lon_deg, lat_deg |
|
147 | 147 | |
|
148 | 148 | def antenna_to_geographic(ranges, azimuths, elevations, site): |
|
149 | 149 | |
|
150 | 150 | x, y, z = antenna_to_cartesian(numpy.array(ranges), numpy.array(azimuths), numpy.array(elevations)) |
|
151 | 151 | lon, lat = cartesian_to_geographic_aeqd(x, y, site[0], site[1], R=6370997.) |
|
152 | 152 | |
|
153 | 153 | return lon, lat |
|
154 | 154 | |
|
155 | 155 | def ll2xy(lat1, lon1, lat2, lon2): |
|
156 | 156 | |
|
157 | 157 | p = 0.017453292519943295 |
|
158 | 158 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
159 | 159 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
160 | 160 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
161 | 161 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
162 | 162 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
163 | 163 | theta = -theta + numpy.pi/2 |
|
164 | 164 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
165 | 165 | |
|
166 | 166 | |
|
167 | 167 | def km2deg(km): |
|
168 | 168 | ''' |
|
169 | 169 | Convert distance in km to degrees |
|
170 | 170 | ''' |
|
171 | 171 | |
|
172 | 172 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
173 | 173 | |
|
174 | 174 | |
|
175 | 175 | |
|
176 | 176 | class SpectralMomentsPlot(SpectraPlot): |
|
177 | 177 | ''' |
|
178 | 178 | Plot for Spectral Moments |
|
179 | 179 | ''' |
|
180 | 180 | CODE = 'spc_moments' |
|
181 | 181 | # colormap = 'jet' |
|
182 | 182 | # plot_type = 'pcolor' |
|
183 | 183 | |
|
184 | 184 | class DobleGaussianPlot(SpectraPlot): |
|
185 | 185 | ''' |
|
186 | 186 | Plot for Double Gaussian Plot |
|
187 | 187 | ''' |
|
188 | 188 | CODE = 'gaussian_fit' |
|
189 | 189 | # colormap = 'jet' |
|
190 | 190 | # plot_type = 'pcolor' |
|
191 | 191 | |
|
192 | 192 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
193 | 193 | ''' |
|
194 | 194 | Plot SpectraCut with Double Gaussian Fit |
|
195 | 195 | ''' |
|
196 | 196 | CODE = 'cut_gaussian_fit' |
|
197 | 197 | |
|
198 | 198 | class SnrPlot(RTIPlot): |
|
199 | 199 | ''' |
|
200 | 200 | Plot for SNR Data |
|
201 | 201 | ''' |
|
202 | 202 | |
|
203 | 203 | CODE = 'snr' |
|
204 | 204 | colormap = 'jet' |
|
205 | 205 | |
|
206 | 206 | def update(self, dataOut): |
|
207 | 207 | |
|
208 | 208 | data = { |
|
209 | 209 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
210 | 210 | } |
|
211 | 211 | |
|
212 | 212 | return data, {} |
|
213 | 213 | |
|
214 | 214 | class DopplerPlot(RTIPlot): |
|
215 | 215 | ''' |
|
216 | 216 | Plot for DOPPLER Data (1st moment) |
|
217 | 217 | ''' |
|
218 | 218 | |
|
219 | 219 | CODE = 'dop' |
|
220 | 220 | colormap = 'jet' |
|
221 | 221 | |
|
222 | 222 | def update(self, dataOut): |
|
223 | 223 | |
|
224 | 224 | data = { |
|
225 | 225 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
226 | 226 | } |
|
227 | 227 | |
|
228 | 228 | return data, {} |
|
229 | 229 | |
|
230 | 230 | class PowerPlot(RTIPlot): |
|
231 | 231 | ''' |
|
232 | 232 | Plot for Power Data (0 moment) |
|
233 | 233 | ''' |
|
234 | 234 | |
|
235 | 235 | CODE = 'pow' |
|
236 | 236 | colormap = 'jet' |
|
237 | 237 | |
|
238 | 238 | def update(self, dataOut): |
|
239 | 239 | data = { |
|
240 | 240 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
241 | 241 | } |
|
242 | 242 | return data, {} |
|
243 | 243 | |
|
244 | 244 | class SpectralWidthPlot(RTIPlot): |
|
245 | 245 | ''' |
|
246 | 246 | Plot for Spectral Width Data (2nd moment) |
|
247 | 247 | ''' |
|
248 | 248 | |
|
249 | 249 | CODE = 'width' |
|
250 | 250 | colormap = 'jet' |
|
251 | 251 | |
|
252 | 252 | def update(self, dataOut): |
|
253 | 253 | |
|
254 | 254 | data = { |
|
255 | 255 | 'width': dataOut.data_width |
|
256 | 256 | } |
|
257 | 257 | |
|
258 | 258 | return data, {} |
|
259 | 259 | |
|
260 | 260 | class SkyMapPlot(Plot): |
|
261 | 261 | ''' |
|
262 | 262 | Plot for meteors detection data |
|
263 | 263 | ''' |
|
264 | 264 | |
|
265 | 265 | CODE = 'param' |
|
266 | 266 | |
|
267 | 267 | def setup(self): |
|
268 | 268 | |
|
269 | 269 | self.ncols = 1 |
|
270 | 270 | self.nrows = 1 |
|
271 | 271 | self.width = 7.2 |
|
272 | 272 | self.height = 7.2 |
|
273 | 273 | self.nplots = 1 |
|
274 | 274 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
275 | 275 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
276 | 276 | self.polar = True |
|
277 | 277 | self.ymin = -180 |
|
278 | 278 | self.ymax = 180 |
|
279 | 279 | self.colorbar = False |
|
280 | 280 | |
|
281 | 281 | def plot(self): |
|
282 | 282 | |
|
283 | 283 | arrayParameters = numpy.concatenate(self.data['param']) |
|
284 | 284 | error = arrayParameters[:, -1] |
|
285 | 285 | indValid = numpy.where(error == 0)[0] |
|
286 | 286 | finalMeteor = arrayParameters[indValid, :] |
|
287 | 287 | finalAzimuth = finalMeteor[:, 3] |
|
288 | 288 | finalZenith = finalMeteor[:, 4] |
|
289 | 289 | |
|
290 | 290 | x = finalAzimuth * numpy.pi / 180 |
|
291 | 291 | y = finalZenith |
|
292 | 292 | |
|
293 | 293 | ax = self.axes[0] |
|
294 | 294 | |
|
295 | 295 | if ax.firsttime: |
|
296 | 296 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
297 | 297 | else: |
|
298 | 298 | ax.plot.set_data(x, y) |
|
299 | 299 | |
|
300 | 300 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
301 | 301 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
302 | 302 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
303 | 303 | dt2, |
|
304 | 304 | len(x)) |
|
305 | 305 | self.titles[0] = title |
|
306 | 306 | |
|
307 | 307 | |
|
308 | 308 | class GenericRTIPlot(Plot): |
|
309 | 309 | ''' |
|
310 | 310 | Plot for data_xxxx object |
|
311 | 311 | ''' |
|
312 | 312 | |
|
313 | 313 | CODE = 'param' |
|
314 | 314 | colormap = 'viridis' |
|
315 | 315 | plot_type = 'pcolorbuffer' |
|
316 | 316 | |
|
317 | 317 | def setup(self): |
|
318 | 318 | self.xaxis = 'time' |
|
319 | 319 | self.ncols = 1 |
|
320 | 320 | self.nrows = self.data.shape('param')[0] |
|
321 | 321 | self.nplots = self.nrows |
|
322 | 322 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
323 | 323 | |
|
324 | 324 | if not self.xlabel: |
|
325 | 325 | self.xlabel = 'Time' |
|
326 | 326 | |
|
327 | 327 | self.ylabel = 'Range [km]' |
|
328 | 328 | if not self.titles: |
|
329 | 329 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
330 | 330 | |
|
331 | 331 | def update(self, dataOut): |
|
332 | 332 | |
|
333 | 333 | data = { |
|
334 | 334 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
335 | 335 | } |
|
336 | 336 | |
|
337 | 337 | meta = {} |
|
338 | 338 | |
|
339 | 339 | return data, meta |
|
340 | 340 | |
|
341 | 341 | def plot(self): |
|
342 | 342 | # self.data.normalize_heights() |
|
343 | 343 | self.x = self.data.times |
|
344 | 344 | self.y = self.data.yrange |
|
345 | 345 | self.z = self.data['param'] |
|
346 | 346 | self.z = 10*numpy.log10(self.z) |
|
347 | 347 | self.z = numpy.ma.masked_invalid(self.z) |
|
348 | 348 | |
|
349 | 349 | if self.decimation is None: |
|
350 | 350 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
351 | 351 | else: |
|
352 | 352 | x, y, z = self.fill_gaps(*self.decimate()) |
|
353 | 353 | |
|
354 | 354 | for n, ax in enumerate(self.axes): |
|
355 | 355 | |
|
356 | 356 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
357 | 357 | self.z[n]) |
|
358 | 358 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
359 | 359 | self.z[n]) |
|
360 | 360 | |
|
361 | 361 | if ax.firsttime: |
|
362 | 362 | if self.zlimits is not None: |
|
363 | 363 | self.zmin, self.zmax = self.zlimits[n] |
|
364 | 364 | |
|
365 | 365 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
366 | 366 | vmin=self.zmin, |
|
367 | 367 | vmax=self.zmax, |
|
368 | 368 | cmap=self.cmaps[n] |
|
369 | 369 | ) |
|
370 | 370 | else: |
|
371 | 371 | if self.zlimits is not None: |
|
372 | 372 | self.zmin, self.zmax = self.zlimits[n] |
|
373 | 373 | ax.collections.remove(ax.collections[0]) |
|
374 | 374 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
375 | 375 | vmin=self.zmin, |
|
376 | 376 | vmax=self.zmax, |
|
377 | 377 | cmap=self.cmaps[n] |
|
378 | 378 | ) |
|
379 | 379 | |
|
380 | 380 | |
|
381 | 381 | class PolarMapPlot(Plot): |
|
382 | 382 | ''' |
|
383 | 383 | Plot for weather radar |
|
384 | 384 | ''' |
|
385 | 385 | |
|
386 | 386 | CODE = 'param' |
|
387 | 387 | colormap = 'seismic' |
|
388 | 388 | |
|
389 | 389 | def setup(self): |
|
390 | 390 | self.ncols = 1 |
|
391 | 391 | self.nrows = 1 |
|
392 | 392 | self.width = 9 |
|
393 | 393 | self.height = 8 |
|
394 | 394 | self.mode = self.data.meta['mode'] |
|
395 | 395 | if self.channels is not None: |
|
396 | 396 | self.nplots = len(self.channels) |
|
397 | 397 | self.nrows = len(self.channels) |
|
398 | 398 | else: |
|
399 | 399 | self.nplots = self.data.shape(self.CODE)[0] |
|
400 | 400 | self.nrows = self.nplots |
|
401 | 401 | self.channels = list(range(self.nplots)) |
|
402 | 402 | if self.mode == 'E': |
|
403 | 403 | self.xlabel = 'Longitude' |
|
404 | 404 | self.ylabel = 'Latitude' |
|
405 | 405 | else: |
|
406 | 406 | self.xlabel = 'Range (km)' |
|
407 | 407 | self.ylabel = 'Height (km)' |
|
408 | 408 | self.bgcolor = 'white' |
|
409 | 409 | self.cb_labels = self.data.meta['units'] |
|
410 | 410 | self.lat = self.data.meta['latitude'] |
|
411 | 411 | self.lon = self.data.meta['longitude'] |
|
412 | 412 | self.xmin, self.xmax = float( |
|
413 | 413 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
414 | 414 | self.ymin, self.ymax = float( |
|
415 | 415 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
416 | 416 | # self.polar = True |
|
417 | 417 | |
|
418 | 418 | def plot(self): |
|
419 | 419 | |
|
420 | 420 | for n, ax in enumerate(self.axes): |
|
421 | 421 | data = self.data['param'][self.channels[n]] |
|
422 | 422 | |
|
423 | 423 | zeniths = numpy.linspace( |
|
424 | 424 | 0, self.data.meta['max_range'], data.shape[1]) |
|
425 | 425 | if self.mode == 'E': |
|
426 | 426 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
427 | 427 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
428 | 428 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
429 | 429 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
430 | 430 | x = km2deg(x) + self.lon |
|
431 | 431 | y = km2deg(y) + self.lat |
|
432 | 432 | else: |
|
433 | 433 | azimuths = numpy.radians(self.data.yrange) |
|
434 | 434 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
435 | 435 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
436 | 436 | self.y = zeniths |
|
437 | 437 | |
|
438 | 438 | if ax.firsttime: |
|
439 | 439 | if self.zlimits is not None: |
|
440 | 440 | self.zmin, self.zmax = self.zlimits[n] |
|
441 | 441 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
442 | 442 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
443 | 443 | vmin=self.zmin, |
|
444 | 444 | vmax=self.zmax, |
|
445 | 445 | cmap=self.cmaps[n]) |
|
446 | 446 | else: |
|
447 | 447 | if self.zlimits is not None: |
|
448 | 448 | self.zmin, self.zmax = self.zlimits[n] |
|
449 | 449 | ax.collections.remove(ax.collections[0]) |
|
450 | 450 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
451 | 451 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
452 | 452 | vmin=self.zmin, |
|
453 | 453 | vmax=self.zmax, |
|
454 | 454 | cmap=self.cmaps[n]) |
|
455 | 455 | |
|
456 | 456 | if self.mode == 'A': |
|
457 | 457 | continue |
|
458 | 458 | |
|
459 | 459 | # plot district names |
|
460 | 460 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
461 | 461 | for line in f: |
|
462 | 462 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
463 | 463 | lat = float(lat) |
|
464 | 464 | lon = float(lon) |
|
465 | 465 | # ax.plot(lon, lat, '.b', ms=2) |
|
466 | 466 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
467 | 467 | va='bottom', size='8', color='black') |
|
468 | 468 | |
|
469 | 469 | # plot limites |
|
470 | 470 | limites = [] |
|
471 | 471 | tmp = [] |
|
472 | 472 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
473 | 473 | if '#' in line: |
|
474 | 474 | if tmp: |
|
475 | 475 | limites.append(tmp) |
|
476 | 476 | tmp = [] |
|
477 | 477 | continue |
|
478 | 478 | values = line.strip().split(',') |
|
479 | 479 | tmp.append((float(values[0]), float(values[1]))) |
|
480 | 480 | for points in limites: |
|
481 | 481 | ax.add_patch( |
|
482 | 482 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
483 | 483 | |
|
484 | 484 | # plot Cuencas |
|
485 | 485 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
486 | 486 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
487 | 487 | values = [line.strip().split(',') for line in f] |
|
488 | 488 | points = [(float(s[0]), float(s[1])) for s in values] |
|
489 | 489 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
490 | 490 | |
|
491 | 491 | # plot grid |
|
492 | 492 | for r in (15, 30, 45, 60): |
|
493 | 493 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
494 | 494 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
495 | 495 | ax.text( |
|
496 | 496 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
497 | 497 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
498 | 498 | '{}km'.format(r), |
|
499 | 499 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
500 | 500 | |
|
501 | 501 | if self.mode == 'E': |
|
502 | 502 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
503 | 503 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
504 | 504 | else: |
|
505 | 505 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
506 | 506 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
507 | 507 | |
|
508 | 508 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
509 | 509 | self.titles = ['{} {}'.format( |
|
510 | 510 | self.data.parameters[x], title) for x in self.channels] |
|
511 | 511 | |
|
512 | 512 | class WeatherParamsPlot(Plot): |
|
513 | 513 | #CODE = 'RHI' |
|
514 | 514 | #plot_name = 'RHI' |
|
515 | 515 | plot_type = 'scattermap' |
|
516 | 516 | buffering = False |
|
517 | 517 | |
|
518 | 518 | def setup(self): |
|
519 | 519 | |
|
520 | 520 | self.ncols = 1 |
|
521 | 521 | self.nrows = 1 |
|
522 | 522 | self.nplots= 1 |
|
523 | 523 | self.ylabel= 'Range [km]' |
|
524 | 524 | self.xlabel= 'Range [km]' |
|
525 | 525 | self.polar = True |
|
526 | 526 | self.grid = True |
|
527 | 527 | if self.channels is not None: |
|
528 | 528 | self.nplots = len(self.channels) |
|
529 |
self.n |
|
|
529 | self.ncols = len(self.channels) | |
|
530 | 530 | else: |
|
531 | 531 | self.nplots = self.data.shape(self.CODE)[0] |
|
532 |
self.n |
|
|
532 | self.ncols = self.nplots | |
|
533 | 533 | self.channels = list(range(self.nplots)) |
|
534 | 534 | |
|
535 | 535 | self.colorbar=True |
|
536 | if len(self.channels)>1: | |
|
537 | self.width = 12 | |
|
538 | else: | |
|
536 | 539 | self.width =8 |
|
537 | 540 | self.height =8 |
|
538 | 541 | self.ini =0 |
|
539 | 542 | self.len_azi =0 |
|
540 | 543 | self.buffer_ini = None |
|
541 | 544 | self.buffer_ele = None |
|
542 | 545 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
543 | 546 | self.flag =0 |
|
544 | 547 | self.indicador= 0 |
|
545 | 548 | self.last_data_ele = None |
|
546 | 549 | self.val_mean = None |
|
547 | 550 | |
|
548 | 551 | def update(self, dataOut): |
|
549 | 552 | |
|
550 | 553 | vars = { |
|
551 | 554 | 'S' : 0, |
|
552 | 555 | 'V' : 1, |
|
553 | 556 | 'W' : 2, |
|
554 | 557 | 'SNR' : 3, |
|
555 | 558 | 'Z' : 4, |
|
556 | 559 | 'D' : 5, |
|
557 | 560 | 'P' : 6, |
|
558 | 561 | 'R' : 7, |
|
559 | 562 | } |
|
560 | 563 | |
|
561 | 564 | data = {} |
|
562 | 565 | meta = {} |
|
563 | 566 | |
|
564 | 567 | if hasattr(dataOut, 'nFFTPoints'): |
|
565 | 568 | factor = dataOut.normFactor |
|
566 | 569 | else: |
|
567 | 570 | factor = 1 |
|
568 | 571 | |
|
569 | 572 | if hasattr(dataOut, 'dparam'): |
|
570 | 573 | tmp = getattr(dataOut, 'data_param') |
|
571 | 574 | else: |
|
572 | 575 | |
|
573 | 576 | if 'S' in self.attr_data[0]: |
|
574 | 577 | tmp = 10*numpy.log10(10.0*getattr(dataOut, 'data_param')[:,0,:]/(factor)) |
|
575 | 578 | else: |
|
576 | 579 | tmp = getattr(dataOut, 'data_param')[:,vars[self.attr_data[0]],:] |
|
577 | 580 | |
|
578 | 581 | if self.mask: |
|
579 | 582 | mask = dataOut.data_param[:,3,:] < self.mask |
|
580 | 583 | tmp = numpy.ma.masked_array(tmp, mask=mask) |
|
581 | 584 | |
|
582 | 585 | r = dataOut.heightList |
|
583 | 586 | delta_height = r[1]-r[0] |
|
584 | 587 | valid = numpy.where(r>=0)[0] |
|
585 | 588 | data['r'] = numpy.arange(len(valid))*delta_height |
|
586 | 589 | |
|
587 | try: | |
|
588 | data['data'] = tmp[self.channels[0]][:,valid] | |
|
589 |
|
|
|
590 |
|
|
|
590 | data['data'] = [0, 0] | |
|
591 | ||
|
592 | #try: | |
|
593 | data['data'][0] = tmp[0][:,valid] | |
|
594 | data['data'][1] = tmp[1][:,valid] | |
|
595 | #except: | |
|
596 | # data['data'] = tmp[0][:,valid] | |
|
591 | 597 | |
|
592 | 598 | if dataOut.mode_op == 'PPI': |
|
593 | 599 | self.CODE = 'PPI' |
|
594 | 600 | self.title = self.CODE |
|
595 | 601 | elif dataOut.mode_op == 'RHI': |
|
596 | 602 | self.CODE = 'RHI' |
|
597 | 603 | self.title = self.CODE |
|
598 | 604 | |
|
599 | 605 | data['azi'] = dataOut.data_azi |
|
600 | 606 | data['ele'] = dataOut.data_ele |
|
601 | 607 | data['mode_op'] = dataOut.mode_op |
|
602 | 608 | self.mode = dataOut.mode_op |
|
603 | var = data['data'].flatten() | |
|
604 | r = numpy.tile(data['r'], data['data'].shape[0]) | |
|
605 | az = numpy.repeat(data['azi'], data['data'].shape[1]) | |
|
606 | el = numpy.repeat(data['ele'], data['data'].shape[1]) | |
|
609 | var = data['data'][0].flatten() | |
|
610 | r = numpy.tile(data['r'], data['data'][0].shape[0]) | |
|
611 | az = numpy.repeat(data['azi'], data['data'][0].shape[1]) | |
|
612 | el = numpy.repeat(data['ele'], data['data'][0].shape[1]) | |
|
607 | 613 | |
|
608 | 614 | # lla = georef.spherical_to_proj(r, data['azi'], data['ele'], (-75.295893, -12.040436, 3379.2147)) |
|
609 | 615 | |
|
610 | 616 | latlon = antenna_to_geographic(r, az, el, (-75.295893, -12.040436)) |
|
611 | 617 | |
|
612 | 618 | if self.mask: |
|
613 | 619 | meta['lat'] = latlon[1][var.mask==False] |
|
614 | 620 | meta['lon'] = latlon[0][var.mask==False] |
|
615 | 621 | data['var'] = numpy.array([var[var.mask==False]]) |
|
616 | 622 | else: |
|
617 | 623 | meta['lat'] = latlon[1] |
|
618 | 624 | meta['lon'] = latlon[0] |
|
619 | 625 | data['var'] = numpy.array([var]) |
|
620 | 626 | |
|
621 | 627 | return data, meta |
|
622 | 628 | |
|
623 | 629 | def plot(self): |
|
624 | 630 | data = self.data[-1] |
|
625 | 631 | z = data['data'] |
|
626 | 632 | r = data['r'] |
|
627 | 633 | self.titles = [] |
|
628 | 634 | |
|
629 | 635 | self.ymax = self.ymax if self.ymax else numpy.nanmax(r) |
|
630 | 636 | self.ymin = self.ymin if self.ymin else numpy.nanmin(r) |
|
631 | 637 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
632 | 638 | self.zmin = self.zmin if self.zmin is not None else numpy.nanmin(z) |
|
633 | 639 | |
|
634 | 640 | if isinstance(data['mode_op'], bytes): |
|
635 | 641 | data['mode_op'] = data['mode_op'].decode() |
|
636 | 642 | |
|
637 | 643 | if data['mode_op'] == 'RHI': |
|
638 | 644 | try: |
|
639 | 645 | if self.data['mode_op'][-2] == 'PPI': |
|
640 | 646 | self.ang_min = None |
|
641 | 647 | self.ang_max = None |
|
642 | 648 | except: |
|
643 | 649 | pass |
|
644 | 650 | self.ang_min = self.ang_min if self.ang_min else 0 |
|
645 | 651 | self.ang_max = self.ang_max if self.ang_max else 90 |
|
646 | 652 | r, theta = numpy.meshgrid(r, numpy.radians(data['ele']) ) |
|
647 | 653 | elif data['mode_op'] == 'PPI': |
|
648 | 654 | try: |
|
649 | 655 | if self.data['mode_op'][-2] == 'RHI': |
|
650 | 656 | self.ang_min = None |
|
651 | 657 | self.ang_max = None |
|
652 | 658 | except: |
|
653 | 659 | pass |
|
654 | 660 | self.ang_min = self.ang_min if self.ang_min else 0 |
|
655 | 661 | self.ang_max = self.ang_max if self.ang_max else 360 |
|
656 | 662 | r, theta = numpy.meshgrid(r, numpy.radians(data['azi']) ) |
|
657 | 663 | |
|
658 | 664 | self.clear_figures() |
|
659 | 665 | |
|
660 | 666 | for i,ax in enumerate(self.axes): |
|
661 | 667 | |
|
662 | 668 | if ax.firsttime: |
|
663 | 669 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) |
|
664 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) | |
|
670 | ax.plt = ax.pcolormesh(theta, r, z[i], cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) | |
|
665 | 671 | if data['mode_op'] == 'PPI': |
|
666 | 672 | ax.set_theta_direction(-1) |
|
667 | 673 | ax.set_theta_offset(numpy.pi/2) |
|
668 | 674 | |
|
669 | 675 | else: |
|
670 | 676 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) |
|
671 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) | |
|
677 | ax.plt = ax.pcolormesh(theta, r, z[i], cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) | |
|
672 | 678 | if data['mode_op'] == 'PPI': |
|
673 | 679 | ax.set_theta_direction(-1) |
|
674 | 680 | ax.set_theta_offset(numpy.pi/2) |
|
675 | 681 | |
|
676 | 682 | ax.grid(True) |
|
677 | 683 | if data['mode_op'] == 'RHI': |
|
678 | 684 | len_aux = int(data['azi'].shape[0]/4) |
|
679 | 685 | mean = numpy.mean(data['azi'][len_aux:-len_aux]) |
|
680 | 686 | if len(self.channels) !=1: |
|
681 |
self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in |
|
|
687 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in self.channels] | |
|
682 | 688 | else: |
|
683 | 689 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] |
|
684 | 690 | elif data['mode_op'] == 'PPI': |
|
685 | 691 | len_aux = int(data['ele'].shape[0]/4) |
|
686 | 692 | mean = numpy.mean(data['ele'][len_aux:-len_aux]) |
|
687 | 693 | if len(self.channels) !=1: |
|
688 |
self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in |
|
|
694 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in self.channels] | |
|
689 | 695 | else: |
|
690 | 696 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] |
|
691 | 697 | self.mode_value = round(mean,1) No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now