@@ -1,1047 +1,1082 | |||||
1 | import os |
|
1 | import os | |
2 | import datetime |
|
2 | import datetime | |
3 | import numpy |
|
3 | import numpy | |
4 |
|
4 | |||
5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
5 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot | |
7 | from schainpy.utils import log |
|
7 | from schainpy.utils import log | |
8 | # libreria wradlib |
|
8 | # libreria wradlib | |
9 | import wradlib as wrl |
|
9 | import wradlib as wrl | |
10 |
|
10 | |||
11 | EARTH_RADIUS = 6.3710e3 |
|
11 | EARTH_RADIUS = 6.3710e3 | |
12 |
|
12 | |||
13 |
|
13 | |||
14 | def ll2xy(lat1, lon1, lat2, lon2): |
|
14 | def ll2xy(lat1, lon1, lat2, lon2): | |
15 |
|
15 | |||
16 | p = 0.017453292519943295 |
|
16 | p = 0.017453292519943295 | |
17 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
17 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
18 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
18 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
19 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
19 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
20 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
20 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
21 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
21 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
22 | theta = -theta + numpy.pi/2 |
|
22 | theta = -theta + numpy.pi/2 | |
23 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
23 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
24 |
|
24 | |||
25 |
|
25 | |||
26 | def km2deg(km): |
|
26 | def km2deg(km): | |
27 | ''' |
|
27 | ''' | |
28 | Convert distance in km to degrees |
|
28 | Convert distance in km to degrees | |
29 | ''' |
|
29 | ''' | |
30 |
|
30 | |||
31 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
31 | return numpy.rad2deg(km/EARTH_RADIUS) | |
32 |
|
32 | |||
33 |
|
33 | |||
34 |
|
34 | |||
35 | class SpectralMomentsPlot(SpectraPlot): |
|
35 | class SpectralMomentsPlot(SpectraPlot): | |
36 | ''' |
|
36 | ''' | |
37 | Plot for Spectral Moments |
|
37 | Plot for Spectral Moments | |
38 | ''' |
|
38 | ''' | |
39 | CODE = 'spc_moments' |
|
39 | CODE = 'spc_moments' | |
40 | # colormap = 'jet' |
|
40 | # colormap = 'jet' | |
41 | # plot_type = 'pcolor' |
|
41 | # plot_type = 'pcolor' | |
42 |
|
42 | |||
43 | class DobleGaussianPlot(SpectraPlot): |
|
43 | class DobleGaussianPlot(SpectraPlot): | |
44 | ''' |
|
44 | ''' | |
45 | Plot for Double Gaussian Plot |
|
45 | Plot for Double Gaussian Plot | |
46 | ''' |
|
46 | ''' | |
47 | CODE = 'gaussian_fit' |
|
47 | CODE = 'gaussian_fit' | |
48 | # colormap = 'jet' |
|
48 | # colormap = 'jet' | |
49 | # plot_type = 'pcolor' |
|
49 | # plot_type = 'pcolor' | |
50 |
|
50 | |||
51 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
51 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): | |
52 | ''' |
|
52 | ''' | |
53 | Plot SpectraCut with Double Gaussian Fit |
|
53 | Plot SpectraCut with Double Gaussian Fit | |
54 | ''' |
|
54 | ''' | |
55 | CODE = 'cut_gaussian_fit' |
|
55 | CODE = 'cut_gaussian_fit' | |
56 |
|
56 | |||
57 | class SnrPlot(RTIPlot): |
|
57 | class SnrPlot(RTIPlot): | |
58 | ''' |
|
58 | ''' | |
59 | Plot for SNR Data |
|
59 | Plot for SNR Data | |
60 | ''' |
|
60 | ''' | |
61 |
|
61 | |||
62 | CODE = 'snr' |
|
62 | CODE = 'snr' | |
63 | colormap = 'jet' |
|
63 | colormap = 'jet' | |
64 |
|
64 | |||
65 | def update(self, dataOut): |
|
65 | def update(self, dataOut): | |
66 |
|
66 | |||
67 | data = { |
|
67 | data = { | |
68 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
68 | 'snr': 10*numpy.log10(dataOut.data_snr) | |
69 | } |
|
69 | } | |
70 |
|
70 | |||
71 | return data, {} |
|
71 | return data, {} | |
72 |
|
72 | |||
73 | class DopplerPlot(RTIPlot): |
|
73 | class DopplerPlot(RTIPlot): | |
74 | ''' |
|
74 | ''' | |
75 | Plot for DOPPLER Data (1st moment) |
|
75 | Plot for DOPPLER Data (1st moment) | |
76 | ''' |
|
76 | ''' | |
77 |
|
77 | |||
78 | CODE = 'dop' |
|
78 | CODE = 'dop' | |
79 | colormap = 'jet' |
|
79 | colormap = 'jet' | |
80 |
|
80 | |||
81 | def update(self, dataOut): |
|
81 | def update(self, dataOut): | |
82 |
|
82 | |||
83 | data = { |
|
83 | data = { | |
84 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
84 | 'dop': 10*numpy.log10(dataOut.data_dop) | |
85 | } |
|
85 | } | |
86 |
|
86 | |||
87 | return data, {} |
|
87 | return data, {} | |
88 |
|
88 | |||
89 | class PowerPlot(RTIPlot): |
|
89 | class PowerPlot(RTIPlot): | |
90 | ''' |
|
90 | ''' | |
91 | Plot for Power Data (0 moment) |
|
91 | Plot for Power Data (0 moment) | |
92 | ''' |
|
92 | ''' | |
93 |
|
93 | |||
94 | CODE = 'pow' |
|
94 | CODE = 'pow' | |
95 | colormap = 'jet' |
|
95 | colormap = 'jet' | |
96 |
|
96 | |||
97 | def update(self, dataOut): |
|
97 | def update(self, dataOut): | |
98 | data = { |
|
98 | data = { | |
99 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
99 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) | |
100 | } |
|
100 | } | |
101 | return data, {} |
|
101 | return data, {} | |
102 |
|
102 | |||
103 | class SpectralWidthPlot(RTIPlot): |
|
103 | class SpectralWidthPlot(RTIPlot): | |
104 | ''' |
|
104 | ''' | |
105 | Plot for Spectral Width Data (2nd moment) |
|
105 | Plot for Spectral Width Data (2nd moment) | |
106 | ''' |
|
106 | ''' | |
107 |
|
107 | |||
108 | CODE = 'width' |
|
108 | CODE = 'width' | |
109 | colormap = 'jet' |
|
109 | colormap = 'jet' | |
110 |
|
110 | |||
111 | def update(self, dataOut): |
|
111 | def update(self, dataOut): | |
112 |
|
112 | |||
113 | data = { |
|
113 | data = { | |
114 | 'width': dataOut.data_width |
|
114 | 'width': dataOut.data_width | |
115 | } |
|
115 | } | |
116 |
|
116 | |||
117 | return data, {} |
|
117 | return data, {} | |
118 |
|
118 | |||
119 | class SkyMapPlot(Plot): |
|
119 | class SkyMapPlot(Plot): | |
120 | ''' |
|
120 | ''' | |
121 | Plot for meteors detection data |
|
121 | Plot for meteors detection data | |
122 | ''' |
|
122 | ''' | |
123 |
|
123 | |||
124 | CODE = 'param' |
|
124 | CODE = 'param' | |
125 |
|
125 | |||
126 | def setup(self): |
|
126 | def setup(self): | |
127 |
|
127 | |||
128 | self.ncols = 1 |
|
128 | self.ncols = 1 | |
129 | self.nrows = 1 |
|
129 | self.nrows = 1 | |
130 | self.width = 7.2 |
|
130 | self.width = 7.2 | |
131 | self.height = 7.2 |
|
131 | self.height = 7.2 | |
132 | self.nplots = 1 |
|
132 | self.nplots = 1 | |
133 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
133 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
134 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
134 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
135 | self.polar = True |
|
135 | self.polar = True | |
136 | self.ymin = -180 |
|
136 | self.ymin = -180 | |
137 | self.ymax = 180 |
|
137 | self.ymax = 180 | |
138 | self.colorbar = False |
|
138 | self.colorbar = False | |
139 |
|
139 | |||
140 | def plot(self): |
|
140 | def plot(self): | |
141 |
|
141 | |||
142 | arrayParameters = numpy.concatenate(self.data['param']) |
|
142 | arrayParameters = numpy.concatenate(self.data['param']) | |
143 | error = arrayParameters[:, -1] |
|
143 | error = arrayParameters[:, -1] | |
144 | indValid = numpy.where(error == 0)[0] |
|
144 | indValid = numpy.where(error == 0)[0] | |
145 | finalMeteor = arrayParameters[indValid, :] |
|
145 | finalMeteor = arrayParameters[indValid, :] | |
146 | finalAzimuth = finalMeteor[:, 3] |
|
146 | finalAzimuth = finalMeteor[:, 3] | |
147 | finalZenith = finalMeteor[:, 4] |
|
147 | finalZenith = finalMeteor[:, 4] | |
148 |
|
148 | |||
149 | x = finalAzimuth * numpy.pi / 180 |
|
149 | x = finalAzimuth * numpy.pi / 180 | |
150 | y = finalZenith |
|
150 | y = finalZenith | |
151 |
|
151 | |||
152 | ax = self.axes[0] |
|
152 | ax = self.axes[0] | |
153 |
|
153 | |||
154 | if ax.firsttime: |
|
154 | if ax.firsttime: | |
155 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
155 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] | |
156 | else: |
|
156 | else: | |
157 | ax.plot.set_data(x, y) |
|
157 | ax.plot.set_data(x, y) | |
158 |
|
158 | |||
159 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
159 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | |
160 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
160 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | |
161 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
161 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
162 | dt2, |
|
162 | dt2, | |
163 | len(x)) |
|
163 | len(x)) | |
164 | self.titles[0] = title |
|
164 | self.titles[0] = title | |
165 |
|
165 | |||
166 |
|
166 | |||
167 | class GenericRTIPlot(Plot): |
|
167 | class GenericRTIPlot(Plot): | |
168 | ''' |
|
168 | ''' | |
169 | Plot for data_xxxx object |
|
169 | Plot for data_xxxx object | |
170 | ''' |
|
170 | ''' | |
171 |
|
171 | |||
172 | CODE = 'param' |
|
172 | CODE = 'param' | |
173 | colormap = 'viridis' |
|
173 | colormap = 'viridis' | |
174 | plot_type = 'pcolorbuffer' |
|
174 | plot_type = 'pcolorbuffer' | |
175 |
|
175 | |||
176 | def setup(self): |
|
176 | def setup(self): | |
177 | self.xaxis = 'time' |
|
177 | self.xaxis = 'time' | |
178 | self.ncols = 1 |
|
178 | self.ncols = 1 | |
179 | self.nrows = self.data.shape('param')[0] |
|
179 | self.nrows = self.data.shape('param')[0] | |
180 | self.nplots = self.nrows |
|
180 | self.nplots = self.nrows | |
181 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
181 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) | |
182 |
|
182 | |||
183 | if not self.xlabel: |
|
183 | if not self.xlabel: | |
184 | self.xlabel = 'Time' |
|
184 | self.xlabel = 'Time' | |
185 |
|
185 | |||
186 | self.ylabel = 'Range [km]' |
|
186 | self.ylabel = 'Range [km]' | |
187 | if not self.titles: |
|
187 | if not self.titles: | |
188 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
188 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] | |
189 |
|
189 | |||
190 | def update(self, dataOut): |
|
190 | def update(self, dataOut): | |
191 |
|
191 | |||
192 | data = { |
|
192 | data = { | |
193 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
193 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) | |
194 | } |
|
194 | } | |
195 |
|
195 | |||
196 | meta = {} |
|
196 | meta = {} | |
197 |
|
197 | |||
198 | return data, meta |
|
198 | return data, meta | |
199 |
|
199 | |||
200 | def plot(self): |
|
200 | def plot(self): | |
201 | # self.data.normalize_heights() |
|
201 | # self.data.normalize_heights() | |
202 | self.x = self.data.times |
|
202 | self.x = self.data.times | |
203 | self.y = self.data.yrange |
|
203 | self.y = self.data.yrange | |
204 | self.z = self.data['param'] |
|
204 | self.z = self.data['param'] | |
205 | self.z = 10*numpy.log10(self.z) |
|
205 | self.z = 10*numpy.log10(self.z) | |
206 | self.z = numpy.ma.masked_invalid(self.z) |
|
206 | self.z = numpy.ma.masked_invalid(self.z) | |
207 |
|
207 | |||
208 | if self.decimation is None: |
|
208 | if self.decimation is None: | |
209 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
209 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
210 | else: |
|
210 | else: | |
211 | x, y, z = self.fill_gaps(*self.decimate()) |
|
211 | x, y, z = self.fill_gaps(*self.decimate()) | |
212 |
|
212 | |||
213 | for n, ax in enumerate(self.axes): |
|
213 | for n, ax in enumerate(self.axes): | |
214 |
|
214 | |||
215 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
215 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
216 | self.z[n]) |
|
216 | self.z[n]) | |
217 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
217 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
218 | self.z[n]) |
|
218 | self.z[n]) | |
219 |
|
219 | |||
220 | if ax.firsttime: |
|
220 | if ax.firsttime: | |
221 | if self.zlimits is not None: |
|
221 | if self.zlimits is not None: | |
222 | self.zmin, self.zmax = self.zlimits[n] |
|
222 | self.zmin, self.zmax = self.zlimits[n] | |
223 |
|
223 | |||
224 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
224 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
225 | vmin=self.zmin, |
|
225 | vmin=self.zmin, | |
226 | vmax=self.zmax, |
|
226 | vmax=self.zmax, | |
227 | cmap=self.cmaps[n] |
|
227 | cmap=self.cmaps[n] | |
228 | ) |
|
228 | ) | |
229 | else: |
|
229 | else: | |
230 | if self.zlimits is not None: |
|
230 | if self.zlimits is not None: | |
231 | self.zmin, self.zmax = self.zlimits[n] |
|
231 | self.zmin, self.zmax = self.zlimits[n] | |
232 | ax.collections.remove(ax.collections[0]) |
|
232 | ax.collections.remove(ax.collections[0]) | |
233 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
233 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
234 | vmin=self.zmin, |
|
234 | vmin=self.zmin, | |
235 | vmax=self.zmax, |
|
235 | vmax=self.zmax, | |
236 | cmap=self.cmaps[n] |
|
236 | cmap=self.cmaps[n] | |
237 | ) |
|
237 | ) | |
238 |
|
238 | |||
239 |
|
239 | |||
240 | class PolarMapPlot(Plot): |
|
240 | class PolarMapPlot(Plot): | |
241 | ''' |
|
241 | ''' | |
242 | Plot for weather radar |
|
242 | Plot for weather radar | |
243 | ''' |
|
243 | ''' | |
244 |
|
244 | |||
245 | CODE = 'param' |
|
245 | CODE = 'param' | |
246 | colormap = 'seismic' |
|
246 | colormap = 'seismic' | |
247 |
|
247 | |||
248 | def setup(self): |
|
248 | def setup(self): | |
249 | self.ncols = 1 |
|
249 | self.ncols = 1 | |
250 | self.nrows = 1 |
|
250 | self.nrows = 1 | |
251 | self.width = 9 |
|
251 | self.width = 9 | |
252 | self.height = 8 |
|
252 | self.height = 8 | |
253 | self.mode = self.data.meta['mode'] |
|
253 | self.mode = self.data.meta['mode'] | |
254 | if self.channels is not None: |
|
254 | if self.channels is not None: | |
255 | self.nplots = len(self.channels) |
|
255 | self.nplots = len(self.channels) | |
256 | self.nrows = len(self.channels) |
|
256 | self.nrows = len(self.channels) | |
257 | else: |
|
257 | else: | |
258 | self.nplots = self.data.shape(self.CODE)[0] |
|
258 | self.nplots = self.data.shape(self.CODE)[0] | |
259 | self.nrows = self.nplots |
|
259 | self.nrows = self.nplots | |
260 | self.channels = list(range(self.nplots)) |
|
260 | self.channels = list(range(self.nplots)) | |
261 | if self.mode == 'E': |
|
261 | if self.mode == 'E': | |
262 | self.xlabel = 'Longitude' |
|
262 | self.xlabel = 'Longitude' | |
263 | self.ylabel = 'Latitude' |
|
263 | self.ylabel = 'Latitude' | |
264 | else: |
|
264 | else: | |
265 | self.xlabel = 'Range (km)' |
|
265 | self.xlabel = 'Range (km)' | |
266 | self.ylabel = 'Height (km)' |
|
266 | self.ylabel = 'Height (km)' | |
267 | self.bgcolor = 'white' |
|
267 | self.bgcolor = 'white' | |
268 | self.cb_labels = self.data.meta['units'] |
|
268 | self.cb_labels = self.data.meta['units'] | |
269 | self.lat = self.data.meta['latitude'] |
|
269 | self.lat = self.data.meta['latitude'] | |
270 | self.lon = self.data.meta['longitude'] |
|
270 | self.lon = self.data.meta['longitude'] | |
271 | self.xmin, self.xmax = float( |
|
271 | self.xmin, self.xmax = float( | |
272 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
272 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | |
273 | self.ymin, self.ymax = float( |
|
273 | self.ymin, self.ymax = float( | |
274 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
274 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | |
275 | # self.polar = True |
|
275 | # self.polar = True | |
276 |
|
276 | |||
277 | def plot(self): |
|
277 | def plot(self): | |
278 |
|
278 | |||
279 | for n, ax in enumerate(self.axes): |
|
279 | for n, ax in enumerate(self.axes): | |
280 | data = self.data['param'][self.channels[n]] |
|
280 | data = self.data['param'][self.channels[n]] | |
281 |
|
281 | |||
282 | zeniths = numpy.linspace( |
|
282 | zeniths = numpy.linspace( | |
283 | 0, self.data.meta['max_range'], data.shape[1]) |
|
283 | 0, self.data.meta['max_range'], data.shape[1]) | |
284 | if self.mode == 'E': |
|
284 | if self.mode == 'E': | |
285 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
285 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 | |
286 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
286 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
287 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
287 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | |
288 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
288 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | |
289 | x = km2deg(x) + self.lon |
|
289 | x = km2deg(x) + self.lon | |
290 | y = km2deg(y) + self.lat |
|
290 | y = km2deg(y) + self.lat | |
291 | else: |
|
291 | else: | |
292 | azimuths = numpy.radians(self.data.yrange) |
|
292 | azimuths = numpy.radians(self.data.yrange) | |
293 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
293 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
294 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
294 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
295 | self.y = zeniths |
|
295 | self.y = zeniths | |
296 |
|
296 | |||
297 | if ax.firsttime: |
|
297 | if ax.firsttime: | |
298 | if self.zlimits is not None: |
|
298 | if self.zlimits is not None: | |
299 | self.zmin, self.zmax = self.zlimits[n] |
|
299 | self.zmin, self.zmax = self.zlimits[n] | |
300 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
300 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
301 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
301 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
302 | vmin=self.zmin, |
|
302 | vmin=self.zmin, | |
303 | vmax=self.zmax, |
|
303 | vmax=self.zmax, | |
304 | cmap=self.cmaps[n]) |
|
304 | cmap=self.cmaps[n]) | |
305 | else: |
|
305 | else: | |
306 | if self.zlimits is not None: |
|
306 | if self.zlimits is not None: | |
307 | self.zmin, self.zmax = self.zlimits[n] |
|
307 | self.zmin, self.zmax = self.zlimits[n] | |
308 | ax.collections.remove(ax.collections[0]) |
|
308 | ax.collections.remove(ax.collections[0]) | |
309 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
309 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
310 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
310 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
311 | vmin=self.zmin, |
|
311 | vmin=self.zmin, | |
312 | vmax=self.zmax, |
|
312 | vmax=self.zmax, | |
313 | cmap=self.cmaps[n]) |
|
313 | cmap=self.cmaps[n]) | |
314 |
|
314 | |||
315 | if self.mode == 'A': |
|
315 | if self.mode == 'A': | |
316 | continue |
|
316 | continue | |
317 |
|
317 | |||
318 | # plot district names |
|
318 | # plot district names | |
319 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
319 | f = open('/data/workspace/schain_scripts/distrito.csv') | |
320 | for line in f: |
|
320 | for line in f: | |
321 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
321 | label, lon, lat = [s.strip() for s in line.split(',') if s] | |
322 | lat = float(lat) |
|
322 | lat = float(lat) | |
323 | lon = float(lon) |
|
323 | lon = float(lon) | |
324 | # ax.plot(lon, lat, '.b', ms=2) |
|
324 | # ax.plot(lon, lat, '.b', ms=2) | |
325 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
325 | ax.text(lon, lat, label.decode('utf8'), ha='center', | |
326 | va='bottom', size='8', color='black') |
|
326 | va='bottom', size='8', color='black') | |
327 |
|
327 | |||
328 | # plot limites |
|
328 | # plot limites | |
329 | limites = [] |
|
329 | limites = [] | |
330 | tmp = [] |
|
330 | tmp = [] | |
331 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
331 | for line in open('/data/workspace/schain_scripts/lima.csv'): | |
332 | if '#' in line: |
|
332 | if '#' in line: | |
333 | if tmp: |
|
333 | if tmp: | |
334 | limites.append(tmp) |
|
334 | limites.append(tmp) | |
335 | tmp = [] |
|
335 | tmp = [] | |
336 | continue |
|
336 | continue | |
337 | values = line.strip().split(',') |
|
337 | values = line.strip().split(',') | |
338 | tmp.append((float(values[0]), float(values[1]))) |
|
338 | tmp.append((float(values[0]), float(values[1]))) | |
339 | for points in limites: |
|
339 | for points in limites: | |
340 | ax.add_patch( |
|
340 | ax.add_patch( | |
341 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
341 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | |
342 |
|
342 | |||
343 | # plot Cuencas |
|
343 | # plot Cuencas | |
344 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
344 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | |
345 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
345 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) | |
346 | values = [line.strip().split(',') for line in f] |
|
346 | values = [line.strip().split(',') for line in f] | |
347 | points = [(float(s[0]), float(s[1])) for s in values] |
|
347 | points = [(float(s[0]), float(s[1])) for s in values] | |
348 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
348 | ax.add_patch(Polygon(points, ec='b', fc='none')) | |
349 |
|
349 | |||
350 | # plot grid |
|
350 | # plot grid | |
351 | for r in (15, 30, 45, 60): |
|
351 | for r in (15, 30, 45, 60): | |
352 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
352 | ax.add_artist(plt.Circle((self.lon, self.lat), | |
353 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
353 | km2deg(r), color='0.6', fill=False, lw=0.2)) | |
354 | ax.text( |
|
354 | ax.text( | |
355 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
355 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), | |
356 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
356 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), | |
357 | '{}km'.format(r), |
|
357 | '{}km'.format(r), | |
358 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
358 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') | |
359 |
|
359 | |||
360 | if self.mode == 'E': |
|
360 | if self.mode == 'E': | |
361 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
361 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | |
362 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
362 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | |
363 | else: |
|
363 | else: | |
364 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
364 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | |
365 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
365 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | |
366 |
|
366 | |||
367 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
367 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
368 | self.titles = ['{} {}'.format( |
|
368 | self.titles = ['{} {}'.format( | |
369 | self.data.parameters[x], title) for x in self.channels] |
|
369 | self.data.parameters[x], title) for x in self.channels] | |
370 |
|
370 | |||
371 | class WeatherPlot(Plot): |
|
371 | class WeatherPlot(Plot): | |
372 | CODE = 'weather' |
|
372 | CODE = 'weather' | |
373 | plot_name = 'weather' |
|
373 | plot_name = 'weather' | |
374 | plot_type = 'ppistyle' |
|
374 | plot_type = 'ppistyle' | |
375 | buffering = False |
|
375 | buffering = False | |
376 |
|
376 | |||
377 | def setup(self): |
|
377 | def setup(self): | |
378 | self.ncols = 1 |
|
378 | self.ncols = 1 | |
379 | self.nrows = 1 |
|
379 | self.nrows = 1 | |
|
380 | self.width =8 | |||
|
381 | self.height =8 | |||
380 | self.nplots= 1 |
|
382 | self.nplots= 1 | |
381 | self.ylabel= 'Range [Km]' |
|
383 | self.ylabel= 'Range [Km]' | |
382 | self.titles= ['Weather'] |
|
384 | self.titles= ['Weather'] | |
383 | self.colorbar=False |
|
385 | self.colorbar=False | |
384 | self.width =8 |
|
|||
385 | self.height =8 |
|
|||
386 | self.ini =0 |
|
386 | self.ini =0 | |
387 | self.len_azi =0 |
|
387 | self.len_azi =0 | |
388 | self.buffer_ini = None |
|
388 | self.buffer_ini = None | |
389 | self.buffer_azi = None |
|
389 | self.buffer_azi = None | |
390 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
390 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
391 | self.flag =0 |
|
391 | self.flag =0 | |
392 | self.indicador= 0 |
|
392 | self.indicador= 0 | |
393 | self.last_data_azi = None |
|
393 | self.last_data_azi = None | |
394 | self.val_mean = None |
|
394 | self.val_mean = None | |
395 |
|
395 | |||
396 | def update(self, dataOut): |
|
396 | def update(self, dataOut): | |
397 |
|
397 | |||
398 | data = {} |
|
398 | data = {} | |
399 | meta = {} |
|
399 | meta = {} | |
400 | if hasattr(dataOut, 'dataPP_POWER'): |
|
400 | if hasattr(dataOut, 'dataPP_POWER'): | |
401 | factor = 1 |
|
401 | factor = 1 | |
402 | if hasattr(dataOut, 'nFFTPoints'): |
|
402 | if hasattr(dataOut, 'nFFTPoints'): | |
403 | factor = dataOut.normFactor |
|
403 | factor = dataOut.normFactor | |
404 | #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape) |
|
404 | #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape) | |
405 | data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
405 | data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | |
406 | data['azi'] = dataOut.data_azi |
|
406 | data['azi'] = dataOut.data_azi | |
407 | data['ele'] = dataOut.data_ele |
|
407 | data['ele'] = dataOut.data_ele | |
408 | return data, meta |
|
408 | return data, meta | |
409 |
|
409 | |||
410 | def get2List(self,angulos): |
|
410 | def get2List(self,angulos): | |
411 | list1=[] |
|
411 | list1=[] | |
412 | list2=[] |
|
412 | list2=[] | |
413 | for i in reversed(range(len(angulos))): |
|
413 | for i in reversed(range(len(angulos))): | |
414 | diff_ = angulos[i]-angulos[i-1] |
|
414 | diff_ = angulos[i]-angulos[i-1] | |
415 | if diff_ >1.5: |
|
415 | if diff_ >1.5: | |
416 | list1.append(i-1) |
|
416 | list1.append(i-1) | |
417 | list2.append(diff_) |
|
417 | list2.append(diff_) | |
418 | return list(reversed(list1)),list(reversed(list2)) |
|
418 | return list(reversed(list1)),list(reversed(list2)) | |
419 |
|
419 | |||
420 | def fixData360(self,list_,ang_): |
|
420 | def fixData360(self,list_,ang_): | |
421 | if list_[0]==-1: |
|
421 | if list_[0]==-1: | |
422 | vec = numpy.where(ang_<ang_[0]) |
|
422 | vec = numpy.where(ang_<ang_[0]) | |
423 | ang_[vec] = ang_[vec]+360 |
|
423 | ang_[vec] = ang_[vec]+360 | |
424 | return ang_ |
|
424 | return ang_ | |
425 | return ang_ |
|
425 | return ang_ | |
426 |
|
426 | |||
427 | def fixData360HL(self,angulos): |
|
427 | def fixData360HL(self,angulos): | |
428 | vec = numpy.where(angulos>=360) |
|
428 | vec = numpy.where(angulos>=360) | |
429 | angulos[vec]=angulos[vec]-360 |
|
429 | angulos[vec]=angulos[vec]-360 | |
430 | return angulos |
|
430 | return angulos | |
431 |
|
431 | |||
432 | def search_pos(self,pos,list_): |
|
432 | def search_pos(self,pos,list_): | |
433 | for i in range(len(list_)): |
|
433 | for i in range(len(list_)): | |
434 | if pos == list_[i]: |
|
434 | if pos == list_[i]: | |
435 | return True,i |
|
435 | return True,i | |
436 | i=None |
|
436 | i=None | |
437 | return False,i |
|
437 | return False,i | |
438 |
|
438 | |||
439 | def fixDataComp(self,ang_,list1_,list2_): |
|
439 | def fixDataComp(self,ang_,list1_,list2_): | |
440 | size = len(ang_) |
|
440 | size = len(ang_) | |
441 | size2 = 0 |
|
441 | size2 = 0 | |
442 | for i in range(len(list2_)): |
|
442 | for i in range(len(list2_)): | |
443 | size2=size2+round(list2_[i])-1 |
|
443 | size2=size2+round(list2_[i])-1 | |
444 | new_size= size+size2 |
|
444 | new_size= size+size2 | |
445 | ang_new = numpy.zeros(new_size) |
|
445 | ang_new = numpy.zeros(new_size) | |
446 | ang_new2 = numpy.zeros(new_size) |
|
446 | ang_new2 = numpy.zeros(new_size) | |
447 |
|
447 | |||
448 | tmp = 0 |
|
448 | tmp = 0 | |
449 | c = 0 |
|
449 | c = 0 | |
450 | for i in range(len(ang_)): |
|
450 | for i in range(len(ang_)): | |
451 | ang_new[tmp +c] = ang_[i] |
|
451 | ang_new[tmp +c] = ang_[i] | |
452 | ang_new2[tmp+c] = ang_[i] |
|
452 | ang_new2[tmp+c] = ang_[i] | |
453 | condition , value = self.search_pos(i,list1_) |
|
453 | condition , value = self.search_pos(i,list1_) | |
454 | if condition: |
|
454 | if condition: | |
455 | pos = tmp + c + 1 |
|
455 | pos = tmp + c + 1 | |
456 | for k in range(round(list2_[value])-1): |
|
456 | for k in range(round(list2_[value])-1): | |
457 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
457 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |
458 | ang_new2[pos+k] = numpy.nan |
|
458 | ang_new2[pos+k] = numpy.nan | |
459 | tmp = pos +k |
|
459 | tmp = pos +k | |
460 | c = 0 |
|
460 | c = 0 | |
461 | c=c+1 |
|
461 | c=c+1 | |
462 | return ang_new,ang_new2 |
|
462 | return ang_new,ang_new2 | |
463 |
|
463 | |||
464 | def globalCheckPED(self,angulos): |
|
464 | def globalCheckPED(self,angulos): | |
465 | l1,l2 = self.get2List(angulos) |
|
465 | l1,l2 = self.get2List(angulos) | |
466 | if len(l1)>0: |
|
466 | if len(l1)>0: | |
467 | angulos2 = self.fixData360(list_=l1,ang_=angulos) |
|
467 | angulos2 = self.fixData360(list_=l1,ang_=angulos) | |
468 | l1,l2 = self.get2List(angulos2) |
|
468 | l1,l2 = self.get2List(angulos2) | |
469 |
|
469 | |||
470 | ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2) |
|
470 | ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2) | |
471 | ang1_ = self.fixData360HL(ang1_) |
|
471 | ang1_ = self.fixData360HL(ang1_) | |
472 | ang2_ = self.fixData360HL(ang2_) |
|
472 | ang2_ = self.fixData360HL(ang2_) | |
473 | else: |
|
473 | else: | |
474 | ang1_= angulos |
|
474 | ang1_= angulos | |
475 | ang2_= angulos |
|
475 | ang2_= angulos | |
476 | return ang1_,ang2_ |
|
476 | return ang1_,ang2_ | |
477 |
|
477 | |||
478 | def analizeDATA(self,data_azi): |
|
478 | def analizeDATA(self,data_azi): | |
479 | list1 = [] |
|
479 | list1 = [] | |
480 | list2 = [] |
|
480 | list2 = [] | |
481 | dat = data_azi |
|
481 | dat = data_azi | |
482 | for i in reversed(range(1,len(dat))): |
|
482 | for i in reversed(range(1,len(dat))): | |
483 | if dat[i]>dat[i-1]: |
|
483 | if dat[i]>dat[i-1]: | |
484 | diff = int(dat[i])-int(dat[i-1]) |
|
484 | diff = int(dat[i])-int(dat[i-1]) | |
485 | else: |
|
485 | else: | |
486 | diff = 360+int(dat[i])-int(dat[i-1]) |
|
486 | diff = 360+int(dat[i])-int(dat[i-1]) | |
487 | if diff > 1: |
|
487 | if diff > 1: | |
488 | list1.append(i-1) |
|
488 | list1.append(i-1) | |
489 | list2.append(diff-1) |
|
489 | list2.append(diff-1) | |
490 | return list1,list2 |
|
490 | return list1,list2 | |
491 |
|
491 | |||
492 | def fixDATANEW(self,data_azi,data_weather): |
|
492 | def fixDATANEW(self,data_azi,data_weather): | |
493 | list1,list2 = self.analizeDATA(data_azi) |
|
493 | list1,list2 = self.analizeDATA(data_azi) | |
494 | if len(list1)== 0: |
|
494 | if len(list1)== 0: | |
495 | return data_azi,data_weather |
|
495 | return data_azi,data_weather | |
496 | else: |
|
496 | else: | |
497 | resize = 0 |
|
497 | resize = 0 | |
498 | for i in range(len(list2)): |
|
498 | for i in range(len(list2)): | |
499 | resize= resize + list2[i] |
|
499 | resize= resize + list2[i] | |
500 | new_data_azi = numpy.resize(data_azi,resize) |
|
500 | new_data_azi = numpy.resize(data_azi,resize) | |
501 | new_data_weather= numpy.resize(date_weather,resize) |
|
501 | new_data_weather= numpy.resize(date_weather,resize) | |
502 |
|
502 | |||
503 | for i in range(len(list2)): |
|
503 | for i in range(len(list2)): | |
504 | j=0 |
|
504 | j=0 | |
505 | position=list1[i]+1 |
|
505 | position=list1[i]+1 | |
506 | for j in range(list2[i]): |
|
506 | for j in range(list2[i]): | |
507 | new_data_azi[position+j]=new_data_azi[position+j-1]+1 |
|
507 | new_data_azi[position+j]=new_data_azi[position+j-1]+1 | |
508 | return new_data_azi |
|
508 | return new_data_azi | |
509 |
|
509 | |||
510 | def fixDATA(self,data_azi): |
|
510 | def fixDATA(self,data_azi): | |
511 | data=data_azi |
|
511 | data=data_azi | |
512 | for i in range(len(data)): |
|
512 | for i in range(len(data)): | |
513 | if numpy.isnan(data[i]): |
|
513 | if numpy.isnan(data[i]): | |
514 | data[i]=data[i-1]+1 |
|
514 | data[i]=data[i-1]+1 | |
515 | return data |
|
515 | return data | |
516 |
|
516 | |||
517 | def replaceNAN(self,data_weather,data_azi,val): |
|
517 | def replaceNAN(self,data_weather,data_azi,val): | |
518 | data= data_azi |
|
518 | data= data_azi | |
519 | data_T= data_weather |
|
519 | data_T= data_weather | |
520 | if data.shape[0]> data_T.shape[0]: |
|
520 | if data.shape[0]> data_T.shape[0]: | |
521 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
521 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | |
522 | c = 0 |
|
522 | c = 0 | |
523 | for i in range(len(data)): |
|
523 | for i in range(len(data)): | |
524 | if numpy.isnan(data[i]): |
|
524 | if numpy.isnan(data[i]): | |
525 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
525 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
526 | else: |
|
526 | else: | |
527 | data_N[i,:]=data_T[c,:] |
|
527 | data_N[i,:]=data_T[c,:] | |
528 | c=c+1 |
|
528 | c=c+1 | |
529 | return data_N |
|
529 | return data_N | |
530 | else: |
|
530 | else: | |
531 | for i in range(len(data)): |
|
531 | for i in range(len(data)): | |
532 | if numpy.isnan(data[i]): |
|
532 | if numpy.isnan(data[i]): | |
533 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
533 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
534 | return data_T |
|
534 | return data_T | |
535 |
|
535 | |||
536 | def const_ploteo(self,data_weather,data_azi,step,res): |
|
536 | def const_ploteo(self,data_weather,data_azi,step,res): | |
537 | if self.ini==0: |
|
537 | if self.ini==0: | |
538 | #------- |
|
538 | #------- | |
539 | n = (360/res)-len(data_azi) |
|
539 | n = (360/res)-len(data_azi) | |
540 | #--------------------- new ------------------------- |
|
540 | #--------------------- new ------------------------- | |
541 | data_azi_new ,data_azi_old= self.globalCheckPED(data_azi) |
|
541 | data_azi_new ,data_azi_old= self.globalCheckPED(data_azi) | |
542 | #------------------------ |
|
542 | #------------------------ | |
543 | start = data_azi_new[-1] + res |
|
543 | start = data_azi_new[-1] + res | |
544 | end = data_azi_new[0] - res |
|
544 | end = data_azi_new[0] - res | |
545 | #------ new |
|
545 | #------ new | |
546 | self.last_data_azi = end |
|
546 | self.last_data_azi = end | |
547 | if start>end: |
|
547 | if start>end: | |
548 | end = end + 360 |
|
548 | end = end + 360 | |
549 | azi_vacia = numpy.linspace(start,end,int(n)) |
|
549 | azi_vacia = numpy.linspace(start,end,int(n)) | |
550 | azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) |
|
550 | azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) | |
551 | data_azi = numpy.hstack((data_azi_new,azi_vacia)) |
|
551 | data_azi = numpy.hstack((data_azi_new,azi_vacia)) | |
552 | # RADAR |
|
552 | # RADAR | |
553 | val_mean = numpy.mean(data_weather[:,-1]) |
|
553 | val_mean = numpy.mean(data_weather[:,-1]) | |
554 | self.val_mean = val_mean |
|
554 | self.val_mean = val_mean | |
555 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean |
|
555 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean | |
556 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) |
|
556 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) | |
557 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) |
|
557 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) | |
558 | else: |
|
558 | else: | |
559 | # azimuth |
|
559 | # azimuth | |
560 | flag=0 |
|
560 | flag=0 | |
561 | start_azi = self.res_azi[0] |
|
561 | start_azi = self.res_azi[0] | |
562 | #-----------new------------ |
|
562 | #-----------new------------ | |
563 | data_azi ,data_azi_old= self.globalCheckPED(data_azi) |
|
563 | data_azi ,data_azi_old= self.globalCheckPED(data_azi) | |
564 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) |
|
564 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) | |
565 | #-------------------------- |
|
565 | #-------------------------- | |
566 | start = data_azi[0] |
|
566 | start = data_azi[0] | |
567 | end = data_azi[-1] |
|
567 | end = data_azi[-1] | |
568 | self.last_data_azi= end |
|
568 | self.last_data_azi= end | |
569 | if start< start_azi: |
|
569 | if start< start_azi: | |
570 | start = start +360 |
|
570 | start = start +360 | |
571 | if end <start_azi: |
|
571 | if end <start_azi: | |
572 | end = end +360 |
|
572 | end = end +360 | |
573 |
|
573 | |||
574 | pos_ini = int((start-start_azi)/res) |
|
574 | pos_ini = int((start-start_azi)/res) | |
575 | len_azi = len(data_azi) |
|
575 | len_azi = len(data_azi) | |
576 | if (360-pos_ini)<len_azi: |
|
576 | if (360-pos_ini)<len_azi: | |
577 | if pos_ini+1==360: |
|
577 | if pos_ini+1==360: | |
578 | pos_ini=0 |
|
578 | pos_ini=0 | |
579 | else: |
|
579 | else: | |
580 | flag=1 |
|
580 | flag=1 | |
581 | dif= 360-pos_ini |
|
581 | dif= 360-pos_ini | |
582 | comp= len_azi-dif |
|
582 | comp= len_azi-dif | |
583 | #----------------- |
|
583 | #----------------- | |
584 | if flag==0: |
|
584 | if flag==0: | |
585 | # AZIMUTH |
|
585 | # AZIMUTH | |
586 | self.res_azi[pos_ini:pos_ini+len_azi] = data_azi |
|
586 | self.res_azi[pos_ini:pos_ini+len_azi] = data_azi | |
587 | # RADAR |
|
587 | # RADAR | |
588 | self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather |
|
588 | self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather | |
589 | else: |
|
589 | else: | |
590 | # AZIMUTH |
|
590 | # AZIMUTH | |
591 | self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] |
|
591 | self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] | |
592 | self.res_azi[0:comp] = data_azi[dif:] |
|
592 | self.res_azi[0:comp] = data_azi[dif:] | |
593 | # RADAR |
|
593 | # RADAR | |
594 | self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] |
|
594 | self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] | |
595 | self.res_weather[0:comp,:] = data_weather[dif:,:] |
|
595 | self.res_weather[0:comp,:] = data_weather[dif:,:] | |
596 | flag=0 |
|
596 | flag=0 | |
597 | data_azi = self.res_azi |
|
597 | data_azi = self.res_azi | |
598 | data_weather = self.res_weather |
|
598 | data_weather = self.res_weather | |
599 |
|
599 | |||
600 | return data_weather,data_azi |
|
600 | return data_weather,data_azi | |
601 |
|
601 | |||
602 | def plot(self): |
|
602 | def plot(self): | |
603 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
603 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |
604 | data = self.data[-1] |
|
604 | data = self.data[-1] | |
605 | r = self.data.yrange |
|
605 | r = self.data.yrange | |
606 | delta_height = r[1]-r[0] |
|
606 | delta_height = r[1]-r[0] | |
607 | r_mask = numpy.where(r>=0)[0] |
|
607 | r_mask = numpy.where(r>=0)[0] | |
608 | r = numpy.arange(len(r_mask))*delta_height |
|
608 | r = numpy.arange(len(r_mask))*delta_height | |
609 | self.y = 2*r |
|
609 | self.y = 2*r | |
610 | # RADAR |
|
610 | # RADAR | |
611 | #data_weather = data['weather'] |
|
611 | #data_weather = data['weather'] | |
612 | # PEDESTAL |
|
612 | # PEDESTAL | |
613 | #data_azi = data['azi'] |
|
613 | #data_azi = data['azi'] | |
614 | res = 1 |
|
614 | res = 1 | |
615 | # STEP |
|
615 | # STEP | |
616 | step = (360/(res*data['weather'].shape[0])) |
|
616 | step = (360/(res*data['weather'].shape[0])) | |
617 |
|
617 | |||
618 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res) |
|
618 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res) | |
619 | self.res_ele = numpy.mean(data['ele']) |
|
619 | self.res_ele = numpy.mean(data['ele']) | |
620 | ################# PLOTEO ################### |
|
620 | ################# PLOTEO ################### | |
621 | for i,ax in enumerate(self.axes): |
|
621 | for i,ax in enumerate(self.axes): | |
622 | if ax.firsttime: |
|
622 | if ax.firsttime: | |
623 | plt.clf() |
|
623 | plt.clf() | |
624 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) |
|
624 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) | |
625 | else: |
|
625 | else: | |
626 | plt.clf() |
|
626 | plt.clf() | |
627 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) |
|
627 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) | |
628 | caax = cgax.parasites[0] |
|
628 | caax = cgax.parasites[0] | |
629 | paax = cgax.parasites[1] |
|
629 | paax = cgax.parasites[1] | |
630 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
630 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
631 | caax.set_xlabel('x_range [km]') |
|
631 | caax.set_xlabel('x_range [km]') | |
632 | caax.set_ylabel('y_range [km]') |
|
632 | caax.set_ylabel('y_range [km]') | |
633 | plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
633 | plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right') | |
634 |
|
634 | |||
635 | self.ini= self.ini+1 |
|
635 | self.ini= self.ini+1 | |
636 |
|
636 | |||
637 |
|
637 | |||
638 | class WeatherRHIPlot(Plot): |
|
638 | class WeatherRHIPlot(Plot): | |
639 | CODE = 'weather' |
|
639 | CODE = 'weather' | |
640 | plot_name = 'weather' |
|
640 | plot_name = 'weather' | |
641 | plot_type = 'rhistyle' |
|
641 | plot_type = 'rhistyle' | |
642 | buffering = False |
|
642 | buffering = False | |
643 | data_ele_tmp = None |
|
643 | data_ele_tmp = None | |
644 |
|
644 | |||
645 | def setup(self): |
|
645 | def setup(self): | |
|
646 | print("********************") | |||
|
647 | print("********************") | |||
|
648 | print("********************") | |||
|
649 | print("SETUP WEATHER PLOT") | |||
646 | self.ncols = 1 |
|
650 | self.ncols = 1 | |
647 | self.nrows = 1 |
|
651 | self.nrows = 1 | |
648 | self.nplots= 1 |
|
652 | self.nplots= 1 | |
649 | self.ylabel= 'Range [Km]' |
|
653 | self.ylabel= 'Range [Km]' | |
650 | self.titles= ['Weather'] |
|
654 | self.titles= ['Weather'] | |
|
655 | if self.channels is not None: | |||
|
656 | self.nplots = len(self.channels) | |||
|
657 | self.nrows = len(self.channels) | |||
|
658 | else: | |||
|
659 | self.nplots = self.data.shape(self.CODE)[0] | |||
|
660 | self.nrows = self.nplots | |||
|
661 | self.channels = list(range(self.nplots)) | |||
|
662 | print("channels",self.channels) | |||
|
663 | print("que saldra", self.data.shape(self.CODE)[0]) | |||
|
664 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | |||
|
665 | print("self.titles",self.titles) | |||
651 | self.colorbar=False |
|
666 | self.colorbar=False | |
652 | self.width =8 |
|
667 | self.width =8 | |
653 | self.height =8 |
|
668 | self.height =8 | |
654 | self.ini =0 |
|
669 | self.ini =0 | |
655 | self.len_azi =0 |
|
670 | self.len_azi =0 | |
656 | self.buffer_ini = None |
|
671 | self.buffer_ini = None | |
657 | self.buffer_ele = None |
|
672 | self.buffer_ele = None | |
658 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
673 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
659 | self.flag =0 |
|
674 | self.flag =0 | |
660 | self.indicador= 0 |
|
675 | self.indicador= 0 | |
661 | self.last_data_ele = None |
|
676 | self.last_data_ele = None | |
662 | self.val_mean = None |
|
677 | self.val_mean = None | |
663 |
|
678 | |||
664 | def update(self, dataOut): |
|
679 | def update(self, dataOut): | |
665 |
|
680 | |||
666 | data = {} |
|
681 | data = {} | |
667 | meta = {} |
|
682 | meta = {} | |
668 | if hasattr(dataOut, 'dataPP_POWER'): |
|
683 | if hasattr(dataOut, 'dataPP_POWER'): | |
669 | factor = 1 |
|
684 | factor = 1 | |
670 | if hasattr(dataOut, 'nFFTPoints'): |
|
685 | if hasattr(dataOut, 'nFFTPoints'): | |
671 | factor = dataOut.normFactor |
|
686 | factor = dataOut.normFactor | |
672 | data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
687 | print("dataOut",dataOut.data_360.shape) | |
|
688 | # | |||
|
689 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) | |||
|
690 | # | |||
|
691 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | |||
673 | data['azi'] = dataOut.data_azi |
|
692 | data['azi'] = dataOut.data_azi | |
674 | data['ele'] = dataOut.data_ele |
|
693 | data['ele'] = dataOut.data_ele | |
|
694 | print("UPDATE") | |||
|
695 | print("data[weather]",data['weather'].shape) | |||
|
696 | print("data[azi]",data['azi']) | |||
675 | return data, meta |
|
697 | return data, meta | |
676 |
|
698 | |||
677 | def get2List(self,angulos): |
|
699 | def get2List(self,angulos): | |
678 | list1=[] |
|
700 | list1=[] | |
679 | list2=[] |
|
701 | list2=[] | |
680 | for i in reversed(range(len(angulos))): |
|
702 | for i in reversed(range(len(angulos))): | |
681 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
703 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante | |
682 | diff_ = angulos[i]-angulos[i-1] |
|
704 | diff_ = angulos[i]-angulos[i-1] | |
683 | if abs(diff_) >1.5: |
|
705 | if abs(diff_) >1.5: | |
684 | list1.append(i-1) |
|
706 | list1.append(i-1) | |
685 | list2.append(diff_) |
|
707 | list2.append(diff_) | |
686 | return list(reversed(list1)),list(reversed(list2)) |
|
708 | return list(reversed(list1)),list(reversed(list2)) | |
687 |
|
709 | |||
688 | def fixData90(self,list_,ang_): |
|
710 | def fixData90(self,list_,ang_): | |
689 | if list_[0]==-1: |
|
711 | if list_[0]==-1: | |
690 | vec = numpy.where(ang_<ang_[0]) |
|
712 | vec = numpy.where(ang_<ang_[0]) | |
691 | ang_[vec] = ang_[vec]+90 |
|
713 | ang_[vec] = ang_[vec]+90 | |
692 | return ang_ |
|
714 | return ang_ | |
693 | return ang_ |
|
715 | return ang_ | |
694 |
|
716 | |||
695 | def fixData90HL(self,angulos): |
|
717 | def fixData90HL(self,angulos): | |
696 | vec = numpy.where(angulos>=90) |
|
718 | vec = numpy.where(angulos>=90) | |
697 | angulos[vec]=angulos[vec]-90 |
|
719 | angulos[vec]=angulos[vec]-90 | |
698 | return angulos |
|
720 | return angulos | |
699 |
|
721 | |||
700 |
|
722 | |||
701 | def search_pos(self,pos,list_): |
|
723 | def search_pos(self,pos,list_): | |
702 | for i in range(len(list_)): |
|
724 | for i in range(len(list_)): | |
703 | if pos == list_[i]: |
|
725 | if pos == list_[i]: | |
704 | return True,i |
|
726 | return True,i | |
705 | i=None |
|
727 | i=None | |
706 | return False,i |
|
728 | return False,i | |
707 |
|
729 | |||
708 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
730 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): | |
709 | size = len(ang_) |
|
731 | size = len(ang_) | |
710 | size2 = 0 |
|
732 | size2 = 0 | |
711 | for i in range(len(list2_)): |
|
733 | for i in range(len(list2_)): | |
712 | size2=size2+round(abs(list2_[i]))-1 |
|
734 | size2=size2+round(abs(list2_[i]))-1 | |
713 | new_size= size+size2 |
|
735 | new_size= size+size2 | |
714 | ang_new = numpy.zeros(new_size) |
|
736 | ang_new = numpy.zeros(new_size) | |
715 | ang_new2 = numpy.zeros(new_size) |
|
737 | ang_new2 = numpy.zeros(new_size) | |
716 |
|
738 | |||
717 | tmp = 0 |
|
739 | tmp = 0 | |
718 | c = 0 |
|
740 | c = 0 | |
719 | for i in range(len(ang_)): |
|
741 | for i in range(len(ang_)): | |
720 | ang_new[tmp +c] = ang_[i] |
|
742 | ang_new[tmp +c] = ang_[i] | |
721 | ang_new2[tmp+c] = ang_[i] |
|
743 | ang_new2[tmp+c] = ang_[i] | |
722 | condition , value = self.search_pos(i,list1_) |
|
744 | condition , value = self.search_pos(i,list1_) | |
723 | if condition: |
|
745 | if condition: | |
724 | pos = tmp + c + 1 |
|
746 | pos = tmp + c + 1 | |
725 | for k in range(round(abs(list2_[value]))-1): |
|
747 | for k in range(round(abs(list2_[value]))-1): | |
726 | if tipo_case==0 or tipo_case==3:#subida |
|
748 | if tipo_case==0 or tipo_case==3:#subida | |
727 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
749 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |
728 | ang_new2[pos+k] = numpy.nan |
|
750 | ang_new2[pos+k] = numpy.nan | |
729 | elif tipo_case==1 or tipo_case==2:#bajada |
|
751 | elif tipo_case==1 or tipo_case==2:#bajada | |
730 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
752 | ang_new[pos+k] = ang_new[pos+k-1]-1 | |
731 | ang_new2[pos+k] = numpy.nan |
|
753 | ang_new2[pos+k] = numpy.nan | |
732 |
|
754 | |||
733 | tmp = pos +k |
|
755 | tmp = pos +k | |
734 | c = 0 |
|
756 | c = 0 | |
735 | c=c+1 |
|
757 | c=c+1 | |
736 | return ang_new,ang_new2 |
|
758 | return ang_new,ang_new2 | |
737 |
|
759 | |||
738 | def globalCheckPED(self,angulos,tipo_case): |
|
760 | def globalCheckPED(self,angulos,tipo_case): | |
739 | l1,l2 = self.get2List(angulos) |
|
761 | l1,l2 = self.get2List(angulos) | |
740 | ##print("l1",l1) |
|
762 | ##print("l1",l1) | |
741 | ##print("l2",l2) |
|
763 | ##print("l2",l2) | |
742 | if len(l1)>0: |
|
764 | if len(l1)>0: | |
743 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
765 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) | |
744 | #l1,l2 = self.get2List(angulos2) |
|
766 | #l1,l2 = self.get2List(angulos2) | |
745 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
767 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) | |
746 | #ang1_ = self.fixData90HL(ang1_) |
|
768 | #ang1_ = self.fixData90HL(ang1_) | |
747 | #ang2_ = self.fixData90HL(ang2_) |
|
769 | #ang2_ = self.fixData90HL(ang2_) | |
748 | else: |
|
770 | else: | |
749 | ang1_= angulos |
|
771 | ang1_= angulos | |
750 | ang2_= angulos |
|
772 | ang2_= angulos | |
751 | return ang1_,ang2_ |
|
773 | return ang1_,ang2_ | |
752 |
|
774 | |||
753 |
|
775 | |||
754 | def replaceNAN(self,data_weather,data_ele,val): |
|
776 | def replaceNAN(self,data_weather,data_ele,val): | |
755 | data= data_ele |
|
777 | data= data_ele | |
756 | data_T= data_weather |
|
778 | data_T= data_weather | |
757 | if data.shape[0]> data_T.shape[0]: |
|
779 | if data.shape[0]> data_T.shape[0]: | |
758 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
780 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | |
759 | c = 0 |
|
781 | c = 0 | |
760 | for i in range(len(data)): |
|
782 | for i in range(len(data)): | |
761 | if numpy.isnan(data[i]): |
|
783 | if numpy.isnan(data[i]): | |
762 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
784 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
763 | else: |
|
785 | else: | |
764 | data_N[i,:]=data_T[c,:] |
|
786 | data_N[i,:]=data_T[c,:] | |
765 | c=c+1 |
|
787 | c=c+1 | |
766 | return data_N |
|
788 | return data_N | |
767 | else: |
|
789 | else: | |
768 | for i in range(len(data)): |
|
790 | for i in range(len(data)): | |
769 | if numpy.isnan(data[i]): |
|
791 | if numpy.isnan(data[i]): | |
770 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
792 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
771 | return data_T |
|
793 | return data_T | |
772 |
|
794 | |||
773 | def check_case(self,data_ele,ang_max,ang_min): |
|
795 | def check_case(self,data_ele,ang_max,ang_min): | |
774 | start = data_ele[0] |
|
796 | start = data_ele[0] | |
775 | end = data_ele[-1] |
|
797 | end = data_ele[-1] | |
776 | number = (end-start) |
|
798 | number = (end-start) | |
777 | len_ang=len(data_ele) |
|
799 | len_ang=len(data_ele) | |
778 |
|
800 | |||
779 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida |
|
801 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida | |
780 | return 0 |
|
802 | return 0 | |
781 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada |
|
803 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada | |
782 | # return 1 |
|
804 | # return 1 | |
783 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada |
|
805 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada | |
784 | return 1 |
|
806 | return 1 | |
785 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX |
|
807 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX | |
786 | return 2 |
|
808 | return 2 | |
787 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN |
|
809 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN | |
788 | return 3 |
|
810 | return 3 | |
789 |
|
811 | |||
790 |
|
812 | |||
791 | def const_ploteo(self,data_weather,data_ele,step,res,ang_max,ang_min): |
|
813 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min): | |
792 | ang_max= ang_max |
|
814 | ang_max= ang_max | |
793 | ang_min= ang_min |
|
815 | ang_min= ang_min | |
794 | data_weather=data_weather |
|
816 | data_weather=data_weather | |
|
817 | val_ch=val_ch | |||
795 | ##print("*********************DATA WEATHER**************************************") |
|
818 | ##print("*********************DATA WEATHER**************************************") | |
796 | ##print(data_weather) |
|
819 | ##print(data_weather) | |
797 | if self.ini==0: |
|
820 | if self.ini==0: | |
798 | ''' |
|
821 | ''' | |
799 | print("**********************************************") |
|
822 | print("**********************************************") | |
800 | print("**********************************************") |
|
823 | print("**********************************************") | |
801 | print("***************ini**************") |
|
824 | print("***************ini**************") | |
802 | print("**********************************************") |
|
825 | print("**********************************************") | |
803 | print("**********************************************") |
|
826 | print("**********************************************") | |
804 | ''' |
|
827 | ''' | |
805 | #print("data_ele",data_ele) |
|
828 | #print("data_ele",data_ele) | |
806 | #---------------------------------------------------------- |
|
829 | #---------------------------------------------------------- | |
807 | tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
830 | tipo_case = self.check_case(data_ele,ang_max,ang_min) | |
|
831 | print("check_case",tipo_case) | |||
808 | #--------------------- new ------------------------- |
|
832 | #--------------------- new ------------------------- | |
809 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
833 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) | |
810 |
|
834 | |||
811 | #-------------------------CAMBIOS RHI--------------------------------- |
|
835 | #-------------------------CAMBIOS RHI--------------------------------- | |
812 | start= ang_min |
|
836 | start= ang_min | |
813 | end = ang_max |
|
837 | end = ang_max | |
814 | n= (ang_max-ang_min)/res |
|
838 | n= (ang_max-ang_min)/res | |
815 | #------ new |
|
839 | #------ new | |
816 | self.start_data_ele = data_ele_new[0] |
|
840 | self.start_data_ele = data_ele_new[0] | |
817 | self.end_data_ele = data_ele_new[-1] |
|
841 | self.end_data_ele = data_ele_new[-1] | |
818 | if tipo_case==0 or tipo_case==3: # SUBIDA |
|
842 | if tipo_case==0 or tipo_case==3: # SUBIDA | |
819 | n1= round(self.start_data_ele)- start |
|
843 | n1= round(self.start_data_ele)- start | |
820 | n2= end - round(self.end_data_ele) |
|
844 | n2= end - round(self.end_data_ele) | |
821 | if n1>0: |
|
845 | if n1>0: | |
822 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
846 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
823 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
847 | ele1_nan= numpy.ones(n1)*numpy.nan | |
824 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
848 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
825 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
849 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
826 | if n2>0: |
|
850 | if n2>0: | |
827 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
851 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
828 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
852 | ele2_nan= numpy.ones(n2)*numpy.nan | |
829 | data_ele = numpy.hstack((data_ele,ele2)) |
|
853 | data_ele = numpy.hstack((data_ele,ele2)) | |
830 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
854 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
831 |
|
855 | |||
832 | if tipo_case==1 or tipo_case==2: # BAJADA |
|
856 | if tipo_case==1 or tipo_case==2: # BAJADA | |
833 | data_ele_new = data_ele_new[::-1] # reversa |
|
857 | data_ele_new = data_ele_new[::-1] # reversa | |
834 | data_ele_old = data_ele_old[::-1]# reversa |
|
858 | data_ele_old = data_ele_old[::-1]# reversa | |
835 | data_weather = data_weather[::-1,:]# reversa |
|
859 | data_weather = data_weather[::-1,:]# reversa | |
836 | vec= numpy.where(data_ele_new<ang_max) |
|
860 | vec= numpy.where(data_ele_new<ang_max) | |
837 | data_ele_new = data_ele_new[vec] |
|
861 | data_ele_new = data_ele_new[vec] | |
838 | data_ele_old = data_ele_old[vec] |
|
862 | data_ele_old = data_ele_old[vec] | |
839 | data_weather = data_weather[vec[0]] |
|
863 | data_weather = data_weather[vec[0]] | |
840 | vec2= numpy.where(0<data_ele_new) |
|
864 | vec2= numpy.where(0<data_ele_new) | |
841 | data_ele_new = data_ele_new[vec2] |
|
865 | data_ele_new = data_ele_new[vec2] | |
842 | data_ele_old = data_ele_old[vec2] |
|
866 | data_ele_old = data_ele_old[vec2] | |
843 | data_weather = data_weather[vec2[0]] |
|
867 | data_weather = data_weather[vec2[0]] | |
844 | self.start_data_ele = data_ele_new[0] |
|
868 | self.start_data_ele = data_ele_new[0] | |
845 | self.end_data_ele = data_ele_new[-1] |
|
869 | self.end_data_ele = data_ele_new[-1] | |
846 |
|
870 | |||
847 | n1= round(self.start_data_ele)- start |
|
871 | n1= round(self.start_data_ele)- start | |
848 | n2= end - round(self.end_data_ele) |
|
872 | n2= end - round(self.end_data_ele)-1 | |
|
873 | print(self.start_data_ele) | |||
|
874 | print(self.end_data_ele) | |||
849 | if n1>0: |
|
875 | if n1>0: | |
850 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
876 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
851 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
877 | ele1_nan= numpy.ones(n1)*numpy.nan | |
852 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
878 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
853 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
879 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
854 | if n2>0: |
|
880 | if n2>0: | |
855 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
881 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
856 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
882 | ele2_nan= numpy.ones(n2)*numpy.nan | |
857 | data_ele = numpy.hstack((data_ele,ele2)) |
|
883 | data_ele = numpy.hstack((data_ele,ele2)) | |
858 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
884 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
859 | # RADAR |
|
885 | # RADAR | |
860 | # NOTA data_ele y data_weather es la variable que retorna |
|
886 | # NOTA data_ele y data_weather es la variable que retorna | |
861 | val_mean = numpy.mean(data_weather[:,-1]) |
|
887 | val_mean = numpy.mean(data_weather[:,-1]) | |
862 | self.val_mean = val_mean |
|
888 | self.val_mean = val_mean | |
863 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
889 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
864 | self.data_ele_tmp= data_ele_old |
|
890 | self.data_ele_tmp[val_ch]= data_ele_old | |
865 | else: |
|
891 | else: | |
866 | #print("**********************************************") |
|
892 | #print("**********************************************") | |
867 | #print("****************VARIABLE**********************") |
|
893 | #print("****************VARIABLE**********************") | |
868 | #-------------------------CAMBIOS RHI--------------------------------- |
|
894 | #-------------------------CAMBIOS RHI--------------------------------- | |
869 | #--------------------------------------------------------------------- |
|
895 | #--------------------------------------------------------------------- | |
870 | ##print("INPUT data_ele",data_ele) |
|
896 | ##print("INPUT data_ele",data_ele) | |
871 | flag=0 |
|
897 | flag=0 | |
872 | start_ele = self.res_ele[0] |
|
898 | start_ele = self.res_ele[0] | |
873 | tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
899 | tipo_case = self.check_case(data_ele,ang_max,ang_min) | |
874 | #print("TIPO DE DATA",tipo_case) |
|
900 | #print("TIPO DE DATA",tipo_case) | |
875 | #-----------new------------ |
|
901 | #-----------new------------ | |
876 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) |
|
902 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) | |
877 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
903 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
878 |
|
904 | |||
879 | #-------------------------------NEW RHI ITERATIVO------------------------- |
|
905 | #-------------------------------NEW RHI ITERATIVO------------------------- | |
880 |
|
906 | |||
881 | if tipo_case==0 : # SUBIDA |
|
907 | if tipo_case==0 : # SUBIDA | |
882 | vec = numpy.where(data_ele<ang_max) |
|
908 | vec = numpy.where(data_ele<ang_max) | |
883 | data_ele = data_ele[vec] |
|
909 | data_ele = data_ele[vec] | |
884 | data_ele_old = data_ele_old[vec] |
|
910 | data_ele_old = data_ele_old[vec] | |
885 | data_weather = data_weather[vec[0]] |
|
911 | data_weather = data_weather[vec[0]] | |
886 |
|
912 | |||
887 | vec2 = numpy.where(0<data_ele) |
|
913 | vec2 = numpy.where(0<data_ele) | |
888 | data_ele= data_ele[vec2] |
|
914 | data_ele= data_ele[vec2] | |
889 | data_ele_old= data_ele_old[vec2] |
|
915 | data_ele_old= data_ele_old[vec2] | |
890 | ##print(data_ele_new) |
|
916 | ##print(data_ele_new) | |
891 | data_weather= data_weather[vec2[0]] |
|
917 | data_weather= data_weather[vec2[0]] | |
892 |
|
918 | |||
893 | new_i_ele = int(round(data_ele[0])) |
|
919 | new_i_ele = int(round(data_ele[0])) | |
894 | new_f_ele = int(round(data_ele[-1])) |
|
920 | new_f_ele = int(round(data_ele[-1])) | |
895 | #print(new_i_ele) |
|
921 | #print(new_i_ele) | |
896 | #print(new_f_ele) |
|
922 | #print(new_f_ele) | |
897 | #print(data_ele,len(data_ele)) |
|
923 | #print(data_ele,len(data_ele)) | |
898 | #print(data_ele_old,len(data_ele_old)) |
|
924 | #print(data_ele_old,len(data_ele_old)) | |
899 | if new_i_ele< 2: |
|
925 | if new_i_ele< 2: | |
900 | self.data_ele_tmp = numpy.ones(ang_max-ang_min)*numpy.nan |
|
926 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
901 | self.res_weather = self.replaceNAN(data_weather=self.res_weather,data_ele=self.data_ele_tmp,val=self.val_mean) |
|
927 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
902 | self.data_ele_tmp[new_i_ele:new_i_ele+len(data_ele)]=data_ele_old |
|
928 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old | |
903 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele |
|
929 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele | |
904 | self.res_weather[new_i_ele:new_i_ele+len(data_ele),:]= data_weather |
|
930 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather | |
905 | data_ele = self.res_ele |
|
931 | data_ele = self.res_ele | |
906 | data_weather = self.res_weather |
|
932 | data_weather = self.res_weather[val_ch] | |
907 |
|
933 | |||
908 | elif tipo_case==1 : #BAJADA |
|
934 | elif tipo_case==1 : #BAJADA | |
909 | data_ele = data_ele[::-1] # reversa |
|
935 | data_ele = data_ele[::-1] # reversa | |
910 | data_ele_old = data_ele_old[::-1]# reversa |
|
936 | data_ele_old = data_ele_old[::-1]# reversa | |
911 | data_weather = data_weather[::-1,:]# reversa |
|
937 | data_weather = data_weather[::-1,:]# reversa | |
912 | vec= numpy.where(data_ele<ang_max) |
|
938 | vec= numpy.where(data_ele<ang_max) | |
913 | data_ele = data_ele[vec] |
|
939 | data_ele = data_ele[vec] | |
914 | data_ele_old = data_ele_old[vec] |
|
940 | data_ele_old = data_ele_old[vec] | |
915 | data_weather = data_weather[vec[0]] |
|
941 | data_weather = data_weather[vec[0]] | |
916 | vec2= numpy.where(0<data_ele) |
|
942 | vec2= numpy.where(0<data_ele) | |
917 | data_ele = data_ele[vec2] |
|
943 | data_ele = data_ele[vec2] | |
918 | data_ele_old = data_ele_old[vec2] |
|
944 | data_ele_old = data_ele_old[vec2] | |
919 | data_weather = data_weather[vec2[0]] |
|
945 | data_weather = data_weather[vec2[0]] | |
920 |
|
946 | |||
921 |
|
947 | |||
922 | new_i_ele = int(round(data_ele[0])) |
|
948 | new_i_ele = int(round(data_ele[0])) | |
923 | new_f_ele = int(round(data_ele[-1])) |
|
949 | new_f_ele = int(round(data_ele[-1])) | |
924 | #print(data_ele) |
|
950 | #print(data_ele) | |
925 | #print(ang_max) |
|
951 | #print(ang_max) | |
926 | #print(data_ele_old) |
|
952 | #print(data_ele_old) | |
927 | if new_i_ele <= 1: |
|
953 | if new_i_ele <= 1: | |
928 | new_i_ele = 1 |
|
954 | new_i_ele = 1 | |
929 | if round(data_ele[-1])>=ang_max-1: |
|
955 | if round(data_ele[-1])>=ang_max-1: | |
930 | self.data_ele_tmp = numpy.ones(ang_max-ang_min)*numpy.nan |
|
956 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
931 | self.res_weather = self.replaceNAN(data_weather=self.res_weather,data_ele=self.data_ele_tmp,val=self.val_mean) |
|
957 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
932 | self.data_ele_tmp[new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old |
|
958 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old | |
933 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele |
|
959 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele | |
934 | self.res_weather[new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather |
|
960 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather | |
935 | data_ele = self.res_ele |
|
961 | data_ele = self.res_ele | |
936 | data_weather = self.res_weather |
|
962 | data_weather = self.res_weather[val_ch] | |
937 |
|
963 | |||
938 | elif tipo_case==2: #bajada |
|
964 | elif tipo_case==2: #bajada | |
939 | vec = numpy.where(data_ele<ang_max) |
|
965 | vec = numpy.where(data_ele<ang_max) | |
940 | data_ele = data_ele[vec] |
|
966 | data_ele = data_ele[vec] | |
941 | data_weather= data_weather[vec[0]] |
|
967 | data_weather= data_weather[vec[0]] | |
942 |
|
968 | |||
943 | len_vec = len(vec) |
|
969 | len_vec = len(vec) | |
944 | data_ele_new = data_ele[::-1] # reversa |
|
970 | data_ele_new = data_ele[::-1] # reversa | |
945 | data_weather = data_weather[::-1,:] |
|
971 | data_weather = data_weather[::-1,:] | |
946 | new_i_ele = int(data_ele_new[0]) |
|
972 | new_i_ele = int(data_ele_new[0]) | |
947 | new_f_ele = int(data_ele_new[-1]) |
|
973 | new_f_ele = int(data_ele_new[-1]) | |
948 |
|
974 | |||
949 | n1= new_i_ele- ang_min |
|
975 | n1= new_i_ele- ang_min | |
950 | n2= ang_max - new_f_ele-1 |
|
976 | n2= ang_max - new_f_ele-1 | |
951 | if n1>0: |
|
977 | if n1>0: | |
952 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
978 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
953 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
979 | ele1_nan= numpy.ones(n1)*numpy.nan | |
954 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
980 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
955 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
981 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
956 | if n2>0: |
|
982 | if n2>0: | |
957 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
983 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
958 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
984 | ele2_nan= numpy.ones(n2)*numpy.nan | |
959 | data_ele = numpy.hstack((data_ele,ele2)) |
|
985 | data_ele = numpy.hstack((data_ele,ele2)) | |
960 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
986 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
961 |
|
987 | |||
962 | self.data_ele_tmp = data_ele_old |
|
988 | self.data_ele_tmp[val_ch] = data_ele_old | |
963 | self.res_ele = data_ele |
|
989 | self.res_ele = data_ele | |
964 | self.res_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
990 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
965 | data_ele = self.res_ele |
|
991 | data_ele = self.res_ele | |
966 | data_weather = self.res_weather |
|
992 | data_weather = self.res_weather[val_ch] | |
967 |
|
993 | |||
968 | elif tipo_case==3:#subida |
|
994 | elif tipo_case==3:#subida | |
969 | vec = numpy.where(0<data_ele) |
|
995 | vec = numpy.where(0<data_ele) | |
970 | data_ele= data_ele[vec] |
|
996 | data_ele= data_ele[vec] | |
971 | data_ele_new = data_ele |
|
997 | data_ele_new = data_ele | |
972 | data_ele_old= data_ele_old[vec] |
|
998 | data_ele_old= data_ele_old[vec] | |
973 | data_weather= data_weather[vec[0]] |
|
999 | data_weather= data_weather[vec[0]] | |
974 | pos_ini = numpy.argmin(data_ele) |
|
1000 | pos_ini = numpy.argmin(data_ele) | |
975 | if pos_ini>0: |
|
1001 | if pos_ini>0: | |
976 | len_vec= len(data_ele) |
|
1002 | len_vec= len(data_ele) | |
977 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) |
|
1003 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) | |
978 | #print(vec3) |
|
1004 | #print(vec3) | |
979 | data_ele= data_ele[vec3] |
|
1005 | data_ele= data_ele[vec3] | |
980 | data_ele_new = data_ele |
|
1006 | data_ele_new = data_ele | |
981 | data_ele_old= data_ele_old[vec3] |
|
1007 | data_ele_old= data_ele_old[vec3] | |
982 | data_weather= data_weather[vec3] |
|
1008 | data_weather= data_weather[vec3] | |
983 |
|
1009 | |||
984 | new_i_ele = int(data_ele_new[0]) |
|
1010 | new_i_ele = int(data_ele_new[0]) | |
985 | new_f_ele = int(data_ele_new[-1]) |
|
1011 | new_f_ele = int(data_ele_new[-1]) | |
986 | n1= new_i_ele- ang_min |
|
1012 | n1= new_i_ele- ang_min | |
987 | n2= ang_max - new_f_ele-1 |
|
1013 | n2= ang_max - new_f_ele-1 | |
988 | if n1>0: |
|
1014 | if n1>0: | |
989 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1015 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
990 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1016 | ele1_nan= numpy.ones(n1)*numpy.nan | |
991 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1017 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
992 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1018 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
993 | if n2>0: |
|
1019 | if n2>0: | |
994 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1020 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
995 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1021 | ele2_nan= numpy.ones(n2)*numpy.nan | |
996 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1022 | data_ele = numpy.hstack((data_ele,ele2)) | |
997 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1023 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
998 |
|
1024 | |||
999 | self.data_ele_tmp = data_ele_old |
|
1025 | self.data_ele_tmp[val_ch] = data_ele_old | |
1000 | self.res_ele = data_ele |
|
1026 | self.res_ele = data_ele | |
1001 | self.res_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1027 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1002 | data_ele = self.res_ele |
|
1028 | data_ele = self.res_ele | |
1003 | data_weather = self.res_weather |
|
1029 | data_weather = self.res_weather[val_ch] | |
1004 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
1030 | #print("self.data_ele_tmp",self.data_ele_tmp) | |
1005 | return data_weather,data_ele |
|
1031 | return data_weather,data_ele | |
1006 |
|
1032 | |||
1007 |
|
1033 | |||
1008 | def plot(self): |
|
1034 | def plot(self): | |
1009 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
1035 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |
1010 | data = self.data[-1] |
|
1036 | data = self.data[-1] | |
1011 | r = self.data.yrange |
|
1037 | r = self.data.yrange | |
1012 | delta_height = r[1]-r[0] |
|
1038 | delta_height = r[1]-r[0] | |
1013 | r_mask = numpy.where(r>=0)[0] |
|
1039 | r_mask = numpy.where(r>=0)[0] | |
1014 | ##print("delta_height",delta_height) |
|
1040 | ##print("delta_height",delta_height) | |
1015 | #print("r_mask",r_mask,len(r_mask)) |
|
1041 | #print("r_mask",r_mask,len(r_mask)) | |
1016 | r = numpy.arange(len(r_mask))*delta_height |
|
1042 | r = numpy.arange(len(r_mask))*delta_height | |
1017 | self.y = 2*r |
|
1043 | self.y = 2*r | |
1018 | res = 1 |
|
1044 | res = 1 | |
1019 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
1045 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) | |
1020 | ang_max = self.ang_max |
|
1046 | ang_max = self.ang_max | |
1021 | ang_min = self.ang_min |
|
1047 | ang_min = self.ang_min | |
1022 | var_ang =ang_max - ang_min |
|
1048 | var_ang =ang_max - ang_min | |
1023 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
1049 | step = (int(var_ang)/(res*data['weather'].shape[0])) | |
1024 | ###print("step",step) |
|
1050 | ###print("step",step) | |
1025 | #-------------------------------------------------------- |
|
1051 | #-------------------------------------------------------- | |
1026 | ##print('weather',data['weather'].shape) |
|
1052 | ##print('weather',data['weather'].shape) | |
1027 | ##print('ele',data['ele'].shape) |
|
1053 | ##print('ele',data['ele'].shape) | |
1028 |
|
1054 | |||
1029 | self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1055 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |
1030 | self.res_azi = numpy.mean(data['azi']) |
|
1056 | ###self.res_azi = numpy.mean(data['azi']) | |
1031 | ###print("self.res_ele",self.res_ele) |
|
1057 | ###print("self.res_ele",self.res_ele) | |
|
1058 | plt.clf() | |||
|
1059 | subplots = [121, 122] | |||
|
1060 | if self.ini==0: | |||
|
1061 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan | |||
|
1062 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan | |||
|
1063 | print("SHAPE",self.data_ele_tmp.shape) | |||
|
1064 | ||||
1032 | for i,ax in enumerate(self.axes): |
|
1065 | for i,ax in enumerate(self.axes): | |
|
1066 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |||
|
1067 | self.res_azi = numpy.mean(data['azi']) | |||
1033 | if ax.firsttime: |
|
1068 | if ax.firsttime: | |
1034 | plt.clf() |
|
1069 | #plt.clf() | |
1035 |
cgax, pm = wrl.vis.plot_rhi(self.res_weather,r=r,th=self.res_ele, |
|
1070 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
|
1071 | #fig=self.figures[0] | |||
1036 | else: |
|
1072 | else: | |
1037 | plt.clf() |
|
1073 | #plt.clf() | |
1038 |
cgax, pm = wrl.vis.plot_rhi(self.res_weather,r=r,th=self.res_ele, |
|
1074 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
1039 | caax = cgax.parasites[0] |
|
1075 | caax = cgax.parasites[0] | |
1040 | paax = cgax.parasites[1] |
|
1076 | paax = cgax.parasites[1] | |
1041 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
1077 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
1042 | caax.set_xlabel('x_range [km]') |
|
1078 | caax.set_xlabel('x_range [km]') | |
1043 | caax.set_ylabel('y_range [km]') |
|
1079 | caax.set_ylabel('y_range [km]') | |
1044 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
1080 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') | |
1045 |
|
1081 | print("***************************self.ini****************************",self.ini) | ||
1046 | #print("***************************self.ini****************************",self.ini) |
|
|||
1047 | self.ini= self.ini+1 |
|
1082 | self.ini= self.ini+1 |
General Comments 0
You need to be logged in to leave comments.
Login now