The requested changes are too big and content was truncated. Show full diff
@@ -1,669 +1,677 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """API to create signal chain projects |
|
6 | 6 | |
|
7 | 7 | The API is provide through class: Project |
|
8 | 8 | """ |
|
9 | 9 | |
|
10 | 10 | import re |
|
11 | 11 | import sys |
|
12 | 12 | import ast |
|
13 | 13 | import datetime |
|
14 | 14 | import traceback |
|
15 | 15 | import time |
|
16 | 16 | import multiprocessing |
|
17 | 17 | from multiprocessing import Process, Queue |
|
18 | 18 | from threading import Thread |
|
19 | 19 | from xml.etree.ElementTree import ElementTree, Element, SubElement |
|
20 | 20 | |
|
21 | 21 | from schainpy.admin import Alarm, SchainWarning |
|
22 | 22 | from schainpy.model import * |
|
23 | 23 | from schainpy.utils import log |
|
24 | 24 | |
|
25 | 25 | if 'darwin' in sys.platform and sys.version_info[0] == 3 and sys.version_info[1] > 7: |
|
26 | 26 | multiprocessing.set_start_method('fork') |
|
27 | 27 | |
|
28 | 28 | class ConfBase(): |
|
29 | 29 | |
|
30 | 30 | def __init__(self): |
|
31 | 31 | |
|
32 | 32 | self.id = '0' |
|
33 | 33 | self.name = None |
|
34 | 34 | self.priority = None |
|
35 | 35 | self.parameters = {} |
|
36 | 36 | self.object = None |
|
37 | 37 | self.operations = [] |
|
38 | 38 | |
|
39 | 39 | def getId(self): |
|
40 | 40 | |
|
41 | 41 | return self.id |
|
42 | 42 | |
|
43 | 43 | def getNewId(self): |
|
44 | 44 | |
|
45 | 45 | return int(self.id) * 10 + len(self.operations) + 1 |
|
46 | 46 | |
|
47 | 47 | def updateId(self, new_id): |
|
48 | 48 | |
|
49 | 49 | self.id = str(new_id) |
|
50 | 50 | |
|
51 | 51 | n = 1 |
|
52 | 52 | for conf in self.operations: |
|
53 | 53 | conf_id = str(int(new_id) * 10 + n) |
|
54 | 54 | conf.updateId(conf_id) |
|
55 | 55 | n += 1 |
|
56 | 56 | |
|
57 | 57 | def getKwargs(self): |
|
58 | 58 | |
|
59 | 59 | params = {} |
|
60 | 60 | |
|
61 | 61 | for key, value in self.parameters.items(): |
|
62 | 62 | if value not in (None, '', ' '): |
|
63 | 63 | params[key] = value |
|
64 | 64 | |
|
65 | 65 | return params |
|
66 | 66 | |
|
67 | 67 | def update(self, **kwargs): |
|
68 | 68 | |
|
69 | 69 | for key, value in kwargs.items(): |
|
70 | 70 | self.addParameter(name=key, value=value) |
|
71 | 71 | |
|
72 | 72 | def addParameter(self, name, value, format=None): |
|
73 | 73 | ''' |
|
74 | 74 | ''' |
|
75 | 75 | |
|
76 | if isinstance(value, str) and re.search(r'(\d+/\d+/\d+)', value): | |
|
76 | if format is not None: | |
|
77 | self.parameters[name] = eval(format)(value) | |
|
78 | elif isinstance(value, str) and re.search(r'(\d+/\d+/\d+)', value): | |
|
77 | 79 | self.parameters[name] = datetime.date(*[int(x) for x in value.split('/')]) |
|
78 | 80 | elif isinstance(value, str) and re.search(r'(\d+:\d+:\d+)', value): |
|
79 | 81 | self.parameters[name] = datetime.time(*[int(x) for x in value.split(':')]) |
|
80 | 82 | else: |
|
81 | 83 | try: |
|
82 | 84 | self.parameters[name] = ast.literal_eval(value) |
|
83 | 85 | except: |
|
84 | 86 | if isinstance(value, str) and ',' in value: |
|
85 | 87 | self.parameters[name] = value.split(',') |
|
86 | 88 | else: |
|
87 | 89 | self.parameters[name] = value |
|
88 | 90 | |
|
89 | 91 | def getParameters(self): |
|
90 | 92 | |
|
91 | 93 | params = {} |
|
92 | 94 | for key, value in self.parameters.items(): |
|
93 | 95 | s = type(value).__name__ |
|
94 | 96 | if s == 'date': |
|
95 | 97 | params[key] = value.strftime('%Y/%m/%d') |
|
96 | 98 | elif s == 'time': |
|
97 | 99 | params[key] = value.strftime('%H:%M:%S') |
|
98 | 100 | else: |
|
99 | 101 | params[key] = str(value) |
|
100 | 102 | |
|
101 | 103 | return params |
|
102 | 104 | |
|
103 | 105 | def makeXml(self, element): |
|
104 | 106 | |
|
105 | 107 | xml = SubElement(element, self.ELEMENTNAME) |
|
106 | 108 | for label in self.xml_labels: |
|
107 | 109 | xml.set(label, str(getattr(self, label))) |
|
108 | 110 | |
|
109 | 111 | for key, value in self.getParameters().items(): |
|
110 | 112 | xml_param = SubElement(xml, 'Parameter') |
|
111 | 113 | xml_param.set('name', key) |
|
112 | 114 | xml_param.set('value', value) |
|
113 | 115 | |
|
114 | 116 | for conf in self.operations: |
|
115 | 117 | conf.makeXml(xml) |
|
116 | 118 | |
|
117 | 119 | def __str__(self): |
|
118 | 120 | |
|
119 | 121 | if self.ELEMENTNAME == 'Operation': |
|
120 | 122 | s = ' {}[id={}]\n'.format(self.name, self.id) |
|
121 | 123 | else: |
|
122 | 124 | s = '{}[id={}, inputId={}]\n'.format(self.name, self.id, self.inputId) |
|
123 | 125 | |
|
124 | 126 | for key, value in self.parameters.items(): |
|
125 | 127 | if self.ELEMENTNAME == 'Operation': |
|
126 | 128 | s += ' {}: {}\n'.format(key, value) |
|
127 | 129 | else: |
|
128 | 130 | s += ' {}: {}\n'.format(key, value) |
|
129 | 131 | |
|
130 | 132 | for conf in self.operations: |
|
131 | 133 | s += str(conf) |
|
132 | 134 | |
|
133 | 135 | return s |
|
134 | 136 | |
|
135 | 137 | class OperationConf(ConfBase): |
|
136 | 138 | |
|
137 | 139 | ELEMENTNAME = 'Operation' |
|
138 | 140 | xml_labels = ['id', 'name'] |
|
139 | 141 | |
|
140 | 142 | def setup(self, id, name, priority, project_id, err_queue): |
|
141 | 143 | |
|
142 | 144 | self.id = str(id) |
|
143 | 145 | self.project_id = project_id |
|
144 | 146 | self.name = name |
|
145 | 147 | self.type = 'other' |
|
146 | 148 | self.err_queue = err_queue |
|
147 | 149 | |
|
148 | 150 | def readXml(self, element, project_id, err_queue): |
|
149 | 151 | |
|
150 | 152 | self.id = element.get('id') |
|
151 | 153 | self.name = element.get('name') |
|
152 | 154 | self.type = 'other' |
|
153 | 155 | self.project_id = str(project_id) |
|
154 | 156 | self.err_queue = err_queue |
|
155 | 157 | |
|
156 | 158 | for elm in element.iter('Parameter'): |
|
157 | 159 | self.addParameter(elm.get('name'), elm.get('value')) |
|
158 | 160 | |
|
159 | 161 | def createObject(self): |
|
160 | 162 | |
|
161 | 163 | className = eval(self.name) |
|
162 | 164 | |
|
163 | 165 | if 'Plot' in self.name or 'Writer' in self.name or 'Send' in self.name or 'print' in self.name: |
|
164 | 166 | kwargs = self.getKwargs() |
|
165 | 167 | opObj = className(self.id, self.id, self.project_id, self.err_queue, **kwargs) |
|
166 | 168 | opObj.start() |
|
167 | 169 | self.type = 'external' |
|
168 | 170 | else: |
|
169 | 171 | opObj = className() |
|
170 | 172 | |
|
171 | 173 | self.object = opObj |
|
172 | 174 | return opObj |
|
173 | 175 | |
|
174 | 176 | class ProcUnitConf(ConfBase): |
|
175 | 177 | |
|
176 | 178 | ELEMENTNAME = 'ProcUnit' |
|
177 | 179 | xml_labels = ['id', 'inputId', 'name'] |
|
178 | 180 | |
|
179 | 181 | def setup(self, project_id, id, name, datatype, inputId, err_queue): |
|
180 | 182 | ''' |
|
181 | 183 | ''' |
|
182 | 184 | |
|
183 | 185 | if datatype == None and name == None: |
|
184 | 186 | raise ValueError('datatype or name should be defined') |
|
185 | 187 | |
|
186 | 188 | if name == None: |
|
187 | 189 | if 'Proc' in datatype: |
|
188 | 190 | name = datatype |
|
189 | 191 | else: |
|
190 | 192 | name = '%sProc' % (datatype) |
|
191 | 193 | |
|
192 | 194 | if datatype == None: |
|
193 | 195 | datatype = name.replace('Proc', '') |
|
194 | 196 | |
|
195 | 197 | self.id = str(id) |
|
196 | 198 | self.project_id = project_id |
|
197 | 199 | self.name = name |
|
198 | 200 | self.datatype = datatype |
|
199 | 201 | self.inputId = inputId |
|
200 | 202 | self.err_queue = err_queue |
|
201 | 203 | self.operations = [] |
|
202 | 204 | self.parameters = {} |
|
203 | 205 | |
|
204 | 206 | def removeOperation(self, id): |
|
205 | 207 | |
|
206 | 208 | i = [1 if x.id == id else 0 for x in self.operations] |
|
207 | 209 | self.operations.pop(i.index(1)) |
|
208 | 210 | |
|
209 | 211 | def getOperation(self, id): |
|
210 | 212 | |
|
211 | 213 | for conf in self.operations: |
|
212 | 214 | if conf.id == id: |
|
213 | 215 | return conf |
|
214 | 216 | |
|
215 | 217 | def addOperation(self, name, optype='self'): |
|
216 | 218 | ''' |
|
217 | 219 | ''' |
|
218 | 220 | |
|
219 | 221 | id = self.getNewId() |
|
220 | 222 | conf = OperationConf() |
|
221 | 223 | conf.setup(id, name=name, priority='0', project_id=self.project_id, err_queue=self.err_queue) |
|
222 | 224 | self.operations.append(conf) |
|
223 | 225 | |
|
224 | 226 | return conf |
|
225 | 227 | |
|
226 | 228 | def readXml(self, element, project_id, err_queue): |
|
227 | 229 | |
|
228 | 230 | self.id = element.get('id') |
|
229 | 231 | self.name = element.get('name') |
|
230 | 232 | self.inputId = None if element.get('inputId') == 'None' else element.get('inputId') |
|
231 | 233 | self.datatype = element.get('datatype', self.name.replace(self.ELEMENTNAME.replace('Unit', ''), '')) |
|
232 | 234 | self.project_id = str(project_id) |
|
233 | 235 | self.err_queue = err_queue |
|
234 | 236 | self.operations = [] |
|
235 | 237 | self.parameters = {} |
|
236 | 238 | |
|
237 | 239 | for elm in element: |
|
238 | 240 | if elm.tag == 'Parameter': |
|
239 | 241 | self.addParameter(elm.get('name'), elm.get('value')) |
|
240 | 242 | elif elm.tag == 'Operation': |
|
241 | 243 | conf = OperationConf() |
|
242 | 244 | conf.readXml(elm, project_id, err_queue) |
|
243 | 245 | self.operations.append(conf) |
|
244 | 246 | |
|
245 | 247 | def createObjects(self): |
|
246 | 248 | ''' |
|
247 | 249 | Instancia de unidades de procesamiento. |
|
248 | 250 | ''' |
|
249 | 251 | |
|
250 | 252 | className = eval(self.name) |
|
251 | 253 | kwargs = self.getKwargs() |
|
252 | 254 | procUnitObj = className() |
|
253 | 255 | procUnitObj.name = self.name |
|
254 | 256 | log.success('creating process...', self.name) |
|
255 | 257 | |
|
256 | 258 | for conf in self.operations: |
|
257 | 259 | |
|
258 | 260 | opObj = conf.createObject() |
|
259 | 261 | |
|
260 | 262 | log.success('adding operation: {}, type:{}'.format( |
|
261 | 263 | conf.name, |
|
262 | 264 | conf.type), self.name) |
|
263 | 265 | |
|
264 | 266 | procUnitObj.addOperation(conf, opObj) |
|
265 | 267 | |
|
266 | 268 | self.object = procUnitObj |
|
267 | 269 | |
|
268 | 270 | def run(self): |
|
269 | 271 | ''' |
|
270 | 272 | ''' |
|
271 | 273 | #self.object.call(**self.getKwargs()) |
|
272 | 274 | |
|
273 | 275 | return self.object.call(**self.getKwargs()) |
|
274 | 276 | |
|
275 | 277 | |
|
276 | 278 | class ReadUnitConf(ProcUnitConf): |
|
277 | 279 | |
|
278 | 280 | ELEMENTNAME = 'ReadUnit' |
|
279 | 281 | |
|
280 | 282 | def __init__(self): |
|
281 | 283 | |
|
282 | 284 | self.id = None |
|
283 | 285 | self.datatype = None |
|
284 | 286 | self.name = None |
|
285 | 287 | self.inputId = None |
|
286 | 288 | self.operations = [] |
|
287 | 289 | self.parameters = {} |
|
288 | 290 | |
|
289 | 291 | def setup(self, project_id, id, name, datatype, err_queue, path='', startDate='', endDate='', |
|
290 | startTime='', endTime='', server=None, **kwargs): | |
|
292 | startTime='', endTime='', server=None, topic='', **kwargs): | |
|
291 | 293 | |
|
292 | 294 | if datatype == None and name == None: |
|
293 | 295 | raise ValueError('datatype or name should be defined') |
|
294 | 296 | if name == None: |
|
295 | 297 | if 'Reader' in datatype: |
|
296 | 298 | name = datatype |
|
297 | 299 | datatype = name.replace('Reader', '') |
|
298 | 300 | else: |
|
299 | 301 | name = '{}Reader'.format(datatype) |
|
300 | 302 | if datatype == None: |
|
301 | 303 | if 'Reader' in name: |
|
302 | 304 | datatype = name.replace('Reader', '') |
|
303 | 305 | else: |
|
304 | 306 | datatype = name |
|
305 | 307 | name = '{}Reader'.format(name) |
|
306 | 308 | |
|
307 | 309 | self.id = id |
|
308 | 310 | self.project_id = project_id |
|
309 | 311 | self.name = name |
|
310 | 312 | self.datatype = datatype |
|
311 | 313 | self.err_queue = err_queue |
|
312 | 314 | |
|
313 | 315 | self.addParameter(name='path', value=path) |
|
314 | 316 | self.addParameter(name='startDate', value=startDate) |
|
315 | 317 | self.addParameter(name='endDate', value=endDate) |
|
316 | 318 | self.addParameter(name='startTime', value=startTime) |
|
317 | 319 | self.addParameter(name='endTime', value=endTime) |
|
320 | self.addParameter(name='server', value=server) | |
|
321 | self.addParameter(name='topic', value=topic) | |
|
318 | 322 | |
|
319 | 323 | for key, value in kwargs.items(): |
|
320 | 324 | self.addParameter(name=key, value=value) |
|
321 | 325 | |
|
322 | 326 | |
|
323 | 327 | class Project(Process): |
|
324 | 328 | """API to create signal chain projects""" |
|
325 | 329 | |
|
326 | 330 | ELEMENTNAME = 'Project' |
|
327 | 331 | |
|
328 | 332 | def __init__(self, name=''): |
|
329 | 333 | |
|
330 | 334 | Process.__init__(self) |
|
331 | 335 | self.id = '1' |
|
332 | 336 | if name: |
|
333 | 337 | self.name = '{} ({})'.format(Process.__name__, name) |
|
334 | 338 | self.filename = None |
|
335 | 339 | self.description = None |
|
336 | 340 | self.email = None |
|
337 | 341 | self.alarm = [] |
|
338 | 342 | self.configurations = {} |
|
339 | 343 | # self.err_queue = Queue() |
|
340 | 344 | self.err_queue = None |
|
341 | 345 | self.started = False |
|
342 | 346 | |
|
343 | 347 | def getNewId(self): |
|
344 | 348 | |
|
345 | 349 | idList = list(self.configurations.keys()) |
|
346 | 350 | id = int(self.id) * 10 |
|
347 | 351 | |
|
348 | 352 | while True: |
|
349 | 353 | id += 1 |
|
350 | 354 | |
|
351 | 355 | if str(id) in idList: |
|
352 | 356 | continue |
|
353 | 357 | |
|
354 | 358 | break |
|
355 | 359 | |
|
356 | 360 | return str(id) |
|
357 | 361 | |
|
358 | 362 | def updateId(self, new_id): |
|
359 | 363 | |
|
360 | 364 | self.id = str(new_id) |
|
361 | 365 | |
|
362 | 366 | keyList = list(self.configurations.keys()) |
|
363 | 367 | keyList.sort() |
|
364 | 368 | |
|
365 | 369 | n = 1 |
|
366 | 370 | new_confs = {} |
|
367 | 371 | |
|
368 | 372 | for procKey in keyList: |
|
369 | 373 | |
|
370 | 374 | conf = self.configurations[procKey] |
|
371 | 375 | idProcUnit = str(int(self.id) * 10 + n) |
|
372 | 376 | conf.updateId(idProcUnit) |
|
373 | 377 | new_confs[idProcUnit] = conf |
|
374 | 378 | n += 1 |
|
375 | 379 | |
|
376 | 380 | self.configurations = new_confs |
|
377 | 381 | |
|
378 | 382 | def setup(self, id=1, name='', description='', email=None, alarm=[]): |
|
379 | 383 | |
|
380 | 384 | self.id = str(id) |
|
381 | 385 | self.description = description |
|
382 | 386 | self.email = email |
|
383 | 387 | self.alarm = alarm |
|
384 | 388 | if name: |
|
385 | 389 | self.name = '{} ({})'.format(Process.__name__, name) |
|
386 | 390 | |
|
387 | 391 | def update(self, **kwargs): |
|
388 | 392 | |
|
389 | 393 | for key, value in kwargs.items(): |
|
390 | 394 | setattr(self, key, value) |
|
391 | 395 | |
|
392 | 396 | def clone(self): |
|
393 | 397 | |
|
394 | 398 | p = Project() |
|
395 | 399 | p.id = self.id |
|
396 | 400 | p.name = self.name |
|
397 | 401 | p.description = self.description |
|
398 | 402 | p.configurations = self.configurations.copy() |
|
399 | 403 | |
|
400 | 404 | return p |
|
401 | 405 | |
|
402 | 406 | def addReadUnit(self, id=None, datatype=None, name=None, **kwargs): |
|
403 | 407 | |
|
404 | 408 | ''' |
|
405 | 409 | ''' |
|
406 | 410 | |
|
407 | 411 | if id is None: |
|
408 | 412 | idReadUnit = self.getNewId() |
|
409 | 413 | else: |
|
410 | 414 | idReadUnit = str(id) |
|
411 | 415 | |
|
412 | 416 | conf = ReadUnitConf() |
|
413 | 417 | conf.setup(self.id, idReadUnit, name, datatype, self.err_queue, **kwargs) |
|
414 | 418 | self.configurations[conf.id] = conf |
|
415 | 419 | |
|
416 | 420 | return conf |
|
417 | 421 | |
|
418 | 422 | def addProcUnit(self, id=None, inputId='0', datatype=None, name=None): |
|
419 | 423 | |
|
420 | 424 | ''' |
|
421 | 425 | ''' |
|
422 | 426 | |
|
423 | 427 | if id is None: |
|
424 | 428 | idProcUnit = self.getNewId() |
|
425 | 429 | else: |
|
426 | 430 | idProcUnit = id |
|
427 | 431 | |
|
428 | 432 | conf = ProcUnitConf() |
|
429 | 433 | conf.setup(self.id, idProcUnit, name, datatype, inputId, self.err_queue) |
|
430 | 434 | self.configurations[conf.id] = conf |
|
431 | 435 | |
|
432 | 436 | return conf |
|
433 | 437 | |
|
434 | 438 | def removeProcUnit(self, id): |
|
435 | 439 | |
|
436 | 440 | if id in self.configurations: |
|
437 | 441 | self.configurations.pop(id) |
|
438 | 442 | |
|
439 | 443 | def getReadUnit(self): |
|
440 | 444 | |
|
441 | 445 | for obj in list(self.configurations.values()): |
|
442 | 446 | if obj.ELEMENTNAME == 'ReadUnit': |
|
443 | 447 | return obj |
|
444 | 448 | |
|
445 | 449 | return None |
|
446 | 450 | |
|
447 | 451 | def getProcUnit(self, id): |
|
448 | 452 | |
|
449 | 453 | return self.configurations[id] |
|
450 | 454 | |
|
451 | 455 | def getUnits(self): |
|
452 | 456 | |
|
453 | 457 | keys = list(self.configurations) |
|
454 | 458 | keys.sort() |
|
455 | 459 | |
|
456 | 460 | for key in keys: |
|
457 | 461 | yield self.configurations[key] |
|
458 | 462 | |
|
459 | 463 | def updateUnit(self, id, **kwargs): |
|
460 | 464 | |
|
461 | 465 | conf = self.configurations[id].update(**kwargs) |
|
462 | 466 | |
|
463 | 467 | def makeXml(self): |
|
464 | 468 | |
|
465 | 469 | xml = Element('Project') |
|
466 | 470 | xml.set('id', str(self.id)) |
|
467 | 471 | xml.set('name', self.name) |
|
468 | 472 | xml.set('description', self.description) |
|
469 | 473 | |
|
470 | 474 | for conf in self.configurations.values(): |
|
471 | 475 | conf.makeXml(xml) |
|
472 | 476 | |
|
473 | 477 | self.xml = xml |
|
474 | 478 | |
|
475 | 479 | def writeXml(self, filename=None): |
|
476 | 480 | |
|
477 | 481 | if filename == None: |
|
478 | 482 | if self.filename: |
|
479 | 483 | filename = self.filename |
|
480 | 484 | else: |
|
481 | 485 | filename = 'schain.xml' |
|
482 | 486 | |
|
483 | 487 | if not filename: |
|
484 | 488 | print('filename has not been defined. Use setFilename(filename) for do it.') |
|
485 | 489 | return 0 |
|
486 | 490 | |
|
487 | 491 | abs_file = os.path.abspath(filename) |
|
488 | 492 | |
|
489 | 493 | if not os.access(os.path.dirname(abs_file), os.W_OK): |
|
490 | 494 | print('No write permission on %s' % os.path.dirname(abs_file)) |
|
491 | 495 | return 0 |
|
492 | 496 | |
|
493 | 497 | if os.path.isfile(abs_file) and not(os.access(abs_file, os.W_OK)): |
|
494 | 498 | print('File %s already exists and it could not be overwriten' % abs_file) |
|
495 | 499 | return 0 |
|
496 | 500 | |
|
497 | 501 | self.makeXml() |
|
498 | 502 | |
|
499 | 503 | ElementTree(self.xml).write(abs_file, method='xml') |
|
500 | 504 | |
|
501 | 505 | self.filename = abs_file |
|
502 | 506 | |
|
503 | 507 | return 1 |
|
504 | 508 | |
|
505 | 509 | def readXml(self, filename): |
|
506 | 510 | |
|
507 | 511 | abs_file = os.path.abspath(filename) |
|
508 | 512 | |
|
509 | 513 | self.configurations = {} |
|
510 | 514 | |
|
511 | 515 | try: |
|
512 | 516 | self.xml = ElementTree().parse(abs_file) |
|
513 | 517 | except: |
|
514 | 518 | log.error('Error reading %s, verify file format' % filename) |
|
515 | 519 | return 0 |
|
516 | 520 | |
|
517 | 521 | self.id = self.xml.get('id') |
|
518 | 522 | self.name = self.xml.get('name') |
|
519 | 523 | self.description = self.xml.get('description') |
|
520 | 524 | |
|
521 | 525 | for element in self.xml: |
|
522 | 526 | if element.tag == 'ReadUnit': |
|
523 | 527 | conf = ReadUnitConf() |
|
524 | 528 | conf.readXml(element, self.id, self.err_queue) |
|
525 | 529 | self.configurations[conf.id] = conf |
|
526 | 530 | elif element.tag == 'ProcUnit': |
|
527 | 531 | conf = ProcUnitConf() |
|
528 | 532 | input_proc = self.configurations[element.get('inputId')] |
|
529 | 533 | conf.readXml(element, self.id, self.err_queue) |
|
530 | 534 | self.configurations[conf.id] = conf |
|
531 | 535 | |
|
532 | 536 | self.filename = abs_file |
|
533 | 537 | |
|
534 | 538 | return 1 |
|
535 | 539 | |
|
536 | 540 | def __str__(self): |
|
537 | 541 | |
|
538 | 542 | text = '\nProject[id=%s, name=%s, description=%s]\n\n' % ( |
|
539 | 543 | self.id, |
|
540 | 544 | self.name, |
|
541 | 545 | self.description, |
|
542 | 546 | ) |
|
543 | 547 | |
|
544 | 548 | for conf in self.configurations.values(): |
|
545 | 549 | text += '{}'.format(conf) |
|
546 | 550 | |
|
547 | 551 | return text |
|
548 | 552 | |
|
549 | 553 | def createObjects(self): |
|
550 | 554 | |
|
551 | 555 | keys = list(self.configurations.keys()) |
|
552 | 556 | keys.sort() |
|
553 | 557 | for key in keys: |
|
554 | 558 | conf = self.configurations[key] |
|
555 | 559 | conf.createObjects() |
|
560 | if 'Reader' in str(conf): | |
|
561 | reader = conf.object | |
|
562 | else: | |
|
563 | conf.object.reader = reader | |
|
556 | 564 | if conf.inputId is not None: |
|
557 | 565 | if isinstance(conf.inputId, list): |
|
558 | 566 | conf.object.setInput([self.configurations[x].object for x in conf.inputId]) |
|
559 | 567 | else: |
|
560 | 568 | conf.object.setInput([self.configurations[conf.inputId].object]) |
|
561 | 569 | |
|
562 | 570 | def monitor(self): |
|
563 | 571 | |
|
564 | 572 | t = Thread(target=self._monitor, args=(self.err_queue, self.ctx)) |
|
565 | 573 | t.start() |
|
566 | 574 | |
|
567 | 575 | def _monitor(self, queue, ctx): |
|
568 | 576 | |
|
569 | 577 | import socket |
|
570 | 578 | |
|
571 | 579 | procs = 0 |
|
572 | 580 | err_msg = '' |
|
573 | 581 | |
|
574 | 582 | while True: |
|
575 | 583 | msg = queue.get() |
|
576 | 584 | if '#_start_#' in msg: |
|
577 | 585 | procs += 1 |
|
578 | 586 | elif '#_end_#' in msg: |
|
579 | 587 | procs -= 1 |
|
580 | 588 | else: |
|
581 | 589 | err_msg = msg |
|
582 | 590 | |
|
583 | 591 | if procs == 0 or 'Traceback' in err_msg: |
|
584 | 592 | break |
|
585 | 593 | time.sleep(0.1) |
|
586 | 594 | |
|
587 | 595 | if '|' in err_msg: |
|
588 | 596 | name, err = err_msg.split('|') |
|
589 | 597 | if 'SchainWarning' in err: |
|
590 | 598 | log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), name) |
|
591 | 599 | elif 'SchainError' in err: |
|
592 | 600 | log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), name) |
|
593 | 601 | else: |
|
594 | 602 | log.error(err, name) |
|
595 | 603 | else: |
|
596 | 604 | name, err = self.name, err_msg |
|
597 | 605 | |
|
598 | 606 | time.sleep(1) |
|
599 | 607 | |
|
600 | 608 | ctx.term() |
|
601 | 609 | |
|
602 | 610 | message = ''.join(err) |
|
603 | 611 | |
|
604 | 612 | if err_msg: |
|
605 | 613 | subject = 'SChain v%s: Error running %s\n' % ( |
|
606 | 614 | schainpy.__version__, self.name) |
|
607 | 615 | |
|
608 | 616 | subtitle = 'Hostname: %s\n' % socket.gethostbyname( |
|
609 | 617 | socket.gethostname()) |
|
610 | 618 | subtitle += 'Working directory: %s\n' % os.path.abspath('./') |
|
611 | 619 | subtitle += 'Configuration file: %s\n' % self.filename |
|
612 | 620 | subtitle += 'Time: %s\n' % str(datetime.datetime.now()) |
|
613 | 621 | |
|
614 | 622 | readUnitConfObj = self.getReadUnit() |
|
615 | 623 | if readUnitConfObj: |
|
616 | 624 | subtitle += '\nInput parameters:\n' |
|
617 | 625 | subtitle += '[Data path = %s]\n' % readUnitConfObj.parameters['path'] |
|
618 | 626 | subtitle += '[Start date = %s]\n' % readUnitConfObj.parameters['startDate'] |
|
619 | 627 | subtitle += '[End date = %s]\n' % readUnitConfObj.parameters['endDate'] |
|
620 | 628 | subtitle += '[Start time = %s]\n' % readUnitConfObj.parameters['startTime'] |
|
621 | 629 | subtitle += '[End time = %s]\n' % readUnitConfObj.parameters['endTime'] |
|
622 | 630 | |
|
623 | 631 | a = Alarm( |
|
624 | 632 | modes=self.alarm, |
|
625 | 633 | email=self.email, |
|
626 | 634 | message=message, |
|
627 | 635 | subject=subject, |
|
628 | 636 | subtitle=subtitle, |
|
629 | 637 | filename=self.filename |
|
630 | 638 | ) |
|
631 | 639 | |
|
632 | 640 | a.start() |
|
633 | 641 | |
|
634 | 642 | def setFilename(self, filename): |
|
635 | 643 | |
|
636 | 644 | self.filename = filename |
|
637 | 645 | |
|
638 | 646 | def runProcs(self): |
|
639 | 647 | |
|
640 | 648 | err = False |
|
641 | 649 | n = len(self.configurations) |
|
642 | 650 | #print(n) |
|
643 | 651 | |
|
644 | 652 | while not err: |
|
645 | 653 | #print(self.getUnits()) |
|
646 | 654 | for conf in self.getUnits(): |
|
647 | 655 | #print(conf) |
|
648 | 656 | ok = conf.run() |
|
649 | 657 | #print("ok", ok) |
|
650 | 658 | if ok == 'Error': |
|
651 | 659 | n -= 1 |
|
652 | 660 | continue |
|
653 | 661 | elif not ok: |
|
654 | 662 | break |
|
655 | 663 | #print("****************************************************end") |
|
656 | 664 | #exit(1) |
|
657 | 665 | if n == 0: |
|
658 | 666 | err = True |
|
659 | 667 | |
|
660 | 668 | def run(self): |
|
661 | 669 | |
|
662 | 670 | log.success('\nStarting Project {} [id={}]'.format(self.name, self.id), tag='') |
|
663 | 671 | self.started = True |
|
664 | 672 | self.start_time = time.time() |
|
665 | 673 | self.createObjects() |
|
666 | 674 | self.runProcs() |
|
667 | 675 | log.success('{} Done (Time: {:4.2f}s)'.format( |
|
668 | 676 | self.name, |
|
669 | 677 | time.time() - self.start_time), '') |
@@ -1,1082 +1,1093 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Definition of diferent Data objects for different types of data |
|
6 | 6 | |
|
7 | 7 | Here you will find the diferent data objects for the different types |
|
8 | 8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
9 | 9 | processing units and operations. Currently the supported data objects are: |
|
10 | 10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
11 | 11 | """ |
|
12 | 12 | |
|
13 | 13 | import copy |
|
14 | 14 | import numpy |
|
15 | 15 | import datetime |
|
16 | 16 | import json |
|
17 | 17 | |
|
18 | 18 | import schainpy.admin |
|
19 | 19 | from schainpy.utils import log |
|
20 | 20 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
21 | 21 | from schainpy.model.data import _noise |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def getNumpyDtype(dataTypeCode): |
|
25 | 25 | |
|
26 | 26 | if dataTypeCode == 0: |
|
27 | 27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
28 | 28 | elif dataTypeCode == 1: |
|
29 | 29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
30 | 30 | elif dataTypeCode == 2: |
|
31 | 31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
32 | 32 | elif dataTypeCode == 3: |
|
33 | 33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
34 | 34 | elif dataTypeCode == 4: |
|
35 | 35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
36 | 36 | elif dataTypeCode == 5: |
|
37 | 37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
38 | 38 | else: |
|
39 | 39 | raise ValueError('dataTypeCode was not defined') |
|
40 | 40 | |
|
41 | 41 | return numpyDtype |
|
42 | 42 | |
|
43 | 43 | |
|
44 | 44 | def getDataTypeCode(numpyDtype): |
|
45 | 45 | |
|
46 | 46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
47 | 47 | datatype = 0 |
|
48 | 48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
49 | 49 | datatype = 1 |
|
50 | 50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
51 | 51 | datatype = 2 |
|
52 | 52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
53 | 53 | datatype = 3 |
|
54 | 54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
55 | 55 | datatype = 4 |
|
56 | 56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
57 | 57 | datatype = 5 |
|
58 | 58 | else: |
|
59 | 59 | datatype = None |
|
60 | 60 | |
|
61 | 61 | return datatype |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | def hildebrand_sekhon(data, navg): |
|
65 | 65 | """ |
|
66 | 66 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
67 | 67 | implementation technique is based on the fact that the standard deviation of the spectral |
|
68 | 68 | densities is equal to the mean spectral density for white Gaussian noise |
|
69 | 69 | |
|
70 | 70 | Inputs: |
|
71 | 71 | Data : heights |
|
72 | 72 | navg : numbers of averages |
|
73 | 73 | |
|
74 | 74 | Return: |
|
75 | 75 | mean : noise's level |
|
76 | 76 | """ |
|
77 | 77 | |
|
78 | 78 | sortdata = numpy.sort(data, axis=None) |
|
79 | 79 | #print(numpy.shape(data)) |
|
80 | 80 | #exit() |
|
81 | 81 | ''' |
|
82 | 82 | lenOfData = len(sortdata) |
|
83 | 83 | nums_min = lenOfData*0.2 |
|
84 | 84 | |
|
85 | 85 | if nums_min <= 5: |
|
86 | 86 | |
|
87 | 87 | nums_min = 5 |
|
88 | 88 | |
|
89 | 89 | sump = 0. |
|
90 | 90 | sumq = 0. |
|
91 | 91 | |
|
92 | 92 | j = 0 |
|
93 | 93 | cont = 1 |
|
94 | 94 | |
|
95 | 95 | while((cont == 1)and(j < lenOfData)): |
|
96 | 96 | |
|
97 | 97 | sump += sortdata[j] |
|
98 | 98 | sumq += sortdata[j]**2 |
|
99 | 99 | |
|
100 | 100 | if j > nums_min: |
|
101 | 101 | rtest = float(j)/(j-1) + 1.0/navg |
|
102 | 102 | if ((sumq*j) > (rtest*sump**2)): |
|
103 | 103 | j = j - 1 |
|
104 | 104 | sump = sump - sortdata[j] |
|
105 | 105 | sumq = sumq - sortdata[j]**2 |
|
106 | 106 | cont = 0 |
|
107 | 107 | |
|
108 | 108 | j += 1 |
|
109 | 109 | |
|
110 | 110 | lnoise = sump / j |
|
111 | 111 | |
|
112 | 112 | return lnoise |
|
113 | 113 | ''' |
|
114 | 114 | return _noise.hildebrand_sekhon(sortdata, navg) |
|
115 | 115 | |
|
116 | 116 | |
|
117 | 117 | class Beam: |
|
118 | 118 | |
|
119 | 119 | def __init__(self): |
|
120 | 120 | self.codeList = [] |
|
121 | 121 | self.azimuthList = [] |
|
122 | 122 | self.zenithList = [] |
|
123 | 123 | |
|
124 | 124 | |
|
125 | 125 | class GenericData(object): |
|
126 | 126 | |
|
127 | 127 | flagNoData = True |
|
128 | blockReader = False | |
|
128 | 129 | |
|
129 | 130 | def copy(self, inputObj=None): |
|
130 | 131 | |
|
131 | 132 | if inputObj == None: |
|
132 | 133 | return copy.deepcopy(self) |
|
133 | 134 | |
|
134 | 135 | for key in list(inputObj.__dict__.keys()): |
|
135 | 136 | |
|
136 | 137 | attribute = inputObj.__dict__[key] |
|
137 | 138 | |
|
138 | 139 | # If this attribute is a tuple or list |
|
139 | 140 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
140 | 141 | self.__dict__[key] = attribute[:] |
|
141 | 142 | continue |
|
142 | 143 | |
|
143 | 144 | # If this attribute is another object or instance |
|
144 | 145 | if hasattr(attribute, '__dict__'): |
|
145 | 146 | self.__dict__[key] = attribute.copy() |
|
146 | 147 | continue |
|
147 | 148 | |
|
148 | 149 | self.__dict__[key] = inputObj.__dict__[key] |
|
149 | 150 | |
|
150 | 151 | def deepcopy(self): |
|
151 | 152 | |
|
152 | 153 | return copy.deepcopy(self) |
|
153 | 154 | |
|
154 | 155 | def isEmpty(self): |
|
155 | 156 | |
|
156 | 157 | return self.flagNoData |
|
157 | 158 | |
|
158 | 159 | def isReady(self): |
|
159 | 160 | |
|
160 | 161 | return not self.flagNoData |
|
161 | 162 | |
|
162 | 163 | |
|
163 | 164 | class JROData(GenericData): |
|
164 | 165 | |
|
165 | 166 | systemHeaderObj = SystemHeader() |
|
166 | 167 | radarControllerHeaderObj = RadarControllerHeader() |
|
167 | 168 | type = None |
|
168 | 169 | datatype = None # dtype but in string |
|
169 | 170 | nProfiles = None |
|
170 | 171 | heightList = None |
|
171 | 172 | channelList = None |
|
172 | 173 | flagDiscontinuousBlock = False |
|
173 | 174 | useLocalTime = False |
|
174 | 175 | utctime = None |
|
175 | 176 | timeZone = None |
|
176 | 177 | dstFlag = None |
|
177 | 178 | errorCount = None |
|
178 | 179 | blocksize = None |
|
179 | 180 | flagDecodeData = False # asumo q la data no esta decodificada |
|
180 | 181 | flagDeflipData = False # asumo q la data no esta sin flip |
|
181 | 182 | flagShiftFFT = False |
|
182 | 183 | nCohInt = None |
|
183 | 184 | windowOfFilter = 1 |
|
184 | 185 | C = 3e8 |
|
185 | 186 | frequency = 49.92e6 |
|
186 | 187 | realtime = False |
|
187 | 188 | beacon_heiIndexList = None |
|
188 | 189 | last_block = None |
|
189 | 190 | blocknow = None |
|
190 | 191 | azimuth = None |
|
191 | 192 | zenith = None |
|
192 | 193 | beam = Beam() |
|
193 | 194 | profileIndex = None |
|
194 | 195 | error = None |
|
195 | 196 | data = None |
|
196 | 197 | nmodes = None |
|
197 | 198 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
198 | 199 | |
|
199 | 200 | def __str__(self): |
|
200 | 201 | |
|
201 | return '{} - {}'.format(self.type, self.datatime()) | |
|
202 | try: | |
|
203 | dt = self.datatime | |
|
204 | except: | |
|
205 | dt = 'None' | |
|
206 | return '{} - {}'.format(self.type, dt) | |
|
202 | 207 | |
|
203 | 208 | def getNoise(self): |
|
204 | 209 | |
|
205 | 210 | raise NotImplementedError |
|
206 | 211 | |
|
207 | 212 | @property |
|
208 | 213 | def nChannels(self): |
|
209 | 214 | |
|
210 | 215 | return len(self.channelList) |
|
211 | 216 | |
|
212 | 217 | @property |
|
213 | 218 | def channelIndexList(self): |
|
214 | 219 | |
|
215 | 220 | return list(range(self.nChannels)) |
|
216 | 221 | |
|
217 | 222 | @property |
|
218 | 223 | def nHeights(self): |
|
219 | 224 | |
|
220 | 225 | return len(self.heightList) |
|
221 | 226 | |
|
222 | 227 | def getDeltaH(self): |
|
223 | 228 | |
|
224 | 229 | return self.heightList[1] - self.heightList[0] |
|
225 | 230 | |
|
226 | 231 | @property |
|
227 | 232 | def ltctime(self): |
|
228 | 233 | |
|
229 | 234 | if self.useLocalTime: |
|
230 | 235 | return self.utctime - self.timeZone * 60 |
|
231 | 236 | |
|
232 | 237 | return self.utctime |
|
233 | 238 | |
|
234 | 239 | @property |
|
235 | 240 | def datatime(self): |
|
236 | 241 | |
|
237 | 242 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
238 | 243 | return datatimeValue |
|
239 | 244 | |
|
240 | 245 | def getTimeRange(self): |
|
241 | 246 | |
|
242 | 247 | datatime = [] |
|
243 | 248 | |
|
244 | 249 | datatime.append(self.ltctime) |
|
245 | 250 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
246 | 251 | |
|
247 | 252 | datatime = numpy.array(datatime) |
|
248 | 253 | |
|
249 | 254 | return datatime |
|
250 | 255 | |
|
251 | 256 | def getFmaxTimeResponse(self): |
|
252 | 257 | |
|
253 | 258 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
254 | 259 | |
|
255 | 260 | PRF = 1. / (period * self.nCohInt) |
|
256 | 261 | |
|
257 | 262 | fmax = PRF |
|
258 | 263 | |
|
259 | 264 | return fmax |
|
260 | 265 | |
|
261 | 266 | def getFmax(self): |
|
262 | 267 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
263 | 268 | #print("ippsec",self.ippSeconds) |
|
264 | 269 | fmax = PRF |
|
265 | 270 | return fmax |
|
266 | 271 | |
|
267 | 272 | def getVmax(self): |
|
268 | 273 | |
|
269 | 274 | _lambda = self.C / self.frequency |
|
270 | 275 | |
|
271 | 276 | vmax = self.getFmax() * _lambda / 2 |
|
272 | 277 | |
|
273 | 278 | return vmax |
|
274 | 279 | |
|
275 | 280 | @property |
|
276 | 281 | def ippSeconds(self): |
|
277 | 282 | ''' |
|
278 | 283 | ''' |
|
279 | 284 | return self.radarControllerHeaderObj.ippSeconds |
|
280 | 285 | |
|
281 | 286 | @ippSeconds.setter |
|
282 | 287 | def ippSeconds(self, ippSeconds): |
|
283 | 288 | ''' |
|
284 | 289 | ''' |
|
285 | 290 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
286 | 291 | |
|
287 | 292 | @property |
|
288 | 293 | def code(self): |
|
289 | 294 | ''' |
|
290 | 295 | ''' |
|
291 | 296 | return self.radarControllerHeaderObj.code |
|
292 | 297 | |
|
293 | 298 | @code.setter |
|
294 | 299 | def code(self, code): |
|
295 | 300 | ''' |
|
296 | 301 | ''' |
|
297 | 302 | self.radarControllerHeaderObj.code = code |
|
298 | 303 | |
|
299 | 304 | @property |
|
300 | 305 | def nCode(self): |
|
301 | 306 | ''' |
|
302 | 307 | ''' |
|
303 | 308 | return self.radarControllerHeaderObj.nCode |
|
304 | 309 | |
|
305 | 310 | @nCode.setter |
|
306 | 311 | def nCode(self, ncode): |
|
307 | 312 | ''' |
|
308 | 313 | ''' |
|
309 | 314 | self.radarControllerHeaderObj.nCode = ncode |
|
310 | 315 | |
|
311 | 316 | @property |
|
312 | 317 | def nBaud(self): |
|
313 | 318 | ''' |
|
314 | 319 | ''' |
|
315 | 320 | return self.radarControllerHeaderObj.nBaud |
|
316 | 321 | |
|
317 | 322 | @nBaud.setter |
|
318 | 323 | def nBaud(self, nbaud): |
|
319 | 324 | ''' |
|
320 | 325 | ''' |
|
321 | 326 | self.radarControllerHeaderObj.nBaud = nbaud |
|
322 | 327 | |
|
323 | 328 | @property |
|
324 | 329 | def ipp(self): |
|
325 | 330 | ''' |
|
326 | 331 | ''' |
|
327 | 332 | return self.radarControllerHeaderObj.ipp |
|
328 | 333 | |
|
329 | 334 | @ipp.setter |
|
330 | 335 | def ipp(self, ipp): |
|
331 | 336 | ''' |
|
332 | 337 | ''' |
|
333 | 338 | self.radarControllerHeaderObj.ipp = ipp |
|
334 | 339 | |
|
335 | 340 | @property |
|
336 | 341 | def metadata(self): |
|
337 | 342 | ''' |
|
338 | 343 | ''' |
|
339 | 344 | |
|
340 | 345 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
341 | 346 | |
|
342 | 347 | |
|
343 | 348 | class Voltage(JROData): |
|
344 | 349 | |
|
345 | 350 | dataPP_POW = None |
|
346 | 351 | dataPP_DOP = None |
|
347 | 352 | dataPP_WIDTH = None |
|
348 | 353 | dataPP_SNR = None |
|
349 | 354 | |
|
350 | 355 | def __init__(self): |
|
351 | 356 | ''' |
|
352 | 357 | Constructor |
|
353 | 358 | ''' |
|
354 | 359 | |
|
355 | 360 | self.useLocalTime = True |
|
356 | 361 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
357 | 362 | self.systemHeaderObj = SystemHeader() |
|
358 | 363 | self.type = "Voltage" |
|
359 | 364 | self.data = None |
|
360 | 365 | self.nProfiles = None |
|
361 | 366 | self.heightList = None |
|
362 | 367 | self.channelList = None |
|
363 | 368 | self.flagNoData = True |
|
364 | 369 | self.flagDiscontinuousBlock = False |
|
365 | 370 | self.utctime = None |
|
366 | 371 | self.timeZone = 0 |
|
367 | 372 | self.dstFlag = None |
|
368 | 373 | self.errorCount = None |
|
369 | 374 | self.nCohInt = None |
|
370 | 375 | self.blocksize = None |
|
371 | 376 | self.flagCohInt = False |
|
372 | 377 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
373 | 378 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
374 | 379 | self.flagShiftFFT = False |
|
375 | 380 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
376 | 381 | self.profileIndex = 0 |
|
377 | 382 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
378 | 383 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
379 | 384 | |
|
380 | 385 | def getNoisebyHildebrand(self, channel=None, Profmin_index=None, Profmax_index=None): |
|
381 | 386 | """ |
|
382 | 387 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
383 | 388 | |
|
384 | 389 | Return: |
|
385 | 390 | noiselevel |
|
386 | 391 | """ |
|
387 | 392 | |
|
388 | 393 | if channel != None: |
|
389 | 394 | data = self.data[channel] |
|
390 | 395 | nChannels = 1 |
|
391 | 396 | else: |
|
392 | 397 | data = self.data |
|
393 | 398 | nChannels = self.nChannels |
|
394 | 399 | |
|
395 | 400 | noise = numpy.zeros(nChannels) |
|
396 | 401 | power = data * numpy.conjugate(data) |
|
397 | 402 | |
|
398 | 403 | for thisChannel in range(nChannels): |
|
399 | 404 | if nChannels == 1: |
|
400 | 405 | daux = power[:].real |
|
401 | 406 | else: |
|
402 | 407 | #print(power.shape) |
|
403 | 408 | daux = power[thisChannel, Profmin_index:Profmax_index, :].real |
|
404 | 409 | #print(daux.shape) |
|
405 | 410 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
406 | 411 | |
|
407 | 412 | return noise |
|
408 | 413 | |
|
409 | 414 | def getNoise(self, type=1, channel=None, Profmin_index=None, Profmax_index=None): |
|
410 | 415 | |
|
411 | 416 | if type == 1: |
|
412 | 417 | noise = self.getNoisebyHildebrand(channel, Profmin_index, Profmax_index) |
|
413 | 418 | |
|
414 | 419 | return noise |
|
415 | 420 | |
|
416 | 421 | def getPower(self, channel=None): |
|
417 | 422 | |
|
418 | 423 | if channel != None: |
|
419 | 424 | data = self.data[channel] |
|
420 | 425 | else: |
|
421 | 426 | data = self.data |
|
422 | 427 | |
|
423 | 428 | power = data * numpy.conjugate(data) |
|
424 | 429 | powerdB = 10 * numpy.log10(power.real) |
|
425 | 430 | powerdB = numpy.squeeze(powerdB) |
|
426 | 431 | |
|
427 | 432 | return powerdB |
|
428 | 433 | |
|
429 | 434 | @property |
|
430 | 435 | def timeInterval(self): |
|
431 | 436 | |
|
432 | 437 | return self.ippSeconds * self.nCohInt |
|
433 | 438 | |
|
434 | 439 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
435 | 440 | |
|
436 | 441 | |
|
437 | 442 | class Spectra(JROData): |
|
438 | 443 | |
|
439 | 444 | def __init__(self): |
|
440 | 445 | ''' |
|
441 | 446 | Constructor |
|
442 | 447 | ''' |
|
443 | 448 | |
|
444 | 449 | self.data_dc = None |
|
445 | 450 | self.data_spc = None |
|
446 | 451 | self.data_cspc = None |
|
447 | 452 | self.useLocalTime = True |
|
448 | 453 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
449 | 454 | self.systemHeaderObj = SystemHeader() |
|
450 | 455 | self.type = "Spectra" |
|
451 | 456 | self.timeZone = 0 |
|
452 | 457 | self.nProfiles = None |
|
453 | 458 | self.heightList = None |
|
454 | 459 | self.channelList = None |
|
455 | 460 | self.pairsList = None |
|
456 | 461 | self.flagNoData = True |
|
457 | 462 | self.flagDiscontinuousBlock = False |
|
458 | 463 | self.utctime = None |
|
459 | 464 | self.nCohInt = None |
|
460 | 465 | self.nIncohInt = None |
|
461 | 466 | self.blocksize = None |
|
462 | 467 | self.nFFTPoints = None |
|
463 | 468 | self.wavelength = None |
|
464 | 469 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
465 | 470 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
466 | 471 | self.flagShiftFFT = False |
|
467 | 472 | self.ippFactor = 1 |
|
468 | 473 | self.beacon_heiIndexList = [] |
|
469 | 474 | self.noise_estimation = None |
|
475 | self.spc_noise = None | |
|
470 | 476 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
471 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] | |
|
477 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp', 'nIncohInt', 'nFFTPoints', 'nProfiles', 'flagDecodeData'] | |
|
472 | 478 | |
|
473 | 479 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
474 | 480 | """ |
|
475 | 481 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
476 | 482 | |
|
477 | 483 | Return: |
|
478 | 484 | noiselevel |
|
479 | 485 | """ |
|
480 | 486 | |
|
481 | 487 | noise = numpy.zeros(self.nChannels) |
|
482 | 488 | |
|
483 | 489 | for channel in range(self.nChannels): |
|
484 | 490 | #print(self.data_spc[0]) |
|
485 | 491 | #exit(1) |
|
486 | 492 | daux = self.data_spc[channel, |
|
487 | 493 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
488 | 494 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
489 | 495 | |
|
490 | 496 | return noise |
|
491 | 497 | |
|
492 | 498 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
493 | 499 | |
|
494 |
if self.noise |
|
|
500 | if self.spc_noise is not None: | |
|
501 | # this was estimated by getNoise Operation defined in jroproc_parameters.py | |
|
502 | return self.spc_noise | |
|
503 | elif self.noise_estimation is not None: | |
|
495 | 504 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
496 | 505 | return self.noise_estimation |
|
497 | 506 | else: |
|
498 | 507 | |
|
499 | 508 | noise = self.getNoisebyHildebrand( |
|
500 | 509 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
501 | 510 | return noise |
|
502 | 511 | |
|
503 | 512 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
504 | 513 | |
|
505 | 514 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
506 | 515 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
507 | 516 | |
|
508 | 517 | return freqrange |
|
509 | 518 | |
|
510 | 519 | def getAcfRange(self, extrapoints=0): |
|
511 | 520 | |
|
512 | 521 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
513 | 522 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
514 | 523 | |
|
515 | 524 | return freqrange |
|
516 | 525 | |
|
517 | 526 | def getFreqRange(self, extrapoints=0): |
|
518 | 527 | |
|
519 | 528 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
520 | 529 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
521 | 530 | |
|
522 | 531 | return freqrange |
|
523 | 532 | |
|
524 | 533 | def getVelRange(self, extrapoints=0): |
|
525 | 534 | |
|
526 | 535 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
527 | 536 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
528 | 537 | |
|
529 | 538 | if self.nmodes: |
|
530 | 539 | return velrange/self.nmodes |
|
531 | 540 | else: |
|
532 | 541 | return velrange |
|
533 | 542 | |
|
534 | 543 | @property |
|
535 | 544 | def nPairs(self): |
|
536 | 545 | |
|
537 | 546 | return len(self.pairsList) |
|
538 | 547 | |
|
539 | 548 | @property |
|
540 | 549 | def pairsIndexList(self): |
|
541 | 550 | |
|
542 | 551 | return list(range(self.nPairs)) |
|
543 | 552 | |
|
544 | 553 | @property |
|
545 | 554 | def normFactor(self): |
|
546 | 555 | |
|
547 | 556 | pwcode = 1 |
|
548 | 557 | |
|
549 | 558 | if self.flagDecodeData: |
|
550 | 559 | pwcode = numpy.sum(self.code[0]**2) |
|
551 | 560 | #pwcode = 64 |
|
552 | 561 | #print("pwcode: ", pwcode) |
|
553 | 562 | #exit(1) |
|
554 | 563 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
555 | 564 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
556 | 565 | |
|
557 | 566 | return normFactor |
|
558 | 567 | |
|
559 | 568 | @property |
|
560 | 569 | def flag_cspc(self): |
|
561 | 570 | |
|
562 | 571 | if self.data_cspc is None: |
|
563 | 572 | return True |
|
564 | 573 | |
|
565 | 574 | return False |
|
566 | 575 | |
|
567 | 576 | @property |
|
568 | 577 | def flag_dc(self): |
|
569 | 578 | |
|
570 | 579 | if self.data_dc is None: |
|
571 | 580 | return True |
|
572 | 581 | |
|
573 | 582 | return False |
|
574 | 583 | |
|
575 | 584 | @property |
|
576 | 585 | def timeInterval(self): |
|
577 | 586 | |
|
578 | 587 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
579 | 588 | if self.nmodes: |
|
580 | 589 | return self.nmodes*timeInterval |
|
581 | 590 | else: |
|
582 | 591 | return timeInterval |
|
583 | 592 | |
|
584 | 593 | def getPower(self): |
|
585 | 594 | |
|
586 | 595 | factor = self.normFactor |
|
587 | 596 | z = self.data_spc / factor |
|
588 | 597 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
589 | 598 | avg = numpy.average(z, axis=1) |
|
590 | 599 | |
|
591 | 600 | return 10 * numpy.log10(avg) |
|
592 | 601 | |
|
593 | 602 | def getCoherence(self, pairsList=None, phase=False): |
|
594 | 603 | |
|
595 | 604 | z = [] |
|
596 | 605 | if pairsList is None: |
|
597 | 606 | pairsIndexList = self.pairsIndexList |
|
598 | 607 | else: |
|
599 | 608 | pairsIndexList = [] |
|
600 | 609 | for pair in pairsList: |
|
601 | 610 | if pair not in self.pairsList: |
|
602 | 611 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
603 | 612 | pair)) |
|
604 | 613 | pairsIndexList.append(self.pairsList.index(pair)) |
|
605 | 614 | for i in range(len(pairsIndexList)): |
|
606 | 615 | pair = self.pairsList[pairsIndexList[i]] |
|
607 | 616 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
608 | 617 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
609 | 618 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
610 | 619 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
611 | 620 | if phase: |
|
612 | 621 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
613 | 622 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
614 | 623 | else: |
|
615 | 624 | data = numpy.abs(avgcoherenceComplex) |
|
616 | 625 | |
|
617 | 626 | z.append(data) |
|
618 | 627 | |
|
619 | 628 | return numpy.array(z) |
|
620 | 629 | |
|
621 | 630 | def setValue(self, value): |
|
622 | 631 | |
|
623 | 632 | print("This property should not be initialized") |
|
624 | 633 | |
|
625 | 634 | return |
|
626 | 635 | |
|
627 | 636 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
628 | 637 | |
|
629 | 638 | |
|
630 | 639 | class SpectraHeis(Spectra): |
|
631 | 640 | |
|
632 | 641 | def __init__(self): |
|
633 | 642 | |
|
634 | 643 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
635 | 644 | self.systemHeaderObj = SystemHeader() |
|
636 | 645 | self.type = "SpectraHeis" |
|
637 | 646 | self.nProfiles = None |
|
638 | 647 | self.heightList = None |
|
639 | 648 | self.channelList = None |
|
640 | 649 | self.flagNoData = True |
|
641 | 650 | self.flagDiscontinuousBlock = False |
|
642 | 651 | self.utctime = None |
|
643 | 652 | self.blocksize = None |
|
644 | 653 | self.profileIndex = 0 |
|
645 | 654 | self.nCohInt = 1 |
|
646 | 655 | self.nIncohInt = 1 |
|
647 | 656 | |
|
648 | 657 | @property |
|
649 | 658 | def normFactor(self): |
|
650 | 659 | pwcode = 1 |
|
651 | 660 | if self.flagDecodeData: |
|
652 | 661 | pwcode = numpy.sum(self.code[0]**2) |
|
653 | 662 | |
|
654 | 663 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
655 | 664 | |
|
656 | 665 | return normFactor |
|
657 | 666 | |
|
658 | 667 | @property |
|
659 | 668 | def timeInterval(self): |
|
660 | 669 | |
|
661 | 670 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
662 | 671 | |
|
663 | 672 | |
|
664 | 673 | class Fits(JROData): |
|
665 | 674 | |
|
666 | 675 | def __init__(self): |
|
667 | 676 | |
|
668 | 677 | self.type = "Fits" |
|
669 | 678 | self.nProfiles = None |
|
670 | 679 | self.heightList = None |
|
671 | 680 | self.channelList = None |
|
672 | 681 | self.flagNoData = True |
|
673 | 682 | self.utctime = None |
|
674 | 683 | self.nCohInt = 1 |
|
675 | 684 | self.nIncohInt = 1 |
|
676 | 685 | self.useLocalTime = True |
|
677 | 686 | self.profileIndex = 0 |
|
678 | 687 | self.timeZone = 0 |
|
679 | 688 | |
|
680 | 689 | def getTimeRange(self): |
|
681 | 690 | |
|
682 | 691 | datatime = [] |
|
683 | 692 | |
|
684 | 693 | datatime.append(self.ltctime) |
|
685 | 694 | datatime.append(self.ltctime + self.timeInterval) |
|
686 | 695 | |
|
687 | 696 | datatime = numpy.array(datatime) |
|
688 | 697 | |
|
689 | 698 | return datatime |
|
690 | 699 | |
|
691 | 700 | def getChannelIndexList(self): |
|
692 | 701 | |
|
693 | 702 | return list(range(self.nChannels)) |
|
694 | 703 | |
|
695 | 704 | def getNoise(self, type=1): |
|
696 | 705 | |
|
697 | 706 | |
|
698 | 707 | if type == 1: |
|
699 | 708 | noise = self.getNoisebyHildebrand() |
|
700 | 709 | |
|
701 | 710 | if type == 2: |
|
702 | 711 | noise = self.getNoisebySort() |
|
703 | 712 | |
|
704 | 713 | if type == 3: |
|
705 | 714 | noise = self.getNoisebyWindow() |
|
706 | 715 | |
|
707 | 716 | return noise |
|
708 | 717 | |
|
709 | 718 | @property |
|
710 | 719 | def timeInterval(self): |
|
711 | 720 | |
|
712 | 721 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
713 | 722 | |
|
714 | 723 | return timeInterval |
|
715 | 724 | |
|
716 | 725 | @property |
|
717 | 726 | def ippSeconds(self): |
|
718 | 727 | ''' |
|
719 | 728 | ''' |
|
720 | 729 | return self.ipp_sec |
|
721 | 730 | |
|
722 | 731 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
723 | 732 | |
|
724 | 733 | |
|
725 | 734 | class Correlation(JROData): |
|
726 | 735 | |
|
727 | 736 | def __init__(self): |
|
728 | 737 | ''' |
|
729 | 738 | Constructor |
|
730 | 739 | ''' |
|
731 | 740 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
732 | 741 | self.systemHeaderObj = SystemHeader() |
|
733 | 742 | self.type = "Correlation" |
|
734 | 743 | self.data = None |
|
735 | 744 | self.dtype = None |
|
736 | 745 | self.nProfiles = None |
|
737 | 746 | self.heightList = None |
|
738 | 747 | self.channelList = None |
|
739 | 748 | self.flagNoData = True |
|
740 | 749 | self.flagDiscontinuousBlock = False |
|
741 | 750 | self.utctime = None |
|
742 | 751 | self.timeZone = 0 |
|
743 | 752 | self.dstFlag = None |
|
744 | 753 | self.errorCount = None |
|
745 | 754 | self.blocksize = None |
|
746 | 755 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
747 | 756 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
748 | 757 | self.pairsList = None |
|
749 | 758 | self.nPoints = None |
|
750 | 759 | |
|
751 | 760 | def getPairsList(self): |
|
752 | 761 | |
|
753 | 762 | return self.pairsList |
|
754 | 763 | |
|
755 | 764 | def getNoise(self, mode=2): |
|
756 | 765 | |
|
757 | 766 | indR = numpy.where(self.lagR == 0)[0][0] |
|
758 | 767 | indT = numpy.where(self.lagT == 0)[0][0] |
|
759 | 768 | |
|
760 | 769 | jspectra0 = self.data_corr[:, :, indR, :] |
|
761 | 770 | jspectra = copy.copy(jspectra0) |
|
762 | 771 | |
|
763 | 772 | num_chan = jspectra.shape[0] |
|
764 | 773 | num_hei = jspectra.shape[2] |
|
765 | 774 | |
|
766 | 775 | freq_dc = jspectra.shape[1] / 2 |
|
767 | 776 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
768 | 777 | |
|
769 | 778 | if ind_vel[0] < 0: |
|
770 | 779 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
771 | 780 | range(0, 1))] + self.num_prof |
|
772 | 781 | |
|
773 | 782 | if mode == 1: |
|
774 | 783 | jspectra[:, freq_dc, :] = ( |
|
775 | 784 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
776 | 785 | |
|
777 | 786 | if mode == 2: |
|
778 | 787 | |
|
779 | 788 | vel = numpy.array([-2, -1, 1, 2]) |
|
780 | 789 | xx = numpy.zeros([4, 4]) |
|
781 | 790 | |
|
782 | 791 | for fil in range(4): |
|
783 | 792 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
784 | 793 | |
|
785 | 794 | xx_inv = numpy.linalg.inv(xx) |
|
786 | 795 | xx_aux = xx_inv[0, :] |
|
787 | 796 | |
|
788 | 797 | for ich in range(num_chan): |
|
789 | 798 | yy = jspectra[ich, ind_vel, :] |
|
790 | 799 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
791 | 800 | |
|
792 | 801 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
793 | 802 | cjunkid = sum(junkid) |
|
794 | 803 | |
|
795 | 804 | if cjunkid.any(): |
|
796 | 805 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
797 | 806 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
798 | 807 | |
|
799 | 808 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
800 | 809 | |
|
801 | 810 | return noise |
|
802 | 811 | |
|
803 | 812 | @property |
|
804 | 813 | def timeInterval(self): |
|
805 | 814 | |
|
806 | 815 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
807 | 816 | |
|
808 | 817 | def splitFunctions(self): |
|
809 | 818 | |
|
810 | 819 | pairsList = self.pairsList |
|
811 | 820 | ccf_pairs = [] |
|
812 | 821 | acf_pairs = [] |
|
813 | 822 | ccf_ind = [] |
|
814 | 823 | acf_ind = [] |
|
815 | 824 | for l in range(len(pairsList)): |
|
816 | 825 | chan0 = pairsList[l][0] |
|
817 | 826 | chan1 = pairsList[l][1] |
|
818 | 827 | |
|
819 | 828 | # Obteniendo pares de Autocorrelacion |
|
820 | 829 | if chan0 == chan1: |
|
821 | 830 | acf_pairs.append(chan0) |
|
822 | 831 | acf_ind.append(l) |
|
823 | 832 | else: |
|
824 | 833 | ccf_pairs.append(pairsList[l]) |
|
825 | 834 | ccf_ind.append(l) |
|
826 | 835 | |
|
827 | 836 | data_acf = self.data_cf[acf_ind] |
|
828 | 837 | data_ccf = self.data_cf[ccf_ind] |
|
829 | 838 | |
|
830 | 839 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
831 | 840 | |
|
832 | 841 | @property |
|
833 | 842 | def normFactor(self): |
|
834 | 843 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
835 | 844 | acf_pairs = numpy.array(acf_pairs) |
|
836 | 845 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
837 | 846 | |
|
838 | 847 | for p in range(self.nPairs): |
|
839 | 848 | pair = self.pairsList[p] |
|
840 | 849 | |
|
841 | 850 | ch0 = pair[0] |
|
842 | 851 | ch1 = pair[1] |
|
843 | 852 | |
|
844 | 853 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
845 | 854 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
846 | 855 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
847 | 856 | |
|
848 | 857 | return normFactor |
|
849 | 858 | |
|
850 | 859 | |
|
851 | 860 | class Parameters(Spectra): |
|
852 | 861 | |
|
853 | 862 | groupList = None # List of Pairs, Groups, etc |
|
854 | 863 | data_param = None # Parameters obtained |
|
855 | 864 | data_pre = None # Data Pre Parametrization |
|
856 | 865 | data_SNR = None # Signal to Noise Ratio |
|
857 | 866 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
858 | 867 | utctimeInit = None # Initial UTC time |
|
859 | 868 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
860 | 869 | useLocalTime = True |
|
861 | 870 | # Fitting |
|
862 | 871 | data_error = None # Error of the estimation |
|
863 | 872 | constants = None |
|
864 | 873 | library = None |
|
865 | 874 | # Output signal |
|
866 | 875 | outputInterval = None # Time interval to calculate output signal in seconds |
|
867 | 876 | data_output = None # Out signal |
|
868 | 877 | nAvg = None |
|
869 | 878 | noise_estimation = None |
|
870 | 879 | GauSPC = None # Fit gaussian SPC |
|
880 | spc_noise = None | |
|
871 | 881 | |
|
872 | 882 | def __init__(self): |
|
873 | 883 | ''' |
|
874 | 884 | Constructor |
|
875 | 885 | ''' |
|
876 | 886 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
877 | 887 | self.systemHeaderObj = SystemHeader() |
|
878 | 888 | self.type = "Parameters" |
|
879 | 889 | self.timeZone = 0 |
|
890 | self.ippFactor = 1 | |
|
880 | 891 | |
|
881 | 892 | def getTimeRange1(self, interval): |
|
882 | 893 | |
|
883 | 894 | datatime = [] |
|
884 | 895 | |
|
885 | 896 | if self.useLocalTime: |
|
886 | 897 | time1 = self.utctimeInit - self.timeZone * 60 |
|
887 | 898 | else: |
|
888 | 899 | time1 = self.utctimeInit |
|
889 | 900 | |
|
890 | 901 | datatime.append(time1) |
|
891 | 902 | datatime.append(time1 + interval) |
|
892 | 903 | datatime = numpy.array(datatime) |
|
893 | 904 | |
|
894 | 905 | return datatime |
|
895 | 906 | |
|
896 | 907 | @property |
|
897 | 908 | def timeInterval(self): |
|
898 | 909 | |
|
899 | 910 | if hasattr(self, 'timeInterval1'): |
|
900 | 911 | return self.timeInterval1 |
|
901 | 912 | else: |
|
902 | 913 | return self.paramInterval |
|
903 | 914 | |
|
904 | 915 | |
|
905 | 916 | def setValue(self, value): |
|
906 | 917 | |
|
907 | 918 | print("This property should not be initialized") |
|
908 | 919 | |
|
909 | 920 | return |
|
910 | 921 | |
|
911 | 922 | def getNoise(self): |
|
912 | 923 | |
|
913 | 924 | return self.spc_noise |
|
914 | 925 | |
|
915 | 926 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
916 | 927 | |
|
917 | 928 | |
|
918 | 929 | class PlotterData(object): |
|
919 | 930 | ''' |
|
920 | 931 | Object to hold data to be plotted |
|
921 | 932 | ''' |
|
922 | 933 | |
|
923 | 934 | MAXNUMX = 200 |
|
924 | 935 | MAXNUMY = 200 |
|
925 | 936 | |
|
926 | 937 | def __init__(self, code, exp_code, localtime=True): |
|
927 | 938 | |
|
928 | 939 | self.key = code |
|
929 | 940 | self.exp_code = exp_code |
|
930 | 941 | self.ready = False |
|
931 | 942 | self.flagNoData = False |
|
932 | 943 | self.localtime = localtime |
|
933 | 944 | self.data = {} |
|
934 | 945 | self.meta = {} |
|
935 | 946 | self.__heights = [] |
|
936 | 947 | |
|
937 | 948 | def __str__(self): |
|
938 | 949 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
939 | 950 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
940 | 951 | |
|
941 | 952 | def __len__(self): |
|
942 | 953 | return len(self.data) |
|
943 | 954 | |
|
944 | 955 | def __getitem__(self, key): |
|
945 | 956 | if isinstance(key, int): |
|
946 | 957 | return self.data[self.times[key]] |
|
947 | 958 | elif isinstance(key, str): |
|
948 | 959 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
949 | 960 | if ret.ndim > 1: |
|
950 | 961 | ret = numpy.swapaxes(ret, 0, 1) |
|
951 | 962 | return ret |
|
952 | 963 | |
|
953 | 964 | def __contains__(self, key): |
|
954 | 965 | return key in self.data[self.min_time] |
|
955 | 966 | |
|
956 | 967 | def setup(self): |
|
957 | 968 | ''' |
|
958 | 969 | Configure object |
|
959 | 970 | ''' |
|
960 | 971 | self.type = '' |
|
961 | 972 | self.ready = False |
|
962 | 973 | del self.data |
|
963 | 974 | self.data = {} |
|
964 | 975 | self.__heights = [] |
|
965 | 976 | self.__all_heights = set() |
|
966 | 977 | |
|
967 | 978 | def shape(self, key): |
|
968 | 979 | ''' |
|
969 | 980 | Get the shape of the one-element data for the given key |
|
970 | 981 | ''' |
|
971 | 982 | |
|
972 | 983 | if len(self.data[self.min_time][key]): |
|
973 | 984 | return self.data[self.min_time][key].shape |
|
974 | 985 | return (0,) |
|
975 | 986 | |
|
976 | 987 | def update(self, data, tm, meta={}): |
|
977 | 988 | ''' |
|
978 | 989 | Update data object with new dataOut |
|
979 | 990 | ''' |
|
980 | 991 | |
|
981 | 992 | self.data[tm] = data |
|
982 | 993 | |
|
983 | 994 | for key, value in meta.items(): |
|
984 | 995 | setattr(self, key, value) |
|
985 | 996 | |
|
986 | 997 | def normalize_heights(self): |
|
987 | 998 | ''' |
|
988 | 999 | Ensure same-dimension of the data for different heighList |
|
989 | 1000 | ''' |
|
990 | 1001 | |
|
991 | 1002 | H = numpy.array(list(self.__all_heights)) |
|
992 | 1003 | H.sort() |
|
993 | 1004 | for key in self.data: |
|
994 | 1005 | shape = self.shape(key)[:-1] + H.shape |
|
995 | 1006 | for tm, obj in list(self.data[key].items()): |
|
996 | 1007 | h = self.__heights[self.times.tolist().index(tm)] |
|
997 | 1008 | if H.size == h.size: |
|
998 | 1009 | continue |
|
999 | 1010 | index = numpy.where(numpy.in1d(H, h))[0] |
|
1000 | 1011 | dummy = numpy.zeros(shape) + numpy.nan |
|
1001 | 1012 | if len(shape) == 2: |
|
1002 | 1013 | dummy[:, index] = obj |
|
1003 | 1014 | else: |
|
1004 | 1015 | dummy[index] = obj |
|
1005 | 1016 | self.data[key][tm] = dummy |
|
1006 | 1017 | |
|
1007 | 1018 | self.__heights = [H for tm in self.times] |
|
1008 | 1019 | |
|
1009 | 1020 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
1010 | 1021 | ''' |
|
1011 | 1022 | Convert data to json |
|
1012 | 1023 | ''' |
|
1013 | 1024 | |
|
1014 | 1025 | meta = {} |
|
1015 | 1026 | meta['xrange'] = [] |
|
1016 | 1027 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 |
|
1017 | 1028 | tmp = self.data[tm][self.key] |
|
1018 | 1029 | shape = tmp.shape |
|
1019 | 1030 | if len(shape) == 2: |
|
1020 | 1031 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1021 | 1032 | elif len(shape) == 3: |
|
1022 | 1033 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 |
|
1023 | 1034 | data = self.roundFloats( |
|
1024 | 1035 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1025 | 1036 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1026 | 1037 | else: |
|
1027 | 1038 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1028 | 1039 | |
|
1029 | 1040 | ret = { |
|
1030 | 1041 | 'plot': plot_name, |
|
1031 | 1042 | 'code': self.exp_code, |
|
1032 | 1043 | 'time': float(tm), |
|
1033 | 1044 | 'data': data, |
|
1034 | 1045 | } |
|
1035 | 1046 | meta['type'] = plot_type |
|
1036 | 1047 | meta['interval'] = float(self.interval) |
|
1037 | 1048 | meta['localtime'] = self.localtime |
|
1038 | 1049 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1039 | 1050 | meta.update(self.meta) |
|
1040 | 1051 | ret['metadata'] = meta |
|
1041 | 1052 | return json.dumps(ret) |
|
1042 | 1053 | |
|
1043 | 1054 | @property |
|
1044 | 1055 | def times(self): |
|
1045 | 1056 | ''' |
|
1046 | 1057 | Return the list of times of the current data |
|
1047 | 1058 | ''' |
|
1048 | 1059 | |
|
1049 | 1060 | ret = [t for t in self.data] |
|
1050 | 1061 | ret.sort() |
|
1051 | 1062 | return numpy.array(ret) |
|
1052 | 1063 | |
|
1053 | 1064 | @property |
|
1054 | 1065 | def min_time(self): |
|
1055 | 1066 | ''' |
|
1056 | 1067 | Return the minimun time value |
|
1057 | 1068 | ''' |
|
1058 | 1069 | |
|
1059 | 1070 | return self.times[0] |
|
1060 | 1071 | |
|
1061 | 1072 | @property |
|
1062 | 1073 | def max_time(self): |
|
1063 | 1074 | ''' |
|
1064 | 1075 | Return the maximun time value |
|
1065 | 1076 | ''' |
|
1066 | 1077 | |
|
1067 | 1078 | return self.times[-1] |
|
1068 | 1079 | |
|
1069 | 1080 | # @property |
|
1070 | 1081 | # def heights(self): |
|
1071 | 1082 | # ''' |
|
1072 | 1083 | # Return the list of heights of the current data |
|
1073 | 1084 | # ''' |
|
1074 | 1085 | |
|
1075 | 1086 | # return numpy.array(self.__heights[-1]) |
|
1076 | 1087 | |
|
1077 | 1088 | @staticmethod |
|
1078 | 1089 | def roundFloats(obj): |
|
1079 | 1090 | if isinstance(obj, list): |
|
1080 | 1091 | return list(map(PlotterData.roundFloats, obj)) |
|
1081 | 1092 | elif isinstance(obj, float): |
|
1082 | 1093 | return round(obj, 2) |
@@ -1,704 +1,705 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Base class to create plot operations |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import sys |
|
11 | 11 | import zmq |
|
12 | 12 | import time |
|
13 | 13 | import numpy |
|
14 | 14 | import datetime |
|
15 | 15 | from collections import deque |
|
16 | 16 | from functools import wraps |
|
17 | 17 | from threading import Thread |
|
18 | 18 | import matplotlib |
|
19 | 19 | |
|
20 | 20 | if 'BACKEND' in os.environ: |
|
21 | 21 | matplotlib.use(os.environ['BACKEND']) |
|
22 | 22 | elif 'linux' in sys.platform: |
|
23 | 23 | matplotlib.use("TkAgg") |
|
24 | 24 | elif 'darwin' in sys.platform: |
|
25 | 25 | matplotlib.use('MacOSX') |
|
26 | 26 | else: |
|
27 | 27 | from schainpy.utils import log |
|
28 | 28 | log.warning('Using default Backend="Agg"', 'INFO') |
|
29 | 29 | matplotlib.use('Agg') |
|
30 | 30 | |
|
31 | 31 | import matplotlib.pyplot as plt |
|
32 | 32 | from matplotlib.patches import Polygon |
|
33 | 33 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
34 | 34 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator |
|
35 | 35 | |
|
36 | 36 | from schainpy.model.data.jrodata import PlotterData |
|
37 | 37 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
38 | 38 | from schainpy.utils import log |
|
39 | 39 | |
|
40 | 40 | jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90] |
|
41 | 41 | blu_values = matplotlib.pyplot.get_cmap( |
|
42 | 42 | 'seismic_r', 20)(numpy.arange(20))[10:15] |
|
43 | 43 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( |
|
44 | 44 | 'jro', numpy.vstack((blu_values, jet_values))) |
|
45 | 45 | matplotlib.pyplot.register_cmap(cmap=ncmap) |
|
46 | 46 | |
|
47 | 47 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis', |
|
48 | 48 | 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')] |
|
49 | 49 | |
|
50 | 50 | EARTH_RADIUS = 6.3710e3 |
|
51 | 51 | |
|
52 | 52 | def ll2xy(lat1, lon1, lat2, lon2): |
|
53 | 53 | |
|
54 | 54 | p = 0.017453292519943295 |
|
55 | 55 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
56 | 56 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
57 | 57 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
58 | 58 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
59 | 59 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
60 | 60 | theta = -theta + numpy.pi/2 |
|
61 | 61 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | def km2deg(km): |
|
65 | 65 | ''' |
|
66 | 66 | Convert distance in km to degrees |
|
67 | 67 | ''' |
|
68 | 68 | |
|
69 | 69 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
70 | 70 | |
|
71 | 71 | |
|
72 | 72 | def figpause(interval): |
|
73 | 73 | backend = plt.rcParams['backend'] |
|
74 | 74 | if backend in matplotlib.rcsetup.interactive_bk: |
|
75 | 75 | figManager = matplotlib._pylab_helpers.Gcf.get_active() |
|
76 | 76 | if figManager is not None: |
|
77 | 77 | canvas = figManager.canvas |
|
78 | 78 | if canvas.figure.stale: |
|
79 | 79 | canvas.draw() |
|
80 | 80 | try: |
|
81 | 81 | canvas.start_event_loop(interval) |
|
82 | 82 | except: |
|
83 | 83 | pass |
|
84 | 84 | return |
|
85 | 85 | |
|
86 | 86 | def popup(message): |
|
87 | 87 | ''' |
|
88 | 88 | ''' |
|
89 | 89 | |
|
90 | 90 | fig = plt.figure(figsize=(12, 8), facecolor='r') |
|
91 | 91 | text = '\n'.join([s.strip() for s in message.split(':')]) |
|
92 | 92 | fig.text(0.01, 0.5, text, ha='left', va='center', |
|
93 | 93 | size='20', weight='heavy', color='w') |
|
94 | 94 | fig.show() |
|
95 | 95 | figpause(1000) |
|
96 | 96 | |
|
97 | 97 | |
|
98 | 98 | class Throttle(object): |
|
99 | 99 | ''' |
|
100 | 100 | Decorator that prevents a function from being called more than once every |
|
101 | 101 | time period. |
|
102 | 102 | To create a function that cannot be called more than once a minute, but |
|
103 | 103 | will sleep until it can be called: |
|
104 | 104 | @Throttle(minutes=1) |
|
105 | 105 | def foo(): |
|
106 | 106 | pass |
|
107 | 107 | |
|
108 | 108 | for i in range(10): |
|
109 | 109 | foo() |
|
110 | 110 | print "This function has run %s times." % i |
|
111 | 111 | ''' |
|
112 | 112 | |
|
113 | 113 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
114 | 114 | self.throttle_period = datetime.timedelta( |
|
115 | 115 | seconds=seconds, minutes=minutes, hours=hours |
|
116 | 116 | ) |
|
117 | 117 | |
|
118 | 118 | self.time_of_last_call = datetime.datetime.min |
|
119 | 119 | |
|
120 | 120 | def __call__(self, fn): |
|
121 | 121 | @wraps(fn) |
|
122 | 122 | def wrapper(*args, **kwargs): |
|
123 | 123 | coerce = kwargs.pop('coerce', None) |
|
124 | 124 | if coerce: |
|
125 | 125 | self.time_of_last_call = datetime.datetime.now() |
|
126 | 126 | return fn(*args, **kwargs) |
|
127 | 127 | else: |
|
128 | 128 | now = datetime.datetime.now() |
|
129 | 129 | time_since_last_call = now - self.time_of_last_call |
|
130 | 130 | time_left = self.throttle_period - time_since_last_call |
|
131 | 131 | |
|
132 | 132 | if time_left > datetime.timedelta(seconds=0): |
|
133 | 133 | return |
|
134 | 134 | |
|
135 | 135 | self.time_of_last_call = datetime.datetime.now() |
|
136 | 136 | return fn(*args, **kwargs) |
|
137 | 137 | |
|
138 | 138 | return wrapper |
|
139 | 139 | |
|
140 | 140 | def apply_throttle(value): |
|
141 | 141 | |
|
142 | 142 | @Throttle(seconds=value) |
|
143 | 143 | def fnThrottled(fn): |
|
144 | 144 | fn() |
|
145 | 145 | |
|
146 | 146 | return fnThrottled |
|
147 | 147 | |
|
148 | 148 | |
|
149 | 149 | @MPDecorator |
|
150 | 150 | class Plot(Operation): |
|
151 | 151 | """Base class for Schain plotting operations |
|
152 | 152 | |
|
153 | 153 | This class should never be use directtly you must subclass a new operation, |
|
154 | 154 | children classes must be defined as follow: |
|
155 | 155 | |
|
156 | 156 | ExamplePlot(Plot): |
|
157 | 157 | |
|
158 | 158 | CODE = 'code' |
|
159 | 159 | colormap = 'jet' |
|
160 | 160 | plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer') |
|
161 | 161 | |
|
162 | 162 | def setup(self): |
|
163 | 163 | pass |
|
164 | 164 | |
|
165 | 165 | def plot(self): |
|
166 | 166 | pass |
|
167 | 167 | |
|
168 | 168 | """ |
|
169 | 169 | |
|
170 | 170 | CODE = 'Figure' |
|
171 | 171 | colormap = 'jet' |
|
172 | 172 | bgcolor = 'white' |
|
173 | 173 | buffering = True |
|
174 | 174 | __missing = 1E30 |
|
175 | 175 | |
|
176 | 176 | __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title', |
|
177 | 177 | 'showprofile'] |
|
178 | 178 | |
|
179 | 179 | def __init__(self): |
|
180 | 180 | |
|
181 | 181 | Operation.__init__(self) |
|
182 | 182 | self.isConfig = False |
|
183 | 183 | self.isPlotConfig = False |
|
184 | 184 | self.save_time = 0 |
|
185 | 185 | self.sender_time = 0 |
|
186 | 186 | self.data = None |
|
187 | 187 | self.firsttime = True |
|
188 | 188 | self.sender_queue = deque(maxlen=10) |
|
189 | 189 | self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2} |
|
190 | 190 | |
|
191 | 191 | def __fmtTime(self, x, pos): |
|
192 | 192 | ''' |
|
193 | 193 | ''' |
|
194 | 194 | |
|
195 | 195 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) |
|
196 | 196 | |
|
197 | 197 | def __setup(self, **kwargs): |
|
198 | 198 | ''' |
|
199 | 199 | Initialize variables |
|
200 | 200 | ''' |
|
201 | 201 | |
|
202 | 202 | self.figures = [] |
|
203 | 203 | self.axes = [] |
|
204 | 204 | self.cb_axes = [] |
|
205 | 205 | self.localtime = kwargs.pop('localtime', True) |
|
206 | 206 | self.show = kwargs.get('show', True) |
|
207 | 207 | self.save = kwargs.get('save', False) |
|
208 | 208 | self.save_period = kwargs.get('save_period', 0) |
|
209 | 209 | self.colormap = kwargs.get('colormap', self.colormap) |
|
210 | 210 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
211 | 211 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
212 | 212 | self.colormaps = kwargs.get('colormaps', None) |
|
213 | 213 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) |
|
214 | 214 | self.showprofile = kwargs.get('showprofile', False) |
|
215 | 215 | self.title = kwargs.get('wintitle', self.CODE.upper()) |
|
216 | 216 | self.cb_label = kwargs.get('cb_label', None) |
|
217 | 217 | self.cb_labels = kwargs.get('cb_labels', None) |
|
218 | 218 | self.labels = kwargs.get('labels', None) |
|
219 | 219 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
220 | 220 | self.zmin = kwargs.get('zmin', None) |
|
221 | 221 | self.zmax = kwargs.get('zmax', None) |
|
222 | 222 | self.zlimits = kwargs.get('zlimits', None) |
|
223 | 223 | self.xlimits = kwargs.get('xlimits', None) |
|
224 | 224 | self.xstep_given = kwargs.get('xstep_given', None) |
|
225 | 225 | self.ystep_given = kwargs.get('ystep_given', None) |
|
226 | 226 | self.autoxticks = kwargs.get('autoxticks', True) |
|
227 | 227 | self.xmin = kwargs.get('xmin', None) |
|
228 | 228 | self.xmax = kwargs.get('xmax', None) |
|
229 | 229 | self.xrange = kwargs.get('xrange', 12) |
|
230 | 230 | self.xscale = kwargs.get('xscale', None) |
|
231 | 231 | self.ymin = kwargs.get('ymin', None) |
|
232 | 232 | self.ymax = kwargs.get('ymax', None) |
|
233 | 233 | self.yscale = kwargs.get('yscale', None) |
|
234 | 234 | self.xlabel = kwargs.get('xlabel', None) |
|
235 | 235 | self.attr_time = kwargs.get('attr_time', 'utctime') |
|
236 | 236 | self.attr_data = kwargs.get('attr_data', 'data_param') |
|
237 | 237 | self.decimation = kwargs.get('decimation', None) |
|
238 | 238 | self.oneFigure = kwargs.get('oneFigure', True) |
|
239 | 239 | self.width = kwargs.get('width', None) |
|
240 | 240 | self.height = kwargs.get('height', None) |
|
241 | 241 | self.colorbar = kwargs.get('colorbar', True) |
|
242 | 242 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) |
|
243 | 243 | self.channels = kwargs.get('channels', None) |
|
244 | 244 | self.titles = kwargs.get('titles', []) |
|
245 | 245 | self.polar = False |
|
246 | 246 | self.type = kwargs.get('type', 'iq') |
|
247 | 247 | self.grid = kwargs.get('grid', False) |
|
248 | 248 | self.pause = kwargs.get('pause', False) |
|
249 | 249 | self.save_code = kwargs.get('save_code', self.CODE) |
|
250 | 250 | self.throttle = kwargs.get('throttle', 0) |
|
251 | 251 | self.exp_code = kwargs.get('exp_code', None) |
|
252 | 252 | self.server = kwargs.get('server', False) |
|
253 | 253 | self.sender_period = kwargs.get('sender_period', 60) |
|
254 | 254 | self.tag = kwargs.get('tag', '') |
|
255 | 255 | self.height_index = kwargs.get('height_index', None) |
|
256 | 256 | self.__throttle_plot = apply_throttle(self.throttle) |
|
257 | 257 | code = self.attr_data if self.attr_data else self.CODE |
|
258 | 258 | self.data = PlotterData(self.CODE, self.exp_code, self.localtime) |
|
259 | 259 | #self.EEJtype = kwargs.get('EEJtype', 2) |
|
260 | 260 | |
|
261 | 261 | if self.server: |
|
262 | 262 | if not self.server.startswith('tcp://'): |
|
263 | 263 | self.server = 'tcp://{}'.format(self.server) |
|
264 | 264 | log.success( |
|
265 | 265 | 'Sending to server: {}'.format(self.server), |
|
266 | 266 | self.name |
|
267 | 267 | ) |
|
268 | 268 | |
|
269 | 269 | if isinstance(self.attr_data, str): |
|
270 | 270 | self.attr_data = [self.attr_data] |
|
271 | 271 | |
|
272 | 272 | def __setup_plot(self): |
|
273 | 273 | ''' |
|
274 | 274 | Common setup for all figures, here figures and axes are created |
|
275 | 275 | ''' |
|
276 | 276 | |
|
277 | 277 | self.setup() |
|
278 | 278 | |
|
279 | 279 | self.time_label = 'LT' if self.localtime else 'UTC' |
|
280 | 280 | |
|
281 | 281 | if self.width is None: |
|
282 | 282 | self.width = 8 |
|
283 | 283 | |
|
284 | 284 | self.figures = [] |
|
285 | 285 | self.axes = [] |
|
286 | 286 | self.cb_axes = [] |
|
287 | 287 | self.pf_axes = [] |
|
288 | 288 | self.cmaps = [] |
|
289 | 289 | |
|
290 | 290 | size = '15%' if self.ncols == 1 else '30%' |
|
291 | 291 | pad = '4%' if self.ncols == 1 else '8%' |
|
292 | 292 | |
|
293 | 293 | if self.oneFigure: |
|
294 | 294 | if self.height is None: |
|
295 | 295 | self.height = 1.4 * self.nrows + 1 |
|
296 | 296 | fig = plt.figure(figsize=(self.width, self.height), |
|
297 | 297 | edgecolor='k', |
|
298 | 298 | facecolor='w') |
|
299 | 299 | self.figures.append(fig) |
|
300 | 300 | for n in range(self.nplots): |
|
301 | 301 | ax = fig.add_subplot(self.nrows, self.ncols, |
|
302 | 302 | n + 1, polar=self.polar) |
|
303 | 303 | ax.tick_params(labelsize=8) |
|
304 | 304 | ax.firsttime = True |
|
305 | 305 | ax.index = 0 |
|
306 | 306 | ax.press = None |
|
307 | ax.cbar = None | |
|
307 | 308 | self.axes.append(ax) |
|
308 | 309 | if self.showprofile: |
|
309 | 310 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
310 | 311 | cax.tick_params(labelsize=8) |
|
311 | 312 | self.pf_axes.append(cax) |
|
312 | 313 | else: |
|
313 | 314 | if self.height is None: |
|
314 | 315 | self.height = 3 |
|
315 | 316 | for n in range(self.nplots): |
|
316 | 317 | fig = plt.figure(figsize=(self.width, self.height), |
|
317 | 318 | edgecolor='k', |
|
318 | 319 | facecolor='w') |
|
319 | 320 | ax = fig.add_subplot(1, 1, 1, polar=self.polar) |
|
320 | 321 | ax.tick_params(labelsize=8) |
|
321 | 322 | ax.firsttime = True |
|
322 | 323 | ax.index = 0 |
|
323 | 324 | ax.press = None |
|
324 | 325 | self.figures.append(fig) |
|
325 | 326 | self.axes.append(ax) |
|
326 | 327 | if self.showprofile: |
|
327 | 328 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
328 | 329 | cax.tick_params(labelsize=8) |
|
329 | 330 | self.pf_axes.append(cax) |
|
330 | 331 | |
|
331 | 332 | for n in range(self.nrows): |
|
332 | 333 | if self.colormaps is not None: |
|
333 | 334 | cmap = plt.get_cmap(self.colormaps[n]) |
|
334 | 335 | else: |
|
335 | 336 | cmap = plt.get_cmap(self.colormap) |
|
336 | 337 | cmap.set_bad(self.bgcolor, 1.) |
|
337 | 338 | self.cmaps.append(cmap) |
|
338 | 339 | |
|
339 | 340 | def __add_axes(self, ax, size='30%', pad='8%'): |
|
340 | 341 | ''' |
|
341 | 342 | Add new axes to the given figure |
|
342 | 343 | ''' |
|
343 | 344 | divider = make_axes_locatable(ax) |
|
344 | 345 | nax = divider.new_horizontal(size=size, pad=pad) |
|
345 | 346 | ax.figure.add_axes(nax) |
|
346 | 347 | return nax |
|
347 | 348 | |
|
348 | 349 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
349 | 350 | ''' |
|
350 | 351 | Create a masked array for missing data |
|
351 | 352 | ''' |
|
352 | 353 | if x_buffer.shape[0] < 2: |
|
353 | 354 | return x_buffer, y_buffer, z_buffer |
|
354 | 355 | |
|
355 | 356 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
356 | 357 | x_median = numpy.median(deltas) |
|
357 | 358 | |
|
358 | 359 | index = numpy.where(deltas > 5 * x_median) |
|
359 | 360 | |
|
360 | 361 | if len(index[0]) != 0: |
|
361 | 362 | z_buffer[::, index[0], ::] = self.__missing |
|
362 | 363 | z_buffer = numpy.ma.masked_inside(z_buffer, |
|
363 | 364 | 0.99 * self.__missing, |
|
364 | 365 | 1.01 * self.__missing) |
|
365 | 366 | |
|
366 | 367 | return x_buffer, y_buffer, z_buffer |
|
367 | 368 | |
|
368 | 369 | def decimate(self): |
|
369 | 370 | |
|
370 | 371 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
371 | 372 | dy = int(len(self.y) / self.decimation) + 1 |
|
372 | 373 | |
|
373 | 374 | # x = self.x[::dx] |
|
374 | 375 | x = self.x |
|
375 | 376 | y = self.y[::dy] |
|
376 | 377 | z = self.z[::, ::, ::dy] |
|
377 | 378 | |
|
378 | 379 | return x, y, z |
|
379 | 380 | |
|
380 | 381 | def format(self): |
|
381 | 382 | ''' |
|
382 | 383 | Set min and max values, labels, ticks and titles |
|
383 | 384 | ''' |
|
384 | 385 | |
|
385 | 386 | for n, ax in enumerate(self.axes): |
|
386 | 387 | if ax.firsttime: |
|
387 | 388 | if self.xaxis != 'time': |
|
388 | 389 | xmin = self.xmin |
|
389 | 390 | xmax = self.xmax |
|
390 | 391 | else: |
|
391 | 392 | xmin = self.tmin |
|
392 | 393 | xmax = self.tmin + self.xrange*60*60 |
|
393 | 394 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) |
|
394 | 395 | ax.xaxis.set_major_locator(LinearLocator(9)) |
|
395 | 396 | ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)]) |
|
396 | 397 | ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)]) |
|
397 | 398 | ax.set_facecolor(self.bgcolor) |
|
398 | 399 | if self.xscale: |
|
399 | 400 | ax.xaxis.set_major_formatter(FuncFormatter( |
|
400 | 401 | lambda x, pos: '{0:g}'.format(x*self.xscale))) |
|
401 | 402 | if self.yscale: |
|
402 | 403 | ax.yaxis.set_major_formatter(FuncFormatter( |
|
403 | 404 | lambda x, pos: '{0:g}'.format(x*self.yscale))) |
|
404 | 405 | if self.xlabel is not None: |
|
405 | 406 | ax.set_xlabel(self.xlabel) |
|
406 | 407 | if self.ylabel is not None: |
|
407 | 408 | ax.set_ylabel(self.ylabel) |
|
408 | 409 | if self.showprofile: |
|
409 | 410 | if self.zlimits is not None: |
|
410 | 411 | self.zmin, self.zmax = self.zlimits[n] |
|
411 | 412 | self.pf_axes[n].set_ylim(ymin, ymax) |
|
412 | 413 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) |
|
413 | 414 | self.pf_axes[n].set_xlabel('dB') |
|
414 | 415 | self.pf_axes[n].grid(b=True, axis='x') |
|
415 | 416 | [tick.set_visible(False) |
|
416 | 417 | for tick in self.pf_axes[n].get_yticklabels()] |
|
417 | if self.colorbar: | |
|
418 | if self.colorbar and ax.cbar == None: | |
|
418 | 419 | ax.cbar = plt.colorbar( |
|
419 | 420 | ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10) |
|
420 | 421 | ax.cbar.ax.tick_params(labelsize=8) |
|
421 | 422 | ax.cbar.ax.press = None |
|
422 | 423 | if self.cb_label: |
|
423 | 424 | ax.cbar.set_label(self.cb_label, size=8) |
|
424 | 425 | elif self.cb_labels: |
|
425 | 426 | ax.cbar.set_label(self.cb_labels[n], size=8) |
|
426 | 427 | else: |
|
427 | 428 | ax.cbar = None |
|
428 | 429 | ax.set_xlim(xmin, xmax) |
|
429 | 430 | ax.set_ylim(ymin, ymax) |
|
430 | 431 | ax.firsttime = False |
|
431 | 432 | if self.grid: |
|
432 | 433 | ax.grid(True) |
|
433 | 434 | if not self.polar: |
|
434 | 435 | ax.set_title('{} {} {}'.format( |
|
435 | 436 | self.titles[n], |
|
436 | 437 | self.getDateTime(self.data.max_time).strftime( |
|
437 | 438 | '%Y-%m-%d %H:%M:%S'), |
|
438 | 439 | self.time_label), |
|
439 | 440 | size=8) |
|
440 | 441 | else: |
|
441 | 442 | ax.set_title('{}'.format(self.titles[n]), size=8) |
|
442 | 443 | ax.set_ylim(0, 90) |
|
443 | 444 | ax.set_yticks(numpy.arange(0, 90, 20)) |
|
444 | 445 | ax.yaxis.labelpad = 40 |
|
445 | 446 | |
|
446 | 447 | if self.firsttime: |
|
447 | 448 | for n, fig in enumerate(self.figures): |
|
448 | 449 | fig.subplots_adjust(**self.plots_adjust) |
|
449 | 450 | self.firsttime = False |
|
450 | 451 | |
|
451 | 452 | def clear_figures(self): |
|
452 | 453 | ''' |
|
453 | 454 | Reset axes for redraw plots |
|
454 | 455 | ''' |
|
455 | 456 | |
|
456 | 457 | for ax in self.axes+self.pf_axes+self.cb_axes: |
|
457 | 458 | ax.clear() |
|
458 | 459 | ax.firsttime = True |
|
459 | 460 | if hasattr(ax, 'cbar') and ax.cbar: |
|
460 | 461 | ax.cbar.remove() |
|
461 | 462 | |
|
462 | 463 | def __plot(self): |
|
463 | 464 | ''' |
|
464 | 465 | Main function to plot, format and save figures |
|
465 | 466 | ''' |
|
466 | 467 | |
|
467 | 468 | self.plot() |
|
468 | 469 | self.format() |
|
469 | 470 | |
|
470 | 471 | for n, fig in enumerate(self.figures): |
|
471 | 472 | if self.nrows == 0 or self.nplots == 0: |
|
472 | 473 | log.warning('No data', self.name) |
|
473 | 474 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') |
|
474 | 475 | fig.canvas.manager.set_window_title(self.CODE) |
|
475 | 476 | continue |
|
476 | 477 | |
|
477 | 478 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, |
|
478 | 479 | self.getDateTime(self.data.max_time).strftime('%Y/%m/%d'))) |
|
479 | 480 | fig.canvas.draw() |
|
480 | 481 | if self.show: |
|
481 | 482 | fig.show() |
|
482 | 483 | figpause(0.01) |
|
483 | 484 | |
|
484 | 485 | if self.save: |
|
485 | 486 | self.save_figure(n) |
|
486 | 487 | |
|
487 | 488 | if self.server: |
|
488 | 489 | self.send_to_server() |
|
489 | 490 | |
|
490 | 491 | def __update(self, dataOut, timestamp): |
|
491 | 492 | ''' |
|
492 | 493 | ''' |
|
493 | 494 | |
|
494 | 495 | metadata = { |
|
495 | 496 | 'yrange': dataOut.heightList, |
|
496 | 497 | 'interval': dataOut.timeInterval, |
|
497 | 498 | 'channels': dataOut.channelList |
|
498 | 499 | } |
|
499 | 500 | |
|
500 | 501 | data, meta = self.update(dataOut) |
|
501 | 502 | metadata.update(meta) |
|
502 | 503 | self.data.update(data, timestamp, metadata) |
|
503 | 504 | |
|
504 | 505 | def save_figure(self, n): |
|
505 | 506 | ''' |
|
506 | 507 | ''' |
|
507 | 508 | |
|
508 | 509 | if (self.data.max_time - self.save_time) <= self.save_period: |
|
509 | 510 | return |
|
510 | 511 | |
|
511 | 512 | self.save_time = self.data.max_time |
|
512 | 513 | |
|
513 | 514 | fig = self.figures[n] |
|
514 | 515 | |
|
515 | 516 | if self.throttle == 0: |
|
516 | 517 | figname = os.path.join( |
|
517 | 518 | self.save, |
|
518 | 519 | self.save_code, |
|
519 | 520 | '{}_{}.png'.format( |
|
520 | 521 | self.save_code, |
|
521 | 522 | self.getDateTime(self.data.max_time).strftime( |
|
522 | 523 | '%Y%m%d_%H%M%S' |
|
523 | 524 | ), |
|
524 | 525 | ) |
|
525 | 526 | ) |
|
526 | 527 | log.log('Saving figure: {}'.format(figname), self.name) |
|
527 | 528 | if not os.path.isdir(os.path.dirname(figname)): |
|
528 | 529 | os.makedirs(os.path.dirname(figname)) |
|
529 | 530 | fig.savefig(figname) |
|
530 | 531 | |
|
531 | 532 | figname = os.path.join( |
|
532 | 533 | self.save, |
|
533 | 534 | #self.save_code, |
|
534 | 535 | '{}_{}.png'.format( |
|
535 | 536 | self.save_code, |
|
536 | 537 | self.getDateTime(self.data.min_time).strftime( |
|
537 | 538 | '%Y%m%d' |
|
538 | 539 | ), |
|
539 | 540 | ) |
|
540 | 541 | ) |
|
541 | 542 | log.log('Saving figure: {}'.format(figname), self.name) |
|
542 | 543 | if not os.path.isdir(os.path.dirname(figname)): |
|
543 | 544 | os.makedirs(os.path.dirname(figname)) |
|
544 | 545 | fig.savefig(figname) |
|
545 | 546 | |
|
546 | 547 | def send_to_server(self): |
|
547 | 548 | ''' |
|
548 | 549 | ''' |
|
549 | 550 | |
|
550 | 551 | if self.exp_code == None: |
|
551 | 552 | log.warning('Missing `exp_code` skipping sending to server...') |
|
552 | 553 | |
|
553 | 554 | last_time = self.data.max_time |
|
554 | 555 | interval = last_time - self.sender_time |
|
555 | 556 | if interval < self.sender_period: |
|
556 | 557 | return |
|
557 | 558 | |
|
558 | 559 | self.sender_time = last_time |
|
559 | 560 | |
|
560 | 561 | attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax', 'zlimits'] |
|
561 | 562 | for attr in attrs: |
|
562 | 563 | value = getattr(self, attr) |
|
563 | 564 | if value: |
|
564 | 565 | if isinstance(value, (numpy.float32, numpy.float64)): |
|
565 | 566 | value = round(float(value), 2) |
|
566 | 567 | self.data.meta[attr] = value |
|
567 | 568 | if self.colormap == 'jet': |
|
568 | 569 | self.data.meta['colormap'] = 'Jet' |
|
569 | 570 | elif 'RdBu' in self.colormap: |
|
570 | 571 | self.data.meta['colormap'] = 'RdBu' |
|
571 | 572 | else: |
|
572 | 573 | self.data.meta['colormap'] = 'Viridis' |
|
573 | 574 | self.data.meta['interval'] = int(interval) |
|
574 | 575 | #print(last_time) |
|
575 | 576 | #print(time.time()) |
|
576 | 577 | #exit(1) |
|
577 | 578 | self.sender_queue.append(last_time) |
|
578 | 579 | |
|
579 | 580 | while True: |
|
580 | 581 | try: |
|
581 | 582 | tm = self.sender_queue.popleft() |
|
582 | 583 | except IndexError: |
|
583 | 584 | break |
|
584 | 585 | msg = self.data.jsonify(tm, self.save_code, self.plot_type) |
|
585 | 586 | self.socket.send_string(msg) |
|
586 | 587 | socks = dict(self.poll.poll(2000)) |
|
587 | 588 | if socks.get(self.socket) == zmq.POLLIN: |
|
588 | 589 | reply = self.socket.recv_string() |
|
589 | 590 | if reply == 'ok': |
|
590 | 591 | log.log("Response from server ok", self.name) |
|
591 | 592 | time.sleep(0.1) |
|
592 | 593 | continue |
|
593 | 594 | else: |
|
594 | 595 | log.warning( |
|
595 | 596 | "Malformed reply from server: {}".format(reply), self.name) |
|
596 | 597 | else: |
|
597 | 598 | log.warning( |
|
598 | 599 | "No response from server, retrying...", self.name) |
|
599 | 600 | self.sender_queue.appendleft(tm) |
|
600 | 601 | self.socket.setsockopt(zmq.LINGER, 0) |
|
601 | 602 | self.socket.close() |
|
602 | 603 | self.poll.unregister(self.socket) |
|
603 | 604 | self.socket = self.context.socket(zmq.REQ) |
|
604 | 605 | self.socket.connect(self.server) |
|
605 | 606 | self.poll.register(self.socket, zmq.POLLIN) |
|
606 | 607 | break |
|
607 | 608 | |
|
608 | 609 | def setup(self): |
|
609 | 610 | ''' |
|
610 | 611 | This method should be implemented in the child class, the following |
|
611 | 612 | attributes should be set: |
|
612 | 613 | |
|
613 | 614 | self.nrows: number of rows |
|
614 | 615 | self.ncols: number of cols |
|
615 | 616 | self.nplots: number of plots (channels or pairs) |
|
616 | 617 | self.ylabel: label for Y axes |
|
617 | 618 | self.titles: list of axes title |
|
618 | 619 | |
|
619 | 620 | ''' |
|
620 | 621 | raise NotImplementedError |
|
621 | 622 | |
|
622 | 623 | def plot(self): |
|
623 | 624 | ''' |
|
624 | 625 | Must be defined in the child class, the actual plotting method |
|
625 | 626 | ''' |
|
626 | 627 | raise NotImplementedError |
|
627 | 628 | |
|
628 | 629 | def update(self, dataOut): |
|
629 | 630 | ''' |
|
630 | 631 | Must be defined in the child class, update self.data with new data |
|
631 | 632 | ''' |
|
632 | 633 | |
|
633 | 634 | data = { |
|
634 | 635 | self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE)) |
|
635 | 636 | } |
|
636 | 637 | meta = {} |
|
637 | 638 | |
|
638 | 639 | return data, meta |
|
639 | 640 | |
|
640 | 641 | def run(self, dataOut, **kwargs): |
|
641 | 642 | ''' |
|
642 | 643 | Main plotting routine |
|
643 | 644 | ''' |
|
644 | 645 | |
|
645 | 646 | if self.isConfig is False: |
|
646 | 647 | self.__setup(**kwargs) |
|
647 | 648 | |
|
648 | 649 | if self.localtime: |
|
649 | 650 | self.getDateTime = datetime.datetime.fromtimestamp |
|
650 | 651 | else: |
|
651 | 652 | self.getDateTime = datetime.datetime.utcfromtimestamp |
|
652 | 653 | |
|
653 | 654 | self.data.setup() |
|
654 | 655 | self.isConfig = True |
|
655 | 656 | if self.server: |
|
656 | 657 | self.context = zmq.Context() |
|
657 | 658 | self.socket = self.context.socket(zmq.REQ) |
|
658 | 659 | self.socket.connect(self.server) |
|
659 | 660 | self.poll = zmq.Poller() |
|
660 | 661 | self.poll.register(self.socket, zmq.POLLIN) |
|
661 | 662 | |
|
662 | 663 | tm = getattr(dataOut, self.attr_time) |
|
663 | 664 | if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60: |
|
664 | 665 | self.save_time = tm |
|
665 | 666 | self.__plot() |
|
666 | 667 | #self.tmin += self.xrange*60*60 #Modified by R. Flores |
|
667 | 668 | self.tmin += 24*60*60 #Modified by R. Flores |
|
668 | 669 | |
|
669 | 670 | self.data.setup() |
|
670 | 671 | self.clear_figures() |
|
671 | 672 | |
|
672 | 673 | self.__update(dataOut, tm) |
|
673 | 674 | |
|
674 | 675 | if self.isPlotConfig is False: |
|
675 | 676 | self.__setup_plot() |
|
676 | 677 | self.isPlotConfig = True |
|
677 | 678 | if self.xaxis == 'time': |
|
678 | 679 | dt = self.getDateTime(tm) |
|
679 | 680 | |
|
680 | 681 | if self.xmin is None: |
|
681 | 682 | self.tmin = tm |
|
682 | 683 | self.xmin = dt.hour |
|
683 | 684 | minutes = (self.xmin-int(self.xmin)) * 60 |
|
684 | 685 | seconds = (minutes - int(minutes)) * 60 |
|
685 | 686 | self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) - |
|
686 | 687 | datetime.datetime(1970, 1, 1)).total_seconds() |
|
687 | 688 | if self.localtime: |
|
688 | 689 | self.tmin += time.timezone |
|
689 | 690 | |
|
690 | 691 | if self.xmin is not None and self.xmax is not None: |
|
691 | 692 | self.xrange = self.xmax - self.xmin |
|
692 | 693 | |
|
693 | 694 | if self.throttle == 0: |
|
694 | 695 | self.__plot() |
|
695 | 696 | else: |
|
696 | 697 | self.__throttle_plot(self.__plot)#, coerce=coerce) |
|
697 | 698 | |
|
698 | 699 | def close(self): |
|
699 | 700 | |
|
700 | 701 | if self.data and not self.data.flagNoData: |
|
701 | 702 | self.save_time = 0 |
|
702 | 703 | self.__plot() |
|
703 | 704 | if self.data and not self.data.flagNoData and self.pause: |
|
704 | 705 | figpause(10) |
@@ -1,494 +1,494 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | 6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
7 | 7 | from schainpy.utils import log |
|
8 | 8 | |
|
9 | 9 | EARTH_RADIUS = 6.3710e3 |
|
10 | 10 | |
|
11 | 11 | |
|
12 | 12 | def ll2xy(lat1, lon1, lat2, lon2): |
|
13 | 13 | |
|
14 | 14 | p = 0.017453292519943295 |
|
15 | 15 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
16 | 16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
17 | 17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
18 | 18 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
19 | 19 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
20 | 20 | theta = -theta + numpy.pi/2 |
|
21 | 21 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def km2deg(km): |
|
25 | 25 | ''' |
|
26 | 26 | Convert distance in km to degrees |
|
27 | 27 | ''' |
|
28 | 28 | |
|
29 | 29 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
30 | 30 | |
|
31 | 31 | |
|
32 | 32 | |
|
33 | 33 | class SpectralMomentsPlot(SpectraPlot): |
|
34 | 34 | ''' |
|
35 | 35 | Plot for Spectral Moments |
|
36 | 36 | ''' |
|
37 | 37 | CODE = 'spc_moments' |
|
38 | 38 | # colormap = 'jet' |
|
39 | 39 | # plot_type = 'pcolor' |
|
40 | 40 | |
|
41 | 41 | class DobleGaussianPlot(SpectraPlot): |
|
42 | 42 | ''' |
|
43 | 43 | Plot for Double Gaussian Plot |
|
44 | 44 | ''' |
|
45 | 45 | CODE = 'gaussian_fit' |
|
46 | 46 | # colormap = 'jet' |
|
47 | 47 | # plot_type = 'pcolor' |
|
48 | 48 | |
|
49 | 49 | |
|
50 | 50 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
51 | 51 | ''' |
|
52 | 52 | Plot SpectraCut with Double Gaussian Fit |
|
53 | 53 | ''' |
|
54 | 54 | CODE = 'cut_gaussian_fit' |
|
55 | 55 | |
|
56 | 56 | |
|
57 | 57 | class SpectralFitObliquePlot(SpectraPlot): |
|
58 | 58 | ''' |
|
59 | 59 | Plot for Spectral Oblique |
|
60 | 60 | ''' |
|
61 | 61 | CODE = 'spc_moments' |
|
62 | 62 | colormap = 'jet' |
|
63 | 63 | plot_type = 'pcolor' |
|
64 | 64 | |
|
65 | 65 | |
|
66 | 66 | |
|
67 | 67 | class SnrPlot(RTIPlot): |
|
68 | 68 | ''' |
|
69 | 69 | Plot for SNR Data |
|
70 | 70 | ''' |
|
71 | 71 | |
|
72 | 72 | CODE = 'snr' |
|
73 | 73 | colormap = 'jet' |
|
74 | 74 | |
|
75 | 75 | def update(self, dataOut): |
|
76 | 76 | |
|
77 | 77 | data = { |
|
78 | 78 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
79 | 79 | } |
|
80 | 80 | |
|
81 | 81 | return data, {} |
|
82 | 82 | |
|
83 | 83 | class DopplerPlot(RTIPlot): |
|
84 | 84 | ''' |
|
85 | 85 | Plot for DOPPLER Data (1st moment) |
|
86 | 86 | ''' |
|
87 | 87 | |
|
88 | 88 | CODE = 'dop' |
|
89 | 89 | colormap = 'jet' |
|
90 | 90 | |
|
91 | 91 | def update(self, dataOut): |
|
92 | 92 | |
|
93 | 93 | data = { |
|
94 | 94 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
95 | 95 | } |
|
96 | 96 | |
|
97 | 97 | return data, {} |
|
98 | 98 | |
|
99 | 99 | class DopplerEEJPlot_V0(RTIPlot): |
|
100 | 100 | ''' |
|
101 | 101 | Written by R. Flores |
|
102 | 102 | ''' |
|
103 | 103 | ''' |
|
104 | 104 | Plot for EEJ |
|
105 | 105 | ''' |
|
106 | 106 | |
|
107 | 107 | CODE = 'dop' |
|
108 | 108 | colormap = 'RdBu_r' |
|
109 | 109 | colormap = 'jet' |
|
110 | 110 | |
|
111 | 111 | def setup(self): |
|
112 | 112 | |
|
113 | 113 | self.xaxis = 'time' |
|
114 | 114 | self.ncols = 1 |
|
115 | 115 | self.nrows = len(self.data.channels) |
|
116 | 116 | self.nplots = len(self.data.channels) |
|
117 | 117 | self.ylabel = 'Range [km]' |
|
118 | 118 | self.xlabel = 'Time' |
|
119 | 119 | self.cb_label = '(m/s)' |
|
120 | 120 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
121 | 121 | self.titles = ['{} Channel {}'.format( |
|
122 | 122 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
123 | 123 | |
|
124 | 124 | def update(self, dataOut): |
|
125 | 125 | #print(self.EEJtype) |
|
126 | 126 | |
|
127 | 127 | if self.EEJtype == 1: |
|
128 | 128 | data = { |
|
129 | 129 | 'dop': dataOut.Oblique_params[:,-2,:] |
|
130 | 130 | } |
|
131 | 131 | elif self.EEJtype == 2: |
|
132 | 132 | data = { |
|
133 | 133 | 'dop': dataOut.Oblique_params[:,-1,:] |
|
134 | 134 | } |
|
135 | 135 | |
|
136 | 136 | return data, {} |
|
137 | 137 | |
|
138 | 138 | class DopplerEEJPlot(RTIPlot): |
|
139 | 139 | ''' |
|
140 | 140 | Written by R. Flores |
|
141 | 141 | ''' |
|
142 | 142 | ''' |
|
143 | 143 | Plot for Doppler Shift EEJ |
|
144 | 144 | ''' |
|
145 | 145 | |
|
146 | 146 | CODE = 'dop' |
|
147 | 147 | colormap = 'RdBu_r' |
|
148 | 148 | #colormap = 'jet' |
|
149 | 149 | |
|
150 | 150 | def setup(self): |
|
151 | 151 | |
|
152 | 152 | self.xaxis = 'time' |
|
153 | 153 | self.ncols = 1 |
|
154 | 154 | self.nrows = 2 |
|
155 | 155 | self.nplots = 2 |
|
156 | 156 | self.ylabel = 'Range [km]' |
|
157 | 157 | self.xlabel = 'Time' |
|
158 | 158 | self.cb_label = '(m/s)' |
|
159 | 159 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
160 | 160 | self.titles = ['{} EJJ Type {} /'.format( |
|
161 | 161 | self.CODE.upper(), x) for x in range(1,1+self.nrows)] |
|
162 | 162 | |
|
163 | 163 | def update(self, dataOut): |
|
164 | 164 | |
|
165 | 165 | if dataOut.mode == 11: #Double Gaussian |
|
166 | 166 | doppler = numpy.append(dataOut.Oblique_params[:,1,:],dataOut.Oblique_params[:,4,:],axis=0) |
|
167 | 167 | elif dataOut.mode == 9: #Double Skew Gaussian |
|
168 | 168 | doppler = numpy.append(dataOut.Oblique_params[:,-2,:],dataOut.Oblique_params[:,-1,:],axis=0) |
|
169 | 169 | data = { |
|
170 | 170 | 'dop': doppler |
|
171 | 171 | } |
|
172 | 172 | |
|
173 | 173 | return data, {} |
|
174 | 174 | |
|
175 | 175 | class SpcWidthEEJPlot(RTIPlot): |
|
176 | 176 | ''' |
|
177 | 177 | Written by R. Flores |
|
178 | 178 | ''' |
|
179 | 179 | ''' |
|
180 | 180 | Plot for EEJ Spectral Width |
|
181 | 181 | ''' |
|
182 | 182 | |
|
183 | 183 | CODE = 'width' |
|
184 | 184 | colormap = 'RdBu_r' |
|
185 | 185 | colormap = 'jet' |
|
186 | 186 | |
|
187 | 187 | def setup(self): |
|
188 | 188 | |
|
189 | 189 | self.xaxis = 'time' |
|
190 | 190 | self.ncols = 1 |
|
191 | 191 | self.nrows = 2 |
|
192 | 192 | self.nplots = 2 |
|
193 | 193 | self.ylabel = 'Range [km]' |
|
194 | 194 | self.xlabel = 'Time' |
|
195 | 195 | self.cb_label = '(m/s)' |
|
196 | 196 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
197 | 197 | self.titles = ['{} EJJ Type {} /'.format( |
|
198 | 198 | self.CODE.upper(), x) for x in range(1,1+self.nrows)] |
|
199 | 199 | |
|
200 | 200 | def update(self, dataOut): |
|
201 | 201 | |
|
202 | 202 | if dataOut.mode == 11: #Double Gaussian |
|
203 | 203 | width = numpy.append(dataOut.Oblique_params[:,2,:],dataOut.Oblique_params[:,5,:],axis=0) |
|
204 | 204 | elif dataOut.mode == 9: #Double Skew Gaussian |
|
205 | 205 | width = numpy.append(dataOut.Oblique_params[:,2,:],dataOut.Oblique_params[:,6,:],axis=0) |
|
206 | 206 | data = { |
|
207 | 207 | 'width': width |
|
208 | 208 | } |
|
209 | 209 | |
|
210 | 210 | return data, {} |
|
211 | 211 | |
|
212 | 212 | class PowerPlot(RTIPlot): |
|
213 | 213 | ''' |
|
214 | 214 | Plot for Power Data (0 moment) |
|
215 | 215 | ''' |
|
216 | 216 | |
|
217 | 217 | CODE = 'pow' |
|
218 | 218 | colormap = 'jet' |
|
219 | 219 | |
|
220 | 220 | def update(self, dataOut): |
|
221 | 221 | |
|
222 | 222 | data = { |
|
223 | 223 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
224 | 224 | } |
|
225 | 225 | |
|
226 | 226 | return data, {} |
|
227 | 227 | |
|
228 | 228 | class SpectralWidthPlot(RTIPlot): |
|
229 | 229 | ''' |
|
230 | 230 | Plot for Spectral Width Data (2nd moment) |
|
231 | 231 | ''' |
|
232 | 232 | |
|
233 | 233 | CODE = 'width' |
|
234 | 234 | colormap = 'jet' |
|
235 | 235 | |
|
236 | 236 | def update(self, dataOut): |
|
237 | 237 | |
|
238 | 238 | data = { |
|
239 | 239 | 'width': dataOut.data_width |
|
240 | 240 | } |
|
241 | 241 | |
|
242 | 242 | return data, {} |
|
243 | 243 | |
|
244 | 244 | class SkyMapPlot(Plot): |
|
245 | 245 | ''' |
|
246 | 246 | Plot for meteors detection data |
|
247 | 247 | ''' |
|
248 | 248 | |
|
249 | 249 | CODE = 'param' |
|
250 | 250 | |
|
251 | 251 | def setup(self): |
|
252 | 252 | |
|
253 | 253 | self.ncols = 1 |
|
254 | 254 | self.nrows = 1 |
|
255 | 255 | self.width = 7.2 |
|
256 | 256 | self.height = 7.2 |
|
257 | 257 | self.nplots = 1 |
|
258 | 258 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
259 | 259 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
260 | 260 | self.polar = True |
|
261 | 261 | self.ymin = -180 |
|
262 | 262 | self.ymax = 180 |
|
263 | 263 | self.colorbar = False |
|
264 | 264 | |
|
265 | 265 | def plot(self): |
|
266 | 266 | |
|
267 | 267 | arrayParameters = numpy.concatenate(self.data['param']) |
|
268 | 268 | error = arrayParameters[:, -1] |
|
269 | 269 | indValid = numpy.where(error == 0)[0] |
|
270 | 270 | finalMeteor = arrayParameters[indValid, :] |
|
271 | 271 | finalAzimuth = finalMeteor[:, 3] |
|
272 | 272 | finalZenith = finalMeteor[:, 4] |
|
273 | 273 | |
|
274 | 274 | x = finalAzimuth * numpy.pi / 180 |
|
275 | 275 | y = finalZenith |
|
276 | 276 | |
|
277 | 277 | ax = self.axes[0] |
|
278 | 278 | |
|
279 | 279 | if ax.firsttime: |
|
280 | 280 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
281 | 281 | else: |
|
282 | 282 | ax.plot.set_data(x, y) |
|
283 | 283 | |
|
284 | 284 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
285 | 285 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
286 | 286 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
287 | 287 | dt2, |
|
288 | 288 | len(x)) |
|
289 | 289 | self.titles[0] = title |
|
290 | 290 | |
|
291 | 291 | |
|
292 | 292 | class GenericRTIPlot(Plot): |
|
293 | 293 | ''' |
|
294 | 294 | Plot for data_xxxx object |
|
295 | 295 | ''' |
|
296 | 296 | |
|
297 | 297 | CODE = 'param' |
|
298 | 298 | colormap = 'viridis' |
|
299 | 299 | plot_type = 'pcolorbuffer' |
|
300 | 300 | |
|
301 | 301 | def setup(self): |
|
302 | 302 | self.xaxis = 'time' |
|
303 | 303 | self.ncols = 1 |
|
304 | 304 | self.nrows = self.data.shape('param')[0] |
|
305 | 305 | self.nplots = self.nrows |
|
306 | 306 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
307 | 307 | |
|
308 | 308 | if not self.xlabel: |
|
309 | 309 | self.xlabel = 'Time' |
|
310 | 310 | |
|
311 | 311 | self.ylabel = 'Range [km]' |
|
312 | 312 | if not self.titles: |
|
313 | 313 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
314 | 314 | |
|
315 | 315 | def update(self, dataOut): |
|
316 | 316 | |
|
317 | 317 | data = { |
|
318 | 318 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
319 | 319 | } |
|
320 | 320 | |
|
321 | 321 | meta = {} |
|
322 | 322 | |
|
323 | 323 | return data, meta |
|
324 | 324 | |
|
325 | 325 | def plot(self): |
|
326 | 326 | # self.data.normalize_heights() |
|
327 | 327 | self.x = self.data.times |
|
328 | 328 | self.y = self.data.yrange |
|
329 | 329 | self.z = self.data['param'] |
|
330 | 330 | |
|
331 | 331 | self.z = numpy.ma.masked_invalid(self.z) |
|
332 | 332 | |
|
333 | 333 | if self.decimation is None: |
|
334 | 334 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
335 | 335 | else: |
|
336 | 336 | x, y, z = self.fill_gaps(*self.decimate()) |
|
337 | 337 | |
|
338 | 338 | for n, ax in enumerate(self.axes): |
|
339 | 339 | |
|
340 | 340 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
341 | 341 | self.z[n]) |
|
342 | 342 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
343 | 343 | self.z[n]) |
|
344 | 344 | |
|
345 | 345 | if ax.firsttime: |
|
346 | 346 | if self.zlimits is not None: |
|
347 | 347 | self.zmin, self.zmax = self.zlimits[n] |
|
348 | 348 | |
|
349 | 349 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
350 | 350 | vmin=self.zmin, |
|
351 | 351 | vmax=self.zmax, |
|
352 | 352 | cmap=self.cmaps[n] |
|
353 | 353 | ) |
|
354 | 354 | else: |
|
355 | 355 | if self.zlimits is not None: |
|
356 | 356 | self.zmin, self.zmax = self.zlimits[n] |
|
357 |
ax. |
|
|
357 | ax.plt.remove() | |
|
358 | 358 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
359 | 359 | vmin=self.zmin, |
|
360 | 360 | vmax=self.zmax, |
|
361 | 361 | cmap=self.cmaps[n] |
|
362 | 362 | ) |
|
363 | 363 | |
|
364 | 364 | |
|
365 | 365 | class PolarMapPlot(Plot): |
|
366 | 366 | ''' |
|
367 | 367 | Plot for weather radar |
|
368 | 368 | ''' |
|
369 | 369 | |
|
370 | 370 | CODE = 'param' |
|
371 | 371 | colormap = 'seismic' |
|
372 | 372 | |
|
373 | 373 | def setup(self): |
|
374 | 374 | self.ncols = 1 |
|
375 | 375 | self.nrows = 1 |
|
376 | 376 | self.width = 9 |
|
377 | 377 | self.height = 8 |
|
378 | 378 | self.mode = self.data.meta['mode'] |
|
379 | 379 | if self.channels is not None: |
|
380 | 380 | self.nplots = len(self.channels) |
|
381 | 381 | self.nrows = len(self.channels) |
|
382 | 382 | else: |
|
383 | 383 | self.nplots = self.data.shape(self.CODE)[0] |
|
384 | 384 | self.nrows = self.nplots |
|
385 | 385 | self.channels = list(range(self.nplots)) |
|
386 | 386 | if self.mode == 'E': |
|
387 | 387 | self.xlabel = 'Longitude' |
|
388 | 388 | self.ylabel = 'Latitude' |
|
389 | 389 | else: |
|
390 | 390 | self.xlabel = 'Range (km)' |
|
391 | 391 | self.ylabel = 'Height (km)' |
|
392 | 392 | self.bgcolor = 'white' |
|
393 | 393 | self.cb_labels = self.data.meta['units'] |
|
394 | 394 | self.lat = self.data.meta['latitude'] |
|
395 | 395 | self.lon = self.data.meta['longitude'] |
|
396 | 396 | self.xmin, self.xmax = float( |
|
397 | 397 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
398 | 398 | self.ymin, self.ymax = float( |
|
399 | 399 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
400 | 400 | # self.polar = True |
|
401 | 401 | |
|
402 | 402 | def plot(self): |
|
403 | 403 | |
|
404 | 404 | for n, ax in enumerate(self.axes): |
|
405 | 405 | data = self.data['param'][self.channels[n]] |
|
406 | 406 | |
|
407 | 407 | zeniths = numpy.linspace( |
|
408 | 408 | 0, self.data.meta['max_range'], data.shape[1]) |
|
409 | 409 | if self.mode == 'E': |
|
410 | 410 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
411 | 411 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
412 | 412 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
413 | 413 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
414 | 414 | x = km2deg(x) + self.lon |
|
415 | 415 | y = km2deg(y) + self.lat |
|
416 | 416 | else: |
|
417 | 417 | azimuths = numpy.radians(self.data.yrange) |
|
418 | 418 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
419 | 419 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
420 | 420 | self.y = zeniths |
|
421 | 421 | |
|
422 | 422 | if ax.firsttime: |
|
423 | 423 | if self.zlimits is not None: |
|
424 | 424 | self.zmin, self.zmax = self.zlimits[n] |
|
425 | 425 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
426 | 426 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
427 | 427 | vmin=self.zmin, |
|
428 | 428 | vmax=self.zmax, |
|
429 | 429 | cmap=self.cmaps[n]) |
|
430 | 430 | else: |
|
431 | 431 | if self.zlimits is not None: |
|
432 | 432 | self.zmin, self.zmax = self.zlimits[n] |
|
433 |
ax. |
|
|
433 | ax.plt.remove() | |
|
434 | 434 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
435 | 435 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
436 | 436 | vmin=self.zmin, |
|
437 | 437 | vmax=self.zmax, |
|
438 | 438 | cmap=self.cmaps[n]) |
|
439 | 439 | |
|
440 | 440 | if self.mode == 'A': |
|
441 | 441 | continue |
|
442 | 442 | |
|
443 | 443 | # plot district names |
|
444 | 444 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
445 | 445 | for line in f: |
|
446 | 446 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
447 | 447 | lat = float(lat) |
|
448 | 448 | lon = float(lon) |
|
449 | 449 | # ax.plot(lon, lat, '.b', ms=2) |
|
450 | 450 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
451 | 451 | va='bottom', size='8', color='black') |
|
452 | 452 | |
|
453 | 453 | # plot limites |
|
454 | 454 | limites = [] |
|
455 | 455 | tmp = [] |
|
456 | 456 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
457 | 457 | if '#' in line: |
|
458 | 458 | if tmp: |
|
459 | 459 | limites.append(tmp) |
|
460 | 460 | tmp = [] |
|
461 | 461 | continue |
|
462 | 462 | values = line.strip().split(',') |
|
463 | 463 | tmp.append((float(values[0]), float(values[1]))) |
|
464 | 464 | for points in limites: |
|
465 | 465 | ax.add_patch( |
|
466 | 466 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
467 | 467 | |
|
468 | 468 | # plot Cuencas |
|
469 | 469 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
470 | 470 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
471 | 471 | values = [line.strip().split(',') for line in f] |
|
472 | 472 | points = [(float(s[0]), float(s[1])) for s in values] |
|
473 | 473 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
474 | 474 | |
|
475 | 475 | # plot grid |
|
476 | 476 | for r in (15, 30, 45, 60): |
|
477 | 477 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
478 | 478 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
479 | 479 | ax.text( |
|
480 | 480 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
481 | 481 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
482 | 482 | '{}km'.format(r), |
|
483 | 483 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
484 | 484 | |
|
485 | 485 | if self.mode == 'E': |
|
486 | 486 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
487 | 487 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
488 | 488 | else: |
|
489 | 489 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
490 | 490 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
491 | 491 | |
|
492 | 492 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
493 | 493 | self.titles = ['{} {}'.format( |
|
494 | 494 | self.data.parameters[x], title) for x in self.channels] |
@@ -1,1349 +1,1349 | |||
|
1 | 1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Classes to plot Spectra data |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import numpy |
|
11 | 11 | #import collections.abc |
|
12 | 12 | |
|
13 | 13 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
14 | 14 | |
|
15 | 15 | class SpectraPlot(Plot): |
|
16 | 16 | ''' |
|
17 | 17 | Plot for Spectra data |
|
18 | 18 | ''' |
|
19 | 19 | |
|
20 | 20 | CODE = 'spc' |
|
21 | 21 | colormap = 'jet' |
|
22 | 22 | plot_type = 'pcolor' |
|
23 | 23 | buffering = False |
|
24 | 24 | |
|
25 | 25 | def setup(self): |
|
26 | 26 | |
|
27 | 27 | self.nplots = len(self.data.channels) |
|
28 | 28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
29 | 29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
30 | 30 | self.height = 2.6 * self.nrows |
|
31 | 31 | self.cb_label = 'dB' |
|
32 | 32 | if self.showprofile: |
|
33 | 33 | self.width = 4 * self.ncols |
|
34 | 34 | else: |
|
35 | 35 | self.width = 3.5 * self.ncols |
|
36 | 36 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
37 | 37 | self.ylabel = 'Range [km]' |
|
38 | 38 | |
|
39 | 39 | def update(self, dataOut): |
|
40 | 40 | |
|
41 | 41 | data = {} |
|
42 | 42 | meta = {} |
|
43 | 43 | |
|
44 | 44 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
45 | 45 | #print("dataOut.normFactor: ", dataOut.normFactor) |
|
46 | 46 | #print("spc: ", dataOut.data_spc[0,0,0]) |
|
47 | 47 | #spc = 10*numpy.log10(dataOut.data_spc) |
|
48 | 48 | #print("Spc: ",spc[0]) |
|
49 | 49 | #exit(1) |
|
50 | 50 | data['spc'] = spc |
|
51 | 51 | data['rti'] = dataOut.getPower() |
|
52 | 52 | #print(data['rti'][0]) |
|
53 | 53 | #exit(1) |
|
54 | 54 | #print("NormFactor: ",dataOut.normFactor) |
|
55 | 55 | #data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
56 | 56 | if hasattr(dataOut, 'LagPlot'): #Double Pulse |
|
57 | 57 | max_hei_id = dataOut.nHeights - 2*dataOut.LagPlot |
|
58 | 58 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=46,ymax_index=max_hei_id)/dataOut.normFactor) |
|
59 | 59 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=40,ymax_index=max_hei_id)/dataOut.normFactor) |
|
60 | 60 | data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)/dataOut.normFactor) |
|
61 | 61 | data['noise'][0] = 10*numpy.log10(dataOut.getNoise(ymin_index=53)[0]/dataOut.normFactor) |
|
62 | 62 | #data['noise'][1] = 22.035507 |
|
63 | 63 | else: |
|
64 | 64 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
65 | 65 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=26,ymax_index=44)/dataOut.normFactor) |
|
66 | 66 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
67 | 67 | |
|
68 | 68 | if self.CODE == 'spc_moments': |
|
69 | 69 | data['moments'] = dataOut.moments |
|
70 | 70 | if self.CODE == 'gaussian_fit': |
|
71 | 71 | data['gaussfit'] = dataOut.DGauFitParams |
|
72 | 72 | |
|
73 | 73 | return data, meta |
|
74 | 74 | |
|
75 | 75 | def plot(self): |
|
76 | 76 | |
|
77 | 77 | if self.xaxis == "frequency": |
|
78 | 78 | x = self.data.xrange[0] |
|
79 | 79 | self.xlabel = "Frequency (kHz)" |
|
80 | 80 | elif self.xaxis == "time": |
|
81 | 81 | x = self.data.xrange[1] |
|
82 | 82 | self.xlabel = "Time (ms)" |
|
83 | 83 | else: |
|
84 | 84 | x = self.data.xrange[2] |
|
85 | 85 | self.xlabel = "Velocity (m/s)" |
|
86 | 86 | |
|
87 | 87 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): |
|
88 | 88 | x = self.data.xrange[2] |
|
89 | 89 | self.xlabel = "Velocity (m/s)" |
|
90 | 90 | |
|
91 | 91 | self.titles = [] |
|
92 | 92 | |
|
93 | 93 | y = self.data.yrange |
|
94 | 94 | self.y = y |
|
95 | 95 | |
|
96 | 96 | data = self.data[-1] |
|
97 | 97 | z = data['spc'] |
|
98 | 98 | |
|
99 | 99 | self.CODE2 = 'spc_oblique' |
|
100 | 100 | |
|
101 | 101 | for n, ax in enumerate(self.axes): |
|
102 | 102 | noise = data['noise'][n] |
|
103 | 103 | if self.CODE == 'spc_moments': |
|
104 | 104 | mean = data['moments'][n, 1] |
|
105 | 105 | if self.CODE == 'gaussian_fit': |
|
106 | 106 | gau0 = data['gaussfit'][n][2,:,0] |
|
107 | 107 | gau1 = data['gaussfit'][n][2,:,1] |
|
108 | 108 | if ax.firsttime: |
|
109 | 109 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
110 | 110 | self.xmin = self.xmin if self.xmin else numpy.nanmin(x)#-self.xmax |
|
111 | 111 | #self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
112 | 112 | #self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
113 | 113 | if self.zlimits is not None: |
|
114 | 114 | self.zmin, self.zmax = self.zlimits[n] |
|
115 | 115 | |
|
116 | 116 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
117 | 117 | vmin=self.zmin, |
|
118 | 118 | vmax=self.zmax, |
|
119 | 119 | cmap=plt.get_cmap(self.colormap), |
|
120 | 120 | ) |
|
121 | 121 | |
|
122 | 122 | if self.showprofile: |
|
123 | 123 | ax.plt_profile = self.pf_axes[n].plot( |
|
124 | 124 | data['rti'][n], y)[0] |
|
125 | 125 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
126 | 126 | color="k", linestyle="dashed", lw=1)[0] |
|
127 | 127 | if self.CODE == 'spc_moments': |
|
128 | 128 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
129 | 129 | if self.CODE == 'gaussian_fit': |
|
130 | 130 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] |
|
131 | 131 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] |
|
132 | 132 | else: |
|
133 | 133 | if self.zlimits is not None: |
|
134 | 134 | self.zmin, self.zmax = self.zlimits[n] |
|
135 | 135 | ax.plt.set_array(z[n].T.ravel()) |
|
136 | 136 | if self.showprofile: |
|
137 | 137 | ax.plt_profile.set_data(data['rti'][n], y) |
|
138 | 138 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
139 | 139 | if self.CODE == 'spc_moments': |
|
140 | 140 | ax.plt_mean.set_data(mean, y) |
|
141 | 141 | if self.CODE == 'gaussian_fit': |
|
142 | 142 | ax.plt_gau0.set_data(gau0, y) |
|
143 | 143 | ax.plt_gau1.set_data(gau1, y) |
|
144 | 144 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
145 | 145 | |
|
146 | 146 | class SpectraObliquePlot(Plot): |
|
147 | 147 | ''' |
|
148 | 148 | Plot for Spectra data |
|
149 | 149 | ''' |
|
150 | 150 | |
|
151 | 151 | CODE = 'spc_oblique' |
|
152 | 152 | colormap = 'jet' |
|
153 | 153 | plot_type = 'pcolor' |
|
154 | 154 | |
|
155 | 155 | def setup(self): |
|
156 | 156 | self.xaxis = "oblique" |
|
157 | 157 | self.nplots = len(self.data.channels) |
|
158 | 158 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
159 | 159 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
160 | 160 | self.height = 2.6 * self.nrows |
|
161 | 161 | self.cb_label = 'dB' |
|
162 | 162 | if self.showprofile: |
|
163 | 163 | self.width = 4 * self.ncols |
|
164 | 164 | else: |
|
165 | 165 | self.width = 3.5 * self.ncols |
|
166 | 166 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
167 | 167 | self.ylabel = 'Range [km]' |
|
168 | 168 | |
|
169 | 169 | def update(self, dataOut): |
|
170 | 170 | |
|
171 | 171 | data = {} |
|
172 | 172 | meta = {} |
|
173 | 173 | |
|
174 | 174 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
175 | 175 | data['spc'] = spc |
|
176 | 176 | data['rti'] = dataOut.getPower() |
|
177 | 177 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
178 | 178 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
179 | 179 | ''' |
|
180 | 180 | data['shift1'] = dataOut.Oblique_params[0,-2,:] |
|
181 | 181 | data['shift2'] = dataOut.Oblique_params[0,-1,:] |
|
182 | 182 | data['shift1_error'] = dataOut.Oblique_param_errors[0,-2,:] |
|
183 | 183 | data['shift2_error'] = dataOut.Oblique_param_errors[0,-1,:] |
|
184 | 184 | ''' |
|
185 | 185 | ''' |
|
186 | 186 | data['shift1'] = dataOut.Oblique_params[0,1,:] |
|
187 | 187 | data['shift2'] = dataOut.Oblique_params[0,4,:] |
|
188 | 188 | data['shift1_error'] = dataOut.Oblique_param_errors[0,1,:] |
|
189 | 189 | data['shift2_error'] = dataOut.Oblique_param_errors[0,4,:] |
|
190 | 190 | ''' |
|
191 | 191 | data['shift1'] = dataOut.Dop_EEJ_T1[0] |
|
192 | 192 | data['shift2'] = dataOut.Dop_EEJ_T2[0] |
|
193 | 193 | data['max_val_2'] = dataOut.Oblique_params[0,-1,:] |
|
194 | 194 | data['shift1_error'] = dataOut.Err_Dop_EEJ_T1[0] |
|
195 | 195 | data['shift2_error'] = dataOut.Err_Dop_EEJ_T2[0] |
|
196 | 196 | |
|
197 | 197 | return data, meta |
|
198 | 198 | |
|
199 | 199 | def plot(self): |
|
200 | 200 | |
|
201 | 201 | if self.xaxis == "frequency": |
|
202 | 202 | x = self.data.xrange[0] |
|
203 | 203 | self.xlabel = "Frequency (kHz)" |
|
204 | 204 | elif self.xaxis == "time": |
|
205 | 205 | x = self.data.xrange[1] |
|
206 | 206 | self.xlabel = "Time (ms)" |
|
207 | 207 | else: |
|
208 | 208 | x = self.data.xrange[2] |
|
209 | 209 | self.xlabel = "Velocity (m/s)" |
|
210 | 210 | |
|
211 | 211 | self.titles = [] |
|
212 | 212 | |
|
213 | 213 | y = self.data.yrange |
|
214 | 214 | self.y = y |
|
215 | 215 | |
|
216 | 216 | data = self.data[-1] |
|
217 | 217 | z = data['spc'] |
|
218 | 218 | |
|
219 | 219 | for n, ax in enumerate(self.axes): |
|
220 | 220 | noise = self.data['noise'][n][-1] |
|
221 | 221 | shift1 = data['shift1'] |
|
222 | 222 | #print(shift1) |
|
223 | 223 | shift2 = data['shift2'] |
|
224 | 224 | max_val_2 = data['max_val_2'] |
|
225 | 225 | err1 = data['shift1_error'] |
|
226 | 226 | err2 = data['shift2_error'] |
|
227 | 227 | if ax.firsttime: |
|
228 | 228 | |
|
229 | 229 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
230 | 230 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
231 | 231 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
232 | 232 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
233 | 233 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
234 | 234 | vmin=self.zmin, |
|
235 | 235 | vmax=self.zmax, |
|
236 | 236 | cmap=plt.get_cmap(self.colormap) |
|
237 | 237 | ) |
|
238 | 238 | |
|
239 | 239 | if self.showprofile: |
|
240 | 240 | ax.plt_profile = self.pf_axes[n].plot( |
|
241 | 241 | self.data['rti'][n][-1], y)[0] |
|
242 | 242 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
243 | 243 | color="k", linestyle="dashed", lw=1)[0] |
|
244 | 244 | |
|
245 | 245 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
246 | 246 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
247 | 247 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
248 | 248 | |
|
249 | 249 | #print("plotter1: ", self.ploterr1,shift1) |
|
250 | 250 | |
|
251 | 251 | else: |
|
252 | 252 | #print("else plotter1: ", self.ploterr1,shift1) |
|
253 | 253 | self.ploterr1.remove() |
|
254 | 254 | self.ploterr2.remove() |
|
255 | 255 | self.ploterr3.remove() |
|
256 | 256 | ax.plt.set_array(z[n].T.ravel()) |
|
257 | 257 | if self.showprofile: |
|
258 | 258 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
259 | 259 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
260 | 260 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
261 | 261 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
262 | 262 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
263 | 263 | |
|
264 | 264 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
265 | 265 | |
|
266 | 266 | |
|
267 | 267 | class CrossSpectraPlot(Plot): |
|
268 | 268 | |
|
269 | 269 | CODE = 'cspc' |
|
270 | 270 | colormap = 'jet' |
|
271 | 271 | plot_type = 'pcolor' |
|
272 | 272 | zmin_coh = None |
|
273 | 273 | zmax_coh = None |
|
274 | 274 | zmin_phase = None |
|
275 | 275 | zmax_phase = None |
|
276 | 276 | |
|
277 | 277 | def setup(self): |
|
278 | 278 | |
|
279 | 279 | self.ncols = 4 |
|
280 | 280 | self.nplots = len(self.data.pairs) * 2 |
|
281 | 281 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
282 | 282 | self.width = 3.1 * self.ncols |
|
283 | 283 | self.height = 5 * self.nrows |
|
284 | 284 | self.ylabel = 'Range [km]' |
|
285 | 285 | self.showprofile = False |
|
286 | 286 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
287 | 287 | |
|
288 | 288 | def update(self, dataOut): |
|
289 | 289 | |
|
290 | 290 | data = {} |
|
291 | 291 | meta = {} |
|
292 | 292 | |
|
293 | 293 | spc = dataOut.data_spc |
|
294 | 294 | cspc = dataOut.data_cspc |
|
295 | 295 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
296 | 296 | meta['pairs'] = dataOut.pairsList |
|
297 | 297 | |
|
298 | 298 | tmp = [] |
|
299 | 299 | |
|
300 | 300 | for n, pair in enumerate(meta['pairs']): |
|
301 | 301 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
302 | 302 | coh = numpy.abs(out) |
|
303 | 303 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
304 | 304 | tmp.append(coh) |
|
305 | 305 | tmp.append(phase) |
|
306 | 306 | |
|
307 | 307 | data['cspc'] = numpy.array(tmp) |
|
308 | 308 | |
|
309 | 309 | return data, meta |
|
310 | 310 | |
|
311 | 311 | def plot(self): |
|
312 | 312 | |
|
313 | 313 | if self.xaxis == "frequency": |
|
314 | 314 | x = self.data.xrange[0] |
|
315 | 315 | self.xlabel = "Frequency (kHz)" |
|
316 | 316 | elif self.xaxis == "time": |
|
317 | 317 | x = self.data.xrange[1] |
|
318 | 318 | self.xlabel = "Time (ms)" |
|
319 | 319 | else: |
|
320 | 320 | x = self.data.xrange[2] |
|
321 | 321 | self.xlabel = "Velocity (m/s)" |
|
322 | 322 | |
|
323 | 323 | self.titles = [] |
|
324 | 324 | |
|
325 | 325 | y = self.data.yrange |
|
326 | 326 | self.y = y |
|
327 | 327 | |
|
328 | 328 | data = self.data[-1] |
|
329 | 329 | cspc = data['cspc'] |
|
330 | 330 | |
|
331 | 331 | for n in range(len(self.data.pairs)): |
|
332 | 332 | pair = self.data.pairs[n] |
|
333 | 333 | coh = cspc[n*2] |
|
334 | 334 | phase = cspc[n*2+1] |
|
335 | 335 | ax = self.axes[2 * n] |
|
336 | 336 | if ax.firsttime: |
|
337 | 337 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
338 | 338 | vmin=0, |
|
339 | 339 | vmax=1, |
|
340 | 340 | cmap=plt.get_cmap(self.colormap_coh) |
|
341 | 341 | ) |
|
342 | 342 | else: |
|
343 | 343 | ax.plt.set_array(coh.T.ravel()) |
|
344 | 344 | self.titles.append( |
|
345 | 345 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
346 | 346 | |
|
347 | 347 | ax = self.axes[2 * n + 1] |
|
348 | 348 | if ax.firsttime: |
|
349 | 349 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
350 | 350 | vmin=-180, |
|
351 | 351 | vmax=180, |
|
352 | 352 | cmap=plt.get_cmap(self.colormap_phase) |
|
353 | 353 | ) |
|
354 | 354 | else: |
|
355 | 355 | ax.plt.set_array(phase.T.ravel()) |
|
356 | 356 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
357 | 357 | |
|
358 | 358 | |
|
359 | 359 | class CrossSpectra4Plot(Plot): |
|
360 | 360 | |
|
361 | 361 | CODE = 'cspc' |
|
362 | 362 | colormap = 'jet' |
|
363 | 363 | plot_type = 'pcolor' |
|
364 | 364 | zmin_coh = None |
|
365 | 365 | zmax_coh = None |
|
366 | 366 | zmin_phase = None |
|
367 | 367 | zmax_phase = None |
|
368 | 368 | |
|
369 | 369 | def setup(self): |
|
370 | 370 | |
|
371 | 371 | self.ncols = 4 |
|
372 | 372 | self.nrows = len(self.data.pairs) |
|
373 | 373 | self.nplots = self.nrows * 4 |
|
374 | 374 | self.width = 3.1 * self.ncols |
|
375 | 375 | self.height = 5 * self.nrows |
|
376 | 376 | self.ylabel = 'Range [km]' |
|
377 | 377 | self.showprofile = False |
|
378 | 378 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
379 | 379 | |
|
380 | 380 | def plot(self): |
|
381 | 381 | |
|
382 | 382 | if self.xaxis == "frequency": |
|
383 | 383 | x = self.data.xrange[0] |
|
384 | 384 | self.xlabel = "Frequency (kHz)" |
|
385 | 385 | elif self.xaxis == "time": |
|
386 | 386 | x = self.data.xrange[1] |
|
387 | 387 | self.xlabel = "Time (ms)" |
|
388 | 388 | else: |
|
389 | 389 | x = self.data.xrange[2] |
|
390 | 390 | self.xlabel = "Velocity (m/s)" |
|
391 | 391 | |
|
392 | 392 | self.titles = [] |
|
393 | 393 | |
|
394 | 394 | |
|
395 | 395 | y = self.data.heights |
|
396 | 396 | self.y = y |
|
397 | 397 | nspc = self.data['spc'] |
|
398 | 398 | #print(numpy.shape(self.data['spc'])) |
|
399 | 399 | spc = self.data['cspc'][0] |
|
400 | 400 | #print(numpy.shape(nspc)) |
|
401 | 401 | #exit() |
|
402 | 402 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) |
|
403 | 403 | #print(numpy.shape(spc)) |
|
404 | 404 | #exit() |
|
405 | 405 | cspc = self.data['cspc'][1] |
|
406 | 406 | |
|
407 | 407 | #xflip=numpy.flip(x) |
|
408 | 408 | #print(numpy.shape(cspc)) |
|
409 | 409 | #exit() |
|
410 | 410 | |
|
411 | 411 | for n in range(self.nrows): |
|
412 | 412 | noise = self.data['noise'][:,-1] |
|
413 | 413 | pair = self.data.pairs[n] |
|
414 | 414 | #print(pair) |
|
415 | 415 | #exit() |
|
416 | 416 | ax = self.axes[4 * n] |
|
417 | 417 | if ax.firsttime: |
|
418 | 418 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
419 | 419 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
420 | 420 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) |
|
421 | 421 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) |
|
422 | 422 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, |
|
423 | 423 | vmin=self.zmin, |
|
424 | 424 | vmax=self.zmax, |
|
425 | 425 | cmap=plt.get_cmap(self.colormap) |
|
426 | 426 | ) |
|
427 | 427 | else: |
|
428 | 428 | #print(numpy.shape(nspc[pair[0]].T)) |
|
429 | 429 | #exit() |
|
430 | 430 | ax.plt.set_array(nspc[pair[0]].T.ravel()) |
|
431 | 431 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) |
|
432 | 432 | |
|
433 | 433 | ax = self.axes[4 * n + 1] |
|
434 | 434 | |
|
435 | 435 | if ax.firsttime: |
|
436 | 436 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, |
|
437 | 437 | vmin=self.zmin, |
|
438 | 438 | vmax=self.zmax, |
|
439 | 439 | cmap=plt.get_cmap(self.colormap) |
|
440 | 440 | ) |
|
441 | 441 | else: |
|
442 | 442 | |
|
443 | 443 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) |
|
444 | 444 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) |
|
445 | 445 | |
|
446 | 446 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
447 | 447 | coh = numpy.abs(out) |
|
448 | 448 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
449 | 449 | |
|
450 | 450 | ax = self.axes[4 * n + 2] |
|
451 | 451 | if ax.firsttime: |
|
452 | 452 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, |
|
453 | 453 | vmin=0, |
|
454 | 454 | vmax=1, |
|
455 | 455 | cmap=plt.get_cmap(self.colormap_coh) |
|
456 | 456 | ) |
|
457 | 457 | else: |
|
458 | 458 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) |
|
459 | 459 | self.titles.append( |
|
460 | 460 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
461 | 461 | |
|
462 | 462 | ax = self.axes[4 * n + 3] |
|
463 | 463 | if ax.firsttime: |
|
464 | 464 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, |
|
465 | 465 | vmin=-180, |
|
466 | 466 | vmax=180, |
|
467 | 467 | cmap=plt.get_cmap(self.colormap_phase) |
|
468 | 468 | ) |
|
469 | 469 | else: |
|
470 | 470 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) |
|
471 | 471 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
472 | 472 | |
|
473 | 473 | |
|
474 | 474 | class CrossSpectra2Plot(Plot): |
|
475 | 475 | |
|
476 | 476 | CODE = 'cspc' |
|
477 | 477 | colormap = 'jet' |
|
478 | 478 | plot_type = 'pcolor' |
|
479 | 479 | zmin_coh = None |
|
480 | 480 | zmax_coh = None |
|
481 | 481 | zmin_phase = None |
|
482 | 482 | zmax_phase = None |
|
483 | 483 | |
|
484 | 484 | def setup(self): |
|
485 | 485 | |
|
486 | 486 | self.ncols = 1 |
|
487 | 487 | self.nrows = len(self.data.pairs) |
|
488 | 488 | self.nplots = self.nrows * 1 |
|
489 | 489 | self.width = 3.1 * self.ncols |
|
490 | 490 | self.height = 5 * self.nrows |
|
491 | 491 | self.ylabel = 'Range [km]' |
|
492 | 492 | self.showprofile = False |
|
493 | 493 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
494 | 494 | |
|
495 | 495 | def plot(self): |
|
496 | 496 | |
|
497 | 497 | if self.xaxis == "frequency": |
|
498 | 498 | x = self.data.xrange[0] |
|
499 | 499 | self.xlabel = "Frequency (kHz)" |
|
500 | 500 | elif self.xaxis == "time": |
|
501 | 501 | x = self.data.xrange[1] |
|
502 | 502 | self.xlabel = "Time (ms)" |
|
503 | 503 | else: |
|
504 | 504 | x = self.data.xrange[2] |
|
505 | 505 | self.xlabel = "Velocity (m/s)" |
|
506 | 506 | |
|
507 | 507 | self.titles = [] |
|
508 | 508 | |
|
509 | 509 | |
|
510 | 510 | y = self.data.heights |
|
511 | 511 | self.y = y |
|
512 | 512 | #nspc = self.data['spc'] |
|
513 | 513 | #print(numpy.shape(self.data['spc'])) |
|
514 | 514 | #spc = self.data['cspc'][0] |
|
515 | 515 | #print(numpy.shape(spc)) |
|
516 | 516 | #exit() |
|
517 | 517 | cspc = self.data['cspc'][1] |
|
518 | 518 | #print(numpy.shape(cspc)) |
|
519 | 519 | #exit() |
|
520 | 520 | |
|
521 | 521 | for n in range(self.nrows): |
|
522 | 522 | noise = self.data['noise'][:,-1] |
|
523 | 523 | pair = self.data.pairs[n] |
|
524 | 524 | #print(pair) #exit() |
|
525 | 525 | |
|
526 | 526 | |
|
527 | 527 | |
|
528 | 528 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
529 | 529 | |
|
530 | 530 | #print(out[:,53]) |
|
531 | 531 | #exit() |
|
532 | 532 | cross = numpy.abs(out) |
|
533 | 533 | z = cross/self.data.nFactor |
|
534 | 534 | #print("here") |
|
535 | 535 | #print(dataOut.data_spc[0,0,0]) |
|
536 | 536 | #exit() |
|
537 | 537 | |
|
538 | 538 | cross = 10*numpy.log10(z) |
|
539 | 539 | #print(numpy.shape(cross)) |
|
540 | 540 | #print(cross[0,:]) |
|
541 | 541 | #print(self.data.nFactor) |
|
542 | 542 | #exit() |
|
543 | 543 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
544 | 544 | |
|
545 | 545 | ax = self.axes[1 * n] |
|
546 | 546 | if ax.firsttime: |
|
547 | 547 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
548 | 548 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
549 | 549 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
550 | 550 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
551 | 551 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
552 | 552 | vmin=self.zmin, |
|
553 | 553 | vmax=self.zmax, |
|
554 | 554 | cmap=plt.get_cmap(self.colormap) |
|
555 | 555 | ) |
|
556 | 556 | else: |
|
557 | 557 | ax.plt.set_array(cross.T.ravel()) |
|
558 | 558 | self.titles.append( |
|
559 | 559 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
560 | 560 | |
|
561 | 561 | |
|
562 | 562 | class CrossSpectra3Plot(Plot): |
|
563 | 563 | |
|
564 | 564 | CODE = 'cspc' |
|
565 | 565 | colormap = 'jet' |
|
566 | 566 | plot_type = 'pcolor' |
|
567 | 567 | zmin_coh = None |
|
568 | 568 | zmax_coh = None |
|
569 | 569 | zmin_phase = None |
|
570 | 570 | zmax_phase = None |
|
571 | 571 | |
|
572 | 572 | def setup(self): |
|
573 | 573 | |
|
574 | 574 | self.ncols = 3 |
|
575 | 575 | self.nrows = len(self.data.pairs) |
|
576 | 576 | self.nplots = self.nrows * 3 |
|
577 | 577 | self.width = 3.1 * self.ncols |
|
578 | 578 | self.height = 5 * self.nrows |
|
579 | 579 | self.ylabel = 'Range [km]' |
|
580 | 580 | self.showprofile = False |
|
581 | 581 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
582 | 582 | |
|
583 | 583 | def plot(self): |
|
584 | 584 | |
|
585 | 585 | if self.xaxis == "frequency": |
|
586 | 586 | x = self.data.xrange[0] |
|
587 | 587 | self.xlabel = "Frequency (kHz)" |
|
588 | 588 | elif self.xaxis == "time": |
|
589 | 589 | x = self.data.xrange[1] |
|
590 | 590 | self.xlabel = "Time (ms)" |
|
591 | 591 | else: |
|
592 | 592 | x = self.data.xrange[2] |
|
593 | 593 | self.xlabel = "Velocity (m/s)" |
|
594 | 594 | |
|
595 | 595 | self.titles = [] |
|
596 | 596 | |
|
597 | 597 | |
|
598 | 598 | y = self.data.heights |
|
599 | 599 | self.y = y |
|
600 | 600 | #nspc = self.data['spc'] |
|
601 | 601 | #print(numpy.shape(self.data['spc'])) |
|
602 | 602 | #spc = self.data['cspc'][0] |
|
603 | 603 | #print(numpy.shape(spc)) |
|
604 | 604 | #exit() |
|
605 | 605 | cspc = self.data['cspc'][1] |
|
606 | 606 | #print(numpy.shape(cspc)) |
|
607 | 607 | #exit() |
|
608 | 608 | |
|
609 | 609 | for n in range(self.nrows): |
|
610 | 610 | noise = self.data['noise'][:,-1] |
|
611 | 611 | pair = self.data.pairs[n] |
|
612 | 612 | #print(pair) #exit() |
|
613 | 613 | |
|
614 | 614 | |
|
615 | 615 | |
|
616 | 616 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
617 | 617 | |
|
618 | 618 | #print(out[:,53]) |
|
619 | 619 | #exit() |
|
620 | 620 | cross = numpy.abs(out) |
|
621 | 621 | z = cross/self.data.nFactor |
|
622 | 622 | cross = 10*numpy.log10(z) |
|
623 | 623 | |
|
624 | 624 | out_r= out.real/self.data.nFactor |
|
625 | 625 | #out_r = 10*numpy.log10(out_r) |
|
626 | 626 | |
|
627 | 627 | out_i= out.imag/self.data.nFactor |
|
628 | 628 | #out_i = 10*numpy.log10(out_i) |
|
629 | 629 | #print(numpy.shape(cross)) |
|
630 | 630 | #print(cross[0,:]) |
|
631 | 631 | #print(self.data.nFactor) |
|
632 | 632 | #exit() |
|
633 | 633 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
634 | 634 | |
|
635 | 635 | ax = self.axes[3 * n] |
|
636 | 636 | if ax.firsttime: |
|
637 | 637 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
638 | 638 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
639 | 639 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
640 | 640 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
641 | 641 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
642 | 642 | vmin=self.zmin, |
|
643 | 643 | vmax=self.zmax, |
|
644 | 644 | cmap=plt.get_cmap(self.colormap) |
|
645 | 645 | ) |
|
646 | 646 | else: |
|
647 | 647 | ax.plt.set_array(cross.T.ravel()) |
|
648 | 648 | self.titles.append( |
|
649 | 649 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
650 | 650 | |
|
651 | 651 | ax = self.axes[3 * n + 1] |
|
652 | 652 | if ax.firsttime: |
|
653 | 653 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
654 | 654 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
655 | 655 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
656 | 656 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
657 | 657 | ax.plt = ax.pcolormesh(x, y, out_r.T, |
|
658 | 658 | vmin=-1.e6, |
|
659 | 659 | vmax=0, |
|
660 | 660 | cmap=plt.get_cmap(self.colormap) |
|
661 | 661 | ) |
|
662 | 662 | else: |
|
663 | 663 | ax.plt.set_array(out_r.T.ravel()) |
|
664 | 664 | self.titles.append( |
|
665 | 665 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
666 | 666 | |
|
667 | 667 | ax = self.axes[3 * n + 2] |
|
668 | 668 | |
|
669 | 669 | |
|
670 | 670 | if ax.firsttime: |
|
671 | 671 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
672 | 672 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
673 | 673 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
674 | 674 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
675 | 675 | ax.plt = ax.pcolormesh(x, y, out_i.T, |
|
676 | 676 | vmin=-1.e6, |
|
677 | 677 | vmax=1.e6, |
|
678 | 678 | cmap=plt.get_cmap(self.colormap) |
|
679 | 679 | ) |
|
680 | 680 | else: |
|
681 | 681 | ax.plt.set_array(out_i.T.ravel()) |
|
682 | 682 | self.titles.append( |
|
683 | 683 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
684 | 684 | |
|
685 | 685 | class RTIPlot(Plot): |
|
686 | 686 | ''' |
|
687 | 687 | Plot for RTI data |
|
688 | 688 | ''' |
|
689 | 689 | |
|
690 | 690 | CODE = 'rti' |
|
691 | 691 | colormap = 'jet' |
|
692 | 692 | plot_type = 'pcolorbuffer' |
|
693 | 693 | |
|
694 | 694 | def setup(self): |
|
695 | 695 | self.xaxis = 'time' |
|
696 | 696 | self.ncols = 1 |
|
697 | 697 | self.nrows = len(self.data.channels) |
|
698 | 698 | self.nplots = len(self.data.channels) |
|
699 | 699 | self.ylabel = 'Range [km]' |
|
700 | 700 | self.xlabel = 'Time' |
|
701 | 701 | self.cb_label = 'dB' |
|
702 | 702 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
703 | 703 | self.titles = ['{} Channel {}'.format( |
|
704 | 704 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
705 | 705 | |
|
706 | 706 | def update(self, dataOut): |
|
707 | 707 | |
|
708 | 708 | data = {} |
|
709 | 709 | meta = {} |
|
710 | 710 | data['rti'] = dataOut.getPower() |
|
711 | 711 | #print(numpy.shape(data['rti'])) |
|
712 | 712 | |
|
713 | 713 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
714 | 714 | |
|
715 | 715 | return data, meta |
|
716 | 716 | |
|
717 | 717 | def plot(self): |
|
718 | 718 | |
|
719 | 719 | self.x = self.data.times |
|
720 | 720 | self.y = self.data.yrange |
|
721 | 721 | self.z = self.data[self.CODE] |
|
722 | 722 | #print("Inside RTI: ", self.z) |
|
723 | 723 | self.z = numpy.ma.masked_invalid(self.z) |
|
724 | 724 | |
|
725 | 725 | if self.decimation is None: |
|
726 | 726 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
727 | 727 | else: |
|
728 | 728 | x, y, z = self.fill_gaps(*self.decimate()) |
|
729 | 729 | #print("self.z: ", self.z) |
|
730 | 730 | #exit(1) |
|
731 | 731 | ''' |
|
732 | 732 | if not isinstance(self.zmin, collections.abc.Sequence): |
|
733 | 733 | if not self.zmin: |
|
734 | 734 | self.zmin = [numpy.min(self.z)]*len(self.axes) |
|
735 | 735 | else: |
|
736 | 736 | self.zmin = [self.zmin]*len(self.axes) |
|
737 | 737 | |
|
738 | 738 | if not isinstance(self.zmax, collections.abc.Sequence): |
|
739 | 739 | if not self.zmax: |
|
740 | 740 | self.zmax = [numpy.max(self.z)]*len(self.axes) |
|
741 | 741 | else: |
|
742 | 742 | self.zmax = [self.zmax]*len(self.axes) |
|
743 | 743 | ''' |
|
744 | 744 | for n, ax in enumerate(self.axes): |
|
745 | 745 | |
|
746 | 746 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
747 | 747 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
748 | 748 | |
|
749 | 749 | if ax.firsttime: |
|
750 | 750 | if self.zlimits is not None: |
|
751 | 751 | self.zmin, self.zmax = self.zlimits[n] |
|
752 | 752 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
753 | 753 | vmin=self.zmin, |
|
754 | 754 | vmax=self.zmax, |
|
755 | 755 | cmap=plt.get_cmap(self.colormap) |
|
756 | 756 | ) |
|
757 | 757 | if self.showprofile: |
|
758 | 758 | ax.plot_profile = self.pf_axes[n].plot( |
|
759 | 759 | self.data['rti'][n][-1], self.y)[0] |
|
760 | 760 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
761 | 761 | color="k", linestyle="dashed", lw=1)[0] |
|
762 | 762 | else: |
|
763 | 763 | if self.zlimits is not None: |
|
764 | 764 | self.zmin, self.zmax = self.zlimits[n] |
|
765 |
ax. |
|
|
765 | ax.plt.remove() | |
|
766 | 766 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
767 | 767 | vmin=self.zmin, |
|
768 | 768 | vmax=self.zmax, |
|
769 | 769 | cmap=plt.get_cmap(self.colormap) |
|
770 | 770 | ) |
|
771 | 771 | if self.showprofile: |
|
772 | 772 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
773 | 773 | ax.plot_noise.set_data(numpy.repeat( |
|
774 | 774 | self.data['noise'][n][-1], len(self.y)), self.y) |
|
775 | 775 | |
|
776 | 776 | |
|
777 | 777 | class SpectrogramPlot(Plot): |
|
778 | 778 | ''' |
|
779 | 779 | Plot for Spectrogram data |
|
780 | 780 | ''' |
|
781 | 781 | |
|
782 | 782 | CODE = 'Spectrogram_Profile' |
|
783 | 783 | colormap = 'binary' |
|
784 | 784 | plot_type = 'pcolorbuffer' |
|
785 | 785 | |
|
786 | 786 | def setup(self): |
|
787 | 787 | self.xaxis = 'time' |
|
788 | 788 | self.ncols = 1 |
|
789 | 789 | self.nrows = len(self.data.channels) |
|
790 | 790 | self.nplots = len(self.data.channels) |
|
791 | 791 | self.xlabel = 'Time' |
|
792 | 792 | #self.cb_label = 'dB' |
|
793 | 793 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) |
|
794 | 794 | self.titles = [] |
|
795 | 795 | |
|
796 | 796 | #self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( |
|
797 | 797 | #self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] |
|
798 | 798 | |
|
799 | 799 | self.titles = ['{} Channel {}'.format( |
|
800 | 800 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
801 | 801 | |
|
802 | 802 | |
|
803 | 803 | def update(self, dataOut): |
|
804 | 804 | data = {} |
|
805 | 805 | meta = {} |
|
806 | 806 | |
|
807 | 807 | maxHei = 1620#+12000 |
|
808 | 808 | maxHei = 1180 |
|
809 | 809 | indb = numpy.where(dataOut.heightList <= maxHei) |
|
810 | 810 | hei = indb[0][-1] |
|
811 | 811 | #print(dataOut.heightList) |
|
812 | 812 | |
|
813 | 813 | factor = dataOut.nIncohInt |
|
814 | 814 | z = dataOut.data_spc[:,:,hei] / factor |
|
815 | 815 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
816 | 816 | #buffer = 10 * numpy.log10(z) |
|
817 | 817 | |
|
818 | 818 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
819 | 819 | |
|
820 | 820 | |
|
821 | 821 | #self.hei = hei |
|
822 | 822 | #self.heightList = dataOut.heightList |
|
823 | 823 | #self.DH = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
824 | 824 | #self.nProfiles = dataOut.nProfiles |
|
825 | 825 | |
|
826 | 826 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) |
|
827 | 827 | |
|
828 | 828 | data['hei'] = hei |
|
829 | 829 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
830 | 830 | data['nProfiles'] = dataOut.nProfiles |
|
831 | 831 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
832 | 832 | ''' |
|
833 | 833 | import matplotlib.pyplot as plt |
|
834 | 834 | plt.plot(10 * numpy.log10(z[0,:])) |
|
835 | 835 | plt.show() |
|
836 | 836 | |
|
837 | 837 | from time import sleep |
|
838 | 838 | sleep(10) |
|
839 | 839 | ''' |
|
840 | 840 | return data, meta |
|
841 | 841 | |
|
842 | 842 | def plot(self): |
|
843 | 843 | |
|
844 | 844 | self.x = self.data.times |
|
845 | 845 | self.z = self.data[self.CODE] |
|
846 | 846 | self.y = self.data.xrange[0] |
|
847 | 847 | |
|
848 | 848 | hei = self.data['hei'][-1] |
|
849 | 849 | DH = self.data['DH'][-1] |
|
850 | 850 | nProfiles = self.data['nProfiles'][-1] |
|
851 | 851 | |
|
852 | 852 | self.ylabel = "Frequency (kHz)" |
|
853 | 853 | |
|
854 | 854 | self.z = numpy.ma.masked_invalid(self.z) |
|
855 | 855 | |
|
856 | 856 | if self.decimation is None: |
|
857 | 857 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
858 | 858 | else: |
|
859 | 859 | x, y, z = self.fill_gaps(*self.decimate()) |
|
860 | 860 | |
|
861 | 861 | for n, ax in enumerate(self.axes): |
|
862 | 862 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
863 | 863 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
864 | 864 | data = self.data[-1] |
|
865 | 865 | if ax.firsttime: |
|
866 | 866 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
867 | 867 | vmin=self.zmin, |
|
868 | 868 | vmax=self.zmax, |
|
869 | 869 | cmap=plt.get_cmap(self.colormap) |
|
870 | 870 | ) |
|
871 | 871 | else: |
|
872 |
ax. |
|
|
872 | ax.plt.remove() | |
|
873 | 873 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
874 | 874 | vmin=self.zmin, |
|
875 | 875 | vmax=self.zmax, |
|
876 | 876 | cmap=plt.get_cmap(self.colormap) |
|
877 | 877 | ) |
|
878 | 878 | |
|
879 | 879 | #self.titles.append('Spectrogram') |
|
880 | 880 | |
|
881 | 881 | #self.titles.append('{} Channel {} \n H = {} km ({} - {})'.format( |
|
882 | 882 | #self.CODE.upper(), x, y[hei], y[hei],y[hei]+(DH*nProfiles))) |
|
883 | 883 | |
|
884 | 884 | |
|
885 | 885 | |
|
886 | 886 | |
|
887 | 887 | class CoherencePlot(RTIPlot): |
|
888 | 888 | ''' |
|
889 | 889 | Plot for Coherence data |
|
890 | 890 | ''' |
|
891 | 891 | |
|
892 | 892 | CODE = 'coh' |
|
893 | 893 | |
|
894 | 894 | def setup(self): |
|
895 | 895 | self.xaxis = 'time' |
|
896 | 896 | self.ncols = 1 |
|
897 | 897 | self.nrows = len(self.data.pairs) |
|
898 | 898 | self.nplots = len(self.data.pairs) |
|
899 | 899 | self.ylabel = 'Range [km]' |
|
900 | 900 | self.xlabel = 'Time' |
|
901 | 901 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
902 | 902 | if self.CODE == 'coh': |
|
903 | 903 | self.cb_label = '' |
|
904 | 904 | self.titles = [ |
|
905 | 905 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
906 | 906 | else: |
|
907 | 907 | self.cb_label = 'Degrees' |
|
908 | 908 | self.titles = [ |
|
909 | 909 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
910 | 910 | |
|
911 | 911 | def update(self, dataOut): |
|
912 | 912 | |
|
913 | 913 | data = {} |
|
914 | 914 | meta = {} |
|
915 | 915 | data['coh'] = dataOut.getCoherence() |
|
916 | 916 | meta['pairs'] = dataOut.pairsList |
|
917 | 917 | |
|
918 | 918 | return data, meta |
|
919 | 919 | |
|
920 | 920 | class PhasePlot(CoherencePlot): |
|
921 | 921 | ''' |
|
922 | 922 | Plot for Phase map data |
|
923 | 923 | ''' |
|
924 | 924 | |
|
925 | 925 | CODE = 'phase' |
|
926 | 926 | colormap = 'seismic' |
|
927 | 927 | |
|
928 | 928 | def update(self, dataOut): |
|
929 | 929 | |
|
930 | 930 | data = {} |
|
931 | 931 | meta = {} |
|
932 | 932 | data['phase'] = dataOut.getCoherence(phase=True) |
|
933 | 933 | meta['pairs'] = dataOut.pairsList |
|
934 | 934 | |
|
935 | 935 | return data, meta |
|
936 | 936 | |
|
937 | 937 | class NoisePlot(Plot): |
|
938 | 938 | ''' |
|
939 | 939 | Plot for noise |
|
940 | 940 | ''' |
|
941 | 941 | |
|
942 | 942 | CODE = 'noise' |
|
943 | 943 | plot_type = 'scatterbuffer' |
|
944 | 944 | |
|
945 | 945 | def setup(self): |
|
946 | 946 | self.xaxis = 'time' |
|
947 | 947 | self.ncols = 1 |
|
948 | 948 | self.nrows = 1 |
|
949 | 949 | self.nplots = 1 |
|
950 | 950 | self.ylabel = 'Intensity [dB]' |
|
951 | 951 | self.xlabel = 'Time' |
|
952 | 952 | self.titles = ['Noise'] |
|
953 | 953 | self.colorbar = False |
|
954 | 954 | self.plots_adjust.update({'right': 0.85 }) |
|
955 | 955 | |
|
956 | 956 | def update(self, dataOut): |
|
957 | 957 | |
|
958 | 958 | data = {} |
|
959 | 959 | meta = {} |
|
960 | 960 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
961 | 961 | meta['yrange'] = numpy.array([]) |
|
962 | 962 | |
|
963 | 963 | return data, meta |
|
964 | 964 | |
|
965 | 965 | def plot(self): |
|
966 | 966 | |
|
967 | 967 | x = self.data.times |
|
968 | 968 | xmin = self.data.min_time |
|
969 | 969 | xmax = xmin + self.xrange * 60 * 60 |
|
970 | 970 | Y = self.data['noise'] |
|
971 | 971 | |
|
972 | 972 | if self.axes[0].firsttime: |
|
973 | 973 | self.ymin = numpy.nanmin(Y) - 5 |
|
974 | 974 | self.ymax = numpy.nanmax(Y) + 5 |
|
975 | 975 | for ch in self.data.channels: |
|
976 | 976 | y = Y[ch] |
|
977 | 977 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
978 | 978 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
979 | 979 | else: |
|
980 | 980 | for ch in self.data.channels: |
|
981 | 981 | y = Y[ch] |
|
982 | 982 | self.axes[0].lines[ch].set_data(x, y) |
|
983 | 983 | |
|
984 | 984 | self.ymin = numpy.nanmin(Y) - 5 |
|
985 | 985 | self.ymax = numpy.nanmax(Y) + 10 |
|
986 | 986 | |
|
987 | 987 | |
|
988 | 988 | class PowerProfilePlot(Plot): |
|
989 | 989 | |
|
990 | 990 | CODE = 'pow_profile' |
|
991 | 991 | plot_type = 'scatter' |
|
992 | 992 | |
|
993 | 993 | def setup(self): |
|
994 | 994 | |
|
995 | 995 | self.ncols = 1 |
|
996 | 996 | self.nrows = 1 |
|
997 | 997 | self.nplots = 1 |
|
998 | 998 | self.height = 4 |
|
999 | 999 | self.width = 3 |
|
1000 | 1000 | self.ylabel = 'Range [km]' |
|
1001 | 1001 | self.xlabel = 'Intensity [dB]' |
|
1002 | 1002 | self.titles = ['Power Profile'] |
|
1003 | 1003 | self.colorbar = False |
|
1004 | 1004 | |
|
1005 | 1005 | def update(self, dataOut): |
|
1006 | 1006 | |
|
1007 | 1007 | data = {} |
|
1008 | 1008 | meta = {} |
|
1009 | 1009 | data[self.CODE] = dataOut.getPower() |
|
1010 | 1010 | |
|
1011 | 1011 | return data, meta |
|
1012 | 1012 | |
|
1013 | 1013 | def plot(self): |
|
1014 | 1014 | |
|
1015 | 1015 | y = self.data.yrange |
|
1016 | 1016 | self.y = y |
|
1017 | 1017 | |
|
1018 | 1018 | x = self.data[-1][self.CODE] |
|
1019 | 1019 | |
|
1020 | 1020 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
1021 | 1021 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
1022 | 1022 | |
|
1023 | 1023 | if self.axes[0].firsttime: |
|
1024 | 1024 | for ch in self.data.channels: |
|
1025 | 1025 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
1026 | 1026 | plt.legend() |
|
1027 | 1027 | else: |
|
1028 | 1028 | for ch in self.data.channels: |
|
1029 | 1029 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
1030 | 1030 | |
|
1031 | 1031 | |
|
1032 | 1032 | class SpectraCutPlot(Plot): |
|
1033 | 1033 | |
|
1034 | 1034 | CODE = 'spc_cut' |
|
1035 | 1035 | plot_type = 'scatter' |
|
1036 | 1036 | buffering = False |
|
1037 | 1037 | |
|
1038 | 1038 | def setup(self): |
|
1039 | 1039 | |
|
1040 | 1040 | self.nplots = len(self.data.channels) |
|
1041 | 1041 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
1042 | 1042 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
1043 | 1043 | self.width = 3.4 * self.ncols + 1.5 |
|
1044 | 1044 | self.height = 3 * self.nrows |
|
1045 | 1045 | self.ylabel = 'Power [dB]' |
|
1046 | 1046 | self.colorbar = False |
|
1047 | 1047 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
1048 | 1048 | |
|
1049 | 1049 | def update(self, dataOut): |
|
1050 | 1050 | |
|
1051 | 1051 | data = {} |
|
1052 | 1052 | meta = {} |
|
1053 | 1053 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
1054 | 1054 | data['spc'] = spc |
|
1055 | 1055 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
1056 | 1056 | if self.CODE == 'cut_gaussian_fit': |
|
1057 | 1057 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) |
|
1058 | 1058 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) |
|
1059 | 1059 | return data, meta |
|
1060 | 1060 | |
|
1061 | 1061 | def plot(self): |
|
1062 | 1062 | if self.xaxis == "frequency": |
|
1063 | 1063 | x = self.data.xrange[0][1:] |
|
1064 | 1064 | self.xlabel = "Frequency (kHz)" |
|
1065 | 1065 | elif self.xaxis == "time": |
|
1066 | 1066 | x = self.data.xrange[1] |
|
1067 | 1067 | self.xlabel = "Time (ms)" |
|
1068 | 1068 | else: |
|
1069 | 1069 | x = self.data.xrange[2][:-1] |
|
1070 | 1070 | self.xlabel = "Velocity (m/s)" |
|
1071 | 1071 | |
|
1072 | 1072 | if self.CODE == 'cut_gaussian_fit': |
|
1073 | 1073 | x = self.data.xrange[2][:-1] |
|
1074 | 1074 | self.xlabel = "Velocity (m/s)" |
|
1075 | 1075 | |
|
1076 | 1076 | self.titles = [] |
|
1077 | 1077 | |
|
1078 | 1078 | y = self.data.yrange |
|
1079 | 1079 | data = self.data[-1] |
|
1080 | 1080 | z = data['spc'] |
|
1081 | 1081 | |
|
1082 | 1082 | if self.height_index: |
|
1083 | 1083 | index = numpy.array(self.height_index) |
|
1084 | 1084 | else: |
|
1085 | 1085 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
1086 | 1086 | |
|
1087 | 1087 | for n, ax in enumerate(self.axes): |
|
1088 | 1088 | if self.CODE == 'cut_gaussian_fit': |
|
1089 | 1089 | gau0 = data['gauss_fit0'] |
|
1090 | 1090 | gau1 = data['gauss_fit1'] |
|
1091 | 1091 | if ax.firsttime: |
|
1092 | 1092 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
1093 | 1093 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
1094 | 1094 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z[:,:,index]) |
|
1095 | 1095 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z[:,:,index]) |
|
1096 | 1096 | #print(self.ymax) |
|
1097 | 1097 | #print(z[n, :, index]) |
|
1098 | 1098 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) |
|
1099 | 1099 | if self.CODE == 'cut_gaussian_fit': |
|
1100 | 1100 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') |
|
1101 | 1101 | for i, line in enumerate(ax.plt_gau0): |
|
1102 | 1102 | line.set_color(ax.plt[i].get_color()) |
|
1103 | 1103 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') |
|
1104 | 1104 | for i, line in enumerate(ax.plt_gau1): |
|
1105 | 1105 | line.set_color(ax.plt[i].get_color()) |
|
1106 | 1106 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
1107 | 1107 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
1108 | 1108 | else: |
|
1109 | 1109 | for i, line in enumerate(ax.plt): |
|
1110 | 1110 | line.set_data(x, z[n, :, index[i]].T) |
|
1111 | 1111 | for i, line in enumerate(ax.plt_gau0): |
|
1112 | 1112 | line.set_data(x, gau0[n, :, index[i]].T) |
|
1113 | 1113 | line.set_color(ax.plt[i].get_color()) |
|
1114 | 1114 | for i, line in enumerate(ax.plt_gau1): |
|
1115 | 1115 | line.set_data(x, gau1[n, :, index[i]].T) |
|
1116 | 1116 | line.set_color(ax.plt[i].get_color()) |
|
1117 | 1117 | self.titles.append('CH {}'.format(n)) |
|
1118 | 1118 | |
|
1119 | 1119 | |
|
1120 | 1120 | class BeaconPhase(Plot): |
|
1121 | 1121 | |
|
1122 | 1122 | __isConfig = None |
|
1123 | 1123 | __nsubplots = None |
|
1124 | 1124 | |
|
1125 | 1125 | PREFIX = 'beacon_phase' |
|
1126 | 1126 | |
|
1127 | 1127 | def __init__(self): |
|
1128 | 1128 | Plot.__init__(self) |
|
1129 | 1129 | self.timerange = 24*60*60 |
|
1130 | 1130 | self.isConfig = False |
|
1131 | 1131 | self.__nsubplots = 1 |
|
1132 | 1132 | self.counter_imagwr = 0 |
|
1133 | 1133 | self.WIDTH = 800 |
|
1134 | 1134 | self.HEIGHT = 400 |
|
1135 | 1135 | self.WIDTHPROF = 120 |
|
1136 | 1136 | self.HEIGHTPROF = 0 |
|
1137 | 1137 | self.xdata = None |
|
1138 | 1138 | self.ydata = None |
|
1139 | 1139 | |
|
1140 | 1140 | self.PLOT_CODE = BEACON_CODE |
|
1141 | 1141 | |
|
1142 | 1142 | self.FTP_WEI = None |
|
1143 | 1143 | self.EXP_CODE = None |
|
1144 | 1144 | self.SUB_EXP_CODE = None |
|
1145 | 1145 | self.PLOT_POS = None |
|
1146 | 1146 | |
|
1147 | 1147 | self.filename_phase = None |
|
1148 | 1148 | |
|
1149 | 1149 | self.figfile = None |
|
1150 | 1150 | |
|
1151 | 1151 | self.xmin = None |
|
1152 | 1152 | self.xmax = None |
|
1153 | 1153 | |
|
1154 | 1154 | def getSubplots(self): |
|
1155 | 1155 | |
|
1156 | 1156 | ncol = 1 |
|
1157 | 1157 | nrow = 1 |
|
1158 | 1158 | |
|
1159 | 1159 | return nrow, ncol |
|
1160 | 1160 | |
|
1161 | 1161 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1162 | 1162 | |
|
1163 | 1163 | self.__showprofile = showprofile |
|
1164 | 1164 | self.nplots = nplots |
|
1165 | 1165 | |
|
1166 | 1166 | ncolspan = 7 |
|
1167 | 1167 | colspan = 6 |
|
1168 | 1168 | self.__nsubplots = 2 |
|
1169 | 1169 | |
|
1170 | 1170 | self.createFigure(id = id, |
|
1171 | 1171 | wintitle = wintitle, |
|
1172 | 1172 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1173 | 1173 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1174 | 1174 | show=show) |
|
1175 | 1175 | |
|
1176 | 1176 | nrow, ncol = self.getSubplots() |
|
1177 | 1177 | |
|
1178 | 1178 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1179 | 1179 | |
|
1180 | 1180 | def save_phase(self, filename_phase): |
|
1181 | 1181 | f = open(filename_phase,'w+') |
|
1182 | 1182 | f.write('\n\n') |
|
1183 | 1183 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1184 | 1184 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1185 | 1185 | f.close() |
|
1186 | 1186 | |
|
1187 | 1187 | def save_data(self, filename_phase, data, data_datetime): |
|
1188 | 1188 | f=open(filename_phase,'a') |
|
1189 | 1189 | timetuple_data = data_datetime.timetuple() |
|
1190 | 1190 | day = str(timetuple_data.tm_mday) |
|
1191 | 1191 | month = str(timetuple_data.tm_mon) |
|
1192 | 1192 | year = str(timetuple_data.tm_year) |
|
1193 | 1193 | hour = str(timetuple_data.tm_hour) |
|
1194 | 1194 | minute = str(timetuple_data.tm_min) |
|
1195 | 1195 | second = str(timetuple_data.tm_sec) |
|
1196 | 1196 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1197 | 1197 | f.close() |
|
1198 | 1198 | |
|
1199 | 1199 | def plot(self): |
|
1200 | 1200 | log.warning('TODO: Not yet implemented...') |
|
1201 | 1201 | |
|
1202 | 1202 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1203 | 1203 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1204 | 1204 | timerange=None, |
|
1205 | 1205 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1206 | 1206 | server=None, folder=None, username=None, password=None, |
|
1207 | 1207 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1208 | 1208 | |
|
1209 | 1209 | if dataOut.flagNoData: |
|
1210 | 1210 | return dataOut |
|
1211 | 1211 | |
|
1212 | 1212 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1213 | 1213 | return |
|
1214 | 1214 | |
|
1215 | 1215 | if pairsList == None: |
|
1216 | 1216 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1217 | 1217 | else: |
|
1218 | 1218 | pairsIndexList = [] |
|
1219 | 1219 | for pair in pairsList: |
|
1220 | 1220 | if pair not in dataOut.pairsList: |
|
1221 | 1221 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
1222 | 1222 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1223 | 1223 | |
|
1224 | 1224 | if pairsIndexList == []: |
|
1225 | 1225 | return |
|
1226 | 1226 | |
|
1227 | 1227 | # if len(pairsIndexList) > 4: |
|
1228 | 1228 | # pairsIndexList = pairsIndexList[0:4] |
|
1229 | 1229 | |
|
1230 | 1230 | hmin_index = None |
|
1231 | 1231 | hmax_index = None |
|
1232 | 1232 | |
|
1233 | 1233 | if hmin != None and hmax != None: |
|
1234 | 1234 | indexes = numpy.arange(dataOut.nHeights) |
|
1235 | 1235 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1236 | 1236 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1237 | 1237 | |
|
1238 | 1238 | if hmin_list.any(): |
|
1239 | 1239 | hmin_index = hmin_list[0] |
|
1240 | 1240 | |
|
1241 | 1241 | if hmax_list.any(): |
|
1242 | 1242 | hmax_index = hmax_list[-1]+1 |
|
1243 | 1243 | |
|
1244 | 1244 | x = dataOut.getTimeRange() |
|
1245 | 1245 | |
|
1246 | 1246 | thisDatetime = dataOut.datatime |
|
1247 | 1247 | |
|
1248 | 1248 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1249 | 1249 | xlabel = "Local Time" |
|
1250 | 1250 | ylabel = "Phase (degrees)" |
|
1251 | 1251 | |
|
1252 | 1252 | update_figfile = False |
|
1253 | 1253 | |
|
1254 | 1254 | nplots = len(pairsIndexList) |
|
1255 | 1255 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1256 | 1256 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1257 | 1257 | for i in range(nplots): |
|
1258 | 1258 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1259 | 1259 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1260 | 1260 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1261 | 1261 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1262 | 1262 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1263 | 1263 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1264 | 1264 | |
|
1265 | 1265 | if dataOut.beacon_heiIndexList: |
|
1266 | 1266 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1267 | 1267 | else: |
|
1268 | 1268 | phase_beacon[i] = numpy.average(phase) |
|
1269 | 1269 | |
|
1270 | 1270 | if not self.isConfig: |
|
1271 | 1271 | |
|
1272 | 1272 | nplots = len(pairsIndexList) |
|
1273 | 1273 | |
|
1274 | 1274 | self.setup(id=id, |
|
1275 | 1275 | nplots=nplots, |
|
1276 | 1276 | wintitle=wintitle, |
|
1277 | 1277 | showprofile=showprofile, |
|
1278 | 1278 | show=show) |
|
1279 | 1279 | |
|
1280 | 1280 | if timerange != None: |
|
1281 | 1281 | self.timerange = timerange |
|
1282 | 1282 | |
|
1283 | 1283 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1284 | 1284 | |
|
1285 | 1285 | if ymin == None: ymin = 0 |
|
1286 | 1286 | if ymax == None: ymax = 360 |
|
1287 | 1287 | |
|
1288 | 1288 | self.FTP_WEI = ftp_wei |
|
1289 | 1289 | self.EXP_CODE = exp_code |
|
1290 | 1290 | self.SUB_EXP_CODE = sub_exp_code |
|
1291 | 1291 | self.PLOT_POS = plot_pos |
|
1292 | 1292 | |
|
1293 | 1293 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1294 | 1294 | self.isConfig = True |
|
1295 | 1295 | self.figfile = figfile |
|
1296 | 1296 | self.xdata = numpy.array([]) |
|
1297 | 1297 | self.ydata = numpy.array([]) |
|
1298 | 1298 | |
|
1299 | 1299 | update_figfile = True |
|
1300 | 1300 | |
|
1301 | 1301 | #open file beacon phase |
|
1302 | 1302 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1303 | 1303 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1304 | 1304 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1305 | 1305 | #self.save_phase(self.filename_phase) |
|
1306 | 1306 | |
|
1307 | 1307 | |
|
1308 | 1308 | #store data beacon phase |
|
1309 | 1309 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1310 | 1310 | |
|
1311 | 1311 | self.setWinTitle(title) |
|
1312 | 1312 | |
|
1313 | 1313 | |
|
1314 | 1314 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1315 | 1315 | |
|
1316 | 1316 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1317 | 1317 | |
|
1318 | 1318 | axes = self.axesList[0] |
|
1319 | 1319 | |
|
1320 | 1320 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1321 | 1321 | |
|
1322 | 1322 | if len(self.ydata)==0: |
|
1323 | 1323 | self.ydata = phase_beacon.reshape(-1,1) |
|
1324 | 1324 | else: |
|
1325 | 1325 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1326 | 1326 | |
|
1327 | 1327 | |
|
1328 | 1328 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1329 | 1329 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1330 | 1330 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1331 | 1331 | XAxisAsTime=True, grid='both' |
|
1332 | 1332 | ) |
|
1333 | 1333 | |
|
1334 | 1334 | self.draw() |
|
1335 | 1335 | |
|
1336 | 1336 | if dataOut.ltctime >= self.xmax: |
|
1337 | 1337 | self.counter_imagwr = wr_period |
|
1338 | 1338 | self.isConfig = False |
|
1339 | 1339 | update_figfile = True |
|
1340 | 1340 | |
|
1341 | 1341 | self.save(figpath=figpath, |
|
1342 | 1342 | figfile=figfile, |
|
1343 | 1343 | save=save, |
|
1344 | 1344 | ftp=ftp, |
|
1345 | 1345 | wr_period=wr_period, |
|
1346 | 1346 | thisDatetime=thisDatetime, |
|
1347 | 1347 | update_figfile=update_figfile) |
|
1348 | 1348 | |
|
1349 | 1349 | return dataOut |
@@ -1,1428 +1,1428 | |||
|
1 | 1 | |
|
2 | 2 | import os |
|
3 | 3 | import time |
|
4 | 4 | import math |
|
5 | 5 | import datetime |
|
6 | 6 | import numpy |
|
7 | 7 | |
|
8 | 8 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator #YONG |
|
9 | 9 | |
|
10 | 10 | from .jroplot_spectra import RTIPlot, NoisePlot |
|
11 | 11 | |
|
12 | 12 | from schainpy.utils import log |
|
13 | 13 | from .plotting_codes import * |
|
14 | 14 | |
|
15 | 15 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
16 | 16 | |
|
17 | 17 | import matplotlib.pyplot as plt |
|
18 | 18 | import matplotlib.colors as colors |
|
19 | 19 | from matplotlib.ticker import MultipleLocator, LogLocator, NullFormatter |
|
20 | 20 | |
|
21 | 21 | class RTIDPPlot(RTIPlot): |
|
22 | 22 | ''' |
|
23 | 23 | Written by R. Flores |
|
24 | 24 | ''' |
|
25 | 25 | '''Plot for RTI Double Pulse Experiment Using Cross Products Analysis |
|
26 | 26 | ''' |
|
27 | 27 | |
|
28 | 28 | CODE = 'RTIDP' |
|
29 | 29 | colormap = 'jet' |
|
30 | 30 | plot_name = 'RTI' |
|
31 | 31 | plot_type = 'pcolorbuffer' |
|
32 | 32 | |
|
33 | 33 | def setup(self): |
|
34 | 34 | self.xaxis = 'time' |
|
35 | 35 | self.ncols = 1 |
|
36 | 36 | self.nrows = 3 |
|
37 | 37 | self.nplots = self.nrows |
|
38 | 38 | |
|
39 | 39 | self.ylabel = 'Range [km]' |
|
40 | 40 | self.xlabel = 'Time (LT)' |
|
41 | 41 | |
|
42 | 42 | self.cb_label = 'Intensity (dB)' |
|
43 | 43 | |
|
44 | 44 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
45 | 45 | |
|
46 | 46 | self.titles = ['{} Channel {}'.format( |
|
47 | 47 | self.plot_name.upper(), '0x1'),'{} Channel {}'.format( |
|
48 | 48 | self.plot_name.upper(), '0'),'{} Channel {}'.format( |
|
49 | 49 | self.plot_name.upper(), '1')] |
|
50 | 50 | |
|
51 | 51 | def update(self, dataOut): |
|
52 | 52 | |
|
53 | 53 | data = {} |
|
54 | 54 | meta = {} |
|
55 | 55 | data['rti'] = dataOut.data_for_RTI_DP |
|
56 | 56 | data['NDP'] = dataOut.NDP |
|
57 | 57 | |
|
58 | 58 | return data, meta |
|
59 | 59 | |
|
60 | 60 | def plot(self): |
|
61 | 61 | |
|
62 | 62 | NDP = self.data['NDP'][-1] |
|
63 | 63 | self.x = self.data.times |
|
64 | 64 | self.y = self.data.yrange[0:NDP] |
|
65 | 65 | self.z = self.data['rti'] |
|
66 | 66 | self.z = numpy.ma.masked_invalid(self.z) |
|
67 | 67 | |
|
68 | 68 | if self.decimation is None: |
|
69 | 69 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
70 | 70 | else: |
|
71 | 71 | x, y, z = self.fill_gaps(*self.decimate()) |
|
72 | 72 | |
|
73 | 73 | for n, ax in enumerate(self.axes): |
|
74 | 74 | |
|
75 | 75 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
76 | 76 | self.z[1][0,12:40]) |
|
77 | 77 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
78 | 78 | self.z[1][0,12:40]) |
|
79 | 79 | |
|
80 | 80 | if ax.firsttime: |
|
81 | 81 | |
|
82 | 82 | if self.zlimits is not None: |
|
83 | 83 | self.zmin, self.zmax = self.zlimits[n] |
|
84 | 84 | |
|
85 | 85 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
86 | 86 | vmin=self.zmin, |
|
87 | 87 | vmax=self.zmax, |
|
88 | 88 | cmap=plt.get_cmap(self.colormap) |
|
89 | 89 | ) |
|
90 | 90 | else: |
|
91 | 91 | #if self.zlimits is not None: |
|
92 | 92 | #self.zmin, self.zmax = self.zlimits[n] |
|
93 |
ax. |
|
|
93 | ax.plt.remove() | |
|
94 | 94 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
95 | 95 | vmin=self.zmin, |
|
96 | 96 | vmax=self.zmax, |
|
97 | 97 | cmap=plt.get_cmap(self.colormap) |
|
98 | 98 | ) |
|
99 | 99 | |
|
100 | 100 | |
|
101 | 101 | class RTILPPlot(RTIPlot): |
|
102 | 102 | ''' |
|
103 | 103 | Written by R. Flores |
|
104 | 104 | ''' |
|
105 | 105 | ''' |
|
106 | 106 | Plot for RTI Long Pulse Using Cross Products Analysis |
|
107 | 107 | ''' |
|
108 | 108 | |
|
109 | 109 | CODE = 'RTILP' |
|
110 | 110 | colormap = 'jet' |
|
111 | 111 | plot_name = 'RTI LP' |
|
112 | 112 | plot_type = 'pcolorbuffer' |
|
113 | 113 | |
|
114 | 114 | def setup(self): |
|
115 | 115 | self.xaxis = 'time' |
|
116 | 116 | self.ncols = 1 |
|
117 | 117 | self.nrows = 2 |
|
118 | 118 | self.nplots = self.nrows |
|
119 | 119 | |
|
120 | 120 | self.ylabel = 'Range [km]' |
|
121 | 121 | self.xlabel = 'Time (LT)' |
|
122 | 122 | |
|
123 | 123 | self.cb_label = 'Intensity (dB)' |
|
124 | 124 | |
|
125 | 125 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
126 | 126 | |
|
127 | 127 | |
|
128 | 128 | self.titles = ['{} Channel {}'.format( |
|
129 | 129 | self.plot_name.upper(), '0'),'{} Channel {}'.format( |
|
130 | 130 | self.plot_name.upper(), '1'),'{} Channel {}'.format( |
|
131 | 131 | self.plot_name.upper(), '2'),'{} Channel {}'.format( |
|
132 | 132 | self.plot_name.upper(), '3')] |
|
133 | 133 | |
|
134 | 134 | |
|
135 | 135 | def update(self, dataOut): |
|
136 | 136 | |
|
137 | 137 | data = {} |
|
138 | 138 | meta = {} |
|
139 | 139 | data['rti'] = dataOut.data_for_RTI_LP |
|
140 | 140 | data['NRANGE'] = dataOut.NRANGE |
|
141 | 141 | |
|
142 | 142 | return data, meta |
|
143 | 143 | |
|
144 | 144 | def plot(self): |
|
145 | 145 | |
|
146 | 146 | NRANGE = self.data['NRANGE'][-1] |
|
147 | 147 | self.x = self.data.times |
|
148 | 148 | self.y = self.data.yrange[0:NRANGE] |
|
149 | 149 | |
|
150 | 150 | self.z = self.data['rti'] |
|
151 | 151 | |
|
152 | 152 | self.z = numpy.ma.masked_invalid(self.z) |
|
153 | 153 | |
|
154 | 154 | if self.decimation is None: |
|
155 | 155 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
156 | 156 | else: |
|
157 | 157 | x, y, z = self.fill_gaps(*self.decimate()) |
|
158 | 158 | |
|
159 | 159 | for n, ax in enumerate(self.axes): |
|
160 | 160 | |
|
161 | 161 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
162 | 162 | self.z[1][0,12:40]) |
|
163 | 163 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
164 | 164 | self.z[1][0,12:40]) |
|
165 | 165 | |
|
166 | 166 | if ax.firsttime: |
|
167 | 167 | |
|
168 | 168 | if self.zlimits is not None: |
|
169 | 169 | self.zmin, self.zmax = self.zlimits[n] |
|
170 | 170 | |
|
171 | 171 | |
|
172 | 172 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
173 | 173 | vmin=self.zmin, |
|
174 | 174 | vmax=self.zmax, |
|
175 | 175 | cmap=plt.get_cmap(self.colormap) |
|
176 | 176 | ) |
|
177 | 177 | |
|
178 | 178 | else: |
|
179 | 179 | if self.zlimits is not None: |
|
180 | 180 | self.zmin, self.zmax = self.zlimits[n] |
|
181 |
ax. |
|
|
181 | ax.plt.remove() | |
|
182 | 182 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
183 | 183 | vmin=self.zmin, |
|
184 | 184 | vmax=self.zmax, |
|
185 | 185 | cmap=plt.get_cmap(self.colormap) |
|
186 | 186 | ) |
|
187 | 187 | |
|
188 | 188 | |
|
189 | 189 | class DenRTIPlot(RTIPlot): |
|
190 | 190 | ''' |
|
191 | 191 | Written by R. Flores |
|
192 | 192 | ''' |
|
193 | 193 | ''' |
|
194 | Plot for Den | |
|
194 | RTI Plot for Electron Densities | |
|
195 | 195 | ''' |
|
196 | 196 | |
|
197 | 197 | CODE = 'denrti' |
|
198 | 198 | colormap = 'jet' |
|
199 | 199 | |
|
200 | 200 | def setup(self): |
|
201 | 201 | self.xaxis = 'time' |
|
202 | 202 | self.ncols = 1 |
|
203 | 203 | self.nrows = self.data.shape(self.CODE)[0] |
|
204 | 204 | self.nplots = self.nrows |
|
205 | 205 | |
|
206 | 206 | self.ylabel = 'Range [km]' |
|
207 | 207 | self.xlabel = 'Time (LT)' |
|
208 | 208 | |
|
209 | 209 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
210 | 210 | |
|
211 | 211 | if self.CODE == 'denrti': |
|
212 | 212 | self.cb_label = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' |
|
213 | 213 | |
|
214 | 214 | self.titles = ['Electron Density RTI'] |
|
215 | 215 | |
|
216 | 216 | def update(self, dataOut): |
|
217 | 217 | |
|
218 | 218 | data = {} |
|
219 | 219 | meta = {} |
|
220 | 220 | |
|
221 | 221 | data['denrti'] = dataOut.DensityFinal*1.e-6 #To Plot in cm^-3 |
|
222 | 222 | |
|
223 | 223 | return data, meta |
|
224 | 224 | |
|
225 | 225 | def plot(self): |
|
226 | 226 | |
|
227 | 227 | self.x = self.data.times |
|
228 | 228 | self.y = self.data.yrange |
|
229 | 229 | |
|
230 | 230 | self.z = self.data[self.CODE] |
|
231 | 231 | |
|
232 | 232 | self.z = numpy.ma.masked_invalid(self.z) |
|
233 | 233 | |
|
234 | 234 | if self.decimation is None: |
|
235 | 235 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
236 | 236 | else: |
|
237 | 237 | x, y, z = self.fill_gaps(*self.decimate()) |
|
238 | 238 | |
|
239 | 239 | for n, ax in enumerate(self.axes): |
|
240 | 240 | |
|
241 | 241 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
242 | 242 | self.z[n]) |
|
243 | 243 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
244 | 244 | self.z[n]) |
|
245 | 245 | |
|
246 | 246 | if ax.firsttime: |
|
247 | 247 | |
|
248 | 248 | if self.zlimits is not None: |
|
249 | 249 | self.zmin, self.zmax = self.zlimits[n] |
|
250 | 250 | if numpy.log10(self.zmin)<0: |
|
251 | 251 | self.zmin=1 |
|
252 | 252 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
253 | vmin=self.zmin, | |
|
254 | vmax=self.zmax, | |
|
253 | #vmin=self.zmin, | |
|
254 | #vmax=self.zmax, | |
|
255 | 255 | cmap=self.cmaps[n], |
|
256 | norm=colors.LogNorm() | |
|
256 | norm=colors.LogNorm(vmin=self.zmin,vmax=self.zmax) | |
|
257 | 257 | ) |
|
258 | 258 | |
|
259 | 259 | else: |
|
260 | 260 | if self.zlimits is not None: |
|
261 | 261 | self.zmin, self.zmax = self.zlimits[n] |
|
262 |
ax. |
|
|
262 | ax.plt.remove() | |
|
263 | 263 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
264 | vmin=self.zmin, | |
|
265 | vmax=self.zmax, | |
|
264 | #vmin=self.zmin, | |
|
265 | #vmax=self.zmax, | |
|
266 | 266 | cmap=self.cmaps[n], |
|
267 | norm=colors.LogNorm() | |
|
267 | norm=colors.LogNorm(vmin=self.zmin,vmax=self.zmax) | |
|
268 | 268 | ) |
|
269 | 269 | |
|
270 | 270 | |
|
271 | 271 | class ETempRTIPlot(RTIPlot): |
|
272 | 272 | ''' |
|
273 | 273 | Written by R. Flores |
|
274 | 274 | ''' |
|
275 | 275 | ''' |
|
276 | 276 | Plot for Electron Temperature |
|
277 | 277 | ''' |
|
278 | 278 | |
|
279 | 279 | CODE = 'ETemp' |
|
280 | 280 | colormap = 'jet' |
|
281 | 281 | |
|
282 | 282 | def setup(self): |
|
283 | 283 | self.xaxis = 'time' |
|
284 | 284 | self.ncols = 1 |
|
285 | 285 | self.nrows = self.data.shape(self.CODE)[0] |
|
286 | 286 | self.nplots = self.nrows |
|
287 | 287 | |
|
288 | 288 | self.ylabel = 'Range [km]' |
|
289 | 289 | self.xlabel = 'Time (LT)' |
|
290 | 290 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
291 | 291 | if self.CODE == 'ETemp': |
|
292 | 292 | self.cb_label = 'Electron Temperature (K)' |
|
293 | 293 | self.titles = ['Electron Temperature RTI'] |
|
294 | 294 | if self.CODE == 'ITemp': |
|
295 | 295 | self.cb_label = 'Ion Temperature (K)' |
|
296 | 296 | self.titles = ['Ion Temperature RTI'] |
|
297 | 297 | if self.CODE == 'HeFracLP': |
|
298 | 298 | self.cb_label ='He+ Fraction' |
|
299 | 299 | self.titles = ['He+ Fraction RTI'] |
|
300 | 300 | self.zmax=0.16 |
|
301 | 301 | if self.CODE == 'HFracLP': |
|
302 | 302 | self.cb_label ='H+ Fraction' |
|
303 | 303 | self.titles = ['H+ Fraction RTI'] |
|
304 | 304 | |
|
305 | 305 | def update(self, dataOut): |
|
306 | 306 | |
|
307 | 307 | data = {} |
|
308 | 308 | meta = {} |
|
309 | 309 | |
|
310 | 310 | data['ETemp'] = dataOut.ElecTempFinal |
|
311 | 311 | |
|
312 | 312 | return data, meta |
|
313 | 313 | |
|
314 | 314 | def plot(self): |
|
315 | 315 | |
|
316 | 316 | self.x = self.data.times |
|
317 | 317 | self.y = self.data.yrange |
|
318 | 318 | self.z = self.data[self.CODE] |
|
319 | 319 | |
|
320 | 320 | self.z = numpy.ma.masked_invalid(self.z) |
|
321 | 321 | |
|
322 | 322 | if self.decimation is None: |
|
323 | 323 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
324 | 324 | else: |
|
325 | 325 | x, y, z = self.fill_gaps(*self.decimate()) |
|
326 | 326 | |
|
327 | 327 | for n, ax in enumerate(self.axes): |
|
328 | 328 | |
|
329 | 329 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
330 | 330 | self.z[n]) |
|
331 | 331 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
332 | 332 | self.z[n]) |
|
333 | 333 | |
|
334 | 334 | if ax.firsttime: |
|
335 | 335 | |
|
336 | 336 | if self.zlimits is not None: |
|
337 | 337 | self.zmin, self.zmax = self.zlimits[n] |
|
338 | 338 | |
|
339 | 339 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
340 | 340 | vmin=self.zmin, |
|
341 | 341 | vmax=self.zmax, |
|
342 | 342 | cmap=self.cmaps[n] |
|
343 | 343 | ) |
|
344 | 344 | #plt.tight_layout() |
|
345 | 345 | |
|
346 | 346 | else: |
|
347 | 347 | if self.zlimits is not None: |
|
348 | 348 | self.zmin, self.zmax = self.zlimits[n] |
|
349 |
ax. |
|
|
349 | ax.plt.remove() | |
|
350 | 350 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
351 | 351 | vmin=self.zmin, |
|
352 | 352 | vmax=self.zmax, |
|
353 | 353 | cmap=self.cmaps[n] |
|
354 | 354 | ) |
|
355 | 355 | |
|
356 | 356 | |
|
357 | 357 | class ITempRTIPlot(ETempRTIPlot): |
|
358 | 358 | ''' |
|
359 | 359 | Written by R. Flores |
|
360 | 360 | ''' |
|
361 | 361 | ''' |
|
362 | 362 | Plot for Ion Temperature |
|
363 | 363 | ''' |
|
364 | 364 | |
|
365 | 365 | CODE = 'ITemp' |
|
366 | 366 | colormap = 'jet' |
|
367 | 367 | plot_name = 'Ion Temperature' |
|
368 | 368 | |
|
369 | 369 | def update(self, dataOut): |
|
370 | 370 | |
|
371 | 371 | data = {} |
|
372 | 372 | meta = {} |
|
373 | 373 | |
|
374 | 374 | data['ITemp'] = dataOut.IonTempFinal |
|
375 | 375 | |
|
376 | 376 | return data, meta |
|
377 | 377 | |
|
378 | 378 | |
|
379 | 379 | class HFracRTIPlot(ETempRTIPlot): |
|
380 | 380 | ''' |
|
381 | 381 | Written by R. Flores |
|
382 | 382 | ''' |
|
383 | 383 | ''' |
|
384 | 384 | Plot for H+ LP |
|
385 | 385 | ''' |
|
386 | 386 | |
|
387 | 387 | CODE = 'HFracLP' |
|
388 | 388 | colormap = 'jet' |
|
389 | 389 | plot_name = 'H+ Frac' |
|
390 | 390 | |
|
391 | 391 | def update(self, dataOut): |
|
392 | 392 | |
|
393 | 393 | data = {} |
|
394 | 394 | meta = {} |
|
395 | 395 | data['HFracLP'] = dataOut.PhyFinal |
|
396 | 396 | |
|
397 | 397 | return data, meta |
|
398 | 398 | |
|
399 | 399 | |
|
400 | 400 | class HeFracRTIPlot(ETempRTIPlot): |
|
401 | 401 | ''' |
|
402 | 402 | Written by R. Flores |
|
403 | 403 | ''' |
|
404 | 404 | ''' |
|
405 | 405 | Plot for He+ LP |
|
406 | 406 | ''' |
|
407 | 407 | |
|
408 | 408 | CODE = 'HeFracLP' |
|
409 | 409 | colormap = 'jet' |
|
410 | 410 | plot_name = 'He+ Frac' |
|
411 | 411 | |
|
412 | 412 | def update(self, dataOut): |
|
413 | 413 | |
|
414 | 414 | data = {} |
|
415 | 415 | meta = {} |
|
416 | 416 | data['HeFracLP'] = dataOut.PheFinal |
|
417 | 417 | |
|
418 | 418 | return data, meta |
|
419 | 419 | |
|
420 | 420 | |
|
421 | 421 | class TempsDPPlot(Plot): |
|
422 | 422 | ''' |
|
423 | 423 | Written by R. Flores |
|
424 | 424 | ''' |
|
425 | 425 | ''' |
|
426 | 426 | Plot for Electron - Ion Temperatures |
|
427 | 427 | ''' |
|
428 | 428 | |
|
429 | 429 | CODE = 'tempsDP' |
|
430 | 430 | #plot_name = 'Temperatures' |
|
431 | 431 | plot_type = 'scatterbuffer' |
|
432 | 432 | |
|
433 | 433 | def setup(self): |
|
434 | 434 | |
|
435 | 435 | self.ncols = 1 |
|
436 | 436 | self.nrows = 1 |
|
437 | 437 | self.nplots = 1 |
|
438 | 438 | self.ylabel = 'Range [km]' |
|
439 | 439 | self.xlabel = 'Temperature (K)' |
|
440 | 440 | self.titles = ['Electron/Ion Temperatures'] |
|
441 | 441 | self.width = 3.5 |
|
442 | 442 | self.height = 5.5 |
|
443 | 443 | self.colorbar = False |
|
444 | 444 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
445 | 445 | |
|
446 | 446 | def update(self, dataOut): |
|
447 | 447 | data = {} |
|
448 | 448 | meta = {} |
|
449 | 449 | |
|
450 | 450 | data['Te'] = dataOut.te2 |
|
451 | 451 | data['Ti'] = dataOut.ti2 |
|
452 | 452 | data['Te_error'] = dataOut.ete2 |
|
453 | 453 | data['Ti_error'] = dataOut.eti2 |
|
454 | 454 | |
|
455 | 455 | meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
456 | 456 | |
|
457 | 457 | return data, meta |
|
458 | 458 | |
|
459 | 459 | def plot(self): |
|
460 | 460 | |
|
461 | 461 | y = self.data.yrange |
|
462 | 462 | |
|
463 | 463 | self.xmin = -100 |
|
464 | 464 | self.xmax = 5000 |
|
465 | 465 | |
|
466 | 466 | ax = self.axes[0] |
|
467 | 467 | |
|
468 | 468 | data = self.data[-1] |
|
469 | 469 | |
|
470 | 470 | Te = data['Te'] |
|
471 | 471 | Ti = data['Ti'] |
|
472 | 472 | errTe = data['Te_error'] |
|
473 | 473 | errTi = data['Ti_error'] |
|
474 | 474 | |
|
475 | 475 | if ax.firsttime: |
|
476 |
ax.errorbar(Te, y, xerr=errTe, fmt='r^',elinewidth=1.0,color=' |
|
|
477 |
ax.errorbar(Ti, y, fmt='k^', xerr=errTi,elinewidth=1.0,color=' |
|
|
476 | ax.errorbar(Te, y, xerr=errTe, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='Te') | |
|
477 | ax.errorbar(Ti, y, fmt='k^', xerr=errTi,elinewidth=1.0,color='k',linewidth=2.0, label='Ti') | |
|
478 | 478 | plt.legend(loc='lower right') |
|
479 | 479 | self.ystep_given = 50 |
|
480 | 480 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
481 | 481 | ax.grid(which='minor') |
|
482 | 482 | |
|
483 | 483 | else: |
|
484 | 484 | self.clear_figures() |
|
485 |
ax.errorbar(Te, y, xerr=errTe, fmt='r^',elinewidth=1.0,color=' |
|
|
486 |
ax.errorbar(Ti, y, fmt='k^', xerr=errTi,elinewidth=1.0,color=' |
|
|
485 | ax.errorbar(Te, y, xerr=errTe, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='Te') | |
|
486 | ax.errorbar(Ti, y, fmt='k^', xerr=errTi,elinewidth=1.0,color='k',linewidth=2.0, label='Ti') | |
|
487 | 487 | plt.legend(loc='lower right') |
|
488 | 488 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
489 | 489 | |
|
490 | 490 | |
|
491 | 491 | class TempsHPPlot(Plot): |
|
492 | 492 | ''' |
|
493 | 493 | Written by R. Flores |
|
494 | 494 | ''' |
|
495 | 495 | ''' |
|
496 | 496 | Plot for Temperatures Hybrid Experiment |
|
497 | 497 | ''' |
|
498 | 498 | |
|
499 | 499 | CODE = 'temps_LP' |
|
500 | 500 | #plot_name = 'Temperatures' |
|
501 | 501 | plot_type = 'scatterbuffer' |
|
502 | 502 | |
|
503 | 503 | |
|
504 | 504 | def setup(self): |
|
505 | 505 | |
|
506 | 506 | self.ncols = 1 |
|
507 | 507 | self.nrows = 1 |
|
508 | 508 | self.nplots = 1 |
|
509 | 509 | self.ylabel = 'Range [km]' |
|
510 | 510 | self.xlabel = 'Temperature (K)' |
|
511 | 511 | self.titles = ['Electron/Ion Temperatures'] |
|
512 | 512 | self.width = 3.5 |
|
513 | 513 | self.height = 6.5 |
|
514 | 514 | self.colorbar = False |
|
515 | 515 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
516 | 516 | |
|
517 | 517 | def update(self, dataOut): |
|
518 | 518 | data = {} |
|
519 | 519 | meta = {} |
|
520 | 520 | |
|
521 | 521 | |
|
522 | 522 | data['Te'] = numpy.concatenate((dataOut.te2[:dataOut.cut],dataOut.te[dataOut.cut:])) |
|
523 | 523 | data['Ti'] = numpy.concatenate((dataOut.ti2[:dataOut.cut],dataOut.ti[dataOut.cut:])) |
|
524 | 524 | data['Te_error'] = numpy.concatenate((dataOut.ete2[:dataOut.cut],dataOut.ete[dataOut.cut:])) |
|
525 | 525 | data['Ti_error'] = numpy.concatenate((dataOut.eti2[:dataOut.cut],dataOut.eti[dataOut.cut:])) |
|
526 | 526 | |
|
527 | 527 | meta['yrange'] = dataOut.heightList[0:dataOut.NACF] |
|
528 | 528 | |
|
529 | 529 | return data, meta |
|
530 | 530 | |
|
531 | 531 | def plot(self): |
|
532 | 532 | |
|
533 | 533 | |
|
534 | 534 | self.y = self.data.yrange |
|
535 | 535 | self.xmin = -100 |
|
536 | 536 | self.xmax = 4500 |
|
537 | 537 | ax = self.axes[0] |
|
538 | 538 | |
|
539 | 539 | data = self.data[-1] |
|
540 | 540 | |
|
541 | 541 | Te = data['Te'] |
|
542 | 542 | Ti = data['Ti'] |
|
543 | 543 | errTe = data['Te_error'] |
|
544 | 544 | errTi = data['Ti_error'] |
|
545 | 545 | |
|
546 | 546 | if ax.firsttime: |
|
547 | 547 | |
|
548 |
ax.errorbar(Te, self.y, xerr=errTe, fmt='r^',elinewidth=1.0,color=' |
|
|
549 |
ax.errorbar(Ti, self.y, fmt='k^', xerr=errTi,elinewidth=1.0,color=' |
|
|
548 | ax.errorbar(Te, self.y, xerr=errTe, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='Te') | |
|
549 | ax.errorbar(Ti, self.y, fmt='k^', xerr=errTi,elinewidth=1.0,color='',linewidth=2.0, label='Ti') | |
|
550 | 550 | plt.legend(loc='lower right') |
|
551 | 551 | self.ystep_given = 200 |
|
552 | 552 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
553 | 553 | ax.grid(which='minor') |
|
554 | 554 | |
|
555 | 555 | else: |
|
556 | 556 | self.clear_figures() |
|
557 |
ax.errorbar(Te, self.y, xerr=errTe, fmt='r^',elinewidth=1.0,color=' |
|
|
558 |
ax.errorbar(Ti, self.y, fmt='k^', xerr=errTi,elinewidth=1.0,color=' |
|
|
557 | ax.errorbar(Te, self.y, xerr=errTe, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='Te') | |
|
558 | ax.errorbar(Ti, self.y, fmt='k^', xerr=errTi,elinewidth=1.0,color='k',linewidth=2.0, label='Ti') | |
|
559 | 559 | plt.legend(loc='lower right') |
|
560 | 560 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
561 | 561 | ax.grid(which='minor') |
|
562 | 562 | |
|
563 | 563 | |
|
564 | 564 | class FracsHPPlot(Plot): |
|
565 | 565 | ''' |
|
566 | 566 | Written by R. Flores |
|
567 | 567 | ''' |
|
568 | 568 | ''' |
|
569 | 569 | Plot for Composition LP |
|
570 | 570 | ''' |
|
571 | 571 | |
|
572 | 572 | CODE = 'fracs_LP' |
|
573 | 573 | plot_type = 'scatterbuffer' |
|
574 | 574 | |
|
575 | 575 | |
|
576 | 576 | def setup(self): |
|
577 | 577 | |
|
578 | 578 | self.ncols = 1 |
|
579 | 579 | self.nrows = 1 |
|
580 | 580 | self.nplots = 1 |
|
581 | 581 | self.ylabel = 'Range [km]' |
|
582 | 582 | self.xlabel = 'Frac' |
|
583 | 583 | self.titles = ['Composition'] |
|
584 | 584 | self.width = 3.5 |
|
585 | 585 | self.height = 6.5 |
|
586 | 586 | self.colorbar = False |
|
587 | 587 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
588 | 588 | |
|
589 | 589 | def update(self, dataOut): |
|
590 | 590 | data = {} |
|
591 | 591 | meta = {} |
|
592 | 592 | |
|
593 | 593 | #aux_nan=numpy.zeros(dataOut.cut,'float32') |
|
594 | 594 | #aux_nan[:]=numpy.nan |
|
595 | 595 | #data['ph'] = numpy.concatenate((aux_nan,dataOut.ph[dataOut.cut:])) |
|
596 | 596 | #data['eph'] = numpy.concatenate((aux_nan,dataOut.eph[dataOut.cut:])) |
|
597 | 597 | |
|
598 | 598 | data['ph'] = dataOut.ph[dataOut.cut:] |
|
599 | 599 | data['eph'] = dataOut.eph[dataOut.cut:] |
|
600 | 600 | data['phe'] = dataOut.phe[dataOut.cut:] |
|
601 | 601 | data['ephe'] = dataOut.ephe[dataOut.cut:] |
|
602 | 602 | |
|
603 | 603 | data['cut'] = dataOut.cut |
|
604 | 604 | |
|
605 | 605 | meta['yrange'] = dataOut.heightList[0:dataOut.NACF] |
|
606 | 606 | |
|
607 | 607 | |
|
608 | 608 | return data, meta |
|
609 | 609 | |
|
610 | 610 | def plot(self): |
|
611 | 611 | |
|
612 | 612 | data = self.data[-1] |
|
613 | 613 | |
|
614 | 614 | ph = data['ph'] |
|
615 | 615 | eph = data['eph'] |
|
616 | 616 | phe = data['phe'] |
|
617 | 617 | ephe = data['ephe'] |
|
618 | 618 | cut = data['cut'] |
|
619 | 619 | self.y = self.data.yrange |
|
620 | 620 | |
|
621 | 621 | self.xmin = 0 |
|
622 | 622 | self.xmax = 1 |
|
623 | 623 | ax = self.axes[0] |
|
624 | 624 | |
|
625 | 625 | if ax.firsttime: |
|
626 | 626 | |
|
627 |
ax.errorbar(ph, self.y[cut:], xerr=eph, fmt='r^',elinewidth=1.0,color=' |
|
|
628 |
ax.errorbar(phe, self.y[cut:], fmt='k^', xerr=ephe,elinewidth=1.0,color=' |
|
|
627 | ax.errorbar(ph, self.y[cut:], xerr=eph, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='H+') | |
|
628 | ax.errorbar(phe, self.y[cut:], fmt='k^', xerr=ephe,elinewidth=1.0,color='k',linewidth=2.0, label='He+') | |
|
629 | 629 | plt.legend(loc='lower right') |
|
630 | 630 | self.xstep_given = 0.2 |
|
631 | 631 | self.ystep_given = 200 |
|
632 | 632 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
633 | 633 | ax.grid(which='minor') |
|
634 | 634 | |
|
635 | 635 | else: |
|
636 | 636 | self.clear_figures() |
|
637 |
ax.errorbar(ph, self.y[cut:], xerr=eph, fmt='r^',elinewidth=1.0,color=' |
|
|
638 |
ax.errorbar(phe, self.y[cut:], fmt='k^', xerr=ephe,elinewidth=1.0,color=' |
|
|
637 | ax.errorbar(ph, self.y[cut:], xerr=eph, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='H+') | |
|
638 | ax.errorbar(phe, self.y[cut:], fmt='k^', xerr=ephe,elinewidth=1.0,color='k',linewidth=2.0, label='He+') | |
|
639 | 639 | plt.legend(loc='lower right') |
|
640 | 640 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
641 | 641 | ax.grid(which='minor') |
|
642 | 642 | |
|
643 | 643 | class EDensityPlot(Plot): |
|
644 | 644 | ''' |
|
645 | 645 | Written by R. Flores |
|
646 | 646 | ''' |
|
647 | 647 | ''' |
|
648 | 648 | Plot for electron density |
|
649 | 649 | ''' |
|
650 | 650 | |
|
651 | 651 | CODE = 'den' |
|
652 | 652 | #plot_name = 'Electron Density' |
|
653 | 653 | plot_type = 'scatterbuffer' |
|
654 | 654 | |
|
655 | 655 | def setup(self): |
|
656 | 656 | |
|
657 | 657 | self.ncols = 1 |
|
658 | 658 | self.nrows = 1 |
|
659 | 659 | self.nplots = 1 |
|
660 | 660 | self.ylabel = 'Range [km]' |
|
661 | 661 | self.xlabel = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' |
|
662 | 662 | self.titles = ['Electron Density'] |
|
663 | 663 | self.width = 3.5 |
|
664 | 664 | self.height = 5.5 |
|
665 | 665 | self.colorbar = False |
|
666 | 666 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
667 | 667 | |
|
668 | 668 | def update(self, dataOut): |
|
669 | 669 | data = {} |
|
670 | 670 | meta = {} |
|
671 | 671 | |
|
672 | 672 | data['den_power'] = dataOut.ph2[:dataOut.NSHTS] |
|
673 | 673 | data['den_Faraday'] = dataOut.dphi[:dataOut.NSHTS] |
|
674 | 674 | data['den_error'] = dataOut.sdp2[:dataOut.NSHTS] |
|
675 | 675 | #data['err_Faraday'] = dataOut.sdn1[:dataOut.NSHTS] |
|
676 | 676 | #print(numpy.shape(data['den_power'])) |
|
677 | 677 | #print(numpy.shape(data['den_Faraday'])) |
|
678 | 678 | #print(numpy.shape(data['den_error'])) |
|
679 | 679 | |
|
680 | 680 | data['NSHTS'] = dataOut.NSHTS |
|
681 | 681 | |
|
682 | 682 | meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
683 | 683 | |
|
684 | 684 | return data, meta |
|
685 | 685 | |
|
686 | 686 | def plot(self): |
|
687 | 687 | |
|
688 | 688 | y = self.data.yrange |
|
689 | 689 | |
|
690 | 690 | #self.xmin = 1e3 |
|
691 | 691 | #self.xmax = 1e7 |
|
692 | 692 | |
|
693 | 693 | ax = self.axes[0] |
|
694 | 694 | |
|
695 | 695 | data = self.data[-1] |
|
696 | 696 | |
|
697 | 697 | DenPow = data['den_power'] |
|
698 | 698 | DenFar = data['den_Faraday'] |
|
699 | 699 | errDenPow = data['den_error'] |
|
700 | 700 | #errFaraday = data['err_Faraday'] |
|
701 | 701 | |
|
702 | 702 | NSHTS = data['NSHTS'] |
|
703 | 703 | |
|
704 | 704 | if self.CODE == 'denLP': |
|
705 | 705 | DenPowLP = data['den_LP'] |
|
706 | 706 | errDenPowLP = data['den_LP_error'] |
|
707 | 707 | cut = data['cut'] |
|
708 | 708 | |
|
709 | 709 | if ax.firsttime: |
|
710 | 710 | self.autoxticks=False |
|
711 | 711 | #ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) |
|
712 | 712 | ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday',markersize=2,linestyle='-') |
|
713 | 713 | #ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) |
|
714 |
ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color=' |
|
|
714 | ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='k',linewidth=1.0, label='Power',markersize=2,linestyle='-') | |
|
715 | 715 | |
|
716 | 716 | if self.CODE=='denLP': |
|
717 | 717 | ax.errorbar(DenPowLP[cut:], y[cut:], xerr=errDenPowLP[cut:], fmt='r^-',elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) |
|
718 | 718 | |
|
719 | 719 | plt.legend(loc='upper left',fontsize=8.5) |
|
720 | 720 | #plt.legend(loc='lower left',fontsize=8.5) |
|
721 |
ax.set_xscale("log" |
|
|
721 | ax.set_xscale("log")#, nonposx='clip') | |
|
722 | 722 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) |
|
723 | 723 | self.ystep_given=100 |
|
724 | 724 | if self.CODE=='denLP': |
|
725 | 725 | self.ystep_given=200 |
|
726 | 726 | ax.set_yticks(grid_y_ticks,minor=True) |
|
727 | 727 | locmaj = LogLocator(base=10,numticks=12) |
|
728 | 728 | ax.xaxis.set_major_locator(locmaj) |
|
729 | 729 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) |
|
730 | 730 | ax.xaxis.set_minor_locator(locmin) |
|
731 | 731 | ax.xaxis.set_minor_formatter(NullFormatter()) |
|
732 | 732 | ax.grid(which='minor') |
|
733 | 733 | |
|
734 | 734 | else: |
|
735 | 735 | dataBefore = self.data[-2] |
|
736 | 736 | DenPowBefore = dataBefore['den_power'] |
|
737 | 737 | self.clear_figures() |
|
738 | 738 | #ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) |
|
739 | 739 | ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday',markersize=2,linestyle='-') |
|
740 | 740 | #ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) |
|
741 |
ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color=' |
|
|
741 | ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='k',linewidth=1.0, label='Power',markersize=2,linestyle='-') | |
|
742 | 742 | ax.errorbar(DenPowBefore, y[:NSHTS], elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") |
|
743 | 743 | |
|
744 | 744 | if self.CODE=='denLP': |
|
745 | 745 | ax.errorbar(DenPowLP[cut:], y[cut:], fmt='r^-', xerr=errDenPowLP[cut:],elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) |
|
746 | 746 | |
|
747 |
ax.set_xscale("log" |
|
|
747 | ax.set_xscale("log")#, nonposx='clip') | |
|
748 | 748 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) |
|
749 | 749 | ax.set_yticks(grid_y_ticks,minor=True) |
|
750 | 750 | locmaj = LogLocator(base=10,numticks=12) |
|
751 | 751 | ax.xaxis.set_major_locator(locmaj) |
|
752 | 752 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) |
|
753 | 753 | ax.xaxis.set_minor_locator(locmin) |
|
754 | 754 | ax.xaxis.set_minor_formatter(NullFormatter()) |
|
755 | 755 | ax.grid(which='minor') |
|
756 | 756 | plt.legend(loc='upper left',fontsize=8.5) |
|
757 | 757 | #plt.legend(loc='lower left',fontsize=8.5) |
|
758 | 758 | |
|
759 | 759 | class RelativeDenPlot(Plot): |
|
760 | 760 | ''' |
|
761 | 761 | Written by R. Flores |
|
762 | 762 | ''' |
|
763 | 763 | ''' |
|
764 | 764 | Plot for electron density |
|
765 | 765 | ''' |
|
766 | 766 | |
|
767 | 767 | CODE = 'den' |
|
768 | 768 | #plot_name = 'Electron Density' |
|
769 | 769 | plot_type = 'scatterbuffer' |
|
770 | 770 | |
|
771 | 771 | def setup(self): |
|
772 | 772 | |
|
773 | 773 | self.ncols = 1 |
|
774 | 774 | self.nrows = 1 |
|
775 | 775 | self.nplots = 1 |
|
776 | 776 | self.ylabel = 'Range [km]' |
|
777 | 777 | self.xlabel = r'$\mathrm{N_e}$ Relative Electron Density ($\mathrm{1/cm^3}$)' |
|
778 | 778 | self.titles = ['Electron Density'] |
|
779 | 779 | self.width = 3.5 |
|
780 | 780 | self.height = 5.5 |
|
781 | 781 | self.colorbar = False |
|
782 | 782 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
783 | 783 | |
|
784 | 784 | def update(self, dataOut): |
|
785 | 785 | data = {} |
|
786 | 786 | meta = {} |
|
787 | 787 | |
|
788 | 788 | data['den_power'] = dataOut.ph2 |
|
789 | 789 | data['den_error'] = dataOut.sdp2 |
|
790 | 790 | |
|
791 | 791 | meta['yrange'] = dataOut.heightList |
|
792 | 792 | |
|
793 | 793 | return data, meta |
|
794 | 794 | |
|
795 | 795 | def plot(self): |
|
796 | 796 | |
|
797 | 797 | y = self.data.yrange |
|
798 | 798 | |
|
799 | 799 | ax = self.axes[0] |
|
800 | 800 | |
|
801 | 801 | data = self.data[-1] |
|
802 | 802 | |
|
803 | 803 | DenPow = data['den_power'] |
|
804 | 804 | errDenPow = data['den_error'] |
|
805 | 805 | |
|
806 | 806 | if ax.firsttime: |
|
807 | 807 | self.autoxticks=False |
|
808 |
ax.errorbar(DenPow, y, fmt='k^-', xerr=errDenPow,elinewidth=1.0,color=' |
|
|
808 | ax.errorbar(DenPow, y, fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='k',linewidth=1.0, label='Power',markersize=2,linestyle='-') | |
|
809 | 809 | |
|
810 | 810 | plt.legend(loc='upper left',fontsize=8.5) |
|
811 | 811 | #plt.legend(loc='lower left',fontsize=8.5) |
|
812 |
ax.set_xscale("log" |
|
|
812 | ax.set_xscale("log")#, nonposx='clip') | |
|
813 | 813 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) |
|
814 | 814 | self.ystep_given=100 |
|
815 | 815 | ax.set_yticks(grid_y_ticks,minor=True) |
|
816 | 816 | locmaj = LogLocator(base=10,numticks=12) |
|
817 | 817 | ax.xaxis.set_major_locator(locmaj) |
|
818 | 818 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) |
|
819 | 819 | ax.xaxis.set_minor_locator(locmin) |
|
820 | 820 | ax.xaxis.set_minor_formatter(NullFormatter()) |
|
821 | 821 | ax.grid(which='minor') |
|
822 | 822 | |
|
823 | 823 | else: |
|
824 | 824 | dataBefore = self.data[-2] |
|
825 | 825 | DenPowBefore = dataBefore['den_power'] |
|
826 | 826 | self.clear_figures() |
|
827 |
ax.errorbar(DenPow, y, fmt='k^-', xerr=errDenPow,elinewidth=1.0,color=' |
|
|
827 | ax.errorbar(DenPow, y, fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='k',linewidth=1.0, label='Power',markersize=2,linestyle='-') | |
|
828 | 828 | ax.errorbar(DenPowBefore, y, elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") |
|
829 | 829 | |
|
830 |
ax.set_xscale("log" |
|
|
830 | ax.set_xscale("log")#, nonposx='clip') | |
|
831 | 831 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) |
|
832 | 832 | ax.set_yticks(grid_y_ticks,minor=True) |
|
833 | 833 | locmaj = LogLocator(base=10,numticks=12) |
|
834 | 834 | ax.xaxis.set_major_locator(locmaj) |
|
835 | 835 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) |
|
836 | 836 | ax.xaxis.set_minor_locator(locmin) |
|
837 | 837 | ax.xaxis.set_minor_formatter(NullFormatter()) |
|
838 | 838 | ax.grid(which='minor') |
|
839 | 839 | plt.legend(loc='upper left',fontsize=8.5) |
|
840 | 840 | #plt.legend(loc='lower left',fontsize=8.5) |
|
841 | 841 | |
|
842 | 842 | class FaradayAnglePlot(Plot): |
|
843 | 843 | ''' |
|
844 | 844 | Written by R. Flores |
|
845 | 845 | ''' |
|
846 | 846 | ''' |
|
847 | 847 | Plot for electron density |
|
848 | 848 | ''' |
|
849 | 849 | |
|
850 | 850 | CODE = 'angle' |
|
851 | 851 | plot_name = 'Faraday Angle' |
|
852 | 852 | plot_type = 'scatterbuffer' |
|
853 | 853 | |
|
854 | 854 | def setup(self): |
|
855 | 855 | |
|
856 | 856 | self.ncols = 1 |
|
857 | 857 | self.nrows = 1 |
|
858 | 858 | self.nplots = 1 |
|
859 | 859 | self.ylabel = 'Range [km]' |
|
860 | 860 | self.xlabel = 'Faraday Angle (º)' |
|
861 | 861 | self.titles = ['Electron Density'] |
|
862 | 862 | self.width = 3.5 |
|
863 | 863 | self.height = 5.5 |
|
864 | 864 | self.colorbar = False |
|
865 | 865 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
866 | 866 | |
|
867 | 867 | def update(self, dataOut): |
|
868 | 868 | data = {} |
|
869 | 869 | meta = {} |
|
870 | 870 | |
|
871 | 871 | data['angle'] = numpy.degrees(dataOut.phi) |
|
872 | 872 | #''' |
|
873 | 873 | #print(dataOut.phi_uwrp) |
|
874 | 874 | #print(data['angle']) |
|
875 | 875 | #exit(1) |
|
876 | 876 | #''' |
|
877 | 877 | data['dphi'] = dataOut.dphi_uc*10 |
|
878 | 878 | #print(dataOut.dphi) |
|
879 | 879 | |
|
880 | 880 | #data['NSHTS'] = dataOut.NSHTS |
|
881 | 881 | |
|
882 | 882 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
883 | 883 | |
|
884 | 884 | return data, meta |
|
885 | 885 | |
|
886 | 886 | def plot(self): |
|
887 | 887 | |
|
888 | 888 | data = self.data[-1] |
|
889 | 889 | self.x = data[self.CODE] |
|
890 | 890 | dphi = data['dphi'] |
|
891 | 891 | self.y = self.data.yrange |
|
892 | 892 | self.xmin = -360#-180 |
|
893 | 893 | self.xmax = 360#180 |
|
894 | 894 | ax = self.axes[0] |
|
895 | 895 | |
|
896 | 896 | if ax.firsttime: |
|
897 | 897 | self.autoxticks=False |
|
898 | 898 | #if self.CODE=='den': |
|
899 | 899 | ax.plot(self.x, self.y,marker='o',color='g',linewidth=1.0,markersize=2) |
|
900 | 900 | ax.plot(dphi, self.y,marker='o',color='blue',linewidth=1.0,markersize=2) |
|
901 | 901 | |
|
902 | 902 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) |
|
903 | 903 | self.ystep_given=100 |
|
904 | 904 | if self.CODE=='denLP': |
|
905 | 905 | self.ystep_given=200 |
|
906 | 906 | ax.set_yticks(grid_y_ticks,minor=True) |
|
907 | 907 | ax.grid(which='minor') |
|
908 | 908 | #plt.tight_layout() |
|
909 | 909 | else: |
|
910 | 910 | |
|
911 | 911 | self.clear_figures() |
|
912 | 912 | #if self.CODE=='den': |
|
913 | 913 | #print(numpy.shape(self.x)) |
|
914 | 914 | ax.plot(self.x, self.y, marker='o',color='g',linewidth=1.0, markersize=2) |
|
915 | 915 | ax.plot(dphi, self.y,marker='o',color='blue',linewidth=1.0,markersize=2) |
|
916 | 916 | |
|
917 | 917 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) |
|
918 | 918 | ax.set_yticks(grid_y_ticks,minor=True) |
|
919 | 919 | ax.grid(which='minor') |
|
920 | 920 | |
|
921 | 921 | class EDensityHPPlot(EDensityPlot): |
|
922 | 922 | ''' |
|
923 | 923 | Written by R. Flores |
|
924 | 924 | ''' |
|
925 | 925 | ''' |
|
926 | 926 | Plot for Electron Density Hybrid Experiment |
|
927 | 927 | ''' |
|
928 | 928 | |
|
929 | 929 | CODE = 'denLP' |
|
930 | 930 | plot_name = 'Electron Density' |
|
931 | 931 | plot_type = 'scatterbuffer' |
|
932 | 932 | |
|
933 | 933 | def update(self, dataOut): |
|
934 | 934 | data = {} |
|
935 | 935 | meta = {} |
|
936 | 936 | |
|
937 | 937 | data['den_power'] = dataOut.ph2[:dataOut.NSHTS] |
|
938 | 938 | data['den_Faraday']=dataOut.dphi[:dataOut.NSHTS] |
|
939 | 939 | data['den_error']=dataOut.sdp2[:dataOut.NSHTS] |
|
940 | 940 | data['den_LP']=dataOut.ne[:dataOut.NACF] |
|
941 | 941 | data['den_LP_error']=dataOut.ene[:dataOut.NACF]*dataOut.ne[:dataOut.NACF]*0.434 |
|
942 | 942 | #self.ene=10**dataOut.ene[:dataOut.NACF] |
|
943 | 943 | data['NSHTS']=dataOut.NSHTS |
|
944 | 944 | data['cut']=dataOut.cut |
|
945 | 945 | |
|
946 | 946 | return data, meta |
|
947 | 947 | |
|
948 | 948 | |
|
949 | 949 | class ACFsPlot(Plot): |
|
950 | 950 | ''' |
|
951 | 951 | Written by R. Flores |
|
952 | 952 | ''' |
|
953 | 953 | ''' |
|
954 | 954 | Plot for ACFs Double Pulse Experiment |
|
955 | 955 | ''' |
|
956 | 956 | |
|
957 | 957 | CODE = 'acfs' |
|
958 | 958 | #plot_name = 'ACF' |
|
959 | 959 | plot_type = 'scatterbuffer' |
|
960 | 960 | |
|
961 | 961 | |
|
962 | 962 | def setup(self): |
|
963 | 963 | self.ncols = 1 |
|
964 | 964 | self.nrows = 1 |
|
965 | 965 | self.nplots = 1 |
|
966 | 966 | self.ylabel = 'Range [km]' |
|
967 | 967 | self.xlabel = 'Lag (ms)' |
|
968 | 968 | self.titles = ['ACFs'] |
|
969 | 969 | self.width = 3.5 |
|
970 | 970 | self.height = 5.5 |
|
971 | 971 | self.colorbar = False |
|
972 | 972 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
973 | 973 | |
|
974 | 974 | def update(self, dataOut): |
|
975 | 975 | data = {} |
|
976 | 976 | meta = {} |
|
977 | 977 | |
|
978 | 978 | data['ACFs'] = dataOut.acfs_to_plot |
|
979 | 979 | data['ACFs_error'] = dataOut.acfs_error_to_plot |
|
980 | 980 | data['lags'] = dataOut.lags_to_plot |
|
981 | 981 | data['Lag_contaminated_1'] = dataOut.x_igcej_to_plot |
|
982 | 982 | data['Lag_contaminated_2'] = dataOut.x_ibad_to_plot |
|
983 | 983 | data['Height_contaminated_1'] = dataOut.y_igcej_to_plot |
|
984 | 984 | data['Height_contaminated_2'] = dataOut.y_ibad_to_plot |
|
985 | 985 | |
|
986 | 986 | meta['yrange'] = numpy.array([]) |
|
987 | 987 | #meta['NSHTS'] = dataOut.NSHTS |
|
988 | 988 | #meta['DPL'] = dataOut.DPL |
|
989 | 989 | data['NSHTS'] = dataOut.NSHTS #This is metadata |
|
990 | 990 | data['DPL'] = dataOut.DPL #This is metadata |
|
991 | 991 | |
|
992 | 992 | return data, meta |
|
993 | 993 | |
|
994 | 994 | def plot(self): |
|
995 | 995 | |
|
996 | 996 | data = self.data[-1] |
|
997 | 997 | #NSHTS = self.meta['NSHTS'] |
|
998 | 998 | #DPL = self.meta['DPL'] |
|
999 | 999 | NSHTS = data['NSHTS'] #This is metadata |
|
1000 | 1000 | DPL = data['DPL'] #This is metadata |
|
1001 | 1001 | |
|
1002 | 1002 | lags = data['lags'] |
|
1003 | 1003 | ACFs = data['ACFs'] |
|
1004 | 1004 | errACFs = data['ACFs_error'] |
|
1005 | 1005 | BadLag1 = data['Lag_contaminated_1'] |
|
1006 | 1006 | BadLag2 = data['Lag_contaminated_2'] |
|
1007 | 1007 | BadHei1 = data['Height_contaminated_1'] |
|
1008 | 1008 | BadHei2 = data['Height_contaminated_2'] |
|
1009 | 1009 | |
|
1010 | 1010 | self.xmin = 0.0 |
|
1011 | 1011 | self.xmax = 2.0 |
|
1012 | 1012 | self.y = ACFs |
|
1013 | 1013 | |
|
1014 | 1014 | ax = self.axes[0] |
|
1015 | 1015 | |
|
1016 | 1016 | if ax.firsttime: |
|
1017 | 1017 | |
|
1018 | 1018 | for i in range(NSHTS): |
|
1019 | 1019 | x_aux = numpy.isfinite(lags[i,:]) |
|
1020 | 1020 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
1021 | 1021 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
1022 | 1022 | x_igcej_aux = numpy.isfinite(BadLag1[i,:]) |
|
1023 | 1023 | y_igcej_aux = numpy.isfinite(BadHei1[i,:]) |
|
1024 | 1024 | x_ibad_aux = numpy.isfinite(BadLag2[i,:]) |
|
1025 | 1025 | y_ibad_aux = numpy.isfinite(BadHei2[i,:]) |
|
1026 | 1026 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
1027 | 1027 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',marker='o',linewidth=1.0,markersize=2) |
|
1028 | 1028 | ax.plot(BadLag1[i,x_igcej_aux],BadHei1[i,y_igcej_aux],'x',color='red',markersize=2) |
|
1029 | 1029 | ax.plot(BadLag2[i,x_ibad_aux],BadHei2[i,y_ibad_aux],'X',color='red',markersize=2) |
|
1030 | 1030 | |
|
1031 | 1031 | self.xstep_given = (self.xmax-self.xmin)/(DPL-1) |
|
1032 | 1032 | self.ystep_given = 50 |
|
1033 | 1033 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
1034 | 1034 | ax.grid(which='minor') |
|
1035 | 1035 | |
|
1036 | 1036 | else: |
|
1037 | 1037 | self.clear_figures() |
|
1038 | 1038 | for i in range(NSHTS): |
|
1039 | 1039 | x_aux = numpy.isfinite(lags[i,:]) |
|
1040 | 1040 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
1041 | 1041 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
1042 | 1042 | x_igcej_aux = numpy.isfinite(BadLag1[i,:]) |
|
1043 | 1043 | y_igcej_aux = numpy.isfinite(BadHei1[i,:]) |
|
1044 | 1044 | x_ibad_aux = numpy.isfinite(BadLag2[i,:]) |
|
1045 | 1045 | y_ibad_aux = numpy.isfinite(BadHei2[i,:]) |
|
1046 | 1046 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
1047 | 1047 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],linewidth=1.0,markersize=2,color='b',marker='o') |
|
1048 | 1048 | ax.plot(BadLag1[i,x_igcej_aux],BadHei1[i,y_igcej_aux],'x',color='red',markersize=2) |
|
1049 | 1049 | ax.plot(BadLag2[i,x_ibad_aux],BadHei2[i,y_ibad_aux],'X',color='red',markersize=2) |
|
1050 | 1050 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
1051 | 1051 | |
|
1052 | 1052 | class ACFsLPPlot(Plot): |
|
1053 | 1053 | ''' |
|
1054 | 1054 | Written by R. Flores |
|
1055 | 1055 | ''' |
|
1056 | 1056 | ''' |
|
1057 | 1057 | Plot for ACFs Double Pulse Experiment |
|
1058 | 1058 | ''' |
|
1059 | 1059 | |
|
1060 | 1060 | CODE = 'acfs_LP' |
|
1061 | 1061 | #plot_name = 'ACF' |
|
1062 | 1062 | plot_type = 'scatterbuffer' |
|
1063 | 1063 | |
|
1064 | 1064 | |
|
1065 | 1065 | def setup(self): |
|
1066 | 1066 | self.ncols = 1 |
|
1067 | 1067 | self.nrows = 1 |
|
1068 | 1068 | self.nplots = 1 |
|
1069 | 1069 | self.ylabel = 'Range [km]' |
|
1070 | 1070 | self.xlabel = 'Lag (ms)' |
|
1071 | 1071 | self.titles = ['ACFs'] |
|
1072 | 1072 | self.width = 3.5 |
|
1073 | 1073 | self.height = 5.5 |
|
1074 | 1074 | self.colorbar = False |
|
1075 | 1075 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
1076 | 1076 | |
|
1077 | 1077 | def update(self, dataOut): |
|
1078 | 1078 | data = {} |
|
1079 | 1079 | meta = {} |
|
1080 | 1080 | |
|
1081 | 1081 | aux=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') |
|
1082 | 1082 | errors=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') |
|
1083 | 1083 | lags_LP_to_plot=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') |
|
1084 | 1084 | |
|
1085 | 1085 | for i in range(dataOut.NACF): |
|
1086 | 1086 | for j in range(dataOut.IBITS): |
|
1087 | 1087 | if numpy.abs(dataOut.errors[j,i]/dataOut.output_LP_integrated.real[0,i,0])<1.0: |
|
1088 | 1088 | aux[i,j]=dataOut.output_LP_integrated.real[j,i,0]/dataOut.output_LP_integrated.real[0,i,0] |
|
1089 | 1089 | aux[i,j]=max(min(aux[i,j],1.0),-1.0)*dataOut.DH+dataOut.heightList[i] |
|
1090 | 1090 | lags_LP_to_plot[i,j]=dataOut.lags_LP[j] |
|
1091 | 1091 | errors[i,j]=dataOut.errors[j,i]/dataOut.output_LP_integrated.real[0,i,0]*dataOut.DH |
|
1092 | 1092 | else: |
|
1093 | 1093 | aux[i,j]=numpy.nan |
|
1094 | 1094 | lags_LP_to_plot[i,j]=numpy.nan |
|
1095 | 1095 | errors[i,j]=numpy.nan |
|
1096 | 1096 | |
|
1097 | 1097 | data['ACFs'] = aux |
|
1098 | 1098 | data['ACFs_error'] = errors |
|
1099 | 1099 | data['lags'] = lags_LP_to_plot |
|
1100 | 1100 | |
|
1101 | 1101 | meta['yrange'] = numpy.array([]) |
|
1102 | 1102 | #meta['NACF'] = dataOut.NACF |
|
1103 | 1103 | #meta['NLAG'] = dataOut.NLAG |
|
1104 | 1104 | data['NACF'] = dataOut.NACF #This is metadata |
|
1105 | 1105 | data['NLAG'] = dataOut.NLAG #This is metadata |
|
1106 | 1106 | |
|
1107 | 1107 | return data, meta |
|
1108 | 1108 | |
|
1109 | 1109 | def plot(self): |
|
1110 | 1110 | |
|
1111 | 1111 | data = self.data[-1] |
|
1112 | 1112 | #NACF = self.meta['NACF'] |
|
1113 | 1113 | #NLAG = self.meta['NLAG'] |
|
1114 | 1114 | NACF = data['NACF'] #This is metadata |
|
1115 | 1115 | NLAG = data['NLAG'] #This is metadata |
|
1116 | 1116 | |
|
1117 | 1117 | lags = data['lags'] |
|
1118 | 1118 | ACFs = data['ACFs'] |
|
1119 | 1119 | errACFs = data['ACFs_error'] |
|
1120 | 1120 | |
|
1121 | 1121 | self.xmin = 0.0 |
|
1122 | 1122 | self.xmax = 1.5 |
|
1123 | 1123 | |
|
1124 | 1124 | self.y = ACFs |
|
1125 | 1125 | |
|
1126 | 1126 | ax = self.axes[0] |
|
1127 | 1127 | |
|
1128 | 1128 | if ax.firsttime: |
|
1129 | 1129 | |
|
1130 | 1130 | for i in range(NACF): |
|
1131 | 1131 | x_aux = numpy.isfinite(lags[i,:]) |
|
1132 | 1132 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
1133 | 1133 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
1134 | 1134 | |
|
1135 | 1135 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
1136 | 1136 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') |
|
1137 | 1137 | |
|
1138 | 1138 | #self.xstep_given = (self.xmax-self.xmin)/(self.data.NLAG-1) |
|
1139 | 1139 | self.xstep_given=0.3 |
|
1140 | 1140 | self.ystep_given = 200 |
|
1141 | 1141 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
1142 | 1142 | ax.grid(which='minor') |
|
1143 | 1143 | |
|
1144 | 1144 | else: |
|
1145 | 1145 | self.clear_figures() |
|
1146 | 1146 | |
|
1147 | 1147 | for i in range(NACF): |
|
1148 | 1148 | x_aux = numpy.isfinite(lags[i,:]) |
|
1149 | 1149 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
1150 | 1150 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
1151 | 1151 | |
|
1152 | 1152 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
1153 | 1153 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') |
|
1154 | 1154 | |
|
1155 | 1155 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
1156 | 1156 | |
|
1157 | 1157 | |
|
1158 | 1158 | class CrossProductsPlot(Plot): |
|
1159 | 1159 | ''' |
|
1160 | 1160 | Written by R. Flores |
|
1161 | 1161 | ''' |
|
1162 | 1162 | ''' |
|
1163 | 1163 | Plot for cross products |
|
1164 | 1164 | ''' |
|
1165 | 1165 | |
|
1166 | 1166 | CODE = 'crossprod' |
|
1167 | 1167 | plot_name = 'Cross Products' |
|
1168 | 1168 | plot_type = 'scatterbuffer' |
|
1169 | 1169 | |
|
1170 | 1170 | def setup(self): |
|
1171 | 1171 | |
|
1172 | 1172 | self.ncols = 3 |
|
1173 | 1173 | self.nrows = 1 |
|
1174 | 1174 | self.nplots = 3 |
|
1175 | 1175 | self.ylabel = 'Range [km]' |
|
1176 | 1176 | self.titles = [] |
|
1177 | 1177 | self.width = 3.5*self.nplots |
|
1178 | 1178 | self.height = 5.5 |
|
1179 | 1179 | self.colorbar = False |
|
1180 | 1180 | self.plots_adjust.update({'wspace':.3, 'left': 0.12, 'right': 0.92, 'bottom': 0.1}) |
|
1181 | 1181 | |
|
1182 | 1182 | |
|
1183 | 1183 | def update(self, dataOut): |
|
1184 | 1184 | |
|
1185 | 1185 | data = {} |
|
1186 | 1186 | meta = {} |
|
1187 | 1187 | |
|
1188 | 1188 | data['crossprod'] = dataOut.crossprods |
|
1189 | 1189 | data['NDP'] = dataOut.NDP |
|
1190 | 1190 | |
|
1191 | 1191 | return data, meta |
|
1192 | 1192 | |
|
1193 | 1193 | def plot(self): |
|
1194 | 1194 | |
|
1195 | 1195 | NDP = self.data['NDP'][-1] |
|
1196 | 1196 | x = self.data['crossprod'][:,-1,:,:,:,:] |
|
1197 | 1197 | y = self.data.yrange[0:NDP] |
|
1198 | 1198 | |
|
1199 | 1199 | for n, ax in enumerate(self.axes): |
|
1200 | 1200 | |
|
1201 | 1201 | self.xmin=numpy.min(numpy.concatenate((x[n][0,20:30,0,0],x[n][1,20:30,0,0],x[n][2,20:30,0,0],x[n][3,20:30,0,0]))) |
|
1202 | 1202 | self.xmax=numpy.max(numpy.concatenate((x[n][0,20:30,0,0],x[n][1,20:30,0,0],x[n][2,20:30,0,0],x[n][3,20:30,0,0]))) |
|
1203 | 1203 | |
|
1204 | 1204 | if ax.firsttime: |
|
1205 | 1205 | |
|
1206 | 1206 | self.autoxticks=False |
|
1207 | 1207 | if n==0: |
|
1208 | 1208 | label1='kax' |
|
1209 | 1209 | label2='kay' |
|
1210 | 1210 | label3='kbx' |
|
1211 | 1211 | label4='kby' |
|
1212 | 1212 | self.xlimits=[(self.xmin,self.xmax)] |
|
1213 | 1213 | elif n==1: |
|
1214 | 1214 | label1='kax2' |
|
1215 | 1215 | label2='kay2' |
|
1216 | 1216 | label3='kbx2' |
|
1217 | 1217 | label4='kby2' |
|
1218 | 1218 | self.xlimits.append((self.xmin,self.xmax)) |
|
1219 | 1219 | elif n==2: |
|
1220 | 1220 | label1='kaxay' |
|
1221 | 1221 | label2='kbxby' |
|
1222 | 1222 | label3='kaxbx' |
|
1223 | 1223 | label4='kaxby' |
|
1224 | 1224 | self.xlimits.append((self.xmin,self.xmax)) |
|
1225 | 1225 | |
|
1226 | 1226 | ax.plotline1 = ax.plot(x[n][0,:,0,0], y, color='r',linewidth=2.0, label=label1) |
|
1227 | 1227 | ax.plotline2 = ax.plot(x[n][1,:,0,0], y, color='k',linewidth=2.0, label=label2) |
|
1228 | 1228 | ax.plotline3 = ax.plot(x[n][2,:,0,0], y, color='b',linewidth=2.0, label=label3) |
|
1229 | 1229 | ax.plotline4 = ax.plot(x[n][3,:,0,0], y, color='m',linewidth=2.0, label=label4) |
|
1230 | 1230 | ax.legend(loc='upper right') |
|
1231 | 1231 | ax.set_xlim(self.xmin, self.xmax) |
|
1232 | 1232 | self.titles.append('{}'.format(self.plot_name.upper())) |
|
1233 | 1233 | |
|
1234 | 1234 | else: |
|
1235 | 1235 | |
|
1236 | 1236 | if n==0: |
|
1237 | 1237 | self.xlimits=[(self.xmin,self.xmax)] |
|
1238 | 1238 | else: |
|
1239 | 1239 | self.xlimits.append((self.xmin,self.xmax)) |
|
1240 | 1240 | |
|
1241 | 1241 | ax.set_xlim(self.xmin, self.xmax) |
|
1242 | 1242 | |
|
1243 | 1243 | ax.plotline1[0].set_data(x[n][0,:,0,0],y) |
|
1244 | 1244 | ax.plotline2[0].set_data(x[n][1,:,0,0],y) |
|
1245 | 1245 | ax.plotline3[0].set_data(x[n][2,:,0,0],y) |
|
1246 | 1246 | ax.plotline4[0].set_data(x[n][3,:,0,0],y) |
|
1247 | 1247 | self.titles.append('{}'.format(self.plot_name.upper())) |
|
1248 | 1248 | |
|
1249 | 1249 | |
|
1250 | 1250 | class CrossProductsLPPlot(Plot): |
|
1251 | 1251 | ''' |
|
1252 | 1252 | Written by R. Flores |
|
1253 | 1253 | ''' |
|
1254 | 1254 | ''' |
|
1255 | 1255 | Plot for cross products LP |
|
1256 | 1256 | ''' |
|
1257 | 1257 | |
|
1258 | 1258 | CODE = 'crossprodslp' |
|
1259 | 1259 | plot_name = 'Cross Products LP' |
|
1260 | 1260 | plot_type = 'scatterbuffer' |
|
1261 | 1261 | |
|
1262 | 1262 | |
|
1263 | 1263 | def setup(self): |
|
1264 | 1264 | |
|
1265 | 1265 | self.ncols = 2 |
|
1266 | 1266 | self.nrows = 1 |
|
1267 | 1267 | self.nplots = 2 |
|
1268 | 1268 | self.ylabel = 'Range [km]' |
|
1269 | 1269 | self.xlabel = 'dB' |
|
1270 | 1270 | self.width = 3.5*self.nplots |
|
1271 | 1271 | self.height = 5.5 |
|
1272 | 1272 | self.colorbar = False |
|
1273 | 1273 | self.titles = [] |
|
1274 | 1274 | self.plots_adjust.update({'wspace': .8 ,'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
1275 | 1275 | |
|
1276 | 1276 | def update(self, dataOut): |
|
1277 | 1277 | data = {} |
|
1278 | 1278 | meta = {} |
|
1279 | 1279 | |
|
1280 | 1280 | data['crossprodslp'] = 10*numpy.log10(numpy.abs(dataOut.output_LP)) |
|
1281 | 1281 | |
|
1282 | 1282 | data['NRANGE'] = dataOut.NRANGE #This is metadata |
|
1283 | 1283 | data['NLAG'] = dataOut.NLAG #This is metadata |
|
1284 | 1284 | |
|
1285 | 1285 | return data, meta |
|
1286 | 1286 | |
|
1287 | 1287 | def plot(self): |
|
1288 | 1288 | |
|
1289 | 1289 | NRANGE = self.data['NRANGE'][-1] |
|
1290 | 1290 | NLAG = self.data['NLAG'][-1] |
|
1291 | 1291 | |
|
1292 | 1292 | x = self.data[self.CODE][:,-1,:,:] |
|
1293 | 1293 | self.y = self.data.yrange[0:NRANGE] |
|
1294 | 1294 | |
|
1295 | 1295 | label_array=numpy.array(['lag '+ str(x) for x in range(NLAG)]) |
|
1296 | 1296 | color_array=['r','k','g','b','c','m','y','orange','steelblue','purple','peru','darksalmon','grey','limegreen','olive','midnightblue'] |
|
1297 | 1297 | |
|
1298 | 1298 | |
|
1299 | 1299 | for n, ax in enumerate(self.axes): |
|
1300 | 1300 | |
|
1301 | 1301 | self.xmin=28#30 |
|
1302 | 1302 | self.xmax=70#70 |
|
1303 | 1303 | #self.xmin=numpy.min(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) |
|
1304 | 1304 | #self.xmax=numpy.max(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) |
|
1305 | 1305 | |
|
1306 | 1306 | if ax.firsttime: |
|
1307 | 1307 | |
|
1308 | 1308 | self.autoxticks=False |
|
1309 | 1309 | if n == 0: |
|
1310 | 1310 | self.plotline_array=numpy.zeros((2,NLAG),dtype=object) |
|
1311 | 1311 | |
|
1312 | 1312 | for i in range(NLAG): |
|
1313 | 1313 | self.plotline_array[n,i], = ax.plot(x[i,:,n], self.y, color=color_array[i],linewidth=1.0, label=label_array[i]) |
|
1314 | 1314 | |
|
1315 | 1315 | ax.legend(loc='upper right') |
|
1316 | 1316 | ax.set_xlim(self.xmin, self.xmax) |
|
1317 | 1317 | if n==0: |
|
1318 | 1318 | self.titles.append('{} CH0'.format(self.plot_name.upper())) |
|
1319 | 1319 | if n==1: |
|
1320 | 1320 | self.titles.append('{} CH1'.format(self.plot_name.upper())) |
|
1321 | 1321 | else: |
|
1322 | 1322 | for i in range(NLAG): |
|
1323 | 1323 | self.plotline_array[n,i].set_data(x[i,:,n],self.y) |
|
1324 | 1324 | |
|
1325 | 1325 | if n==0: |
|
1326 | 1326 | self.titles.append('{} CH0'.format(self.plot_name.upper())) |
|
1327 | 1327 | if n==1: |
|
1328 | 1328 | self.titles.append('{} CH1'.format(self.plot_name.upper())) |
|
1329 | 1329 | |
|
1330 | 1330 | |
|
1331 | 1331 | class NoiseDPPlot(NoisePlot): |
|
1332 | 1332 | ''' |
|
1333 | 1333 | Written by R. Flores |
|
1334 | 1334 | ''' |
|
1335 | 1335 | ''' |
|
1336 | 1336 | Plot for noise Double Pulse |
|
1337 | 1337 | ''' |
|
1338 | 1338 | |
|
1339 | 1339 | CODE = 'noise' |
|
1340 | 1340 | #plot_name = 'Noise' |
|
1341 | 1341 | #plot_type = 'scatterbuffer' |
|
1342 | 1342 | |
|
1343 | 1343 | def update(self, dataOut): |
|
1344 | 1344 | |
|
1345 | 1345 | data = {} |
|
1346 | 1346 | meta = {} |
|
1347 | 1347 | data['noise'] = 10*numpy.log10(dataOut.noise_final) |
|
1348 | 1348 | |
|
1349 | 1349 | return data, meta |
|
1350 | 1350 | |
|
1351 | 1351 | |
|
1352 | 1352 | class XmitWaveformPlot(Plot): |
|
1353 | 1353 | ''' |
|
1354 | 1354 | Written by R. Flores |
|
1355 | 1355 | ''' |
|
1356 | 1356 | ''' |
|
1357 | 1357 | Plot for xmit waveform |
|
1358 | 1358 | ''' |
|
1359 | 1359 | |
|
1360 | 1360 | CODE = 'xmit' |
|
1361 | 1361 | plot_name = 'Xmit Waveform' |
|
1362 | 1362 | plot_type = 'scatterbuffer' |
|
1363 | 1363 | |
|
1364 | 1364 | |
|
1365 | 1365 | def setup(self): |
|
1366 | 1366 | |
|
1367 | 1367 | self.ncols = 1 |
|
1368 | 1368 | self.nrows = 1 |
|
1369 | 1369 | self.nplots = 1 |
|
1370 | 1370 | self.ylabel = '' |
|
1371 | 1371 | self.xlabel = 'Number of Lag' |
|
1372 | 1372 | self.width = 5.5 |
|
1373 | 1373 | self.height = 3.5 |
|
1374 | 1374 | self.colorbar = False |
|
1375 | 1375 | self.plots_adjust.update({'right': 0.85 }) |
|
1376 | 1376 | self.titles = [self.plot_name] |
|
1377 | 1377 | #self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
1378 | 1378 | |
|
1379 | 1379 | #if not self.titles: |
|
1380 | 1380 | #self.titles = self.data.parameters \ |
|
1381 | 1381 | #if self.data.parameters else ['{}'.format(self.plot_name.upper())] |
|
1382 | 1382 | |
|
1383 | 1383 | def update(self, dataOut): |
|
1384 | 1384 | |
|
1385 | 1385 | data = {} |
|
1386 | 1386 | meta = {} |
|
1387 | 1387 | |
|
1388 | 1388 | y_1=numpy.arctan2(dataOut.output_LP[:,0,2].imag,dataOut.output_LP[:,0,2].real)* 180 / (numpy.pi*10) |
|
1389 | 1389 | y_2=numpy.abs(dataOut.output_LP[:,0,2]) |
|
1390 | 1390 | norm=numpy.max(y_2) |
|
1391 | 1391 | norm=max(norm,0.1) |
|
1392 | 1392 | y_2=y_2/norm |
|
1393 | 1393 | |
|
1394 | 1394 | meta['yrange'] = numpy.array([]) |
|
1395 | 1395 | |
|
1396 | 1396 | data['xmit'] = numpy.vstack((y_1,y_2)) |
|
1397 | 1397 | data['NLAG'] = dataOut.NLAG |
|
1398 | 1398 | |
|
1399 | 1399 | return data, meta |
|
1400 | 1400 | |
|
1401 | 1401 | def plot(self): |
|
1402 | 1402 | |
|
1403 | 1403 | data = self.data[-1] |
|
1404 | 1404 | NLAG = data['NLAG'] |
|
1405 | 1405 | x = numpy.arange(0,NLAG,1,'float32') |
|
1406 | 1406 | y = data['xmit'] |
|
1407 | 1407 | |
|
1408 | 1408 | self.xmin = 0 |
|
1409 | 1409 | self.xmax = NLAG-1 |
|
1410 | 1410 | self.ymin = -1.0 |
|
1411 | 1411 | self.ymax = 1.0 |
|
1412 | 1412 | ax = self.axes[0] |
|
1413 | 1413 | |
|
1414 | 1414 | if ax.firsttime: |
|
1415 | 1415 | ax.plotline0=ax.plot(x,y[0,:],color='blue') |
|
1416 | 1416 | ax.plotline1=ax.plot(x,y[1,:],color='red') |
|
1417 | 1417 | secax=ax.secondary_xaxis(location=0.5) |
|
1418 | 1418 | secax.xaxis.tick_bottom() |
|
1419 | 1419 | secax.tick_params( labelleft=False, labeltop=False, |
|
1420 | 1420 | labelright=False, labelbottom=False) |
|
1421 | 1421 | |
|
1422 | 1422 | self.xstep_given = 3 |
|
1423 | 1423 | self.ystep_given = .25 |
|
1424 | 1424 | secax.set_xticks(numpy.linspace(self.xmin, self.xmax, 6)) #only works on matplotlib.version>3.2 |
|
1425 | 1425 | |
|
1426 | 1426 | else: |
|
1427 | 1427 | ax.plotline0[0].set_data(x,y[0,:]) |
|
1428 | 1428 | ax.plotline1[0].set_data(x,y[1,:]) |
@@ -1,355 +1,361 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Nov 9, 2016 |
|
3 | 3 | |
|
4 | 4 | @author: roj- LouVD |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | |
|
8 | 8 | import os |
|
9 | 9 | import sys |
|
10 | 10 | import time |
|
11 | 11 | import glob |
|
12 | 12 | import datetime |
|
13 | 13 | |
|
14 | 14 | import numpy |
|
15 | 15 | |
|
16 | 16 | import schainpy.admin |
|
17 | 17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator |
|
18 | 18 | from schainpy.model.data.jrodata import Parameters |
|
19 | 19 | from schainpy.model.io.jroIO_base import Reader |
|
20 | 20 | from schainpy.utils import log |
|
21 | 21 | |
|
22 | 22 | FILE_HEADER_STRUCTURE = numpy.dtype([ |
|
23 | 23 | ('FMN', '<u4'), |
|
24 | 24 | ('nrec', '<u4'), |
|
25 | 25 | ('fr_offset', '<u4'), |
|
26 | 26 | ('id', '<u4'), |
|
27 | 27 | ('site', 'u1', (32,)) |
|
28 | 28 | ]) |
|
29 | 29 | |
|
30 | 30 | REC_HEADER_STRUCTURE = numpy.dtype([ |
|
31 | 31 | ('rmn', '<u4'), |
|
32 | 32 | ('rcounter', '<u4'), |
|
33 | 33 | ('nr_offset', '<u4'), |
|
34 | 34 | ('tr_offset', '<u4'), |
|
35 | 35 | ('time', '<u4'), |
|
36 | 36 | ('time_msec', '<u4'), |
|
37 | 37 | ('tag', 'u1', (32,)), |
|
38 | 38 | ('comments', 'u1', (32,)), |
|
39 | 39 | ('lat', '<f4'), |
|
40 | 40 | ('lon', '<f4'), |
|
41 | 41 | ('gps_status', '<u4'), |
|
42 | 42 | ('freq', '<u4'), |
|
43 | 43 | ('freq0', '<u4'), |
|
44 | 44 | ('nchan', '<u4'), |
|
45 | 45 | ('delta_r', '<u4'), |
|
46 | 46 | ('nranges', '<u4'), |
|
47 | 47 | ('r0', '<u4'), |
|
48 | 48 | ('prf', '<u4'), |
|
49 | 49 | ('ncoh', '<u4'), |
|
50 | 50 | ('npoints', '<u4'), |
|
51 | 51 | ('polarization', '<i4'), |
|
52 | 52 | ('rx_filter', '<u4'), |
|
53 | 53 | ('nmodes', '<u4'), |
|
54 | 54 | ('dmode_index', '<u4'), |
|
55 | 55 | ('dmode_rngcorr', '<u4'), |
|
56 | 56 | ('nrxs', '<u4'), |
|
57 | 57 | ('acf_length', '<u4'), |
|
58 | 58 | ('acf_lags', '<u4'), |
|
59 | 59 | ('sea_to_atmos', '<f4'), |
|
60 | 60 | ('sea_notch', '<u4'), |
|
61 | 61 | ('lh_sea', '<u4'), |
|
62 | 62 | ('hh_sea', '<u4'), |
|
63 | 63 | ('nbins_sea', '<u4'), |
|
64 | 64 | ('min_snr', '<f4'), |
|
65 | 65 | ('min_cc', '<f4'), |
|
66 | 66 | ('max_time_diff', '<f4') |
|
67 | 67 | ]) |
|
68 | 68 | |
|
69 | 69 | DATA_STRUCTURE = numpy.dtype([ |
|
70 | 70 | ('range', '<u4'), |
|
71 | 71 | ('status', '<u4'), |
|
72 | 72 | ('zonal', '<f4'), |
|
73 | 73 | ('meridional', '<f4'), |
|
74 | 74 | ('vertical', '<f4'), |
|
75 | 75 | ('zonal_a', '<f4'), |
|
76 | 76 | ('meridional_a', '<f4'), |
|
77 | 77 | ('corrected_fading', '<f4'), # seconds |
|
78 | 78 | ('uncorrected_fading', '<f4'), # seconds |
|
79 | 79 | ('time_diff', '<f4'), |
|
80 | 80 | ('major_axis', '<f4'), |
|
81 | 81 | ('axial_ratio', '<f4'), |
|
82 | 82 | ('orientation', '<f4'), |
|
83 | 83 | ('sea_power', '<u4'), |
|
84 | 84 | ('sea_algorithm', '<u4') |
|
85 | 85 | ]) |
|
86 | 86 | |
|
87 | 87 | |
|
88 | 88 | class BLTRParamReader(Reader, ProcessingUnit): |
|
89 | 89 | ''' |
|
90 |
Boundary Layer and Tropospheric Radar (BLTR) reader, Wind velocities and SNR |
|
|
90 | Boundary Layer and Tropospheric Radar (BLTR) reader, Wind velocities and SNR | |
|
91 | 91 | from *.sswma files |
|
92 | 92 | ''' |
|
93 | 93 | |
|
94 | 94 | ext = '.sswma' |
|
95 | 95 | |
|
96 | 96 | def __init__(self): |
|
97 | 97 | |
|
98 | 98 | ProcessingUnit.__init__(self) |
|
99 | 99 | |
|
100 | 100 | self.dataOut = Parameters() |
|
101 | 101 | self.dataOut.timezone = 300 |
|
102 | 102 | self.counter_records = 0 |
|
103 | 103 | self.flagNoMoreFiles = 0 |
|
104 | 104 | self.isConfig = False |
|
105 | 105 | self.filename = None |
|
106 | 106 | self.status_value = 0 |
|
107 | 107 | self.datatime = datetime.datetime(1900,1,1) |
|
108 | 108 | self.filefmt = "*********%Y%m%d******" |
|
109 | 109 | |
|
110 | 110 | def setup(self, **kwargs): |
|
111 | ||
|
111 | ||
|
112 | 112 | self.set_kwargs(**kwargs) |
|
113 | ||
|
113 | ||
|
114 | 114 | if self.path is None: |
|
115 | 115 | raise ValueError("The path is not valid") |
|
116 | 116 | |
|
117 | 117 | if self.online: |
|
118 | 118 | log.log("Searching files in online mode...", self.name) |
|
119 | 119 | |
|
120 | 120 | for nTries in range(self.nTries): |
|
121 | 121 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
122 |
self.endDate, self.expLabel, self.ext, self.walk, |
|
|
122 | self.endDate, self.expLabel, self.ext, self.walk, | |
|
123 | 123 | self.filefmt, self.folderfmt) |
|
124 | 124 | try: |
|
125 | 125 | fullpath = next(fullpath) |
|
126 | 126 | except: |
|
127 | 127 | fullpath = None |
|
128 | ||
|
128 | ||
|
129 | 129 | if fullpath: |
|
130 | 130 | self.fileSize = os.path.getsize(fullpath) |
|
131 | 131 | self.filename = fullpath |
|
132 | 132 | self.flagIsNewFile = 1 |
|
133 | 133 | if self.fp != None: |
|
134 | 134 | self.fp.close() |
|
135 | 135 | self.fp = self.open_file(fullpath, self.open_mode) |
|
136 | 136 | self.flagNoMoreFiles = 0 |
|
137 | 137 | break |
|
138 | 138 | |
|
139 | 139 | log.warning( |
|
140 | 140 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
141 |
self.delay, self.path, nTries + 1), |
|
|
141 | self.delay, self.path, nTries + 1), | |
|
142 | 142 | self.name) |
|
143 | 143 | time.sleep(self.delay) |
|
144 | 144 | |
|
145 | 145 | if not(fullpath): |
|
146 | 146 | raise schainpy.admin.SchainError( |
|
147 |
'There isn\'t any valid file in {}'.format(self.path)) |
|
|
147 | 'There isn\'t any valid file in {}'.format(self.path)) | |
|
148 | 148 | self.readFirstHeader() |
|
149 | 149 | else: |
|
150 | 150 | log.log("Searching files in {}".format(self.path), self.name) |
|
151 |
self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
|
151 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, | |
|
152 | 152 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
153 | 153 | self.setNextFile() |
|
154 | 154 | |
|
155 | 155 | def checkForRealPath(self, nextFile, nextDay): |
|
156 | 156 | ''' |
|
157 | 157 | ''' |
|
158 | 158 | |
|
159 | 159 | dt = self.datatime + datetime.timedelta(1) |
|
160 | 160 | filename = '{}.{}{}'.format(self.siteFile, dt.strftime('%Y%m%d'), self.ext) |
|
161 | 161 | fullfilename = os.path.join(self.path, filename) |
|
162 | 162 | if os.path.exists(fullfilename): |
|
163 | 163 | return fullfilename, filename |
|
164 | 164 | return None, filename |
|
165 | ||
|
166 | ||
|
165 | ||
|
166 | ||
|
167 | 167 | def readFirstHeader(self): |
|
168 | 168 | ''' |
|
169 | 169 | ''' |
|
170 | 170 | |
|
171 | 171 | # 'peru2' ---> Piura - 'peru1' ---> Huancayo or Porcuya |
|
172 | 172 | self.siteFile = self.filename.split('/')[-1].split('.')[0] |
|
173 | 173 | self.header_file = numpy.fromfile(self.fp, FILE_HEADER_STRUCTURE, 1) |
|
174 | 174 | self.nrecords = self.header_file['nrec'][0] |
|
175 | 175 | self.counter_records = 0 |
|
176 | 176 | self.flagIsNewFile = 0 |
|
177 |
self.fileIndex += 1 |
|
|
177 | self.fileIndex += 1 | |
|
178 | 178 | |
|
179 | 179 | def readNextBlock(self): |
|
180 | 180 | |
|
181 | 181 | while True: |
|
182 | 182 | if not self.online and self.counter_records == self.nrecords: |
|
183 | 183 | self.flagIsNewFile = 1 |
|
184 | 184 | if not self.setNextFile(): |
|
185 | 185 | return 0 |
|
186 | 186 | try: |
|
187 | pointer = self.fp.tell() | |
|
187 | if self.online and self.counter_records == 0: | |
|
188 | pos = int(self.fileSize / (38512)) | |
|
189 | self.counter_records = pos*2 - 2 | |
|
190 | pointer = 38512 * (pos-1) + 48 | |
|
191 | self.fp.seek(pointer) | |
|
192 | else: | |
|
193 | pointer = self.fp.tell() | |
|
188 | 194 | self.readBlock() |
|
189 | 195 | except: |
|
190 | 196 | if self.online and self.waitDataBlock(pointer, 38512) == 1: |
|
191 | 197 | continue |
|
192 | 198 | else: |
|
193 | 199 | if not self.setNextFile(): |
|
194 | 200 | return 0 |
|
195 | 201 | |
|
196 | 202 | if (self.datatime < datetime.datetime.combine(self.startDate, self.startTime)) or \ |
|
197 | 203 | (self.datatime > datetime.datetime.combine(self.endDate, self.endTime)): |
|
198 | 204 | log.warning( |
|
199 | 205 | 'Reading Record No. {}/{} -> {} [Skipping]'.format( |
|
200 | 206 | self.counter_records, |
|
201 | 207 | self.nrecords, |
|
202 | 208 | self.datatime.ctime()), |
|
203 | 209 | 'BLTRParamReader') |
|
204 | 210 | continue |
|
205 | 211 | break |
|
206 | 212 | |
|
207 | 213 | log.log('Reading Record No. {} -> {}'.format( |
|
208 | 214 | self.counter_records, |
|
209 | 215 | self.datatime.ctime()), 'BLTRParamReader') |
|
210 | 216 | |
|
211 | 217 | return 1 |
|
212 | 218 | |
|
213 | 219 | def readBlock(self): |
|
214 | 220 | |
|
215 | 221 | pointer = self.fp.tell() |
|
216 | 222 | header_rec = numpy.fromfile(self.fp, REC_HEADER_STRUCTURE, 1) |
|
217 | 223 | self.nchannels = int(header_rec['nchan'][0] / 2) |
|
218 | 224 | self.kchan = header_rec['nrxs'][0] |
|
219 | 225 | self.nmodes = header_rec['nmodes'][0] |
|
220 | 226 | self.nranges = header_rec['nranges'][0] |
|
221 | 227 | self.fp.seek(pointer) |
|
222 | 228 | self.height = numpy.empty((self.nmodes, self.nranges)) |
|
223 | 229 | self.snr = numpy.empty((self.nmodes, int(self.nchannels), self.nranges)) |
|
224 | 230 | self.buffer = numpy.empty((self.nmodes, 3, self.nranges)) |
|
225 | 231 | self.flagDiscontinuousBlock = 0 |
|
226 | 232 | |
|
227 | 233 | for mode in range(self.nmodes): |
|
228 | 234 | self.readHeader() |
|
229 | 235 | data = self.readData() |
|
230 | 236 | self.height[mode] = (data[0] - self.correction) / 1000. |
|
231 | 237 | self.buffer[mode] = data[1] |
|
232 | 238 | self.snr[mode] = data[2] |
|
233 | 239 | |
|
234 | 240 | self.counter_records = self.counter_records + self.nmodes |
|
235 | 241 | |
|
236 | 242 | return |
|
237 | 243 | |
|
238 | 244 | def readHeader(self): |
|
239 | 245 | ''' |
|
240 | 246 | RecordHeader of BLTR rawdata file |
|
241 | 247 | ''' |
|
242 | 248 | |
|
243 | 249 | header_structure = numpy.dtype( |
|
244 | 250 | REC_HEADER_STRUCTURE.descr + [ |
|
245 | 251 | ('antenna_coord', 'f4', (2, int(self.nchannels))), |
|
246 | 252 | ('rx_gains', 'u4', (int(self.nchannels),)), |
|
247 | 253 | ('rx_analysis', 'u4', (int(self.nchannels),)) |
|
248 | 254 | ] |
|
249 | 255 | ) |
|
250 | 256 | |
|
251 | 257 | self.header_rec = numpy.fromfile(self.fp, header_structure, 1) |
|
252 | 258 | self.lat = self.header_rec['lat'][0] |
|
253 | 259 | self.lon = self.header_rec['lon'][0] |
|
254 | 260 | self.delta = self.header_rec['delta_r'][0] |
|
255 | 261 | self.correction = self.header_rec['dmode_rngcorr'][0] |
|
256 | 262 | self.imode = self.header_rec['dmode_index'][0] |
|
257 | 263 | self.antenna = self.header_rec['antenna_coord'] |
|
258 |
self.rx_gains = self.header_rec['rx_gains'] |
|
|
259 |
self.time = self.header_rec['time'][0] |
|
|
264 | self.rx_gains = self.header_rec['rx_gains'] | |
|
265 | self.time = self.header_rec['time'][0] | |
|
260 | 266 | dt = datetime.datetime.utcfromtimestamp(self.time) |
|
261 | 267 | if dt.date()>self.datatime.date(): |
|
262 | 268 | self.flagDiscontinuousBlock = 1 |
|
263 | 269 | self.datatime = dt |
|
264 | ||
|
270 | ||
|
265 | 271 | def readData(self): |
|
266 | 272 | ''' |
|
267 |
Reading and filtering data block record of BLTR rawdata file, |
|
|
273 | Reading and filtering data block record of BLTR rawdata file, | |
|
268 | 274 | filtering is according to status_value. |
|
269 | 275 | |
|
270 | 276 | Input: |
|
271 |
status_value - Array data is set to NAN for values that are not |
|
|
277 | status_value - Array data is set to NAN for values that are not | |
|
272 | 278 | equal to status_value |
|
273 | 279 | |
|
274 | 280 | ''' |
|
275 | 281 | self.nchannels = int(self.nchannels) |
|
276 | 282 | |
|
277 | 283 | data_structure = numpy.dtype( |
|
278 | 284 | DATA_STRUCTURE.descr + [ |
|
279 | 285 | ('rx_saturation', 'u4', (self.nchannels,)), |
|
280 | 286 | ('chan_offset', 'u4', (2 * self.nchannels,)), |
|
281 | 287 | ('rx_amp', 'u4', (self.nchannels,)), |
|
282 | 288 | ('rx_snr', 'f4', (self.nchannels,)), |
|
283 | 289 | ('cross_snr', 'f4', (self.kchan,)), |
|
284 | 290 | ('sea_power_relative', 'f4', (self.kchan,))] |
|
285 | 291 | ) |
|
286 | 292 | |
|
287 | 293 | data = numpy.fromfile(self.fp, data_structure, self.nranges) |
|
288 | 294 | |
|
289 | 295 | height = data['range'] |
|
290 | 296 | winds = numpy.array( |
|
291 | 297 | (data['zonal'], data['meridional'], data['vertical'])) |
|
292 | 298 | snr = data['rx_snr'].T |
|
293 | 299 | |
|
294 | 300 | winds[numpy.where(winds == -9999.)] = numpy.nan |
|
295 | 301 | winds[:, numpy.where(data['status'] != self.status_value)] = numpy.nan |
|
296 | 302 | snr[numpy.where(snr == -9999.)] = numpy.nan |
|
297 | 303 | snr[:, numpy.where(data['status'] != self.status_value)] = numpy.nan |
|
298 | 304 | snr = numpy.power(10, snr / 10) |
|
299 | 305 | |
|
300 | 306 | return height, winds, snr |
|
301 | 307 | |
|
302 | 308 | def set_output(self): |
|
303 | 309 | ''' |
|
304 | 310 | Storing data from databuffer to dataOut object |
|
305 | 311 | ''' |
|
306 | 312 | |
|
307 | 313 | self.dataOut.data_snr = self.snr |
|
308 | 314 | self.dataOut.height = self.height |
|
309 | 315 | self.dataOut.data = self.buffer |
|
310 | 316 | self.dataOut.utctimeInit = self.time |
|
311 | 317 | self.dataOut.utctime = self.dataOut.utctimeInit |
|
312 | 318 | self.dataOut.useLocalTime = False |
|
313 | 319 | self.dataOut.paramInterval = 157 |
|
314 | 320 | self.dataOut.site = self.siteFile |
|
315 | 321 | self.dataOut.nrecords = self.nrecords / self.nmodes |
|
316 | 322 | self.dataOut.lat = self.lat |
|
317 | 323 | self.dataOut.lon = self.lon |
|
318 | 324 | self.dataOut.channelList = list(range(self.nchannels)) |
|
319 |
self.dataOut.kchan = self.kchan |
|
|
325 | self.dataOut.kchan = self.kchan | |
|
320 | 326 | self.dataOut.delta = self.delta |
|
321 | 327 | self.dataOut.correction = self.correction |
|
322 | 328 | self.dataOut.nmodes = self.nmodes |
|
323 | 329 | self.dataOut.imode = self.imode |
|
324 | 330 | self.dataOut.antenna = self.antenna |
|
325 | 331 | self.dataOut.rx_gains = self.rx_gains |
|
326 | 332 | self.dataOut.flagNoData = False |
|
327 | 333 | self.dataOut.flagDiscontinuousBlock = self.flagDiscontinuousBlock |
|
328 | 334 | |
|
329 | 335 | def getData(self): |
|
330 | 336 | ''' |
|
331 | 337 | Storing data from databuffer to dataOut object |
|
332 | 338 | ''' |
|
333 | 339 | if self.flagNoMoreFiles: |
|
334 | 340 | self.dataOut.flagNoData = True |
|
335 | 341 | return 0 |
|
336 | 342 | |
|
337 | 343 | if not self.readNextBlock(): |
|
338 | 344 | self.dataOut.flagNoData = True |
|
339 | 345 | return 0 |
|
340 | 346 | |
|
341 | 347 | self.set_output() |
|
342 | 348 | |
|
343 | 349 | return 1 |
|
344 | ||
|
350 | ||
|
345 | 351 | def run(self, **kwargs): |
|
346 | 352 | ''' |
|
347 | 353 | ''' |
|
348 | 354 | |
|
349 | 355 | if not(self.isConfig): |
|
350 | 356 | self.setup(**kwargs) |
|
351 | 357 | self.isConfig = True |
|
352 | 358 | |
|
353 | 359 | self.getData() |
|
354 | 360 | |
|
355 | return No newline at end of file | |
|
361 | return |
@@ -1,1614 +1,1618 | |||
|
1 | 1 | """ |
|
2 | 2 | Created on Jul 2, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | """ |
|
6 | 6 | import os |
|
7 | 7 | import sys |
|
8 | 8 | import glob |
|
9 | 9 | import time |
|
10 | 10 | import numpy |
|
11 | 11 | import fnmatch |
|
12 | 12 | import inspect |
|
13 | 13 | import time |
|
14 | 14 | import datetime |
|
15 | 15 | import zmq |
|
16 | 16 | |
|
17 | 17 | from schainpy.model.proc.jroproc_base import Operation, MPDecorator |
|
18 | 18 | from schainpy.model.data.jroheaderIO import PROCFLAG, BasicHeader, SystemHeader, RadarControllerHeader, ProcessingHeader |
|
19 | 19 | from schainpy.model.data.jroheaderIO import get_dtype_index, get_numpy_dtype, get_procflag_dtype, get_dtype_width |
|
20 | 20 | from schainpy.utils import log |
|
21 | 21 | import schainpy.admin |
|
22 | 22 | |
|
23 | 23 | LOCALTIME = True |
|
24 | 24 | DT_DIRECTIVES = { |
|
25 | 25 | '%Y': 4, |
|
26 | 26 | '%y': 2, |
|
27 | 27 | '%m': 2, |
|
28 | 28 | '%d': 2, |
|
29 | 29 | '%j': 3, |
|
30 | 30 | '%H': 2, |
|
31 | 31 | '%M': 2, |
|
32 | 32 | '%S': 2, |
|
33 | 33 | '%f': 6 |
|
34 | 34 | } |
|
35 | 35 | |
|
36 | 36 | |
|
37 | 37 | def isNumber(cad): |
|
38 | 38 | """ |
|
39 | 39 | Chequea si el conjunto de caracteres que componen un string puede ser convertidos a un numero. |
|
40 | 40 | |
|
41 | 41 | Excepciones: |
|
42 | 42 | Si un determinado string no puede ser convertido a numero |
|
43 | 43 | Input: |
|
44 | 44 | str, string al cual se le analiza para determinar si convertible a un numero o no |
|
45 | 45 | |
|
46 | 46 | Return: |
|
47 | 47 | True : si el string es uno numerico |
|
48 | 48 | False : no es un string numerico |
|
49 | 49 | """ |
|
50 | 50 | try: |
|
51 | 51 | float(cad) |
|
52 | 52 | return True |
|
53 | 53 | except: |
|
54 | 54 | return False |
|
55 | 55 | |
|
56 | 56 | |
|
57 | 57 | def isFileInEpoch(filename, startUTSeconds, endUTSeconds): |
|
58 | 58 | """ |
|
59 | 59 | Esta funcion determina si un archivo de datos se encuentra o no dentro del rango de fecha especificado. |
|
60 | 60 | |
|
61 | 61 | Inputs: |
|
62 | 62 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) |
|
63 | 63 | |
|
64 | 64 | startUTSeconds : fecha inicial del rango seleccionado. La fecha esta dada en |
|
65 | 65 | segundos contados desde 01/01/1970. |
|
66 | 66 | endUTSeconds : fecha final del rango seleccionado. La fecha esta dada en |
|
67 | 67 | segundos contados desde 01/01/1970. |
|
68 | 68 | |
|
69 | 69 | Return: |
|
70 | 70 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de |
|
71 | 71 | fecha especificado, de lo contrario retorna False. |
|
72 | 72 | |
|
73 | 73 | Excepciones: |
|
74 | 74 | Si el archivo no existe o no puede ser abierto |
|
75 | 75 | Si la cabecera no puede ser leida. |
|
76 | 76 | |
|
77 | 77 | """ |
|
78 | 78 | basicHeaderObj = BasicHeader(LOCALTIME) |
|
79 | 79 | |
|
80 | 80 | try: |
|
81 | 81 | |
|
82 | 82 | fp = open(filename, 'rb') |
|
83 | 83 | except IOError: |
|
84 | 84 | print("The file %s can't be opened" % (filename)) |
|
85 | 85 | return 0 |
|
86 | 86 | |
|
87 | 87 | sts = basicHeaderObj.read(fp) |
|
88 | 88 | fp.close() |
|
89 | 89 | |
|
90 | 90 | if not(sts): |
|
91 | 91 | print("Skipping the file %s because it has not a valid header" % (filename)) |
|
92 | 92 | return 0 |
|
93 | 93 | |
|
94 | 94 | if not ((startUTSeconds <= basicHeaderObj.utc) and (endUTSeconds > basicHeaderObj.utc)): |
|
95 | 95 | return 0 |
|
96 | 96 | |
|
97 | 97 | return 1 |
|
98 | 98 | |
|
99 | 99 | |
|
100 | 100 | def isTimeInRange(thisTime, startTime, endTime): |
|
101 | 101 | if endTime >= startTime: |
|
102 | 102 | if (thisTime < startTime) or (thisTime > endTime): |
|
103 | 103 | return 0 |
|
104 | 104 | return 1 |
|
105 | 105 | else: |
|
106 | 106 | if (thisTime < startTime) and (thisTime > endTime): |
|
107 | 107 | return 0 |
|
108 | 108 | return 1 |
|
109 | 109 | |
|
110 | 110 | |
|
111 | 111 | def isFileInTimeRange(filename, startDate, endDate, startTime, endTime): |
|
112 | 112 | """ |
|
113 | 113 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. |
|
114 | 114 | |
|
115 | 115 | Inputs: |
|
116 | 116 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) |
|
117 | 117 | |
|
118 | 118 | startDate : fecha inicial del rango seleccionado en formato datetime.date |
|
119 | 119 | |
|
120 | 120 | endDate : fecha final del rango seleccionado en formato datetime.date |
|
121 | 121 | |
|
122 | 122 | startTime : tiempo inicial del rango seleccionado en formato datetime.time |
|
123 | 123 | |
|
124 | 124 | endTime : tiempo final del rango seleccionado en formato datetime.time |
|
125 | 125 | |
|
126 | 126 | Return: |
|
127 | 127 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de |
|
128 | 128 | fecha especificado, de lo contrario retorna False. |
|
129 | 129 | |
|
130 | 130 | Excepciones: |
|
131 | 131 | Si el archivo no existe o no puede ser abierto |
|
132 | 132 | Si la cabecera no puede ser leida. |
|
133 | 133 | |
|
134 | 134 | """ |
|
135 | 135 | |
|
136 | 136 | try: |
|
137 | 137 | fp = open(filename, 'rb') |
|
138 | 138 | except IOError: |
|
139 | 139 | print("The file %s can't be opened" % (filename)) |
|
140 | 140 | return None |
|
141 | 141 | |
|
142 | 142 | firstBasicHeaderObj = BasicHeader(LOCALTIME) |
|
143 | 143 | systemHeaderObj = SystemHeader() |
|
144 | 144 | |
|
145 | 145 | radarControllerHeaderObj = RadarControllerHeader() |
|
146 | 146 | processingHeaderObj = ProcessingHeader() |
|
147 | 147 | |
|
148 | 148 | lastBasicHeaderObj = BasicHeader(LOCALTIME) |
|
149 | 149 | |
|
150 | 150 | sts = firstBasicHeaderObj.read(fp) |
|
151 | 151 | |
|
152 | 152 | if not(sts): |
|
153 | 153 | print("[Reading] Skipping the file %s because it has not a valid header" % (filename)) |
|
154 | 154 | return None |
|
155 | 155 | |
|
156 | 156 | if not systemHeaderObj.read(fp): |
|
157 | 157 | return None |
|
158 | 158 | |
|
159 | 159 | if not radarControllerHeaderObj.read(fp): |
|
160 | 160 | return None |
|
161 | 161 | |
|
162 | 162 | if not processingHeaderObj.read(fp): |
|
163 | 163 | return None |
|
164 | 164 | |
|
165 | 165 | filesize = os.path.getsize(filename) |
|
166 | 166 | |
|
167 | 167 | offset = processingHeaderObj.blockSize + 24 # header size |
|
168 | 168 | |
|
169 | 169 | if filesize <= offset: |
|
170 | 170 | print("[Reading] %s: This file has not enough data" % filename) |
|
171 | 171 | return None |
|
172 | 172 | |
|
173 | 173 | fp.seek(-offset, 2) |
|
174 | 174 | |
|
175 | 175 | sts = lastBasicHeaderObj.read(fp) |
|
176 | 176 | |
|
177 | 177 | fp.close() |
|
178 | 178 | |
|
179 | 179 | thisDatetime = lastBasicHeaderObj.datatime |
|
180 | 180 | thisTime_last_block = thisDatetime.time() |
|
181 | 181 | |
|
182 | 182 | thisDatetime = firstBasicHeaderObj.datatime |
|
183 | 183 | thisDate = thisDatetime.date() |
|
184 | 184 | thisTime_first_block = thisDatetime.time() |
|
185 | 185 | |
|
186 | 186 | # General case |
|
187 | 187 | # o>>>>>>>>>>>>>><<<<<<<<<<<<<<o |
|
188 | 188 | #-----------o----------------------------o----------- |
|
189 | 189 | # startTime endTime |
|
190 | 190 | |
|
191 | 191 | if endTime >= startTime: |
|
192 | 192 | if (thisTime_last_block < startTime) or (thisTime_first_block > endTime): |
|
193 | 193 | return None |
|
194 | 194 | |
|
195 | 195 | return thisDatetime |
|
196 | 196 | |
|
197 | 197 | # If endTime < startTime then endTime belongs to the next day |
|
198 | 198 | |
|
199 | 199 | #<<<<<<<<<<<o o>>>>>>>>>>> |
|
200 | 200 | #-----------o----------------------------o----------- |
|
201 | 201 | # endTime startTime |
|
202 | 202 | |
|
203 | 203 | if (thisDate == startDate) and (thisTime_last_block < startTime): |
|
204 | 204 | return None |
|
205 | 205 | |
|
206 | 206 | if (thisDate == endDate) and (thisTime_first_block > endTime): |
|
207 | 207 | return None |
|
208 | 208 | |
|
209 | 209 | if (thisTime_last_block < startTime) and (thisTime_first_block > endTime): |
|
210 | 210 | return None |
|
211 | 211 | |
|
212 | 212 | return thisDatetime |
|
213 | 213 | |
|
214 | 214 | |
|
215 | 215 | def isFolderInDateRange(folder, startDate=None, endDate=None): |
|
216 | 216 | """ |
|
217 | 217 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. |
|
218 | 218 | |
|
219 | 219 | Inputs: |
|
220 | 220 | folder : nombre completo del directorio. |
|
221 | 221 | Su formato deberia ser "/path_root/?YYYYDDD" |
|
222 | 222 | |
|
223 | 223 | siendo: |
|
224 | 224 | YYYY : Anio (ejemplo 2015) |
|
225 | 225 | DDD : Dia del anio (ejemplo 305) |
|
226 | 226 | |
|
227 | 227 | startDate : fecha inicial del rango seleccionado en formato datetime.date |
|
228 | 228 | |
|
229 | 229 | endDate : fecha final del rango seleccionado en formato datetime.date |
|
230 | 230 | |
|
231 | 231 | Return: |
|
232 | 232 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de |
|
233 | 233 | fecha especificado, de lo contrario retorna False. |
|
234 | 234 | Excepciones: |
|
235 | 235 | Si el directorio no tiene el formato adecuado |
|
236 | 236 | """ |
|
237 | 237 | |
|
238 | 238 | basename = os.path.basename(folder) |
|
239 | 239 | |
|
240 | 240 | if not isRadarFolder(basename): |
|
241 | 241 | print("The folder %s has not the rigth format" % folder) |
|
242 | 242 | return 0 |
|
243 | 243 | |
|
244 | 244 | if startDate and endDate: |
|
245 | 245 | thisDate = getDateFromRadarFolder(basename) |
|
246 | 246 | |
|
247 | 247 | if thisDate < startDate: |
|
248 | 248 | return 0 |
|
249 | 249 | |
|
250 | 250 | if thisDate > endDate: |
|
251 | 251 | return 0 |
|
252 | 252 | |
|
253 | 253 | return 1 |
|
254 | 254 | |
|
255 | 255 | |
|
256 | 256 | def isFileInDateRange(filename, startDate=None, endDate=None): |
|
257 | 257 | """ |
|
258 | 258 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. |
|
259 | 259 | |
|
260 | 260 | Inputs: |
|
261 | 261 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) |
|
262 | 262 | |
|
263 | 263 | Su formato deberia ser "?YYYYDDDsss" |
|
264 | 264 | |
|
265 | 265 | siendo: |
|
266 | 266 | YYYY : Anio (ejemplo 2015) |
|
267 | 267 | DDD : Dia del anio (ejemplo 305) |
|
268 | 268 | sss : set |
|
269 | 269 | |
|
270 | 270 | startDate : fecha inicial del rango seleccionado en formato datetime.date |
|
271 | 271 | |
|
272 | 272 | endDate : fecha final del rango seleccionado en formato datetime.date |
|
273 | 273 | |
|
274 | 274 | Return: |
|
275 | 275 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de |
|
276 | 276 | fecha especificado, de lo contrario retorna False. |
|
277 | 277 | Excepciones: |
|
278 | 278 | Si el archivo no tiene el formato adecuado |
|
279 | 279 | """ |
|
280 | 280 | |
|
281 | 281 | basename = os.path.basename(filename) |
|
282 | 282 | |
|
283 | 283 | if not isRadarFile(basename): |
|
284 | 284 | print("The filename %s has not the rigth format" % filename) |
|
285 | 285 | return 0 |
|
286 | 286 | |
|
287 | 287 | if startDate and endDate: |
|
288 | 288 | thisDate = getDateFromRadarFile(basename) |
|
289 | 289 | |
|
290 | 290 | if thisDate < startDate: |
|
291 | 291 | return 0 |
|
292 | 292 | |
|
293 | 293 | if thisDate > endDate: |
|
294 | 294 | return 0 |
|
295 | 295 | |
|
296 | 296 | return 1 |
|
297 | 297 | |
|
298 | 298 | |
|
299 | 299 | def getFileFromSet(path, ext, set): |
|
300 | 300 | validFilelist = [] |
|
301 | 301 | fileList = os.listdir(path) |
|
302 | 302 | |
|
303 | 303 | # 0 1234 567 89A BCDE |
|
304 | 304 | # H YYYY DDD SSS .ext |
|
305 | 305 | |
|
306 | 306 | for thisFile in fileList: |
|
307 | 307 | try: |
|
308 | 308 | year = int(thisFile[1:5]) |
|
309 | 309 | doy = int(thisFile[5:8]) |
|
310 | 310 | except: |
|
311 | 311 | continue |
|
312 | 312 | |
|
313 | 313 | if (os.path.splitext(thisFile)[-1].lower() != ext.lower()): |
|
314 | 314 | continue |
|
315 | 315 | |
|
316 | 316 | validFilelist.append(thisFile) |
|
317 | 317 | |
|
318 | 318 | myfile = fnmatch.filter( |
|
319 | 319 | validFilelist, '*%4.4d%3.3d%3.3d*' % (year, doy, set)) |
|
320 | 320 | |
|
321 | 321 | if len(myfile) != 0: |
|
322 | 322 | return myfile[0] |
|
323 | 323 | else: |
|
324 | 324 | filename = '*%4.4d%3.3d%3.3d%s' % (year, doy, set, ext.lower()) |
|
325 | 325 | print('the filename %s does not exist' % filename) |
|
326 | 326 | print('...going to the last file: ') |
|
327 | 327 | |
|
328 | 328 | if validFilelist: |
|
329 | 329 | validFilelist = sorted(validFilelist, key=str.lower) |
|
330 | 330 | return validFilelist[-1] |
|
331 | 331 | |
|
332 | 332 | return None |
|
333 | 333 | |
|
334 | 334 | |
|
335 | 335 | def getlastFileFromPath(path, ext): |
|
336 | 336 | """ |
|
337 | 337 | Depura el fileList dejando solo los que cumplan el formato de "PYYYYDDDSSS.ext" |
|
338 | 338 | al final de la depuracion devuelve el ultimo file de la lista que quedo. |
|
339 | 339 | |
|
340 | 340 | Input: |
|
341 | 341 | fileList : lista conteniendo todos los files (sin path) que componen una determinada carpeta |
|
342 | 342 | ext : extension de los files contenidos en una carpeta |
|
343 | 343 | |
|
344 | 344 | Return: |
|
345 | 345 | El ultimo file de una determinada carpeta, no se considera el path. |
|
346 | 346 | """ |
|
347 | 347 | validFilelist = [] |
|
348 | 348 | fileList = os.listdir(path) |
|
349 | 349 | |
|
350 | 350 | # 0 1234 567 89A BCDE |
|
351 | 351 | # H YYYY DDD SSS .ext |
|
352 | 352 | |
|
353 | 353 | for thisFile in fileList: |
|
354 | 354 | |
|
355 | 355 | year = thisFile[1:5] |
|
356 | 356 | if not isNumber(year): |
|
357 | 357 | continue |
|
358 | 358 | |
|
359 | 359 | doy = thisFile[5:8] |
|
360 | 360 | if not isNumber(doy): |
|
361 | 361 | continue |
|
362 | 362 | |
|
363 | 363 | year = int(year) |
|
364 | 364 | doy = int(doy) |
|
365 | 365 | |
|
366 | 366 | if (os.path.splitext(thisFile)[-1].lower() != ext.lower()): |
|
367 | 367 | continue |
|
368 | 368 | |
|
369 | 369 | validFilelist.append(thisFile) |
|
370 | 370 | |
|
371 | 371 | if validFilelist: |
|
372 | 372 | validFilelist = sorted(validFilelist, key=str.lower) |
|
373 | 373 | return validFilelist[-1] |
|
374 | 374 | |
|
375 | 375 | return None |
|
376 | 376 | |
|
377 | 377 | |
|
378 | 378 | def isRadarFolder(folder): |
|
379 | 379 | try: |
|
380 | 380 | year = int(folder[1:5]) |
|
381 | 381 | doy = int(folder[5:8]) |
|
382 | 382 | except: |
|
383 | 383 | return 0 |
|
384 | 384 | |
|
385 | 385 | return 1 |
|
386 | 386 | |
|
387 | 387 | |
|
388 | 388 | def isRadarFile(file): |
|
389 | 389 | try: |
|
390 | 390 | year = int(file[1:5]) |
|
391 | 391 | doy = int(file[5:8]) |
|
392 | 392 | set = int(file[8:11]) |
|
393 | 393 | except: |
|
394 | 394 | return 0 |
|
395 | 395 | |
|
396 | 396 | return 1 |
|
397 | 397 | |
|
398 | 398 | |
|
399 | 399 | def getDateFromRadarFile(file): |
|
400 | 400 | try: |
|
401 | 401 | year = int(file[1:5]) |
|
402 | 402 | doy = int(file[5:8]) |
|
403 | 403 | set = int(file[8:11]) |
|
404 | 404 | except: |
|
405 | 405 | return None |
|
406 | 406 | |
|
407 | 407 | thisDate = datetime.date(year, 1, 1) + datetime.timedelta(doy - 1) |
|
408 | 408 | return thisDate |
|
409 | 409 | |
|
410 | 410 | |
|
411 | 411 | def getDateFromRadarFolder(folder): |
|
412 | 412 | try: |
|
413 | 413 | year = int(folder[1:5]) |
|
414 | 414 | doy = int(folder[5:8]) |
|
415 | 415 | except: |
|
416 | 416 | return None |
|
417 | 417 | |
|
418 | 418 | thisDate = datetime.date(year, 1, 1) + datetime.timedelta(doy - 1) |
|
419 | 419 | return thisDate |
|
420 | 420 | |
|
421 | 421 | def parse_format(s, fmt): |
|
422 | 422 | |
|
423 | 423 | for i in range(fmt.count('%')): |
|
424 | 424 | x = fmt.index('%') |
|
425 | 425 | d = DT_DIRECTIVES[fmt[x:x+2]] |
|
426 | 426 | fmt = fmt.replace(fmt[x:x+2], s[x:x+d]) |
|
427 | 427 | return fmt |
|
428 | 428 | |
|
429 | 429 | class Reader(object): |
|
430 | 430 | |
|
431 | 431 | c = 3E8 |
|
432 | 432 | isConfig = False |
|
433 | 433 | dtype = None |
|
434 | 434 | pathList = [] |
|
435 | 435 | filenameList = [] |
|
436 | 436 | datetimeList = [] |
|
437 | 437 | filename = None |
|
438 | 438 | ext = None |
|
439 | 439 | flagIsNewFile = 1 |
|
440 | 440 | flagDiscontinuousBlock = 0 |
|
441 | 441 | flagIsNewBlock = 0 |
|
442 | 442 | flagNoMoreFiles = 0 |
|
443 | 443 | fp = None |
|
444 | 444 | firstHeaderSize = 0 |
|
445 | 445 | basicHeaderSize = 24 |
|
446 | 446 | versionFile = 1103 |
|
447 | 447 | fileSize = None |
|
448 | 448 | fileSizeByHeader = None |
|
449 | 449 | fileIndex = -1 |
|
450 | 450 | profileIndex = None |
|
451 | 451 | blockIndex = 0 |
|
452 | 452 | nTotalBlocks = 0 |
|
453 | 453 | maxTimeStep = 30 |
|
454 | 454 | lastUTTime = None |
|
455 | 455 | datablock = None |
|
456 | 456 | dataOut = None |
|
457 | 457 | getByBlock = False |
|
458 | 458 | path = None |
|
459 | 459 | startDate = None |
|
460 | 460 | endDate = None |
|
461 | 461 | startTime = datetime.time(0, 0, 0) |
|
462 | 462 | endTime = datetime.time(23, 59, 59) |
|
463 | 463 | set = None |
|
464 | 464 | expLabel = "" |
|
465 | 465 | online = False |
|
466 | 466 | delay = 60 |
|
467 | 467 | nTries = 3 # quantity tries |
|
468 | 468 | nFiles = 3 # number of files for searching |
|
469 | 469 | walk = True |
|
470 | 470 | getblock = False |
|
471 | 471 | nTxs = 1 |
|
472 | 472 | realtime = False |
|
473 | 473 | blocksize = 0 |
|
474 | 474 | blocktime = None |
|
475 | 475 | warnings = True |
|
476 | 476 | verbose = True |
|
477 | 477 | server = None |
|
478 | topic = None | |
|
478 | 479 | format = None |
|
479 | 480 | oneDDict = None |
|
480 | 481 | twoDDict = None |
|
481 | 482 | independentParam = None |
|
482 | 483 | filefmt = None |
|
483 | 484 | folderfmt = None |
|
484 | 485 | open_file = open |
|
485 | 486 | open_mode = 'rb' |
|
486 | 487 | |
|
487 | 488 | def run(self): |
|
488 | 489 | |
|
489 | 490 | raise NotImplementedError |
|
490 | 491 | |
|
491 | 492 | def getAllowedArgs(self): |
|
492 | 493 | if hasattr(self, '__attrs__'): |
|
493 | 494 | return self.__attrs__ |
|
494 | 495 | else: |
|
495 | 496 | return inspect.getargspec(self.run).args |
|
496 | 497 | |
|
497 | 498 | def set_kwargs(self, **kwargs): |
|
498 | 499 | |
|
499 | 500 | for key, value in kwargs.items(): |
|
500 | 501 | setattr(self, key, value) |
|
501 | 502 | |
|
502 | 503 | def find_folders(self, path, startDate, endDate, folderfmt, last=False): |
|
503 | 504 | |
|
504 | 505 | folders = [x for f in path.split(',') |
|
505 | 506 | for x in os.listdir(f) if os.path.isdir(os.path.join(f, x))] |
|
506 | 507 | folders.sort() |
|
507 | 508 | |
|
508 | 509 | if last: |
|
509 | 510 | folders = [folders[-1]] |
|
510 | 511 | |
|
511 | 512 | for folder in folders: |
|
512 | 513 | try: |
|
513 | 514 | dt = datetime.datetime.strptime(parse_format(folder, folderfmt), folderfmt).date() |
|
514 | 515 | if dt >= startDate and dt <= endDate: |
|
515 | 516 | yield os.path.join(path, folder) |
|
516 | 517 | else: |
|
517 | 518 | log.log('Skiping folder {}'.format(folder), self.name) |
|
518 | 519 | except Exception as e: |
|
519 | 520 | log.log('Skiping folder {}'.format(folder), self.name) |
|
520 | 521 | continue |
|
521 | 522 | return |
|
522 | 523 | |
|
523 | 524 | def find_files(self, folders, ext, filefmt, startDate=None, endDate=None, |
|
524 | 525 | expLabel='', last=False): |
|
525 | 526 | for path in folders: |
|
526 | 527 | files = glob.glob1(path+'/'+expLabel, '*{}'.format(ext)) |
|
527 | 528 | files.sort() |
|
528 | 529 | if last: |
|
529 | 530 | if files: |
|
530 | 531 | fo = files[-1] |
|
531 | 532 | try: |
|
532 | 533 | dt = datetime.datetime.strptime(parse_format(fo, filefmt), filefmt).date() |
|
533 | 534 | yield os.path.join(path, expLabel, fo) |
|
534 | 535 | except Exception as e: |
|
535 | 536 | pass |
|
536 | 537 | return |
|
537 | 538 | else: |
|
538 | 539 | return |
|
539 | 540 | |
|
540 | 541 | for fo in files: |
|
541 | 542 | try: |
|
542 | 543 | dt = datetime.datetime.strptime(parse_format(fo, filefmt), filefmt).date() |
|
543 | 544 | #print(dt) |
|
544 | 545 | #print(startDate) |
|
545 | 546 | #print(endDate) |
|
546 | 547 | if dt >= startDate and dt <= endDate: |
|
547 | 548 | |
|
548 | 549 | yield os.path.join(path, expLabel, fo) |
|
549 | 550 | |
|
550 | 551 | else: |
|
551 | 552 | |
|
552 | 553 | log.log('Skiping file {}'.format(fo), self.name) |
|
553 | 554 | except Exception as e: |
|
554 | 555 | log.log('Skiping file {}'.format(fo), self.name) |
|
555 | 556 | continue |
|
556 | 557 | |
|
557 | 558 | def searchFilesOffLine(self, path, startDate, endDate, |
|
558 | 559 | expLabel, ext, walk, |
|
559 | 560 | filefmt, folderfmt): |
|
560 | 561 | """Search files in offline mode for the given arguments |
|
561 | 562 | |
|
562 | 563 | Return: |
|
563 | 564 | Generator of files |
|
564 | 565 | """ |
|
565 | 566 | |
|
566 | 567 | if walk: |
|
567 | 568 | folders = self.find_folders( |
|
568 | 569 | path, startDate, endDate, folderfmt) |
|
569 | 570 | #print("folders: ", folders) |
|
570 | 571 | else: |
|
571 | 572 | folders = path.split(',') |
|
572 | 573 | |
|
573 | 574 | return self.find_files( |
|
574 | 575 | folders, ext, filefmt, startDate, endDate, expLabel) |
|
575 | 576 | |
|
576 | 577 | def searchFilesOnLine(self, path, startDate, endDate, |
|
577 | 578 | expLabel, ext, walk, |
|
578 | 579 | filefmt, folderfmt): |
|
579 | 580 | """Search for the last file of the last folder |
|
580 | 581 | |
|
581 | 582 | Arguments: |
|
582 | 583 | path : carpeta donde estan contenidos los files que contiene data |
|
583 | 584 | expLabel : Nombre del subexperimento (subfolder) |
|
584 | 585 | ext : extension de los files |
|
585 | 586 | walk : Si es habilitado no realiza busquedas dentro de los ubdirectorios (doypath) |
|
586 | 587 | |
|
587 | 588 | Return: |
|
588 | 589 | generator with the full path of last filename |
|
589 | 590 | """ |
|
590 | 591 | |
|
591 | 592 | if walk: |
|
592 | 593 | folders = self.find_folders( |
|
593 | 594 | path, startDate, endDate, folderfmt, last=True) |
|
594 | 595 | else: |
|
595 | 596 | folders = path.split(',') |
|
596 | 597 | |
|
597 | 598 | return self.find_files( |
|
598 | 599 | folders, ext, filefmt, startDate, endDate, expLabel, last=True) |
|
599 | 600 | |
|
600 | 601 | def setNextFile(self): |
|
601 | 602 | """Set the next file to be readed open it and parse de file header""" |
|
602 | 603 | |
|
603 | 604 | #print("fp: ",self.fp) |
|
604 | 605 | while True: |
|
605 | 606 | |
|
606 | 607 | #print(self.fp) |
|
607 | 608 | if self.fp != None: |
|
608 | 609 | self.fp.close() |
|
609 | 610 | |
|
610 | 611 | #print("setNextFile") |
|
611 | 612 | #print("BEFORE OPENING",self.filename) |
|
612 | 613 | if self.online: |
|
613 | 614 | newFile = self.setNextFileOnline() |
|
614 | 615 | |
|
615 | 616 | else: |
|
616 | 617 | |
|
617 | 618 | newFile = self.setNextFileOffline() |
|
618 | 619 | |
|
619 | 620 | #print("newFile: ",newFile) |
|
620 | 621 | if not(newFile): |
|
621 | 622 | |
|
622 | 623 | if self.online: |
|
623 | 624 | raise schainpy.admin.SchainError('Time to wait for new files reach') |
|
624 | 625 | else: |
|
625 | 626 | if self.fileIndex == -1: |
|
626 | 627 | #print("OKK") |
|
627 | 628 | raise schainpy.admin.SchainWarning('No files found in the given path') |
|
628 | 629 | else: |
|
629 | 630 | |
|
630 | 631 | raise schainpy.admin.SchainWarning('No more files to read') |
|
631 | 632 | |
|
632 | 633 | if self.verifyFile(self.filename): |
|
633 | 634 | |
|
634 | 635 | break |
|
635 | 636 | |
|
636 | 637 | ##print("BEFORE OPENING",self.filename) |
|
637 | 638 | |
|
638 | 639 | log.log('Opening file: %s' % self.filename, self.name) |
|
639 | 640 | |
|
640 | 641 | self.readFirstHeader() |
|
641 | 642 | self.nReadBlocks = 0 |
|
642 | 643 | |
|
643 | 644 | def setNextFileOnline(self): |
|
644 | 645 | """Check for the next file to be readed in online mode. |
|
645 | 646 | |
|
646 | 647 | Set: |
|
647 | 648 | self.filename |
|
648 | 649 | self.fp |
|
649 | 650 | self.filesize |
|
650 | 651 | |
|
651 | 652 | Return: |
|
652 | 653 | boolean |
|
653 | 654 | |
|
654 | 655 | """ |
|
655 | 656 | |
|
656 | 657 | nextFile = True |
|
657 | 658 | nextDay = False |
|
658 | 659 | |
|
659 | 660 | for nFiles in range(self.nFiles+1): |
|
660 | 661 | for nTries in range(self.nTries): |
|
661 | 662 | fullfilename, filename = self.checkForRealPath(nextFile, nextDay) |
|
662 | 663 | if fullfilename is not None: |
|
663 | 664 | break |
|
664 | 665 | log.warning( |
|
665 | 666 | "Waiting %0.2f sec for the next file: \"%s\" , try %02d ..." % (self.delay, filename, nTries + 1), |
|
666 | 667 | self.name) |
|
667 | 668 | time.sleep(self.delay) |
|
668 | 669 | nextFile = False |
|
669 | 670 | continue |
|
670 | 671 | |
|
671 | 672 | if fullfilename is not None: |
|
672 | 673 | break |
|
673 | 674 | |
|
674 | 675 | #self.nTries = 1 |
|
675 | 676 | nextFile = True |
|
676 | 677 | |
|
677 | 678 | if nFiles == (self.nFiles - 1): |
|
678 | 679 | log.log('Trying with next day...', self.name) |
|
679 | 680 | nextDay = True |
|
680 | 681 | self.nTries = 3 |
|
681 | 682 | |
|
682 | 683 | if fullfilename: |
|
683 | 684 | self.fileSize = os.path.getsize(fullfilename) |
|
684 | 685 | self.filename = fullfilename |
|
685 | 686 | self.flagIsNewFile = 1 |
|
686 | 687 | if self.fp != None: |
|
687 | 688 | self.fp.close() |
|
688 | 689 | #print(fullfilename) |
|
689 | 690 | self.fp = self.open_file(fullfilename, self.open_mode) |
|
690 | 691 | |
|
691 | 692 | self.flagNoMoreFiles = 0 |
|
692 | 693 | self.fileIndex += 1 |
|
693 | 694 | return 1 |
|
694 | 695 | else: |
|
695 | 696 | return 0 |
|
696 | 697 | |
|
697 | 698 | def setNextFileOffline(self): |
|
698 | 699 | """Open the next file to be readed in offline mode""" |
|
699 | 700 | |
|
700 | 701 | try: |
|
701 | 702 | filename = next(self.filenameList) |
|
702 | 703 | self.fileIndex +=1 |
|
703 | 704 | except StopIteration: |
|
704 | 705 | self.flagNoMoreFiles = 1 |
|
705 | 706 | return 0 |
|
706 | 707 | #print(self.fileIndex) |
|
707 | 708 | #print(filename) |
|
708 | 709 | self.filename = filename |
|
709 | 710 | self.fileSize = os.path.getsize(filename) |
|
710 | 711 | self.fp = self.open_file(filename, self.open_mode) |
|
711 | 712 | self.flagIsNewFile = 1 |
|
712 | 713 | |
|
713 | 714 | return 1 |
|
714 | 715 | |
|
715 | 716 | @staticmethod |
|
716 | 717 | def isDateTimeInRange(dt, startDate, endDate, startTime, endTime): |
|
717 | 718 | """Check if the given datetime is in range""" |
|
718 | 719 | |
|
719 | 720 | if startDate <= dt.date() <= endDate: |
|
720 | 721 | if startTime <= dt.time() <= endTime: |
|
721 | 722 | return True |
|
722 | 723 | return False |
|
723 | 724 | |
|
724 | 725 | def verifyFile(self, filename): |
|
725 | 726 | """Check for a valid file |
|
726 | 727 | |
|
727 | 728 | Arguments: |
|
728 | 729 | filename -- full path filename |
|
729 | 730 | |
|
730 | 731 | Return: |
|
731 | 732 | boolean |
|
732 | 733 | """ |
|
733 | 734 | |
|
734 | 735 | return True |
|
735 | 736 | |
|
736 | 737 | def checkForRealPath(self, nextFile, nextDay): |
|
737 | 738 | """Check if the next file to be readed exists""" |
|
738 | 739 | |
|
739 | 740 | raise NotImplementedError |
|
740 | 741 | |
|
741 | 742 | def readFirstHeader(self): |
|
742 | 743 | """Parse the file header""" |
|
743 | 744 | |
|
744 | 745 | |
|
745 | 746 | pass |
|
746 | 747 | |
|
747 | 748 | def waitDataBlock(self, pointer_location, blocksize=None): |
|
748 | 749 | """ |
|
749 | 750 | """ |
|
750 | 751 | |
|
751 | 752 | currentPointer = pointer_location |
|
752 | 753 | if blocksize is None: |
|
753 | 754 | neededSize = self.processingHeaderObj.blockSize # + self.basicHeaderSize |
|
754 | 755 | else: |
|
755 | 756 | neededSize = blocksize |
|
756 | 757 | |
|
757 | 758 | for nTries in range(self.nTries): |
|
758 | 759 | self.fp.close() |
|
759 | 760 | self.fp = open(self.filename, 'rb') |
|
760 | 761 | self.fp.seek(currentPointer) |
|
761 | 762 | |
|
762 | 763 | self.fileSize = os.path.getsize(self.filename) |
|
763 | 764 | currentSize = self.fileSize - currentPointer |
|
764 | 765 | |
|
765 | 766 | if (currentSize >= neededSize): |
|
766 | 767 | return 1 |
|
767 | 768 | |
|
768 | 769 | log.warning( |
|
769 | 770 | "Waiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries + 1), |
|
770 | 771 | self.name |
|
771 | 772 | ) |
|
772 | 773 | time.sleep(self.delay) |
|
773 | 774 | |
|
774 | 775 | return 0 |
|
775 | 776 | |
|
776 | 777 | class JRODataReader(Reader): |
|
777 | 778 | |
|
778 | 779 | utc = 0 |
|
779 | 780 | nReadBlocks = 0 |
|
780 | 781 | foldercounter = 0 |
|
781 | 782 | firstHeaderSize = 0 |
|
782 | 783 | basicHeaderSize = 24 |
|
783 | 784 | __isFirstTimeOnline = 1 |
|
785 | topic = '' | |
|
784 | 786 | filefmt = "*%Y%j***" |
|
785 | 787 | folderfmt = "*%Y%j" |
|
786 | 788 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'online', 'delay', 'walk'] |
|
787 | 789 | |
|
788 | 790 | def getDtypeWidth(self): |
|
789 | 791 | |
|
790 | 792 | dtype_index = get_dtype_index(self.dtype) |
|
791 | 793 | dtype_width = get_dtype_width(dtype_index) |
|
792 | 794 | |
|
793 | 795 | return dtype_width |
|
794 | 796 | |
|
795 | 797 | def checkForRealPath(self, nextFile, nextDay): |
|
796 | 798 | """Check if the next file to be readed exists. |
|
797 | 799 | |
|
798 | 800 | Example : |
|
799 | 801 | nombre correcto del file es .../.../D2009307/P2009307367.ext |
|
800 | 802 | |
|
801 | 803 | Entonces la funcion prueba con las siguientes combinaciones |
|
802 | 804 | .../.../y2009307367.ext |
|
803 | 805 | .../.../Y2009307367.ext |
|
804 | 806 | .../.../x2009307/y2009307367.ext |
|
805 | 807 | .../.../x2009307/Y2009307367.ext |
|
806 | 808 | .../.../X2009307/y2009307367.ext |
|
807 | 809 | .../.../X2009307/Y2009307367.ext |
|
808 | 810 | siendo para este caso, la ultima combinacion de letras, identica al file buscado |
|
809 | 811 | |
|
810 | 812 | Return: |
|
811 | 813 | str -- fullpath of the file |
|
812 | 814 | """ |
|
813 | 815 | |
|
814 | 816 | |
|
815 | 817 | if nextFile: |
|
816 | 818 | self.set += 1 |
|
817 | 819 | if nextDay: |
|
818 | 820 | self.set = 0 |
|
819 | 821 | self.doy += 1 |
|
820 | 822 | foldercounter = 0 |
|
821 | 823 | prefixDirList = [None, 'd', 'D'] |
|
822 | 824 | if self.ext.lower() == ".r": # voltage |
|
823 | 825 | prefixFileList = ['d', 'D'] |
|
824 | 826 | elif self.ext.lower() == ".pdata": # spectra |
|
825 | 827 | prefixFileList = ['p', 'P'] |
|
826 | 828 | |
|
827 | 829 | ##############DP############## |
|
828 | 830 | |
|
829 | 831 | elif self.ext.lower() == ".dat": # dat |
|
830 | 832 | prefixFileList = ['z', 'Z'] |
|
831 | 833 | |
|
832 | 834 | |
|
833 | 835 | |
|
834 | 836 | ##############DP############## |
|
835 | 837 | # barrido por las combinaciones posibles |
|
836 | 838 | for prefixDir in prefixDirList: |
|
837 | 839 | thispath = self.path |
|
838 | 840 | if prefixDir != None: |
|
839 | 841 | # formo el nombre del directorio xYYYYDDD (x=d o x=D) |
|
840 | 842 | if foldercounter == 0: |
|
841 | 843 | thispath = os.path.join(self.path, "%s%04d%03d" % |
|
842 | 844 | (prefixDir, self.year, self.doy)) |
|
843 | 845 | else: |
|
844 | 846 | thispath = os.path.join(self.path, "%s%04d%03d_%02d" % ( |
|
845 | 847 | prefixDir, self.year, self.doy, foldercounter)) |
|
846 | 848 | for prefixFile in prefixFileList: # barrido por las dos combinaciones posibles de "D" |
|
847 | 849 | # formo el nombre del file xYYYYDDDSSS.ext |
|
848 | 850 | filename = "%s%04d%03d%03d%s" % (prefixFile, self.year, self.doy, self.set, self.ext) |
|
849 | 851 | fullfilename = os.path.join( |
|
850 | 852 | thispath, filename) |
|
851 | 853 | |
|
852 | 854 | if os.path.exists(fullfilename): |
|
853 | 855 | return fullfilename, filename |
|
854 | 856 | |
|
855 | 857 | return None, filename |
|
856 | 858 | |
|
857 | 859 | def __waitNewBlock(self): |
|
858 | 860 | """ |
|
859 | 861 | Return 1 si se encontro un nuevo bloque de datos, 0 de otra forma. |
|
860 | 862 | |
|
861 | 863 | Si el modo de lectura es OffLine siempre retorn 0 |
|
862 | 864 | """ |
|
863 | 865 | if not self.online: |
|
864 | 866 | return 0 |
|
865 | 867 | |
|
866 | 868 | if (self.nReadBlocks >= self.processingHeaderObj.dataBlocksPerFile): |
|
867 | 869 | return 0 |
|
868 | 870 | |
|
869 | 871 | currentPointer = self.fp.tell() |
|
870 | 872 | |
|
871 | 873 | neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize |
|
872 | 874 | |
|
873 | 875 | for nTries in range(self.nTries): |
|
874 | 876 | |
|
875 | 877 | self.fp.close() |
|
876 | 878 | self.fp = open(self.filename, 'rb') |
|
877 | 879 | self.fp.seek(currentPointer) |
|
878 | 880 | |
|
879 | 881 | self.fileSize = os.path.getsize(self.filename) |
|
880 | 882 | currentSize = self.fileSize - currentPointer |
|
881 | 883 | |
|
882 | 884 | if (currentSize >= neededSize): |
|
883 | 885 | self.basicHeaderObj.read(self.fp) |
|
884 | 886 | return 1 |
|
885 | 887 | |
|
886 | 888 | if self.fileSize == self.fileSizeByHeader: |
|
887 | 889 | # self.flagEoF = True |
|
888 | 890 | return 0 |
|
889 | 891 | |
|
890 | 892 | print("[Reading] Waiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries + 1)) |
|
891 | 893 | #print(self.filename) |
|
892 | 894 | time.sleep(self.delay) |
|
893 | 895 | |
|
894 | 896 | return 0 |
|
895 | 897 | |
|
896 | 898 | def __setNewBlock(self): |
|
897 | 899 | |
|
898 | 900 | if self.fp == None: |
|
899 | 901 | return 0 |
|
900 | 902 | |
|
901 | 903 | if self.flagIsNewFile: |
|
902 | 904 | self.lastUTTime = self.basicHeaderObj.utc |
|
903 | 905 | return 1 |
|
904 | 906 | |
|
905 | 907 | if self.realtime: |
|
906 | 908 | self.flagDiscontinuousBlock = 1 |
|
907 | 909 | if not(self.setNextFile()): |
|
908 | 910 | return 0 |
|
909 | 911 | else: |
|
910 | 912 | return 1 |
|
911 | 913 | |
|
912 | 914 | currentSize = self.fileSize - self.fp.tell() |
|
913 | 915 | neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize |
|
914 | 916 | |
|
915 | 917 | if (currentSize >= neededSize): |
|
916 | 918 | self.basicHeaderObj.read(self.fp) |
|
917 | 919 | self.lastUTTime = self.basicHeaderObj.utc |
|
918 | 920 | return 1 |
|
919 | 921 | |
|
920 | 922 | if self.__waitNewBlock(): |
|
921 | 923 | self.lastUTTime = self.basicHeaderObj.utc |
|
922 | 924 | return 1 |
|
923 | 925 | |
|
924 | 926 | if not(self.setNextFile()): |
|
925 | 927 | return 0 |
|
926 | 928 | |
|
927 | 929 | deltaTime = self.basicHeaderObj.utc - self.lastUTTime |
|
928 | 930 | self.lastUTTime = self.basicHeaderObj.utc |
|
929 | 931 | |
|
930 | 932 | self.flagDiscontinuousBlock = 0 |
|
931 | 933 | if deltaTime > self.maxTimeStep: |
|
932 | 934 | self.flagDiscontinuousBlock = 1 |
|
933 | 935 | |
|
934 | 936 | return 1 |
|
935 | 937 | |
|
936 | 938 | def readNextBlock(self): |
|
937 | 939 | |
|
938 | 940 | while True: |
|
939 | 941 | if not(self.__setNewBlock()): |
|
940 | 942 | continue |
|
941 | 943 | |
|
942 | 944 | if not(self.readBlock()): |
|
943 | 945 | return 0 |
|
944 | 946 | |
|
945 | 947 | self.getBasicHeader() |
|
946 | 948 | |
|
947 | 949 | if not self.isDateTimeInRange(self.dataOut.datatime, self.startDate, self.endDate, self.startTime, self.endTime): |
|
948 | 950 | print("[Reading] Block No. %d/%d -> %s [Skipping]" % (self.nReadBlocks, |
|
949 | 951 | self.processingHeaderObj.dataBlocksPerFile, |
|
950 | 952 | self.dataOut.datatime.ctime())) |
|
951 | 953 | continue |
|
952 | 954 | |
|
953 | 955 | break |
|
954 | 956 | |
|
955 | 957 | if self.verbose: |
|
956 | 958 | print("[Reading] Block No. %d/%d -> %s" % (self.nReadBlocks, |
|
957 | 959 | self.processingHeaderObj.dataBlocksPerFile, |
|
958 | 960 | self.dataOut.datatime.ctime())) |
|
959 | 961 | #################DP################# |
|
960 | 962 | self.dataOut.TimeBlockDate=self.dataOut.datatime.ctime() |
|
961 | 963 | self.dataOut.TimeBlockSeconds=time.mktime(time.strptime(self.dataOut.datatime.ctime())) |
|
962 | 964 | #################DP################# |
|
963 | 965 | return 1 |
|
964 | 966 | |
|
965 | 967 | def readFirstHeader(self): |
|
966 | 968 | |
|
967 | 969 | self.basicHeaderObj.read(self.fp) |
|
968 | 970 | self.systemHeaderObj.read(self.fp) |
|
969 | 971 | self.radarControllerHeaderObj.read(self.fp) |
|
970 | 972 | self.processingHeaderObj.read(self.fp) |
|
971 | 973 | self.firstHeaderSize = self.basicHeaderObj.size |
|
972 | 974 | |
|
973 | 975 | datatype = int(numpy.log2((self.processingHeaderObj.processFlags & |
|
974 | 976 | PROCFLAG.DATATYPE_MASK)) - numpy.log2(PROCFLAG.DATATYPE_CHAR)) |
|
975 | 977 | if datatype == 0: |
|
976 | 978 | datatype_str = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
977 | 979 | elif datatype == 1: |
|
978 | 980 | datatype_str = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
979 | 981 | elif datatype == 2: |
|
980 | 982 | datatype_str = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
981 | 983 | elif datatype == 3: |
|
982 | 984 | datatype_str = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
983 | 985 | elif datatype == 4: |
|
984 | 986 | datatype_str = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
985 | 987 | elif datatype == 5: |
|
986 | 988 | datatype_str = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
987 | 989 | else: |
|
988 | 990 | raise ValueError('Data type was not defined') |
|
989 | 991 | |
|
990 | 992 | self.dtype = datatype_str |
|
991 | 993 | #self.ippSeconds = 2 * 1000 * self.radarControllerHeaderObj.ipp / self.c |
|
992 | 994 | self.fileSizeByHeader = self.processingHeaderObj.dataBlocksPerFile * self.processingHeaderObj.blockSize + \ |
|
993 | 995 | self.firstHeaderSize + self.basicHeaderSize * \ |
|
994 | 996 | (self.processingHeaderObj.dataBlocksPerFile - 1) |
|
995 | 997 | # self.dataOut.channelList = numpy.arange(self.systemHeaderObj.numChannels) |
|
996 | 998 | # self.dataOut.channelIndexList = numpy.arange(self.systemHeaderObj.numChannels) |
|
997 | 999 | self.getBlockDimension() |
|
998 | 1000 | |
|
999 | 1001 | def verifyFile(self, filename): |
|
1000 | 1002 | |
|
1001 | 1003 | flag = True |
|
1002 | 1004 | |
|
1003 | 1005 | try: |
|
1004 | 1006 | fp = open(filename, 'rb') |
|
1005 | 1007 | except IOError: |
|
1006 | 1008 | log.error("File {} can't be opened".format(filename), self.name) |
|
1007 | 1009 | return False |
|
1008 | 1010 | |
|
1009 | 1011 | if self.online and self.waitDataBlock(0): |
|
1010 | 1012 | pass |
|
1011 | 1013 | |
|
1012 | 1014 | basicHeaderObj = BasicHeader(LOCALTIME) |
|
1013 | 1015 | systemHeaderObj = SystemHeader() |
|
1014 | 1016 | radarControllerHeaderObj = RadarControllerHeader() |
|
1015 | 1017 | processingHeaderObj = ProcessingHeader() |
|
1016 | 1018 | |
|
1017 | 1019 | if not(basicHeaderObj.read(fp)): |
|
1018 | 1020 | flag = False |
|
1019 | 1021 | if not(systemHeaderObj.read(fp)): |
|
1020 | 1022 | flag = False |
|
1021 | 1023 | if not(radarControllerHeaderObj.read(fp)): |
|
1022 | 1024 | flag = False |
|
1023 | 1025 | if not(processingHeaderObj.read(fp)): |
|
1024 | 1026 | flag = False |
|
1025 | 1027 | if not self.online: |
|
1026 | 1028 | dt1 = basicHeaderObj.datatime |
|
1027 | 1029 | pos = self.fileSize-processingHeaderObj.blockSize-24 |
|
1028 | 1030 | if pos<0: |
|
1029 | 1031 | flag = False |
|
1030 | 1032 | log.error('Invalid size for file: {}'.format(self.filename), self.name) |
|
1031 | 1033 | else: |
|
1032 | 1034 | fp.seek(pos) |
|
1033 | 1035 | if not(basicHeaderObj.read(fp)): |
|
1034 | 1036 | flag = False |
|
1035 | 1037 | dt2 = basicHeaderObj.datatime |
|
1036 | 1038 | if not self.isDateTimeInRange(dt1, self.startDate, self.endDate, self.startTime, self.endTime) and not \ |
|
1037 | 1039 | self.isDateTimeInRange(dt2, self.startDate, self.endDate, self.startTime, self.endTime): |
|
1038 | 1040 | flag = False |
|
1039 | 1041 | |
|
1040 | 1042 | fp.close() |
|
1041 | 1043 | return flag |
|
1042 | 1044 | |
|
1043 | 1045 | def findDatafiles(self, path, startDate=None, endDate=None, expLabel='', ext='.r', walk=True, include_path=False): |
|
1044 | 1046 | |
|
1045 | 1047 | path_empty = True |
|
1046 | 1048 | |
|
1047 | 1049 | dateList = [] |
|
1048 | 1050 | pathList = [] |
|
1049 | 1051 | |
|
1050 | 1052 | multi_path = path.split(',') |
|
1051 | 1053 | |
|
1052 | 1054 | if not walk: |
|
1053 | 1055 | |
|
1054 | 1056 | for single_path in multi_path: |
|
1055 | 1057 | |
|
1056 | 1058 | if not os.path.isdir(single_path): |
|
1057 | 1059 | continue |
|
1058 | 1060 | |
|
1059 | 1061 | fileList = glob.glob1(single_path, "*" + ext) |
|
1060 | 1062 | |
|
1061 | 1063 | if not fileList: |
|
1062 | 1064 | continue |
|
1063 | 1065 | |
|
1064 | 1066 | path_empty = False |
|
1065 | 1067 | |
|
1066 | 1068 | fileList.sort() |
|
1067 | 1069 | |
|
1068 | 1070 | for thisFile in fileList: |
|
1069 | 1071 | |
|
1070 | 1072 | if not os.path.isfile(os.path.join(single_path, thisFile)): |
|
1071 | 1073 | continue |
|
1072 | 1074 | |
|
1073 | 1075 | if not isRadarFile(thisFile): |
|
1074 | 1076 | continue |
|
1075 | 1077 | |
|
1076 | 1078 | if not isFileInDateRange(thisFile, startDate, endDate): |
|
1077 | 1079 | continue |
|
1078 | 1080 | |
|
1079 | 1081 | thisDate = getDateFromRadarFile(thisFile) |
|
1080 | 1082 | |
|
1081 | 1083 | if thisDate in dateList or single_path in pathList: |
|
1082 | 1084 | continue |
|
1083 | 1085 | |
|
1084 | 1086 | dateList.append(thisDate) |
|
1085 | 1087 | pathList.append(single_path) |
|
1086 | 1088 | |
|
1087 | 1089 | else: |
|
1088 | 1090 | for single_path in multi_path: |
|
1089 | 1091 | |
|
1090 | 1092 | if not os.path.isdir(single_path): |
|
1091 | 1093 | continue |
|
1092 | 1094 | |
|
1093 | 1095 | dirList = [] |
|
1094 | 1096 | |
|
1095 | 1097 | for thisPath in os.listdir(single_path): |
|
1096 | 1098 | |
|
1097 | 1099 | if not os.path.isdir(os.path.join(single_path, thisPath)): |
|
1098 | 1100 | continue |
|
1099 | 1101 | |
|
1100 | 1102 | if not isRadarFolder(thisPath): |
|
1101 | 1103 | continue |
|
1102 | 1104 | |
|
1103 | 1105 | if not isFolderInDateRange(thisPath, startDate, endDate): |
|
1104 | 1106 | continue |
|
1105 | 1107 | |
|
1106 | 1108 | dirList.append(thisPath) |
|
1107 | 1109 | |
|
1108 | 1110 | if not dirList: |
|
1109 | 1111 | continue |
|
1110 | 1112 | |
|
1111 | 1113 | dirList.sort() |
|
1112 | 1114 | |
|
1113 | 1115 | for thisDir in dirList: |
|
1114 | 1116 | |
|
1115 | 1117 | datapath = os.path.join(single_path, thisDir, expLabel) |
|
1116 | 1118 | fileList = glob.glob1(datapath, "*" + ext) |
|
1117 | 1119 | |
|
1118 | 1120 | if not fileList: |
|
1119 | 1121 | continue |
|
1120 | 1122 | |
|
1121 | 1123 | path_empty = False |
|
1122 | 1124 | |
|
1123 | 1125 | thisDate = getDateFromRadarFolder(thisDir) |
|
1124 | 1126 | |
|
1125 | 1127 | pathList.append(datapath) |
|
1126 | 1128 | dateList.append(thisDate) |
|
1127 | 1129 | |
|
1128 | 1130 | dateList.sort() |
|
1129 | 1131 | |
|
1130 | 1132 | if walk: |
|
1131 | 1133 | pattern_path = os.path.join(multi_path[0], "[dYYYYDDD]", expLabel) |
|
1132 | 1134 | else: |
|
1133 | 1135 | pattern_path = multi_path[0] |
|
1134 | 1136 | |
|
1135 | 1137 | if path_empty: |
|
1136 | 1138 | raise schainpy.admin.SchainError("[Reading] No *%s files in %s for %s to %s" % (ext, pattern_path, startDate, endDate)) |
|
1137 | 1139 | else: |
|
1138 | 1140 | if not dateList: |
|
1139 | 1141 | raise schainpy.admin.SchainError("[Reading] Date range selected invalid [%s - %s]: No *%s files in %s)" % (startDate, endDate, ext, path)) |
|
1140 | 1142 | |
|
1141 | 1143 | if include_path: |
|
1142 | 1144 | return dateList, pathList |
|
1143 | 1145 | |
|
1144 | 1146 | return dateList |
|
1145 | 1147 | |
|
1146 | 1148 | def setup(self, **kwargs): |
|
1147 | 1149 | |
|
1148 | 1150 | self.set_kwargs(**kwargs) |
|
1149 | 1151 | if not self.ext.startswith('.'): |
|
1150 | 1152 | self.ext = '.{}'.format(self.ext) |
|
1151 | 1153 | |
|
1152 | 1154 | if self.server is not None: |
|
1153 | 1155 | if 'tcp://' in self.server: |
|
1154 | address = server | |
|
1156 | address = self.server | |
|
1155 | 1157 | else: |
|
1156 | 1158 | address = 'ipc:///tmp/%s' % self.server |
|
1157 | 1159 | self.server = address |
|
1158 | 1160 | self.context = zmq.Context() |
|
1159 |
self.receiver = self.context.socket(zmq. |
|
|
1161 | self.receiver = self.context.socket(zmq.SUB) | |
|
1160 | 1162 | self.receiver.connect(self.server) |
|
1163 | self.receiver.setsockopt(zmq.SUBSCRIBE, str.encode(str(self.topic))) | |
|
1161 | 1164 | time.sleep(0.5) |
|
1162 | 1165 | print('[Starting] ReceiverData from {}'.format(self.server)) |
|
1163 | 1166 | else: |
|
1164 | 1167 | self.server = None |
|
1165 | 1168 | if self.path == None: |
|
1166 | 1169 | raise ValueError("[Reading] The path is not valid") |
|
1167 | 1170 | |
|
1168 | 1171 | if self.online: |
|
1169 | 1172 | log.log("[Reading] Searching files in online mode...", self.name) |
|
1170 | 1173 | |
|
1171 | 1174 | for nTries in range(self.nTries): |
|
1172 | 1175 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
1173 | 1176 | self.endDate, self.expLabel, self.ext, self.walk, |
|
1174 | 1177 | self.filefmt, self.folderfmt) |
|
1175 | 1178 | |
|
1176 | 1179 | try: |
|
1177 | 1180 | fullpath = next(fullpath) |
|
1178 | 1181 | except: |
|
1179 | 1182 | fullpath = None |
|
1180 | 1183 | |
|
1181 | 1184 | if fullpath: |
|
1182 | 1185 | break |
|
1183 | 1186 | |
|
1184 | 1187 | log.warning( |
|
1185 | 1188 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
1186 | 1189 | self.delay, self.path, nTries + 1), |
|
1187 | 1190 | self.name) |
|
1188 | 1191 | time.sleep(self.delay) |
|
1189 | 1192 | |
|
1190 | 1193 | if not(fullpath): |
|
1191 | 1194 | raise schainpy.admin.SchainError( |
|
1192 | 1195 | 'There isn\'t any valid file in {}'.format(self.path)) |
|
1193 | 1196 | |
|
1194 | 1197 | pathname, filename = os.path.split(fullpath) |
|
1195 | 1198 | self.year = int(filename[1:5]) |
|
1196 | 1199 | self.doy = int(filename[5:8]) |
|
1197 | 1200 | self.set = int(filename[8:11]) - 1 |
|
1198 | 1201 | else: |
|
1199 | 1202 | log.log("Searching files in {}".format(self.path), self.name) |
|
1200 | 1203 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
1201 | 1204 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
1202 | 1205 | |
|
1203 | 1206 | self.setNextFile() |
|
1204 | 1207 | |
|
1205 | 1208 | return |
|
1206 | 1209 | |
|
1207 | 1210 | def getBasicHeader(self): |
|
1208 | 1211 | |
|
1209 | 1212 | self.dataOut.utctime = self.basicHeaderObj.utc + self.basicHeaderObj.miliSecond / \ |
|
1210 | 1213 | 1000. + self.profileIndex * self.radarControllerHeaderObj.ippSeconds |
|
1211 | 1214 | |
|
1212 | 1215 | self.dataOut.flagDiscontinuousBlock = self.flagDiscontinuousBlock |
|
1213 | 1216 | |
|
1214 | 1217 | self.dataOut.timeZone = self.basicHeaderObj.timeZone |
|
1215 | 1218 | |
|
1216 | 1219 | self.dataOut.dstFlag = self.basicHeaderObj.dstFlag |
|
1217 | 1220 | |
|
1218 | 1221 | self.dataOut.errorCount = self.basicHeaderObj.errorCount |
|
1219 | 1222 | |
|
1220 | 1223 | self.dataOut.useLocalTime = self.basicHeaderObj.useLocalTime |
|
1221 | 1224 | |
|
1222 | 1225 | self.dataOut.ippSeconds = self.radarControllerHeaderObj.ippSeconds / self.nTxs |
|
1223 | 1226 | |
|
1224 | 1227 | def getFirstHeader(self): |
|
1225 | 1228 | |
|
1226 | 1229 | raise NotImplementedError |
|
1227 | 1230 | |
|
1228 | 1231 | def getData(self): |
|
1229 | 1232 | |
|
1230 | 1233 | raise NotImplementedError |
|
1231 | 1234 | |
|
1232 | 1235 | def hasNotDataInBuffer(self): |
|
1233 | 1236 | |
|
1234 | 1237 | raise NotImplementedError |
|
1235 | 1238 | |
|
1236 | 1239 | def readBlock(self): |
|
1237 | 1240 | |
|
1238 | 1241 | raise NotImplementedError |
|
1239 | 1242 | |
|
1240 | 1243 | def isEndProcess(self): |
|
1241 | 1244 | |
|
1242 | 1245 | return self.flagNoMoreFiles |
|
1243 | 1246 | |
|
1244 | 1247 | def printReadBlocks(self): |
|
1245 | 1248 | |
|
1246 | 1249 | print("[Reading] Number of read blocks per file %04d" % self.nReadBlocks) |
|
1247 | 1250 | |
|
1248 | 1251 | def printTotalBlocks(self): |
|
1249 | 1252 | |
|
1250 | 1253 | print("[Reading] Number of read blocks %04d" % self.nTotalBlocks) |
|
1251 | 1254 | |
|
1252 | 1255 | def run(self, **kwargs): |
|
1253 | 1256 | """ |
|
1254 | 1257 | |
|
1255 | 1258 | Arguments: |
|
1256 | 1259 | path : |
|
1257 | 1260 | startDate : |
|
1258 | 1261 | endDate : |
|
1259 | 1262 | startTime : |
|
1260 | 1263 | endTime : |
|
1261 | 1264 | set : |
|
1262 | 1265 | expLabel : |
|
1263 | 1266 | ext : |
|
1264 | 1267 | online : |
|
1265 | 1268 | delay : |
|
1266 | 1269 | walk : |
|
1267 | 1270 | getblock : |
|
1268 | 1271 | nTxs : |
|
1269 | 1272 | realtime : |
|
1270 | 1273 | blocksize : |
|
1271 | 1274 | blocktime : |
|
1272 | 1275 | skip : |
|
1273 | 1276 | cursor : |
|
1274 | 1277 | warnings : |
|
1275 | 1278 | server : |
|
1276 | 1279 | verbose : |
|
1277 | 1280 | format : |
|
1278 | 1281 | oneDDict : |
|
1279 | 1282 | twoDDict : |
|
1280 | 1283 | independentParam : |
|
1281 | 1284 | """ |
|
1282 | 1285 | |
|
1283 | 1286 | if not(self.isConfig): |
|
1284 | 1287 | self.setup(**kwargs) |
|
1285 | 1288 | self.isConfig = True |
|
1286 | 1289 | if self.server is None: |
|
1287 | 1290 | self.getData() |
|
1288 | 1291 | else: |
|
1289 | self.getFromServer() | |
|
1292 | try: | |
|
1293 | self.getFromServer() | |
|
1294 | except Exception as e: | |
|
1295 | log.warning('Invalid block...') | |
|
1296 | self.dataOut.flagNoData = True | |
|
1290 | 1297 | |
|
1291 | 1298 | |
|
1292 | 1299 | class JRODataWriter(Reader): |
|
1293 | 1300 | |
|
1294 | 1301 | """ |
|
1295 | 1302 | Esta clase permite escribir datos a archivos procesados (.r o ,pdata). La escritura |
|
1296 | 1303 | de los datos siempre se realiza por bloques. |
|
1297 | 1304 | """ |
|
1298 | 1305 | |
|
1299 | 1306 | setFile = None |
|
1300 | 1307 | profilesPerBlock = None |
|
1301 | 1308 | blocksPerFile = None |
|
1302 | 1309 | nWriteBlocks = 0 |
|
1303 | 1310 | fileDate = None |
|
1304 | 1311 | |
|
1305 | 1312 | def __init__(self, dataOut=None): |
|
1306 | 1313 | raise NotImplementedError |
|
1307 | 1314 | |
|
1308 | 1315 | def hasAllDataInBuffer(self): |
|
1309 | 1316 | raise NotImplementedError |
|
1310 | 1317 | |
|
1311 | 1318 | def setBlockDimension(self): |
|
1312 | 1319 | raise NotImplementedError |
|
1313 | 1320 | |
|
1314 | 1321 | def writeBlock(self): |
|
1315 | 1322 | raise NotImplementedError |
|
1316 | 1323 | |
|
1317 | 1324 | def putData(self): |
|
1318 | 1325 | raise NotImplementedError |
|
1319 | 1326 | |
|
1320 | 1327 | def getDtypeWidth(self): |
|
1321 | 1328 | |
|
1322 | 1329 | dtype_index = get_dtype_index(self.dtype) |
|
1323 | 1330 | dtype_width = get_dtype_width(dtype_index) |
|
1324 | 1331 | |
|
1325 | 1332 | return dtype_width |
|
1326 | 1333 | |
|
1327 | 1334 | def getProcessFlags(self): |
|
1328 | 1335 | |
|
1329 | 1336 | processFlags = 0 |
|
1330 | 1337 | |
|
1331 | 1338 | dtype_index = get_dtype_index(self.dtype) |
|
1332 | 1339 | procflag_dtype = get_procflag_dtype(dtype_index) |
|
1333 | 1340 | |
|
1334 | 1341 | processFlags += procflag_dtype |
|
1335 | 1342 | |
|
1336 | 1343 | if self.dataOut.flagDecodeData: |
|
1337 | 1344 | processFlags += PROCFLAG.DECODE_DATA |
|
1338 | 1345 | |
|
1339 | 1346 | if self.dataOut.flagDeflipData: |
|
1340 | 1347 | processFlags += PROCFLAG.DEFLIP_DATA |
|
1341 | 1348 | |
|
1342 | 1349 | if self.dataOut.code is not None: |
|
1343 | 1350 | processFlags += PROCFLAG.DEFINE_PROCESS_CODE |
|
1344 | 1351 | |
|
1345 | 1352 | if self.dataOut.nCohInt > 1: |
|
1346 | 1353 | processFlags += PROCFLAG.COHERENT_INTEGRATION |
|
1347 | 1354 | |
|
1348 | 1355 | if self.dataOut.type == "Spectra": |
|
1349 | 1356 | if self.dataOut.nIncohInt > 1: |
|
1350 | 1357 | processFlags += PROCFLAG.INCOHERENT_INTEGRATION |
|
1351 | 1358 | |
|
1352 | 1359 | if self.dataOut.data_dc is not None: |
|
1353 | 1360 | processFlags += PROCFLAG.SAVE_CHANNELS_DC |
|
1354 | 1361 | |
|
1355 | 1362 | if self.dataOut.flagShiftFFT: |
|
1356 | 1363 | processFlags += PROCFLAG.SHIFT_FFT_DATA |
|
1357 | 1364 | |
|
1358 | 1365 | return processFlags |
|
1359 | 1366 | |
|
1360 | 1367 | def setBasicHeader(self): |
|
1361 | 1368 | |
|
1362 | 1369 | self.basicHeaderObj.size = self.basicHeaderSize # bytes |
|
1363 | 1370 | self.basicHeaderObj.version = self.versionFile |
|
1364 | 1371 | self.basicHeaderObj.dataBlock = self.nTotalBlocks |
|
1365 | 1372 | utc = numpy.floor(self.dataOut.utctime) |
|
1366 | 1373 | milisecond = (self.dataOut.utctime - utc) * 1000.0 |
|
1367 | 1374 | self.basicHeaderObj.utc = utc |
|
1368 | 1375 | self.basicHeaderObj.miliSecond = milisecond |
|
1369 | 1376 | self.basicHeaderObj.timeZone = self.dataOut.timeZone |
|
1370 | 1377 | self.basicHeaderObj.dstFlag = self.dataOut.dstFlag |
|
1371 | 1378 | self.basicHeaderObj.errorCount = self.dataOut.errorCount |
|
1372 | 1379 | |
|
1373 | 1380 | def setFirstHeader(self): |
|
1374 | 1381 | """ |
|
1375 | 1382 | Obtiene una copia del First Header |
|
1376 | 1383 | |
|
1377 | 1384 | Affected: |
|
1378 | 1385 | |
|
1379 | 1386 | self.basicHeaderObj |
|
1380 | 1387 | self.systemHeaderObj |
|
1381 | 1388 | self.radarControllerHeaderObj |
|
1382 | 1389 | self.processingHeaderObj self. |
|
1383 | 1390 | |
|
1384 | 1391 | Return: |
|
1385 | 1392 | None |
|
1386 | 1393 | """ |
|
1387 | 1394 | |
|
1388 | 1395 | raise NotImplementedError |
|
1389 | 1396 | |
|
1390 | 1397 | def __writeFirstHeader(self): |
|
1391 | 1398 | """ |
|
1392 | 1399 | Escribe el primer header del file es decir el Basic header y el Long header (SystemHeader, RadarControllerHeader, ProcessingHeader) |
|
1393 | 1400 | |
|
1394 | 1401 | Affected: |
|
1395 | 1402 | __dataType |
|
1396 | 1403 | |
|
1397 | 1404 | Return: |
|
1398 | 1405 | None |
|
1399 | 1406 | """ |
|
1400 | 1407 | |
|
1401 | 1408 | # CALCULAR PARAMETROS |
|
1402 | 1409 | |
|
1403 | 1410 | sizeLongHeader = self.systemHeaderObj.size + \ |
|
1404 | 1411 | self.radarControllerHeaderObj.size + self.processingHeaderObj.size |
|
1405 | 1412 | self.basicHeaderObj.size = self.basicHeaderSize + sizeLongHeader |
|
1406 | 1413 | |
|
1407 | 1414 | self.basicHeaderObj.write(self.fp) |
|
1408 | 1415 | self.systemHeaderObj.write(self.fp) |
|
1409 | 1416 | self.radarControllerHeaderObj.write(self.fp) |
|
1410 | 1417 | self.processingHeaderObj.write(self.fp) |
|
1411 | 1418 | |
|
1412 | 1419 | def __setNewBlock(self): |
|
1413 | 1420 | """ |
|
1414 | 1421 | Si es un nuevo file escribe el First Header caso contrario escribe solo el Basic Header |
|
1415 | 1422 | |
|
1416 | 1423 | Return: |
|
1417 | 1424 | 0 : si no pudo escribir nada |
|
1418 | 1425 | 1 : Si escribio el Basic el First Header |
|
1419 | 1426 | """ |
|
1420 | 1427 | if self.fp == None: |
|
1421 | 1428 | self.setNextFile() |
|
1422 | 1429 | |
|
1423 | 1430 | if self.flagIsNewFile: |
|
1424 | 1431 | return 1 |
|
1425 | 1432 | |
|
1426 | 1433 | if self.blockIndex < self.processingHeaderObj.dataBlocksPerFile: |
|
1427 | 1434 | self.basicHeaderObj.write(self.fp) |
|
1428 | 1435 | return 1 |
|
1429 | 1436 | |
|
1430 | 1437 | if not(self.setNextFile()): |
|
1431 | 1438 | return 0 |
|
1432 | 1439 | |
|
1433 | 1440 | return 1 |
|
1434 | 1441 | |
|
1435 | 1442 | def writeNextBlock(self): |
|
1436 | 1443 | """ |
|
1437 | 1444 | Selecciona el bloque siguiente de datos y los escribe en un file |
|
1438 | 1445 | |
|
1439 | 1446 | Return: |
|
1440 | 1447 | 0 : Si no hizo pudo escribir el bloque de datos |
|
1441 | 1448 | 1 : Si no pudo escribir el bloque de datos |
|
1442 | 1449 | """ |
|
1443 | 1450 | if not(self.__setNewBlock()): |
|
1444 | 1451 | return 0 |
|
1445 | 1452 | |
|
1446 | 1453 | self.writeBlock() |
|
1447 | 1454 | |
|
1448 | 1455 | print("[Writing] Block No. %d/%d" % (self.blockIndex, |
|
1449 | 1456 | self.processingHeaderObj.dataBlocksPerFile)) |
|
1450 | 1457 | |
|
1451 | 1458 | return 1 |
|
1452 | 1459 | |
|
1453 | 1460 | def setNextFile(self): |
|
1454 | 1461 | """Determina el siguiente file que sera escrito |
|
1455 | 1462 | |
|
1456 | 1463 | Affected: |
|
1457 | 1464 | self.filename |
|
1458 | 1465 | self.subfolder |
|
1459 | 1466 | self.fp |
|
1460 | 1467 | self.setFile |
|
1461 | 1468 | self.flagIsNewFile |
|
1462 | 1469 | |
|
1463 | 1470 | Return: |
|
1464 | 1471 | 0 : Si el archivo no puede ser escrito |
|
1465 | 1472 | 1 : Si el archivo esta listo para ser escrito |
|
1466 | 1473 | """ |
|
1467 | 1474 | ext = self.ext |
|
1468 | 1475 | path = self.path |
|
1469 | 1476 | |
|
1470 | 1477 | if self.fp != None: |
|
1471 | 1478 | self.fp.close() |
|
1472 | 1479 | |
|
1473 | if not os.path.exists(path): | |
|
1474 | os.mkdir(path) | |
|
1475 | ||
|
1476 | 1480 | timeTuple = time.localtime(self.dataOut.utctime) |
|
1477 | 1481 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year, timeTuple.tm_yday) |
|
1478 | 1482 | |
|
1479 | 1483 | fullpath = os.path.join(path, subfolder) |
|
1480 | 1484 | setFile = self.setFile |
|
1481 | 1485 | |
|
1482 | 1486 | if not(os.path.exists(fullpath)): |
|
1483 | os.mkdir(fullpath) | |
|
1487 | os.makedirs(fullpath) | |
|
1484 | 1488 | setFile = -1 # inicializo mi contador de seteo |
|
1485 | 1489 | else: |
|
1486 | 1490 | filesList = os.listdir(fullpath) |
|
1487 | 1491 | if len(filesList) > 0: |
|
1488 | 1492 | filesList = sorted(filesList, key=str.lower) |
|
1489 | 1493 | filen = filesList[-1] |
|
1490 | 1494 | # el filename debera tener el siguiente formato |
|
1491 | 1495 | # 0 1234 567 89A BCDE (hex) |
|
1492 | 1496 | # x YYYY DDD SSS .ext |
|
1493 | 1497 | if isNumber(filen[8:11]): |
|
1494 | 1498 | # inicializo mi contador de seteo al seteo del ultimo file |
|
1495 | 1499 | setFile = int(filen[8:11]) |
|
1496 | 1500 | else: |
|
1497 | 1501 | setFile = -1 |
|
1498 | 1502 | else: |
|
1499 | 1503 | setFile = -1 # inicializo mi contador de seteo |
|
1500 | 1504 | |
|
1501 | 1505 | setFile += 1 |
|
1502 | 1506 | |
|
1503 | 1507 | # If this is a new day it resets some values |
|
1504 | 1508 | if self.dataOut.datatime.date() > self.fileDate: |
|
1505 | 1509 | setFile = 0 |
|
1506 | 1510 | self.nTotalBlocks = 0 |
|
1507 | 1511 | |
|
1508 | 1512 | filen = '{}{:04d}{:03d}{:03d}{}'.format( |
|
1509 | 1513 | self.optchar, timeTuple.tm_year, timeTuple.tm_yday, setFile, ext) |
|
1510 | 1514 | |
|
1511 | 1515 | filename = os.path.join(path, subfolder, filen) |
|
1512 | 1516 | |
|
1513 | 1517 | fp = open(filename, 'wb') |
|
1514 | 1518 | |
|
1515 | 1519 | self.blockIndex = 0 |
|
1516 | 1520 | self.filename = filename |
|
1517 | 1521 | self.subfolder = subfolder |
|
1518 | 1522 | self.fp = fp |
|
1519 | 1523 | self.setFile = setFile |
|
1520 | 1524 | self.flagIsNewFile = 1 |
|
1521 | 1525 | self.fileDate = self.dataOut.datatime.date() |
|
1522 | 1526 | self.setFirstHeader() |
|
1523 | 1527 | |
|
1524 | 1528 | print('[Writing] Opening file: %s' % self.filename) |
|
1525 | 1529 | |
|
1526 | 1530 | self.__writeFirstHeader() |
|
1527 | 1531 | |
|
1528 | 1532 | return 1 |
|
1529 | 1533 | |
|
1530 | 1534 | def setup(self, dataOut, path, blocksPerFile, profilesPerBlock=64, set=None, ext=None, datatype=4): |
|
1531 | 1535 | """ |
|
1532 | 1536 | Setea el tipo de formato en la cual sera guardada la data y escribe el First Header |
|
1533 | 1537 | |
|
1534 | 1538 | Inputs: |
|
1535 | 1539 | path : directory where data will be saved |
|
1536 | 1540 | profilesPerBlock : number of profiles per block |
|
1537 | 1541 | set : initial file set |
|
1538 | 1542 | datatype : An integer number that defines data type: |
|
1539 | 1543 | 0 : int8 (1 byte) |
|
1540 | 1544 | 1 : int16 (2 bytes) |
|
1541 | 1545 | 2 : int32 (4 bytes) |
|
1542 | 1546 | 3 : int64 (8 bytes) |
|
1543 | 1547 | 4 : float32 (4 bytes) |
|
1544 | 1548 | 5 : double64 (8 bytes) |
|
1545 | 1549 | |
|
1546 | 1550 | Return: |
|
1547 | 1551 | 0 : Si no realizo un buen seteo |
|
1548 | 1552 | 1 : Si realizo un buen seteo |
|
1549 | 1553 | """ |
|
1550 | 1554 | |
|
1551 | 1555 | if ext == None: |
|
1552 | 1556 | ext = self.ext |
|
1553 | 1557 | |
|
1554 | 1558 | self.ext = ext.lower() |
|
1555 | 1559 | |
|
1556 | 1560 | self.path = path |
|
1557 | 1561 | |
|
1558 | 1562 | if set is None: |
|
1559 | 1563 | self.setFile = -1 |
|
1560 | 1564 | else: |
|
1561 | 1565 | self.setFile = set - 1 |
|
1562 | 1566 | |
|
1563 | 1567 | self.blocksPerFile = blocksPerFile |
|
1564 | 1568 | self.profilesPerBlock = profilesPerBlock |
|
1565 | 1569 | self.dataOut = dataOut |
|
1566 | 1570 | self.fileDate = self.dataOut.datatime.date() |
|
1567 | 1571 | self.dtype = self.dataOut.dtype |
|
1568 | 1572 | |
|
1569 | 1573 | if datatype is not None: |
|
1570 | 1574 | self.dtype = get_numpy_dtype(datatype) |
|
1571 | 1575 | |
|
1572 | 1576 | if not(self.setNextFile()): |
|
1573 | 1577 | print("[Writing] There isn't a next file") |
|
1574 | 1578 | return 0 |
|
1575 | 1579 | |
|
1576 | 1580 | self.setBlockDimension() |
|
1577 | 1581 | |
|
1578 | 1582 | return 1 |
|
1579 | 1583 | |
|
1580 | 1584 | def run(self, dataOut, path, blocksPerFile=100, profilesPerBlock=64, set=None, ext=None, datatype=4, **kwargs): |
|
1581 | 1585 | |
|
1582 | 1586 | if not(self.isConfig): |
|
1583 | 1587 | |
|
1584 | 1588 | self.setup(dataOut, path, blocksPerFile, profilesPerBlock=profilesPerBlock, |
|
1585 | 1589 | set=set, ext=ext, datatype=datatype, **kwargs) |
|
1586 | 1590 | self.isConfig = True |
|
1587 | 1591 | |
|
1588 | 1592 | self.dataOut = dataOut |
|
1589 | 1593 | self.putData() |
|
1590 | 1594 | return self.dataOut |
|
1591 | 1595 | |
|
1592 | 1596 | @MPDecorator |
|
1593 | 1597 | class printInfo(Operation): |
|
1594 | 1598 | |
|
1595 | 1599 | def __init__(self): |
|
1596 | 1600 | |
|
1597 | 1601 | Operation.__init__(self) |
|
1598 | 1602 | self.__printInfo = True |
|
1599 | 1603 | |
|
1600 | 1604 | def run(self, dataOut, headers = ['systemHeaderObj', 'radarControllerHeaderObj', 'processingHeaderObj']): |
|
1601 | 1605 | if self.__printInfo == False: |
|
1602 | 1606 | return |
|
1603 | 1607 | |
|
1604 | 1608 | for header in headers: |
|
1605 | 1609 | if hasattr(dataOut, header): |
|
1606 | 1610 | obj = getattr(dataOut, header) |
|
1607 | 1611 | if hasattr(obj, 'printInfo'): |
|
1608 | 1612 | obj.printInfo() |
|
1609 | 1613 | else: |
|
1610 | 1614 | print(obj) |
|
1611 | 1615 | else: |
|
1612 | 1616 | log.warning('Header {} Not found in object'.format(header)) |
|
1613 | 1617 | |
|
1614 | 1618 | self.__printInfo = False |
@@ -1,649 +1,650 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Aug 1, 2017 |
|
3 | 3 | |
|
4 | 4 | @author: Juan C. Espinoza |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import os |
|
8 | 8 | import sys |
|
9 | 9 | import time |
|
10 | 10 | import json |
|
11 | 11 | import glob |
|
12 | 12 | import datetime |
|
13 | 13 | |
|
14 | 14 | import numpy |
|
15 | 15 | import h5py |
|
16 | 16 | |
|
17 | 17 | import schainpy.admin |
|
18 | 18 | from schainpy.model.io.jroIO_base import LOCALTIME, Reader |
|
19 | 19 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
20 | 20 | from schainpy.model.data.jrodata import Parameters |
|
21 | 21 | from schainpy.utils import log |
|
22 | 22 | |
|
23 | 23 | try: |
|
24 | 24 | import madrigal.cedar |
|
25 | 25 | except: |
|
26 | 26 | pass |
|
27 | 27 | |
|
28 | 28 | try: |
|
29 | 29 | basestring |
|
30 | 30 | except: |
|
31 | 31 | basestring = str |
|
32 | 32 | |
|
33 | 33 | DEF_CATALOG = { |
|
34 | 34 | 'principleInvestigator': 'Marco Milla', |
|
35 | 35 | 'expPurpose': '', |
|
36 | 36 | 'cycleTime': '', |
|
37 | 37 | 'correlativeExp': '', |
|
38 | 38 | 'sciRemarks': '', |
|
39 | 39 | 'instRemarks': '' |
|
40 | 40 | } |
|
41 | 41 | |
|
42 | 42 | DEF_HEADER = { |
|
43 | 43 | 'kindatDesc': '', |
|
44 | 44 | 'analyst': 'Jicamarca User', |
|
45 | 45 | 'comments': '', |
|
46 | 46 | 'history': '' |
|
47 | 47 | } |
|
48 | 48 | |
|
49 | 49 | MNEMONICS = { |
|
50 | 50 | 10: 'jro', |
|
51 | 12: 'jmp', | |
|
51 | 52 | 11: 'jbr', |
|
52 | 53 | 14: 'jmp', #Added by R. Flores |
|
53 | 54 | 840: 'jul', |
|
54 | 55 | 13: 'jas', |
|
55 | 56 | 1000: 'pbr', |
|
56 | 57 | 1001: 'hbr', |
|
57 | 58 | 1002: 'obr', |
|
58 | 59 | 400: 'clr' |
|
59 | 60 | |
|
60 | 61 | } |
|
61 | 62 | |
|
62 | 63 | UT1970 = datetime.datetime(1970, 1, 1) - datetime.timedelta(seconds=time.timezone) |
|
63 | 64 | |
|
64 | 65 | def load_json(obj): |
|
65 | 66 | ''' |
|
66 | 67 | Parse json as string instead of unicode |
|
67 | 68 | ''' |
|
68 | 69 | |
|
69 | 70 | if isinstance(obj, str): |
|
70 | 71 | iterable = json.loads(obj) |
|
71 | 72 | else: |
|
72 | 73 | iterable = obj |
|
73 | 74 | |
|
74 | 75 | if isinstance(iterable, dict): |
|
75 | 76 | return {str(k): load_json(v) if isinstance(v, dict) else str(v) if isinstance(v, basestring) else v |
|
76 | 77 | for k, v in list(iterable.items())} |
|
77 | 78 | elif isinstance(iterable, (list, tuple)): |
|
78 | 79 | return [str(v) if isinstance(v, basestring) else v for v in iterable] |
|
79 | 80 | |
|
80 | 81 | return iterable |
|
81 | 82 | |
|
82 | 83 | |
|
83 | 84 | class MADReader(Reader, ProcessingUnit): |
|
84 | 85 | |
|
85 | 86 | def __init__(self): |
|
86 | 87 | |
|
87 | 88 | ProcessingUnit.__init__(self) |
|
88 | 89 | |
|
89 | 90 | self.dataOut = Parameters() |
|
90 | 91 | self.counter_records = 0 |
|
91 | 92 | self.nrecords = None |
|
92 | 93 | self.flagNoMoreFiles = 0 |
|
93 | 94 | self.filename = None |
|
94 | 95 | self.intervals = set() |
|
95 | 96 | self.datatime = datetime.datetime(1900,1,1) |
|
96 | 97 | self.format = None |
|
97 | 98 | self.filefmt = "***%Y%m%d*******" |
|
98 | 99 | |
|
99 | 100 | def setup(self, **kwargs): |
|
100 | 101 | |
|
101 | 102 | self.set_kwargs(**kwargs) |
|
102 | 103 | self.oneDDict = load_json(self.oneDDict) |
|
103 | 104 | self.twoDDict = load_json(self.twoDDict) |
|
104 | 105 | self.ind2DList = load_json(self.ind2DList) |
|
105 | 106 | self.independentParam = self.ind2DList[0] |
|
106 | 107 | |
|
107 | 108 | if self.path is None: |
|
108 | 109 | raise ValueError('The path is not valid') |
|
109 | 110 | |
|
110 | 111 | self.open_file = open |
|
111 | 112 | self.open_mode = 'rb' |
|
112 | 113 | |
|
113 | 114 | if self.format is None: |
|
114 | 115 | raise ValueError('The format is not valid choose simple or hdf5') |
|
115 | 116 | elif self.format.lower() in ('simple', 'txt'): |
|
116 | 117 | self.ext = '.txt' |
|
117 | 118 | elif self.format.lower() in ('cedar',): |
|
118 | 119 | self.ext = '.001' |
|
119 | 120 | else: |
|
120 | 121 | self.ext = '.hdf5' |
|
121 | 122 | self.open_file = h5py.File |
|
122 | 123 | self.open_mode = 'r' |
|
123 | 124 | |
|
124 | 125 | if self.online: |
|
125 | 126 | log.log("Searching files in online mode...", self.name) |
|
126 | 127 | |
|
127 | 128 | for nTries in range(self.nTries): |
|
128 | 129 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
129 | 130 | self.endDate, self.expLabel, self.ext, self.walk, |
|
130 | 131 | self.filefmt, self.folderfmt) |
|
131 | 132 | |
|
132 | 133 | try: |
|
133 | 134 | fullpath = next(fullpath) |
|
134 | 135 | except: |
|
135 | 136 | fullpath = None |
|
136 | 137 | |
|
137 | 138 | if fullpath: |
|
138 | 139 | break |
|
139 | 140 | |
|
140 | 141 | log.warning( |
|
141 | 142 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
142 | 143 | self.delay, self.path, nTries + 1), |
|
143 | 144 | self.name) |
|
144 | 145 | time.sleep(self.delay) |
|
145 | 146 | |
|
146 | 147 | if not(fullpath): |
|
147 | 148 | raise schainpy.admin.SchainError( |
|
148 | 149 | 'There isn\'t any valid file in {}'.format(self.path)) |
|
149 | 150 | |
|
150 | 151 | else: |
|
151 | 152 | log.log("Searching files in {}".format(self.path), self.name) |
|
152 | 153 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
153 | 154 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
154 | 155 | |
|
155 | 156 | self.setNextFile() |
|
156 | 157 | |
|
157 | 158 | def readFirstHeader(self): |
|
158 | 159 | '''Read header and data''' |
|
159 | 160 | |
|
160 | 161 | self.parseHeader() |
|
161 | 162 | self.parseData() |
|
162 | 163 | self.blockIndex = 0 |
|
163 | 164 | |
|
164 | 165 | return |
|
165 | 166 | |
|
166 | 167 | def parseHeader(self): |
|
167 | 168 | ''' |
|
168 | 169 | ''' |
|
169 | 170 | |
|
170 | 171 | self.output = {} |
|
171 | 172 | self.version = '2' |
|
172 | 173 | s_parameters = None |
|
173 | 174 | if self.ext == '.txt': |
|
174 | 175 | self.parameters = [s.strip().lower() for s in self.fp.readline().decode().strip().split(' ') if s] |
|
175 | 176 | elif self.ext == '.hdf5': |
|
176 | 177 | self.metadata = self.fp['Metadata'] |
|
177 | 178 | if '_record_layout' in self.metadata: |
|
178 | 179 | s_parameters = [s[0].lower().decode() for s in self.metadata['Independent Spatial Parameters']] |
|
179 | 180 | self.version = '3' |
|
180 | 181 | self.parameters = [s[0].lower().decode() for s in self.metadata['Data Parameters']] |
|
181 | 182 | |
|
182 | 183 | log.success('Parameters found: {}'.format(self.parameters), |
|
183 | 184 | 'MADReader') |
|
184 | 185 | if s_parameters: |
|
185 | 186 | log.success('Spatial parameters found: {}'.format(s_parameters), |
|
186 | 187 | 'MADReader') |
|
187 | 188 | |
|
188 | 189 | for param in list(self.oneDDict.keys()): |
|
189 | 190 | if param.lower() not in self.parameters: |
|
190 | 191 | log.warning( |
|
191 | 192 | 'Parameter {} not found will be ignored'.format( |
|
192 | 193 | param), |
|
193 | 194 | 'MADReader') |
|
194 | 195 | self.oneDDict.pop(param, None) |
|
195 | 196 | |
|
196 | 197 | for param, value in list(self.twoDDict.items()): |
|
197 | 198 | if param.lower() not in self.parameters: |
|
198 | 199 | log.warning( |
|
199 | 200 | 'Parameter {} not found, it will be ignored'.format( |
|
200 | 201 | param), |
|
201 | 202 | 'MADReader') |
|
202 | 203 | self.twoDDict.pop(param, None) |
|
203 | 204 | continue |
|
204 | 205 | if isinstance(value, list): |
|
205 | 206 | if value[0] not in self.output: |
|
206 | 207 | self.output[value[0]] = [] |
|
207 | 208 | self.output[value[0]].append([]) |
|
208 | 209 | |
|
209 | 210 | def parseData(self): |
|
210 | 211 | ''' |
|
211 | 212 | ''' |
|
212 | 213 | |
|
213 | 214 | if self.ext == '.txt': |
|
214 | 215 | self.data = numpy.genfromtxt(self.fp, missing_values=('missing')) |
|
215 | 216 | self.nrecords = self.data.shape[0] |
|
216 | 217 | self.ranges = numpy.unique(self.data[:,self.parameters.index(self.independentParam.lower())]) |
|
217 | 218 | self.counter_records = 0 |
|
218 | 219 | elif self.ext == '.hdf5': |
|
219 | 220 | self.data = self.fp['Data'] |
|
220 | 221 | self.ranges = numpy.unique(self.data['Table Layout'][self.independentParam.lower()]) |
|
221 | 222 | self.times = numpy.unique(self.data['Table Layout']['ut1_unix']) |
|
222 | 223 | self.counter_records = int(self.data['Table Layout']['recno'][0]) |
|
223 | 224 | self.nrecords = int(self.data['Table Layout']['recno'][-1]) |
|
224 | 225 | |
|
225 | 226 | def readNextBlock(self): |
|
226 | 227 | |
|
227 | 228 | while True: |
|
228 | 229 | self.flagDiscontinuousBlock = 0 |
|
229 | 230 | if self.counter_records == self.nrecords: |
|
230 | 231 | self.setNextFile() |
|
231 | 232 | |
|
232 | 233 | self.readBlock() |
|
233 | 234 | |
|
234 | 235 | if (self.datatime < datetime.datetime.combine(self.startDate, self.startTime)) or \ |
|
235 | 236 | (self.datatime > datetime.datetime.combine(self.endDate, self.endTime)): |
|
236 | 237 | log.warning( |
|
237 | 238 | 'Reading Record No. {}/{} -> {} [Skipping]'.format( |
|
238 | 239 | self.counter_records, |
|
239 | 240 | self.nrecords, |
|
240 | 241 | self.datatime.ctime()), |
|
241 | 242 | 'MADReader') |
|
242 | 243 | continue |
|
243 | 244 | break |
|
244 | 245 | |
|
245 | 246 | log.log( |
|
246 | 247 | 'Reading Record No. {}/{} -> {}'.format( |
|
247 | 248 | self.counter_records, |
|
248 | 249 | self.nrecords, |
|
249 | 250 | self.datatime.ctime()), |
|
250 | 251 | 'MADReader') |
|
251 | 252 | |
|
252 | 253 | return 1 |
|
253 | 254 | |
|
254 | 255 | def readBlock(self): |
|
255 | 256 | ''' |
|
256 | 257 | ''' |
|
257 | 258 | dum = [] |
|
258 | 259 | if self.ext == '.txt': |
|
259 | 260 | dt = self.data[self.counter_records][:6].astype(int) |
|
260 | 261 | if datetime.datetime(dt[0], dt[1], dt[2], dt[3], dt[4], dt[5]).date() > self.datatime.date(): |
|
261 | 262 | self.flagDiscontinuousBlock = 1 |
|
262 | 263 | self.datatime = datetime.datetime(dt[0], dt[1], dt[2], dt[3], dt[4], dt[5]) |
|
263 | 264 | while True: |
|
264 | 265 | dt = self.data[self.counter_records][:6].astype(int) |
|
265 | 266 | datatime = datetime.datetime(dt[0], dt[1], dt[2], dt[3], dt[4], dt[5]) |
|
266 | 267 | if datatime == self.datatime: |
|
267 | 268 | dum.append(self.data[self.counter_records]) |
|
268 | 269 | self.counter_records += 1 |
|
269 | 270 | if self.counter_records == self.nrecords: |
|
270 | 271 | break |
|
271 | 272 | continue |
|
272 | 273 | self.intervals.add((datatime-self.datatime).seconds) |
|
273 | 274 | break |
|
274 | 275 | elif self.ext == '.hdf5': |
|
275 | 276 | datatime = datetime.datetime.utcfromtimestamp( |
|
276 | 277 | self.times[self.counter_records]) |
|
277 | 278 | dum = self.data['Table Layout'][self.data['Table Layout']['recno']==self.counter_records] |
|
278 | 279 | self.intervals.add((datatime-self.datatime).seconds) |
|
279 | 280 | if datatime.date()>self.datatime.date(): |
|
280 | 281 | self.flagDiscontinuousBlock = 1 |
|
281 | 282 | self.datatime = datatime |
|
282 | 283 | self.counter_records += 1 |
|
283 | 284 | |
|
284 | 285 | self.buffer = numpy.array(dum) |
|
285 | 286 | return |
|
286 | 287 | |
|
287 | 288 | def set_output(self): |
|
288 | 289 | ''' |
|
289 | 290 | Storing data from buffer to dataOut object |
|
290 | 291 | ''' |
|
291 | 292 | |
|
292 | 293 | parameters = [None for __ in self.parameters] |
|
293 | 294 | |
|
294 | 295 | for param, attr in list(self.oneDDict.items()): |
|
295 | 296 | x = self.parameters.index(param.lower()) |
|
296 | 297 | setattr(self.dataOut, attr, self.buffer[0][x]) |
|
297 | 298 | |
|
298 | 299 | for param, value in list(self.twoDDict.items()): |
|
299 | 300 | dummy = numpy.zeros(self.ranges.shape) + numpy.nan |
|
300 | 301 | if self.ext == '.txt': |
|
301 | 302 | x = self.parameters.index(param.lower()) |
|
302 | 303 | y = self.parameters.index(self.independentParam.lower()) |
|
303 | 304 | ranges = self.buffer[:,y] |
|
304 | 305 | #if self.ranges.size == ranges.size: |
|
305 | 306 | # continue |
|
306 | 307 | index = numpy.where(numpy.in1d(self.ranges, ranges))[0] |
|
307 | 308 | dummy[index] = self.buffer[:,x] |
|
308 | 309 | else: |
|
309 | 310 | ranges = self.buffer[self.independentParam.lower()] |
|
310 | 311 | index = numpy.where(numpy.in1d(self.ranges, ranges))[0] |
|
311 | 312 | dummy[index] = self.buffer[param.lower()] |
|
312 | 313 | |
|
313 | 314 | if isinstance(value, str): |
|
314 | 315 | if value not in self.independentParam: |
|
315 | 316 | setattr(self.dataOut, value, dummy.reshape(1,-1)) |
|
316 | 317 | elif isinstance(value, list): |
|
317 | 318 | self.output[value[0]][value[1]] = dummy |
|
318 | 319 | parameters[value[1]] = param |
|
319 | 320 | for key, value in list(self.output.items()): |
|
320 | 321 | setattr(self.dataOut, key, numpy.array(value)) |
|
321 | 322 | |
|
322 | 323 | self.dataOut.parameters = [s for s in parameters if s] |
|
323 | 324 | self.dataOut.heightList = self.ranges |
|
324 | 325 | self.dataOut.utctime = (self.datatime - datetime.datetime(1970, 1, 1)).total_seconds() |
|
325 | 326 | self.dataOut.utctimeInit = self.dataOut.utctime |
|
326 | 327 | self.dataOut.paramInterval = min(self.intervals) |
|
327 | 328 | self.dataOut.useLocalTime = False |
|
328 | 329 | self.dataOut.flagNoData = False |
|
329 | 330 | self.dataOut.nrecords = self.nrecords |
|
330 | 331 | self.dataOut.flagDiscontinuousBlock = self.flagDiscontinuousBlock |
|
331 | 332 | |
|
332 | 333 | def getData(self): |
|
333 | 334 | ''' |
|
334 | 335 | Storing data from databuffer to dataOut object |
|
335 | 336 | ''' |
|
336 | 337 | |
|
337 | 338 | if not self.readNextBlock(): |
|
338 | 339 | self.dataOut.flagNoData = True |
|
339 | 340 | return 0 |
|
340 | 341 | |
|
341 | 342 | self.set_output() |
|
342 | 343 | |
|
343 | 344 | return 1 |
|
344 | 345 | |
|
345 | 346 | def run(self, **kwargs): |
|
346 | 347 | |
|
347 | 348 | if not(self.isConfig): |
|
348 | 349 | self.setup(**kwargs) |
|
349 | 350 | self.isConfig = True |
|
350 | 351 | |
|
351 | 352 | self.getData() |
|
352 | 353 | |
|
353 | 354 | return |
|
354 | 355 | |
|
355 | 356 | @MPDecorator |
|
356 | 357 | class MADWriter(Operation): |
|
357 | 358 | '''Writing module for Madrigal files |
|
358 | 359 | |
|
359 | 360 | type: external |
|
360 | 361 | |
|
361 | 362 | Inputs: |
|
362 | 363 | path path where files will be created |
|
363 | 364 | oneDDict json of one-dimensional parameters in record where keys |
|
364 | 365 | are Madrigal codes (integers or mnemonics) and values the corresponding |
|
365 | 366 | dataOut attribute e.g: { |
|
366 | 367 | 'gdlatr': 'lat', |
|
367 | 368 | 'gdlonr': 'lon', |
|
368 | 369 | 'gdlat2':'lat', |
|
369 | 370 | 'glon2':'lon'} |
|
370 | 371 | ind2DList list of independent spatial two-dimensional parameters e.g: |
|
371 | 372 | ['heigthList'] |
|
372 | 373 | twoDDict json of two-dimensional parameters in record where keys |
|
373 | 374 | are Madrigal codes (integers or mnemonics) and values the corresponding |
|
374 | 375 | dataOut attribute if multidimensional array specify as tupple |
|
375 | 376 | ('attr', pos) e.g: { |
|
376 | 377 | 'gdalt': 'heightList', |
|
377 | 378 | 'vn1p2': ('data_output', 0), |
|
378 | 379 | 'vn2p2': ('data_output', 1), |
|
379 | 380 | 'vn3': ('data_output', 2), |
|
380 | 381 | 'snl': ('data_SNR', 'db') |
|
381 | 382 | } |
|
382 | 383 | metadata json of madrigal metadata (kinst, kindat, catalog and header) |
|
383 | 384 | format hdf5, cedar |
|
384 | 385 | blocks number of blocks per file''' |
|
385 | 386 | |
|
386 | 387 | __attrs__ = ['path', 'oneDDict', 'ind2DList', 'twoDDict','metadata', 'format', 'blocks'] |
|
387 | 388 | missing = -32767 |
|
388 | 389 | currentDay = None |
|
389 | 390 | |
|
390 | 391 | def __init__(self): |
|
391 | 392 | |
|
392 | 393 | Operation.__init__(self) |
|
393 | 394 | self.dataOut = Parameters() |
|
394 | 395 | self.counter = 0 |
|
395 | 396 | self.path = None |
|
396 | 397 | self.fp = None |
|
397 | 398 | |
|
398 | 399 | def run(self, dataOut, path, oneDDict, ind2DList='[]', twoDDict='{}', |
|
399 | 400 | metadata='{}', format='cedar', **kwargs): |
|
400 | 401 | |
|
401 | 402 | |
|
402 | 403 | #if dataOut.AUX==1: #Modified |
|
403 | 404 | |
|
404 | 405 | if not self.isConfig: |
|
405 | 406 | self.setup(path, oneDDict, ind2DList, twoDDict, metadata, format, **kwargs) |
|
406 | 407 | self.isConfig = True |
|
407 | 408 | |
|
408 | 409 | self.dataOut = dataOut |
|
409 | 410 | self.putData() |
|
410 | 411 | |
|
411 | 412 | return 1 |
|
412 | 413 | |
|
413 | 414 | def setup(self, path, oneDDict, ind2DList, twoDDict, metadata, format, **kwargs): |
|
414 | 415 | ''' |
|
415 | 416 | Configure Operation |
|
416 | 417 | ''' |
|
417 | 418 | |
|
418 | 419 | self.path = path |
|
419 | 420 | self.blocks = kwargs.get('blocks', None) |
|
420 | 421 | self.counter = 0 |
|
421 | 422 | self.oneDDict = load_json(oneDDict) |
|
422 | 423 | self.twoDDict = load_json(twoDDict) |
|
423 | 424 | self.ind2DList = load_json(ind2DList) |
|
424 | 425 | meta = load_json(metadata) |
|
425 | 426 | self.kinst = meta.get('kinst') |
|
426 | 427 | self.kindat = meta.get('kindat') |
|
427 | 428 | self.catalog = meta.get('catalog', DEF_CATALOG) |
|
428 | 429 | self.header = meta.get('header', DEF_HEADER) |
|
429 | 430 | if format == 'cedar': |
|
430 | 431 | self.ext = '.dat' |
|
431 | 432 | self.extra_args = {} |
|
432 | 433 | elif format == 'hdf5': |
|
433 | 434 | self.ext = '.hdf5' |
|
434 | 435 | self.extra_args = {'ind2DList': self.ind2DList} |
|
435 | 436 | |
|
436 | 437 | self.keys = [k.lower() for k in self.twoDDict] |
|
437 | 438 | if 'range' in self.keys: |
|
438 | 439 | self.keys.remove('range') |
|
439 | 440 | if 'gdalt' in self.keys: |
|
440 | 441 | self.keys.remove('gdalt') |
|
441 | 442 | |
|
442 | 443 | def setFile(self): |
|
443 | 444 | ''' |
|
444 | 445 | Create new cedar file object |
|
445 | 446 | ''' |
|
446 | 447 | |
|
447 | 448 | self.mnemonic = MNEMONICS[self.kinst] #TODO get mnemonic from madrigal |
|
448 | 449 | date = datetime.datetime.utcfromtimestamp(self.dataOut.utctime) |
|
449 | 450 | #if self.dataOut.input_dat_type: |
|
450 | 451 | #date=datetime.datetime.fromtimestamp(self.dataOut.TimeBlockSeconds_for_dp_power) |
|
451 | 452 | #print("date",date) |
|
452 | 453 | |
|
453 | 454 | filename = '{}{}{}'.format(self.mnemonic, |
|
454 | 455 | date.strftime('%Y%m%d_%H%M%S'), |
|
455 | 456 | self.ext) |
|
456 | 457 | |
|
457 | 458 | self.fullname = os.path.join(self.path, filename) |
|
458 | 459 | |
|
459 | 460 | if os.path.isfile(self.fullname) : |
|
460 | 461 | log.warning( |
|
461 | 462 | 'Destination file {} already exists, previous file deleted.'.format( |
|
462 | 463 | self.fullname), |
|
463 | 464 | 'MADWriter') |
|
464 | 465 | os.remove(self.fullname) |
|
465 | 466 | |
|
466 | 467 | try: |
|
467 | 468 | log.success( |
|
468 | 469 | 'Creating file: {}'.format(self.fullname), |
|
469 | 470 | 'MADWriter') |
|
470 | 471 | if not os.path.exists(self.path): |
|
471 | 472 | os.makedirs(self.path) |
|
472 | 473 | self.fp = madrigal.cedar.MadrigalCedarFile(self.fullname, True) |
|
473 | 474 | |
|
474 | 475 | |
|
475 | 476 | except ValueError as e: |
|
476 | 477 | log.error( |
|
477 | 478 | 'Impossible to create a cedar object with "madrigal.cedar.MadrigalCedarFile"', |
|
478 | 479 | 'MADWriter') |
|
479 | 480 | return |
|
480 | 481 | |
|
481 | 482 | return 1 |
|
482 | 483 | |
|
483 | 484 | def writeBlock(self): |
|
484 | 485 | ''' |
|
485 | 486 | Add data records to cedar file taking data from oneDDict and twoDDict |
|
486 | 487 | attributes. |
|
487 | 488 | Allowed parameters in: parcodes.tab |
|
488 | 489 | ''' |
|
489 | 490 | #self.dataOut.paramInterval=2 |
|
490 | 491 | startTime = datetime.datetime.utcfromtimestamp(self.dataOut.utctime) |
|
491 | 492 | |
|
492 | 493 | endTime = startTime + datetime.timedelta(seconds=self.dataOut.paramInterval) |
|
493 | 494 | |
|
494 | 495 | #if self.dataOut.input_dat_type: |
|
495 | 496 | #if self.dataOut.experiment=="DP": |
|
496 | 497 | #startTime=datetime.datetime.fromtimestamp(self.dataOut.TimeBlockSeconds_for_dp_power) |
|
497 | 498 | #endTime = startTime + datetime.timedelta(seconds=self.dataOut.paramInterval) |
|
498 | 499 | |
|
499 | 500 | |
|
500 | 501 | #print("2: ",startTime) |
|
501 | 502 | #print(endTime) |
|
502 | 503 | heights = self.dataOut.heightList |
|
503 | 504 | #print(heights) |
|
504 | 505 | #exit(1) |
|
505 | 506 | #print(self.blocks) |
|
506 | 507 | #print(startTime) |
|
507 | 508 | #print(endTime) |
|
508 | 509 | #print(heights) |
|
509 | 510 | #input() |
|
510 | 511 | if self.ext == '.dat': |
|
511 | 512 | for key, value in list(self.twoDDict.items()): |
|
512 | 513 | if isinstance(value, str): |
|
513 | 514 | data = getattr(self.dataOut, value) |
|
514 | 515 | invalid = numpy.isnan(data) |
|
515 | 516 | data[invalid] = self.missing |
|
516 | 517 | elif isinstance(value, (tuple, list)): |
|
517 | 518 | attr, key = value |
|
518 | 519 | data = getattr(self.dataOut, attr) |
|
519 | 520 | invalid = numpy.isnan(data) |
|
520 | 521 | data[invalid] = self.missing |
|
521 | 522 | |
|
522 | 523 | out = {} |
|
523 | 524 | for key, value in list(self.twoDDict.items()): |
|
524 | 525 | key = key.lower() |
|
525 | 526 | if isinstance(value, str): |
|
526 | 527 | if 'db' in value.lower(): |
|
527 | 528 | tmp = getattr(self.dataOut, value.replace('_db', '')) |
|
528 | 529 | SNRavg = numpy.average(tmp, axis=0) |
|
529 | 530 | tmp = 10*numpy.log10(SNRavg) |
|
530 | 531 | else: |
|
531 | 532 | tmp = getattr(self.dataOut, value) |
|
532 | 533 | out[key] = tmp.flatten()[:len(heights)] |
|
533 | 534 | elif isinstance(value, (tuple, list)): |
|
534 | 535 | attr, x = value |
|
535 | 536 | data = getattr(self.dataOut, attr) |
|
536 | 537 | #print(x) |
|
537 | 538 | #print(len(heights)) |
|
538 | 539 | #print(data[int(x)][:len(heights)]) |
|
539 | 540 | #print(numpy.shape(out)) |
|
540 | 541 | #print(numpy.shape(data)) |
|
541 | 542 | |
|
542 | 543 | out[key] = data[int(x)][:len(heights)] |
|
543 | 544 | |
|
544 | 545 | a = numpy.array([out[k] for k in self.keys]) |
|
545 | 546 | #print(a) |
|
546 | 547 | nrows = numpy.array([numpy.isnan(a[:, x]).all() for x in range(len(heights))]) |
|
547 | 548 | index = numpy.where(nrows == False)[0] |
|
548 | 549 | |
|
549 | 550 | #print(startTime.minute) |
|
550 | 551 | rec = madrigal.cedar.MadrigalDataRecord( |
|
551 | 552 | self.kinst, |
|
552 | 553 | self.kindat, |
|
553 | 554 | startTime.year, |
|
554 | 555 | startTime.month, |
|
555 | 556 | startTime.day, |
|
556 | 557 | startTime.hour, |
|
557 | 558 | startTime.minute, |
|
558 | 559 | startTime.second, |
|
559 | 560 | startTime.microsecond/10000, |
|
560 | 561 | endTime.year, |
|
561 | 562 | endTime.month, |
|
562 | 563 | endTime.day, |
|
563 | 564 | endTime.hour, |
|
564 | 565 | endTime.minute, |
|
565 | 566 | endTime.second, |
|
566 | 567 | endTime.microsecond/10000, |
|
567 | 568 | list(self.oneDDict.keys()), |
|
568 | 569 | list(self.twoDDict.keys()), |
|
569 | 570 | len(index), |
|
570 | 571 | **self.extra_args |
|
571 | 572 | ) |
|
572 | 573 | #print("rec",rec) |
|
573 | 574 | # Setting 1d values |
|
574 | 575 | for key in self.oneDDict: |
|
575 | 576 | rec.set1D(key, getattr(self.dataOut, self.oneDDict[key])) |
|
576 | 577 | |
|
577 | 578 | # Setting 2d values |
|
578 | 579 | nrec = 0 |
|
579 | 580 | for n in index: |
|
580 | 581 | for key in out: |
|
581 | 582 | rec.set2D(key, nrec, out[key][n]) |
|
582 | 583 | nrec += 1 |
|
583 | 584 | |
|
584 | 585 | self.fp.append(rec) |
|
585 | 586 | if self.ext == '.hdf5' and self.counter %2 == 0 and self.counter > 0: |
|
586 | 587 | #print("here") |
|
587 | 588 | self.fp.dump() |
|
588 | 589 | if self.counter % 20 == 0 and self.counter > 0: |
|
589 | 590 | #self.fp.write() |
|
590 | 591 | log.log( |
|
591 | 592 | 'Writing {} records'.format( |
|
592 | 593 | self.counter), |
|
593 | 594 | 'MADWriter') |
|
594 | 595 | |
|
595 | 596 | def setHeader(self): |
|
596 | 597 | ''' |
|
597 | 598 | Create an add catalog and header to cedar file |
|
598 | 599 | ''' |
|
599 | 600 | |
|
600 | 601 | log.success('Closing file {}'.format(self.fullname), 'MADWriter') |
|
601 | 602 | |
|
602 | 603 | if self.ext == '.dat': |
|
603 | 604 | self.fp.write() |
|
604 | 605 | else: |
|
605 | 606 | self.fp.dump() |
|
606 | 607 | self.fp.close() |
|
607 | 608 | |
|
608 | 609 | header = madrigal.cedar.CatalogHeaderCreator(self.fullname) |
|
609 | 610 | header.createCatalog(**self.catalog) |
|
610 | 611 | header.createHeader(**self.header) |
|
611 | 612 | header.write() |
|
612 | 613 | |
|
613 | 614 | def timeFlag(self): |
|
614 | 615 | currentTime = self.dataOut.utctime |
|
615 | 616 | timeTuple = time.localtime(currentTime) |
|
616 | 617 | dataDay = timeTuple.tm_yday |
|
617 | 618 | |
|
618 | 619 | if self.currentDay is None: |
|
619 | 620 | self.currentDay = dataDay |
|
620 | 621 | return False |
|
621 | 622 | |
|
622 | 623 | #Si el dia es diferente |
|
623 | 624 | if dataDay != self.currentDay: |
|
624 | 625 | self.currentDay = dataDay |
|
625 | 626 | return True |
|
626 | 627 | |
|
627 | 628 | else: |
|
628 | 629 | return False |
|
629 | 630 | |
|
630 | 631 | def putData(self): |
|
631 | 632 | |
|
632 | 633 | if self.dataOut.flagNoData: |
|
633 | 634 | return 0 |
|
634 | 635 | |
|
635 | 636 | if self.dataOut.flagDiscontinuousBlock or self.counter == self.blocks or self.timeFlag(): |
|
636 | 637 | if self.counter > 0: |
|
637 | 638 | self.setHeader() |
|
638 | 639 | self.counter = 0 |
|
639 | 640 | |
|
640 | 641 | if self.counter == 0: |
|
641 | 642 | self.setFile() |
|
642 | 643 | |
|
643 | 644 | self.writeBlock() |
|
644 | 645 | self.counter += 1 |
|
645 | 646 | |
|
646 | 647 | def close(self): |
|
647 | 648 | |
|
648 | 649 | if self.counter > 0: |
|
649 | 650 | self.setHeader() |
@@ -1,640 +1,662 | |||
|
1 | 1 | import os |
|
2 | 2 | import time |
|
3 | 3 | import datetime |
|
4 | 4 | |
|
5 | 5 | import numpy |
|
6 | 6 | import h5py |
|
7 | 7 | |
|
8 | 8 | import schainpy.admin |
|
9 | 9 | from schainpy.model.data.jrodata import * |
|
10 | 10 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
11 | 11 | from schainpy.model.io.jroIO_base import * |
|
12 | 12 | from schainpy.utils import log |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class HDFReader(Reader, ProcessingUnit): |
|
16 | 16 | """Processing unit to read HDF5 format files |
|
17 | 17 | |
|
18 | 18 | This unit reads HDF5 files created with `HDFWriter` operation contains |
|
19 | 19 | by default two groups Data and Metadata all variables would be saved as `dataOut` |
|
20 | 20 | attributes. |
|
21 | 21 | It is possible to read any HDF5 file by given the structure in the `description` |
|
22 | 22 | parameter, also you can add extra values to metadata with the parameter `extras`. |
|
23 | 23 | |
|
24 | 24 | Parameters: |
|
25 | 25 | ----------- |
|
26 | 26 | path : str |
|
27 | 27 | Path where files are located. |
|
28 | 28 | startDate : date |
|
29 | 29 | Start date of the files |
|
30 | 30 | endDate : list |
|
31 | 31 | End date of the files |
|
32 | 32 | startTime : time |
|
33 | 33 | Start time of the files |
|
34 | 34 | endTime : time |
|
35 | 35 | End time of the files |
|
36 | 36 | description : dict, optional |
|
37 | 37 | Dictionary with the description of the HDF5 file |
|
38 | 38 | extras : dict, optional |
|
39 | 39 | Dictionary with extra metadata to be be added to `dataOut` |
|
40 | 40 | |
|
41 | 41 | Examples |
|
42 | 42 | -------- |
|
43 | 43 | |
|
44 | 44 | desc = { |
|
45 | 45 | 'Data': { |
|
46 | 46 | 'data_output': ['u', 'v', 'w'], |
|
47 | 47 | 'utctime': 'timestamps', |
|
48 | 48 | } , |
|
49 | 49 | 'Metadata': { |
|
50 | 50 | 'heightList': 'heights' |
|
51 | 51 | } |
|
52 | 52 | } |
|
53 | 53 | |
|
54 | 54 | desc = { |
|
55 | 55 | 'Data': { |
|
56 | 56 | 'data_output': 'winds', |
|
57 | 57 | 'utctime': 'timestamps' |
|
58 | 58 | }, |
|
59 | 59 | 'Metadata': { |
|
60 | 60 | 'heightList': 'heights' |
|
61 | 61 | } |
|
62 | 62 | } |
|
63 | 63 | |
|
64 | 64 | extras = { |
|
65 | 65 | 'timeZone': 300 |
|
66 | 66 | } |
|
67 | 67 | |
|
68 | 68 | reader = project.addReadUnit( |
|
69 | 69 | name='HDFReader', |
|
70 | 70 | path='/path/to/files', |
|
71 | 71 | startDate='2019/01/01', |
|
72 | 72 | endDate='2019/01/31', |
|
73 | 73 | startTime='00:00:00', |
|
74 | 74 | endTime='23:59:59', |
|
75 | 75 | # description=json.dumps(desc), |
|
76 | 76 | # extras=json.dumps(extras), |
|
77 | 77 | ) |
|
78 | 78 | |
|
79 | 79 | """ |
|
80 | 80 | |
|
81 | 81 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras'] |
|
82 | 82 | |
|
83 | 83 | def __init__(self): |
|
84 | 84 | ProcessingUnit.__init__(self) |
|
85 | 85 | self.dataOut = Parameters() |
|
86 | 86 | self.ext = ".hdf5" |
|
87 | 87 | self.optchar = "D" |
|
88 | 88 | self.meta = {} |
|
89 | 89 | self.data = {} |
|
90 | 90 | self.open_file = h5py.File |
|
91 | 91 | self.open_mode = 'r' |
|
92 | 92 | self.description = {} |
|
93 | 93 | self.extras = {} |
|
94 | 94 | self.filefmt = "*%Y%j***" |
|
95 | 95 | self.folderfmt = "*%Y%j" |
|
96 | 96 | self.utcoffset = 0 |
|
97 | 97 | |
|
98 | 98 | def setup(self, **kwargs): |
|
99 | 99 | |
|
100 | 100 | self.set_kwargs(**kwargs) |
|
101 | 101 | if not self.ext.startswith('.'): |
|
102 | 102 | self.ext = '.{}'.format(self.ext) |
|
103 | 103 | |
|
104 | 104 | if self.online: |
|
105 | 105 | log.log("Searching files in online mode...", self.name) |
|
106 | 106 | |
|
107 | 107 | for nTries in range(self.nTries): |
|
108 | 108 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
109 | 109 | self.endDate, self.expLabel, self.ext, self.walk, |
|
110 | 110 | self.filefmt, self.folderfmt) |
|
111 | 111 | try: |
|
112 | 112 | fullpath = next(fullpath) |
|
113 | 113 | except: |
|
114 | 114 | fullpath = None |
|
115 | 115 | |
|
116 | 116 | if fullpath: |
|
117 | 117 | break |
|
118 | 118 | |
|
119 | 119 | log.warning( |
|
120 | 120 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
121 | 121 | self.delay, self.path, nTries + 1), |
|
122 | 122 | self.name) |
|
123 | 123 | time.sleep(self.delay) |
|
124 | 124 | |
|
125 | 125 | if not(fullpath): |
|
126 | 126 | raise schainpy.admin.SchainError( |
|
127 | 127 | 'There isn\'t any valid file in {}'.format(self.path)) |
|
128 | 128 | |
|
129 | 129 | pathname, filename = os.path.split(fullpath) |
|
130 | 130 | self.year = int(filename[1:5]) |
|
131 | 131 | self.doy = int(filename[5:8]) |
|
132 | 132 | self.set = int(filename[8:11]) - 1 |
|
133 | 133 | else: |
|
134 | 134 | log.log("Searching files in {}".format(self.path), self.name) |
|
135 | 135 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
136 | 136 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
137 | 137 | |
|
138 | 138 | self.setNextFile() |
|
139 | 139 | |
|
140 | 140 | return |
|
141 | 141 | |
|
142 | 142 | def readFirstHeader(self): |
|
143 | 143 | '''Read metadata and data''' |
|
144 | 144 | |
|
145 | 145 | self.__readMetadata() |
|
146 | 146 | self.__readData() |
|
147 | 147 | self.__setBlockList() |
|
148 | 148 | |
|
149 | 149 | if 'type' in self.meta: |
|
150 | 150 | self.dataOut = eval(self.meta['type'])() |
|
151 | 151 | |
|
152 | 152 | for attr in self.meta: |
|
153 | 153 | setattr(self.dataOut, attr, self.meta[attr]) |
|
154 | 154 | |
|
155 | 155 | self.blockIndex = 0 |
|
156 | 156 | |
|
157 | 157 | return |
|
158 | 158 | |
|
159 | 159 | def __setBlockList(self): |
|
160 | 160 | ''' |
|
161 | 161 | Selects the data within the times defined |
|
162 | 162 | |
|
163 | 163 | self.fp |
|
164 | 164 | self.startTime |
|
165 | 165 | self.endTime |
|
166 | 166 | self.blockList |
|
167 | 167 | self.blocksPerFile |
|
168 | 168 | |
|
169 | 169 | ''' |
|
170 | 170 | |
|
171 | 171 | startTime = self.startTime |
|
172 | 172 | endTime = self.endTime |
|
173 | 173 | thisUtcTime = self.data['utctime'] + self.utcoffset |
|
174 | 174 | self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1]) |
|
175 | 175 | thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0]) |
|
176 | 176 | |
|
177 | 177 | thisDate = thisDatetime.date() |
|
178 | 178 | thisTime = thisDatetime.time() |
|
179 | 179 | |
|
180 | 180 | startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
181 | 181 | endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
182 | 182 | |
|
183 | 183 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] |
|
184 | 184 | |
|
185 | 185 | self.blockList = ind |
|
186 | 186 | self.blocksPerFile = len(ind) |
|
187 | # similar to master | |
|
188 | if len(ind)==0: | |
|
189 | print("[Reading] Block No. %d/%d -> %s [Skipping]" % (self.blockIndex, | |
|
190 | self.blocksPerFile, | |
|
191 | thisDatetime)) | |
|
192 | self.setNextFile() | |
|
193 | # similar to master | |
|
187 | 194 | return |
|
188 | 195 | |
|
189 | 196 | def __readMetadata(self): |
|
190 | 197 | ''' |
|
191 | 198 | Reads Metadata |
|
192 | 199 | ''' |
|
193 | 200 | |
|
194 | 201 | meta = {} |
|
195 | 202 | |
|
196 | 203 | if self.description: |
|
197 | 204 | for key, value in self.description['Metadata'].items(): |
|
198 | 205 | meta[key] = self.fp[value][()] |
|
199 | 206 | else: |
|
200 | 207 | grp = self.fp['Metadata'] |
|
201 | 208 | for name in grp: |
|
202 | 209 | meta[name] = grp[name][()] |
|
203 | 210 | |
|
204 | 211 | if self.extras: |
|
205 | 212 | for key, value in self.extras.items(): |
|
206 | 213 | meta[key] = value |
|
207 | 214 | self.meta = meta |
|
208 | 215 | |
|
209 | 216 | return |
|
210 | 217 | |
|
211 | 218 | def __readData(self): |
|
212 | 219 | |
|
213 | 220 | data = {} |
|
214 | 221 | |
|
215 | 222 | if self.description: |
|
216 | 223 | for key, value in self.description['Data'].items(): |
|
217 | 224 | if isinstance(value, str): |
|
218 | 225 | if isinstance(self.fp[value], h5py.Dataset): |
|
219 | 226 | data[key] = self.fp[value][()] |
|
220 | 227 | elif isinstance(self.fp[value], h5py.Group): |
|
221 | 228 | array = [] |
|
222 | 229 | for ch in self.fp[value]: |
|
223 | 230 | array.append(self.fp[value][ch][()]) |
|
224 | 231 | data[key] = numpy.array(array) |
|
225 | 232 | elif isinstance(value, list): |
|
226 | 233 | array = [] |
|
227 | 234 | for ch in value: |
|
228 | 235 | array.append(self.fp[ch][()]) |
|
229 | 236 | data[key] = numpy.array(array) |
|
230 | 237 | else: |
|
231 | 238 | grp = self.fp['Data'] |
|
232 | 239 | for name in grp: |
|
233 | 240 | if isinstance(grp[name], h5py.Dataset): |
|
234 | 241 | array = grp[name][()] |
|
235 | 242 | elif isinstance(grp[name], h5py.Group): |
|
236 | 243 | array = [] |
|
237 | 244 | for ch in grp[name]: |
|
238 | 245 | array.append(grp[name][ch][()]) |
|
239 | 246 | array = numpy.array(array) |
|
240 | 247 | else: |
|
241 | 248 | log.warning('Unknown type: {}'.format(name)) |
|
242 | 249 | |
|
243 | 250 | if name in self.description: |
|
244 | 251 | key = self.description[name] |
|
245 | 252 | else: |
|
246 | 253 | key = name |
|
247 | 254 | data[key] = array |
|
248 | 255 | |
|
249 | 256 | self.data = data |
|
250 | 257 | return |
|
251 | 258 | |
|
252 | 259 | def getData(self): |
|
253 | 260 | |
|
254 | 261 | for attr in self.data: |
|
255 | 262 | if self.data[attr].ndim == 1: |
|
256 | 263 | setattr(self.dataOut, attr, self.data[attr][self.blockIndex]) |
|
257 | 264 | else: |
|
258 | 265 | setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex]) |
|
259 | 266 | |
|
260 | 267 | self.dataOut.flagNoData = False |
|
261 | 268 | self.blockIndex += 1 |
|
262 | 269 | |
|
263 | 270 | log.log("Block No. {}/{} -> {}".format( |
|
264 | 271 | self.blockIndex, |
|
265 | 272 | self.blocksPerFile, |
|
266 | 273 | self.dataOut.datatime.ctime()), self.name) |
|
267 | 274 | |
|
268 | 275 | return |
|
269 | 276 | |
|
270 | 277 | def run(self, **kwargs): |
|
271 | 278 | |
|
272 | 279 | if not(self.isConfig): |
|
273 | 280 | self.setup(**kwargs) |
|
274 | 281 | self.isConfig = True |
|
275 | 282 | |
|
276 | 283 | if self.blockIndex == self.blocksPerFile: |
|
277 | 284 | self.setNextFile() |
|
278 | 285 | |
|
279 | 286 | self.getData() |
|
280 | 287 | |
|
281 | 288 | return |
|
282 | 289 | |
|
283 | 290 | @MPDecorator |
|
284 | 291 | class HDFWriter(Operation): |
|
285 | 292 | """Operation to write HDF5 files. |
|
286 | 293 | |
|
287 | 294 | The HDF5 file contains by default two groups Data and Metadata where |
|
288 | 295 | you can save any `dataOut` attribute specified by `dataList` and `metadataList` |
|
289 | 296 | parameters, data attributes are normaly time dependent where the metadata |
|
290 | 297 | are not. |
|
291 | 298 | It is possible to customize the structure of the HDF5 file with the |
|
292 | 299 | optional description parameter see the examples. |
|
293 | 300 | |
|
294 | 301 | Parameters: |
|
295 | 302 | ----------- |
|
296 | 303 | path : str |
|
297 | 304 | Path where files will be saved. |
|
298 | 305 | blocksPerFile : int |
|
299 | 306 | Number of blocks per file |
|
300 | 307 | metadataList : list |
|
301 | 308 | List of the dataOut attributes that will be saved as metadata |
|
302 | 309 | dataList : int |
|
303 | 310 | List of the dataOut attributes that will be saved as data |
|
304 | 311 | setType : bool |
|
305 | 312 | If True the name of the files corresponds to the timestamp of the data |
|
306 | 313 | description : dict, optional |
|
307 | 314 | Dictionary with the desired description of the HDF5 file |
|
308 | 315 | |
|
309 | 316 | Examples |
|
310 | 317 | -------- |
|
311 | 318 | |
|
312 | 319 | desc = { |
|
313 | 320 | 'data_output': {'winds': ['z', 'w', 'v']}, |
|
314 | 321 | 'utctime': 'timestamps', |
|
315 | 322 | 'heightList': 'heights' |
|
316 | 323 | } |
|
317 | 324 | desc = { |
|
318 | 325 | 'data_output': ['z', 'w', 'v'], |
|
319 | 326 | 'utctime': 'timestamps', |
|
320 | 327 | 'heightList': 'heights' |
|
321 | 328 | } |
|
322 | 329 | desc = { |
|
323 | 330 | 'Data': { |
|
324 | 331 | 'data_output': 'winds', |
|
325 | 332 | 'utctime': 'timestamps' |
|
326 | 333 | }, |
|
327 | 334 | 'Metadata': { |
|
328 | 335 | 'heightList': 'heights' |
|
329 | 336 | } |
|
330 | 337 | } |
|
331 | 338 | |
|
332 | 339 | writer = proc_unit.addOperation(name='HDFWriter') |
|
333 | 340 | writer.addParameter(name='path', value='/path/to/file') |
|
334 | 341 | writer.addParameter(name='blocksPerFile', value='32') |
|
335 | 342 | writer.addParameter(name='metadataList', value='heightList,timeZone') |
|
336 | 343 | writer.addParameter(name='dataList',value='data_output,utctime') |
|
337 | 344 | # writer.addParameter(name='description',value=json.dumps(desc)) |
|
338 | 345 | |
|
339 | 346 | """ |
|
340 | 347 | |
|
341 | 348 | ext = ".hdf5" |
|
342 | 349 | optchar = "D" |
|
343 | 350 | filename = None |
|
344 | 351 | path = None |
|
345 | 352 | setFile = None |
|
346 | 353 | fp = None |
|
347 | 354 | firsttime = True |
|
348 | 355 | #Configurations |
|
349 | 356 | blocksPerFile = None |
|
350 | 357 | blockIndex = None |
|
351 | 358 | dataOut = None |
|
352 | 359 | #Data Arrays |
|
353 | 360 | dataList = None |
|
354 | 361 | metadataList = None |
|
355 | 362 | currentDay = None |
|
356 | 363 | lastTime = None |
|
357 | 364 | |
|
358 | 365 | def __init__(self): |
|
359 | 366 | |
|
360 | 367 | Operation.__init__(self) |
|
361 | 368 | return |
|
362 | 369 | |
|
363 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None, uniqueChannel=False): | |
|
370 | def set_kwargs(self, **kwargs): | |
|
371 | ||
|
372 | for key, value in kwargs.items(): | |
|
373 | setattr(self, key, value) | |
|
374 | ||
|
375 | def set_kwargs_obj(self, obj, **kwargs): | |
|
376 | ||
|
377 | for key, value in kwargs.items(): | |
|
378 | setattr(obj, key, value) | |
|
379 | ||
|
380 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None, **kwargs): | |
|
364 | 381 | self.path = path |
|
365 | 382 | self.blocksPerFile = blocksPerFile |
|
366 | 383 | self.metadataList = metadataList |
|
367 | 384 | self.dataList = [s.strip() for s in dataList] |
|
368 | 385 | self.setType = setType |
|
369 | 386 | self.description = description |
|
370 | self.uniqueChannel = uniqueChannel | |
|
387 | self.set_kwargs(**kwargs) | |
|
388 | #print("self.uniqueChannel: ", self.uniqueChannel) | |
|
389 | #self.uniqueChannel = uniqueChannel | |
|
371 | 390 | |
|
372 | 391 | if self.metadataList is None: |
|
373 | 392 | self.metadataList = self.dataOut.metadata_list |
|
374 | 393 | |
|
375 | 394 | tableList = [] |
|
376 | 395 | dsList = [] |
|
377 | 396 | |
|
378 | 397 | for i in range(len(self.dataList)): |
|
379 | 398 | dsDict = {} |
|
380 | 399 | if hasattr(self.dataOut, self.dataList[i]): |
|
381 | 400 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
382 | 401 | dsDict['variable'] = self.dataList[i] |
|
383 | 402 | else: |
|
384 | 403 | log.warning('Attribute {} not found in dataOut', self.name) |
|
385 | 404 | continue |
|
386 | 405 | |
|
387 | 406 | if dataAux is None: |
|
388 | 407 | continue |
|
389 | 408 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
|
390 | 409 | dsDict['nDim'] = 0 |
|
391 | 410 | else: |
|
392 | if uniqueChannel: #Creates extra dimension to avoid the creation of multiple channels | |
|
411 | if self.uniqueChannel: #Creates extra dimension to avoid the creation of multiple channels | |
|
393 | 412 | dataAux = numpy.expand_dims(dataAux, axis=0) |
|
394 | 413 | #setattr(self.dataOut, self.dataList[i], numpy.expand_dims(getattr(self.dataOut, self.dataList[i]), axis=0)) |
|
395 | 414 | #dataAux = getattr(self.dataOut, self.dataList[i]) |
|
396 | 415 | #print(getattr(self.dataOut, self.dataList[i])) |
|
397 | 416 | dsDict['nDim'] = len(dataAux.shape) |
|
398 | 417 | dsDict['shape'] = dataAux.shape |
|
399 | 418 | dsDict['dsNumber'] = dataAux.shape[0] |
|
400 | 419 | dsDict['dtype'] = dataAux.dtype |
|
401 | 420 | |
|
402 | 421 | dsList.append(dsDict) |
|
403 | 422 | |
|
404 | 423 | self.dsList = dsList |
|
405 | 424 | self.currentDay = self.dataOut.datatime.date() |
|
406 | 425 | |
|
407 | 426 | def timeFlag(self): |
|
408 | 427 | currentTime = self.dataOut.utctime |
|
409 | 428 | timeTuple = time.localtime(currentTime) |
|
410 | 429 | dataDay = timeTuple.tm_yday |
|
411 | 430 | |
|
412 | 431 | if self.lastTime is None: |
|
413 | 432 | self.lastTime = currentTime |
|
414 | 433 | self.currentDay = dataDay |
|
415 | 434 | return False |
|
416 | 435 | |
|
417 | 436 | timeDiff = currentTime - self.lastTime |
|
418 | 437 | |
|
419 | 438 | #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora |
|
420 | 439 | if dataDay != self.currentDay: |
|
421 | 440 | self.currentDay = dataDay |
|
422 | 441 | return True |
|
423 | 442 | elif timeDiff > 3*60*60: |
|
424 | 443 | self.lastTime = currentTime |
|
425 | 444 | return True |
|
426 | 445 | else: |
|
427 | 446 | self.lastTime = currentTime |
|
428 | 447 | return False |
|
429 | 448 | |
|
430 | 449 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, |
|
431 |
dataList=[], setType=None, description={}, |
|
|
450 | dataList=[], setType=None, description={}, **kwargs): | |
|
432 | 451 | |
|
433 | 452 | self.dataOut = dataOut |
|
453 | self.set_kwargs_obj(self.dataOut, **kwargs) | |
|
434 | 454 | if not(self.isConfig): |
|
435 | 455 | self.setup(path=path, blocksPerFile=blocksPerFile, |
|
436 | 456 | metadataList=metadataList, dataList=dataList, |
|
437 |
setType=setType, description=description, |
|
|
457 | setType=setType, description=description, **kwargs) | |
|
438 | 458 | |
|
439 | 459 | self.isConfig = True |
|
440 | 460 | self.setNextFile() |
|
441 | 461 | |
|
442 | 462 | self.putData() |
|
443 | 463 | |
|
444 | 464 | return |
|
445 | 465 | |
|
446 | 466 | def setNextFile(self): |
|
447 | 467 | |
|
448 | 468 | ext = self.ext |
|
449 | 469 | path = self.path |
|
450 | 470 | setFile = self.setFile |
|
451 | 471 | |
|
452 | 472 | timeTuple = time.localtime(self.dataOut.utctime) |
|
453 | 473 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
454 | 474 | fullpath = os.path.join(path, subfolder) |
|
455 | 475 | |
|
456 | 476 | if os.path.exists(fullpath): |
|
457 | 477 | filesList = os.listdir(fullpath) |
|
458 | 478 | filesList = [k for k in filesList if k.startswith(self.optchar)] |
|
459 | 479 | if len( filesList ) > 0: |
|
460 | 480 | filesList = sorted(filesList, key=str.lower) |
|
461 | 481 | filen = filesList[-1] |
|
462 | 482 | # el filename debera tener el siguiente formato |
|
463 | 483 | # 0 1234 567 89A BCDE (hex) |
|
464 | 484 | # x YYYY DDD SSS .ext |
|
465 | 485 | if isNumber(filen[8:11]): |
|
466 | 486 | setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file |
|
467 | 487 | else: |
|
468 | 488 | setFile = -1 |
|
469 | 489 | else: |
|
470 | 490 | setFile = -1 #inicializo mi contador de seteo |
|
471 | 491 | else: |
|
472 | 492 | os.makedirs(fullpath) |
|
473 | 493 | setFile = -1 #inicializo mi contador de seteo |
|
474 | 494 | |
|
475 | 495 | if self.setType is None: |
|
476 | 496 | setFile += 1 |
|
477 | 497 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, |
|
478 | 498 | timeTuple.tm_year, |
|
479 | 499 | timeTuple.tm_yday, |
|
480 | 500 | setFile, |
|
481 | 501 | ext ) |
|
482 | 502 | else: |
|
483 | 503 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min |
|
484 | 504 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, |
|
485 | 505 | timeTuple.tm_year, |
|
486 | 506 | timeTuple.tm_yday, |
|
487 | 507 | setFile, |
|
488 | 508 | ext ) |
|
489 | 509 | |
|
490 | 510 | self.filename = os.path.join( path, subfolder, file ) |
|
491 | 511 | |
|
492 | 512 | #Setting HDF5 File |
|
493 | 513 | self.fp = h5py.File(self.filename, 'w') |
|
494 | 514 | #write metadata |
|
495 | 515 | self.writeMetadata(self.fp) |
|
496 | 516 | #Write data |
|
497 | 517 | self.writeData(self.fp) |
|
498 | 518 | |
|
499 | 519 | def getLabel(self, name, x=None): |
|
500 | 520 | #print("x: ", x) |
|
501 | 521 | if x is None: |
|
502 | 522 | if 'Data' in self.description: |
|
503 | 523 | data = self.description['Data'] |
|
504 | 524 | if 'Metadata' in self.description: |
|
505 | 525 | data.update(self.description['Metadata']) |
|
506 | 526 | else: |
|
507 | 527 | data = self.description |
|
508 | 528 | if name in data: |
|
509 | 529 | if isinstance(data[name], str): |
|
510 | 530 | return data[name] |
|
511 | 531 | elif isinstance(data[name], list): |
|
512 | 532 | return None |
|
513 | 533 | elif isinstance(data[name], dict): |
|
514 | 534 | for key, value in data[name].items(): |
|
515 | 535 | return key |
|
516 | 536 | return name |
|
517 | 537 | else: |
|
518 |
if ' |
|
|
519 |
|
|
|
538 | if 'Data' in self.description: | |
|
539 | data = self.description['Data'] | |
|
540 | if 'Metadata' in self.description: | |
|
541 | data.update(self.description['Metadata']) | |
|
520 | 542 | else: |
|
521 |
|
|
|
522 |
if name in |
|
|
523 |
if isinstance( |
|
|
524 |
return |
|
|
525 |
elif isinstance( |
|
|
526 |
for key, value in |
|
|
543 | data = self.description | |
|
544 | if name in data: | |
|
545 | if isinstance(data[name], list): | |
|
546 | return data[name][x] | |
|
547 | elif isinstance(data[name], dict): | |
|
548 | for key, value in data[name].items(): | |
|
527 | 549 | return value[x] |
|
528 | 550 | if 'cspc' in name: |
|
529 | 551 | return 'pair{:02d}'.format(x) |
|
530 | 552 | else: |
|
531 | 553 | return 'channel{:02d}'.format(x) |
|
532 | 554 | |
|
533 | 555 | def writeMetadata(self, fp): |
|
534 | 556 | |
|
535 | 557 | if self.description: |
|
536 | 558 | if 'Metadata' in self.description: |
|
537 | 559 | grp = fp.create_group('Metadata') |
|
538 | 560 | else: |
|
539 | 561 | grp = fp |
|
540 | 562 | else: |
|
541 | 563 | grp = fp.create_group('Metadata') |
|
542 | 564 | |
|
543 | 565 | for i in range(len(self.metadataList)): |
|
544 | 566 | if not hasattr(self.dataOut, self.metadataList[i]): |
|
545 | 567 | log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name) |
|
546 | 568 | continue |
|
547 | 569 | value = getattr(self.dataOut, self.metadataList[i]) |
|
548 | 570 | if isinstance(value, bool): |
|
549 | 571 | if value is True: |
|
550 | 572 | value = 1 |
|
551 | 573 | else: |
|
552 | 574 | value = 0 |
|
553 | 575 | grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) |
|
554 | 576 | return |
|
555 | 577 | |
|
556 | 578 | def writeData(self, fp): |
|
557 | 579 | |
|
558 | 580 | if self.description: |
|
559 | 581 | if 'Data' in self.description: |
|
560 | 582 | grp = fp.create_group('Data') |
|
561 | 583 | else: |
|
562 | 584 | grp = fp |
|
563 | 585 | else: |
|
564 | 586 | grp = fp.create_group('Data') |
|
565 | 587 | |
|
566 | 588 | dtsets = [] |
|
567 | 589 | data = [] |
|
568 | 590 | #print("self.dsList: ", self.dsList) |
|
569 | 591 | for dsInfo in self.dsList: |
|
570 | 592 | if dsInfo['nDim'] == 0: |
|
571 | 593 | ds = grp.create_dataset( |
|
572 | 594 | self.getLabel(dsInfo['variable']), |
|
573 | 595 | (self.blocksPerFile, ), |
|
574 | 596 | chunks=True, |
|
575 | 597 | dtype=numpy.float64) |
|
576 | 598 | dtsets.append(ds) |
|
577 | 599 | data.append((dsInfo['variable'], -1)) |
|
578 | 600 | else: |
|
579 | 601 | label = self.getLabel(dsInfo['variable']) |
|
580 | 602 | if label is not None: |
|
581 | 603 | sgrp = grp.create_group(label) |
|
582 | 604 | else: |
|
583 | 605 | sgrp = grp |
|
584 | 606 | if self.uniqueChannel: #Creates extra dimension to avoid the creation of multiple channels |
|
585 | 607 | setattr(self.dataOut, dsInfo['variable'], numpy.expand_dims(getattr(self.dataOut, dsInfo['variable']), axis=0)) |
|
586 | 608 | for i in range(dsInfo['dsNumber']): |
|
587 | 609 | ds = sgrp.create_dataset( |
|
588 | 610 | self.getLabel(dsInfo['variable'], i), |
|
589 | 611 | (self.blocksPerFile, ) + dsInfo['shape'][1:], |
|
590 | 612 | chunks=True, |
|
591 | 613 | dtype=dsInfo['dtype']) |
|
592 | 614 | dtsets.append(ds) |
|
593 | 615 | data.append((dsInfo['variable'], i)) |
|
594 | 616 | |
|
595 | 617 | fp.flush() |
|
596 | 618 | |
|
597 | 619 | log.log('Creating file: {}'.format(fp.filename), self.name) |
|
598 | 620 | |
|
599 | 621 | self.ds = dtsets |
|
600 | 622 | self.data = data |
|
601 | 623 | self.firsttime = True |
|
602 | 624 | self.blockIndex = 0 |
|
603 | 625 | return |
|
604 | 626 | |
|
605 | 627 | def putData(self): |
|
606 | 628 | |
|
607 | 629 | if (self.blockIndex == self.blocksPerFile) or self.timeFlag(): |
|
608 | 630 | self.closeFile() |
|
609 | 631 | self.setNextFile() |
|
610 | 632 | |
|
611 | 633 | for i, ds in enumerate(self.ds): |
|
612 | 634 | attr, ch = self.data[i] |
|
613 | 635 | if ch == -1: |
|
614 | 636 | ds[self.blockIndex] = getattr(self.dataOut, attr) |
|
615 | 637 | else: |
|
616 | 638 | if self.uniqueChannel and self.blockIndex != 0: #Creates extra dimension to avoid the creation of multiple channels |
|
617 | 639 | setattr(self.dataOut, attr, numpy.expand_dims(getattr(self.dataOut, attr), axis=0)) |
|
618 | 640 | ds[self.blockIndex] = getattr(self.dataOut, attr)[ch] |
|
619 | 641 | if self.uniqueChannel: #Deletes extra dimension created to avoid the creation of multiple channels |
|
620 | 642 | setattr(self.dataOut, attr, getattr(self.dataOut, attr)[0]) |
|
621 | 643 | |
|
622 | 644 | self.fp.flush() |
|
623 | 645 | self.blockIndex += 1 |
|
624 | 646 | log.log('Block No. {}/{}'.format(self.blockIndex, self.blocksPerFile), self.name) |
|
625 | 647 | |
|
626 | 648 | return |
|
627 | 649 | |
|
628 | 650 | def closeFile(self): |
|
629 | 651 | |
|
630 | 652 | if self.blockIndex != self.blocksPerFile: |
|
631 | 653 | for ds in self.ds: |
|
632 | 654 | ds.resize(self.blockIndex, axis=0) |
|
633 | 655 | |
|
634 | 656 | if self.fp: |
|
635 | 657 | self.fp.flush() |
|
636 | 658 | self.fp.close() |
|
637 | 659 | |
|
638 | 660 | def close(self): |
|
639 | 661 | |
|
640 | 662 | self.closeFile() |
@@ -1,696 +1,700 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 2, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import numpy |
|
8 | 8 | |
|
9 | 9 | from .jroIO_base import LOCALTIME, JRODataReader, JRODataWriter |
|
10 | 10 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
11 | 11 | from schainpy.model.data.jroheaderIO import PROCFLAG, BasicHeader, SystemHeader, RadarControllerHeader, ProcessingHeader |
|
12 | 12 | from schainpy.model.data.jrodata import Voltage |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class VoltageReader(JRODataReader, ProcessingUnit): |
|
16 | 16 | """ |
|
17 | 17 | Esta clase permite leer datos de voltage desde archivos en formato rawdata (.r). La lectura |
|
18 | 18 | de los datos siempre se realiza por bloques. Los datos leidos (array de 3 dimensiones: |
|
19 | 19 | perfiles*alturas*canales) son almacenados en la variable "buffer". |
|
20 | 20 | |
|
21 | 21 | perfiles * alturas * canales |
|
22 | 22 | |
|
23 | 23 | Esta clase contiene instancias (objetos) de las clases BasicHeader, SystemHeader, |
|
24 | 24 | RadarControllerHeader y Voltage. Los tres primeros se usan para almacenar informacion de la |
|
25 | 25 | cabecera de datos (metadata), y el cuarto (Voltage) para obtener y almacenar un perfil de |
|
26 | 26 | datos desde el "buffer" cada vez que se ejecute el metodo "getData". |
|
27 | 27 | |
|
28 | 28 | Example: |
|
29 | 29 | |
|
30 | 30 | dpath = "/home/myuser/data" |
|
31 | 31 | |
|
32 | 32 | startTime = datetime.datetime(2010,1,20,0,0,0,0,0,0) |
|
33 | 33 | |
|
34 | 34 | endTime = datetime.datetime(2010,1,21,23,59,59,0,0,0) |
|
35 | 35 | |
|
36 | 36 | readerObj = VoltageReader() |
|
37 | 37 | |
|
38 | 38 | readerObj.setup(dpath, startTime, endTime) |
|
39 | 39 | |
|
40 | 40 | while(True): |
|
41 | 41 | |
|
42 | 42 | #to get one profile |
|
43 | 43 | profile = readerObj.getData() |
|
44 | 44 | |
|
45 | 45 | #print the profile |
|
46 | 46 | print profile |
|
47 | 47 | |
|
48 | 48 | #If you want to see all datablock |
|
49 | 49 | print readerObj.datablock |
|
50 | 50 | |
|
51 | 51 | if readerObj.flagNoMoreFiles: |
|
52 | 52 | break |
|
53 | 53 | |
|
54 | 54 | """ |
|
55 | 55 | |
|
56 | 56 | def __init__(self): |
|
57 | 57 | """ |
|
58 | 58 | Inicializador de la clase VoltageReader para la lectura de datos de voltage. |
|
59 | 59 | |
|
60 | 60 | Input: |
|
61 | 61 | dataOut : Objeto de la clase Voltage. Este objeto sera utilizado para |
|
62 | 62 | almacenar un perfil de datos cada vez que se haga un requerimiento |
|
63 | 63 | (getData). El perfil sera obtenido a partir del buffer de datos, |
|
64 | 64 | si el buffer esta vacio se hara un nuevo proceso de lectura de un |
|
65 | 65 | bloque de datos. |
|
66 | 66 | Si este parametro no es pasado se creara uno internamente. |
|
67 | 67 | |
|
68 | 68 | Variables afectadas: |
|
69 | 69 | self.dataOut |
|
70 | 70 | |
|
71 | 71 | Return: |
|
72 | 72 | None |
|
73 | 73 | """ |
|
74 | 74 | |
|
75 | 75 | ProcessingUnit.__init__(self) |
|
76 | 76 | |
|
77 | 77 | self.ext = ".r" |
|
78 | 78 | self.optchar = "D" |
|
79 | 79 | self.basicHeaderObj = BasicHeader(LOCALTIME) |
|
80 | 80 | self.systemHeaderObj = SystemHeader() |
|
81 | 81 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
82 | 82 | |
|
83 | 83 | self.processingHeaderObj = ProcessingHeader() |
|
84 | 84 | self.lastUTTime = 0 |
|
85 | 85 | self.profileIndex = 2**32 - 1 |
|
86 | 86 | self.dataOut = Voltage() |
|
87 | 87 | self.selBlocksize = None |
|
88 | 88 | self.selBlocktime = None |
|
89 | 89 | ##print("1--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") |
|
90 | 90 | def createObjByDefault(self): |
|
91 | 91 | ##print("2--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") |
|
92 | 92 | dataObj = Voltage() |
|
93 | 93 | |
|
94 | 94 | return dataObj |
|
95 | 95 | |
|
96 | 96 | def __hasNotDataInBuffer(self): |
|
97 | 97 | ##print("3--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") |
|
98 | 98 | if self.profileIndex >= self.processingHeaderObj.profilesPerBlock * self.nTxs: |
|
99 | 99 | return 1 |
|
100 | 100 | |
|
101 | 101 | return 0 |
|
102 | 102 | |
|
103 | 103 | def getBlockDimension(self): |
|
104 | 104 | """ |
|
105 | 105 | Obtiene la cantidad de puntos a leer por cada bloque de datos |
|
106 | 106 | |
|
107 | 107 | Affected: |
|
108 | 108 | self.blocksize |
|
109 | 109 | |
|
110 | 110 | Return: |
|
111 | 111 | None |
|
112 | 112 | """ |
|
113 | 113 | ##print("4--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") |
|
114 | 114 | pts2read = self.processingHeaderObj.profilesPerBlock * \ |
|
115 | 115 | self.processingHeaderObj.nHeights * self.systemHeaderObj.nChannels |
|
116 | 116 | self.blocksize = pts2read |
|
117 | 117 | |
|
118 | 118 | def readBlock(self): |
|
119 | 119 | |
|
120 | 120 | """ |
|
121 | 121 | readBlock lee el bloque de datos desde la posicion actual del puntero del archivo |
|
122 | 122 | (self.fp) y actualiza todos los parametros relacionados al bloque de datos |
|
123 | 123 | (metadata + data). La data leida es almacenada en el buffer y el contador del buffer |
|
124 | 124 | es seteado a 0 |
|
125 | 125 | |
|
126 | 126 | Inputs: |
|
127 | 127 | None |
|
128 | 128 | |
|
129 | 129 | Return: |
|
130 | 130 | None |
|
131 | 131 | |
|
132 | 132 | Affected: |
|
133 | 133 | self.profileIndex |
|
134 | 134 | self.datablock |
|
135 | 135 | self.flagIsNewFile |
|
136 | 136 | self.flagIsNewBlock |
|
137 | 137 | self.nTotalBlocks |
|
138 | 138 | |
|
139 | 139 | Exceptions: |
|
140 | 140 | Si un bloque leido no es un bloque valido |
|
141 | 141 | """ |
|
142 | 142 | ##print("5--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") |
|
143 | 143 | # if self.server is not None: |
|
144 | 144 | # self.zBlock = self.receiver.recv() |
|
145 | 145 | # self.zHeader = self.zBlock[:24] |
|
146 | 146 | # self.zDataBlock = self.zBlock[24:] |
|
147 | 147 | # junk = numpy.fromstring(self.zDataBlock, numpy.dtype([('real','<i4'),('imag','<i4')])) |
|
148 | 148 | # self.processingHeaderObj.profilesPerBlock = 240 |
|
149 | 149 | # self.processingHeaderObj.nHeights = 248 |
|
150 | 150 | # self.systemHeaderObj.nChannels |
|
151 | 151 | # else: |
|
152 | 152 | current_pointer_location = self.fp.tell() |
|
153 | 153 | junk = numpy.fromfile(self.fp, self.dtype, self.blocksize) |
|
154 | 154 | |
|
155 | 155 | try: |
|
156 | 156 | junk = junk.reshape((self.processingHeaderObj.profilesPerBlock, |
|
157 | 157 | self.processingHeaderObj.nHeights, self.systemHeaderObj.nChannels)) |
|
158 | 158 | except: |
|
159 | 159 | # print "The read block (%3d) has not enough data" %self.nReadBlocks |
|
160 | 160 | |
|
161 | 161 | if self.waitDataBlock(pointer_location=current_pointer_location): |
|
162 | 162 | junk = numpy.fromfile(self.fp, self.dtype, self.blocksize) |
|
163 | 163 | junk = junk.reshape((self.processingHeaderObj.profilesPerBlock, |
|
164 | 164 | self.processingHeaderObj.nHeights, self.systemHeaderObj.nChannels)) |
|
165 | 165 | # return 0 |
|
166 | 166 | |
|
167 | 167 | # Dimensions : nChannels, nProfiles, nSamples |
|
168 | 168 | |
|
169 | 169 | junk = numpy.transpose(junk, (2, 0, 1)) |
|
170 | 170 | self.datablock = junk['real'] + junk['imag'] * 1j |
|
171 | 171 | |
|
172 | 172 | self.profileIndex = 0 |
|
173 | 173 | |
|
174 | 174 | self.flagIsNewFile = 0 |
|
175 | 175 | self.flagIsNewBlock = 1 |
|
176 | 176 | |
|
177 | 177 | self.nTotalBlocks += 1 |
|
178 | 178 | self.nReadBlocks += 1 |
|
179 | 179 | |
|
180 | 180 | return 1 |
|
181 | 181 | |
|
182 | 182 | def getFirstHeader(self): |
|
183 | 183 | ##print("6--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") |
|
184 | 184 | |
|
185 | 185 | self.getBasicHeader() |
|
186 | 186 | |
|
187 | 187 | self.dataOut.processingHeaderObj = self.processingHeaderObj.copy() |
|
188 | 188 | |
|
189 | 189 | self.dataOut.systemHeaderObj = self.systemHeaderObj.copy() |
|
190 | 190 | |
|
191 | 191 | self.dataOut.radarControllerHeaderObj = self.radarControllerHeaderObj.copy() |
|
192 | 192 | |
|
193 | 193 | #self.dataOut.ippSeconds_general=self.radarControllerHeaderObj.ippSeconds |
|
194 | 194 | #print(self.nTxs) |
|
195 | 195 | if self.nTxs > 1: |
|
196 | 196 | #print(self.radarControllerHeaderObj.ippSeconds) |
|
197 | 197 | self.dataOut.radarControllerHeaderObj.ippSeconds = self.radarControllerHeaderObj.ippSeconds / self.nTxs |
|
198 | 198 | #print(self.radarControllerHeaderObj.ippSeconds) |
|
199 | 199 | # Time interval and code are propierties of dataOut. Its value depends of radarControllerHeaderObj. |
|
200 | 200 | |
|
201 | 201 | # self.dataOut.timeInterval = self.radarControllerHeaderObj.ippSeconds * self.processingHeaderObj.nCohInt |
|
202 | 202 | # |
|
203 | 203 | # if self.radarControllerHeaderObj.code is not None: |
|
204 | 204 | # |
|
205 | 205 | # self.dataOut.nCode = self.radarControllerHeaderObj.nCode |
|
206 | 206 | # |
|
207 | 207 | # self.dataOut.nBaud = self.radarControllerHeaderObj.nBaud |
|
208 | 208 | # |
|
209 | 209 | # self.dataOut.code = self.radarControllerHeaderObj.code |
|
210 | 210 | |
|
211 | 211 | self.dataOut.dtype = self.dtype |
|
212 | 212 | |
|
213 | 213 | self.dataOut.nProfiles = self.processingHeaderObj.profilesPerBlock |
|
214 | 214 | |
|
215 | 215 | self.dataOut.heightList = numpy.arange( |
|
216 | 216 | self.processingHeaderObj.nHeights) * self.processingHeaderObj.deltaHeight + self.processingHeaderObj.firstHeight |
|
217 | 217 | |
|
218 | 218 | self.dataOut.channelList = list(range(self.systemHeaderObj.nChannels)) |
|
219 | 219 | |
|
220 | 220 | self.dataOut.nCohInt = self.processingHeaderObj.nCohInt |
|
221 | 221 | |
|
222 | 222 | # asumo q la data no esta decodificada |
|
223 | 223 | self.dataOut.flagDecodeData = self.processingHeaderObj.flag_decode |
|
224 | 224 | |
|
225 | 225 | # asumo q la data no esta sin flip |
|
226 | 226 | self.dataOut.flagDeflipData = self.processingHeaderObj.flag_deflip |
|
227 | 227 | |
|
228 | 228 | self.dataOut.flagShiftFFT = self.processingHeaderObj.shif_fft |
|
229 | 229 | |
|
230 | 230 | def reshapeData(self): |
|
231 | 231 | ##print("7--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") |
|
232 | 232 | if self.nTxs < 0: |
|
233 | 233 | return |
|
234 | 234 | |
|
235 | 235 | if self.nTxs == 1: |
|
236 | 236 | return |
|
237 | 237 | |
|
238 | 238 | if self.nTxs < 1 and self.processingHeaderObj.profilesPerBlock % (1. / self.nTxs) != 0: |
|
239 | 239 | raise ValueError("1./nTxs (=%f), should be a multiple of nProfiles (=%d)" % ( |
|
240 | 240 | 1. / self.nTxs, self.processingHeaderObj.profilesPerBlock)) |
|
241 | 241 | |
|
242 | 242 | if self.nTxs > 1 and self.processingHeaderObj.nHeights % self.nTxs != 0: |
|
243 | 243 | raise ValueError("nTxs (=%d), should be a multiple of nHeights (=%d)" % ( |
|
244 | 244 | self.nTxs, self.processingHeaderObj.nHeights)) |
|
245 | 245 | |
|
246 | 246 | self.datablock = self.datablock.reshape( |
|
247 | 247 | (self.systemHeaderObj.nChannels, self.processingHeaderObj.profilesPerBlock * self.nTxs, int(self.processingHeaderObj.nHeights / self.nTxs))) |
|
248 | 248 | |
|
249 | 249 | self.dataOut.nProfiles = self.processingHeaderObj.profilesPerBlock * self.nTxs |
|
250 | 250 | self.dataOut.heightList = numpy.arange(self.processingHeaderObj.nHeights / self.nTxs) * \ |
|
251 | 251 | self.processingHeaderObj.deltaHeight + self.processingHeaderObj.firstHeight |
|
252 | 252 | self.dataOut.radarControllerHeaderObj.ippSeconds = self.radarControllerHeaderObj.ippSeconds / self.nTxs |
|
253 | 253 | |
|
254 | 254 | return |
|
255 | 255 | |
|
256 | 256 | def readFirstHeaderFromServer(self): |
|
257 | 257 | |
|
258 | 258 | ##print("8--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") |
|
259 | 259 | self.getFirstHeader() |
|
260 | 260 | |
|
261 | 261 | self.firstHeaderSize = self.basicHeaderObj.size |
|
262 | 262 | |
|
263 | 263 | datatype = int(numpy.log2((self.processingHeaderObj.processFlags & |
|
264 | 264 | PROCFLAG.DATATYPE_MASK)) - numpy.log2(PROCFLAG.DATATYPE_CHAR)) |
|
265 | 265 | if datatype == 0: |
|
266 | 266 | datatype_str = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
267 | 267 | elif datatype == 1: |
|
268 | 268 | datatype_str = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
269 | 269 | elif datatype == 2: |
|
270 | 270 | datatype_str = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
271 | 271 | elif datatype == 3: |
|
272 | 272 | datatype_str = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
273 | 273 | elif datatype == 4: |
|
274 | 274 | datatype_str = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
275 | 275 | elif datatype == 5: |
|
276 | 276 | datatype_str = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
277 | 277 | else: |
|
278 | 278 | raise ValueError('Data type was not defined') |
|
279 | 279 | |
|
280 | 280 | self.dtype = datatype_str |
|
281 | 281 | #self.ippSeconds = 2 * 1000 * self.radarControllerHeaderObj.ipp / self.c |
|
282 | 282 | self.fileSizeByHeader = self.processingHeaderObj.dataBlocksPerFile * self.processingHeaderObj.blockSize + \ |
|
283 | 283 | self.firstHeaderSize + self.basicHeaderSize * \ |
|
284 | 284 | (self.processingHeaderObj.dataBlocksPerFile - 1) |
|
285 | 285 | # self.dataOut.channelList = numpy.arange(self.systemHeaderObj.numChannels) |
|
286 | 286 | # self.dataOut.channelIndexList = numpy.arange(self.systemHeaderObj.numChannels) |
|
287 | 287 | self.getBlockDimension() |
|
288 | 288 | |
|
289 | 289 | def getFromServer(self): |
|
290 | 290 | ##print("9--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") |
|
291 | 291 | self.flagDiscontinuousBlock = 0 |
|
292 | 292 | self.profileIndex = 0 |
|
293 | 293 | self.flagIsNewBlock = 1 |
|
294 | 294 | self.dataOut.flagNoData = False |
|
295 | 295 | self.nTotalBlocks += 1 |
|
296 | 296 | self.nReadBlocks += 1 |
|
297 | 297 | self.blockPointer = 0 |
|
298 | 298 | |
|
299 | block = self.receiver.recv() | |
|
299 | topic, block = self.receiver.recv_multipart() | |
|
300 | 300 | |
|
301 | 301 | self.basicHeaderObj.read(block[self.blockPointer:]) |
|
302 | 302 | self.blockPointer += self.basicHeaderObj.length |
|
303 | 303 | self.systemHeaderObj.read(block[self.blockPointer:]) |
|
304 | 304 | self.blockPointer += self.systemHeaderObj.length |
|
305 | 305 | self.radarControllerHeaderObj.read(block[self.blockPointer:]) |
|
306 | 306 | self.blockPointer += self.radarControllerHeaderObj.length |
|
307 | 307 | self.processingHeaderObj.read(block[self.blockPointer:]) |
|
308 | 308 | self.blockPointer += self.processingHeaderObj.length |
|
309 | 309 | self.readFirstHeaderFromServer() |
|
310 | 310 | |
|
311 | 311 | timestamp = self.basicHeaderObj.get_datatime() |
|
312 |
print('[Re |
|
|
312 | print('[Receiving] - Block {} - {} from {}'.format(self.nTotalBlocks, timestamp, topic.decode())) | |
|
313 | if self.nTotalBlocks == self.processingHeaderObj.dataBlocksPerFile: | |
|
314 | self.nTotalBlocks = 0 | |
|
315 | self.nReadBlocks = 0 | |
|
316 | print('Receiving the next stream...') | |
|
313 | 317 | current_pointer_location = self.blockPointer |
|
314 | 318 | junk = numpy.fromstring( |
|
315 | 319 | block[self.blockPointer:], self.dtype, self.blocksize) |
|
316 | 320 | |
|
317 | 321 | try: |
|
318 | 322 | junk = junk.reshape((self.processingHeaderObj.profilesPerBlock, |
|
319 | 323 | self.processingHeaderObj.nHeights, self.systemHeaderObj.nChannels)) |
|
320 | 324 | except: |
|
321 | 325 | # print "The read block (%3d) has not enough data" %self.nReadBlocks |
|
322 | 326 | if self.waitDataBlock(pointer_location=current_pointer_location): |
|
323 | 327 | junk = numpy.fromstring( |
|
324 | 328 | block[self.blockPointer:], self.dtype, self.blocksize) |
|
325 | 329 | junk = junk.reshape((self.processingHeaderObj.profilesPerBlock, |
|
326 | 330 | self.processingHeaderObj.nHeights, self.systemHeaderObj.nChannels)) |
|
327 | 331 | # return 0 |
|
328 | 332 | |
|
329 | 333 | # Dimensions : nChannels, nProfiles, nSamples |
|
330 | 334 | |
|
331 | 335 | junk = numpy.transpose(junk, (2, 0, 1)) |
|
332 | 336 | self.datablock = junk['real'] + junk['imag'] * 1j |
|
333 | 337 | self.profileIndex = 0 |
|
334 | 338 | if self.selBlocksize == None: |
|
335 | 339 | self.selBlocksize = self.dataOut.nProfiles |
|
336 | 340 | if self.selBlocktime != None: |
|
337 | 341 | if self.dataOut.nCohInt is not None: |
|
338 | 342 | nCohInt = self.dataOut.nCohInt |
|
339 | 343 | else: |
|
340 | 344 | nCohInt = 1 |
|
341 | 345 | self.selBlocksize = int(self.dataOut.nProfiles * round(self.selBlocktime / ( |
|
342 | 346 | nCohInt * self.dataOut.ippSeconds * self.dataOut.nProfiles))) |
|
343 | 347 | self.dataOut.data = self.datablock[:, |
|
344 | 348 | self.profileIndex:self.profileIndex + self.selBlocksize, :] |
|
345 | 349 | datasize = self.dataOut.data.shape[1] |
|
346 | 350 | if datasize < self.selBlocksize: |
|
347 | 351 | buffer = numpy.zeros( |
|
348 | 352 | (self.dataOut.data.shape[0], self.selBlocksize, self.dataOut.data.shape[2]), dtype='complex') |
|
349 | 353 | buffer[:, :datasize, :] = self.dataOut.data |
|
350 | 354 | self.dataOut.data = buffer |
|
351 | 355 | self.profileIndex = blockIndex |
|
352 | 356 | |
|
353 | 357 | self.dataOut.flagDataAsBlock = True |
|
354 | 358 | self.flagIsNewBlock = 1 |
|
355 | 359 | self.dataOut.realtime = self.online |
|
356 | 360 | |
|
357 | 361 | return self.dataOut.data |
|
358 | 362 | |
|
359 | 363 | def getData(self): |
|
360 | 364 | """ |
|
361 | 365 | getData obtiene una unidad de datos del buffer de lectura, un perfil, y la copia al objeto self.dataOut |
|
362 | 366 | del tipo "Voltage" con todos los parametros asociados a este (metadata). cuando no hay datos |
|
363 | 367 | en el buffer de lectura es necesario hacer una nueva lectura de los bloques de datos usando |
|
364 | 368 | "readNextBlock" |
|
365 | 369 | |
|
366 | 370 | Ademas incrementa el contador del buffer "self.profileIndex" en 1. |
|
367 | 371 | |
|
368 | 372 | Return: |
|
369 | 373 | |
|
370 | 374 | Si el flag self.getByBlock ha sido seteado el bloque completo es copiado a self.dataOut y el self.profileIndex |
|
371 | 375 | es igual al total de perfiles leidos desde el archivo. |
|
372 | 376 | |
|
373 | 377 | Si self.getByBlock == False: |
|
374 | 378 | |
|
375 | 379 | self.dataOut.data = buffer[:, thisProfile, :] |
|
376 | 380 | |
|
377 | 381 | shape = [nChannels, nHeis] |
|
378 | 382 | |
|
379 | 383 | Si self.getByBlock == True: |
|
380 | 384 | |
|
381 | 385 | self.dataOut.data = buffer[:, :, :] |
|
382 | 386 | |
|
383 | 387 | shape = [nChannels, nProfiles, nHeis] |
|
384 | 388 | |
|
385 | 389 | Variables afectadas: |
|
386 | 390 | self.dataOut |
|
387 | 391 | self.profileIndex |
|
388 | 392 | |
|
389 | 393 | Affected: |
|
390 | 394 | self.dataOut |
|
391 | 395 | self.profileIndex |
|
392 | 396 | self.flagDiscontinuousBlock |
|
393 | 397 | self.flagIsNewBlock |
|
394 | 398 | """ |
|
395 | 399 | |
|
396 | 400 | ##print("10--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") |
|
397 | 401 | if self.flagNoMoreFiles: |
|
398 | 402 | self.dataOut.flagNoData = True |
|
399 | 403 | return 0 |
|
400 | 404 | self.flagDiscontinuousBlock = 0 |
|
401 | 405 | self.flagIsNewBlock = 0 |
|
402 | 406 | if self.__hasNotDataInBuffer(): |
|
403 | 407 | if not(self.readNextBlock()): |
|
404 | 408 | return 0 |
|
405 | 409 | |
|
406 | 410 | self.getFirstHeader() |
|
407 | 411 | |
|
408 | 412 | self.reshapeData() |
|
409 | 413 | if self.datablock is None: |
|
410 | 414 | self.dataOut.flagNoData = True |
|
411 | 415 | return 0 |
|
412 | 416 | |
|
413 | 417 | if not self.getByBlock: |
|
414 | 418 | |
|
415 | 419 | """ |
|
416 | 420 | Return profile by profile |
|
417 | 421 | |
|
418 | 422 | If nTxs > 1 then one profile is divided by nTxs and number of total |
|
419 | 423 | blocks is increased by nTxs (nProfiles *= nTxs) |
|
420 | 424 | """ |
|
421 | 425 | self.dataOut.flagDataAsBlock = False |
|
422 | 426 | self.dataOut.data = self.datablock[:, self.profileIndex, :] |
|
423 | 427 | self.dataOut.profileIndex = self.profileIndex |
|
424 | 428 | |
|
425 | 429 | |
|
426 | 430 | self.profileIndex += 1 |
|
427 | 431 | |
|
428 | 432 | else: |
|
429 | 433 | """ |
|
430 | 434 | Return a block |
|
431 | 435 | """ |
|
432 | 436 | if self.selBlocksize == None: |
|
433 | 437 | self.selBlocksize = self.dataOut.nProfiles |
|
434 | 438 | if self.selBlocktime != None: |
|
435 | 439 | if self.dataOut.nCohInt is not None: |
|
436 | 440 | nCohInt = self.dataOut.nCohInt |
|
437 | 441 | else: |
|
438 | 442 | nCohInt = 1 |
|
439 | 443 | self.selBlocksize = int(self.dataOut.nProfiles * round(self.selBlocktime / ( |
|
440 | 444 | nCohInt * self.dataOut.ippSeconds * self.dataOut.nProfiles))) |
|
441 | 445 | |
|
442 | 446 | self.dataOut.data = self.datablock[:, |
|
443 | 447 | self.profileIndex:self.profileIndex + self.selBlocksize, :] |
|
444 | 448 | self.profileIndex += self.selBlocksize |
|
445 | 449 | datasize = self.dataOut.data.shape[1] |
|
446 | 450 | |
|
447 | 451 | if datasize < self.selBlocksize: |
|
448 | 452 | buffer = numpy.zeros( |
|
449 | 453 | (self.dataOut.data.shape[0], self.selBlocksize, self.dataOut.data.shape[2]), dtype='complex') |
|
450 | 454 | buffer[:, :datasize, :] = self.dataOut.data |
|
451 | 455 | |
|
452 | 456 | while datasize < self.selBlocksize: # Not enough profiles to fill the block |
|
453 | 457 | if not(self.readNextBlock()): |
|
454 | 458 | return 0 |
|
455 | 459 | self.getFirstHeader() |
|
456 | 460 | self.reshapeData() |
|
457 | 461 | if self.datablock is None: |
|
458 | 462 | self.dataOut.flagNoData = True |
|
459 | 463 | return 0 |
|
460 | 464 | # stack data |
|
461 | 465 | blockIndex = self.selBlocksize - datasize |
|
462 | 466 | datablock1 = self.datablock[:, :blockIndex, :] |
|
463 | 467 | |
|
464 | 468 | buffer[:, datasize:datasize + |
|
465 | 469 | datablock1.shape[1], :] = datablock1 |
|
466 | 470 | datasize += datablock1.shape[1] |
|
467 | 471 | |
|
468 | 472 | self.dataOut.data = buffer |
|
469 | 473 | self.profileIndex = blockIndex |
|
470 | 474 | |
|
471 | 475 | self.dataOut.flagDataAsBlock = True |
|
472 | 476 | self.dataOut.nProfiles = self.dataOut.data.shape[1] |
|
473 | 477 | |
|
474 | 478 | #######################DP####################### |
|
475 | 479 | self.dataOut.CurrentBlock=self.nReadBlocks |
|
476 | 480 | self.dataOut.LastBlock=self.processingHeaderObj.dataBlocksPerFile |
|
477 | 481 | #######################DP####################### |
|
478 | 482 | self.dataOut.flagNoData = False |
|
479 | 483 | |
|
480 | 484 | #self.getBasicHeader() |
|
481 | 485 | |
|
482 | 486 | self.dataOut.realtime = self.online |
|
483 | 487 | |
|
484 | 488 | return self.dataOut.data |
|
485 | 489 | |
|
486 | 490 | |
|
487 | 491 | @MPDecorator |
|
488 | 492 | class VoltageWriter(JRODataWriter, Operation): |
|
489 | 493 | """ |
|
490 | 494 | Esta clase permite escribir datos de voltajes a archivos procesados (.r). La escritura |
|
491 | 495 | de los datos siempre se realiza por bloques. |
|
492 | 496 | """ |
|
493 | 497 | |
|
494 | 498 | ext = ".r" |
|
495 | 499 | |
|
496 | 500 | optchar = "D" |
|
497 | 501 | |
|
498 | 502 | shapeBuffer = None |
|
499 | 503 | |
|
500 | 504 | def __init__(self):#, **kwargs): |
|
501 | 505 | """ |
|
502 | 506 | Inicializador de la clase VoltageWriter para la escritura de datos de espectros. |
|
503 | 507 | |
|
504 | 508 | Affected: |
|
505 | 509 | self.dataOut |
|
506 | 510 | |
|
507 | 511 | Return: None |
|
508 | 512 | """ |
|
509 | 513 | Operation.__init__(self)#, **kwargs) |
|
510 | 514 | |
|
511 | 515 | self.nTotalBlocks = 0 |
|
512 | 516 | |
|
513 | 517 | self.profileIndex = 0 |
|
514 | 518 | |
|
515 | 519 | self.isConfig = False |
|
516 | 520 | |
|
517 | 521 | self.fp = None |
|
518 | 522 | |
|
519 | 523 | self.flagIsNewFile = 1 |
|
520 | 524 | |
|
521 | 525 | self.blockIndex = 0 |
|
522 | 526 | |
|
523 | 527 | self.flagIsNewBlock = 0 |
|
524 | 528 | |
|
525 | 529 | self.setFile = None |
|
526 | 530 | |
|
527 | 531 | self.dtype = None |
|
528 | 532 | |
|
529 | 533 | self.path = None |
|
530 | 534 | |
|
531 | 535 | self.filename = None |
|
532 | 536 | |
|
533 | 537 | self.basicHeaderObj = BasicHeader(LOCALTIME) |
|
534 | 538 | |
|
535 | 539 | self.systemHeaderObj = SystemHeader() |
|
536 | 540 | |
|
537 | 541 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
538 | 542 | |
|
539 | 543 | self.processingHeaderObj = ProcessingHeader() |
|
540 | 544 | |
|
541 | 545 | def hasAllDataInBuffer(self): |
|
542 | 546 | if self.profileIndex >= self.processingHeaderObj.profilesPerBlock: |
|
543 | 547 | return 1 |
|
544 | 548 | return 0 |
|
545 | 549 | |
|
546 | 550 | def setBlockDimension(self): |
|
547 | 551 | """ |
|
548 | 552 | Obtiene las formas dimensionales del los subbloques de datos que componen un bloque |
|
549 | 553 | |
|
550 | 554 | Affected: |
|
551 | 555 | self.shape_spc_Buffer |
|
552 | 556 | self.shape_cspc_Buffer |
|
553 | 557 | self.shape_dc_Buffer |
|
554 | 558 | |
|
555 | 559 | Return: None |
|
556 | 560 | """ |
|
557 | 561 | self.shapeBuffer = (self.processingHeaderObj.profilesPerBlock, |
|
558 | 562 | self.processingHeaderObj.nHeights, |
|
559 | 563 | self.systemHeaderObj.nChannels) |
|
560 | 564 | |
|
561 | 565 | self.datablock = numpy.zeros((self.systemHeaderObj.nChannels, |
|
562 | 566 | self.processingHeaderObj.profilesPerBlock, |
|
563 | 567 | self.processingHeaderObj.nHeights), |
|
564 | 568 | dtype=numpy.dtype('complex64')) |
|
565 | 569 | |
|
566 | 570 | def writeBlock(self): |
|
567 | 571 | """ |
|
568 | 572 | Escribe el buffer en el file designado |
|
569 | 573 | |
|
570 | 574 | Affected: |
|
571 | 575 | self.profileIndex |
|
572 | 576 | self.flagIsNewFile |
|
573 | 577 | self.flagIsNewBlock |
|
574 | 578 | self.nTotalBlocks |
|
575 | 579 | self.blockIndex |
|
576 | 580 | |
|
577 | 581 | Return: None |
|
578 | 582 | """ |
|
579 | 583 | data = numpy.zeros(self.shapeBuffer, self.dtype) |
|
580 | 584 | |
|
581 | 585 | junk = numpy.transpose(self.datablock, (1, 2, 0)) |
|
582 | 586 | |
|
583 | 587 | data['real'] = junk.real |
|
584 | 588 | data['imag'] = junk.imag |
|
585 | 589 | |
|
586 | 590 | data = data.reshape((-1)) |
|
587 | 591 | |
|
588 | 592 | data.tofile(self.fp) |
|
589 | 593 | |
|
590 | 594 | self.datablock.fill(0) |
|
591 | 595 | |
|
592 | 596 | self.profileIndex = 0 |
|
593 | 597 | self.flagIsNewFile = 0 |
|
594 | 598 | self.flagIsNewBlock = 1 |
|
595 | 599 | |
|
596 | 600 | self.blockIndex += 1 |
|
597 | 601 | self.nTotalBlocks += 1 |
|
598 | 602 | |
|
599 | 603 | # print "[Writing] Block = %04d" %self.blockIndex |
|
600 | 604 | |
|
601 | 605 | def putData(self): |
|
602 | 606 | """ |
|
603 | 607 | Setea un bloque de datos y luego los escribe en un file |
|
604 | 608 | |
|
605 | 609 | Affected: |
|
606 | 610 | self.flagIsNewBlock |
|
607 | 611 | self.profileIndex |
|
608 | 612 | |
|
609 | 613 | Return: |
|
610 | 614 | 0 : Si no hay data o no hay mas files que puedan escribirse |
|
611 | 615 | 1 : Si se escribio la data de un bloque en un file |
|
612 | 616 | """ |
|
613 | 617 | if self.dataOut.flagNoData: |
|
614 | 618 | return 0 |
|
615 | 619 | |
|
616 | 620 | self.flagIsNewBlock = 0 |
|
617 | 621 | |
|
618 | 622 | if self.dataOut.flagDiscontinuousBlock: |
|
619 | 623 | self.datablock.fill(0) |
|
620 | 624 | self.profileIndex = 0 |
|
621 | 625 | self.setNextFile() |
|
622 | 626 | |
|
623 | 627 | if self.profileIndex == 0: |
|
624 | 628 | self.setBasicHeader() |
|
625 | 629 | |
|
626 | 630 | if not self.dataOut.flagDataAsBlock: |
|
627 | 631 | self.datablock[:, self.profileIndex, :] = self.dataOut.data |
|
628 | 632 | |
|
629 | 633 | self.profileIndex += 1 |
|
630 | 634 | else: |
|
631 | 635 | self.datablock[:,:,:] = self.dataOut.data |
|
632 | 636 | self.profileIndex = self.processingHeaderObj.profilesPerBlock |
|
633 | 637 | |
|
634 | 638 | if self.hasAllDataInBuffer(): |
|
635 | 639 | # if self.flagIsNewFile: |
|
636 | 640 | self.writeNextBlock() |
|
637 | 641 | # self.setFirstHeader() |
|
638 | 642 | |
|
639 | 643 | return 1 |
|
640 | 644 | |
|
641 | 645 | def __getBlockSize(self): |
|
642 | 646 | ''' |
|
643 | 647 | Este metodos determina el cantidad de bytes para un bloque de datos de tipo Voltage |
|
644 | 648 | ''' |
|
645 | 649 | |
|
646 | 650 | dtype_width = self.getDtypeWidth() |
|
647 | 651 | |
|
648 | 652 | blocksize = int(self.dataOut.nHeights * self.dataOut.nChannels * |
|
649 | 653 | self.profilesPerBlock * dtype_width * 2) |
|
650 | 654 | |
|
651 | 655 | return blocksize |
|
652 | 656 | |
|
653 | 657 | def setFirstHeader(self): |
|
654 | 658 | """ |
|
655 | 659 | Obtiene una copia del First Header |
|
656 | 660 | |
|
657 | 661 | Affected: |
|
658 | 662 | self.systemHeaderObj |
|
659 | 663 | self.radarControllerHeaderObj |
|
660 | 664 | self.dtype |
|
661 | 665 | |
|
662 | 666 | Return: |
|
663 | 667 | None |
|
664 | 668 | """ |
|
665 | 669 | |
|
666 | 670 | self.systemHeaderObj = self.dataOut.systemHeaderObj.copy() |
|
667 | 671 | self.systemHeaderObj.nChannels = self.dataOut.nChannels |
|
668 | 672 | self.radarControllerHeaderObj = self.dataOut.radarControllerHeaderObj.copy() |
|
669 | 673 | |
|
670 | 674 | self.processingHeaderObj.dtype = 0 # Voltage |
|
671 | 675 | self.processingHeaderObj.blockSize = self.__getBlockSize() |
|
672 | 676 | self.processingHeaderObj.profilesPerBlock = self.profilesPerBlock |
|
673 | 677 | self.processingHeaderObj.dataBlocksPerFile = self.blocksPerFile |
|
674 | 678 | # podria ser 1 o self.dataOut.processingHeaderObj.nWindows |
|
675 | 679 | self.processingHeaderObj.nWindows = 1 |
|
676 | 680 | self.processingHeaderObj.nCohInt = self.dataOut.nCohInt |
|
677 | 681 | # Cuando la data de origen es de tipo Voltage |
|
678 | 682 | self.processingHeaderObj.nIncohInt = 1 |
|
679 | 683 | # Cuando la data de origen es de tipo Voltage |
|
680 | 684 | self.processingHeaderObj.totalSpectra = 0 |
|
681 | 685 | |
|
682 | 686 | if self.dataOut.code is not None: |
|
683 | 687 | self.processingHeaderObj.code = self.dataOut.code |
|
684 | 688 | self.processingHeaderObj.nCode = self.dataOut.nCode |
|
685 | 689 | self.processingHeaderObj.nBaud = self.dataOut.nBaud |
|
686 | 690 | |
|
687 | 691 | if self.processingHeaderObj.nWindows != 0: |
|
688 | 692 | self.processingHeaderObj.firstHeight = self.dataOut.heightList[0] |
|
689 | 693 | self.processingHeaderObj.deltaHeight = self.dataOut.heightList[1] - \ |
|
690 | 694 | self.dataOut.heightList[0] |
|
691 | 695 | self.processingHeaderObj.nHeights = self.dataOut.nHeights |
|
692 | 696 | self.processingHeaderObj.samplesWin = self.dataOut.nHeights |
|
693 | 697 | |
|
694 | 698 | self.processingHeaderObj.processFlags = self.getProcessFlags() |
|
695 | 699 | |
|
696 | 700 | self.setBasicHeader() |
@@ -1,252 +1,252 | |||
|
1 | 1 | ''' |
|
2 | 2 | Base clases to create Processing units and operations, the MPDecorator |
|
3 | 3 | must be used in plotting and writing operations to allow to run as an |
|
4 | 4 | external process. |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import os |
|
8 | 8 | import inspect |
|
9 | 9 | import zmq |
|
10 | 10 | import time |
|
11 | 11 | import pickle |
|
12 | 12 | import traceback |
|
13 | 13 | from threading import Thread |
|
14 | 14 | from multiprocessing import Process, Queue |
|
15 | 15 | from schainpy.utils import log |
|
16 | 16 | |
|
17 | import copy | |
|
18 | ||
|
19 | 17 | QUEUE_SIZE = int(os.environ.get('QUEUE_MAX_SIZE', '10')) |
|
20 | 18 | |
|
21 | 19 | class ProcessingUnit(object): |
|
22 | 20 | ''' |
|
23 | 21 | Base class to create Signal Chain Units |
|
24 | 22 | ''' |
|
25 | 23 | |
|
26 | 24 | proc_type = 'processing' |
|
25 | bypass = False | |
|
27 | 26 | |
|
28 | 27 | def __init__(self): |
|
29 | 28 | |
|
30 | 29 | self.dataIn = None |
|
31 | 30 | self.dataOut = None |
|
32 | 31 | self.isConfig = False |
|
33 | 32 | self.operations = [] |
|
34 | 33 | self.name = 'Test' |
|
35 | 34 | self.inputs = [] |
|
36 | 35 | |
|
37 | 36 | def setInput(self, unit): |
|
38 | 37 | |
|
39 | 38 | attr = 'dataIn' |
|
40 | 39 | for i, u in enumerate(unit): |
|
41 | 40 | if i==0: |
|
42 | 41 | #print(u.dataOut.flagNoData) |
|
43 | 42 | #exit(1) |
|
44 | 43 | self.dataIn = u.dataOut#.copy() |
|
45 | 44 | self.inputs.append('dataIn') |
|
46 | 45 | else: |
|
47 | 46 | setattr(self, 'dataIn{}'.format(i), u.dataOut)#.copy()) |
|
48 | 47 | self.inputs.append('dataIn{}'.format(i)) |
|
49 | 48 | |
|
50 | 49 | |
|
51 | 50 | def getAllowedArgs(self): |
|
52 | 51 | if hasattr(self, '__attrs__'): |
|
53 | 52 | return self.__attrs__ |
|
54 | 53 | else: |
|
55 | 54 | return inspect.getargspec(self.run).args |
|
56 | 55 | |
|
57 | 56 | def addOperation(self, conf, operation): |
|
58 | 57 | ''' |
|
59 | 58 | ''' |
|
60 | 59 | |
|
61 | 60 | self.operations.append((operation, conf.type, conf.getKwargs())) |
|
62 | 61 | |
|
63 | 62 | def getOperationObj(self, objId): |
|
64 | 63 | |
|
65 | 64 | if objId not in list(self.operations.keys()): |
|
66 | 65 | return None |
|
67 | 66 | |
|
68 | 67 | return self.operations[objId] |
|
69 | 68 | |
|
70 | 69 | def call(self, **kwargs): |
|
71 | 70 | ''' |
|
72 | 71 | ''' |
|
73 | 72 | |
|
74 | 73 | try: |
|
75 | 74 | if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error: |
|
76 | 75 | #if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error and not self.dataIn.runNextUnit: |
|
77 | 76 | if self.dataIn.runNextUnit: |
|
78 | 77 | #print("SUCCESSSSSSS") |
|
79 | 78 | #exit(1) |
|
80 | 79 | return not self.dataIn.isReady() |
|
81 | 80 | else: |
|
82 | 81 | return self.dataIn.isReady() |
|
83 | 82 | elif self.dataIn is None or not self.dataIn.error: |
|
84 | #print([getattr(self, at) for at in self.inputs]) | |
|
85 |
|
|
|
83 | if 'Reader' in self.name and self.bypass: | |
|
84 | print('Skipping...reader') | |
|
85 | return self.dataOut.isReady() | |
|
86 | 86 | self.run(**kwargs) |
|
87 | 87 | elif self.dataIn.error: |
|
88 | 88 | #print("Elif 2") |
|
89 | 89 | self.dataOut.error = self.dataIn.error |
|
90 | 90 | self.dataOut.flagNoData = True |
|
91 | 91 | except: |
|
92 | 92 | #print("Except") |
|
93 | 93 | err = traceback.format_exc() |
|
94 | 94 | if 'SchainWarning' in err: |
|
95 | 95 | log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name) |
|
96 | 96 | elif 'SchainError' in err: |
|
97 | 97 | log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name) |
|
98 | 98 | else: |
|
99 | 99 | log.error(err, self.name) |
|
100 | 100 | self.dataOut.error = True |
|
101 | 101 | #print("before op") |
|
102 | 102 | for op, optype, opkwargs in self.operations: |
|
103 | 103 | aux = self.dataOut.copy() |
|
104 | 104 | #aux = copy.deepcopy(self.dataOut) |
|
105 | 105 | #print("**********************Before",op) |
|
106 | 106 | if optype == 'other' and not self.dataOut.flagNoData: |
|
107 | 107 | #print("**********************Other",op) |
|
108 | 108 | #print(self.dataOut.flagNoData) |
|
109 | 109 | self.dataOut = op.run(self.dataOut, **opkwargs) |
|
110 | 110 | elif optype == 'external' and not self.dataOut.flagNoData: |
|
111 | 111 | op.queue.put(aux) |
|
112 | 112 | elif optype == 'external' and self.dataOut.error: |
|
113 | 113 | op.queue.put(aux) |
|
114 | 114 | #elif optype == 'external' and self.dataOut.isReady(): |
|
115 | 115 | #op.queue.put(copy.deepcopy(self.dataOut)) |
|
116 | 116 | #print(not self.dataOut.isReady()) |
|
117 | 117 | |
|
118 | 118 | try: |
|
119 | 119 | if self.dataOut.runNextUnit: |
|
120 | 120 | runNextUnit = self.dataOut.runNextUnit |
|
121 | 121 | #print(self.operations) |
|
122 | 122 | #print("Tru") |
|
123 | 123 | |
|
124 | 124 | else: |
|
125 | 125 | runNextUnit = self.dataOut.isReady() |
|
126 | 126 | except: |
|
127 | 127 | runNextUnit = self.dataOut.isReady() |
|
128 | 128 | #exit(1) |
|
129 | 129 | #if not self.dataOut.isReady(): |
|
130 | 130 | #return 'Error' if self.dataOut.error else input() |
|
131 | 131 | #print("NexT",runNextUnit) |
|
132 | 132 | #print("error: ",self.dataOut.error) |
|
133 | 133 | return 'Error' if self.dataOut.error else runNextUnit# self.dataOut.isReady() |
|
134 | 134 | |
|
135 | 135 | def setup(self): |
|
136 | 136 | |
|
137 | 137 | raise NotImplementedError |
|
138 | 138 | |
|
139 | 139 | def run(self): |
|
140 | 140 | |
|
141 | 141 | raise NotImplementedError |
|
142 | 142 | |
|
143 | 143 | def close(self): |
|
144 | 144 | |
|
145 | 145 | return |
|
146 | 146 | |
|
147 | 147 | |
|
148 | 148 | class Operation(object): |
|
149 | 149 | |
|
150 | 150 | ''' |
|
151 | 151 | ''' |
|
152 | 152 | |
|
153 | 153 | proc_type = 'operation' |
|
154 | 154 | |
|
155 | 155 | def __init__(self): |
|
156 | 156 | |
|
157 | 157 | self.id = None |
|
158 | 158 | self.isConfig = False |
|
159 | 159 | |
|
160 | 160 | if not hasattr(self, 'name'): |
|
161 | 161 | self.name = self.__class__.__name__ |
|
162 | 162 | |
|
163 | 163 | def getAllowedArgs(self): |
|
164 | 164 | if hasattr(self, '__attrs__'): |
|
165 | 165 | return self.__attrs__ |
|
166 | 166 | else: |
|
167 | 167 | return inspect.getargspec(self.run).args |
|
168 | 168 | |
|
169 | 169 | def setup(self): |
|
170 | 170 | |
|
171 | 171 | self.isConfig = True |
|
172 | 172 | |
|
173 | 173 | raise NotImplementedError |
|
174 | 174 | |
|
175 | 175 | def run(self, dataIn, **kwargs): |
|
176 | 176 | """ |
|
177 | 177 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los |
|
178 | 178 | atributos del objeto dataIn. |
|
179 | 179 | |
|
180 | 180 | Input: |
|
181 | 181 | |
|
182 | 182 | dataIn : objeto del tipo JROData |
|
183 | 183 | |
|
184 | 184 | Return: |
|
185 | 185 | |
|
186 | 186 | None |
|
187 | 187 | |
|
188 | 188 | Affected: |
|
189 | 189 | __buffer : buffer de recepcion de datos. |
|
190 | 190 | |
|
191 | 191 | """ |
|
192 | 192 | if not self.isConfig: |
|
193 | 193 | self.setup(**kwargs) |
|
194 | 194 | |
|
195 | 195 | raise NotImplementedError |
|
196 | 196 | |
|
197 | 197 | def close(self): |
|
198 | 198 | |
|
199 | 199 | return |
|
200 | 200 | |
|
201 | 201 | |
|
202 | 202 | def MPDecorator(BaseClass): |
|
203 | 203 | """ |
|
204 | 204 | Multiprocessing class decorator |
|
205 | 205 | |
|
206 | 206 | This function add multiprocessing features to a BaseClass. |
|
207 | 207 | """ |
|
208 | 208 | |
|
209 | 209 | class MPClass(BaseClass, Process): |
|
210 | 210 | |
|
211 | 211 | def __init__(self, *args, **kwargs): |
|
212 | 212 | super(MPClass, self).__init__() |
|
213 | 213 | Process.__init__(self) |
|
214 | 214 | |
|
215 | 215 | self.args = args |
|
216 | 216 | self.kwargs = kwargs |
|
217 | 217 | self.t = time.time() |
|
218 | 218 | self.op_type = 'external' |
|
219 | 219 | self.name = BaseClass.__name__ |
|
220 | 220 | self.__doc__ = BaseClass.__doc__ |
|
221 | 221 | |
|
222 | 222 | if 'plot' in self.name.lower() and not self.name.endswith('_'): |
|
223 | 223 | self.name = '{}{}'.format(self.CODE.upper(), 'Plot') |
|
224 | 224 | |
|
225 | 225 | self.start_time = time.time() |
|
226 | 226 | self.err_queue = args[3] |
|
227 | 227 | self.queue = Queue(maxsize=QUEUE_SIZE) |
|
228 | 228 | self.myrun = BaseClass.run |
|
229 | 229 | |
|
230 | 230 | def run(self): |
|
231 | 231 | |
|
232 | 232 | while True: |
|
233 | 233 | |
|
234 | 234 | dataOut = self.queue.get() |
|
235 | 235 | |
|
236 | 236 | if not dataOut.error: |
|
237 | 237 | try: |
|
238 | 238 | BaseClass.run(self, dataOut, **self.kwargs) |
|
239 | 239 | except: |
|
240 | 240 | err = traceback.format_exc() |
|
241 | 241 | log.error(err, self.name) |
|
242 | 242 | else: |
|
243 | 243 | break |
|
244 | 244 | |
|
245 | 245 | self.close() |
|
246 | 246 | |
|
247 | 247 | def close(self): |
|
248 | 248 | |
|
249 | 249 | BaseClass.close(self) |
|
250 | 250 | log.success('Done...(Time:{:4.2f} secs)'.format(time.time() - self.start_time), self.name) |
|
251 | 251 | |
|
252 | 252 | return MPClass |
@@ -1,1049 +1,1062 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Spectra processing Unit and operations |
|
6 | 6 | |
|
7 | 7 | Here you will find the processing unit `SpectraProc` and several operations |
|
8 | 8 | to work with Spectra data type |
|
9 | 9 | """ |
|
10 | 10 | |
|
11 | 11 | import time |
|
12 | 12 | import itertools |
|
13 | 13 | |
|
14 | 14 | import numpy |
|
15 | 15 | |
|
16 | 16 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
17 | 17 | from schainpy.model.data.jrodata import Spectra |
|
18 | 18 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
19 | 19 | from schainpy.utils import log |
|
20 | 20 | |
|
21 | 21 | |
|
22 | 22 | class SpectraProc(ProcessingUnit): |
|
23 | 23 | |
|
24 | 24 | def __init__(self): |
|
25 | 25 | |
|
26 | 26 | ProcessingUnit.__init__(self) |
|
27 | 27 | |
|
28 | 28 | self.buffer = None |
|
29 | 29 | self.firstdatatime = None |
|
30 | 30 | self.profIndex = 0 |
|
31 | 31 | self.dataOut = Spectra() |
|
32 | 32 | self.id_min = None |
|
33 | 33 | self.id_max = None |
|
34 | 34 | self.setupReq = False #Agregar a todas las unidades de proc |
|
35 | 35 | |
|
36 | 36 | def __updateSpecFromVoltage(self): |
|
37 | 37 | |
|
38 | 38 | self.dataOut.timeZone = self.dataIn.timeZone |
|
39 | 39 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
40 | 40 | self.dataOut.errorCount = self.dataIn.errorCount |
|
41 | 41 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
42 | 42 | try: |
|
43 | 43 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
44 | 44 | except: |
|
45 | 45 | pass |
|
46 | 46 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
47 | 47 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
48 | 48 | self.dataOut.channelList = self.dataIn.channelList |
|
49 | 49 | self.dataOut.heightList = self.dataIn.heightList |
|
50 | 50 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
51 | 51 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
52 | 52 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
53 | 53 | self.dataOut.utctime = self.firstdatatime |
|
54 | 54 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
55 | 55 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
56 | 56 | self.dataOut.flagShiftFFT = False |
|
57 | 57 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
58 | 58 | self.dataOut.nIncohInt = 1 |
|
59 | 59 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
60 | 60 | self.dataOut.frequency = self.dataIn.frequency |
|
61 | 61 | self.dataOut.realtime = self.dataIn.realtime |
|
62 | 62 | self.dataOut.azimuth = self.dataIn.azimuth |
|
63 | 63 | self.dataOut.zenith = self.dataIn.zenith |
|
64 | 64 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
65 | 65 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
66 | 66 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
67 | 67 | self.dataOut.runNextUnit = self.dataIn.runNextUnit |
|
68 | 68 | try: |
|
69 | 69 | self.dataOut.step = self.dataIn.step |
|
70 | 70 | except: |
|
71 | 71 | pass |
|
72 | 72 | |
|
73 | 73 | def __getFft(self): |
|
74 | 74 | """ |
|
75 | 75 | Convierte valores de Voltaje a Spectra |
|
76 | 76 | |
|
77 | 77 | Affected: |
|
78 | 78 | self.dataOut.data_spc |
|
79 | 79 | self.dataOut.data_cspc |
|
80 | 80 | self.dataOut.data_dc |
|
81 | 81 | self.dataOut.heightList |
|
82 | 82 | self.profIndex |
|
83 | 83 | self.buffer |
|
84 | 84 | self.dataOut.flagNoData |
|
85 | 85 | """ |
|
86 | 86 | fft_volt = numpy.fft.fft( |
|
87 | 87 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
88 | 88 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
89 | 89 | dc = fft_volt[:, 0, :] |
|
90 | 90 | |
|
91 | 91 | # calculo de self-spectra |
|
92 | 92 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
93 | 93 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
94 | 94 | spc = spc.real |
|
95 | 95 | |
|
96 | 96 | blocksize = 0 |
|
97 | 97 | blocksize += dc.size |
|
98 | 98 | blocksize += spc.size |
|
99 | 99 | |
|
100 | 100 | cspc = None |
|
101 | 101 | pairIndex = 0 |
|
102 | 102 | if self.dataOut.pairsList != None: |
|
103 | 103 | # calculo de cross-spectra |
|
104 | 104 | cspc = numpy.zeros( |
|
105 | 105 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
106 | 106 | for pair in self.dataOut.pairsList: |
|
107 | 107 | if pair[0] not in self.dataOut.channelList: |
|
108 | 108 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
109 | 109 | str(pair), str(self.dataOut.channelList))) |
|
110 | 110 | if pair[1] not in self.dataOut.channelList: |
|
111 | 111 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
112 | 112 | str(pair), str(self.dataOut.channelList))) |
|
113 | 113 | |
|
114 | 114 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
115 | 115 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
116 | 116 | pairIndex += 1 |
|
117 | 117 | blocksize += cspc.size |
|
118 | 118 | |
|
119 | 119 | self.dataOut.data_spc = spc |
|
120 | 120 | self.dataOut.data_cspc = cspc |
|
121 | 121 | self.dataOut.data_dc = dc |
|
122 | 122 | self.dataOut.blockSize = blocksize |
|
123 | 123 | self.dataOut.flagShiftFFT = False |
|
124 | 124 | |
|
125 | 125 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False, runNextUnit = 0): |
|
126 | 126 | |
|
127 | 127 | self.dataIn.runNextUnit = runNextUnit |
|
128 | 128 | if self.dataIn.type == "Spectra": |
|
129 | 129 | |
|
130 | 130 | self.dataOut.copy(self.dataIn) |
|
131 | 131 | if shift_fft: |
|
132 | 132 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
133 | 133 | shift = int(self.dataOut.nFFTPoints/2) |
|
134 | 134 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
135 | 135 | |
|
136 | 136 | if self.dataOut.data_cspc is not None: |
|
137 | 137 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
138 | 138 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
139 | 139 | if pairsList: |
|
140 | 140 | self.__selectPairs(pairsList) |
|
141 | 141 | |
|
142 | 142 | elif self.dataIn.type == "Voltage": |
|
143 | 143 | |
|
144 | 144 | self.dataOut.flagNoData = True |
|
145 | 145 | |
|
146 | 146 | if nFFTPoints == None: |
|
147 | 147 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
148 | 148 | |
|
149 | 149 | if nProfiles == None: |
|
150 | 150 | nProfiles = nFFTPoints |
|
151 | 151 | #print(self.dataOut.ipp) |
|
152 | 152 | #exit(1) |
|
153 | 153 | if ippFactor == None: |
|
154 | 154 | self.dataOut.ippFactor = 1 |
|
155 | 155 | #if ippFactor is not None: |
|
156 | 156 | #self.dataOut.ippFactor = ippFactor |
|
157 | 157 | #print(ippFactor) |
|
158 | 158 | #print(self.dataOut.ippFactor) |
|
159 | 159 | #exit(1) |
|
160 | 160 | |
|
161 | 161 | self.dataOut.nFFTPoints = nFFTPoints |
|
162 | 162 | |
|
163 | 163 | if self.buffer is None: |
|
164 | 164 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
165 | 165 | nProfiles, |
|
166 | 166 | self.dataIn.nHeights), |
|
167 | 167 | dtype='complex') |
|
168 | 168 | |
|
169 | 169 | if self.dataIn.flagDataAsBlock: |
|
170 | 170 | nVoltProfiles = self.dataIn.data.shape[1] |
|
171 | 171 | |
|
172 | 172 | if nVoltProfiles == nProfiles: |
|
173 | 173 | self.buffer = self.dataIn.data.copy() |
|
174 | 174 | self.profIndex = nVoltProfiles |
|
175 | 175 | |
|
176 | 176 | elif nVoltProfiles < nProfiles: |
|
177 | 177 | |
|
178 | 178 | if self.profIndex == 0: |
|
179 | 179 | self.id_min = 0 |
|
180 | 180 | self.id_max = nVoltProfiles |
|
181 | 181 | #print(self.id_min) |
|
182 | 182 | #print(self.id_max) |
|
183 | 183 | #print(numpy.shape(self.buffer)) |
|
184 | 184 | self.buffer[:, self.id_min:self.id_max, |
|
185 | 185 | :] = self.dataIn.data |
|
186 | 186 | self.profIndex += nVoltProfiles |
|
187 | 187 | self.id_min += nVoltProfiles |
|
188 | 188 | self.id_max += nVoltProfiles |
|
189 | elif nVoltProfiles > nProfiles: | |
|
190 | self.reader.bypass = True | |
|
191 | if self.profIndex == 0: | |
|
192 | self.id_min = 0 | |
|
193 | self.id_max = nProfiles | |
|
194 | ||
|
195 | self.buffer = self.dataIn.data[:, self.id_min:self.id_max,:] | |
|
196 | self.profIndex += nProfiles | |
|
197 | self.id_min += nProfiles | |
|
198 | self.id_max += nProfiles | |
|
199 | if self.id_max == nVoltProfiles: | |
|
200 | self.reader.bypass = False | |
|
189 | 201 | else: |
|
190 | 202 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
191 | 203 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
192 | 204 | self.dataOut.flagNoData = True |
|
193 | 205 | else: |
|
194 | 206 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
195 | 207 | self.profIndex += 1 |
|
196 | 208 | |
|
197 | 209 | if self.firstdatatime == None: |
|
198 | 210 | self.firstdatatime = self.dataIn.utctime |
|
199 | 211 | |
|
200 |
if self.profIndex == |
|
|
212 | if self.profIndex % nProfiles == 0: | |
|
201 | 213 | self.__updateSpecFromVoltage() |
|
202 | 214 | if pairsList == None: |
|
203 | 215 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
204 | 216 | else: |
|
205 | 217 | self.dataOut.pairsList = pairsList |
|
206 | 218 | self.__getFft() |
|
207 | 219 | self.dataOut.flagNoData = False |
|
208 | 220 | self.firstdatatime = None |
|
209 |
self. |
|
|
221 | if not self.reader.bypass: | |
|
222 | self.profIndex = 0 | |
|
210 | 223 | else: |
|
211 | 224 | raise ValueError("The type of input object '%s' is not valid".format( |
|
212 | 225 | self.dataIn.type)) |
|
213 | 226 | |
|
214 | 227 | |
|
215 | 228 | def __selectPairs(self, pairsList): |
|
216 | 229 | |
|
217 | 230 | if not pairsList: |
|
218 | 231 | return |
|
219 | 232 | |
|
220 | 233 | pairs = [] |
|
221 | 234 | pairsIndex = [] |
|
222 | 235 | |
|
223 | 236 | for pair in pairsList: |
|
224 | 237 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
225 | 238 | continue |
|
226 | 239 | pairs.append(pair) |
|
227 | 240 | pairsIndex.append(pairs.index(pair)) |
|
228 | 241 | |
|
229 | 242 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
230 | 243 | self.dataOut.pairsList = pairs |
|
231 | 244 | |
|
232 | 245 | return |
|
233 | 246 | |
|
234 | 247 | def selectFFTs(self, minFFT, maxFFT ): |
|
235 | 248 | """ |
|
236 | 249 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
237 | 250 | minFFT<= FFT <= maxFFT |
|
238 | 251 | """ |
|
239 | 252 | |
|
240 | 253 | if (minFFT > maxFFT): |
|
241 | 254 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
242 | 255 | |
|
243 | 256 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
244 | 257 | minFFT = self.dataOut.getFreqRange()[0] |
|
245 | 258 | |
|
246 | 259 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
247 | 260 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
248 | 261 | |
|
249 | 262 | minIndex = 0 |
|
250 | 263 | maxIndex = 0 |
|
251 | 264 | FFTs = self.dataOut.getFreqRange() |
|
252 | 265 | |
|
253 | 266 | inda = numpy.where(FFTs >= minFFT) |
|
254 | 267 | indb = numpy.where(FFTs <= maxFFT) |
|
255 | 268 | |
|
256 | 269 | try: |
|
257 | 270 | minIndex = inda[0][0] |
|
258 | 271 | except: |
|
259 | 272 | minIndex = 0 |
|
260 | 273 | |
|
261 | 274 | try: |
|
262 | 275 | maxIndex = indb[0][-1] |
|
263 | 276 | except: |
|
264 | 277 | maxIndex = len(FFTs) |
|
265 | 278 | |
|
266 | 279 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
267 | 280 | |
|
268 | 281 | return 1 |
|
269 | 282 | |
|
270 | 283 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
271 | 284 | newheis = numpy.where( |
|
272 | 285 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
273 | 286 | |
|
274 | 287 | if hei_ref != None: |
|
275 | 288 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
276 | 289 | |
|
277 | 290 | minIndex = min(newheis[0]) |
|
278 | 291 | maxIndex = max(newheis[0]) |
|
279 | 292 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
280 | 293 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
281 | 294 | |
|
282 | 295 | # determina indices |
|
283 | 296 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
284 | 297 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
285 | 298 | avg_dB = 10 * \ |
|
286 | 299 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
287 | 300 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
288 | 301 | beacon_heiIndexList = [] |
|
289 | 302 | for val in avg_dB.tolist(): |
|
290 | 303 | if val >= beacon_dB[0]: |
|
291 | 304 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
292 | 305 | |
|
293 | 306 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
294 | 307 | data_cspc = None |
|
295 | 308 | if self.dataOut.data_cspc is not None: |
|
296 | 309 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
297 | 310 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
298 | 311 | |
|
299 | 312 | data_dc = None |
|
300 | 313 | if self.dataOut.data_dc is not None: |
|
301 | 314 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
302 | 315 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
303 | 316 | |
|
304 | 317 | self.dataOut.data_spc = data_spc |
|
305 | 318 | self.dataOut.data_cspc = data_cspc |
|
306 | 319 | self.dataOut.data_dc = data_dc |
|
307 | 320 | self.dataOut.heightList = heightList |
|
308 | 321 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
309 | 322 | |
|
310 | 323 | return 1 |
|
311 | 324 | |
|
312 | 325 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
313 | 326 | """ |
|
314 | 327 | |
|
315 | 328 | """ |
|
316 | 329 | |
|
317 | 330 | if (minIndex < 0) or (minIndex > maxIndex): |
|
318 | 331 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
319 | 332 | |
|
320 | 333 | if (maxIndex >= self.dataOut.nProfiles): |
|
321 | 334 | maxIndex = self.dataOut.nProfiles-1 |
|
322 | 335 | |
|
323 | 336 | #Spectra |
|
324 | 337 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
325 | 338 | |
|
326 | 339 | data_cspc = None |
|
327 | 340 | if self.dataOut.data_cspc is not None: |
|
328 | 341 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
329 | 342 | |
|
330 | 343 | data_dc = None |
|
331 | 344 | if self.dataOut.data_dc is not None: |
|
332 | 345 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
333 | 346 | |
|
334 | 347 | self.dataOut.data_spc = data_spc |
|
335 | 348 | self.dataOut.data_cspc = data_cspc |
|
336 | 349 | self.dataOut.data_dc = data_dc |
|
337 | 350 | |
|
338 | 351 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
339 | 352 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
340 | 353 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
341 | 354 | |
|
342 | 355 | return 1 |
|
343 | 356 | |
|
344 | 357 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
345 | 358 | # validacion de rango |
|
346 | 359 | print("NOISeeee") |
|
347 | 360 | if minHei == None: |
|
348 | 361 | minHei = self.dataOut.heightList[0] |
|
349 | 362 | |
|
350 | 363 | if maxHei == None: |
|
351 | 364 | maxHei = self.dataOut.heightList[-1] |
|
352 | 365 | |
|
353 | 366 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
354 | 367 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
355 | 368 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
356 | 369 | minHei = self.dataOut.heightList[0] |
|
357 | 370 | |
|
358 | 371 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
359 | 372 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
360 | 373 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
361 | 374 | maxHei = self.dataOut.heightList[-1] |
|
362 | 375 | |
|
363 | 376 | # validacion de velocidades |
|
364 | 377 | velrange = self.dataOut.getVelRange(1) |
|
365 | 378 | |
|
366 | 379 | if minVel == None: |
|
367 | 380 | minVel = velrange[0] |
|
368 | 381 | |
|
369 | 382 | if maxVel == None: |
|
370 | 383 | maxVel = velrange[-1] |
|
371 | 384 | |
|
372 | 385 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
373 | 386 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
374 | 387 | print('minVel is setting to %.2f' % (velrange[0])) |
|
375 | 388 | minVel = velrange[0] |
|
376 | 389 | |
|
377 | 390 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
378 | 391 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
379 | 392 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
380 | 393 | maxVel = velrange[-1] |
|
381 | 394 | |
|
382 | 395 | # seleccion de indices para rango |
|
383 | 396 | minIndex = 0 |
|
384 | 397 | maxIndex = 0 |
|
385 | 398 | heights = self.dataOut.heightList |
|
386 | 399 | |
|
387 | 400 | inda = numpy.where(heights >= minHei) |
|
388 | 401 | indb = numpy.where(heights <= maxHei) |
|
389 | 402 | |
|
390 | 403 | try: |
|
391 | 404 | minIndex = inda[0][0] |
|
392 | 405 | except: |
|
393 | 406 | minIndex = 0 |
|
394 | 407 | |
|
395 | 408 | try: |
|
396 | 409 | maxIndex = indb[0][-1] |
|
397 | 410 | except: |
|
398 | 411 | maxIndex = len(heights) |
|
399 | 412 | |
|
400 | 413 | if (minIndex < 0) or (minIndex > maxIndex): |
|
401 | 414 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
402 | 415 | minIndex, maxIndex)) |
|
403 | 416 | |
|
404 | 417 | if (maxIndex >= self.dataOut.nHeights): |
|
405 | 418 | maxIndex = self.dataOut.nHeights - 1 |
|
406 | 419 | |
|
407 | 420 | # seleccion de indices para velocidades |
|
408 | 421 | indminvel = numpy.where(velrange >= minVel) |
|
409 | 422 | indmaxvel = numpy.where(velrange <= maxVel) |
|
410 | 423 | try: |
|
411 | 424 | minIndexVel = indminvel[0][0] |
|
412 | 425 | except: |
|
413 | 426 | minIndexVel = 0 |
|
414 | 427 | |
|
415 | 428 | try: |
|
416 | 429 | maxIndexVel = indmaxvel[0][-1] |
|
417 | 430 | except: |
|
418 | 431 | maxIndexVel = len(velrange) |
|
419 | 432 | |
|
420 | 433 | # seleccion del espectro |
|
421 | 434 | data_spc = self.dataOut.data_spc[:, |
|
422 | 435 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
423 | 436 | # estimacion de ruido |
|
424 | 437 | noise = numpy.zeros(self.dataOut.nChannels) |
|
425 | 438 | |
|
426 | 439 | for channel in range(self.dataOut.nChannels): |
|
427 | 440 | daux = data_spc[channel, :, :] |
|
428 | 441 | sortdata = numpy.sort(daux, axis=None) |
|
429 | 442 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
430 | 443 | |
|
431 | 444 | self.dataOut.noise_estimation = noise.copy() |
|
432 | 445 | |
|
433 | 446 | return 1 |
|
434 | 447 | |
|
435 | 448 | class GetSNR(Operation): |
|
436 | 449 | ''' |
|
437 | 450 | Written by R. Flores |
|
438 | 451 | ''' |
|
439 | 452 | """Operation to get SNR. |
|
440 | 453 | |
|
441 | 454 | Parameters: |
|
442 | 455 | ----------- |
|
443 | 456 | |
|
444 | 457 | Example |
|
445 | 458 | -------- |
|
446 | 459 | |
|
447 | 460 | op = proc_unit.addOperation(name='GetSNR', optype='other') |
|
448 | 461 | |
|
449 | 462 | """ |
|
450 | 463 | |
|
451 | 464 | def __init__(self, **kwargs): |
|
452 | 465 | |
|
453 | 466 | Operation.__init__(self, **kwargs) |
|
454 | 467 | |
|
455 | 468 | |
|
456 | 469 | def run(self,dataOut): |
|
457 | 470 | |
|
458 | 471 | noise = dataOut.getNoise() |
|
459 | 472 | #noise = dataOut.getNoise(ymin_index=-10) #Región superior donde solo debería de haber ruido |
|
460 | 473 | #print("Noise: ", noise) |
|
461 | 474 | #print("Noise_dB: ", 10*numpy.log10(noise/dataOut.normFactor)) |
|
462 | 475 | #print("Heights: ", dataOut.heightList) |
|
463 | 476 | #dataOut.data_snr = (dataOut.data_spc.sum(axis=1))/(noise[:,None]*dataOut.normFactor) |
|
464 | 477 | ################dataOut.data_snr = (dataOut.data_spc.sum(axis=1))/(noise[:,None]*dataOut.nFFTPoints) #Before 12Jan2023 |
|
465 | 478 | #dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None])/(noise[:,None]) |
|
466 | 479 | dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None]*dataOut.nFFTPoints)/(noise[:,None]*dataOut.nFFTPoints) #It works apparently |
|
467 | 480 | dataOut.snl = numpy.log10(dataOut.data_snr) |
|
468 | 481 | #print("snl: ", dataOut.snl) |
|
469 | 482 | #exit(1) |
|
470 | 483 | #print(dataOut.heightList[-11]) |
|
471 | 484 | #print(numpy.shape(dataOut.heightList)) |
|
472 | 485 | #print(dataOut.data_snr) |
|
473 | 486 | #print(dataOut.data_snr[0,-11]) |
|
474 | 487 | #exit(1) |
|
475 | 488 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.5, numpy.nan, dataOut.data_snr) |
|
476 | 489 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.1, numpy.nan, dataOut.data_snr) |
|
477 | 490 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.0, numpy.nan, dataOut.data_snr) |
|
478 | 491 | #dataOut.data_snr = numpy.where(dataOut.data_snr<.05, numpy.nan, dataOut.data_snr) |
|
479 | 492 | #dataOut.snl = numpy.where(dataOut.data_snr<.01, numpy.nan, dataOut.snl) |
|
480 | 493 | dataOut.snl = numpy.where(dataOut.snl<-1, numpy.nan, dataOut.snl) |
|
481 | 494 | ''' |
|
482 | 495 | import matplotlib.pyplot as plt |
|
483 | 496 | #plt.plot(10*numpy.log10(dataOut.data_snr[0]),dataOut.heightList) |
|
484 | 497 | plt.plot(dataOut.data_snr[0],dataOut.heightList)#,marker='*') |
|
485 | 498 | plt.xlim(-1,10) |
|
486 | 499 | plt.axvline(1,color='k') |
|
487 | 500 | plt.axvline(.1,color='k',linestyle='--') |
|
488 | 501 | plt.grid() |
|
489 | 502 | plt.show() |
|
490 | 503 | ''' |
|
491 | 504 | #dataOut.data_snr = 10*numpy.log10(dataOut.data_snr) |
|
492 | 505 | #dataOut.data_snr = numpy.expand_dims(dataOut.data_snr,axis=0) |
|
493 | 506 | #print(dataOut.data_snr.shape) |
|
494 | 507 | #exit(1) |
|
495 | 508 | #print("Before: ", dataOut.data_snr[0]) |
|
496 | 509 | |
|
497 | 510 | |
|
498 | 511 | return dataOut |
|
499 | 512 | |
|
500 | 513 | class removeDC(Operation): |
|
501 | 514 | |
|
502 | 515 | def run(self, dataOut, mode=2): |
|
503 | 516 | self.dataOut = dataOut |
|
504 | 517 | jspectra = self.dataOut.data_spc |
|
505 | 518 | jcspectra = self.dataOut.data_cspc |
|
506 | 519 | |
|
507 | 520 | num_chan = jspectra.shape[0] |
|
508 | 521 | num_hei = jspectra.shape[2] |
|
509 | 522 | |
|
510 | 523 | if jcspectra is not None: |
|
511 | 524 | jcspectraExist = True |
|
512 | 525 | num_pairs = jcspectra.shape[0] |
|
513 | 526 | else: |
|
514 | 527 | jcspectraExist = False |
|
515 | 528 | |
|
516 | 529 | freq_dc = int(jspectra.shape[1] / 2) |
|
517 | 530 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
518 | 531 | ind_vel = ind_vel.astype(int) |
|
519 | 532 | |
|
520 | 533 | if ind_vel[0] < 0: |
|
521 | 534 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
522 | 535 | |
|
523 | 536 | if mode == 1: |
|
524 | 537 | jspectra[:, freq_dc, :] = ( |
|
525 | 538 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
526 | 539 | |
|
527 | 540 | if jcspectraExist: |
|
528 | 541 | jcspectra[:, freq_dc, :] = ( |
|
529 | 542 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
530 | 543 | |
|
531 | 544 | if mode == 2: |
|
532 | 545 | |
|
533 | 546 | vel = numpy.array([-2, -1, 1, 2]) |
|
534 | 547 | xx = numpy.zeros([4, 4]) |
|
535 | 548 | |
|
536 | 549 | for fil in range(4): |
|
537 | 550 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
538 | 551 | |
|
539 | 552 | xx_inv = numpy.linalg.inv(xx) |
|
540 | 553 | xx_aux = xx_inv[0, :] |
|
541 | 554 | |
|
542 | 555 | for ich in range(num_chan): |
|
543 | 556 | yy = jspectra[ich, ind_vel, :] |
|
544 | 557 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
545 | 558 | |
|
546 | 559 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
547 | 560 | cjunkid = sum(junkid) |
|
548 | 561 | |
|
549 | 562 | if cjunkid.any(): |
|
550 | 563 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
551 | 564 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
552 | 565 | |
|
553 | 566 | if jcspectraExist: |
|
554 | 567 | for ip in range(num_pairs): |
|
555 | 568 | yy = jcspectra[ip, ind_vel, :] |
|
556 | 569 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
557 | 570 | |
|
558 | 571 | self.dataOut.data_spc = jspectra |
|
559 | 572 | self.dataOut.data_cspc = jcspectra |
|
560 | 573 | |
|
561 | 574 | return self.dataOut |
|
562 | 575 | |
|
563 | 576 | class removeInterference(Operation): |
|
564 | 577 | |
|
565 | 578 | def removeInterference2(self): |
|
566 | 579 | |
|
567 | 580 | cspc = self.dataOut.data_cspc |
|
568 | 581 | spc = self.dataOut.data_spc |
|
569 | 582 | Heights = numpy.arange(cspc.shape[2]) |
|
570 | 583 | realCspc = numpy.abs(cspc) |
|
571 | 584 | |
|
572 | 585 | for i in range(cspc.shape[0]): |
|
573 | 586 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
574 | 587 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
575 | 588 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
576 | 589 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
577 | 590 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
578 | 591 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
579 | 592 | |
|
580 | 593 | |
|
581 | 594 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
582 | 595 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
583 | 596 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
584 | 597 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
585 | 598 | |
|
586 | 599 | self.dataOut.data_cspc = cspc |
|
587 | 600 | |
|
588 | 601 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
589 | 602 | |
|
590 | 603 | jspectra = self.dataOut.data_spc |
|
591 | 604 | jcspectra = self.dataOut.data_cspc |
|
592 | 605 | jnoise = self.dataOut.getNoise() |
|
593 | 606 | num_incoh = self.dataOut.nIncohInt |
|
594 | 607 | |
|
595 | 608 | num_channel = jspectra.shape[0] |
|
596 | 609 | num_prof = jspectra.shape[1] |
|
597 | 610 | num_hei = jspectra.shape[2] |
|
598 | 611 | |
|
599 | 612 | # hei_interf |
|
600 | 613 | if hei_interf is None: |
|
601 | 614 | count_hei = int(num_hei / 2) |
|
602 | 615 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
603 | 616 | hei_interf = numpy.asarray(hei_interf)[0] |
|
604 | 617 | # nhei_interf |
|
605 | 618 | if (nhei_interf == None): |
|
606 | 619 | nhei_interf = 5 |
|
607 | 620 | if (nhei_interf < 1): |
|
608 | 621 | nhei_interf = 1 |
|
609 | 622 | if (nhei_interf > count_hei): |
|
610 | 623 | nhei_interf = count_hei |
|
611 | 624 | if (offhei_interf == None): |
|
612 | 625 | offhei_interf = 0 |
|
613 | 626 | |
|
614 | 627 | ind_hei = list(range(num_hei)) |
|
615 | 628 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
616 | 629 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
617 | 630 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
618 | 631 | num_mask_prof = mask_prof.size |
|
619 | 632 | comp_mask_prof = [0, num_prof / 2] |
|
620 | 633 | |
|
621 | 634 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
622 | 635 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
623 | 636 | jnoise = numpy.nan |
|
624 | 637 | noise_exist = jnoise[0] < numpy.Inf |
|
625 | 638 | |
|
626 | 639 | # Subrutina de Remocion de la Interferencia |
|
627 | 640 | for ich in range(num_channel): |
|
628 | 641 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
629 | 642 | power = jspectra[ich, mask_prof, :] |
|
630 | 643 | power = power[:, hei_interf] |
|
631 | 644 | power = power.sum(axis=0) |
|
632 | 645 | psort = power.ravel().argsort() |
|
633 | 646 | |
|
634 | 647 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
635 | 648 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
636 | 649 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
637 | 650 | |
|
638 | 651 | if noise_exist: |
|
639 | 652 | # tmp_noise = jnoise[ich] / num_prof |
|
640 | 653 | tmp_noise = jnoise[ich] |
|
641 | 654 | junkspc_interf = junkspc_interf - tmp_noise |
|
642 | 655 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
643 | 656 | |
|
644 | 657 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
645 | 658 | jspc_interf = jspc_interf.transpose() |
|
646 | 659 | # Calculando el espectro de interferencia promedio |
|
647 | 660 | noiseid = numpy.where( |
|
648 | 661 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
649 | 662 | noiseid = noiseid[0] |
|
650 | 663 | cnoiseid = noiseid.size |
|
651 | 664 | interfid = numpy.where( |
|
652 | 665 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
653 | 666 | interfid = interfid[0] |
|
654 | 667 | cinterfid = interfid.size |
|
655 | 668 | |
|
656 | 669 | if (cnoiseid > 0): |
|
657 | 670 | jspc_interf[noiseid] = 0 |
|
658 | 671 | |
|
659 | 672 | # Expandiendo los perfiles a limpiar |
|
660 | 673 | if (cinterfid > 0): |
|
661 | 674 | new_interfid = ( |
|
662 | 675 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
663 | 676 | new_interfid = numpy.asarray(new_interfid) |
|
664 | 677 | new_interfid = {x for x in new_interfid} |
|
665 | 678 | new_interfid = numpy.array(list(new_interfid)) |
|
666 | 679 | new_cinterfid = new_interfid.size |
|
667 | 680 | else: |
|
668 | 681 | new_cinterfid = 0 |
|
669 | 682 | |
|
670 | 683 | for ip in range(new_cinterfid): |
|
671 | 684 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
672 | 685 | jspc_interf[new_interfid[ip] |
|
673 | 686 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
674 | 687 | |
|
675 | 688 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
676 | 689 | ind_hei] - jspc_interf # Corregir indices |
|
677 | 690 | |
|
678 | 691 | # Removiendo la interferencia del punto de mayor interferencia |
|
679 | 692 | ListAux = jspc_interf[mask_prof].tolist() |
|
680 | 693 | maxid = ListAux.index(max(ListAux)) |
|
681 | 694 | |
|
682 | 695 | if cinterfid > 0: |
|
683 | 696 | for ip in range(cinterfid * (interf == 2) - 1): |
|
684 | 697 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
685 | 698 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
686 | 699 | cind = len(ind) |
|
687 | 700 | |
|
688 | 701 | if (cind > 0): |
|
689 | 702 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
690 | 703 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
691 | 704 | numpy.sqrt(num_incoh)) |
|
692 | 705 | |
|
693 | 706 | ind = numpy.array([-2, -1, 1, 2]) |
|
694 | 707 | xx = numpy.zeros([4, 4]) |
|
695 | 708 | |
|
696 | 709 | for id1 in range(4): |
|
697 | 710 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
698 | 711 | |
|
699 | 712 | xx_inv = numpy.linalg.inv(xx) |
|
700 | 713 | xx = xx_inv[:, 0] |
|
701 | 714 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
702 | 715 | yy = jspectra[ich, mask_prof[ind], :] |
|
703 | 716 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
704 | 717 | yy.transpose(), xx) |
|
705 | 718 | |
|
706 | 719 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
707 | 720 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
708 | 721 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
709 | 722 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
710 | 723 | |
|
711 | 724 | # Remocion de Interferencia en el Cross Spectra |
|
712 | 725 | if jcspectra is None: |
|
713 | 726 | return jspectra, jcspectra |
|
714 | 727 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
715 | 728 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
716 | 729 | |
|
717 | 730 | for ip in range(num_pairs): |
|
718 | 731 | |
|
719 | 732 | #------------------------------------------- |
|
720 | 733 | |
|
721 | 734 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
722 | 735 | cspower = cspower[:, hei_interf] |
|
723 | 736 | cspower = cspower.sum(axis=0) |
|
724 | 737 | |
|
725 | 738 | cspsort = cspower.ravel().argsort() |
|
726 | 739 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
727 | 740 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
728 | 741 | junkcspc_interf = junkcspc_interf.transpose() |
|
729 | 742 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
730 | 743 | |
|
731 | 744 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
732 | 745 | |
|
733 | 746 | median_real = int(numpy.median(numpy.real( |
|
734 | 747 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
735 | 748 | median_imag = int(numpy.median(numpy.imag( |
|
736 | 749 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
737 | 750 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
738 | 751 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
739 | 752 | median_real, median_imag) |
|
740 | 753 | |
|
741 | 754 | for iprof in range(num_prof): |
|
742 | 755 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
743 | 756 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
744 | 757 | |
|
745 | 758 | # Removiendo la Interferencia |
|
746 | 759 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
747 | 760 | :, ind_hei] - jcspc_interf |
|
748 | 761 | |
|
749 | 762 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
750 | 763 | maxid = ListAux.index(max(ListAux)) |
|
751 | 764 | |
|
752 | 765 | ind = numpy.array([-2, -1, 1, 2]) |
|
753 | 766 | xx = numpy.zeros([4, 4]) |
|
754 | 767 | |
|
755 | 768 | for id1 in range(4): |
|
756 | 769 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
757 | 770 | |
|
758 | 771 | xx_inv = numpy.linalg.inv(xx) |
|
759 | 772 | xx = xx_inv[:, 0] |
|
760 | 773 | |
|
761 | 774 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
762 | 775 | yy = jcspectra[ip, mask_prof[ind], :] |
|
763 | 776 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
764 | 777 | |
|
765 | 778 | # Guardar Resultados |
|
766 | 779 | self.dataOut.data_spc = jspectra |
|
767 | 780 | self.dataOut.data_cspc = jcspectra |
|
768 | 781 | |
|
769 | 782 | return 1 |
|
770 | 783 | |
|
771 | 784 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): |
|
772 | 785 | |
|
773 | 786 | self.dataOut = dataOut |
|
774 | 787 | |
|
775 | 788 | if mode == 1: |
|
776 | 789 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
777 | 790 | elif mode == 2: |
|
778 | 791 | self.removeInterference2() |
|
779 | 792 | |
|
780 | 793 | return self.dataOut |
|
781 | 794 | |
|
782 | 795 | class removeInterferenceAtFreq(Operation): |
|
783 | 796 | ''' |
|
784 | 797 | Written by R. Flores |
|
785 | 798 | ''' |
|
786 | 799 | """Operation to remove interfernce at a known frequency(s). |
|
787 | 800 | |
|
788 | 801 | Parameters: |
|
789 | 802 | ----------- |
|
790 | 803 | None |
|
791 | 804 | |
|
792 | 805 | Example |
|
793 | 806 | -------- |
|
794 | 807 | |
|
795 | 808 | op = proc_unit.addOperation(name='removeInterferenceAtFreq') |
|
796 | 809 | |
|
797 | 810 | """ |
|
798 | 811 | |
|
799 | 812 | def __init__(self): |
|
800 | 813 | |
|
801 | 814 | Operation.__init__(self) |
|
802 | 815 | |
|
803 | 816 | def run(self, dataOut, freq = None, freqList = None): |
|
804 | 817 | |
|
805 | 818 | VelRange = dataOut.getVelRange() |
|
806 | 819 | #print("VelRange: ", VelRange) |
|
807 | 820 | |
|
808 | 821 | freq_ids = [] |
|
809 | 822 | |
|
810 | 823 | if freq is not None: |
|
811 | 824 | #print("freq") |
|
812 | 825 | #if freq < 0: |
|
813 | 826 | inda = numpy.where(VelRange >= freq) |
|
814 | 827 | minIndex = inda[0][0] |
|
815 | 828 | #print(numpy.shape(dataOut.dataLag_spc)) |
|
816 | 829 | dataOut.data_spc[:,minIndex,:] = numpy.nan |
|
817 | 830 | |
|
818 | 831 | #inda = numpy.where(VelRange >= ymin_noise) |
|
819 | 832 | #indb = numpy.where(VelRange <= ymax_noise) |
|
820 | 833 | |
|
821 | 834 | #minIndex = inda[0][0] |
|
822 | 835 | #maxIndex = indb[0][-1] |
|
823 | 836 | |
|
824 | 837 | elif freqList is not None: |
|
825 | 838 | #print("freqList") |
|
826 | 839 | for freq in freqList: |
|
827 | 840 | #if freq < 0: |
|
828 | 841 | inda = numpy.where(VelRange >= freq) |
|
829 | 842 | minIndex = inda[0][0] |
|
830 | 843 | #print(numpy.shape(dataOut.dataLag_spc)) |
|
831 | 844 | if freq > 0: |
|
832 | 845 | #dataOut.data_spc[:,minIndex-1,:] = numpy.nan |
|
833 | 846 | freq_ids.append(minIndex-1) |
|
834 | 847 | else: |
|
835 | 848 | #dataOut.data_spc[:,minIndex,:] = numpy.nan |
|
836 | 849 | freq_ids.append(minIndex) |
|
837 | 850 | else: |
|
838 | 851 | raise ValueError("freq or freqList should be specified ...") |
|
839 | 852 | |
|
840 | 853 | #freq_ids = numpy.array(freq_ids).flatten() |
|
841 | 854 | |
|
842 | 855 | avg = numpy.mean(dataOut.data_spc[:,[t for t in range(dataOut.data_spc.shape[0]) if t not in freq_ids],:],axis=1) |
|
843 | 856 | |
|
844 | 857 | for p in list(freq_ids): |
|
845 | 858 | dataOut.data_spc[:,p,:] = avg#numpy.nan |
|
846 | 859 | |
|
847 | 860 | |
|
848 | 861 | return dataOut |
|
849 | 862 | |
|
850 | 863 | class IncohInt(Operation): |
|
851 | 864 | |
|
852 | 865 | __profIndex = 0 |
|
853 | 866 | __withOverapping = False |
|
854 | 867 | |
|
855 | 868 | __byTime = False |
|
856 | 869 | __initime = None |
|
857 | 870 | __lastdatatime = None |
|
858 | 871 | __integrationtime = None |
|
859 | 872 | |
|
860 | 873 | __buffer_spc = None |
|
861 | 874 | __buffer_cspc = None |
|
862 | 875 | __buffer_dc = None |
|
863 | 876 | |
|
864 | 877 | __dataReady = False |
|
865 | 878 | |
|
866 | 879 | __timeInterval = None |
|
867 | 880 | |
|
868 | 881 | n = None |
|
869 | 882 | |
|
870 | 883 | def __init__(self): |
|
871 | 884 | |
|
872 | 885 | Operation.__init__(self) |
|
873 | 886 | |
|
874 | 887 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
875 | 888 | """ |
|
876 | 889 | Set the parameters of the integration class. |
|
877 | 890 | |
|
878 | 891 | Inputs: |
|
879 | 892 | |
|
880 | 893 | n : Number of coherent integrations |
|
881 | 894 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
882 | 895 | overlapping : |
|
883 | 896 | |
|
884 | 897 | """ |
|
885 | 898 | |
|
886 | 899 | self.__initime = None |
|
887 | 900 | self.__lastdatatime = 0 |
|
888 | 901 | |
|
889 | 902 | self.__buffer_spc = 0 |
|
890 | 903 | self.__buffer_cspc = 0 |
|
891 | 904 | self.__buffer_dc = 0 |
|
892 | 905 | |
|
893 | 906 | self.__profIndex = 0 |
|
894 | 907 | self.__dataReady = False |
|
895 | 908 | self.__byTime = False |
|
896 | 909 | |
|
897 | 910 | if n is None and timeInterval is None: |
|
898 | 911 | raise ValueError("n or timeInterval should be specified ...") |
|
899 | 912 | |
|
900 | 913 | if n is not None: |
|
901 | 914 | self.n = int(n) |
|
902 | 915 | else: |
|
903 | 916 | |
|
904 | 917 | self.__integrationtime = int(timeInterval) |
|
905 | 918 | self.n = None |
|
906 | 919 | self.__byTime = True |
|
907 | 920 | |
|
908 | 921 | def putData(self, data_spc, data_cspc, data_dc): |
|
909 | 922 | """ |
|
910 | 923 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
911 | 924 | |
|
912 | 925 | """ |
|
913 | 926 | |
|
914 | 927 | self.__buffer_spc += data_spc |
|
915 | 928 | |
|
916 | 929 | if data_cspc is None: |
|
917 | 930 | self.__buffer_cspc = None |
|
918 | 931 | else: |
|
919 | 932 | self.__buffer_cspc += data_cspc |
|
920 | 933 | |
|
921 | 934 | if data_dc is None: |
|
922 | 935 | self.__buffer_dc = None |
|
923 | 936 | else: |
|
924 | 937 | self.__buffer_dc += data_dc |
|
925 | 938 | |
|
926 | 939 | self.__profIndex += 1 |
|
927 | 940 | |
|
928 | 941 | return |
|
929 | 942 | |
|
930 | 943 | def pushData(self): |
|
931 | 944 | """ |
|
932 | 945 | Return the sum of the last profiles and the profiles used in the sum. |
|
933 | 946 | |
|
934 | 947 | Affected: |
|
935 | 948 | |
|
936 | 949 | self.__profileIndex |
|
937 | 950 | |
|
938 | 951 | """ |
|
939 | 952 | |
|
940 | 953 | data_spc = self.__buffer_spc |
|
941 | 954 | data_cspc = self.__buffer_cspc |
|
942 | 955 | data_dc = self.__buffer_dc |
|
943 | 956 | n = self.__profIndex |
|
944 | 957 | |
|
945 | 958 | self.__buffer_spc = 0 |
|
946 | 959 | self.__buffer_cspc = 0 |
|
947 | 960 | self.__buffer_dc = 0 |
|
948 | 961 | self.__profIndex = 0 |
|
949 | 962 | |
|
950 | 963 | return data_spc, data_cspc, data_dc, n |
|
951 | 964 | |
|
952 | 965 | def byProfiles(self, *args): |
|
953 | 966 | |
|
954 | 967 | self.__dataReady = False |
|
955 | 968 | avgdata_spc = None |
|
956 | 969 | avgdata_cspc = None |
|
957 | 970 | avgdata_dc = None |
|
958 | 971 | |
|
959 | 972 | self.putData(*args) |
|
960 | 973 | |
|
961 | 974 | if self.__profIndex == self.n: |
|
962 | 975 | |
|
963 | 976 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
964 | 977 | self.n = n |
|
965 | 978 | self.__dataReady = True |
|
966 | 979 | |
|
967 | 980 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
968 | 981 | |
|
969 | 982 | def byTime(self, datatime, *args): |
|
970 | 983 | |
|
971 | 984 | self.__dataReady = False |
|
972 | 985 | avgdata_spc = None |
|
973 | 986 | avgdata_cspc = None |
|
974 | 987 | avgdata_dc = None |
|
975 | 988 | |
|
976 | 989 | self.putData(*args) |
|
977 | 990 | |
|
978 | 991 | if (datatime - self.__initime) >= self.__integrationtime: |
|
979 | 992 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
980 | 993 | self.n = n |
|
981 | 994 | self.__dataReady = True |
|
982 | 995 | |
|
983 | 996 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
984 | 997 | |
|
985 | 998 | def integrate(self, datatime, *args): |
|
986 | 999 | |
|
987 | 1000 | if self.__profIndex == 0: |
|
988 | 1001 | self.__initime = datatime |
|
989 | 1002 | |
|
990 | 1003 | if self.__byTime: |
|
991 | 1004 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
992 | 1005 | datatime, *args) |
|
993 | 1006 | else: |
|
994 | 1007 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
995 | 1008 | |
|
996 | 1009 | if not self.__dataReady: |
|
997 | 1010 | return None, None, None, None |
|
998 | 1011 | |
|
999 | 1012 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1000 | 1013 | |
|
1001 | 1014 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1002 | 1015 | if n == 1: |
|
1003 | 1016 | return dataOut |
|
1004 | 1017 | print("JERE") |
|
1005 | 1018 | dataOut.flagNoData = True |
|
1006 | 1019 | |
|
1007 | 1020 | if not self.isConfig: |
|
1008 | 1021 | self.setup(n, timeInterval, overlapping) |
|
1009 | 1022 | self.isConfig = True |
|
1010 | 1023 | |
|
1011 | 1024 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1012 | 1025 | dataOut.data_spc, |
|
1013 | 1026 | dataOut.data_cspc, |
|
1014 | 1027 | dataOut.data_dc) |
|
1015 | 1028 | |
|
1016 | 1029 | if self.__dataReady: |
|
1017 | 1030 | |
|
1018 | 1031 | dataOut.data_spc = avgdata_spc |
|
1019 | 1032 | print(numpy.sum(dataOut.data_spc)) |
|
1020 | 1033 | exit(1) |
|
1021 | 1034 | dataOut.data_cspc = avgdata_cspc |
|
1022 | 1035 | dataOut.data_dc = avgdata_dc |
|
1023 | 1036 | dataOut.nIncohInt *= self.n |
|
1024 | 1037 | dataOut.utctime = avgdatatime |
|
1025 | 1038 | dataOut.flagNoData = False |
|
1026 | 1039 | |
|
1027 | 1040 | return dataOut |
|
1028 | 1041 | |
|
1029 | 1042 | class dopplerFlip(Operation): |
|
1030 | 1043 | |
|
1031 | 1044 | def run(self, dataOut, chann = None): |
|
1032 | 1045 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1033 | 1046 | self.dataOut = dataOut |
|
1034 | 1047 | # JULIA-oblicua, indice 2 |
|
1035 | 1048 | # arreglo 2: (num_profiles, num_heights) |
|
1036 | 1049 | jspectra = self.dataOut.data_spc[chann] |
|
1037 | 1050 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
1038 | 1051 | num_profiles = jspectra.shape[0] |
|
1039 | 1052 | freq_dc = int(num_profiles / 2) |
|
1040 | 1053 | # Flip con for |
|
1041 | 1054 | for j in range(num_profiles): |
|
1042 | 1055 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1043 | 1056 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1044 | 1057 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1045 | 1058 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1046 | 1059 | # canal modificado es re-escrito en el arreglo de canales |
|
1047 | 1060 | self.dataOut.data_spc[chann] = jspectra_tmp |
|
1048 | 1061 | |
|
1049 | 1062 | return self.dataOut |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now