@@ -0,0 +1,404 | |||
|
1 | ''' | |
|
2 | ||
|
3 | $Author: murco $ | |
|
4 | $Id: JROHeaderIO.py 151 2012-10-31 19:00:51Z murco $ | |
|
5 | ''' | |
|
6 | import sys | |
|
7 | import numpy | |
|
8 | import copy | |
|
9 | import datetime | |
|
10 | from __builtin__ import None | |
|
11 | ||
|
12 | SPEED_OF_LIGHT = 299792458 | |
|
13 | SPEED_OF_LIGHT = 3e8 | |
|
14 | ||
|
15 | FILE_STRUCTURE = numpy.dtype([ #HEADER 48bytes | |
|
16 | ('FileMgcNumber','<u4'), #0x23020100 | |
|
17 | ('nFDTdataRecors','<u4'), #No Of FDT data records in this file (0 or more) | |
|
18 | ('RadarUnitId','<u4'), | |
|
19 | ('SiteName','<s32'), #Null terminated | |
|
20 | ]) | |
|
21 | ||
|
22 | RECORD_STRUCTURE = numpy.dtype([ #RECORD HEADER 180+20N bytes | |
|
23 | ('RecMgcNumber','<u4'), #0x23030001 | |
|
24 | ('RecCounter','<u4'), #Record counter(0,1, ...) | |
|
25 | ('Off2StartNxtRec','<u4'), #Offset to start of next record form start of this record | |
|
26 | ('Off2StartData','<u4'), #Offset to start of data from start of this record | |
|
27 | ('EpTimeStamp','<i4'), #Epoch time stamp of start of acquisition (seconds) | |
|
28 | ('msCompTimeStamp','<u4'), #Millisecond component of time stamp (0,...,999) | |
|
29 | ('ExpTagName','<s32'), #Experiment tag name (null terminated) | |
|
30 | ('ExpComment','<s32'), #Experiment comment (null terminated) | |
|
31 | ('SiteLatDegrees','<f4'), #Site latitude (from GPS) in degrees (positive implies North) | |
|
32 | ('SiteLongDegrees','<f4'), #Site longitude (from GPS) in degrees (positive implies East) | |
|
33 | ('RTCgpsStatus','<u4'), #RTC GPS engine status (0=SEEK, 1=LOCK, 2=NOT FITTED, 3=UNAVAILABLE) | |
|
34 | ('TransmitFrec','<u4'), #Transmit frequency (Hz) | |
|
35 | ('ReceiveFrec','<u4'), #Receive frequency | |
|
36 | ('FirstOsciFrec','<u4'), #First local oscillator frequency (Hz) | |
|
37 | ('Polarisation','<u4'), #(0="O", 1="E", 2="linear 1", 3="linear2") | |
|
38 | ('ReceiverFiltSett','<u4'), #Receiver filter settings (0,1,2,3) | |
|
39 | ('nModesInUse','<u4'), #Number of modes in use (1 or 2) | |
|
40 | ('DualModeIndex','<u4'), #Dual Mode index number for these data (0 or 1) | |
|
41 | ('DualModeRange','<u4'), #Dual Mode range correction for these data (m) | |
|
42 | ('nDigChannels','<u4'), #Number of digital channels acquired (2*N) | |
|
43 | ('SampResolution','<u4'), #Sampling resolution (meters) | |
|
44 | ('nRangeGatesSamp','<u4'), #Number of range gates sampled | |
|
45 | ('StartRangeSamp','<u4'), #Start range of sampling (meters) | |
|
46 | ('PRFhz','<u4'), #PRF (Hz) | |
|
47 | ('Integrations','<u4'), #Integrations | |
|
48 | ('nDataPointsTrsf','<u4'), #Number of data points transformed | |
|
49 | ('nReceiveBeams','<u4'), #Number of receive beams stored in file (1 or N) | |
|
50 | ('nSpectAverages','<u4'), #Number of spectral averages | |
|
51 | ('FFTwindowingInd','<u4'), #FFT windowing index (0 = no window) | |
|
52 | ('BeamAngleAzim','<f4'), #Beam steer angle (azimuth) in degrees (clockwise from true North) | |
|
53 | ('BeamAngleZen','<f4'), #Beam steer angle (zenith) in degrees (0=> vertical) | |
|
54 | ('AntennaCoord','<f24'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |
|
55 | ('RecPhaseCalibr','<f12'), #Receiver phase calibration (degrees) - N values | |
|
56 | ('RecAmpCalibr','<f12'), #Receiver amplitude calibration (ratio relative to receiver one) - N values | |
|
57 | ('ReceiverGaindB','<u12'), #Receiver gains in dB - N values | |
|
58 | ]) | |
|
59 | ||
|
60 | ||
|
61 | class Header(object): | |
|
62 | ||
|
63 | def __init__(self): | |
|
64 | raise NotImplementedError | |
|
65 | ||
|
66 | ||
|
67 | def read(self): | |
|
68 | ||
|
69 | raise NotImplementedError | |
|
70 | ||
|
71 | def write(self): | |
|
72 | ||
|
73 | raise NotImplementedError | |
|
74 | ||
|
75 | def printInfo(self): | |
|
76 | ||
|
77 | message = "#"*50 + "\n" | |
|
78 | message += self.__class__.__name__.upper() + "\n" | |
|
79 | message += "#"*50 + "\n" | |
|
80 | ||
|
81 | keyList = self.__dict__.keys() | |
|
82 | keyList.sort() | |
|
83 | ||
|
84 | for key in keyList: | |
|
85 | message += "%s = %s" %(key, self.__dict__[key]) + "\n" | |
|
86 | ||
|
87 | if "size" not in keyList: | |
|
88 | attr = getattr(self, "size") | |
|
89 | ||
|
90 | if attr: | |
|
91 | message += "%s = %s" %("size", attr) + "\n" | |
|
92 | ||
|
93 | print message | |
|
94 | ||
|
95 | class FileHeader(Header): | |
|
96 | ||
|
97 | FileMgcNumber= None | |
|
98 | nFDTdataRecors=None #No Of FDT data records in this file (0 or more) | |
|
99 | RadarUnitId= None | |
|
100 | SiteName= None | |
|
101 | ||
|
102 | #__LOCALTIME = None | |
|
103 | ||
|
104 | def __init__(self, useLocalTime=True): | |
|
105 | ||
|
106 | self.FileMgcNumber= 0 #0x23020100 | |
|
107 | self.nFDTdataRecors=0 #No Of FDT data records in this file (0 or more) | |
|
108 | self.RadarUnitId= 0 | |
|
109 | self.SiteName= "" | |
|
110 | self.size = 48 | |
|
111 | ||
|
112 | #self.useLocalTime = useLocalTime | |
|
113 | ||
|
114 | def read(self, fp): | |
|
115 | ||
|
116 | try: | |
|
117 | header = numpy.fromfile(fp, FILE_STRUCTURE,1) | |
|
118 | ''' numpy.fromfile(file, dtype, count, sep='') | |
|
119 | file : file or str | |
|
120 | Open file object or filename. | |
|
121 | ||
|
122 | dtype : data-type | |
|
123 | Data type of the returned array. For binary files, it is used to determine | |
|
124 | the size and byte-order of the items in the file. | |
|
125 | ||
|
126 | count : int | |
|
127 | Number of items to read. -1 means all items (i.e., the complete file). | |
|
128 | ||
|
129 | sep : str | |
|
130 | Separator between items if file is a text file. Empty (“”) separator means | |
|
131 | the file should be treated as binary. Spaces (” ”) in the separator match zero | |
|
132 | or more whitespace characters. A separator consisting only of spaces must match | |
|
133 | at least one whitespace. | |
|
134 | ||
|
135 | ''' | |
|
136 | ||
|
137 | except Exception, e: | |
|
138 | print "FileHeader: " | |
|
139 | print eBasicHeader | |
|
140 | return 0 | |
|
141 | ||
|
142 | self.FileMgcNumber= byte(header['FileMgcNumber'][0]) | |
|
143 | self.nFDTdataRecors=int(header['nFDTdataRecors'][0]) #No Of FDT data records in this file (0 or more) | |
|
144 | self.RadarUnitId= int(header['RadarUnitId'][0]) | |
|
145 | self.SiteName= char(header['SiteName'][0]) | |
|
146 | ||
|
147 | ||
|
148 | if self.size <48: | |
|
149 | return 0 | |
|
150 | ||
|
151 | return 1 | |
|
152 | ||
|
153 | def write(self, fp): | |
|
154 | ||
|
155 | headerTuple = (self.FileMgcNumber, | |
|
156 | self.nFDTdataRecors, | |
|
157 | self.RadarUnitId, | |
|
158 | self.SiteName, | |
|
159 | self.size) | |
|
160 | ||
|
161 | ||
|
162 | header = numpy.array(headerTuple, FILE_STRUCTURE) | |
|
163 | # numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0) | |
|
164 | header.tofile(fp) | |
|
165 | ''' ndarray.tofile(fid, sep, format) Write array to a file as text or binary (default). | |
|
166 | ||
|
167 | fid : file or str | |
|
168 | An open file object, or a string containing a filename. | |
|
169 | ||
|
170 | sep : str | |
|
171 | Separator between array items for text output. If “” (empty), a binary file is written, | |
|
172 | equivalent to file.write(a.tobytes()). | |
|
173 | ||
|
174 | format : str | |
|
175 | Format string for text file output. Each entry in the array is formatted to text by | |
|
176 | first converting it to the closest Python type, and then using “format” % item. | |
|
177 | ||
|
178 | ''' | |
|
179 | ||
|
180 | return 1 | |
|
181 | ||
|
182 | ||
|
183 | class RecordHeader(Header): | |
|
184 | ||
|
185 | RecMgcNumber=None #0x23030001 | |
|
186 | RecCounter= None | |
|
187 | Off2StartNxtRec= None | |
|
188 | EpTimeStamp= None | |
|
189 | msCompTimeStamp= None | |
|
190 | ExpTagName= None | |
|
191 | ExpComment=None | |
|
192 | SiteLatDegrees=None | |
|
193 | SiteLongDegrees= None | |
|
194 | RTCgpsStatus= None | |
|
195 | TransmitFrec= None | |
|
196 | ReceiveFrec= None | |
|
197 | FirstOsciFrec= None | |
|
198 | Polarisation= None | |
|
199 | ReceiverFiltSett= None | |
|
200 | nModesInUse= None | |
|
201 | DualModeIndex= None | |
|
202 | DualModeRange= None | |
|
203 | nDigChannels= None | |
|
204 | SampResolution= None | |
|
205 | nRangeGatesSamp= None | |
|
206 | StartRangeSamp= None | |
|
207 | PRFhz= None | |
|
208 | Integrations= None | |
|
209 | nDataPointsTrsf= None | |
|
210 | nReceiveBeams= None | |
|
211 | nSpectAverages= None | |
|
212 | FFTwindowingInd= None | |
|
213 | BeamAngleAzim= None | |
|
214 | BeamAngleZen= None | |
|
215 | AntennaCoord= None | |
|
216 | RecPhaseCalibr= None | |
|
217 | RecAmpCalibr= None | |
|
218 | ReceiverGaindB= None | |
|
219 | ||
|
220 | '''size = None | |
|
221 | nSamples = None | |
|
222 | nProfiles = None | |
|
223 | nChannels = None | |
|
224 | adcResolution = None | |
|
225 | pciDioBusWidth = None''' | |
|
226 | ||
|
227 | def __init__(self, RecMgcNumber=None, RecCounter= 0, Off2StartNxtRec= 0, | |
|
228 | EpTimeStamp= 0, msCompTimeStamp= 0, ExpTagName= None, | |
|
229 | ExpComment=None, SiteLatDegrees=0, SiteLongDegrees= 0, | |
|
230 | RTCgpsStatus= 0, TransmitFrec= 0, ReceiveFrec= 0, | |
|
231 | FirstOsciFrec= 0, Polarisation= 0, ReceiverFiltSett= 0, | |
|
232 | nModesInUse= 0, DualModeIndex= 0, DualModeRange= 0, | |
|
233 | nDigChannels= 0, SampResolution= 0, nRangeGatesSamp= 0, | |
|
234 | StartRangeSamp= 0, PRFhz= 0, Integrations= 0, | |
|
235 | nDataPointsTrsf= 0, nReceiveBeams= 0, nSpectAverages= 0, | |
|
236 | FFTwindowingInd= 0, BeamAngleAzim= 0, BeamAngleZen= 0, | |
|
237 | AntennaCoord= 0, RecPhaseCalibr= 0, RecAmpCalibr= 0, | |
|
238 | ReceiverGaindB= 0): | |
|
239 | ||
|
240 | self.RecMgcNumber = RecMgcNumber #0x23030001 | |
|
241 | self.RecCounter = RecCounter | |
|
242 | self.Off2StartNxtRec = Off2StartNxtRec | |
|
243 | self.EpTimeStamp = EpTimeStamp | |
|
244 | self.msCompTimeStamp = msCompTimeStamp | |
|
245 | self.ExpTagName = ExpTagName | |
|
246 | self.ExpComment = ExpComment | |
|
247 | self.SiteLatDegrees = SiteLatDegrees | |
|
248 | self.SiteLongDegrees = SiteLongDegrees | |
|
249 | self.RTCgpsStatus = RTCgpsStatus | |
|
250 | self.TransmitFrec = TransmitFrec | |
|
251 | self.ReceiveFrec = ReceiveFrec | |
|
252 | self.FirstOsciFrec = FirstOsciFrec | |
|
253 | self.Polarisation = Polarisation | |
|
254 | self.ReceiverFiltSett = ReceiverFiltSett | |
|
255 | self.nModesInUse = nModesInUse | |
|
256 | self.DualModeIndex = DualModeIndex | |
|
257 | self.DualModeRange = DualModeRange | |
|
258 | self.nDigChannels = nDigChannels | |
|
259 | self.SampResolution = SampResolution | |
|
260 | self.nRangeGatesSamp = nRangeGatesSamp | |
|
261 | self.StartRangeSamp = StartRangeSamp | |
|
262 | self.PRFhz = PRFhz | |
|
263 | self.Integrations = Integrations | |
|
264 | self.nDataPointsTrsf = nDataPointsTrsf | |
|
265 | self.nReceiveBeams = nReceiveBeams | |
|
266 | self.nSpectAverages = nSpectAverages | |
|
267 | self.FFTwindowingInd = FFTwindowingInd | |
|
268 | self.BeamAngleAzim = BeamAngleAzim | |
|
269 | self.BeamAngleZen = BeamAngleZen | |
|
270 | self.AntennaCoord = AntennaCoord | |
|
271 | self.RecPhaseCalibr = RecPhaseCalibr | |
|
272 | self.RecAmpCalibr = RecAmpCalibr | |
|
273 | self.ReceiverGaindB = ReceiverGaindB | |
|
274 | ||
|
275 | ||
|
276 | def read(self, fp): | |
|
277 | ||
|
278 | startFp = fp.tell() #The method tell() returns the current position of the file read/write pointer within the file. | |
|
279 | ||
|
280 | try: | |
|
281 | header = numpy.fromfile(fp,RECORD_STRUCTURE,1) | |
|
282 | except Exception, e: | |
|
283 | print "System Header: " + e | |
|
284 | return 0 | |
|
285 | ||
|
286 | self.RecMgcNumber = header['RecMgcNumber'][0] #0x23030001 | |
|
287 | self.RecCounter = header['RecCounter'][0] | |
|
288 | self.Off2StartNxtRec = header['Off2StartNxtRec'][0] | |
|
289 | self.EpTimeStamp = header['EpTimeStamp'][0] | |
|
290 | self.msCompTimeStamp = header['msCompTimeStamp'][0] | |
|
291 | self.ExpTagName = header['ExpTagName'][0] | |
|
292 | self.ExpComment = header['ExpComment'][0] | |
|
293 | self.SiteLatDegrees = header['SiteLatDegrees'][0] | |
|
294 | self.SiteLongDegrees = header['SiteLongDegrees'][0] | |
|
295 | self.RTCgpsStatus = header['RTCgpsStatus'][0] | |
|
296 | self.TransmitFrec = header['TransmitFrec'][0] | |
|
297 | self.ReceiveFrec = header['ReceiveFrec'][0] | |
|
298 | self.FirstOsciFrec = header['FirstOsciFrec'][0] | |
|
299 | self.Polarisation = header['Polarisation'][0] | |
|
300 | self.ReceiverFiltSett = header['ReceiverFiltSett'][0] | |
|
301 | self.nModesInUse = header['nModesInUse'][0] | |
|
302 | self.DualModeIndex = header['DualModeIndex'][0] | |
|
303 | self.DualModeRange = header['DualModeRange'][0] | |
|
304 | self.nDigChannels = header['nDigChannels'][0] | |
|
305 | self.SampResolution = header['SampResolution'][0] | |
|
306 | self.nRangeGatesSamp = header['nRangeGatesSamp'][0] | |
|
307 | self.StartRangeSamp = header['StartRangeSamp'][0] | |
|
308 | self.PRFhz = header['PRFhz'][0] | |
|
309 | self.Integrations = header['Integrations'][0] | |
|
310 | self.nDataPointsTrsf = header['nDataPointsTrsf'][0] | |
|
311 | self.nReceiveBeams = header['nReceiveBeams'][0] | |
|
312 | self.nSpectAverages = header['nSpectAverages'][0] | |
|
313 | self.FFTwindowingInd = header['FFTwindowingInd'][0] | |
|
314 | self.BeamAngleAzim = header['BeamAngleAzim'][0] | |
|
315 | self.BeamAngleZen = header['BeamAngleZen'][0] | |
|
316 | self.AntennaCoord = header['AntennaCoord'][0] | |
|
317 | self.RecPhaseCalibr = header['RecPhaseCalibr'][0] | |
|
318 | self.RecAmpCalibr = header['RecAmpCalibr'][0] | |
|
319 | self.ReceiverGaindB = header['ReceiverGaindB'][0] | |
|
320 | ||
|
321 | Self.size = 180+20*3 | |
|
322 | ||
|
323 | endFp = self.size + startFp | |
|
324 | ||
|
325 | if fp.tell() > endFp: | |
|
326 | sys.stderr.write("Warning %s: Size value read from System Header is lower than it has to be\n" %fp.name) | |
|
327 | return 0 | |
|
328 | ||
|
329 | if fp.tell() < endFp: | |
|
330 | sys.stderr.write("Warning %s: Size value read from System Header size is greater than it has to be\n" %fp.name) | |
|
331 | return 0 | |
|
332 | ||
|
333 | return 1 | |
|
334 | ||
|
335 | def write(self, fp): | |
|
336 | ||
|
337 | headerTuple = (self.RecMgcNumber, | |
|
338 | self.RecCounter, | |
|
339 | self.Off2StartNxtRec, | |
|
340 | self.EpTimeStamp, | |
|
341 | self.msCompTimeStamp, | |
|
342 | self.ExpTagName, | |
|
343 | self.ExpComment, | |
|
344 | self.SiteLatDegrees, | |
|
345 | self.SiteLongDegrees, | |
|
346 | self.RTCgpsStatus, | |
|
347 | self.TransmitFrec, | |
|
348 | self.ReceiveFrec, | |
|
349 | self.FirstOsciFrec, | |
|
350 | self.Polarisation, | |
|
351 | self.ReceiverFiltSett, | |
|
352 | self.nModesInUse, | |
|
353 | self.DualModeIndex, | |
|
354 | self.DualModeRange, | |
|
355 | self.nDigChannels, | |
|
356 | self.SampResolution, | |
|
357 | self.nRangeGatesSamp, | |
|
358 | self.StartRangeSamp, | |
|
359 | self.PRFhz, | |
|
360 | self.Integrations, | |
|
361 | self.nDataPointsTrsf, | |
|
362 | self.nReceiveBeams, | |
|
363 | self.nSpectAverages, | |
|
364 | self.FFTwindowingInd, | |
|
365 | self.BeamAngleAzim, | |
|
366 | self.BeamAngleZen, | |
|
367 | self.AntennaCoord, | |
|
368 | self.RecPhaseCalibr, | |
|
369 | self.RecAmpCalibr, | |
|
370 | self.ReceiverGaindB) | |
|
371 | ||
|
372 | # self.size,self.nSamples, | |
|
373 | # self.nProfiles, | |
|
374 | # self.nChannels, | |
|
375 | # self.adcResolution, | |
|
376 | # self.pciDioBusWidth | |
|
377 | ||
|
378 | header = numpy.array(headerTuple,RECORD_STRUCTURE) | |
|
379 | header.tofile(fp) | |
|
380 | ||
|
381 | return 1 | |
|
382 | ||
|
383 | ||
|
384 | def get_dtype_index(numpy_dtype): | |
|
385 | ||
|
386 | index = None | |
|
387 | ||
|
388 | for i in range(len(NUMPY_DTYPE_LIST)): | |
|
389 | if numpy_dtype == NUMPY_DTYPE_LIST[i]: | |
|
390 | index = i | |
|
391 | break | |
|
392 | ||
|
393 | return index | |
|
394 | ||
|
395 | def get_numpy_dtype(index): | |
|
396 | ||
|
397 | #dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
|
398 | ||
|
399 | return NUMPY_DTYPE_LIST[index] | |
|
400 | ||
|
401 | ||
|
402 | def get_dtype_width(index): | |
|
403 | ||
|
404 | return DTYPE_WIDTH[index] No newline at end of file |
@@ -0,0 +1,321 | |||
|
1 | import os, sys | |
|
2 | import glob | |
|
3 | import fnmatch | |
|
4 | import datetime | |
|
5 | import time | |
|
6 | import re | |
|
7 | import h5py | |
|
8 | import numpy | |
|
9 | import matplotlib.pyplot as plt | |
|
10 | ||
|
11 | import pylab as plb | |
|
12 | from scipy.optimize import curve_fit | |
|
13 | from scipy import asarray as ar,exp | |
|
14 | from scipy import stats | |
|
15 | ||
|
16 | from duplicity.path import Path | |
|
17 | from numpy.ma.core import getdata | |
|
18 | ||
|
19 | SPEED_OF_LIGHT = 299792458 | |
|
20 | SPEED_OF_LIGHT = 3e8 | |
|
21 | ||
|
22 | try: | |
|
23 | from gevent import sleep | |
|
24 | except: | |
|
25 | from time import sleep | |
|
26 | ||
|
27 | from schainpy.model.data.jrodata import Spectra | |
|
28 | #from schainpy.model.data.BLTRheaderIO import FileHeader, RecordHeader | |
|
29 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation | |
|
30 | #from schainpy.model.io.jroIO_bltr import BLTRReader | |
|
31 | from numpy import imag, shape, NaN | |
|
32 | ||
|
33 | ||
|
34 | startFp = open('/home/erick/Documents/MIRA35C/20160117/20160117_0000.zspc',"rb") | |
|
35 | ||
|
36 | ||
|
37 | FILE_HEADER = numpy.dtype([ #HEADER 1024bytes | |
|
38 | ('Hname',numpy.str_,32), #Original file name | |
|
39 | ('Htime',numpy.str_,32), #Date and time when the file was created | |
|
40 | ('Hoper',numpy.str_,64), #Name of operator who created the file | |
|
41 | ('Hplace',numpy.str_,128), #Place where the measurements was carried out | |
|
42 | ('Hdescr',numpy.str_,256), #Description of measurements | |
|
43 | ('Hdummy',numpy.str_,512), #Reserved space | |
|
44 | #Main chunk | |
|
45 | ('Msign','<i4'), #Main chunk signature FZKF or NUIG | |
|
46 | ('MsizeData','<i4'), #Size of data block main chunk | |
|
47 | #Processing DSP parameters | |
|
48 | ('PPARsign','<i4'), #PPAR signature | |
|
49 | ('PPARsize','<i4'), #PPAR size of block | |
|
50 | ('PPARprf','<i4'), #Pulse repetition frequency | |
|
51 | ('PPARpdr','<i4'), #Pulse duration | |
|
52 | ('PPARsft','<i4'), #FFT length | |
|
53 | ('PPARavc','<i4'), #Number of spectral (in-coherent) averages | |
|
54 | ('PPARihp','<i4'), #Number of lowest range gate for moment estimation | |
|
55 | ('PPARchg','<i4'), #Count for gates for moment estimation | |
|
56 | ('PPARpol','<i4'), #switch on/off polarimetric measurements. Should be 1. | |
|
57 | #Service DSP parameters | |
|
58 | ('SPARatt','<i4'), #STC attenuation on the lowest ranges on/off | |
|
59 | ('SPARtx','<i4'), #OBSOLETE | |
|
60 | ('SPARaddGain0','<f4'), #OBSOLETE | |
|
61 | ('SPARaddGain1','<f4'), #OBSOLETE | |
|
62 | ('SPARwnd','<i4'), #Debug only. It normal mode it is 0. | |
|
63 | ('SPARpos','<i4'), #Delay between sync pulse and tx pulse for phase corr, ns | |
|
64 | ('SPARadd','<i4'), #"add to pulse" to compensate for delay between the leading edge of driver pulse and envelope of the RF signal. | |
|
65 | ('SPARlen','<i4'), #Time for measuring txn pulse phase. OBSOLETE | |
|
66 | ('SPARcal','<i4'), #OBSOLETE | |
|
67 | ('SPARnos','<i4'), #OBSOLETE | |
|
68 | ('SPARof0','<i4'), #detection threshold | |
|
69 | ('SPARof1','<i4'), #OBSOLETE | |
|
70 | ('SPARswt','<i4'), #2nd moment estimation threshold | |
|
71 | ('SPARsum','<i4'), #OBSOLETE | |
|
72 | ('SPARosc','<i4'), #flag Oscillosgram mode | |
|
73 | ('SPARtst','<i4'), #OBSOLETE | |
|
74 | ('SPARcor','<i4'), #OBSOLETE | |
|
75 | ('SPARofs','<i4'), #OBSOLETE | |
|
76 | ('SPARhsn','<i4'), #Hildebrand div noise detection on noise gate | |
|
77 | ('SPARhsa','<f4'), #Hildebrand div noise detection on all gates | |
|
78 | ('SPARcalibPow_M','<f4'), #OBSOLETE | |
|
79 | ('SPARcalibSNR_M','<f4'), #OBSOLETE | |
|
80 | ('SPARcalibPow_S','<f4'), #OBSOLETE | |
|
81 | ('SPARcalibSNR_S','<f4'), #OBSOLETE | |
|
82 | ('SPARrawGate1','<i4'), #Lowest range gate for spectra saving Raw_Gate1 >=5 | |
|
83 | ('SPARrawGate2','<i4'), #Number of range gates with atmospheric signal | |
|
84 | ('SPARraw','<i4'), #flag - IQ or spectra saving on/off | |
|
85 | ('SPARprc','<i4'),]) #flag - Moment estimation switched on/off | |
|
86 | ||
|
87 | ||
|
88 | ||
|
89 | self.Hname= None | |
|
90 | self.Htime= None | |
|
91 | self.Hoper= None | |
|
92 | self.Hplace= None | |
|
93 | self.Hdescr= None | |
|
94 | self.Hdummy= None | |
|
95 | ||
|
96 | self.Msign=None | |
|
97 | self.MsizeData=None | |
|
98 | ||
|
99 | self.PPARsign=None | |
|
100 | self.PPARsize=None | |
|
101 | self.PPARprf=None | |
|
102 | self.PPARpdr=None | |
|
103 | self.PPARsft=None | |
|
104 | self.PPARavc=None | |
|
105 | self.PPARihp=None | |
|
106 | self.PPARchg=None | |
|
107 | self.PPARpol=None | |
|
108 | #Service DSP parameters | |
|
109 | self.SPARatt=None | |
|
110 | self.SPARtx=None | |
|
111 | self.SPARaddGain0=None | |
|
112 | self.SPARaddGain1=None | |
|
113 | self.SPARwnd=None | |
|
114 | self.SPARpos=None | |
|
115 | self.SPARadd=None | |
|
116 | self.SPARlen=None | |
|
117 | self.SPARcal=None | |
|
118 | self.SPARnos=None | |
|
119 | self.SPARof0=None | |
|
120 | self.SPARof1=None | |
|
121 | self.SPARswt=None | |
|
122 | self.SPARsum=None | |
|
123 | self.SPARosc=None | |
|
124 | self.SPARtst=None | |
|
125 | self.SPARcor=None | |
|
126 | self.SPARofs=None | |
|
127 | self.SPARhsn=None | |
|
128 | self.SPARhsa=None | |
|
129 | self.SPARcalibPow_M=None | |
|
130 | self.SPARcalibSNR_M=None | |
|
131 | self.SPARcalibPow_S=None | |
|
132 | self.SPARcalibSNR_S=None | |
|
133 | self.SPARrawGate1=None | |
|
134 | self.SPARrawGate2=None | |
|
135 | self.SPARraw=None | |
|
136 | self.SPARprc=None | |
|
137 | ||
|
138 | ||
|
139 | ||
|
140 | header = numpy.fromfile(fp, FILE_HEADER,1) | |
|
141 | ''' numpy.fromfile(file, dtype, count, sep='') | |
|
142 | file : file or str | |
|
143 | Open file object or filename. | |
|
144 | ||
|
145 | dtype : data-type | |
|
146 | Data type of the returned array. For binary files, it is used to determine | |
|
147 | the size and byte-order of the items in the file. | |
|
148 | ||
|
149 | count : int | |
|
150 | Number of items to read. -1 means all items (i.e., the complete file). | |
|
151 | ||
|
152 | sep : str | |
|
153 | Separator between items if file is a text file. Empty ("") separator means | |
|
154 | the file should be treated as binary. Spaces (" ") in the separator match zero | |
|
155 | or more whitespace characters. A separator consisting only of spaces must match | |
|
156 | at least one whitespace. | |
|
157 | ||
|
158 | ''' | |
|
159 | ||
|
160 | Hname= str(header['Hname'][0]) | |
|
161 | Htime= str(header['Htime'][0]) | |
|
162 | Hoper= str(header['Hoper'][0]) | |
|
163 | Hplace= str(header['Hplace'][0]) | |
|
164 | Hdescr= str(header['Hdescr'][0]) | |
|
165 | Hdummy= str(header['Hdummy'][0]) | |
|
166 | ||
|
167 | Msign=header['Msign'][0] | |
|
168 | MsizeData=header['MsizeData'][0] | |
|
169 | ||
|
170 | PPARsign=header['PPARsign'][0] | |
|
171 | PPARsize=header['PPARsize'][0] | |
|
172 | PPARprf=header['PPARprf'][0] | |
|
173 | PPARpdr=header['PPARpdr'][0] | |
|
174 | PPARsft=header['PPARsft'][0] | |
|
175 | PPARavc=header['PPARavc'][0] | |
|
176 | PPARihp=header['PPARihp'][0] | |
|
177 | PPARchg=header['PPARchg'][0] | |
|
178 | PPARpol=header['PPARpol'][0] | |
|
179 | #Service DSP parameters | |
|
180 | SPARatt=header['SPARatt'][0] | |
|
181 | SPARtx=header['SPARtx'][0] | |
|
182 | SPARaddGain0=header['SPARaddGain0'][0] | |
|
183 | SPARaddGain1=header['SPARaddGain1'][0] | |
|
184 | SPARwnd=header['SPARwnd'][0] | |
|
185 | SPARpos=header['SPARpos'][0] | |
|
186 | SPARadd=header['SPARadd'][0] | |
|
187 | SPARlen=header['SPARlen'][0] | |
|
188 | SPARcal=header['SPARcal'][0] | |
|
189 | SPARnos=header['SPARnos'][0] | |
|
190 | SPARof0=header['SPARof0'][0] | |
|
191 | SPARof1=header['SPARof1'][0] | |
|
192 | SPARswt=header['SPARswt'][0] | |
|
193 | SPARsum=header['SPARsum'][0] | |
|
194 | SPARosc=header['SPARosc'][0] | |
|
195 | SPARtst=header['SPARtst'][0] | |
|
196 | SPARcor=header['SPARcor'][0] | |
|
197 | SPARofs=header['SPARofs'][0] | |
|
198 | SPARhsn=header['SPARhsn'][0] | |
|
199 | SPARhsa=header['SPARhsa'][0] | |
|
200 | SPARcalibPow_M=header['SPARcalibPow_M'][0] | |
|
201 | SPARcalibSNR_M=header['SPARcalibSNR_M'][0] | |
|
202 | SPARcalibPow_S=header['SPARcalibPow_S'][0] | |
|
203 | SPARcalibSNR_S=header['SPARcalibSNR_S'][0] | |
|
204 | SPARrawGate1=header['SPARrawGate1'][0] | |
|
205 | SPARrawGate2=header['SPARrawGate2'][0] | |
|
206 | SPARraw=header['SPARraw'][0] | |
|
207 | SPARprc=header['SPARprc'][0] | |
|
208 | ||
|
209 | ||
|
210 | ||
|
211 | SRVI_STRUCTURE = numpy.dtype([ | |
|
212 | ('frame_cnt','<u4'),# | |
|
213 | ('time_t','<u4'), # | |
|
214 | ('tpow','<f4'), # | |
|
215 | ('npw1','<f4'), # | |
|
216 | ('npw2','<f4'), # | |
|
217 | ('cpw1','<f4'), # | |
|
218 | ('pcw2','<f4'), # | |
|
219 | ('ps_err','<u4'), # | |
|
220 | ('te_err','<u4'), # | |
|
221 | ('rc_err','<u4'), # | |
|
222 | ('grs1','<u4'), # | |
|
223 | ('grs2','<u4'), # | |
|
224 | ('azipos','<f4'), # | |
|
225 | ('azivel','<f4'), # | |
|
226 | ('elvpos','<f4'), # | |
|
227 | ('elvvel','<f4'), # | |
|
228 | ('northAngle','<f4'), # | |
|
229 | ('microsec','<u4'), # | |
|
230 | ('azisetvel','<f4'), # | |
|
231 | ('elvsetpos','<f4'), # | |
|
232 | ('RadarConst','<f4'),]) # | |
|
233 | ||
|
234 | JUMP_STRUCTURE = numpy.dtype([ | |
|
235 | ('jump','<u140'),# | |
|
236 | ('SizeOfDataBlock1',numpy.str_,32),# | |
|
237 | ('jump','<i4'),# | |
|
238 | ('DataBlockTitleSRVI1',numpy.str_,32),# | |
|
239 | ('SizeOfSRVI1','<i4'),])# | |
|
240 | ||
|
241 | ||
|
242 | ||
|
243 | #frame_cnt=0, time_t= 0, tpow=0, npw1=0, npw2=0, | |
|
244 | #cpw1=0, pcw2=0, ps_err=0, te_err=0, rc_err=0, grs1=0, | |
|
245 | #grs2=0, azipos=0, azivel=0, elvpos=0, elvvel=0, northangle=0, | |
|
246 | #microsec=0, azisetvel=0, elvsetpos=0, RadarConst=0 | |
|
247 | ||
|
248 | ||
|
249 | frame_cnt = frame_cnt | |
|
250 | dwell = time_t | |
|
251 | tpow = tpow | |
|
252 | npw1 = npw1 | |
|
253 | npw2 = npw2 | |
|
254 | cpw1 = cpw1 | |
|
255 | pcw2 = pcw2 | |
|
256 | ps_err = ps_err | |
|
257 | te_err = te_err | |
|
258 | rc_err = rc_err | |
|
259 | grs1 = grs1 | |
|
260 | grs2 = grs2 | |
|
261 | azipos = azipos | |
|
262 | azivel = azivel | |
|
263 | elvpos = elvpos | |
|
264 | elvvel = elvvel | |
|
265 | northAngle = northAngle | |
|
266 | microsec = microsec | |
|
267 | azisetvel = azisetvel | |
|
268 | elvsetpos = elvsetpos | |
|
269 | RadarConst5 = RadarConst | |
|
270 | ||
|
271 | ||
|
272 | ||
|
273 | #print fp | |
|
274 | #startFp = open('/home/erick/Documents/Data/huancayo.20161019.22.fdt',"rb") #The method tell() returns the current position of the file read/write pointer within the file. | |
|
275 | #startFp = open(fp,"rb") #The method tell() returns the current position of the file read/write pointer within the file. | |
|
276 | #RecCounter=0 | |
|
277 | #Off2StartNxtRec=811248 | |
|
278 | #print 'OffsetStartHeader ',self.OffsetStartHeader,'RecCounter ', self.RecCounter, 'Off2StartNxtRec ' , self.Off2StartNxtRec | |
|
279 | #OffRHeader= self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec | |
|
280 | #startFp.seek(OffRHeader, os.SEEK_SET) | |
|
281 | print 'debe ser 48, RecCounter*811248', self.OffsetStartHeader,self.RecCounter,self.Off2StartNxtRec | |
|
282 | print 'Posicion del bloque: ',OffRHeader | |
|
283 | ||
|
284 | header = numpy.fromfile(startFp,SRVI_STRUCTURE,1) | |
|
285 | ||
|
286 | self.frame_cnt = header['frame_cnt'][0]# | |
|
287 | self.time_t = header['frame_cnt'][0] # | |
|
288 | self.tpow = header['frame_cnt'][0] # | |
|
289 | self.npw1 = header['frame_cnt'][0] # | |
|
290 | self.npw2 = header['frame_cnt'][0] # | |
|
291 | self.cpw1 = header['frame_cnt'][0] # | |
|
292 | self.pcw2 = header['frame_cnt'][0] # | |
|
293 | self.ps_err = header['frame_cnt'][0] # | |
|
294 | self.te_err = header['frame_cnt'][0] # | |
|
295 | self.rc_err = header['frame_cnt'][0] # | |
|
296 | self.grs1 = header['frame_cnt'][0] # | |
|
297 | self.grs2 = header['frame_cnt'][0] # | |
|
298 | self.azipos = header['frame_cnt'][0] # | |
|
299 | self.azivel = header['frame_cnt'][0] # | |
|
300 | self.elvpos = header['frame_cnt'][0] # | |
|
301 | self.elvvel = header['frame_cnt'][0] # | |
|
302 | self.northAngle = header['frame_cnt'][0] # | |
|
303 | self.microsec = header['frame_cnt'][0] # | |
|
304 | self.azisetvel = header['frame_cnt'][0] # | |
|
305 | self.elvsetpos = header['frame_cnt'][0] # | |
|
306 | self.RadarConst = header['frame_cnt'][0] # | |
|
307 | ||
|
308 | ||
|
309 | self.ipp= 0.5*(SPEED_OF_LIGHT/self.PRFhz) | |
|
310 | ||
|
311 | self.RHsize = 180+20*self.nChannels | |
|
312 | self.Datasize= self.nProfiles*self.nChannels*self.nHeights*2*4 | |
|
313 | #print 'Datasize',self.Datasize | |
|
314 | endFp = self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec | |
|
315 | ||
|
316 | print '==============================================' | |
|
317 | ||
|
318 | print '==============================================' | |
|
319 | ||
|
320 | ||
|
321 | No newline at end of file |
@@ -0,0 +1,362 | |||
|
1 | ''' | |
|
2 | Created on Nov 9, 2016 | |
|
3 | ||
|
4 | @author: roj- LouVD | |
|
5 | ''' | |
|
6 | ||
|
7 | ||
|
8 | import os | |
|
9 | import sys | |
|
10 | import time | |
|
11 | import glob | |
|
12 | import datetime | |
|
13 | ||
|
14 | import numpy | |
|
15 | ||
|
16 | from schainpy.model.proc.jroproc_base import ProcessingUnit | |
|
17 | from schainpy.model.data.jrodata import Parameters | |
|
18 | from schainpy.model.io.jroIO_base import JRODataReader, isNumber | |
|
19 | ||
|
20 | FILE_HEADER_STRUCTURE = numpy.dtype([ | |
|
21 | ('FMN', '<u4'), | |
|
22 | ('nrec', '<u4'), | |
|
23 | ('fr_offset', '<u4'), | |
|
24 | ('id', '<u4'), | |
|
25 | ('site', 'u1', (32,)) | |
|
26 | ]) | |
|
27 | ||
|
28 | REC_HEADER_STRUCTURE = numpy.dtype([ | |
|
29 | ('rmn', '<u4'), | |
|
30 | ('rcounter', '<u4'), | |
|
31 | ('nr_offset', '<u4'), | |
|
32 | ('tr_offset', '<u4'), | |
|
33 | ('time', '<u4'), | |
|
34 | ('time_msec', '<u4'), | |
|
35 | ('tag', 'u1', (32,)), | |
|
36 | ('comments', 'u1', (32,)), | |
|
37 | ('lat', '<f4'), | |
|
38 | ('lon', '<f4'), | |
|
39 | ('gps_status', '<u4'), | |
|
40 | ('freq', '<u4'), | |
|
41 | ('freq0', '<u4'), | |
|
42 | ('nchan', '<u4'), | |
|
43 | ('delta_r', '<u4'), | |
|
44 | ('nranges', '<u4'), | |
|
45 | ('r0', '<u4'), | |
|
46 | ('prf', '<u4'), | |
|
47 | ('ncoh', '<u4'), | |
|
48 | ('npoints', '<u4'), | |
|
49 | ('polarization', '<i4'), | |
|
50 | ('rx_filter', '<u4'), | |
|
51 | ('nmodes', '<u4'), | |
|
52 | ('dmode_index', '<u4'), | |
|
53 | ('dmode_rngcorr', '<u4'), | |
|
54 | ('nrxs', '<u4'), | |
|
55 | ('acf_length', '<u4'), | |
|
56 | ('acf_lags', '<u4'), | |
|
57 | ('sea_to_atmos', '<f4'), | |
|
58 | ('sea_notch', '<u4'), | |
|
59 | ('lh_sea', '<u4'), | |
|
60 | ('hh_sea', '<u4'), | |
|
61 | ('nbins_sea', '<u4'), | |
|
62 | ('min_snr', '<f4'), | |
|
63 | ('min_cc', '<f4'), | |
|
64 | ('max_time_diff', '<f4') | |
|
65 | ]) | |
|
66 | ||
|
67 | DATA_STRUCTURE = numpy.dtype([ | |
|
68 | ('range', '<u4'), | |
|
69 | ('status', '<u4'), | |
|
70 | ('zonal', '<f4'), | |
|
71 | ('meridional', '<f4'), | |
|
72 | ('vertical', '<f4'), | |
|
73 | ('zonal_a', '<f4'), | |
|
74 | ('meridional_a', '<f4'), | |
|
75 | ('corrected_fading', '<f4'), # seconds | |
|
76 | ('uncorrected_fading', '<f4'), # seconds | |
|
77 | ('time_diff', '<f4'), | |
|
78 | ('major_axis', '<f4'), | |
|
79 | ('axial_ratio', '<f4'), | |
|
80 | ('orientation', '<f4'), | |
|
81 | ('sea_power', '<u4'), | |
|
82 | ('sea_algorithm', '<u4') | |
|
83 | ]) | |
|
84 | ||
|
85 | class BLTRParamReader(JRODataReader, ProcessingUnit): | |
|
86 | ''' | |
|
87 | Boundary Layer and Tropospheric Radar (BLTR) reader, Wind velocities and SNR from *.sswma files | |
|
88 | ''' | |
|
89 | ||
|
90 | ext = '.sswma' | |
|
91 | ||
|
92 | def __init__(self, **kwargs): | |
|
93 | ||
|
94 | ProcessingUnit.__init__(self , **kwargs) | |
|
95 | ||
|
96 | self.dataOut = Parameters() | |
|
97 | self.counter_records = 0 | |
|
98 | self.flagNoMoreFiles = 0 | |
|
99 | self.isConfig = False | |
|
100 | self.filename = None | |
|
101 | ||
|
102 | def setup(self, | |
|
103 | path=None, | |
|
104 | startDate=None, | |
|
105 | endDate=None, | |
|
106 | ext=None, | |
|
107 | startTime=datetime.time(0, 0, 0), | |
|
108 | endTime=datetime.time(23, 59, 59), | |
|
109 | timezone=0, | |
|
110 | status_value=0, | |
|
111 | **kwargs): | |
|
112 | ||
|
113 | self.path = path | |
|
114 | self.startTime = startTime | |
|
115 | self.endTime = endTime | |
|
116 | self.status_value = status_value | |
|
117 | ||
|
118 | if self.path is None: | |
|
119 | raise ValueError, "The path is not valid" | |
|
120 | ||
|
121 | if ext is None: | |
|
122 | ext = self.ext | |
|
123 | ||
|
124 | self.search_files(self.path, startDate, endDate, ext) | |
|
125 | self.timezone = timezone | |
|
126 | self.fileIndex = 0 | |
|
127 | ||
|
128 | if not self.fileList: | |
|
129 | raise Warning, "There is no files matching these date in the folder: %s. \n Check 'startDate' and 'endDate' "%(path) | |
|
130 | ||
|
131 | self.setNextFile() | |
|
132 | ||
|
133 | def search_files(self, path, startDate, endDate, ext): | |
|
134 | ''' | |
|
135 | Searching for BLTR rawdata file in path | |
|
136 | Creating a list of file to proces included in [startDate,endDate] | |
|
137 | ||
|
138 | Input: | |
|
139 | path - Path to find BLTR rawdata files | |
|
140 | startDate - Select file from this date | |
|
141 | enDate - Select file until this date | |
|
142 | ext - Extension of the file to read | |
|
143 | ||
|
144 | ''' | |
|
145 | ||
|
146 | print 'Searching file in %s ' % (path) | |
|
147 | foldercounter = 0 | |
|
148 | fileList0 = glob.glob1(path, "*%s" % ext) | |
|
149 | fileList0.sort() | |
|
150 | ||
|
151 | self.fileList = [] | |
|
152 | self.dateFileList = [] | |
|
153 | ||
|
154 | for thisFile in fileList0: | |
|
155 | year = thisFile[-14:-10] | |
|
156 | if not isNumber(year): | |
|
157 | continue | |
|
158 | ||
|
159 | month = thisFile[-10:-8] | |
|
160 | if not isNumber(month): | |
|
161 | continue | |
|
162 | ||
|
163 | day = thisFile[-8:-6] | |
|
164 | if not isNumber(day): | |
|
165 | continue | |
|
166 | ||
|
167 | year, month, day = int(year), int(month), int(day) | |
|
168 | dateFile = datetime.date(year, month, day) | |
|
169 | ||
|
170 | if (startDate > dateFile) or (endDate < dateFile): | |
|
171 | continue | |
|
172 | ||
|
173 | self.fileList.append(thisFile) | |
|
174 | self.dateFileList.append(dateFile) | |
|
175 | ||
|
176 | return | |
|
177 | ||
|
178 | def setNextFile(self): | |
|
179 | ||
|
180 | file_id = self.fileIndex | |
|
181 | ||
|
182 | if file_id == len(self.fileList): | |
|
183 | print '\nNo more files in the folder' | |
|
184 | print 'Total number of file(s) read : {}'.format(self.fileIndex + 1) | |
|
185 | self.flagNoMoreFiles = 1 | |
|
186 | return 0 | |
|
187 | ||
|
188 | print '\n[Setting file] (%s) ...' % self.fileList[file_id] | |
|
189 | filename = os.path.join(self.path, self.fileList[file_id]) | |
|
190 | ||
|
191 | dirname, name = os.path.split(filename) | |
|
192 | self.siteFile = name.split('.')[0] # 'peru2' ---> Piura - 'peru1' ---> Huancayo or Porcuya | |
|
193 | if self.filename is not None: | |
|
194 | self.fp.close() | |
|
195 | self.filename = filename | |
|
196 | self.fp = open(self.filename, 'rb') | |
|
197 | self.header_file = numpy.fromfile(self.fp, FILE_HEADER_STRUCTURE, 1) | |
|
198 | self.nrecords = self.header_file['nrec'][0] | |
|
199 | self.sizeOfFile = os.path.getsize(self.filename) | |
|
200 | self.counter_records = 0 | |
|
201 | self.flagIsNewFile = 0 | |
|
202 | self.fileIndex += 1 | |
|
203 | ||
|
204 | return 1 | |
|
205 | ||
|
206 | def readNextBlock(self): | |
|
207 | ||
|
208 | while True: | |
|
209 | if self.counter_records == self.nrecords: | |
|
210 | self.flagIsNewFile = 1 | |
|
211 | if not self.setNextFile(): | |
|
212 | return 0 | |
|
213 | ||
|
214 | self.readBlock() | |
|
215 | ||
|
216 | if (self.datatime.time() < self.startTime) or (self.datatime.time() > self.endTime): | |
|
217 | print "[Reading] Record No. %d/%d -> %s [Skipping]" %( | |
|
218 | self.counter_records, | |
|
219 | self.nrecords, | |
|
220 | self.datatime.ctime()) | |
|
221 | continue | |
|
222 | break | |
|
223 | ||
|
224 | print "[Reading] Record No. %d/%d -> %s" %( | |
|
225 | self.counter_records, | |
|
226 | self.nrecords, | |
|
227 | self.datatime.ctime()) | |
|
228 | ||
|
229 | return 1 | |
|
230 | ||
|
231 | def readBlock(self): | |
|
232 | ||
|
233 | pointer = self.fp.tell() | |
|
234 | header_rec = numpy.fromfile(self.fp, REC_HEADER_STRUCTURE, 1) | |
|
235 | self.nchannels = header_rec['nchan'][0]/2 | |
|
236 | self.kchan = header_rec['nrxs'][0] | |
|
237 | self.nmodes = header_rec['nmodes'][0] | |
|
238 | self.nranges = header_rec['nranges'][0] | |
|
239 | self.fp.seek(pointer) | |
|
240 | self.height = numpy.empty((self.nmodes, self.nranges)) | |
|
241 | self.snr = numpy.empty((self.nmodes, self.nchannels, self.nranges)) | |
|
242 | self.buffer = numpy.empty((self.nmodes, 3, self.nranges)) | |
|
243 | ||
|
244 | for mode in range(self.nmodes): | |
|
245 | self.readHeader() | |
|
246 | data = self.readData() | |
|
247 | self.height[mode] = (data[0] - self.correction) / 1000. | |
|
248 | self.buffer[mode] = data[1] | |
|
249 | self.snr[mode] = data[2] | |
|
250 | ||
|
251 | self.counter_records = self.counter_records + self.nmodes | |
|
252 | ||
|
253 | return | |
|
254 | ||
|
255 | def readHeader(self): | |
|
256 | ''' | |
|
257 | RecordHeader of BLTR rawdata file | |
|
258 | ''' | |
|
259 | ||
|
260 | header_structure = numpy.dtype( | |
|
261 | REC_HEADER_STRUCTURE.descr + [ | |
|
262 | ('antenna_coord', 'f4', (2, self.nchannels)), | |
|
263 | ('rx_gains', 'u4', (self.nchannels,)), | |
|
264 | ('rx_analysis', 'u4', (self.nchannels,)) | |
|
265 | ] | |
|
266 | ) | |
|
267 | ||
|
268 | self.header_rec = numpy.fromfile(self.fp, header_structure, 1) | |
|
269 | self.lat = self.header_rec['lat'][0] | |
|
270 | self.lon = self.header_rec['lon'][0] | |
|
271 | self.delta = self.header_rec['delta_r'][0] | |
|
272 | self.correction = self.header_rec['dmode_rngcorr'][0] | |
|
273 | self.imode = self.header_rec['dmode_index'][0] | |
|
274 | self.antenna = self.header_rec['antenna_coord'] | |
|
275 | self.rx_gains = self.header_rec['rx_gains'] | |
|
276 | self.time = self.header_rec['time'][0] | |
|
277 | tseconds = self.header_rec['time'][0] | |
|
278 | local_t1 = time.localtime(tseconds) | |
|
279 | self.year = local_t1.tm_year | |
|
280 | self.month = local_t1.tm_mon | |
|
281 | self.day = local_t1.tm_mday | |
|
282 | self.t = datetime.datetime(self.year, self.month, self.day) | |
|
283 | self.datatime = datetime.datetime.utcfromtimestamp(self.time) | |
|
284 | ||
|
285 | def readData(self): | |
|
286 | ''' | |
|
287 | Reading and filtering data block record of BLTR rawdata file, filtering is according to status_value. | |
|
288 | ||
|
289 | Input: | |
|
290 | status_value - Array data is set to NAN for values that are not equal to status_value | |
|
291 | ||
|
292 | ''' | |
|
293 | ||
|
294 | data_structure = numpy.dtype( | |
|
295 | DATA_STRUCTURE.descr + [ | |
|
296 | ('rx_saturation', 'u4', (self.nchannels,)), | |
|
297 | ('chan_offset', 'u4', (2 * self.nchannels,)), | |
|
298 | ('rx_amp', 'u4', (self.nchannels,)), | |
|
299 | ('rx_snr', 'f4', (self.nchannels,)), | |
|
300 | ('cross_snr', 'f4', (self.kchan,)), | |
|
301 | ('sea_power_relative', 'f4', (self.kchan,))] | |
|
302 | ) | |
|
303 | ||
|
304 | data = numpy.fromfile(self.fp, data_structure, self.nranges) | |
|
305 | ||
|
306 | height = data['range'] | |
|
307 | winds = numpy.array((data['zonal'], data['meridional'], data['vertical'])) | |
|
308 | snr = data['rx_snr'].T | |
|
309 | ||
|
310 | winds[numpy.where(winds == -9999.)] = numpy.nan | |
|
311 | winds[:, numpy.where(data['status'] != self.status_value)] = numpy.nan | |
|
312 | snr[numpy.where(snr == -9999.)] = numpy.nan | |
|
313 | snr[:, numpy.where(data['status'] != self.status_value)] = numpy.nan | |
|
314 | snr = numpy.power(10, snr / 10) | |
|
315 | ||
|
316 | return height, winds, snr | |
|
317 | ||
|
318 | def set_output(self): | |
|
319 | ''' | |
|
320 | Storing data from databuffer to dataOut object | |
|
321 | ''' | |
|
322 | ||
|
323 | self.dataOut.data_SNR = self.snr | |
|
324 | self.dataOut.height = self.height | |
|
325 | self.dataOut.data_output = self.buffer | |
|
326 | self.dataOut.utctimeInit = self.time | |
|
327 | self.dataOut.utctime = self.dataOut.utctimeInit | |
|
328 | self.dataOut.useLocalTime = False | |
|
329 | self.dataOut.paramInterval = 157 | |
|
330 | self.dataOut.timezone = self.timezone | |
|
331 | self.dataOut.site = self.siteFile | |
|
332 | self.dataOut.nrecords = self.nrecords/self.nmodes | |
|
333 | self.dataOut.sizeOfFile = self.sizeOfFile | |
|
334 | self.dataOut.lat = self.lat | |
|
335 | self.dataOut.lon = self.lon | |
|
336 | self.dataOut.channelList = range(self.nchannels) | |
|
337 | self.dataOut.kchan = self.kchan | |
|
338 | # self.dataOut.nHeights = self.nranges | |
|
339 | self.dataOut.delta = self.delta | |
|
340 | self.dataOut.correction = self.correction | |
|
341 | self.dataOut.nmodes = self.nmodes | |
|
342 | self.dataOut.imode = self.imode | |
|
343 | self.dataOut.antenna = self.antenna | |
|
344 | self.dataOut.rx_gains = self.rx_gains | |
|
345 | self.dataOut.flagNoData = False | |
|
346 | ||
|
347 | def getData(self): | |
|
348 | ''' | |
|
349 | Storing data from databuffer to dataOut object | |
|
350 | ''' | |
|
351 | if self.flagNoMoreFiles: | |
|
352 | self.dataOut.flagNoData = True | |
|
353 | print 'No file left to process' | |
|
354 | return 0 | |
|
355 | ||
|
356 | if not self.readNextBlock(): | |
|
357 | self.dataOut.flagNoData = True | |
|
358 | return 0 | |
|
359 | ||
|
360 | self.set_output() | |
|
361 | ||
|
362 | return 1 |
This diff has been collapsed as it changes many lines, (1154 lines changed) Show them Hide them | |||
@@ -0,0 +1,1154 | |||
|
1 | import os, sys | |
|
2 | import glob | |
|
3 | import fnmatch | |
|
4 | import datetime | |
|
5 | import time | |
|
6 | import re | |
|
7 | import h5py | |
|
8 | import numpy | |
|
9 | import matplotlib.pyplot as plt | |
|
10 | ||
|
11 | import pylab as plb | |
|
12 | from scipy.optimize import curve_fit | |
|
13 | from scipy import asarray as ar, exp | |
|
14 | from scipy import stats | |
|
15 | ||
|
16 | from numpy.ma.core import getdata | |
|
17 | ||
|
18 | SPEED_OF_LIGHT = 299792458 | |
|
19 | SPEED_OF_LIGHT = 3e8 | |
|
20 | ||
|
21 | try: | |
|
22 | from gevent import sleep | |
|
23 | except: | |
|
24 | from time import sleep | |
|
25 | ||
|
26 | from schainpy.model.data.jrodata import Spectra | |
|
27 | #from schainpy.model.data.BLTRheaderIO import FileHeader, RecordHeader | |
|
28 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation | |
|
29 | #from schainpy.model.io.jroIO_bltr import BLTRReader | |
|
30 | from numpy import imag, shape, NaN | |
|
31 | ||
|
32 | from jroIO_base import JRODataReader | |
|
33 | ||
|
34 | ||
|
35 | class Header(object): | |
|
36 | ||
|
37 | def __init__(self): | |
|
38 | raise NotImplementedError | |
|
39 | ||
|
40 | ||
|
41 | def read(self): | |
|
42 | ||
|
43 | raise NotImplementedError | |
|
44 | ||
|
45 | def write(self): | |
|
46 | ||
|
47 | raise NotImplementedError | |
|
48 | ||
|
49 | def printInfo(self): | |
|
50 | ||
|
51 | message = "#"*50 + "\n" | |
|
52 | message += self.__class__.__name__.upper() + "\n" | |
|
53 | message += "#"*50 + "\n" | |
|
54 | ||
|
55 | keyList = self.__dict__.keys() | |
|
56 | keyList.sort() | |
|
57 | ||
|
58 | for key in keyList: | |
|
59 | message += "%s = %s" %(key, self.__dict__[key]) + "\n" | |
|
60 | ||
|
61 | if "size" not in keyList: | |
|
62 | attr = getattr(self, "size") | |
|
63 | ||
|
64 | if attr: | |
|
65 | message += "%s = %s" %("size", attr) + "\n" | |
|
66 | ||
|
67 | #print message | |
|
68 | ||
|
69 | ||
|
70 | ||
|
71 | ||
|
72 | ||
|
73 | FILE_STRUCTURE = numpy.dtype([ #HEADER 48bytes | |
|
74 | ('FileMgcNumber','<u4'), #0x23020100 | |
|
75 | ('nFDTdataRecors','<u4'), #No Of FDT data records in this file (0 or more) | |
|
76 | ('OffsetStartHeader','<u4'), | |
|
77 | ('RadarUnitId','<u4'), | |
|
78 | ('SiteName',numpy.str_,32), #Null terminated | |
|
79 | ]) | |
|
80 | ||
|
81 | class FileHeaderBLTR(Header): | |
|
82 | ||
|
83 | def __init__(self): | |
|
84 | ||
|
85 | self.FileMgcNumber= 0 #0x23020100 | |
|
86 | self.nFDTdataRecors=0 #No Of FDT data records in this file (0 or more) | |
|
87 | self.RadarUnitId= 0 | |
|
88 | self.OffsetStartHeader=0 | |
|
89 | self.SiteName= "" | |
|
90 | self.size = 48 | |
|
91 | ||
|
92 | def FHread(self, fp): | |
|
93 | #try: | |
|
94 | startFp = open(fp,"rb") | |
|
95 | ||
|
96 | header = numpy.fromfile(startFp, FILE_STRUCTURE,1) | |
|
97 | ||
|
98 | print ' ' | |
|
99 | print 'puntero file header', startFp.tell() | |
|
100 | print ' ' | |
|
101 | ||
|
102 | ||
|
103 | ''' numpy.fromfile(file, dtype, count, sep='') | |
|
104 | file : file or str | |
|
105 | Open file object or filename. | |
|
106 | ||
|
107 | dtype : data-type | |
|
108 | Data type of the returned array. For binary files, it is used to determine | |
|
109 | the size and byte-order of the items in the file. | |
|
110 | ||
|
111 | count : int | |
|
112 | Number of items to read. -1 means all items (i.e., the complete file). | |
|
113 | ||
|
114 | sep : str | |
|
115 | Separator between items if file is a text file. Empty ("") separator means | |
|
116 | the file should be treated as binary. Spaces (" ") in the separator match zero | |
|
117 | or more whitespace characters. A separator consisting only of spaces must match | |
|
118 | at least one whitespace. | |
|
119 | ||
|
120 | ''' | |
|
121 | ||
|
122 | ||
|
123 | ||
|
124 | self.FileMgcNumber= hex(header['FileMgcNumber'][0]) | |
|
125 | self.nFDTdataRecors=int(header['nFDTdataRecors'][0]) #No Of FDT data records in this file (0 or more) | |
|
126 | self.RadarUnitId= int(header['RadarUnitId'][0]) | |
|
127 | self.OffsetStartHeader= int(header['OffsetStartHeader'][0]) | |
|
128 | self.SiteName= str(header['SiteName'][0]) | |
|
129 | ||
|
130 | #print 'Numero de bloques', self.nFDTdataRecors | |
|
131 | ||
|
132 | ||
|
133 | if self.size <48: | |
|
134 | return 0 | |
|
135 | ||
|
136 | return 1 | |
|
137 | ||
|
138 | ||
|
139 | def write(self, fp): | |
|
140 | ||
|
141 | headerTuple = (self.FileMgcNumber, | |
|
142 | self.nFDTdataRecors, | |
|
143 | self.RadarUnitId, | |
|
144 | self.SiteName, | |
|
145 | self.size) | |
|
146 | ||
|
147 | ||
|
148 | header = numpy.array(headerTuple, FILE_STRUCTURE) | |
|
149 | # numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0) | |
|
150 | header.tofile(fp) | |
|
151 | ''' ndarray.tofile(fid, sep, format) Write array to a file as text or binary (default). | |
|
152 | ||
|
153 | fid : file or str | |
|
154 | An open file object, or a string containing a filename. | |
|
155 | ||
|
156 | sep : str | |
|
157 | Separator between array items for text output. If "" (empty), a binary file is written, | |
|
158 | equivalent to file.write(a.tobytes()). | |
|
159 | ||
|
160 | format : str | |
|
161 | Format string for text file output. Each entry in the array is formatted to text by | |
|
162 | first converting it to the closest Python type, and then using "format" % item. | |
|
163 | ||
|
164 | ''' | |
|
165 | ||
|
166 | return 1 | |
|
167 | ||
|
168 | ||
|
169 | ||
|
170 | ||
|
171 | ||
|
172 | RECORD_STRUCTURE = numpy.dtype([ #RECORD HEADER 180+20N bytes | |
|
173 | ('RecMgcNumber','<u4'), #0x23030001 | |
|
174 | ('RecCounter','<u4'), #Record counter(0,1, ...) | |
|
175 | ('Off2StartNxtRec','<u4'), #Offset to start of next record form start of this record | |
|
176 | ('Off2StartData','<u4'), #Offset to start of data from start of this record | |
|
177 | ('nUtime','<i4'), #Epoch time stamp of start of acquisition (seconds) | |
|
178 | ('nMilisec','<u4'), #Millisecond component of time stamp (0,...,999) | |
|
179 | ('ExpTagName',numpy.str_,32), #Experiment tag name (null terminated) | |
|
180 | ('ExpComment',numpy.str_,32), #Experiment comment (null terminated) | |
|
181 | ('SiteLatDegrees','<f4'), #Site latitude (from GPS) in degrees (positive implies North) | |
|
182 | ('SiteLongDegrees','<f4'), #Site longitude (from GPS) in degrees (positive implies East) | |
|
183 | ('RTCgpsStatus','<u4'), #RTC GPS engine status (0=SEEK, 1=LOCK, 2=NOT FITTED, 3=UNAVAILABLE) | |
|
184 | ('TransmitFrec','<u4'), #Transmit frequency (Hz) | |
|
185 | ('ReceiveFrec','<u4'), #Receive frequency | |
|
186 | ('FirstOsciFrec','<u4'), #First local oscillator frequency (Hz) | |
|
187 | ('Polarisation','<u4'), #(0="O", 1="E", 2="linear 1", 3="linear2") | |
|
188 | ('ReceiverFiltSett','<u4'), #Receiver filter settings (0,1,2,3) | |
|
189 | ('nModesInUse','<u4'), #Number of modes in use (1 or 2) | |
|
190 | ('DualModeIndex','<u4'), #Dual Mode index number for these data (0 or 1) | |
|
191 | ('DualModeRange','<u4'), #Dual Mode range correction for these data (m) | |
|
192 | ('nDigChannels','<u4'), #Number of digital channels acquired (2*N) | |
|
193 | ('SampResolution','<u4'), #Sampling resolution (meters) | |
|
194 | ('nHeights','<u4'), #Number of range gates sampled | |
|
195 | ('StartRangeSamp','<u4'), #Start range of sampling (meters) | |
|
196 | ('PRFhz','<u4'), #PRF (Hz) | |
|
197 | ('nCohInt','<u4'), #Integrations | |
|
198 | ('nProfiles','<u4'), #Number of data points transformed | |
|
199 | ('nChannels','<u4'), #Number of receive beams stored in file (1 or N) | |
|
200 | ('nIncohInt','<u4'), #Number of spectral averages | |
|
201 | ('FFTwindowingInd','<u4'), #FFT windowing index (0 = no window) | |
|
202 | ('BeamAngleAzim','<f4'), #Beam steer angle (azimuth) in degrees (clockwise from true North) | |
|
203 | ('BeamAngleZen','<f4'), #Beam steer angle (zenith) in degrees (0=> vertical) | |
|
204 | ('AntennaCoord0','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |
|
205 | ('AntennaAngl0','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |
|
206 | ('AntennaCoord1','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |
|
207 | ('AntennaAngl1','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |
|
208 | ('AntennaCoord2','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |
|
209 | ('AntennaAngl2','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |
|
210 | ('RecPhaseCalibr0','<f4'), #Receiver phase calibration (degrees) - N values | |
|
211 | ('RecPhaseCalibr1','<f4'), #Receiver phase calibration (degrees) - N values | |
|
212 | ('RecPhaseCalibr2','<f4'), #Receiver phase calibration (degrees) - N values | |
|
213 | ('RecAmpCalibr0','<f4'), #Receiver amplitude calibration (ratio relative to receiver one) - N values | |
|
214 | ('RecAmpCalibr1','<f4'), #Receiver amplitude calibration (ratio relative to receiver one) - N values | |
|
215 | ('RecAmpCalibr2','<f4'), #Receiver amplitude calibration (ratio relative to receiver one) - N values | |
|
216 | ('ReceiverGaindB0','<i4'), #Receiver gains in dB - N values | |
|
217 | ('ReceiverGaindB1','<i4'), #Receiver gains in dB - N values | |
|
218 | ('ReceiverGaindB2','<i4'), #Receiver gains in dB - N values | |
|
219 | ]) | |
|
220 | ||
|
221 | ||
|
222 | class RecordHeaderBLTR(Header): | |
|
223 | ||
|
224 | def __init__(self, RecMgcNumber=None, RecCounter= 0, Off2StartNxtRec= 811248, | |
|
225 | nUtime= 0, nMilisec= 0, ExpTagName= None, | |
|
226 | ExpComment=None, SiteLatDegrees=0, SiteLongDegrees= 0, | |
|
227 | RTCgpsStatus= 0, TransmitFrec= 0, ReceiveFrec= 0, | |
|
228 | FirstOsciFrec= 0, Polarisation= 0, ReceiverFiltSett= 0, | |
|
229 | nModesInUse= 0, DualModeIndex= 0, DualModeRange= 0, | |
|
230 | nDigChannels= 0, SampResolution= 0, nHeights= 0, | |
|
231 | StartRangeSamp= 0, PRFhz= 0, nCohInt= 0, | |
|
232 | nProfiles= 0, nChannels= 0, nIncohInt= 0, | |
|
233 | FFTwindowingInd= 0, BeamAngleAzim= 0, BeamAngleZen= 0, | |
|
234 | AntennaCoord0= 0, AntennaCoord1= 0, AntennaCoord2= 0, | |
|
235 | RecPhaseCalibr0= 0, RecPhaseCalibr1= 0, RecPhaseCalibr2= 0, | |
|
236 | RecAmpCalibr0= 0, RecAmpCalibr1= 0, RecAmpCalibr2= 0, | |
|
237 | AntennaAngl0=0, AntennaAngl1=0, AntennaAngl2=0, | |
|
238 | ReceiverGaindB0= 0, ReceiverGaindB1= 0, ReceiverGaindB2= 0, Off2StartData=0, OffsetStartHeader=0): | |
|
239 | ||
|
240 | self.RecMgcNumber = RecMgcNumber #0x23030001 | |
|
241 | self.RecCounter = RecCounter | |
|
242 | self.Off2StartNxtRec = Off2StartNxtRec | |
|
243 | self.Off2StartData = Off2StartData | |
|
244 | self.nUtime = nUtime | |
|
245 | self.nMilisec = nMilisec | |
|
246 | self.ExpTagName = ExpTagName | |
|
247 | self.ExpComment = ExpComment | |
|
248 | self.SiteLatDegrees = SiteLatDegrees | |
|
249 | self.SiteLongDegrees = SiteLongDegrees | |
|
250 | self.RTCgpsStatus = RTCgpsStatus | |
|
251 | self.TransmitFrec = TransmitFrec | |
|
252 | self.ReceiveFrec = ReceiveFrec | |
|
253 | self.FirstOsciFrec = FirstOsciFrec | |
|
254 | self.Polarisation = Polarisation | |
|
255 | self.ReceiverFiltSett = ReceiverFiltSett | |
|
256 | self.nModesInUse = nModesInUse | |
|
257 | self.DualModeIndex = DualModeIndex | |
|
258 | self.DualModeRange = DualModeRange | |
|
259 | self.nDigChannels = nDigChannels | |
|
260 | self.SampResolution = SampResolution | |
|
261 | self.nHeights = nHeights | |
|
262 | self.StartRangeSamp = StartRangeSamp | |
|
263 | self.PRFhz = PRFhz | |
|
264 | self.nCohInt = nCohInt | |
|
265 | self.nProfiles = nProfiles | |
|
266 | self.nChannels = nChannels | |
|
267 | self.nIncohInt = nIncohInt | |
|
268 | self.FFTwindowingInd = FFTwindowingInd | |
|
269 | self.BeamAngleAzim = BeamAngleAzim | |
|
270 | self.BeamAngleZen = BeamAngleZen | |
|
271 | self.AntennaCoord0 = AntennaCoord0 | |
|
272 | self.AntennaAngl0 = AntennaAngl0 | |
|
273 | self.AntennaAngl1 = AntennaAngl1 | |
|
274 | self.AntennaAngl2 = AntennaAngl2 | |
|
275 | self.AntennaCoord1 = AntennaCoord1 | |
|
276 | self.AntennaCoord2 = AntennaCoord2 | |
|
277 | self.RecPhaseCalibr0 = RecPhaseCalibr0 | |
|
278 | self.RecPhaseCalibr1 = RecPhaseCalibr1 | |
|
279 | self.RecPhaseCalibr2 = RecPhaseCalibr2 | |
|
280 | self.RecAmpCalibr0 = RecAmpCalibr0 | |
|
281 | self.RecAmpCalibr1 = RecAmpCalibr1 | |
|
282 | self.RecAmpCalibr2 = RecAmpCalibr2 | |
|
283 | self.ReceiverGaindB0 = ReceiverGaindB0 | |
|
284 | self.ReceiverGaindB1 = ReceiverGaindB1 | |
|
285 | self.ReceiverGaindB2 = ReceiverGaindB2 | |
|
286 | self.OffsetStartHeader = 48 | |
|
287 | ||
|
288 | ||
|
289 | ||
|
290 | def RHread(self, fp): | |
|
291 | #print fp | |
|
292 | #startFp = open('/home/erick/Documents/Data/huancayo.20161019.22.fdt',"rb") #The method tell() returns the current position of the file read/write pointer within the file. | |
|
293 | startFp = open(fp,"rb") #The method tell() returns the current position of the file read/write pointer within the file. | |
|
294 | #RecCounter=0 | |
|
295 | #Off2StartNxtRec=811248 | |
|
296 | OffRHeader= self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec | |
|
297 | print ' ' | |
|
298 | print 'puntero Record Header', startFp.tell() | |
|
299 | print ' ' | |
|
300 | ||
|
301 | ||
|
302 | startFp.seek(OffRHeader, os.SEEK_SET) | |
|
303 | ||
|
304 | print ' ' | |
|
305 | print 'puntero Record Header con seek', startFp.tell() | |
|
306 | print ' ' | |
|
307 | ||
|
308 | #print 'Posicion del bloque: ',OffRHeader | |
|
309 | ||
|
310 | header = numpy.fromfile(startFp,RECORD_STRUCTURE,1) | |
|
311 | ||
|
312 | print ' ' | |
|
313 | print 'puntero Record Header con seek', startFp.tell() | |
|
314 | print ' ' | |
|
315 | ||
|
316 | print ' ' | |
|
317 | # | |
|
318 | #print 'puntero Record Header despues de seek', header.tell() | |
|
319 | print ' ' | |
|
320 | ||
|
321 | self.RecMgcNumber = hex(header['RecMgcNumber'][0]) #0x23030001 | |
|
322 | self.RecCounter = int(header['RecCounter'][0]) | |
|
323 | self.Off2StartNxtRec = int(header['Off2StartNxtRec'][0]) | |
|
324 | self.Off2StartData = int(header['Off2StartData'][0]) | |
|
325 | self.nUtime = header['nUtime'][0] | |
|
326 | self.nMilisec = header['nMilisec'][0] | |
|
327 | self.ExpTagName = str(header['ExpTagName'][0]) | |
|
328 | self.ExpComment = str(header['ExpComment'][0]) | |
|
329 | self.SiteLatDegrees = header['SiteLatDegrees'][0] | |
|
330 | self.SiteLongDegrees = header['SiteLongDegrees'][0] | |
|
331 | self.RTCgpsStatus = header['RTCgpsStatus'][0] | |
|
332 | self.TransmitFrec = header['TransmitFrec'][0] | |
|
333 | self.ReceiveFrec = header['ReceiveFrec'][0] | |
|
334 | self.FirstOsciFrec = header['FirstOsciFrec'][0] | |
|
335 | self.Polarisation = header['Polarisation'][0] | |
|
336 | self.ReceiverFiltSett = header['ReceiverFiltSett'][0] | |
|
337 | self.nModesInUse = header['nModesInUse'][0] | |
|
338 | self.DualModeIndex = header['DualModeIndex'][0] | |
|
339 | self.DualModeRange = header['DualModeRange'][0] | |
|
340 | self.nDigChannels = header['nDigChannels'][0] | |
|
341 | self.SampResolution = header['SampResolution'][0] | |
|
342 | self.nHeights = header['nHeights'][0] | |
|
343 | self.StartRangeSamp = header['StartRangeSamp'][0] | |
|
344 | self.PRFhz = header['PRFhz'][0] | |
|
345 | self.nCohInt = header['nCohInt'][0] | |
|
346 | self.nProfiles = header['nProfiles'][0] | |
|
347 | self.nChannels = header['nChannels'][0] | |
|
348 | self.nIncohInt = header['nIncohInt'][0] | |
|
349 | self.FFTwindowingInd = header['FFTwindowingInd'][0] | |
|
350 | self.BeamAngleAzim = header['BeamAngleAzim'][0] | |
|
351 | self.BeamAngleZen = header['BeamAngleZen'][0] | |
|
352 | self.AntennaCoord0 = header['AntennaCoord0'][0] | |
|
353 | self.AntennaAngl0 = header['AntennaAngl0'][0] | |
|
354 | self.AntennaCoord1 = header['AntennaCoord1'][0] | |
|
355 | self.AntennaAngl1 = header['AntennaAngl1'][0] | |
|
356 | self.AntennaCoord2 = header['AntennaCoord2'][0] | |
|
357 | self.AntennaAngl2 = header['AntennaAngl2'][0] | |
|
358 | self.RecPhaseCalibr0 = header['RecPhaseCalibr0'][0] | |
|
359 | self.RecPhaseCalibr1 = header['RecPhaseCalibr1'][0] | |
|
360 | self.RecPhaseCalibr2 = header['RecPhaseCalibr2'][0] | |
|
361 | self.RecAmpCalibr0 = header['RecAmpCalibr0'][0] | |
|
362 | self.RecAmpCalibr1 = header['RecAmpCalibr1'][0] | |
|
363 | self.RecAmpCalibr2 = header['RecAmpCalibr2'][0] | |
|
364 | self.ReceiverGaindB0 = header['ReceiverGaindB0'][0] | |
|
365 | self.ReceiverGaindB1 = header['ReceiverGaindB1'][0] | |
|
366 | self.ReceiverGaindB2 = header['ReceiverGaindB2'][0] | |
|
367 | ||
|
368 | self.ipp= 0.5*(SPEED_OF_LIGHT/self.PRFhz) | |
|
369 | ||
|
370 | self.RHsize = 180+20*self.nChannels | |
|
371 | self.Datasize= self.nProfiles*self.nChannels*self.nHeights*2*4 | |
|
372 | #print 'Datasize',self.Datasize | |
|
373 | endFp = self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec | |
|
374 | ||
|
375 | print '==============================================' | |
|
376 | print 'RecMgcNumber ',self.RecMgcNumber | |
|
377 | print 'RecCounter ',self.RecCounter | |
|
378 | print 'Off2StartNxtRec ',self.Off2StartNxtRec | |
|
379 | print 'Off2StartData ',self.Off2StartData | |
|
380 | print 'Range Resolution ',self.SampResolution | |
|
381 | print 'First Height ',self.StartRangeSamp | |
|
382 | print 'PRF (Hz) ',self.PRFhz | |
|
383 | print 'Heights (K) ',self.nHeights | |
|
384 | print 'Channels (N) ',self.nChannels | |
|
385 | print 'Profiles (J) ',self.nProfiles | |
|
386 | print 'iCoh ',self.nCohInt | |
|
387 | print 'iInCoh ',self.nIncohInt | |
|
388 | print 'BeamAngleAzim ',self.BeamAngleAzim | |
|
389 | print 'BeamAngleZen ',self.BeamAngleZen | |
|
390 | ||
|
391 | #print 'ModoEnUso ',self.DualModeIndex | |
|
392 | #print 'UtcTime ',self.nUtime | |
|
393 | #print 'MiliSec ',self.nMilisec | |
|
394 | #print 'Exp TagName ',self.ExpTagName | |
|
395 | #print 'Exp Comment ',self.ExpComment | |
|
396 | #print 'FFT Window Index ',self.FFTwindowingInd | |
|
397 | #print 'N Dig. Channels ',self.nDigChannels | |
|
398 | print 'Size de bloque ',self.RHsize | |
|
399 | print 'DataSize ',self.Datasize | |
|
400 | print 'BeamAngleAzim ',self.BeamAngleAzim | |
|
401 | #print 'AntennaCoord0 ',self.AntennaCoord0 | |
|
402 | #print 'AntennaAngl0 ',self.AntennaAngl0 | |
|
403 | #print 'AntennaCoord1 ',self.AntennaCoord1 | |
|
404 | #print 'AntennaAngl1 ',self.AntennaAngl1 | |
|
405 | #print 'AntennaCoord2 ',self.AntennaCoord2 | |
|
406 | #print 'AntennaAngl2 ',self.AntennaAngl2 | |
|
407 | print 'RecPhaseCalibr0 ',self.RecPhaseCalibr0 | |
|
408 | print 'RecPhaseCalibr1 ',self.RecPhaseCalibr1 | |
|
409 | print 'RecPhaseCalibr2 ',self.RecPhaseCalibr2 | |
|
410 | print 'RecAmpCalibr0 ',self.RecAmpCalibr0 | |
|
411 | print 'RecAmpCalibr1 ',self.RecAmpCalibr1 | |
|
412 | print 'RecAmpCalibr2 ',self.RecAmpCalibr2 | |
|
413 | print 'ReceiverGaindB0 ',self.ReceiverGaindB0 | |
|
414 | print 'ReceiverGaindB1 ',self.ReceiverGaindB1 | |
|
415 | print 'ReceiverGaindB2 ',self.ReceiverGaindB2 | |
|
416 | print '==============================================' | |
|
417 | ||
|
418 | if OffRHeader > endFp: | |
|
419 | sys.stderr.write("Warning %s: Size value read from System Header is lower than it has to be\n" %fp) | |
|
420 | return 0 | |
|
421 | ||
|
422 | if OffRHeader < endFp: | |
|
423 | sys.stderr.write("Warning %s: Size value read from System Header size is greater than it has to be\n" %fp) | |
|
424 | return 0 | |
|
425 | ||
|
426 | return 1 | |
|
427 | ||
|
428 | ||
|
429 | class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODataReader): | |
|
430 | ||
|
431 | path = None | |
|
432 | startDate = None | |
|
433 | endDate = None | |
|
434 | startTime = None | |
|
435 | endTime = None | |
|
436 | walk = None | |
|
437 | isConfig = False | |
|
438 | ||
|
439 | ||
|
440 | fileList= None | |
|
441 | ||
|
442 | #metadata | |
|
443 | TimeZone= None | |
|
444 | Interval= None | |
|
445 | heightList= None | |
|
446 | ||
|
447 | #data | |
|
448 | data= None | |
|
449 | utctime= None | |
|
450 | ||
|
451 | ||
|
452 | ||
|
453 | def __init__(self, **kwargs): | |
|
454 | ||
|
455 | #Eliminar de la base la herencia | |
|
456 | ProcessingUnit.__init__(self, **kwargs) | |
|
457 | ||
|
458 | #self.isConfig = False | |
|
459 | ||
|
460 | #self.pts2read_SelfSpectra = 0 | |
|
461 | #self.pts2read_CrossSpectra = 0 | |
|
462 | #self.pts2read_DCchannels = 0 | |
|
463 | #self.datablock = None | |
|
464 | self.utc = None | |
|
465 | self.ext = ".fdt" | |
|
466 | self.optchar = "P" | |
|
467 | self.fpFile=None | |
|
468 | self.fp = None | |
|
469 | self.BlockCounter=0 | |
|
470 | self.dtype = None | |
|
471 | self.fileSizeByHeader = None | |
|
472 | self.filenameList = [] | |
|
473 | self.fileSelector = 0 | |
|
474 | self.Off2StartNxtRec=0 | |
|
475 | self.RecCounter=0 | |
|
476 | self.flagNoMoreFiles = 0 | |
|
477 | self.data_spc=None | |
|
478 | self.data_cspc=None | |
|
479 | self.data_output=None | |
|
480 | self.path = None | |
|
481 | self.OffsetStartHeader=0 | |
|
482 | self.Off2StartData=0 | |
|
483 | self.ipp = 0 | |
|
484 | self.nFDTdataRecors=0 | |
|
485 | self.blocksize = 0 | |
|
486 | self.dataOut = Spectra() | |
|
487 | self.profileIndex = 1 #Always | |
|
488 | self.dataOut.flagNoData=False | |
|
489 | self.dataOut.nRdPairs = 0 | |
|
490 | self.dataOut.pairsList = [] | |
|
491 | self.dataOut.data_spc=None | |
|
492 | self.dataOut.noise=[] | |
|
493 | self.dataOut.velocityX=[] | |
|
494 | self.dataOut.velocityY=[] | |
|
495 | self.dataOut.velocityV=[] | |
|
496 | ||
|
497 | ||
|
498 | ||
|
499 | def Files2Read(self, fp): | |
|
500 | ''' | |
|
501 | Function that indicates the number of .fdt files that exist in the folder to be read. | |
|
502 | It also creates an organized list with the names of the files to read. | |
|
503 | ''' | |
|
504 | #self.__checkPath() | |
|
505 | ||
|
506 | ListaData=os.listdir(fp) #Gets the list of files within the fp address | |
|
507 | ListaData=sorted(ListaData) #Sort the list of files from least to largest by names | |
|
508 | nFiles=0 #File Counter | |
|
509 | FileList=[] #A list is created that will contain the .fdt files | |
|
510 | for IndexFile in ListaData : | |
|
511 | if '.fdt' in IndexFile: | |
|
512 | FileList.append(IndexFile) | |
|
513 | nFiles+=1 | |
|
514 | ||
|
515 | #print 'Files2Read' | |
|
516 | #print 'Existen '+str(nFiles)+' archivos .fdt' | |
|
517 | ||
|
518 | self.filenameList=FileList #List of files from least to largest by names | |
|
519 | ||
|
520 | ||
|
521 | def run(self, **kwargs): | |
|
522 | ''' | |
|
523 | This method will be the one that will initiate the data entry, will be called constantly. | |
|
524 | You should first verify that your Setup () is set up and then continue to acquire | |
|
525 | the data to be processed with getData (). | |
|
526 | ''' | |
|
527 | if not self.isConfig: | |
|
528 | self.setup(**kwargs) | |
|
529 | self.isConfig = True | |
|
530 | ||
|
531 | self.getData() | |
|
532 | #print 'running' | |
|
533 | ||
|
534 | ||
|
535 | def setup(self, path=None, | |
|
536 | startDate=None, | |
|
537 | endDate=None, | |
|
538 | startTime=None, | |
|
539 | endTime=None, | |
|
540 | walk=True, | |
|
541 | timezone='utc', | |
|
542 | code = None, | |
|
543 | online=False, | |
|
544 | ReadMode=None, | |
|
545 | **kwargs): | |
|
546 | ||
|
547 | self.isConfig = True | |
|
548 | ||
|
549 | self.path=path | |
|
550 | self.startDate=startDate | |
|
551 | self.endDate=endDate | |
|
552 | self.startTime=startTime | |
|
553 | self.endTime=endTime | |
|
554 | self.walk=walk | |
|
555 | self.ReadMode=int(ReadMode) | |
|
556 | ||
|
557 | pass | |
|
558 | ||
|
559 | ||
|
560 | def getData(self): | |
|
561 | ''' | |
|
562 | Before starting this function, you should check that there is still an unread file, | |
|
563 | If there are still blocks to read or if the data block is empty. | |
|
564 | ||
|
565 | You should call the file "read". | |
|
566 | ||
|
567 | ''' | |
|
568 | ||
|
569 | if self.flagNoMoreFiles: | |
|
570 | self.dataOut.flagNoData = True | |
|
571 | print 'NoData se vuelve true' | |
|
572 | return 0 | |
|
573 | ||
|
574 | self.fp=self.path | |
|
575 | self.Files2Read(self.fp) | |
|
576 | self.readFile(self.fp) | |
|
577 | self.dataOut.data_spc = self.data_spc | |
|
578 | self.dataOut.data_cspc =self.data_cspc | |
|
579 | self.dataOut.data_output=self.data_output | |
|
580 | ||
|
581 | print 'self.dataOut.data_output', shape(self.dataOut.data_output) | |
|
582 | ||
|
583 | #self.removeDC() | |
|
584 | return self.dataOut.data_spc | |
|
585 | ||
|
586 | ||
|
587 | def readFile(self,fp): | |
|
588 | ''' | |
|
589 | You must indicate if you are reading in Online or Offline mode and load the | |
|
590 | The parameters for this file reading mode. | |
|
591 | ||
|
592 | Then you must do 2 actions: | |
|
593 | ||
|
594 | 1. Get the BLTR FileHeader. | |
|
595 | 2. Start reading the first block. | |
|
596 | ''' | |
|
597 | ||
|
598 | #The address of the folder is generated the name of the .fdt file that will be read | |
|
599 | print "File: ",self.fileSelector+1 | |
|
600 | ||
|
601 | if self.fileSelector < len(self.filenameList): | |
|
602 | ||
|
603 | self.fpFile=str(fp)+'/'+str(self.filenameList[self.fileSelector]) | |
|
604 | #print self.fpFile | |
|
605 | fheader = FileHeaderBLTR() | |
|
606 | fheader.FHread(self.fpFile) #Bltr FileHeader Reading | |
|
607 | self.nFDTdataRecors=fheader.nFDTdataRecors | |
|
608 | ||
|
609 | self.readBlock() #Block reading | |
|
610 | else: | |
|
611 | print 'readFile FlagNoData becomes true' | |
|
612 | self.flagNoMoreFiles=True | |
|
613 | self.dataOut.flagNoData = True | |
|
614 | return 0 | |
|
615 | ||
|
616 | def getVelRange(self, extrapoints=0): | |
|
617 | Lambda= SPEED_OF_LIGHT/50000000 | |
|
618 | PRF = self.dataOut.PRF#1./(self.dataOut.ippSeconds * self.dataOut.nCohInt) | |
|
619 | Vmax=-Lambda/(4.*(1./PRF)*self.dataOut.nCohInt*2.) | |
|
620 | deltafreq = PRF / (self.nProfiles) | |
|
621 | deltavel = (Vmax*2) / (self.nProfiles) | |
|
622 | freqrange = deltafreq*(numpy.arange(self.nProfiles)-self.nProfiles/2.) - deltafreq/2 | |
|
623 | velrange = deltavel*(numpy.arange(self.nProfiles)-self.nProfiles/2.) | |
|
624 | return velrange | |
|
625 | ||
|
626 | def readBlock(self): | |
|
627 | ''' | |
|
628 | It should be checked if the block has data, if it is not passed to the next file. | |
|
629 | ||
|
630 | Then the following is done: | |
|
631 | ||
|
632 | 1. Read the RecordHeader | |
|
633 | 2. Fill the buffer with the current block number. | |
|
634 | ||
|
635 | ''' | |
|
636 | ||
|
637 | if self.BlockCounter < self.nFDTdataRecors-2: | |
|
638 | print self.nFDTdataRecors, 'CONDICION!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' | |
|
639 | if self.ReadMode==1: | |
|
640 | rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter+1) | |
|
641 | elif self.ReadMode==0: | |
|
642 | rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter) | |
|
643 | ||
|
644 | rheader.RHread(self.fpFile) #Bltr FileHeader Reading | |
|
645 | ||
|
646 | self.OffsetStartHeader=rheader.OffsetStartHeader | |
|
647 | self.RecCounter=rheader.RecCounter | |
|
648 | self.Off2StartNxtRec=rheader.Off2StartNxtRec | |
|
649 | self.Off2StartData=rheader.Off2StartData | |
|
650 | self.nProfiles=rheader.nProfiles | |
|
651 | self.nChannels=rheader.nChannels | |
|
652 | self.nHeights=rheader.nHeights | |
|
653 | self.frequency=rheader.TransmitFrec | |
|
654 | self.DualModeIndex=rheader.DualModeIndex | |
|
655 | ||
|
656 | self.pairsList =[(0,1),(0,2),(1,2)] | |
|
657 | self.dataOut.pairsList = self.pairsList | |
|
658 | ||
|
659 | self.nRdPairs=len(self.dataOut.pairsList) | |
|
660 | self.dataOut.nRdPairs = self.nRdPairs | |
|
661 | ||
|
662 | self.__firstHeigth=rheader.StartRangeSamp | |
|
663 | self.__deltaHeigth=rheader.SampResolution | |
|
664 | self.dataOut.heightList= self.__firstHeigth + numpy.array(range(self.nHeights))*self.__deltaHeigth | |
|
665 | self.dataOut.channelList = range(self.nChannels) | |
|
666 | self.dataOut.nProfiles=rheader.nProfiles | |
|
667 | self.dataOut.nIncohInt=rheader.nIncohInt | |
|
668 | self.dataOut.nCohInt=rheader.nCohInt | |
|
669 | self.dataOut.ippSeconds= 1/float(rheader.PRFhz) | |
|
670 | self.dataOut.PRF=rheader.PRFhz | |
|
671 | self.dataOut.nFFTPoints=rheader.nProfiles | |
|
672 | self.dataOut.utctime=rheader.nUtime | |
|
673 | self.dataOut.timeZone=0 | |
|
674 | self.dataOut.normFactor= self.dataOut.nProfiles*self.dataOut.nIncohInt*self.dataOut.nCohInt | |
|
675 | self.dataOut.outputInterval= self.dataOut.ippSeconds * self.dataOut.nCohInt * self.dataOut.nIncohInt * self.nProfiles | |
|
676 | ||
|
677 | self.data_output=numpy.ones([3,rheader.nHeights])*numpy.NaN | |
|
678 | print 'self.data_output', shape(self.data_output) | |
|
679 | self.dataOut.velocityX=[] | |
|
680 | self.dataOut.velocityY=[] | |
|
681 | self.dataOut.velocityV=[] | |
|
682 | ||
|
683 | '''Block Reading, the Block Data is received and Reshape is used to give it | |
|
684 | shape. | |
|
685 | ''' | |
|
686 | ||
|
687 | #Procedure to take the pointer to where the date block starts | |
|
688 | startDATA = open(self.fpFile,"rb") | |
|
689 | OffDATA= self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec+self.Off2StartData | |
|
690 | startDATA.seek(OffDATA, os.SEEK_SET) | |
|
691 | ||
|
692 | def moving_average(x, N=2): | |
|
693 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |
|
694 | ||
|
695 | def gaus(xSamples,a,x0,sigma): | |
|
696 | return a*exp(-(xSamples-x0)**2/(2*sigma**2)) | |
|
697 | ||
|
698 | def Find(x,value): | |
|
699 | for index in range(len(x)): | |
|
700 | if x[index]==value: | |
|
701 | return index | |
|
702 | ||
|
703 | def pol2cart(rho, phi): | |
|
704 | x = rho * numpy.cos(phi) | |
|
705 | y = rho * numpy.sin(phi) | |
|
706 | return(x, y) | |
|
707 | ||
|
708 | ||
|
709 | ||
|
710 | ||
|
711 | if self.DualModeIndex==self.ReadMode: | |
|
712 | ||
|
713 | self.data_fft = numpy.fromfile( startDATA, [('complex','<c8')],self.nProfiles*self.nChannels*self.nHeights ) | |
|
714 | ||
|
715 | self.data_fft=self.data_fft.astype(numpy.dtype('complex')) | |
|
716 | ||
|
717 | self.data_block=numpy.reshape(self.data_fft,(self.nHeights, self.nChannels, self.nProfiles )) | |
|
718 | ||
|
719 | self.data_block = numpy.transpose(self.data_block, (1,2,0)) | |
|
720 | ||
|
721 | copy = self.data_block.copy() | |
|
722 | spc = copy * numpy.conjugate(copy) | |
|
723 | ||
|
724 | self.data_spc = numpy.absolute(spc) # valor absoluto o magnitud | |
|
725 | ||
|
726 | factor = self.dataOut.normFactor | |
|
727 | ||
|
728 | ||
|
729 | z = self.data_spc.copy()#/factor | |
|
730 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
|
731 | #zdB = 10*numpy.log10(z) | |
|
732 | print ' ' | |
|
733 | print 'Z: ' | |
|
734 | print shape(z) | |
|
735 | print ' ' | |
|
736 | print ' ' | |
|
737 | ||
|
738 | self.dataOut.data_spc=self.data_spc | |
|
739 | ||
|
740 | self.noise = self.dataOut.getNoise(ymin_index=80, ymax_index=132)#/factor | |
|
741 | #noisedB = 10*numpy.log10(self.noise) | |
|
742 | ||
|
743 | ||
|
744 | ySamples=numpy.ones([3,self.nProfiles]) | |
|
745 | phase=numpy.ones([3,self.nProfiles]) | |
|
746 | CSPCSamples=numpy.ones([3,self.nProfiles],dtype=numpy.complex_) | |
|
747 | coherence=numpy.ones([3,self.nProfiles]) | |
|
748 | PhaseSlope=numpy.ones(3) | |
|
749 | PhaseInter=numpy.ones(3) | |
|
750 | ||
|
751 | '''****** Getting CrossSpectra ******''' | |
|
752 | cspc=self.data_block.copy() | |
|
753 | self.data_cspc=self.data_block.copy() | |
|
754 | ||
|
755 | xFrec=self.getVelRange(1) | |
|
756 | VelRange=self.getVelRange(1) | |
|
757 | self.dataOut.VelRange=VelRange | |
|
758 | #print ' ' | |
|
759 | #print ' ' | |
|
760 | #print 'xFrec',xFrec | |
|
761 | #print ' ' | |
|
762 | #print ' ' | |
|
763 | #Height=35 | |
|
764 | for i in range(self.nRdPairs): | |
|
765 | ||
|
766 | chan_index0 = self.dataOut.pairsList[i][0] | |
|
767 | chan_index1 = self.dataOut.pairsList[i][1] | |
|
768 | ||
|
769 | self.data_cspc[i,:,:]=cspc[chan_index0,:,:] * numpy.conjugate(cspc[chan_index1,:,:]) | |
|
770 | ||
|
771 | ||
|
772 | '''Getting Eij and Nij''' | |
|
773 | (AntennaX0,AntennaY0)=pol2cart(rheader.AntennaCoord0, rheader.AntennaAngl0*numpy.pi/180) | |
|
774 | (AntennaX1,AntennaY1)=pol2cart(rheader.AntennaCoord1, rheader.AntennaAngl1*numpy.pi/180) | |
|
775 | (AntennaX2,AntennaY2)=pol2cart(rheader.AntennaCoord2, rheader.AntennaAngl2*numpy.pi/180) | |
|
776 | ||
|
777 | E01=AntennaX0-AntennaX1 | |
|
778 | N01=AntennaY0-AntennaY1 | |
|
779 | ||
|
780 | E02=AntennaX0-AntennaX2 | |
|
781 | N02=AntennaY0-AntennaY2 | |
|
782 | ||
|
783 | E12=AntennaX1-AntennaX2 | |
|
784 | N12=AntennaY1-AntennaY2 | |
|
785 | ||
|
786 | self.ChanDist= numpy.array([[E01, N01],[E02,N02],[E12,N12]]) | |
|
787 | ||
|
788 | self.dataOut.ChanDist = self.ChanDist | |
|
789 | ||
|
790 | ||
|
791 | # for Height in range(self.nHeights): | |
|
792 | # | |
|
793 | # for i in range(self.nRdPairs): | |
|
794 | # | |
|
795 | # '''****** Line of Data SPC ******''' | |
|
796 | # zline=z[i,:,Height] | |
|
797 | # | |
|
798 | # '''****** DC is removed ******''' | |
|
799 | # DC=Find(zline,numpy.amax(zline)) | |
|
800 | # zline[DC]=(zline[DC-1]+zline[DC+1])/2 | |
|
801 | # | |
|
802 | # | |
|
803 | # '''****** SPC is normalized ******''' | |
|
804 | # FactNorm= zline.copy() / numpy.sum(zline.copy()) | |
|
805 | # FactNorm= FactNorm/numpy.sum(FactNorm) | |
|
806 | # | |
|
807 | # SmoothSPC=moving_average(FactNorm,N=3) | |
|
808 | # | |
|
809 | # xSamples = ar(range(len(SmoothSPC))) | |
|
810 | # ySamples[i] = SmoothSPC-self.noise[i] | |
|
811 | # | |
|
812 | # for i in range(self.nRdPairs): | |
|
813 | # | |
|
814 | # '''****** Line of Data CSPC ******''' | |
|
815 | # cspcLine=self.data_cspc[i,:,Height].copy() | |
|
816 | # | |
|
817 | # | |
|
818 | # | |
|
819 | # '''****** CSPC is normalized ******''' | |
|
820 | # chan_index0 = self.dataOut.pairsList[i][0] | |
|
821 | # chan_index1 = self.dataOut.pairsList[i][1] | |
|
822 | # CSPCFactor= numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1]) | |
|
823 | # | |
|
824 | # | |
|
825 | # CSPCNorm= cspcLine.copy() / numpy.sqrt(CSPCFactor) | |
|
826 | # | |
|
827 | # | |
|
828 | # CSPCSamples[i] = CSPCNorm-self.noise[i] | |
|
829 | # coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) | |
|
830 | # | |
|
831 | # '''****** DC is removed ******''' | |
|
832 | # DC=Find(coherence[i],numpy.amax(coherence[i])) | |
|
833 | # coherence[i][DC]=(coherence[i][DC-1]+coherence[i][DC+1])/2 | |
|
834 | # coherence[i]= moving_average(coherence[i],N=2) | |
|
835 | # | |
|
836 | # phase[i] = moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi | |
|
837 | # | |
|
838 | # | |
|
839 | # '''****** Getting fij width ******''' | |
|
840 | # | |
|
841 | # yMean=[] | |
|
842 | # yMean2=[] | |
|
843 | # | |
|
844 | # for j in range(len(ySamples[1])): | |
|
845 | # yMean=numpy.append(yMean,numpy.average([ySamples[0,j],ySamples[1,j],ySamples[2,j]])) | |
|
846 | # | |
|
847 | # '''******* Getting fitting Gaussian ******''' | |
|
848 | # meanGauss=sum(xSamples*yMean) / len(xSamples) | |
|
849 | # sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) | |
|
850 | # #print 'Height',Height,'SNR', meanGauss/sigma**2 | |
|
851 | # | |
|
852 | # if (abs(meanGauss/sigma**2) > 0.0001) : | |
|
853 | # | |
|
854 | # try: | |
|
855 | # popt,pcov = curve_fit(gaus,xSamples,yMean,p0=[1,meanGauss,sigma]) | |
|
856 | # | |
|
857 | # if numpy.amax(popt)>numpy.amax(yMean)*0.3: | |
|
858 | # FitGauss=gaus(xSamples,*popt) | |
|
859 | # | |
|
860 | # else: | |
|
861 | # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
|
862 | # print 'Verificador: Dentro', Height | |
|
863 | # except RuntimeError: | |
|
864 | # | |
|
865 | # try: | |
|
866 | # for j in range(len(ySamples[1])): | |
|
867 | # yMean2=numpy.append(yMean2,numpy.average([ySamples[1,j],ySamples[2,j]])) | |
|
868 | # popt,pcov = curve_fit(gaus,xSamples,yMean2,p0=[1,meanGauss,sigma]) | |
|
869 | # FitGauss=gaus(xSamples,*popt) | |
|
870 | # print 'Verificador: Exepcion1', Height | |
|
871 | # except RuntimeError: | |
|
872 | # | |
|
873 | # try: | |
|
874 | # popt,pcov = curve_fit(gaus,xSamples,ySamples[1],p0=[1,meanGauss,sigma]) | |
|
875 | # FitGauss=gaus(xSamples,*popt) | |
|
876 | # print 'Verificador: Exepcion2', Height | |
|
877 | # except RuntimeError: | |
|
878 | # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
|
879 | # print 'Verificador: Exepcion3', Height | |
|
880 | # else: | |
|
881 | # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
|
882 | # #print 'Verificador: Fuera', Height | |
|
883 | # | |
|
884 | # | |
|
885 | # | |
|
886 | # Maximun=numpy.amax(yMean) | |
|
887 | # eMinus1=Maximun*numpy.exp(-1) | |
|
888 | # | |
|
889 | # HWpos=Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1))) | |
|
890 | # HalfWidth= xFrec[HWpos] | |
|
891 | # GCpos=Find(FitGauss, numpy.amax(FitGauss)) | |
|
892 | # Vpos=Find(FactNorm, numpy.amax(FactNorm)) | |
|
893 | # #Vpos=numpy.sum(FactNorm)/len(FactNorm) | |
|
894 | # #Vpos=Find(FactNorm, min(FactNorm, key=lambda value:abs(value- numpy.mean(FactNorm) ))) | |
|
895 | # #print 'GCpos',GCpos, numpy.amax(FitGauss), 'HWpos',HWpos | |
|
896 | # '''****** Getting Fij ******''' | |
|
897 | # | |
|
898 | # GaussCenter=xFrec[GCpos] | |
|
899 | # if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0): | |
|
900 | # Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001 | |
|
901 | # else: | |
|
902 | # Fij=abs(GaussCenter-HalfWidth)+0.0000001 | |
|
903 | # | |
|
904 | # '''****** Getting Frecuency range of significant data ******''' | |
|
905 | # | |
|
906 | # Rangpos=Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10))) | |
|
907 | # | |
|
908 | # if Rangpos<GCpos: | |
|
909 | # Range=numpy.array([Rangpos,2*GCpos-Rangpos]) | |
|
910 | # else: | |
|
911 | # Range=numpy.array([2*GCpos-Rangpos,Rangpos]) | |
|
912 | # | |
|
913 | # FrecRange=xFrec[Range[0]:Range[1]] | |
|
914 | # | |
|
915 | # #print 'FrecRange', FrecRange | |
|
916 | # '''****** Getting SCPC Slope ******''' | |
|
917 | # | |
|
918 | # for i in range(self.nRdPairs): | |
|
919 | # | |
|
920 | # if len(FrecRange)>5 and len(FrecRange)<self.nProfiles*0.5: | |
|
921 | # PhaseRange=moving_average(phase[i,Range[0]:Range[1]],N=3) | |
|
922 | # | |
|
923 | # slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange) | |
|
924 | # PhaseSlope[i]=slope | |
|
925 | # PhaseInter[i]=intercept | |
|
926 | # else: | |
|
927 | # PhaseSlope[i]=0 | |
|
928 | # PhaseInter[i]=0 | |
|
929 | # | |
|
930 | # # plt.figure(i+15) | |
|
931 | # # plt.title('FASE ( CH%s*CH%s )' %(self.dataOut.pairsList[i][0],self.dataOut.pairsList[i][1])) | |
|
932 | # # plt.xlabel('Frecuencia (KHz)') | |
|
933 | # # plt.ylabel('Magnitud') | |
|
934 | # # #plt.subplot(311+i) | |
|
935 | # # plt.plot(FrecRange,PhaseRange,'b') | |
|
936 | # # plt.plot(FrecRange,FrecRange*PhaseSlope[i]+PhaseInter[i],'r') | |
|
937 | # | |
|
938 | # #plt.axis([-0.6, 0.2, -3.2, 3.2]) | |
|
939 | # | |
|
940 | # | |
|
941 | # '''Getting constant C''' | |
|
942 | # cC=(Fij*numpy.pi)**2 | |
|
943 | # | |
|
944 | # # '''Getting Eij and Nij''' | |
|
945 | # # (AntennaX0,AntennaY0)=pol2cart(rheader.AntennaCoord0, rheader.AntennaAngl0*numpy.pi/180) | |
|
946 | # # (AntennaX1,AntennaY1)=pol2cart(rheader.AntennaCoord1, rheader.AntennaAngl1*numpy.pi/180) | |
|
947 | # # (AntennaX2,AntennaY2)=pol2cart(rheader.AntennaCoord2, rheader.AntennaAngl2*numpy.pi/180) | |
|
948 | # # | |
|
949 | # # E01=AntennaX0-AntennaX1 | |
|
950 | # # N01=AntennaY0-AntennaY1 | |
|
951 | # # | |
|
952 | # # E02=AntennaX0-AntennaX2 | |
|
953 | # # N02=AntennaY0-AntennaY2 | |
|
954 | # # | |
|
955 | # # E12=AntennaX1-AntennaX2 | |
|
956 | # # N12=AntennaY1-AntennaY2 | |
|
957 | # | |
|
958 | # '''****** Getting constants F and G ******''' | |
|
959 | # MijEijNij=numpy.array([[E02,N02], [E12,N12]]) | |
|
960 | # MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) | |
|
961 | # MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) | |
|
962 | # MijResults=numpy.array([MijResult0,MijResult1]) | |
|
963 | # (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |
|
964 | # | |
|
965 | # '''****** Getting constants A, B and H ******''' | |
|
966 | # W01=numpy.amax(coherence[0]) | |
|
967 | # W02=numpy.amax(coherence[1]) | |
|
968 | # W12=numpy.amax(coherence[2]) | |
|
969 | # | |
|
970 | # WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) | |
|
971 | # WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) | |
|
972 | # WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) | |
|
973 | # | |
|
974 | # WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) | |
|
975 | # | |
|
976 | # WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ]) | |
|
977 | # (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |
|
978 | # | |
|
979 | # VxVy=numpy.array([[cA,cH],[cH,cB]]) | |
|
980 | # | |
|
981 | # VxVyResults=numpy.array([-cF,-cG]) | |
|
982 | # (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) | |
|
983 | # Vzon = Vy | |
|
984 | # Vmer = Vx | |
|
985 | # Vmag=numpy.sqrt(Vzon**2+Vmer**2) | |
|
986 | # Vang=numpy.arctan2(Vmer,Vzon) | |
|
987 | # | |
|
988 | # if abs(Vy)<100 and abs(Vy)> 0.: | |
|
989 | # self.dataOut.velocityX=numpy.append(self.dataOut.velocityX, Vzon) #Vmag | |
|
990 | # #print 'Vmag',Vmag | |
|
991 | # else: | |
|
992 | # self.dataOut.velocityX=numpy.append(self.dataOut.velocityX, NaN) | |
|
993 | # | |
|
994 | # if abs(Vx)<100 and abs(Vx) > 0.: | |
|
995 | # self.dataOut.velocityY=numpy.append(self.dataOut.velocityY, Vmer) #Vang | |
|
996 | # #print 'Vang',Vang | |
|
997 | # else: | |
|
998 | # self.dataOut.velocityY=numpy.append(self.dataOut.velocityY, NaN) | |
|
999 | # | |
|
1000 | # if abs(GaussCenter)<2: | |
|
1001 | # self.dataOut.velocityV=numpy.append(self.dataOut.velocityV, xFrec[Vpos]) | |
|
1002 | # | |
|
1003 | # else: | |
|
1004 | # self.dataOut.velocityV=numpy.append(self.dataOut.velocityV, NaN) | |
|
1005 | # | |
|
1006 | # | |
|
1007 | # # print '********************************************' | |
|
1008 | # # print 'HalfWidth ', HalfWidth | |
|
1009 | # # print 'Maximun ', Maximun | |
|
1010 | # # print 'eMinus1 ', eMinus1 | |
|
1011 | # # print 'Rangpos ', Rangpos | |
|
1012 | # # print 'GaussCenter ',GaussCenter | |
|
1013 | # # print 'E01 ',E01 | |
|
1014 | # # print 'N01 ',N01 | |
|
1015 | # # print 'E02 ',E02 | |
|
1016 | # # print 'N02 ',N02 | |
|
1017 | # # print 'E12 ',E12 | |
|
1018 | # # print 'N12 ',N12 | |
|
1019 | # #print 'self.dataOut.velocityX ', self.dataOut.velocityX | |
|
1020 | # # print 'Fij ', Fij | |
|
1021 | # # print 'cC ', cC | |
|
1022 | # # print 'cF ', cF | |
|
1023 | # # print 'cG ', cG | |
|
1024 | # # print 'cA ', cA | |
|
1025 | # # print 'cB ', cB | |
|
1026 | # # print 'cH ', cH | |
|
1027 | # # print 'Vx ', Vx | |
|
1028 | # # print 'Vy ', Vy | |
|
1029 | # # print 'Vmag ', Vmag | |
|
1030 | # # print 'Vang ', Vang*180/numpy.pi | |
|
1031 | # # print 'PhaseSlope ',PhaseSlope[0] | |
|
1032 | # # print 'PhaseSlope ',PhaseSlope[1] | |
|
1033 | # # print 'PhaseSlope ',PhaseSlope[2] | |
|
1034 | # # print '********************************************' | |
|
1035 | # #print 'data_output',shape(self.dataOut.velocityX), shape(self.dataOut.velocityY) | |
|
1036 | # | |
|
1037 | # #print 'self.dataOut.velocityX', len(self.dataOut.velocityX) | |
|
1038 | # #print 'self.dataOut.velocityY', len(self.dataOut.velocityY) | |
|
1039 | # #print 'self.dataOut.velocityV', self.dataOut.velocityV | |
|
1040 | # | |
|
1041 | # self.data_output[0]=numpy.array(self.dataOut.velocityX) | |
|
1042 | # self.data_output[1]=numpy.array(self.dataOut.velocityY) | |
|
1043 | # self.data_output[2]=numpy.array(self.dataOut.velocityV) | |
|
1044 | # | |
|
1045 | # prin= self.data_output[0][~numpy.isnan(self.data_output[0])] | |
|
1046 | # print ' ' | |
|
1047 | # print 'VmagAverage',numpy.mean(prin) | |
|
1048 | # print ' ' | |
|
1049 | # # plt.figure(5) | |
|
1050 | # # plt.subplot(211) | |
|
1051 | # # plt.plot(self.dataOut.velocityX,'yo:') | |
|
1052 | # # plt.subplot(212) | |
|
1053 | # # plt.plot(self.dataOut.velocityY,'yo:') | |
|
1054 | # | |
|
1055 | # # plt.figure(1) | |
|
1056 | # # # plt.subplot(121) | |
|
1057 | # # # plt.plot(xFrec,ySamples[0],'k',label='Ch0') | |
|
1058 | # # # plt.plot(xFrec,ySamples[1],'g',label='Ch1') | |
|
1059 | # # # plt.plot(xFrec,ySamples[2],'r',label='Ch2') | |
|
1060 | # # # plt.plot(xFrec,FitGauss,'yo:',label='fit') | |
|
1061 | # # # plt.legend() | |
|
1062 | # # plt.title('DATOS A ALTURA DE 2850 METROS') | |
|
1063 | # # | |
|
1064 | # # plt.xlabel('Frecuencia (KHz)') | |
|
1065 | # # plt.ylabel('Magnitud') | |
|
1066 | # # # plt.subplot(122) | |
|
1067 | # # # plt.title('Fit for Time Constant') | |
|
1068 | # # #plt.plot(xFrec,zline) | |
|
1069 | # # #plt.plot(xFrec,SmoothSPC,'g') | |
|
1070 | # # plt.plot(xFrec,FactNorm) | |
|
1071 | # # plt.axis([-4, 4, 0, 0.15]) | |
|
1072 | # # # plt.xlabel('SelfSpectra KHz') | |
|
1073 | # # | |
|
1074 | # # plt.figure(10) | |
|
1075 | # # # plt.subplot(121) | |
|
1076 | # # plt.plot(xFrec,ySamples[0],'b',label='Ch0') | |
|
1077 | # # plt.plot(xFrec,ySamples[1],'y',label='Ch1') | |
|
1078 | # # plt.plot(xFrec,ySamples[2],'r',label='Ch2') | |
|
1079 | # # # plt.plot(xFrec,FitGauss,'yo:',label='fit') | |
|
1080 | # # plt.legend() | |
|
1081 | # # plt.title('SELFSPECTRA EN CANALES') | |
|
1082 | # # | |
|
1083 | # # plt.xlabel('Frecuencia (KHz)') | |
|
1084 | # # plt.ylabel('Magnitud') | |
|
1085 | # # # plt.subplot(122) | |
|
1086 | # # # plt.title('Fit for Time Constant') | |
|
1087 | # # #plt.plot(xFrec,zline) | |
|
1088 | # # #plt.plot(xFrec,SmoothSPC,'g') | |
|
1089 | # # # plt.plot(xFrec,FactNorm) | |
|
1090 | # # # plt.axis([-4, 4, 0, 0.15]) | |
|
1091 | # # # plt.xlabel('SelfSpectra KHz') | |
|
1092 | # # | |
|
1093 | # # plt.figure(9) | |
|
1094 | # # | |
|
1095 | # # | |
|
1096 | # # plt.title('DATOS SUAVIZADOS') | |
|
1097 | # # plt.xlabel('Frecuencia (KHz)') | |
|
1098 | # # plt.ylabel('Magnitud') | |
|
1099 | # # plt.plot(xFrec,SmoothSPC,'g') | |
|
1100 | # # | |
|
1101 | # # #plt.plot(xFrec,FactNorm) | |
|
1102 | # # plt.axis([-4, 4, 0, 0.15]) | |
|
1103 | # # # plt.xlabel('SelfSpectra KHz') | |
|
1104 | # # # | |
|
1105 | # # plt.figure(2) | |
|
1106 | # # # #plt.subplot(121) | |
|
1107 | # # plt.plot(xFrec,yMean,'r',label='Mean SelfSpectra') | |
|
1108 | # # plt.plot(xFrec,FitGauss,'yo:',label='Ajuste Gaussiano') | |
|
1109 | # # # plt.plot(xFrec[Rangpos],FitGauss[Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.1)))],'bo') | |
|
1110 | # # # #plt.plot(xFrec,phase) | |
|
1111 | # # # plt.xlabel('Suavizado, promediado KHz') | |
|
1112 | # # plt.title('SELFSPECTRA PROMEDIADO') | |
|
1113 | # # # #plt.subplot(122) | |
|
1114 | # # # #plt.plot(xSamples,zline) | |
|
1115 | # # plt.xlabel('Frecuencia (KHz)') | |
|
1116 | # # plt.ylabel('Magnitud') | |
|
1117 | # # plt.legend() | |
|
1118 | # # # | |
|
1119 | # # # plt.figure(3) | |
|
1120 | # # # plt.subplot(311) | |
|
1121 | # # # #plt.plot(xFrec,phase[0]) | |
|
1122 | # # # plt.plot(xFrec,phase[0],'g') | |
|
1123 | # # # plt.subplot(312) | |
|
1124 | # # # plt.plot(xFrec,phase[1],'g') | |
|
1125 | # # # plt.subplot(313) | |
|
1126 | # # # plt.plot(xFrec,phase[2],'g') | |
|
1127 | # # # #plt.plot(xFrec,phase[2]) | |
|
1128 | # # # | |
|
1129 | # # # plt.figure(4) | |
|
1130 | # # # | |
|
1131 | # # # plt.plot(xSamples,coherence[0],'b') | |
|
1132 | # # # plt.plot(xSamples,coherence[1],'r') | |
|
1133 | # # # plt.plot(xSamples,coherence[2],'g') | |
|
1134 | # # plt.show() | |
|
1135 | # # # | |
|
1136 | # # # plt.clf() | |
|
1137 | # # # plt.cla() | |
|
1138 | # # # plt.close() | |
|
1139 | # | |
|
1140 | # print ' ' | |
|
1141 | ||
|
1142 | ||
|
1143 | ||
|
1144 | self.BlockCounter+=2 | |
|
1145 | ||
|
1146 | else: | |
|
1147 | self.fileSelector+=1 | |
|
1148 | self.BlockCounter=0 | |
|
1149 | print "Next File" | |
|
1150 | ||
|
1151 | ||
|
1152 | ||
|
1153 | ||
|
1154 |
This diff has been collapsed as it changes many lines, (632 lines changed) Show them Hide them | |||
@@ -0,0 +1,632 | |||
|
1 | ''' | |
|
2 | Created on Aug 1, 2017 | |
|
3 | ||
|
4 | @author: Juan C. Espinoza | |
|
5 | ''' | |
|
6 | ||
|
7 | import os | |
|
8 | import sys | |
|
9 | import time | |
|
10 | import json | |
|
11 | import glob | |
|
12 | import datetime | |
|
13 | ||
|
14 | import numpy | |
|
15 | import h5py | |
|
16 | ||
|
17 | from schainpy.model.io.jroIO_base import JRODataReader | |
|
18 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation | |
|
19 | from schainpy.model.data.jrodata import Parameters | |
|
20 | from schainpy.utils import log | |
|
21 | ||
|
22 | try: | |
|
23 | import madrigal.cedar | |
|
24 | except: | |
|
25 | log.warning( | |
|
26 | 'You should install "madrigal library" module if you want to read/write Madrigal data' | |
|
27 | ) | |
|
28 | ||
|
29 | DEF_CATALOG = { | |
|
30 | 'principleInvestigator': 'Marco Milla', | |
|
31 | 'expPurpose': None, | |
|
32 | 'cycleTime': None, | |
|
33 | 'correlativeExp': None, | |
|
34 | 'sciRemarks': None, | |
|
35 | 'instRemarks': None | |
|
36 | } | |
|
37 | DEF_HEADER = { | |
|
38 | 'kindatDesc': None, | |
|
39 | 'analyst': 'Jicamarca User', | |
|
40 | 'comments': None, | |
|
41 | 'history': None | |
|
42 | } | |
|
43 | MNEMONICS = { | |
|
44 | 10: 'jro', | |
|
45 | 11: 'jbr', | |
|
46 | 840: 'jul', | |
|
47 | 13: 'jas', | |
|
48 | 1000: 'pbr', | |
|
49 | 1001: 'hbr', | |
|
50 | 1002: 'obr', | |
|
51 | } | |
|
52 | ||
|
53 | UT1970 = datetime.datetime(1970, 1, 1) - datetime.timedelta(seconds=time.timezone) | |
|
54 | ||
|
55 | def load_json(obj): | |
|
56 | ''' | |
|
57 | Parse json as string instead of unicode | |
|
58 | ''' | |
|
59 | ||
|
60 | if isinstance(obj, str): | |
|
61 | iterable = json.loads(obj) | |
|
62 | else: | |
|
63 | iterable = obj | |
|
64 | ||
|
65 | if isinstance(iterable, dict): | |
|
66 | return {str(k): load_json(v) if isinstance(v, dict) else str(v) if isinstance(v, unicode) else v | |
|
67 | for k, v in iterable.items()} | |
|
68 | elif isinstance(iterable, (list, tuple)): | |
|
69 | return [str(v) if isinstance(v, unicode) else v for v in iterable] | |
|
70 | ||
|
71 | return iterable | |
|
72 | ||
|
73 | ||
|
74 | class MADReader(JRODataReader, ProcessingUnit): | |
|
75 | ||
|
76 | def __init__(self, **kwargs): | |
|
77 | ||
|
78 | ProcessingUnit.__init__(self, **kwargs) | |
|
79 | ||
|
80 | self.dataOut = Parameters() | |
|
81 | self.counter_records = 0 | |
|
82 | self.nrecords = None | |
|
83 | self.flagNoMoreFiles = 0 | |
|
84 | self.isConfig = False | |
|
85 | self.filename = None | |
|
86 | self.intervals = set() | |
|
87 | ||
|
88 | def setup(self, | |
|
89 | path=None, | |
|
90 | startDate=None, | |
|
91 | endDate=None, | |
|
92 | format=None, | |
|
93 | startTime=datetime.time(0, 0, 0), | |
|
94 | endTime=datetime.time(23, 59, 59), | |
|
95 | **kwargs): | |
|
96 | ||
|
97 | self.path = path | |
|
98 | self.startDate = startDate | |
|
99 | self.endDate = endDate | |
|
100 | self.startTime = startTime | |
|
101 | self.endTime = endTime | |
|
102 | self.datatime = datetime.datetime(1900,1,1) | |
|
103 | self.oneDDict = load_json(kwargs.get('oneDDict', | |
|
104 | "{\"GDLATR\":\"lat\", \"GDLONR\":\"lon\"}")) | |
|
105 | self.twoDDict = load_json(kwargs.get('twoDDict', | |
|
106 | "{\"GDALT\": \"heightList\"}")) | |
|
107 | self.ind2DList = load_json(kwargs.get('ind2DList', | |
|
108 | "[\"GDALT\"]")) | |
|
109 | if self.path is None: | |
|
110 | raise ValueError, 'The path is not valid' | |
|
111 | ||
|
112 | if format is None: | |
|
113 | raise ValueError, 'The format is not valid choose simple or hdf5' | |
|
114 | elif format.lower() in ('simple', 'txt'): | |
|
115 | self.ext = '.txt' | |
|
116 | elif format.lower() in ('cedar',): | |
|
117 | self.ext = '.001' | |
|
118 | else: | |
|
119 | self.ext = '.hdf5' | |
|
120 | ||
|
121 | self.search_files(self.path) | |
|
122 | self.fileId = 0 | |
|
123 | ||
|
124 | if not self.fileList: | |
|
125 | raise Warning, 'There is no files matching these date in the folder: {}. \n Check startDate and endDate'.format(path) | |
|
126 | ||
|
127 | self.setNextFile() | |
|
128 | ||
|
129 | def search_files(self, path): | |
|
130 | ''' | |
|
131 | Searching for madrigal files in path | |
|
132 | Creating a list of files to procces included in [startDate,endDate] | |
|
133 | ||
|
134 | Input: | |
|
135 | path - Path to find files | |
|
136 | ''' | |
|
137 | ||
|
138 | log.log('Searching files {} in {} '.format(self.ext, path), 'MADReader') | |
|
139 | foldercounter = 0 | |
|
140 | fileList0 = glob.glob1(path, '*{}'.format(self.ext)) | |
|
141 | fileList0.sort() | |
|
142 | ||
|
143 | self.fileList = [] | |
|
144 | self.dateFileList = [] | |
|
145 | ||
|
146 | startDate = self.startDate - datetime.timedelta(1) | |
|
147 | endDate = self.endDate + datetime.timedelta(1) | |
|
148 | ||
|
149 | for thisFile in fileList0: | |
|
150 | year = thisFile[3:7] | |
|
151 | if not year.isdigit(): | |
|
152 | continue | |
|
153 | ||
|
154 | month = thisFile[7:9] | |
|
155 | if not month.isdigit(): | |
|
156 | continue | |
|
157 | ||
|
158 | day = thisFile[9:11] | |
|
159 | if not day.isdigit(): | |
|
160 | continue | |
|
161 | ||
|
162 | year, month, day = int(year), int(month), int(day) | |
|
163 | dateFile = datetime.date(year, month, day) | |
|
164 | ||
|
165 | if (startDate > dateFile) or (endDate < dateFile): | |
|
166 | continue | |
|
167 | ||
|
168 | self.fileList.append(thisFile) | |
|
169 | self.dateFileList.append(dateFile) | |
|
170 | ||
|
171 | return | |
|
172 | ||
|
173 | def parseHeader(self): | |
|
174 | ''' | |
|
175 | ''' | |
|
176 | ||
|
177 | self.output = {} | |
|
178 | self.version = '2' | |
|
179 | s_parameters = None | |
|
180 | if self.ext == '.txt': | |
|
181 | self.parameters = [s.strip().lower() for s in self.fp.readline().strip().split(' ') if s] | |
|
182 | elif self.ext == '.hdf5': | |
|
183 | metadata = self.fp['Metadata'] | |
|
184 | data = self.fp['Data']['Array Layout'] | |
|
185 | if 'Independent Spatial Parameters' in metadata: | |
|
186 | s_parameters = [s[0].lower() for s in metadata['Independent Spatial Parameters']] | |
|
187 | self.version = '3' | |
|
188 | one = [s[0].lower() for s in data['1D Parameters']['Data Parameters']] | |
|
189 | one_d = [1 for s in one] | |
|
190 | two = [s[0].lower() for s in data['2D Parameters']['Data Parameters']] | |
|
191 | two_d = [2 for s in two] | |
|
192 | self.parameters = one + two | |
|
193 | self.parameters_d = one_d + two_d | |
|
194 | ||
|
195 | log.success('Parameters found: {}'.format(','.join(self.parameters)), | |
|
196 | 'MADReader') | |
|
197 | if s_parameters: | |
|
198 | log.success('Spatial parameters: {}'.format(','.join(s_parameters)), | |
|
199 | 'MADReader') | |
|
200 | ||
|
201 | for param in self.oneDDict.keys(): | |
|
202 | if param.lower() not in self.parameters: | |
|
203 | log.warning( | |
|
204 | 'Parameter {} not found will be ignored'.format( | |
|
205 | param), | |
|
206 | 'MADReader') | |
|
207 | self.oneDDict.pop(param, None) | |
|
208 | ||
|
209 | for param, value in self.twoDDict.items(): | |
|
210 | if param.lower() not in self.parameters: | |
|
211 | log.warning( | |
|
212 | 'Parameter {} not found, it will be ignored'.format( | |
|
213 | param), | |
|
214 | 'MADReader') | |
|
215 | self.twoDDict.pop(param, None) | |
|
216 | continue | |
|
217 | if isinstance(value, list): | |
|
218 | if value[0] not in self.output: | |
|
219 | self.output[value[0]] = [] | |
|
220 | self.output[value[0]].append(None) | |
|
221 | ||
|
222 | def parseData(self): | |
|
223 | ''' | |
|
224 | ''' | |
|
225 | ||
|
226 | if self.ext == '.txt': | |
|
227 | self.data = numpy.genfromtxt(self.fp, missing_values=('missing')) | |
|
228 | self.nrecords = self.data.shape[0] | |
|
229 | self.ranges = numpy.unique(self.data[:,self.parameters.index(self.ind2DList[0].lower())]) | |
|
230 | elif self.ext == '.hdf5': | |
|
231 | self.data = self.fp['Data']['Array Layout'] | |
|
232 | self.nrecords = len(self.data['timestamps'].value) | |
|
233 | self.ranges = self.data['range'].value | |
|
234 | ||
|
235 | def setNextFile(self): | |
|
236 | ''' | |
|
237 | ''' | |
|
238 | ||
|
239 | file_id = self.fileId | |
|
240 | ||
|
241 | if file_id == len(self.fileList): | |
|
242 | log.success('No more files', 'MADReader') | |
|
243 | self.flagNoMoreFiles = 1 | |
|
244 | return 0 | |
|
245 | ||
|
246 | log.success( | |
|
247 | 'Opening: {}'.format(self.fileList[file_id]), | |
|
248 | 'MADReader' | |
|
249 | ) | |
|
250 | ||
|
251 | filename = os.path.join(self.path, self.fileList[file_id]) | |
|
252 | ||
|
253 | if self.filename is not None: | |
|
254 | self.fp.close() | |
|
255 | ||
|
256 | self.filename = filename | |
|
257 | self.filedate = self.dateFileList[file_id] | |
|
258 | ||
|
259 | if self.ext=='.hdf5': | |
|
260 | self.fp = h5py.File(self.filename, 'r') | |
|
261 | else: | |
|
262 | self.fp = open(self.filename, 'rb') | |
|
263 | ||
|
264 | self.parseHeader() | |
|
265 | self.parseData() | |
|
266 | self.sizeOfFile = os.path.getsize(self.filename) | |
|
267 | self.counter_records = 0 | |
|
268 | self.flagIsNewFile = 0 | |
|
269 | self.fileId += 1 | |
|
270 | ||
|
271 | return 1 | |
|
272 | ||
|
273 | def readNextBlock(self): | |
|
274 | ||
|
275 | while True: | |
|
276 | self.flagDiscontinuousBlock = 0 | |
|
277 | if self.flagIsNewFile: | |
|
278 | if not self.setNextFile(): | |
|
279 | return 0 | |
|
280 | ||
|
281 | self.readBlock() | |
|
282 | ||
|
283 | if (self.datatime < datetime.datetime.combine(self.startDate, self.startTime)) or \ | |
|
284 | (self.datatime > datetime.datetime.combine(self.endDate, self.endTime)): | |
|
285 | log.warning( | |
|
286 | 'Reading Record No. {}/{} -> {} [Skipping]'.format( | |
|
287 | self.counter_records, | |
|
288 | self.nrecords, | |
|
289 | self.datatime.ctime()), | |
|
290 | 'MADReader') | |
|
291 | continue | |
|
292 | break | |
|
293 | ||
|
294 | log.log( | |
|
295 | 'Reading Record No. {}/{} -> {}'.format( | |
|
296 | self.counter_records, | |
|
297 | self.nrecords, | |
|
298 | self.datatime.ctime()), | |
|
299 | 'MADReader') | |
|
300 | ||
|
301 | return 1 | |
|
302 | ||
|
303 | def readBlock(self): | |
|
304 | ''' | |
|
305 | ''' | |
|
306 | dum = [] | |
|
307 | if self.ext == '.txt': | |
|
308 | dt = self.data[self.counter_records][:6].astype(int) | |
|
309 | self.datatime = datetime.datetime(dt[0], dt[1], dt[2], dt[3], dt[4], dt[5]) | |
|
310 | while True: | |
|
311 | dt = self.data[self.counter_records][:6].astype(int) | |
|
312 | datatime = datetime.datetime(dt[0], dt[1], dt[2], dt[3], dt[4], dt[5]) | |
|
313 | if datatime == self.datatime: | |
|
314 | dum.append(self.data[self.counter_records]) | |
|
315 | self.counter_records += 1 | |
|
316 | if self.counter_records == self.nrecords: | |
|
317 | self.flagIsNewFile = True | |
|
318 | break | |
|
319 | continue | |
|
320 | self.intervals.add((datatime-self.datatime).seconds) | |
|
321 | if datatime.date() > self.datatime.date(): | |
|
322 | self.flagDiscontinuousBlock = 1 | |
|
323 | break | |
|
324 | elif self.ext == '.hdf5': | |
|
325 | datatime = datetime.datetime.utcfromtimestamp( | |
|
326 | self.data['timestamps'][self.counter_records]) | |
|
327 | nHeights = len(self.ranges) | |
|
328 | for n, param in enumerate(self.parameters): | |
|
329 | if self.parameters_d[n] == 1: | |
|
330 | dum.append(numpy.ones(nHeights)*self.data['1D Parameters'][param][self.counter_records]) | |
|
331 | else: | |
|
332 | if self.version == '2': | |
|
333 | dum.append(self.data['2D Parameters'][param][self.counter_records]) | |
|
334 | else: | |
|
335 | tmp = self.data['2D Parameters'][param].value.T | |
|
336 | dum.append(tmp[self.counter_records]) | |
|
337 | self.intervals.add((datatime-self.datatime).seconds) | |
|
338 | if datatime.date()>self.datatime.date(): | |
|
339 | self.flagDiscontinuousBlock = 1 | |
|
340 | self.datatime = datatime | |
|
341 | self.counter_records += 1 | |
|
342 | if self.counter_records == self.nrecords: | |
|
343 | self.flagIsNewFile = True | |
|
344 | ||
|
345 | self.buffer = numpy.array(dum) | |
|
346 | return | |
|
347 | ||
|
348 | def set_output(self): | |
|
349 | ''' | |
|
350 | Storing data from buffer to dataOut object | |
|
351 | ''' | |
|
352 | ||
|
353 | parameters = [None for __ in self.parameters] | |
|
354 | ||
|
355 | for param, attr in self.oneDDict.items(): | |
|
356 | x = self.parameters.index(param.lower()) | |
|
357 | setattr(self.dataOut, attr, self.buffer[0][x]) | |
|
358 | ||
|
359 | for param, value in self.twoDDict.items(): | |
|
360 | x = self.parameters.index(param.lower()) | |
|
361 | if self.ext == '.txt': | |
|
362 | y = self.parameters.index(self.ind2DList[0].lower()) | |
|
363 | ranges = self.buffer[:,y] | |
|
364 | if self.ranges.size == ranges.size: | |
|
365 | continue | |
|
366 | index = numpy.where(numpy.in1d(self.ranges, ranges))[0] | |
|
367 | dummy = numpy.zeros(self.ranges.shape) + numpy.nan | |
|
368 | dummy[index] = self.buffer[:,x] | |
|
369 | else: | |
|
370 | dummy = self.buffer[x] | |
|
371 | ||
|
372 | if isinstance(value, str): | |
|
373 | if value not in self.ind2DList: | |
|
374 | setattr(self.dataOut, value, dummy.reshape(1,-1)) | |
|
375 | elif isinstance(value, list): | |
|
376 | self.output[value[0]][value[1]] = dummy | |
|
377 | parameters[value[1]] = param | |
|
378 | ||
|
379 | for key, value in self.output.items(): | |
|
380 | setattr(self.dataOut, key, numpy.array(value)) | |
|
381 | ||
|
382 | self.dataOut.parameters = [s for s in parameters if s] | |
|
383 | self.dataOut.heightList = self.ranges | |
|
384 | self.dataOut.utctime = (self.datatime - UT1970).total_seconds() | |
|
385 | self.dataOut.utctimeInit = self.dataOut.utctime | |
|
386 | self.dataOut.paramInterval = min(self.intervals) | |
|
387 | self.dataOut.useLocalTime = False | |
|
388 | self.dataOut.flagNoData = False | |
|
389 | self.dataOut.nrecords = self.nrecords | |
|
390 | self.dataOut.flagDiscontinuousBlock = self.flagDiscontinuousBlock | |
|
391 | ||
|
392 | def getData(self): | |
|
393 | ''' | |
|
394 | Storing data from databuffer to dataOut object | |
|
395 | ''' | |
|
396 | if self.flagNoMoreFiles: | |
|
397 | self.dataOut.flagNoData = True | |
|
398 | log.error('No file left to process', 'MADReader') | |
|
399 | return 0 | |
|
400 | ||
|
401 | if not self.readNextBlock(): | |
|
402 | self.dataOut.flagNoData = True | |
|
403 | return 0 | |
|
404 | ||
|
405 | self.set_output() | |
|
406 | ||
|
407 | return 1 | |
|
408 | ||
|
409 | ||
|
410 | class MADWriter(Operation): | |
|
411 | ||
|
412 | missing = -32767 | |
|
413 | ||
|
414 | def __init__(self, **kwargs): | |
|
415 | ||
|
416 | Operation.__init__(self, **kwargs) | |
|
417 | self.dataOut = Parameters() | |
|
418 | self.path = None | |
|
419 | self.fp = None | |
|
420 | ||
|
421 | def run(self, dataOut, path, oneDDict, ind2DList='[]', twoDDict='{}', | |
|
422 | metadata='{}', format='cedar', **kwargs): | |
|
423 | ''' | |
|
424 | Inputs: | |
|
425 | path - path where files will be created | |
|
426 | oneDDict - json of one-dimensional parameters in record where keys | |
|
427 | are Madrigal codes (integers or mnemonics) and values the corresponding | |
|
428 | dataOut attribute e.g: { | |
|
429 | 'gdlatr': 'lat', | |
|
430 | 'gdlonr': 'lon', | |
|
431 | 'gdlat2':'lat', | |
|
432 | 'glon2':'lon'} | |
|
433 | ind2DList - list of independent spatial two-dimensional parameters e.g: | |
|
434 | ['heighList'] | |
|
435 | twoDDict - json of two-dimensional parameters in record where keys | |
|
436 | are Madrigal codes (integers or mnemonics) and values the corresponding | |
|
437 | dataOut attribute if multidimensional array specify as tupple | |
|
438 | ('attr', pos) e.g: { | |
|
439 | 'gdalt': 'heightList', | |
|
440 | 'vn1p2': ('data_output', 0), | |
|
441 | 'vn2p2': ('data_output', 1), | |
|
442 | 'vn3': ('data_output', 2), | |
|
443 | 'snl': ('data_SNR', 'db') | |
|
444 | } | |
|
445 | metadata - json of madrigal metadata (kinst, kindat, catalog and header) | |
|
446 | ''' | |
|
447 | if not self.isConfig: | |
|
448 | self.setup(path, oneDDict, ind2DList, twoDDict, metadata, format, **kwargs) | |
|
449 | self.isConfig = True | |
|
450 | ||
|
451 | self.dataOut = dataOut | |
|
452 | self.putData() | |
|
453 | return | |
|
454 | ||
|
455 | def setup(self, path, oneDDict, ind2DList, twoDDict, metadata, format, **kwargs): | |
|
456 | ''' | |
|
457 | Configure Operation | |
|
458 | ''' | |
|
459 | ||
|
460 | self.path = path | |
|
461 | self.blocks = kwargs.get('blocks', None) | |
|
462 | self.counter = 0 | |
|
463 | self.oneDDict = load_json(oneDDict) | |
|
464 | self.twoDDict = load_json(twoDDict) | |
|
465 | self.ind2DList = load_json(ind2DList) | |
|
466 | meta = load_json(metadata) | |
|
467 | self.kinst = meta.get('kinst') | |
|
468 | self.kindat = meta.get('kindat') | |
|
469 | self.catalog = meta.get('catalog', DEF_CATALOG) | |
|
470 | self.header = meta.get('header', DEF_HEADER) | |
|
471 | if format == 'cedar': | |
|
472 | self.ext = '.dat' | |
|
473 | self.extra_args = {} | |
|
474 | elif format == 'hdf5': | |
|
475 | self.ext = '.hdf5' | |
|
476 | self.extra_args = {'ind2DList': self.ind2DList} | |
|
477 | ||
|
478 | self.keys = [k.lower() for k in self.twoDDict] | |
|
479 | if 'range' in self.keys: | |
|
480 | self.keys.remove('range') | |
|
481 | if 'gdalt' in self.keys: | |
|
482 | self.keys.remove('gdalt') | |
|
483 | ||
|
484 | def setFile(self): | |
|
485 | ''' | |
|
486 | Create new cedar file object | |
|
487 | ''' | |
|
488 | ||
|
489 | self.mnemonic = MNEMONICS[self.kinst] #TODO get mnemonic from madrigal | |
|
490 | date = datetime.datetime.fromtimestamp(self.dataOut.utctime) | |
|
491 | ||
|
492 | filename = '{}{}{}'.format(self.mnemonic, | |
|
493 | date.strftime('%Y%m%d_%H%M%S'), | |
|
494 | self.ext) | |
|
495 | ||
|
496 | self.fullname = os.path.join(self.path, filename) | |
|
497 | ||
|
498 | if os.path.isfile(self.fullname) : | |
|
499 | log.warning( | |
|
500 | 'Destination path {} already exists. Previous file deleted.'.format( | |
|
501 | self.fullname), | |
|
502 | 'MADWriter') | |
|
503 | os.remove(self.fullname) | |
|
504 | ||
|
505 | try: | |
|
506 | log.success( | |
|
507 | 'Creating file: {}'.format(self.fullname), | |
|
508 | 'MADWriter') | |
|
509 | self.fp = madrigal.cedar.MadrigalCedarFile(self.fullname, True) | |
|
510 | except ValueError, e: | |
|
511 | log.error( | |
|
512 | 'Impossible to create a cedar object with "madrigal.cedar.MadrigalCedarFile"', | |
|
513 | 'MADWriter') | |
|
514 | return | |
|
515 | ||
|
516 | return 1 | |
|
517 | ||
|
518 | def writeBlock(self): | |
|
519 | ''' | |
|
520 | Add data records to cedar file taking data from oneDDict and twoDDict | |
|
521 | attributes. | |
|
522 | Allowed parameters in: parcodes.tab | |
|
523 | ''' | |
|
524 | ||
|
525 | startTime = datetime.datetime.fromtimestamp(self.dataOut.utctime) | |
|
526 | endTime = startTime + datetime.timedelta(seconds=self.dataOut.paramInterval) | |
|
527 | heights = self.dataOut.heightList | |
|
528 | ||
|
529 | if self.ext == '.dat': | |
|
530 | invalid = numpy.isnan(self.dataOut.data_output) | |
|
531 | self.dataOut.data_output[invalid] = self.missing | |
|
532 | out = {} | |
|
533 | for key, value in self.twoDDict.items(): | |
|
534 | key = key.lower() | |
|
535 | if isinstance(value, str): | |
|
536 | if 'db' in value.lower(): | |
|
537 | tmp = getattr(self.dataOut, value.replace('_db', '')) | |
|
538 | SNRavg = numpy.average(tmp, axis=0) | |
|
539 | tmp = 10*numpy.log10(SNRavg) | |
|
540 | else: | |
|
541 | tmp = getattr(self.dataOut, value) | |
|
542 | out[key] = tmp.flatten() | |
|
543 | elif isinstance(value, (tuple, list)): | |
|
544 | attr, x = value | |
|
545 | data = getattr(self.dataOut, attr) | |
|
546 | out[key] = data[int(x)] | |
|
547 | ||
|
548 | a = numpy.array([out[k] for k in self.keys]) | |
|
549 | nrows = numpy.array([numpy.isnan(a[:, x]).all() for x in range(len(heights))]) | |
|
550 | index = numpy.where(nrows == False)[0] | |
|
551 | ||
|
552 | rec = madrigal.cedar.MadrigalDataRecord( | |
|
553 | self.kinst, | |
|
554 | self.kindat, | |
|
555 | startTime.year, | |
|
556 | startTime.month, | |
|
557 | startTime.day, | |
|
558 | startTime.hour, | |
|
559 | startTime.minute, | |
|
560 | startTime.second, | |
|
561 | startTime.microsecond/10000, | |
|
562 | endTime.year, | |
|
563 | endTime.month, | |
|
564 | endTime.day, | |
|
565 | endTime.hour, | |
|
566 | endTime.minute, | |
|
567 | endTime.second, | |
|
568 | endTime.microsecond/10000, | |
|
569 | self.oneDDict.keys(), | |
|
570 | self.twoDDict.keys(), | |
|
571 | len(index), | |
|
572 | **self.extra_args | |
|
573 | ) | |
|
574 | ||
|
575 | # Setting 1d values | |
|
576 | for key in self.oneDDict: | |
|
577 | rec.set1D(key, getattr(self.dataOut, self.oneDDict[key])) | |
|
578 | ||
|
579 | # Setting 2d values | |
|
580 | nrec = 0 | |
|
581 | for n in index: | |
|
582 | for key in out: | |
|
583 | rec.set2D(key, nrec, out[key][n]) | |
|
584 | nrec += 1 | |
|
585 | ||
|
586 | self.fp.append(rec) | |
|
587 | if self.ext == '.hdf5' and self.counter % 500 == 0 and self.counter > 0: | |
|
588 | self.fp.dump() | |
|
589 | if self.counter % 10 == 0 and self.counter > 0: | |
|
590 | log.log( | |
|
591 | 'Writing {} records'.format( | |
|
592 | self.counter), | |
|
593 | 'MADWriter') | |
|
594 | ||
|
595 | def setHeader(self): | |
|
596 | ''' | |
|
597 | Create an add catalog and header to cedar file | |
|
598 | ''' | |
|
599 | ||
|
600 | log.success('Closing file {}'.format(self.fullname), 'MADWriter') | |
|
601 | ||
|
602 | if self.ext == '.dat': | |
|
603 | self.fp.write() | |
|
604 | else: | |
|
605 | self.fp.dump() | |
|
606 | self.fp.close() | |
|
607 | ||
|
608 | header = madrigal.cedar.CatalogHeaderCreator(self.fullname) | |
|
609 | header.createCatalog(**self.catalog) | |
|
610 | header.createHeader(**self.header) | |
|
611 | header.write() | |
|
612 | ||
|
613 | def putData(self): | |
|
614 | ||
|
615 | if self.dataOut.flagNoData: | |
|
616 | return 0 | |
|
617 | ||
|
618 | if self.dataOut.flagDiscontinuousBlock or self.counter == self.blocks: | |
|
619 | if self.counter > 0: | |
|
620 | self.setHeader() | |
|
621 | self.counter = 0 | |
|
622 | ||
|
623 | if self.counter == 0: | |
|
624 | self.setFile() | |
|
625 | ||
|
626 | self.writeBlock() | |
|
627 | self.counter += 1 | |
|
628 | ||
|
629 | def close(self): | |
|
630 | ||
|
631 | if self.counter > 0: | |
|
632 | self.setHeader() |
This diff has been collapsed as it changes many lines, (803 lines changed) Show them Hide them | |||
@@ -0,0 +1,803 | |||
|
1 | import os, sys | |
|
2 | import glob | |
|
3 | import fnmatch | |
|
4 | import datetime | |
|
5 | import time | |
|
6 | import re | |
|
7 | import h5py | |
|
8 | import numpy | |
|
9 | import matplotlib.pyplot as plt | |
|
10 | ||
|
11 | import pylab as plb | |
|
12 | from scipy.optimize import curve_fit | |
|
13 | from scipy import asarray as ar,exp | |
|
14 | from scipy import stats | |
|
15 | ||
|
16 | from numpy.ma.core import getdata | |
|
17 | ||
|
18 | SPEED_OF_LIGHT = 299792458 | |
|
19 | SPEED_OF_LIGHT = 3e8 | |
|
20 | ||
|
21 | try: | |
|
22 | from gevent import sleep | |
|
23 | except: | |
|
24 | from time import sleep | |
|
25 | ||
|
26 | from schainpy.model.data.jrodata import Spectra | |
|
27 | #from schainpy.model.data.BLTRheaderIO import FileHeader, RecordHeader | |
|
28 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation | |
|
29 | #from schainpy.model.io.jroIO_bltr import BLTRReader | |
|
30 | from numpy import imag, shape, NaN, empty | |
|
31 | ||
|
32 | ||
|
33 | ||
|
34 | class Header(object): | |
|
35 | ||
|
36 | def __init__(self): | |
|
37 | raise NotImplementedError | |
|
38 | ||
|
39 | ||
|
40 | def read(self): | |
|
41 | ||
|
42 | raise NotImplementedError | |
|
43 | ||
|
44 | def write(self): | |
|
45 | ||
|
46 | raise NotImplementedError | |
|
47 | ||
|
48 | def printInfo(self): | |
|
49 | ||
|
50 | message = "#"*50 + "\n" | |
|
51 | message += self.__class__.__name__.upper() + "\n" | |
|
52 | message += "#"*50 + "\n" | |
|
53 | ||
|
54 | keyList = self.__dict__.keys() | |
|
55 | keyList.sort() | |
|
56 | ||
|
57 | for key in keyList: | |
|
58 | message += "%s = %s" %(key, self.__dict__[key]) + "\n" | |
|
59 | ||
|
60 | if "size" not in keyList: | |
|
61 | attr = getattr(self, "size") | |
|
62 | ||
|
63 | if attr: | |
|
64 | message += "%s = %s" %("size", attr) + "\n" | |
|
65 | ||
|
66 | #print message | |
|
67 | ||
|
68 | ||
|
69 | FILE_HEADER = numpy.dtype([ #HEADER 1024bytes | |
|
70 | ('Hname','a32'), #Original file name | |
|
71 | ('Htime',numpy.str_,32), #Date and time when the file was created | |
|
72 | ('Hoper',numpy.str_,64), #Name of operator who created the file | |
|
73 | ('Hplace',numpy.str_,128), #Place where the measurements was carried out | |
|
74 | ('Hdescr',numpy.str_,256), #Description of measurements | |
|
75 | ('Hdummy',numpy.str_,512), #Reserved space | |
|
76 | #Main chunk 8bytes | |
|
77 | ('Msign',numpy.str_,4), #Main chunk signature FZKF or NUIG | |
|
78 | ('MsizeData','<i4'), #Size of data block main chunk | |
|
79 | #Processing DSP parameters 36bytes | |
|
80 | ('PPARsign',numpy.str_,4), #PPAR signature | |
|
81 | ('PPARsize','<i4'), #PPAR size of block | |
|
82 | ('PPARprf','<i4'), #Pulse repetition frequency | |
|
83 | ('PPARpdr','<i4'), #Pulse duration | |
|
84 | ('PPARsft','<i4'), #FFT length | |
|
85 | ('PPARavc','<i4'), #Number of spectral (in-coherent) averages | |
|
86 | ('PPARihp','<i4'), #Number of lowest range gate for moment estimation | |
|
87 | ('PPARchg','<i4'), #Count for gates for moment estimation | |
|
88 | ('PPARpol','<i4'), #switch on/off polarimetric measurements. Should be 1. | |
|
89 | #Service DSP parameters 112bytes | |
|
90 | ('SPARatt','<i4'), #STC attenuation on the lowest ranges on/off | |
|
91 | ('SPARtx','<i4'), #OBSOLETE | |
|
92 | ('SPARaddGain0','<f4'), #OBSOLETE | |
|
93 | ('SPARaddGain1','<f4'), #OBSOLETE | |
|
94 | ('SPARwnd','<i4'), #Debug only. It normal mode it is 0. | |
|
95 | ('SPARpos','<i4'), #Delay between sync pulse and tx pulse for phase corr, ns | |
|
96 | ('SPARadd','<i4'), #"add to pulse" to compensate for delay between the leading edge of driver pulse and envelope of the RF signal. | |
|
97 | ('SPARlen','<i4'), #Time for measuring txn pulse phase. OBSOLETE | |
|
98 | ('SPARcal','<i4'), #OBSOLETE | |
|
99 | ('SPARnos','<i4'), #OBSOLETE | |
|
100 | ('SPARof0','<i4'), #detection threshold | |
|
101 | ('SPARof1','<i4'), #OBSOLETE | |
|
102 | ('SPARswt','<i4'), #2nd moment estimation threshold | |
|
103 | ('SPARsum','<i4'), #OBSOLETE | |
|
104 | ('SPARosc','<i4'), #flag Oscillosgram mode | |
|
105 | ('SPARtst','<i4'), #OBSOLETE | |
|
106 | ('SPARcor','<i4'), #OBSOLETE | |
|
107 | ('SPARofs','<i4'), #OBSOLETE | |
|
108 | ('SPARhsn','<i4'), #Hildebrand div noise detection on noise gate | |
|
109 | ('SPARhsa','<f4'), #Hildebrand div noise detection on all gates | |
|
110 | ('SPARcalibPow_M','<f4'), #OBSOLETE | |
|
111 | ('SPARcalibSNR_M','<f4'), #OBSOLETE | |
|
112 | ('SPARcalibPow_S','<f4'), #OBSOLETE | |
|
113 | ('SPARcalibSNR_S','<f4'), #OBSOLETE | |
|
114 | ('SPARrawGate1','<i4'), #Lowest range gate for spectra saving Raw_Gate1 >=5 | |
|
115 | ('SPARrawGate2','<i4'), #Number of range gates with atmospheric signal | |
|
116 | ('SPARraw','<i4'), #flag - IQ or spectra saving on/off | |
|
117 | ('SPARprc','<i4'),]) #flag - Moment estimation switched on/off | |
|
118 | ||
|
119 | ||
|
120 | ||
|
121 | class FileHeaderMIRA35c(Header): | |
|
122 | ||
|
123 | def __init__(self): | |
|
124 | ||
|
125 | self.Hname= None | |
|
126 | self.Htime= None | |
|
127 | self.Hoper= None | |
|
128 | self.Hplace= None | |
|
129 | self.Hdescr= None | |
|
130 | self.Hdummy= None | |
|
131 | ||
|
132 | self.Msign=None | |
|
133 | self.MsizeData=None | |
|
134 | ||
|
135 | self.PPARsign=None | |
|
136 | self.PPARsize=None | |
|
137 | self.PPARprf=None | |
|
138 | self.PPARpdr=None | |
|
139 | self.PPARsft=None | |
|
140 | self.PPARavc=None | |
|
141 | self.PPARihp=None | |
|
142 | self.PPARchg=None | |
|
143 | self.PPARpol=None | |
|
144 | #Service DSP parameters | |
|
145 | self.SPARatt=None | |
|
146 | self.SPARtx=None | |
|
147 | self.SPARaddGain0=None | |
|
148 | self.SPARaddGain1=None | |
|
149 | self.SPARwnd=None | |
|
150 | self.SPARpos=None | |
|
151 | self.SPARadd=None | |
|
152 | self.SPARlen=None | |
|
153 | self.SPARcal=None | |
|
154 | self.SPARnos=None | |
|
155 | self.SPARof0=None | |
|
156 | self.SPARof1=None | |
|
157 | self.SPARswt=None | |
|
158 | self.SPARsum=None | |
|
159 | self.SPARosc=None | |
|
160 | self.SPARtst=None | |
|
161 | self.SPARcor=None | |
|
162 | self.SPARofs=None | |
|
163 | self.SPARhsn=None | |
|
164 | self.SPARhsa=None | |
|
165 | self.SPARcalibPow_M=None | |
|
166 | self.SPARcalibSNR_M=None | |
|
167 | self.SPARcalibPow_S=None | |
|
168 | self.SPARcalibSNR_S=None | |
|
169 | self.SPARrawGate1=None | |
|
170 | self.SPARrawGate2=None | |
|
171 | self.SPARraw=None | |
|
172 | self.SPARprc=None | |
|
173 | ||
|
174 | self.FHsize=1180 | |
|
175 | ||
|
176 | def FHread(self, fp): | |
|
177 | ||
|
178 | header = numpy.fromfile(fp, FILE_HEADER,1) | |
|
179 | ''' numpy.fromfile(file, dtype, count, sep='') | |
|
180 | file : file or str | |
|
181 | Open file object or filename. | |
|
182 | ||
|
183 | dtype : data-type | |
|
184 | Data type of the returned array. For binary files, it is used to determine | |
|
185 | the size and byte-order of the items in the file. | |
|
186 | ||
|
187 | count : int | |
|
188 | Number of items to read. -1 means all items (i.e., the complete file). | |
|
189 | ||
|
190 | sep : str | |
|
191 | Separator between items if file is a text file. Empty ("") separator means | |
|
192 | the file should be treated as binary. Spaces (" ") in the separator match zero | |
|
193 | or more whitespace characters. A separator consisting only of spaces must match | |
|
194 | at least one whitespace. | |
|
195 | ||
|
196 | ''' | |
|
197 | ||
|
198 | ||
|
199 | self.Hname= str(header['Hname'][0]) | |
|
200 | self.Htime= str(header['Htime'][0]) | |
|
201 | self.Hoper= str(header['Hoper'][0]) | |
|
202 | self.Hplace= str(header['Hplace'][0]) | |
|
203 | self.Hdescr= str(header['Hdescr'][0]) | |
|
204 | self.Hdummy= str(header['Hdummy'][0]) | |
|
205 | #1024 | |
|
206 | ||
|
207 | self.Msign=str(header['Msign'][0]) | |
|
208 | self.MsizeData=header['MsizeData'][0] | |
|
209 | #8 | |
|
210 | ||
|
211 | self.PPARsign=str(header['PPARsign'][0]) | |
|
212 | self.PPARsize=header['PPARsize'][0] | |
|
213 | self.PPARprf=header['PPARprf'][0] | |
|
214 | self.PPARpdr=header['PPARpdr'][0] | |
|
215 | self.PPARsft=header['PPARsft'][0] | |
|
216 | self.PPARavc=header['PPARavc'][0] | |
|
217 | self.PPARihp=header['PPARihp'][0] | |
|
218 | self.PPARchg=header['PPARchg'][0] | |
|
219 | self.PPARpol=header['PPARpol'][0] | |
|
220 | #Service DSP parameters | |
|
221 | #36 | |
|
222 | ||
|
223 | self.SPARatt=header['SPARatt'][0] | |
|
224 | self.SPARtx=header['SPARtx'][0] | |
|
225 | self.SPARaddGain0=header['SPARaddGain0'][0] | |
|
226 | self.SPARaddGain1=header['SPARaddGain1'][0] | |
|
227 | self.SPARwnd=header['SPARwnd'][0] | |
|
228 | self.SPARpos=header['SPARpos'][0] | |
|
229 | self.SPARadd=header['SPARadd'][0] | |
|
230 | self.SPARlen=header['SPARlen'][0] | |
|
231 | self.SPARcal=header['SPARcal'][0] | |
|
232 | self.SPARnos=header['SPARnos'][0] | |
|
233 | self.SPARof0=header['SPARof0'][0] | |
|
234 | self.SPARof1=header['SPARof1'][0] | |
|
235 | self.SPARswt=header['SPARswt'][0] | |
|
236 | self.SPARsum=header['SPARsum'][0] | |
|
237 | self.SPARosc=header['SPARosc'][0] | |
|
238 | self.SPARtst=header['SPARtst'][0] | |
|
239 | self.SPARcor=header['SPARcor'][0] | |
|
240 | self.SPARofs=header['SPARofs'][0] | |
|
241 | self.SPARhsn=header['SPARhsn'][0] | |
|
242 | self.SPARhsa=header['SPARhsa'][0] | |
|
243 | self.SPARcalibPow_M=header['SPARcalibPow_M'][0] | |
|
244 | self.SPARcalibSNR_M=header['SPARcalibSNR_M'][0] | |
|
245 | self.SPARcalibPow_S=header['SPARcalibPow_S'][0] | |
|
246 | self.SPARcalibSNR_S=header['SPARcalibSNR_S'][0] | |
|
247 | self.SPARrawGate1=header['SPARrawGate1'][0] | |
|
248 | self.SPARrawGate2=header['SPARrawGate2'][0] | |
|
249 | self.SPARraw=header['SPARraw'][0] | |
|
250 | self.SPARprc=header['SPARprc'][0] | |
|
251 | #112 | |
|
252 | #1180 | |
|
253 | #print 'Pointer fp header', fp.tell() | |
|
254 | #print ' ' | |
|
255 | #print 'SPARrawGate' | |
|
256 | #print self.SPARrawGate2 - self.SPARrawGate1 | |
|
257 | ||
|
258 | #print ' ' | |
|
259 | #print 'Hname' | |
|
260 | #print self.Hname | |
|
261 | ||
|
262 | #print ' ' | |
|
263 | #print 'Msign' | |
|
264 | #print self.Msign | |
|
265 | ||
|
266 | def write(self, fp): | |
|
267 | ||
|
268 | headerTuple = (self.Hname, | |
|
269 | self.Htime, | |
|
270 | self.Hoper, | |
|
271 | self.Hplace, | |
|
272 | self.Hdescr, | |
|
273 | self.Hdummy) | |
|
274 | ||
|
275 | ||
|
276 | header = numpy.array(headerTuple, FILE_HEADER) | |
|
277 | # numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0) | |
|
278 | header.tofile(fp) | |
|
279 | ''' ndarray.tofile(fid, sep, format) Write array to a file as text or binary (default). | |
|
280 | ||
|
281 | fid : file or str | |
|
282 | An open file object, or a string containing a filename. | |
|
283 | ||
|
284 | sep : str | |
|
285 | Separator between array items for text output. If "" (empty), a binary file is written, | |
|
286 | equivalent to file.write(a.tobytes()). | |
|
287 | ||
|
288 | format : str | |
|
289 | Format string for text file output. Each entry in the array is formatted to text by | |
|
290 | first converting it to the closest Python type, and then using "format" % item. | |
|
291 | ||
|
292 | ''' | |
|
293 | ||
|
294 | return 1 | |
|
295 | ||
|
296 | SRVI_HEADER = numpy.dtype([ | |
|
297 | ('SignatureSRVI1',numpy.str_,4),# | |
|
298 | ('SizeOfDataBlock1','<i4'),# | |
|
299 | ('DataBlockTitleSRVI1',numpy.str_,4),# | |
|
300 | ('SizeOfSRVI1','<i4'),])# | |
|
301 | ||
|
302 | class SRVIHeader(Header): | |
|
303 | def __init__(self, SignatureSRVI1=0, SizeOfDataBlock1=0, DataBlockTitleSRVI1=0, SizeOfSRVI1=0): | |
|
304 | ||
|
305 | self.SignatureSRVI1 = SignatureSRVI1 | |
|
306 | self.SizeOfDataBlock1 = SizeOfDataBlock1 | |
|
307 | self.DataBlockTitleSRVI1 = DataBlockTitleSRVI1 | |
|
308 | self.SizeOfSRVI1 = SizeOfSRVI1 | |
|
309 | ||
|
310 | self.SRVIHsize=16 | |
|
311 | ||
|
312 | def SRVIread(self, fp): | |
|
313 | ||
|
314 | header = numpy.fromfile(fp, SRVI_HEADER,1) | |
|
315 | ||
|
316 | self.SignatureSRVI1 = str(header['SignatureSRVI1'][0]) | |
|
317 | self.SizeOfDataBlock1 = header['SizeOfDataBlock1'][0] | |
|
318 | self.DataBlockTitleSRVI1 = str(header['DataBlockTitleSRVI1'][0]) | |
|
319 | self.SizeOfSRVI1 = header['SizeOfSRVI1'][0] | |
|
320 | #16 | |
|
321 | print 'Pointer fp SRVIheader', fp.tell() | |
|
322 | ||
|
323 | ||
|
324 | SRVI_STRUCTURE = numpy.dtype([ | |
|
325 | ('frame_cnt','<u4'),# | |
|
326 | ('time_t','<u4'), # | |
|
327 | ('tpow','<f4'), # | |
|
328 | ('npw1','<f4'), # | |
|
329 | ('npw2','<f4'), # | |
|
330 | ('cpw1','<f4'), # | |
|
331 | ('pcw2','<f4'), # | |
|
332 | ('ps_err','<u4'), # | |
|
333 | ('te_err','<u4'), # | |
|
334 | ('rc_err','<u4'), # | |
|
335 | ('grs1','<u4'), # | |
|
336 | ('grs2','<u4'), # | |
|
337 | ('azipos','<f4'), # | |
|
338 | ('azivel','<f4'), # | |
|
339 | ('elvpos','<f4'), # | |
|
340 | ('elvvel','<f4'), # | |
|
341 | ('northAngle','<f4'), # | |
|
342 | ('microsec','<u4'), # | |
|
343 | ('azisetvel','<f4'), # | |
|
344 | ('elvsetpos','<f4'), # | |
|
345 | ('RadarConst','<f4'),]) # | |
|
346 | ||
|
347 | ||
|
348 | ||
|
349 | ||
|
350 | class RecordHeader(Header): | |
|
351 | ||
|
352 | ||
|
353 | def __init__(self, frame_cnt=0, time_t= 0, tpow=0, npw1=0, npw2=0, | |
|
354 | cpw1=0, pcw2=0, ps_err=0, te_err=0, rc_err=0, grs1=0, | |
|
355 | grs2=0, azipos=0, azivel=0, elvpos=0, elvvel=0, northangle=0, | |
|
356 | microsec=0, azisetvel=0, elvsetpos=0, RadarConst=0 , RecCounter=0, Off2StartNxtRec=0): | |
|
357 | ||
|
358 | ||
|
359 | self.frame_cnt = frame_cnt | |
|
360 | self.dwell = time_t | |
|
361 | self.tpow = tpow | |
|
362 | self.npw1 = npw1 | |
|
363 | self.npw2 = npw2 | |
|
364 | self.cpw1 = cpw1 | |
|
365 | self.pcw2 = pcw2 | |
|
366 | self.ps_err = ps_err | |
|
367 | self.te_err = te_err | |
|
368 | self.rc_err = rc_err | |
|
369 | self.grs1 = grs1 | |
|
370 | self.grs2 = grs2 | |
|
371 | self.azipos = azipos | |
|
372 | self.azivel = azivel | |
|
373 | self.elvpos = elvpos | |
|
374 | self.elvvel = elvvel | |
|
375 | self.northAngle = northangle | |
|
376 | self.microsec = microsec | |
|
377 | self.azisetvel = azisetvel | |
|
378 | self.elvsetpos = elvsetpos | |
|
379 | self.RadarConst = RadarConst | |
|
380 | self.RHsize=84 | |
|
381 | self.RecCounter = RecCounter | |
|
382 | self.Off2StartNxtRec=Off2StartNxtRec | |
|
383 | ||
|
384 | def RHread(self, fp): | |
|
385 | ||
|
386 | #startFp = open(fp,"rb") #The method tell() returns the current position of the file read/write pointer within the file. | |
|
387 | ||
|
388 | #OffRHeader= 1180 + self.RecCounter*(self.Off2StartNxtRec) | |
|
389 | #startFp.seek(OffRHeader, os.SEEK_SET) | |
|
390 | ||
|
391 | #print 'Posicion del bloque: ',OffRHeader | |
|
392 | ||
|
393 | header = numpy.fromfile(fp,SRVI_STRUCTURE,1) | |
|
394 | ||
|
395 | self.frame_cnt = header['frame_cnt'][0]# | |
|
396 | self.time_t = header['time_t'][0] # | |
|
397 | self.tpow = header['tpow'][0] # | |
|
398 | self.npw1 = header['npw1'][0] # | |
|
399 | self.npw2 = header['npw2'][0] # | |
|
400 | self.cpw1 = header['cpw1'][0] # | |
|
401 | self.pcw2 = header['pcw2'][0] # | |
|
402 | self.ps_err = header['ps_err'][0] # | |
|
403 | self.te_err = header['te_err'][0] # | |
|
404 | self.rc_err = header['rc_err'][0] # | |
|
405 | self.grs1 = header['grs1'][0] # | |
|
406 | self.grs2 = header['grs2'][0] # | |
|
407 | self.azipos = header['azipos'][0] # | |
|
408 | self.azivel = header['azivel'][0] # | |
|
409 | self.elvpos = header['elvpos'][0] # | |
|
410 | self.elvvel = header['elvvel'][0] # | |
|
411 | self.northAngle = header['northAngle'][0] # | |
|
412 | self.microsec = header['microsec'][0] # | |
|
413 | self.azisetvel = header['azisetvel'][0] # | |
|
414 | self.elvsetpos = header['elvsetpos'][0] # | |
|
415 | self.RadarConst = header['RadarConst'][0] # | |
|
416 | #84 | |
|
417 | ||
|
418 | #print 'Pointer fp RECheader', fp.tell() | |
|
419 | ||
|
420 | #self.ipp= 0.5*(SPEED_OF_LIGHT/self.PRFhz) | |
|
421 | ||
|
422 | #self.RHsize = 180+20*self.nChannels | |
|
423 | #self.Datasize= self.nProfiles*self.nChannels*self.nHeights*2*4 | |
|
424 | #print 'Datasize',self.Datasize | |
|
425 | #endFp = self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec | |
|
426 | ||
|
427 | print '==============================================' | |
|
428 | ||
|
429 | print '==============================================' | |
|
430 | ||
|
431 | ||
|
432 | return 1 | |
|
433 | ||
|
434 | class MIRA35CReader (ProcessingUnit,FileHeaderMIRA35c,SRVIHeader,RecordHeader): | |
|
435 | ||
|
436 | path = None | |
|
437 | startDate = None | |
|
438 | endDate = None | |
|
439 | startTime = None | |
|
440 | endTime = None | |
|
441 | walk = None | |
|
442 | isConfig = False | |
|
443 | ||
|
444 | ||
|
445 | fileList= None | |
|
446 | ||
|
447 | #metadata | |
|
448 | TimeZone= None | |
|
449 | Interval= None | |
|
450 | heightList= None | |
|
451 | ||
|
452 | #data | |
|
453 | data= None | |
|
454 | utctime= None | |
|
455 | ||
|
456 | ||
|
457 | ||
|
458 | def __init__(self, **kwargs): | |
|
459 | ||
|
460 | #Eliminar de la base la herencia | |
|
461 | ProcessingUnit.__init__(self, **kwargs) | |
|
462 | self.PointerReader = 0 | |
|
463 | self.FileHeaderFlag = False | |
|
464 | self.utc = None | |
|
465 | self.ext = ".zspca" | |
|
466 | self.optchar = "P" | |
|
467 | self.fpFile=None | |
|
468 | self.fp = None | |
|
469 | self.BlockCounter=0 | |
|
470 | self.dtype = None | |
|
471 | self.fileSizeByHeader = None | |
|
472 | self.filenameList = [] | |
|
473 | self.fileSelector = 0 | |
|
474 | self.Off2StartNxtRec=0 | |
|
475 | self.RecCounter=0 | |
|
476 | self.flagNoMoreFiles = 0 | |
|
477 | self.data_spc=None | |
|
478 | #self.data_cspc=None | |
|
479 | self.data_output=None | |
|
480 | self.path = None | |
|
481 | self.OffsetStartHeader=0 | |
|
482 | self.Off2StartData=0 | |
|
483 | self.ipp = 0 | |
|
484 | self.nFDTdataRecors=0 | |
|
485 | self.blocksize = 0 | |
|
486 | self.dataOut = Spectra() | |
|
487 | self.profileIndex = 1 #Always | |
|
488 | self.dataOut.flagNoData=False | |
|
489 | self.dataOut.nRdPairs = 0 | |
|
490 | self.dataOut.pairsList = [] | |
|
491 | self.dataOut.data_spc=None | |
|
492 | ||
|
493 | self.dataOut.normFactor=1 | |
|
494 | self.nextfileflag = True | |
|
495 | self.dataOut.RadarConst = 0 | |
|
496 | self.dataOut.HSDV = [] | |
|
497 | self.dataOut.NPW = [] | |
|
498 | self.dataOut.COFA = [] | |
|
499 | self.dataOut.noise = 0 | |
|
500 | ||
|
501 | ||
|
502 | def Files2Read(self, fp): | |
|
503 | ''' | |
|
504 | Function that indicates the number of .fdt files that exist in the folder to be read. | |
|
505 | It also creates an organized list with the names of the files to read. | |
|
506 | ''' | |
|
507 | #self.__checkPath() | |
|
508 | ||
|
509 | ListaData=os.listdir(fp) #Gets the list of files within the fp address | |
|
510 | ListaData=sorted(ListaData) #Sort the list of files from least to largest by names | |
|
511 | nFiles=0 #File Counter | |
|
512 | FileList=[] #A list is created that will contain the .fdt files | |
|
513 | for IndexFile in ListaData : | |
|
514 | if '.zspca' in IndexFile and '.gz' not in IndexFile: | |
|
515 | FileList.append(IndexFile) | |
|
516 | nFiles+=1 | |
|
517 | ||
|
518 | #print 'Files2Read' | |
|
519 | #print 'Existen '+str(nFiles)+' archivos .fdt' | |
|
520 | ||
|
521 | self.filenameList=FileList #List of files from least to largest by names | |
|
522 | ||
|
523 | ||
|
524 | def run(self, **kwargs): | |
|
525 | ''' | |
|
526 | This method will be the one that will initiate the data entry, will be called constantly. | |
|
527 | You should first verify that your Setup () is set up and then continue to acquire | |
|
528 | the data to be processed with getData (). | |
|
529 | ''' | |
|
530 | if not self.isConfig: | |
|
531 | self.setup(**kwargs) | |
|
532 | self.isConfig = True | |
|
533 | ||
|
534 | self.getData() | |
|
535 | ||
|
536 | ||
|
537 | def setup(self, path=None, | |
|
538 | startDate=None, | |
|
539 | endDate=None, | |
|
540 | startTime=None, | |
|
541 | endTime=None, | |
|
542 | walk=True, | |
|
543 | timezone='utc', | |
|
544 | code = None, | |
|
545 | online=False, | |
|
546 | ReadMode=None, **kwargs): | |
|
547 | ||
|
548 | self.isConfig = True | |
|
549 | ||
|
550 | self.path=path | |
|
551 | self.startDate=startDate | |
|
552 | self.endDate=endDate | |
|
553 | self.startTime=startTime | |
|
554 | self.endTime=endTime | |
|
555 | self.walk=walk | |
|
556 | #self.ReadMode=int(ReadMode) | |
|
557 | ||
|
558 | pass | |
|
559 | ||
|
560 | ||
|
561 | def getData(self): | |
|
562 | ''' | |
|
563 | Before starting this function, you should check that there is still an unread file, | |
|
564 | If there are still blocks to read or if the data block is empty. | |
|
565 | ||
|
566 | You should call the file "read". | |
|
567 | ||
|
568 | ''' | |
|
569 | ||
|
570 | if self.flagNoMoreFiles: | |
|
571 | self.dataOut.flagNoData = True | |
|
572 | print 'NoData se vuelve true' | |
|
573 | return 0 | |
|
574 | ||
|
575 | self.fp=self.path | |
|
576 | self.Files2Read(self.fp) | |
|
577 | self.readFile(self.fp) | |
|
578 | ||
|
579 | self.dataOut.data_spc = self.dataOut_spc#self.data_spc.copy() | |
|
580 | self.dataOut.RadarConst = self.RadarConst | |
|
581 | self.dataOut.data_output=self.data_output | |
|
582 | self.dataOut.noise = self.dataOut.getNoise() | |
|
583 | #print 'ACAAAAAA', self.dataOut.noise | |
|
584 | self.dataOut.data_spc = self.dataOut.data_spc+self.dataOut.noise | |
|
585 | #print 'self.dataOut.noise',self.dataOut.noise | |
|
586 | ||
|
587 | ||
|
588 | return self.dataOut.data_spc | |
|
589 | ||
|
590 | ||
|
591 | def readFile(self,fp): | |
|
592 | ''' | |
|
593 | You must indicate if you are reading in Online or Offline mode and load the | |
|
594 | The parameters for this file reading mode. | |
|
595 | ||
|
596 | Then you must do 2 actions: | |
|
597 | ||
|
598 | 1. Get the BLTR FileHeader. | |
|
599 | 2. Start reading the first block. | |
|
600 | ''' | |
|
601 | ||
|
602 | #The address of the folder is generated the name of the .fdt file that will be read | |
|
603 | print "File: ",self.fileSelector+1 | |
|
604 | ||
|
605 | if self.fileSelector < len(self.filenameList): | |
|
606 | ||
|
607 | self.fpFile=str(fp)+'/'+str(self.filenameList[self.fileSelector]) | |
|
608 | ||
|
609 | if self.nextfileflag==True: | |
|
610 | self.fp = open(self.fpFile,"rb") | |
|
611 | self.nextfileflag==False | |
|
612 | ||
|
613 | '''HERE STARTING THE FILE READING''' | |
|
614 | ||
|
615 | ||
|
616 | self.fheader = FileHeaderMIRA35c() | |
|
617 | self.fheader.FHread(self.fp) #Bltr FileHeader Reading | |
|
618 | ||
|
619 | ||
|
620 | self.SPARrawGate1 = self.fheader.SPARrawGate1 | |
|
621 | self.SPARrawGate2 = self.fheader.SPARrawGate2 | |
|
622 | self.Num_Hei = self.SPARrawGate2 - self.SPARrawGate1 | |
|
623 | self.Num_Bins = self.fheader.PPARsft | |
|
624 | self.dataOut.nFFTPoints = self.fheader.PPARsft | |
|
625 | ||
|
626 | ||
|
627 | self.Num_inCoh = self.fheader.PPARavc | |
|
628 | self.dataOut.PRF = self.fheader.PPARprf | |
|
629 | self.dataOut.frequency = 34.85*10**9 | |
|
630 | self.Lambda = SPEED_OF_LIGHT/self.dataOut.frequency | |
|
631 | self.dataOut.ippSeconds= 1./float(self.dataOut.PRF) | |
|
632 | ||
|
633 | pulse_width = self.fheader.PPARpdr * 10**-9 | |
|
634 | self.__deltaHeigth = 0.5 * SPEED_OF_LIGHT * pulse_width | |
|
635 | ||
|
636 | self.data_spc = numpy.zeros((self.Num_Hei, self.Num_Bins,2))# | |
|
637 | self.dataOut.HSDV = numpy.zeros((self.Num_Hei, 2)) | |
|
638 | ||
|
639 | self.Ze = numpy.zeros(self.Num_Hei) | |
|
640 | self.ETA = numpy.zeros(([2,self.Num_Hei])) | |
|
641 | ||
|
642 | ||
|
643 | ||
|
644 | self.readBlock() #Block reading | |
|
645 | ||
|
646 | else: | |
|
647 | print 'readFile FlagNoData becomes true' | |
|
648 | self.flagNoMoreFiles=True | |
|
649 | self.dataOut.flagNoData = True | |
|
650 | self.FileHeaderFlag == True | |
|
651 | return 0 | |
|
652 | ||
|
653 | ||
|
654 | ||
|
655 | def readBlock(self): | |
|
656 | ''' | |
|
657 | It should be checked if the block has data, if it is not passed to the next file. | |
|
658 | ||
|
659 | Then the following is done: | |
|
660 | ||
|
661 | 1. Read the RecordHeader | |
|
662 | 2. Fill the buffer with the current block number. | |
|
663 | ||
|
664 | ''' | |
|
665 | ||
|
666 | if self.PointerReader > 1180: | |
|
667 | self.fp.seek(self.PointerReader , os.SEEK_SET) | |
|
668 | self.FirstPoint = self.PointerReader | |
|
669 | ||
|
670 | else : | |
|
671 | self.FirstPoint = 1180 | |
|
672 | ||
|
673 | ||
|
674 | ||
|
675 | self.srviHeader = SRVIHeader() | |
|
676 | ||
|
677 | self.srviHeader.SRVIread(self.fp) #Se obtiene la cabecera del SRVI | |
|
678 | ||
|
679 | self.blocksize = self.srviHeader.SizeOfDataBlock1 # Se obtiene el tamao del bloque | |
|
680 | ||
|
681 | if self.blocksize == 148: | |
|
682 | print 'blocksize == 148 bug' | |
|
683 | jump = numpy.fromfile(self.fp,[('jump',numpy.str_,140)] ,1) | |
|
684 | ||
|
685 | self.srviHeader.SRVIread(self.fp) #Se obtiene la cabecera del SRVI | |
|
686 | ||
|
687 | if not self.srviHeader.SizeOfSRVI1: | |
|
688 | self.fileSelector+=1 | |
|
689 | self.nextfileflag==True | |
|
690 | self.FileHeaderFlag == True | |
|
691 | ||
|
692 | self.recordheader = RecordHeader() | |
|
693 | self.recordheader.RHread(self.fp) | |
|
694 | self.RadarConst = self.recordheader.RadarConst | |
|
695 | dwell = self.recordheader.time_t | |
|
696 | npw1 = self.recordheader.npw1 | |
|
697 | npw2 = self.recordheader.npw2 | |
|
698 | ||
|
699 | ||
|
700 | self.dataOut.channelList = range(1) | |
|
701 | self.dataOut.nIncohInt = self.Num_inCoh | |
|
702 | self.dataOut.nProfiles = self.Num_Bins | |
|
703 | self.dataOut.nCohInt = 1 | |
|
704 | self.dataOut.windowOfFilter = 1 | |
|
705 | self.dataOut.utctime = dwell | |
|
706 | self.dataOut.timeZone=0 | |
|
707 | ||
|
708 | self.dataOut.outputInterval = self.dataOut.getTimeInterval() | |
|
709 | self.dataOut.heightList = self.SPARrawGate1*self.__deltaHeigth + numpy.array(range(self.Num_Hei))*self.__deltaHeigth | |
|
710 | ||
|
711 | ||
|
712 | ||
|
713 | self.HSDVsign = numpy.fromfile( self.fp, [('HSDV',numpy.str_,4)],1) | |
|
714 | self.SizeHSDV = numpy.fromfile( self.fp, [('SizeHSDV','<i4')],1) | |
|
715 | self.HSDV_Co = numpy.fromfile( self.fp, [('HSDV_Co','<f4')],self.Num_Hei) | |
|
716 | self.HSDV_Cx = numpy.fromfile( self.fp, [('HSDV_Cx','<f4')],self.Num_Hei) | |
|
717 | ||
|
718 | self.COFAsign = numpy.fromfile( self.fp, [('COFA',numpy.str_,4)],1) | |
|
719 | self.SizeCOFA = numpy.fromfile( self.fp, [('SizeCOFA','<i4')],1) | |
|
720 | self.COFA_Co = numpy.fromfile( self.fp, [('COFA_Co','<f4')],self.Num_Hei) | |
|
721 | self.COFA_Cx = numpy.fromfile( self.fp, [('COFA_Cx','<f4')],self.Num_Hei) | |
|
722 | ||
|
723 | self.ZSPCsign = numpy.fromfile(self.fp, [('ZSPCsign',numpy.str_,4)],1) | |
|
724 | self.SizeZSPC = numpy.fromfile(self.fp, [('SizeZSPC','<i4')],1) | |
|
725 | ||
|
726 | self.dataOut.HSDV[0]=self.HSDV_Co[:][0] | |
|
727 | self.dataOut.HSDV[1]=self.HSDV_Cx[:][0] | |
|
728 | ||
|
729 | for irg in range(self.Num_Hei): | |
|
730 | nspc = numpy.fromfile(self.fp, [('nspc','int16')],1)[0][0] # Number of spectral sub pieces containing significant power | |
|
731 | ||
|
732 | for k in range(nspc): | |
|
733 | binIndex = numpy.fromfile(self.fp, [('binIndex','int16')],1)[0][0] # Index of the spectral bin where the piece is beginning | |
|
734 | nbins = numpy.fromfile(self.fp, [('nbins','int16')],1)[0][0] # Number of bins of the piece | |
|
735 | ||
|
736 | #Co_Channel | |
|
737 | jbin = numpy.fromfile(self.fp, [('jbin','uint16')],nbins)[0][0] # Spectrum piece to be normaliced | |
|
738 | jmax = numpy.fromfile(self.fp, [('jmax','float32')],1)[0][0] # Maximun piece to be normaliced | |
|
739 | ||
|
740 | ||
|
741 | self.data_spc[irg,binIndex:binIndex+nbins,0] = self.data_spc[irg,binIndex:binIndex+nbins,0]+jbin/65530.*jmax | |
|
742 | ||
|
743 | #Cx_Channel | |
|
744 | jbin = numpy.fromfile(self.fp, [('jbin','uint16')],nbins)[0][0] | |
|
745 | jmax = numpy.fromfile(self.fp, [('jmax','float32')],1)[0][0] | |
|
746 | ||
|
747 | ||
|
748 | self.data_spc[irg,binIndex:binIndex+nbins,1] = self.data_spc[irg,binIndex:binIndex+nbins,1]+jbin/65530.*jmax | |
|
749 | ||
|
750 | for bin in range(self.Num_Bins): | |
|
751 | ||
|
752 | self.data_spc[:,bin,0] = self.data_spc[:,bin,0] - self.dataOut.HSDV[:,0] | |
|
753 | ||
|
754 | self.data_spc[:,bin,1] = self.data_spc[:,bin,1] - self.dataOut.HSDV[:,1] | |
|
755 | ||
|
756 | ||
|
757 | numpy.set_printoptions(threshold='nan') | |
|
758 | ||
|
759 | self.data_spc = numpy.where(self.data_spc > 0. , self.data_spc, 0) | |
|
760 | ||
|
761 | self.dataOut.COFA = numpy.array([self.COFA_Co , self.COFA_Cx]) | |
|
762 | ||
|
763 | print ' ' | |
|
764 | print 'SPC',numpy.shape(self.dataOut.data_spc) | |
|
765 | #print 'SPC',self.dataOut.data_spc | |
|
766 | ||
|
767 | noinor1 = 713031680 | |
|
768 | noinor2 = 30 | |
|
769 | ||
|
770 | npw1 = 1#0**(npw1/10) * noinor1 * noinor2 | |
|
771 | npw2 = 1#0**(npw2/10) * noinor1 * noinor2 | |
|
772 | self.dataOut.NPW = numpy.array([npw1, npw2]) | |
|
773 | ||
|
774 | print ' ' | |
|
775 | ||
|
776 | self.data_spc = numpy.transpose(self.data_spc, (2,1,0)) | |
|
777 | self.data_spc = numpy.fft.fftshift(self.data_spc, axes = 1) | |
|
778 | ||
|
779 | self.data_spc = numpy.fliplr(self.data_spc) | |
|
780 | ||
|
781 | self.data_spc = numpy.where(self.data_spc > 0. , self.data_spc, 0) | |
|
782 | self.dataOut_spc= numpy.ones([1, self.Num_Bins , self.Num_Hei]) | |
|
783 | self.dataOut_spc[0,:,:] = self.data_spc[0,:,:] | |
|
784 | #print 'SHAPE', self.dataOut_spc.shape | |
|
785 | #For nyquist correction: | |
|
786 | #fix = 20 # ~3m/s | |
|
787 | #shift = self.Num_Bins/2 + fix | |
|
788 | #self.data_spc = numpy.array([ self.data_spc[: , self.Num_Bins-shift+1: , :] , self.data_spc[: , 0:self.Num_Bins-shift , :]]) | |
|
789 | ||
|
790 | ||
|
791 | ||
|
792 | '''Block Reading, the Block Data is received and Reshape is used to give it | |
|
793 | shape. | |
|
794 | ''' | |
|
795 | ||
|
796 | self.PointerReader = self.fp.tell() | |
|
797 | ||
|
798 | ||
|
799 | ||
|
800 | ||
|
801 | ||
|
802 | ||
|
803 | No newline at end of file |
@@ -0,0 +1,403 | |||
|
1 | ''' | |
|
2 | Created on Oct 24, 2016 | |
|
3 | ||
|
4 | @author: roj- LouVD | |
|
5 | ''' | |
|
6 | ||
|
7 | import numpy | |
|
8 | import copy | |
|
9 | import datetime | |
|
10 | import time | |
|
11 | from time import gmtime | |
|
12 | ||
|
13 | from numpy import transpose | |
|
14 | ||
|
15 | from jroproc_base import ProcessingUnit, Operation | |
|
16 | from schainpy.model.data.jrodata import Parameters | |
|
17 | ||
|
18 | ||
|
19 | class BLTRParametersProc(ProcessingUnit): | |
|
20 | ''' | |
|
21 | Processing unit for BLTR parameters data (winds) | |
|
22 | ||
|
23 | Inputs: | |
|
24 | self.dataOut.nmodes - Number of operation modes | |
|
25 | self.dataOut.nchannels - Number of channels | |
|
26 | self.dataOut.nranges - Number of ranges | |
|
27 | ||
|
28 | self.dataOut.data_SNR - SNR array | |
|
29 | self.dataOut.data_output - Zonal, Vertical and Meridional velocity array | |
|
30 | self.dataOut.height - Height array (km) | |
|
31 | self.dataOut.time - Time array (seconds) | |
|
32 | ||
|
33 | self.dataOut.fileIndex -Index of the file currently read | |
|
34 | self.dataOut.lat - Latitude coordinate of BLTR location | |
|
35 | ||
|
36 | self.dataOut.doy - Experiment doy (number of the day in the current year) | |
|
37 | self.dataOut.month - Experiment month | |
|
38 | self.dataOut.day - Experiment day | |
|
39 | self.dataOut.year - Experiment year | |
|
40 | ''' | |
|
41 | ||
|
42 | def __init__(self, **kwargs): | |
|
43 | ''' | |
|
44 | Inputs: None | |
|
45 | ''' | |
|
46 | ProcessingUnit.__init__(self, **kwargs) | |
|
47 | self.dataOut = Parameters() | |
|
48 | self.isConfig = False | |
|
49 | ||
|
50 | def setup(self, mode): | |
|
51 | ''' | |
|
52 | ''' | |
|
53 | self.dataOut.mode = mode | |
|
54 | ||
|
55 | def run(self, mode, snr_threshold=None): | |
|
56 | ''' | |
|
57 | Inputs: | |
|
58 | mode = High resolution (0) or Low resolution (1) data | |
|
59 | snr_threshold = snr filter value | |
|
60 | ''' | |
|
61 | ||
|
62 | if not self.isConfig: | |
|
63 | self.setup(mode) | |
|
64 | self.isConfig = True | |
|
65 | ||
|
66 | if self.dataIn.type == 'Parameters': | |
|
67 | self.dataOut.copy(self.dataIn) | |
|
68 | ||
|
69 | self.dataOut.data_output = self.dataOut.data_output[mode] | |
|
70 | self.dataOut.heightList = self.dataOut.height[0] | |
|
71 | self.dataOut.data_SNR = self.dataOut.data_SNR[mode] | |
|
72 | ||
|
73 | if snr_threshold is not None: | |
|
74 | SNRavg = numpy.average(self.dataOut.data_SNR, axis=0) | |
|
75 | SNRavgdB = 10*numpy.log10(SNRavg) | |
|
76 | for i in range(3): | |
|
77 | self.dataOut.data_output[i][SNRavgdB <= snr_threshold] = numpy.nan | |
|
78 | ||
|
79 | # TODO | |
|
80 | class OutliersFilter(Operation): | |
|
81 | ||
|
82 | def __init__(self, **kwargs): | |
|
83 | ''' | |
|
84 | ''' | |
|
85 | Operation.__init__(self, **kwargs) | |
|
86 | ||
|
87 | def run(self, svalue2, method, factor, filter, npoints=9): | |
|
88 | ''' | |
|
89 | Inputs: | |
|
90 | svalue - string to select array velocity | |
|
91 | svalue2 - string to choose axis filtering | |
|
92 | method - 0 for SMOOTH or 1 for MEDIAN | |
|
93 | factor - number used to set threshold | |
|
94 | filter - 1 for data filtering using the standard deviation criteria else 0 | |
|
95 | npoints - number of points for mask filter | |
|
96 | ''' | |
|
97 | ||
|
98 | print ' Outliers Filter {} {} / threshold = {}'.format(svalue, svalue, factor) | |
|
99 | ||
|
100 | ||
|
101 | yaxis = self.dataOut.heightList | |
|
102 | xaxis = numpy.array([[self.dataOut.utctime]]) | |
|
103 | ||
|
104 | # Zonal | |
|
105 | value_temp = self.dataOut.data_output[0] | |
|
106 | ||
|
107 | # Zonal | |
|
108 | value_temp = self.dataOut.data_output[1] | |
|
109 | ||
|
110 | # Vertical | |
|
111 | value_temp = numpy.transpose(self.dataOut.data_output[2]) | |
|
112 | ||
|
113 | htemp = yaxis | |
|
114 | std = value_temp | |
|
115 | for h in range(len(htemp)): | |
|
116 | nvalues_valid = len(numpy.where(numpy.isfinite(value_temp[h]))[0]) | |
|
117 | minvalid = npoints | |
|
118 | ||
|
119 | #only if valid values greater than the minimum required (10%) | |
|
120 | if nvalues_valid > minvalid: | |
|
121 | ||
|
122 | if method == 0: | |
|
123 | #SMOOTH | |
|
124 | w = value_temp[h] - self.Smooth(input=value_temp[h], width=npoints, edge_truncate=1) | |
|
125 | ||
|
126 | ||
|
127 | if method == 1: | |
|
128 | #MEDIAN | |
|
129 | w = value_temp[h] - self.Median(input=value_temp[h], width = npoints) | |
|
130 | ||
|
131 | dw = numpy.std(w[numpy.where(numpy.isfinite(w))],ddof = 1) | |
|
132 | ||
|
133 | threshold = dw*factor | |
|
134 | value_temp[numpy.where(w > threshold),h] = numpy.nan | |
|
135 | value_temp[numpy.where(w < -1*threshold),h] = numpy.nan | |
|
136 | ||
|
137 | ||
|
138 | #At the end | |
|
139 | if svalue2 == 'inHeight': | |
|
140 | value_temp = numpy.transpose(value_temp) | |
|
141 | output_array[:,m] = value_temp | |
|
142 | ||
|
143 | if svalue == 'zonal': | |
|
144 | self.dataOut.data_output[0] = output_array | |
|
145 | ||
|
146 | elif svalue == 'meridional': | |
|
147 | self.dataOut.data_output[1] = output_array | |
|
148 | ||
|
149 | elif svalue == 'vertical': | |
|
150 | self.dataOut.data_output[2] = output_array | |
|
151 | ||
|
152 | return self.dataOut.data_output | |
|
153 | ||
|
154 | ||
|
155 | def Median(self,input,width): | |
|
156 | ''' | |
|
157 | Inputs: | |
|
158 | input - Velocity array | |
|
159 | width - Number of points for mask filter | |
|
160 | ||
|
161 | ''' | |
|
162 | ||
|
163 | if numpy.mod(width,2) == 1: | |
|
164 | pc = int((width - 1) / 2) | |
|
165 | cont = 0 | |
|
166 | output = [] | |
|
167 | ||
|
168 | for i in range(len(input)): | |
|
169 | if i >= pc and i < len(input) - pc: | |
|
170 | new2 = input[i-pc:i+pc+1] | |
|
171 | temp = numpy.where(numpy.isfinite(new2)) | |
|
172 | new = new2[temp] | |
|
173 | value = numpy.median(new) | |
|
174 | output.append(value) | |
|
175 | ||
|
176 | output = numpy.array(output) | |
|
177 | output = numpy.hstack((input[0:pc],output)) | |
|
178 | output = numpy.hstack((output,input[-pc:len(input)])) | |
|
179 | ||
|
180 | return output | |
|
181 | ||
|
182 | def Smooth(self,input,width,edge_truncate = None): | |
|
183 | ''' | |
|
184 | Inputs: | |
|
185 | input - Velocity array | |
|
186 | width - Number of points for mask filter | |
|
187 | edge_truncate - 1 for truncate the convolution product else | |
|
188 | ||
|
189 | ''' | |
|
190 | ||
|
191 | if numpy.mod(width,2) == 0: | |
|
192 | real_width = width + 1 | |
|
193 | nzeros = width / 2 | |
|
194 | else: | |
|
195 | real_width = width | |
|
196 | nzeros = (width - 1) / 2 | |
|
197 | ||
|
198 | half_width = int(real_width)/2 | |
|
199 | length = len(input) | |
|
200 | ||
|
201 | gate = numpy.ones(real_width,dtype='float') | |
|
202 | norm_of_gate = numpy.sum(gate) | |
|
203 | ||
|
204 | nan_process = 0 | |
|
205 | nan_id = numpy.where(numpy.isnan(input)) | |
|
206 | if len(nan_id[0]) > 0: | |
|
207 | nan_process = 1 | |
|
208 | pb = numpy.zeros(len(input)) | |
|
209 | pb[nan_id] = 1. | |
|
210 | input[nan_id] = 0. | |
|
211 | ||
|
212 | if edge_truncate == True: | |
|
213 | output = numpy.convolve(input/norm_of_gate,gate,mode='same') | |
|
214 | elif edge_truncate == False or edge_truncate == None: | |
|
215 | output = numpy.convolve(input/norm_of_gate,gate,mode='valid') | |
|
216 | output = numpy.hstack((input[0:half_width],output)) | |
|
217 | output = numpy.hstack((output,input[len(input)-half_width:len(input)])) | |
|
218 | ||
|
219 | if nan_process: | |
|
220 | pb = numpy.convolve(pb/norm_of_gate,gate,mode='valid') | |
|
221 | pb = numpy.hstack((numpy.zeros(half_width),pb)) | |
|
222 | pb = numpy.hstack((pb,numpy.zeros(half_width))) | |
|
223 | output[numpy.where(pb > 0.9999)] = numpy.nan | |
|
224 | input[nan_id] = numpy.nan | |
|
225 | return output | |
|
226 | ||
|
227 | def Average(self,aver=0,nhaver=1): | |
|
228 | ''' | |
|
229 | Inputs: | |
|
230 | aver - Indicates the time period over which is averaged or consensus data | |
|
231 | nhaver - Indicates the decimation factor in heights | |
|
232 | ||
|
233 | ''' | |
|
234 | nhpoints = 48 | |
|
235 | ||
|
236 | lat_piura = -5.17 | |
|
237 | lat_huancayo = -12.04 | |
|
238 | lat_porcuya = -5.8 | |
|
239 | ||
|
240 | if '%2.2f'%self.dataOut.lat == '%2.2f'%lat_piura: | |
|
241 | hcm = 3. | |
|
242 | if self.dataOut.year == 2003 : | |
|
243 | if self.dataOut.doy >= 25 and self.dataOut.doy < 64: | |
|
244 | nhpoints = 12 | |
|
245 | ||
|
246 | elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_huancayo: | |
|
247 | hcm = 3. | |
|
248 | if self.dataOut.year == 2003 : | |
|
249 | if self.dataOut.doy >= 25 and self.dataOut.doy < 64: | |
|
250 | nhpoints = 12 | |
|
251 | ||
|
252 | ||
|
253 | elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_porcuya: | |
|
254 | hcm = 5.#2 | |
|
255 | ||
|
256 | pdata = 0.2 | |
|
257 | taver = [1,2,3,4,6,8,12,24] | |
|
258 | t0 = 0 | |
|
259 | tf = 24 | |
|
260 | ntime =(tf-t0)/taver[aver] | |
|
261 | ti = numpy.arange(ntime) | |
|
262 | tf = numpy.arange(ntime) + taver[aver] | |
|
263 | ||
|
264 | ||
|
265 | old_height = self.dataOut.heightList | |
|
266 | ||
|
267 | if nhaver > 1: | |
|
268 | num_hei = len(self.dataOut.heightList)/nhaver/self.dataOut.nmodes | |
|
269 | deltha = 0.05*nhaver | |
|
270 | minhvalid = pdata*nhaver | |
|
271 | for im in range(self.dataOut.nmodes): | |
|
272 | new_height = numpy.arange(num_hei)*deltha + self.dataOut.height[im,0] + deltha/2. | |
|
273 | ||
|
274 | ||
|
275 | data_fHeigths_List = [] | |
|
276 | data_fZonal_List = [] | |
|
277 | data_fMeridional_List = [] | |
|
278 | data_fVertical_List = [] | |
|
279 | startDTList = [] | |
|
280 | ||
|
281 | ||
|
282 | for i in range(ntime): | |
|
283 | height = old_height | |
|
284 | ||
|
285 | start = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(ti[i])) - datetime.timedelta(hours = 5) | |
|
286 | stop = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(tf[i])) - datetime.timedelta(hours = 5) | |
|
287 | ||
|
288 | ||
|
289 | limit_sec1 = time.mktime(start.timetuple()) | |
|
290 | limit_sec2 = time.mktime(stop.timetuple()) | |
|
291 | ||
|
292 | t1 = numpy.where(self.f_timesec >= limit_sec1) | |
|
293 | t2 = numpy.where(self.f_timesec < limit_sec2) | |
|
294 | time_select = [] | |
|
295 | for val_sec in t1[0]: | |
|
296 | if val_sec in t2[0]: | |
|
297 | time_select.append(val_sec) | |
|
298 | ||
|
299 | ||
|
300 | time_select = numpy.array(time_select,dtype = 'int') | |
|
301 | minvalid = numpy.ceil(pdata*nhpoints) | |
|
302 | ||
|
303 | zon_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan | |
|
304 | mer_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan | |
|
305 | ver_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan | |
|
306 | ||
|
307 | if nhaver > 1: | |
|
308 | new_zon_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan | |
|
309 | new_mer_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan | |
|
310 | new_ver_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan | |
|
311 | ||
|
312 | if len(time_select) > minvalid: | |
|
313 | time_average = self.f_timesec[time_select] | |
|
314 | ||
|
315 | for im in range(self.dataOut.nmodes): | |
|
316 | ||
|
317 | for ih in range(self.dataOut.nranges): | |
|
318 | if numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) >= minvalid: | |
|
319 | zon_aver[ih,im] = numpy.nansum(self.f_zon[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) | |
|
320 | ||
|
321 | if numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) >= minvalid: | |
|
322 | mer_aver[ih,im] = numpy.nansum(self.f_mer[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) | |
|
323 | ||
|
324 | if numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) >= minvalid: | |
|
325 | ver_aver[ih,im] = numpy.nansum(self.f_ver[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) | |
|
326 | ||
|
327 | if nhaver > 1: | |
|
328 | for ih in range(num_hei): | |
|
329 | hvalid = numpy.arange(nhaver) + nhaver*ih | |
|
330 | ||
|
331 | if numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) >= minvalid: | |
|
332 | new_zon_aver[ih,im] = numpy.nansum(zon_aver[hvalid,im]) / numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) | |
|
333 | ||
|
334 | if numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) >= minvalid: | |
|
335 | new_mer_aver[ih,im] = numpy.nansum(mer_aver[hvalid,im]) / numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) | |
|
336 | ||
|
337 | if numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) >= minvalid: | |
|
338 | new_ver_aver[ih,im] = numpy.nansum(ver_aver[hvalid,im]) / numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) | |
|
339 | if nhaver > 1: | |
|
340 | zon_aver = new_zon_aver | |
|
341 | mer_aver = new_mer_aver | |
|
342 | ver_aver = new_ver_aver | |
|
343 | height = new_height | |
|
344 | ||
|
345 | ||
|
346 | tstart = time_average[0] | |
|
347 | tend = time_average[-1] | |
|
348 | startTime = time.gmtime(tstart) | |
|
349 | ||
|
350 | year = startTime.tm_year | |
|
351 | month = startTime.tm_mon | |
|
352 | day = startTime.tm_mday | |
|
353 | hour = startTime.tm_hour | |
|
354 | minute = startTime.tm_min | |
|
355 | second = startTime.tm_sec | |
|
356 | ||
|
357 | startDTList.append(datetime.datetime(year,month,day,hour,minute,second)) | |
|
358 | ||
|
359 | ||
|
360 | o_height = numpy.array([]) | |
|
361 | o_zon_aver = numpy.array([]) | |
|
362 | o_mer_aver = numpy.array([]) | |
|
363 | o_ver_aver = numpy.array([]) | |
|
364 | if self.dataOut.nmodes > 1: | |
|
365 | for im in range(self.dataOut.nmodes): | |
|
366 | ||
|
367 | if im == 0: | |
|
368 | h_select = numpy.where(numpy.bitwise_and(height[0,:] >=0,height[0,:] <= hcm,numpy.isfinite(height[0,:]))) | |
|
369 | else: | |
|
370 | h_select = numpy.where(numpy.bitwise_and(height[1,:] > hcm,height[1,:] < 20,numpy.isfinite(height[1,:]))) | |
|
371 | ||
|
372 | ||
|
373 | ht = h_select[0] | |
|
374 | ||
|
375 | o_height = numpy.hstack((o_height,height[im,ht])) | |
|
376 | o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im])) | |
|
377 | o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im])) | |
|
378 | o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im])) | |
|
379 | ||
|
380 | data_fHeigths_List.append(o_height) | |
|
381 | data_fZonal_List.append(o_zon_aver) | |
|
382 | data_fMeridional_List.append(o_mer_aver) | |
|
383 | data_fVertical_List.append(o_ver_aver) | |
|
384 | ||
|
385 | ||
|
386 | else: | |
|
387 | h_select = numpy.where(numpy.bitwise_and(height[0,:] <= hcm,numpy.isfinite(height[0,:]))) | |
|
388 | ht = h_select[0] | |
|
389 | o_height = numpy.hstack((o_height,height[im,ht])) | |
|
390 | o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im])) | |
|
391 | o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im])) | |
|
392 | o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im])) | |
|
393 | ||
|
394 | data_fHeigths_List.append(o_height) | |
|
395 | data_fZonal_List.append(o_zon_aver) | |
|
396 | data_fMeridional_List.append(o_mer_aver) | |
|
397 | data_fVertical_List.append(o_ver_aver) | |
|
398 | ||
|
399 | ||
|
400 | return startDTList, data_fHeigths_List, data_fZonal_List, data_fMeridional_List, data_fVertical_List | |
|
401 | ||
|
402 | ||
|
403 | No newline at end of file |
@@ -1,7 +1,7 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Feb 7, 2012 |
|
3 | 3 | |
|
4 | 4 | @author $Author$ |
|
5 | 5 | @version $Id$ |
|
6 | 6 | ''' |
|
7 |
__version__ = |
|
|
7 | __version__ = '2.3' |
@@ -1,1218 +1,1227 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import copy |
|
8 | 8 | import numpy |
|
9 | 9 | import datetime |
|
10 | 10 | |
|
11 | 11 | from jroheaderIO import SystemHeader, RadarControllerHeader |
|
12 | 12 | from schainpy import cSchain |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | def getNumpyDtype(dataTypeCode): |
|
16 | 16 | |
|
17 | 17 | if dataTypeCode == 0: |
|
18 | 18 | numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')]) |
|
19 | 19 | elif dataTypeCode == 1: |
|
20 | 20 | numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')]) |
|
21 | 21 | elif dataTypeCode == 2: |
|
22 | 22 | numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')]) |
|
23 | 23 | elif dataTypeCode == 3: |
|
24 | 24 | numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')]) |
|
25 | 25 | elif dataTypeCode == 4: |
|
26 | 26 | numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
27 | 27 | elif dataTypeCode == 5: |
|
28 | 28 | numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')]) |
|
29 | 29 | else: |
|
30 | 30 | raise ValueError, 'dataTypeCode was not defined' |
|
31 | 31 | |
|
32 | 32 | return numpyDtype |
|
33 | 33 | |
|
34 | 34 | def getDataTypeCode(numpyDtype): |
|
35 | 35 | |
|
36 | 36 | if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]): |
|
37 | 37 | datatype = 0 |
|
38 | 38 | elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]): |
|
39 | 39 | datatype = 1 |
|
40 | 40 | elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]): |
|
41 | 41 | datatype = 2 |
|
42 | 42 | elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]): |
|
43 | 43 | datatype = 3 |
|
44 | 44 | elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]): |
|
45 | 45 | datatype = 4 |
|
46 | 46 | elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]): |
|
47 | 47 | datatype = 5 |
|
48 | 48 | else: |
|
49 | 49 | datatype = None |
|
50 | 50 | |
|
51 | 51 | return datatype |
|
52 | 52 | |
|
53 | 53 | def hildebrand_sekhon(data, navg): |
|
54 | 54 | """ |
|
55 | 55 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
56 | 56 | implementation technique is based on the fact that the standard deviation of the spectral |
|
57 | 57 | densities is equal to the mean spectral density for white Gaussian noise |
|
58 | 58 | |
|
59 | 59 | Inputs: |
|
60 | 60 | Data : heights |
|
61 | 61 | navg : numbers of averages |
|
62 | 62 | |
|
63 | 63 | Return: |
|
64 | 64 | -1 : any error |
|
65 | 65 | anoise : noise's level |
|
66 | 66 | """ |
|
67 | 67 | |
|
68 | 68 | sortdata = numpy.sort(data, axis=None) |
|
69 | 69 | # lenOfData = len(sortdata) |
|
70 | 70 | # nums_min = lenOfData*0.2 |
|
71 | 71 | # |
|
72 | 72 | # if nums_min <= 5: |
|
73 | 73 | # nums_min = 5 |
|
74 | 74 | # |
|
75 | 75 | # sump = 0. |
|
76 | 76 | # |
|
77 | 77 | # sumq = 0. |
|
78 | 78 | # |
|
79 | 79 | # j = 0 |
|
80 | 80 | # |
|
81 | 81 | # cont = 1 |
|
82 | 82 | # |
|
83 | 83 | # while((cont==1)and(j<lenOfData)): |
|
84 | 84 | # |
|
85 | 85 | # sump += sortdata[j] |
|
86 | 86 | # |
|
87 | 87 | # sumq += sortdata[j]**2 |
|
88 | 88 | # |
|
89 | 89 | # if j > nums_min: |
|
90 | 90 | # rtest = float(j)/(j-1) + 1.0/navg |
|
91 | 91 | # if ((sumq*j) > (rtest*sump**2)): |
|
92 | 92 | # j = j - 1 |
|
93 | 93 | # sump = sump - sortdata[j] |
|
94 | 94 | # sumq = sumq - sortdata[j]**2 |
|
95 | 95 | # cont = 0 |
|
96 | 96 | # |
|
97 | 97 | # j += 1 |
|
98 | 98 | # |
|
99 | 99 | # lnoise = sump /j |
|
100 | 100 | # |
|
101 | 101 | # return lnoise |
|
102 | 102 | |
|
103 | 103 | return cSchain.hildebrand_sekhon(sortdata, navg) |
|
104 | 104 | |
|
105 | 105 | |
|
106 | 106 | class Beam: |
|
107 | 107 | |
|
108 | 108 | def __init__(self): |
|
109 | 109 | self.codeList = [] |
|
110 | 110 | self.azimuthList = [] |
|
111 | 111 | self.zenithList = [] |
|
112 | 112 | |
|
113 | 113 | class GenericData(object): |
|
114 | 114 | |
|
115 | 115 | flagNoData = True |
|
116 | 116 | |
|
117 | 117 | def copy(self, inputObj=None): |
|
118 | 118 | |
|
119 | 119 | if inputObj == None: |
|
120 | 120 | return copy.deepcopy(self) |
|
121 | 121 | |
|
122 | 122 | for key in inputObj.__dict__.keys(): |
|
123 | 123 | |
|
124 | 124 | attribute = inputObj.__dict__[key] |
|
125 | 125 | |
|
126 | 126 | #If this attribute is a tuple or list |
|
127 | 127 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
128 | 128 | self.__dict__[key] = attribute[:] |
|
129 | 129 | continue |
|
130 | 130 | |
|
131 | 131 | #If this attribute is another object or instance |
|
132 | 132 | if hasattr(attribute, '__dict__'): |
|
133 | 133 | self.__dict__[key] = attribute.copy() |
|
134 | 134 | continue |
|
135 | 135 | |
|
136 | 136 | self.__dict__[key] = inputObj.__dict__[key] |
|
137 | 137 | |
|
138 | 138 | def deepcopy(self): |
|
139 | 139 | |
|
140 | 140 | return copy.deepcopy(self) |
|
141 | 141 | |
|
142 | 142 | def isEmpty(self): |
|
143 | 143 | |
|
144 | 144 | return self.flagNoData |
|
145 | 145 | |
|
146 | 146 | class JROData(GenericData): |
|
147 | 147 | |
|
148 | 148 | # m_BasicHeader = BasicHeader() |
|
149 | 149 | # m_ProcessingHeader = ProcessingHeader() |
|
150 | 150 | |
|
151 | 151 | systemHeaderObj = SystemHeader() |
|
152 | 152 | |
|
153 | 153 | radarControllerHeaderObj = RadarControllerHeader() |
|
154 | 154 | |
|
155 | 155 | # data = None |
|
156 | 156 | |
|
157 | 157 | type = None |
|
158 | 158 | |
|
159 | 159 | datatype = None #dtype but in string |
|
160 | 160 | |
|
161 | 161 | # dtype = None |
|
162 | 162 | |
|
163 | 163 | # nChannels = None |
|
164 | 164 | |
|
165 | 165 | # nHeights = None |
|
166 | 166 | |
|
167 | 167 | nProfiles = None |
|
168 | 168 | |
|
169 | 169 | heightList = None |
|
170 | 170 | |
|
171 | 171 | channelList = None |
|
172 | 172 | |
|
173 | 173 | flagDiscontinuousBlock = False |
|
174 | 174 | |
|
175 | 175 | useLocalTime = False |
|
176 | 176 | |
|
177 | 177 | utctime = None |
|
178 | 178 | |
|
179 | 179 | timeZone = None |
|
180 | 180 | |
|
181 | 181 | dstFlag = None |
|
182 | 182 | |
|
183 | 183 | errorCount = None |
|
184 | 184 | |
|
185 | 185 | blocksize = None |
|
186 | 186 | |
|
187 | 187 | # nCode = None |
|
188 | 188 | # |
|
189 | 189 | # nBaud = None |
|
190 | 190 | # |
|
191 | 191 | # code = None |
|
192 | 192 | |
|
193 | 193 | flagDecodeData = False #asumo q la data no esta decodificada |
|
194 | 194 | |
|
195 | 195 | flagDeflipData = False #asumo q la data no esta sin flip |
|
196 | 196 | |
|
197 | 197 | flagShiftFFT = False |
|
198 | 198 | |
|
199 | 199 | # ippSeconds = None |
|
200 | 200 | |
|
201 | 201 | # timeInterval = None |
|
202 | 202 | |
|
203 | 203 | nCohInt = None |
|
204 | 204 | |
|
205 | 205 | # noise = None |
|
206 | 206 | |
|
207 | 207 | windowOfFilter = 1 |
|
208 | 208 | |
|
209 | 209 | #Speed of ligth |
|
210 | 210 | C = 3e8 |
|
211 | 211 | |
|
212 | 212 | frequency = 49.92e6 |
|
213 | 213 | |
|
214 | 214 | realtime = False |
|
215 | 215 | |
|
216 | 216 | beacon_heiIndexList = None |
|
217 | 217 | |
|
218 | 218 | last_block = None |
|
219 | 219 | |
|
220 | 220 | blocknow = None |
|
221 | 221 | |
|
222 | 222 | azimuth = None |
|
223 | 223 | |
|
224 | 224 | zenith = None |
|
225 | 225 | |
|
226 | 226 | beam = Beam() |
|
227 | 227 | |
|
228 | 228 | profileIndex = None |
|
229 | 229 | |
|
230 | 230 | def getNoise(self): |
|
231 | 231 | |
|
232 | 232 | raise NotImplementedError |
|
233 | 233 | |
|
234 | 234 | def getNChannels(self): |
|
235 | 235 | |
|
236 | 236 | return len(self.channelList) |
|
237 | 237 | |
|
238 | 238 | def getChannelIndexList(self): |
|
239 | 239 | |
|
240 | 240 | return range(self.nChannels) |
|
241 | 241 | |
|
242 | 242 | def getNHeights(self): |
|
243 | 243 | |
|
244 | 244 | return len(self.heightList) |
|
245 | 245 | |
|
246 | 246 | def getHeiRange(self, extrapoints=0): |
|
247 | 247 | |
|
248 | 248 | heis = self.heightList |
|
249 | 249 | # deltah = self.heightList[1] - self.heightList[0] |
|
250 | 250 | # |
|
251 | 251 | # heis.append(self.heightList[-1]) |
|
252 | 252 | |
|
253 | 253 | return heis |
|
254 | 254 | |
|
255 | 255 | def getDeltaH(self): |
|
256 | 256 | |
|
257 | 257 | delta = self.heightList[1] - self.heightList[0] |
|
258 | 258 | |
|
259 | 259 | return delta |
|
260 | 260 | |
|
261 | 261 | def getltctime(self): |
|
262 | 262 | |
|
263 | 263 | if self.useLocalTime: |
|
264 | 264 | return self.utctime - self.timeZone*60 |
|
265 | 265 | |
|
266 | 266 | return self.utctime |
|
267 | 267 | |
|
268 | 268 | def getDatatime(self): |
|
269 | 269 | |
|
270 | 270 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
271 | 271 | return datatimeValue |
|
272 | 272 | |
|
273 | 273 | def getTimeRange(self): |
|
274 | 274 | |
|
275 | 275 | datatime = [] |
|
276 | 276 | |
|
277 | 277 | datatime.append(self.ltctime) |
|
278 | 278 | datatime.append(self.ltctime + self.timeInterval+1) |
|
279 | 279 | |
|
280 | 280 | datatime = numpy.array(datatime) |
|
281 | 281 | |
|
282 | 282 | return datatime |
|
283 | 283 | |
|
284 | 284 | def getFmaxTimeResponse(self): |
|
285 | 285 | |
|
286 | 286 | period = (10**-6)*self.getDeltaH()/(0.15) |
|
287 | 287 | |
|
288 | 288 | PRF = 1./(period * self.nCohInt) |
|
289 | 289 | |
|
290 | 290 | fmax = PRF |
|
291 | 291 | |
|
292 | 292 | return fmax |
|
293 | 293 | |
|
294 | 294 | def getFmax(self): |
|
295 | 295 | PRF = 1./(self.ippSeconds * self.nCohInt) |
|
296 | 296 | |
|
297 | 297 | fmax = PRF |
|
298 | 298 | return fmax |
|
299 | 299 | |
|
300 | 300 | def getVmax(self): |
|
301 | 301 | |
|
302 | 302 | _lambda = self.C/self.frequency |
|
303 | 303 | |
|
304 | 304 | vmax = self.getFmax() * _lambda/2 |
|
305 | 305 | |
|
306 | 306 | return vmax |
|
307 | 307 | |
|
308 | 308 | def get_ippSeconds(self): |
|
309 | 309 | ''' |
|
310 | 310 | ''' |
|
311 | 311 | return self.radarControllerHeaderObj.ippSeconds |
|
312 | 312 | |
|
313 | 313 | def set_ippSeconds(self, ippSeconds): |
|
314 | 314 | ''' |
|
315 | 315 | ''' |
|
316 | 316 | |
|
317 | 317 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
318 | 318 | |
|
319 | 319 | return |
|
320 | 320 | |
|
321 | 321 | def get_dtype(self): |
|
322 | 322 | ''' |
|
323 | 323 | ''' |
|
324 | 324 | return getNumpyDtype(self.datatype) |
|
325 | 325 | |
|
326 | 326 | def set_dtype(self, numpyDtype): |
|
327 | 327 | ''' |
|
328 | 328 | ''' |
|
329 | 329 | |
|
330 | 330 | self.datatype = getDataTypeCode(numpyDtype) |
|
331 | 331 | |
|
332 | 332 | def get_code(self): |
|
333 | 333 | ''' |
|
334 | 334 | ''' |
|
335 | 335 | return self.radarControllerHeaderObj.code |
|
336 | 336 | |
|
337 | 337 | def set_code(self, code): |
|
338 | 338 | ''' |
|
339 | 339 | ''' |
|
340 | 340 | self.radarControllerHeaderObj.code = code |
|
341 | 341 | |
|
342 | 342 | return |
|
343 | 343 | |
|
344 | 344 | def get_ncode(self): |
|
345 | 345 | ''' |
|
346 | 346 | ''' |
|
347 | 347 | return self.radarControllerHeaderObj.nCode |
|
348 | 348 | |
|
349 | 349 | def set_ncode(self, nCode): |
|
350 | 350 | ''' |
|
351 | 351 | ''' |
|
352 | 352 | self.radarControllerHeaderObj.nCode = nCode |
|
353 | 353 | |
|
354 | 354 | return |
|
355 | 355 | |
|
356 | 356 | def get_nbaud(self): |
|
357 | 357 | ''' |
|
358 | 358 | ''' |
|
359 | 359 | return self.radarControllerHeaderObj.nBaud |
|
360 | 360 | |
|
361 | 361 | def set_nbaud(self, nBaud): |
|
362 | 362 | ''' |
|
363 | 363 | ''' |
|
364 | 364 | self.radarControllerHeaderObj.nBaud = nBaud |
|
365 | 365 | |
|
366 | 366 | return |
|
367 | 367 | |
|
368 | 368 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
369 | 369 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
370 | 370 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
371 | 371 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
372 | 372 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
373 | 373 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
374 | 374 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
375 | 375 | dtype = property(get_dtype, set_dtype) |
|
376 | 376 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
377 | 377 | code = property(get_code, set_code) |
|
378 | 378 | nCode = property(get_ncode, set_ncode) |
|
379 | 379 | nBaud = property(get_nbaud, set_nbaud) |
|
380 | 380 | |
|
381 | 381 | class Voltage(JROData): |
|
382 | 382 | |
|
383 | 383 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
384 | 384 | data = None |
|
385 | 385 | |
|
386 | 386 | def __init__(self): |
|
387 | 387 | ''' |
|
388 | 388 | Constructor |
|
389 | 389 | ''' |
|
390 | 390 | |
|
391 | 391 | self.useLocalTime = True |
|
392 | 392 | |
|
393 | 393 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
394 | 394 | |
|
395 | 395 | self.systemHeaderObj = SystemHeader() |
|
396 | 396 | |
|
397 | 397 | self.type = "Voltage" |
|
398 | 398 | |
|
399 | 399 | self.data = None |
|
400 | 400 | |
|
401 | 401 | # self.dtype = None |
|
402 | 402 | |
|
403 | 403 | # self.nChannels = 0 |
|
404 | 404 | |
|
405 | 405 | # self.nHeights = 0 |
|
406 | 406 | |
|
407 | 407 | self.nProfiles = None |
|
408 | 408 | |
|
409 | 409 | self.heightList = None |
|
410 | 410 | |
|
411 | 411 | self.channelList = None |
|
412 | 412 | |
|
413 | 413 | # self.channelIndexList = None |
|
414 | 414 | |
|
415 | 415 | self.flagNoData = True |
|
416 | 416 | |
|
417 | 417 | self.flagDiscontinuousBlock = False |
|
418 | 418 | |
|
419 | 419 | self.utctime = None |
|
420 | 420 | |
|
421 | 421 | self.timeZone = None |
|
422 | 422 | |
|
423 | 423 | self.dstFlag = None |
|
424 | 424 | |
|
425 | 425 | self.errorCount = None |
|
426 | 426 | |
|
427 | 427 | self.nCohInt = None |
|
428 | 428 | |
|
429 | 429 | self.blocksize = None |
|
430 | 430 | |
|
431 | 431 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
432 | 432 | |
|
433 | 433 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
434 | 434 | |
|
435 | 435 | self.flagShiftFFT = False |
|
436 | 436 | |
|
437 | 437 | self.flagDataAsBlock = False #Asumo que la data es leida perfil a perfil |
|
438 | 438 | |
|
439 | 439 | self.profileIndex = 0 |
|
440 | 440 | |
|
441 | 441 | def getNoisebyHildebrand(self, channel = None): |
|
442 | 442 | """ |
|
443 | 443 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
444 | 444 | |
|
445 | 445 | Return: |
|
446 | 446 | noiselevel |
|
447 | 447 | """ |
|
448 | 448 | |
|
449 | 449 | if channel != None: |
|
450 | 450 | data = self.data[channel] |
|
451 | 451 | nChannels = 1 |
|
452 | 452 | else: |
|
453 | 453 | data = self.data |
|
454 | 454 | nChannels = self.nChannels |
|
455 | 455 | |
|
456 | 456 | noise = numpy.zeros(nChannels) |
|
457 | 457 | power = data * numpy.conjugate(data) |
|
458 | 458 | |
|
459 | 459 | for thisChannel in range(nChannels): |
|
460 | 460 | if nChannels == 1: |
|
461 | 461 | daux = power[:].real |
|
462 | 462 | else: |
|
463 | 463 | daux = power[thisChannel,:].real |
|
464 | 464 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
465 | 465 | |
|
466 | 466 | return noise |
|
467 | 467 | |
|
468 | 468 | def getNoise(self, type = 1, channel = None): |
|
469 | 469 | |
|
470 | 470 | if type == 1: |
|
471 | 471 | noise = self.getNoisebyHildebrand(channel) |
|
472 | 472 | |
|
473 | 473 | return noise |
|
474 | 474 | |
|
475 | 475 | def getPower(self, channel = None): |
|
476 | 476 | |
|
477 | 477 | if channel != None: |
|
478 | 478 | data = self.data[channel] |
|
479 | 479 | else: |
|
480 | 480 | data = self.data |
|
481 | 481 | |
|
482 | 482 | power = data * numpy.conjugate(data) |
|
483 | 483 | powerdB = 10*numpy.log10(power.real) |
|
484 | 484 | powerdB = numpy.squeeze(powerdB) |
|
485 | 485 | |
|
486 | 486 | return powerdB |
|
487 | 487 | |
|
488 | 488 | def getTimeInterval(self): |
|
489 | 489 | |
|
490 | 490 | timeInterval = self.ippSeconds * self.nCohInt |
|
491 | 491 | |
|
492 | 492 | return timeInterval |
|
493 | 493 | |
|
494 | 494 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
495 | 495 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
496 | 496 | |
|
497 | 497 | class Spectra(JROData): |
|
498 | 498 | |
|
499 | 499 | #data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
500 | 500 | data_spc = None |
|
501 | 501 | |
|
502 | 502 | #data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
503 | 503 | data_cspc = None |
|
504 | 504 | |
|
505 | 505 | #data dc es un numpy array de 2 dmensiones (canales, alturas) |
|
506 | 506 | data_dc = None |
|
507 | 507 | |
|
508 | 508 | #data power |
|
509 | 509 | data_pwr = None |
|
510 | 510 | |
|
511 | 511 | nFFTPoints = None |
|
512 | 512 | |
|
513 | 513 | # nPairs = None |
|
514 | 514 | |
|
515 | 515 | pairsList = None |
|
516 | 516 | |
|
517 | 517 | nIncohInt = None |
|
518 | 518 | |
|
519 | 519 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia |
|
520 | 520 | |
|
521 | 521 | nCohInt = None #se requiere para determinar el valor de timeInterval |
|
522 | 522 | |
|
523 | 523 | ippFactor = None |
|
524 | 524 | |
|
525 | 525 | profileIndex = 0 |
|
526 | 526 | |
|
527 | 527 | plotting = "spectra" |
|
528 | 528 | |
|
529 | 529 | def __init__(self): |
|
530 | 530 | ''' |
|
531 | 531 | Constructor |
|
532 | 532 | ''' |
|
533 | 533 | |
|
534 | 534 | self.useLocalTime = True |
|
535 | 535 | |
|
536 | 536 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
537 | 537 | |
|
538 | 538 | self.systemHeaderObj = SystemHeader() |
|
539 | 539 | |
|
540 | 540 | self.type = "Spectra" |
|
541 | 541 | |
|
542 | 542 | # self.data = None |
|
543 | 543 | |
|
544 | 544 | # self.dtype = None |
|
545 | 545 | |
|
546 | 546 | # self.nChannels = 0 |
|
547 | 547 | |
|
548 | 548 | # self.nHeights = 0 |
|
549 | 549 | |
|
550 | 550 | self.nProfiles = None |
|
551 | 551 | |
|
552 | 552 | self.heightList = None |
|
553 | 553 | |
|
554 | 554 | self.channelList = None |
|
555 | 555 | |
|
556 | 556 | # self.channelIndexList = None |
|
557 | 557 | |
|
558 | 558 | self.pairsList = None |
|
559 | 559 | |
|
560 | 560 | self.flagNoData = True |
|
561 | 561 | |
|
562 | 562 | self.flagDiscontinuousBlock = False |
|
563 | 563 | |
|
564 | 564 | self.utctime = None |
|
565 | 565 | |
|
566 | 566 | self.nCohInt = None |
|
567 | 567 | |
|
568 | 568 | self.nIncohInt = None |
|
569 | 569 | |
|
570 | 570 | self.blocksize = None |
|
571 | 571 | |
|
572 | 572 | self.nFFTPoints = None |
|
573 | 573 | |
|
574 | 574 | self.wavelength = None |
|
575 | 575 | |
|
576 | 576 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
577 | 577 | |
|
578 | 578 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
579 | 579 | |
|
580 | 580 | self.flagShiftFFT = False |
|
581 | 581 | |
|
582 | 582 | self.ippFactor = 1 |
|
583 | 583 | |
|
584 | 584 | #self.noise = None |
|
585 | 585 | |
|
586 | 586 | self.beacon_heiIndexList = [] |
|
587 | 587 | |
|
588 | 588 | self.noise_estimation = None |
|
589 | 589 | |
|
590 | 590 | |
|
591 | 591 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
592 | 592 | """ |
|
593 | 593 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
594 | 594 | |
|
595 | 595 | Return: |
|
596 | 596 | noiselevel |
|
597 | 597 | """ |
|
598 | 598 | |
|
599 | 599 | noise = numpy.zeros(self.nChannels) |
|
600 | 600 | |
|
601 | 601 | for channel in range(self.nChannels): |
|
602 | 602 | daux = self.data_spc[channel,xmin_index:xmax_index,ymin_index:ymax_index] |
|
603 | 603 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
604 | 604 | |
|
605 | 605 | return noise |
|
606 | 606 | |
|
607 | 607 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
608 | 608 | |
|
609 | 609 | if self.noise_estimation is not None: |
|
610 | 610 | return self.noise_estimation #this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
611 | 611 | else: |
|
612 | 612 | noise = self.getNoisebyHildebrand(xmin_index, xmax_index, ymin_index, ymax_index) |
|
613 | 613 | return noise |
|
614 | 614 | |
|
615 | 615 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
616 | 616 | |
|
617 | 617 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints*self.ippFactor) |
|
618 | 618 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
619 | 619 | |
|
620 | 620 | return freqrange |
|
621 | 621 | |
|
622 | 622 | def getAcfRange(self, extrapoints=0): |
|
623 | 623 | |
|
624 | 624 | deltafreq = 10./(self.getFmax() / (self.nFFTPoints*self.ippFactor)) |
|
625 | 625 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
626 | 626 | |
|
627 | 627 | return freqrange |
|
628 | 628 | |
|
629 | 629 | def getFreqRange(self, extrapoints=0): |
|
630 | 630 | |
|
631 | 631 | deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor) |
|
632 | 632 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
633 | 633 | |
|
634 | 634 | return freqrange |
|
635 | 635 | |
|
636 | 636 | def getVelRange(self, extrapoints=0): |
|
637 | 637 | |
|
638 | 638 | deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor) |
|
639 | 639 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) #- deltav/2 |
|
640 | 640 | |
|
641 | 641 | return velrange |
|
642 | 642 | |
|
643 | 643 | def getNPairs(self): |
|
644 | 644 | |
|
645 | 645 | return len(self.pairsList) |
|
646 | 646 | |
|
647 | 647 | def getPairsIndexList(self): |
|
648 | 648 | |
|
649 | 649 | return range(self.nPairs) |
|
650 | 650 | |
|
651 | 651 | def getNormFactor(self): |
|
652 | 652 | |
|
653 | 653 | pwcode = 1 |
|
654 | 654 | |
|
655 | 655 | if self.flagDecodeData: |
|
656 | 656 | pwcode = numpy.sum(self.code[0]**2) |
|
657 | 657 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
658 | 658 | normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
659 | 659 | |
|
660 | 660 | return normFactor |
|
661 | 661 | |
|
662 | 662 | def getFlagCspc(self): |
|
663 | 663 | |
|
664 | 664 | if self.data_cspc is None: |
|
665 | 665 | return True |
|
666 | 666 | |
|
667 | 667 | return False |
|
668 | 668 | |
|
669 | 669 | def getFlagDc(self): |
|
670 | 670 | |
|
671 | 671 | if self.data_dc is None: |
|
672 | 672 | return True |
|
673 | 673 | |
|
674 | 674 | return False |
|
675 | 675 | |
|
676 | 676 | def getTimeInterval(self): |
|
677 | 677 | |
|
678 | 678 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles |
|
679 | 679 | |
|
680 | 680 | return timeInterval |
|
681 | 681 | |
|
682 | 682 | def getPower(self): |
|
683 | 683 | |
|
684 | 684 | factor = self.normFactor |
|
685 | 685 | z = self.data_spc/factor |
|
686 | 686 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
687 | 687 | avg = numpy.average(z, axis=1) |
|
688 | 688 | |
|
689 | 689 | return 10*numpy.log10(avg) |
|
690 | 690 | |
|
691 | 691 | def getCoherence(self, pairsList=None, phase=False): |
|
692 | 692 | |
|
693 | 693 | z = [] |
|
694 | 694 | if pairsList is None: |
|
695 | 695 | pairsIndexList = self.pairsIndexList |
|
696 | 696 | else: |
|
697 | 697 | pairsIndexList = [] |
|
698 | 698 | for pair in pairsList: |
|
699 | 699 | if pair not in self.pairsList: |
|
700 | 700 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
701 | 701 | pairsIndexList.append(self.pairsList.index(pair)) |
|
702 | 702 | for i in range(len(pairsIndexList)): |
|
703 | 703 | pair = self.pairsList[pairsIndexList[i]] |
|
704 | 704 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
705 | 705 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
706 | 706 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
707 | 707 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
708 | 708 | if phase: |
|
709 | 709 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
710 | 710 | avgcoherenceComplex.real)*180/numpy.pi |
|
711 | 711 | else: |
|
712 | 712 | data = numpy.abs(avgcoherenceComplex) |
|
713 | 713 | |
|
714 | 714 | z.append(data) |
|
715 | 715 | |
|
716 | 716 | return numpy.array(z) |
|
717 | 717 | |
|
718 | 718 | def setValue(self, value): |
|
719 | 719 | |
|
720 | 720 | print "This property should not be initialized" |
|
721 | 721 | |
|
722 | 722 | return |
|
723 | 723 | |
|
724 | 724 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
725 | 725 | pairsIndexList = property(getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") |
|
726 | 726 | normFactor = property(getNormFactor, setValue, "I'm the 'getNormFactor' property.") |
|
727 | 727 | flag_cspc = property(getFlagCspc, setValue) |
|
728 | 728 | flag_dc = property(getFlagDc, setValue) |
|
729 | 729 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
730 | 730 | timeInterval = property(getTimeInterval, setValue, "I'm the 'timeInterval' property") |
|
731 | 731 | |
|
732 | 732 | class SpectraHeis(Spectra): |
|
733 | 733 | |
|
734 | 734 | data_spc = None |
|
735 | 735 | |
|
736 | 736 | data_cspc = None |
|
737 | 737 | |
|
738 | 738 | data_dc = None |
|
739 | 739 | |
|
740 | 740 | nFFTPoints = None |
|
741 | 741 | |
|
742 | 742 | # nPairs = None |
|
743 | 743 | |
|
744 | 744 | pairsList = None |
|
745 | 745 | |
|
746 | 746 | nCohInt = None |
|
747 | 747 | |
|
748 | 748 | nIncohInt = None |
|
749 | 749 | |
|
750 | 750 | def __init__(self): |
|
751 | 751 | |
|
752 | 752 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
753 | 753 | |
|
754 | 754 | self.systemHeaderObj = SystemHeader() |
|
755 | 755 | |
|
756 | 756 | self.type = "SpectraHeis" |
|
757 | 757 | |
|
758 | 758 | # self.dtype = None |
|
759 | 759 | |
|
760 | 760 | # self.nChannels = 0 |
|
761 | 761 | |
|
762 | 762 | # self.nHeights = 0 |
|
763 | 763 | |
|
764 | 764 | self.nProfiles = None |
|
765 | 765 | |
|
766 | 766 | self.heightList = None |
|
767 | 767 | |
|
768 | 768 | self.channelList = None |
|
769 | 769 | |
|
770 | 770 | # self.channelIndexList = None |
|
771 | 771 | |
|
772 | 772 | self.flagNoData = True |
|
773 | 773 | |
|
774 | 774 | self.flagDiscontinuousBlock = False |
|
775 | 775 | |
|
776 | 776 | # self.nPairs = 0 |
|
777 | 777 | |
|
778 | 778 | self.utctime = None |
|
779 | 779 | |
|
780 | 780 | self.blocksize = None |
|
781 | 781 | |
|
782 | 782 | self.profileIndex = 0 |
|
783 | 783 | |
|
784 | 784 | self.nCohInt = 1 |
|
785 | 785 | |
|
786 | 786 | self.nIncohInt = 1 |
|
787 | 787 | |
|
788 | 788 | def getNormFactor(self): |
|
789 | 789 | pwcode = 1 |
|
790 | 790 | if self.flagDecodeData: |
|
791 | 791 | pwcode = numpy.sum(self.code[0]**2) |
|
792 | 792 | |
|
793 | 793 | normFactor = self.nIncohInt*self.nCohInt*pwcode |
|
794 | 794 | |
|
795 | 795 | return normFactor |
|
796 | 796 | |
|
797 | 797 | def getTimeInterval(self): |
|
798 | 798 | |
|
799 | 799 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
800 | 800 | |
|
801 | 801 | return timeInterval |
|
802 | 802 | |
|
803 | 803 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
804 | 804 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
805 | 805 | |
|
806 | 806 | class Fits(JROData): |
|
807 | 807 | |
|
808 | 808 | heightList = None |
|
809 | 809 | |
|
810 | 810 | channelList = None |
|
811 | 811 | |
|
812 | 812 | flagNoData = True |
|
813 | 813 | |
|
814 | 814 | flagDiscontinuousBlock = False |
|
815 | 815 | |
|
816 | 816 | useLocalTime = False |
|
817 | 817 | |
|
818 | 818 | utctime = None |
|
819 | 819 | |
|
820 | 820 | timeZone = None |
|
821 | 821 | |
|
822 | 822 | # ippSeconds = None |
|
823 | 823 | |
|
824 | 824 | # timeInterval = None |
|
825 | 825 | |
|
826 | 826 | nCohInt = None |
|
827 | 827 | |
|
828 | 828 | nIncohInt = None |
|
829 | 829 | |
|
830 | 830 | noise = None |
|
831 | 831 | |
|
832 | 832 | windowOfFilter = 1 |
|
833 | 833 | |
|
834 | 834 | #Speed of ligth |
|
835 | 835 | C = 3e8 |
|
836 | 836 | |
|
837 | 837 | frequency = 49.92e6 |
|
838 | 838 | |
|
839 | 839 | realtime = False |
|
840 | 840 | |
|
841 | 841 | |
|
842 | 842 | def __init__(self): |
|
843 | 843 | |
|
844 | 844 | self.type = "Fits" |
|
845 | 845 | |
|
846 | 846 | self.nProfiles = None |
|
847 | 847 | |
|
848 | 848 | self.heightList = None |
|
849 | 849 | |
|
850 | 850 | self.channelList = None |
|
851 | 851 | |
|
852 | 852 | # self.channelIndexList = None |
|
853 | 853 | |
|
854 | 854 | self.flagNoData = True |
|
855 | 855 | |
|
856 | 856 | self.utctime = None |
|
857 | 857 | |
|
858 | 858 | self.nCohInt = 1 |
|
859 | 859 | |
|
860 | 860 | self.nIncohInt = 1 |
|
861 | 861 | |
|
862 | 862 | self.useLocalTime = True |
|
863 | 863 | |
|
864 | 864 | self.profileIndex = 0 |
|
865 | 865 | |
|
866 | 866 | # self.utctime = None |
|
867 | 867 | # self.timeZone = None |
|
868 | 868 | # self.ltctime = None |
|
869 | 869 | # self.timeInterval = None |
|
870 | 870 | # self.header = None |
|
871 | 871 | # self.data_header = None |
|
872 | 872 | # self.data = None |
|
873 | 873 | # self.datatime = None |
|
874 | 874 | # self.flagNoData = False |
|
875 | 875 | # self.expName = '' |
|
876 | 876 | # self.nChannels = None |
|
877 | 877 | # self.nSamples = None |
|
878 | 878 | # self.dataBlocksPerFile = None |
|
879 | 879 | # self.comments = '' |
|
880 | 880 | # |
|
881 | 881 | |
|
882 | 882 | |
|
883 | 883 | def getltctime(self): |
|
884 | 884 | |
|
885 | 885 | if self.useLocalTime: |
|
886 | 886 | return self.utctime - self.timeZone*60 |
|
887 | 887 | |
|
888 | 888 | return self.utctime |
|
889 | 889 | |
|
890 | 890 | def getDatatime(self): |
|
891 | 891 | |
|
892 | 892 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
893 | 893 | return datatime |
|
894 | 894 | |
|
895 | 895 | def getTimeRange(self): |
|
896 | 896 | |
|
897 | 897 | datatime = [] |
|
898 | 898 | |
|
899 | 899 | datatime.append(self.ltctime) |
|
900 | 900 | datatime.append(self.ltctime + self.timeInterval) |
|
901 | 901 | |
|
902 | 902 | datatime = numpy.array(datatime) |
|
903 | 903 | |
|
904 | 904 | return datatime |
|
905 | 905 | |
|
906 | 906 | def getHeiRange(self): |
|
907 | 907 | |
|
908 | 908 | heis = self.heightList |
|
909 | 909 | |
|
910 | 910 | return heis |
|
911 | 911 | |
|
912 | 912 | def getNHeights(self): |
|
913 | 913 | |
|
914 | 914 | return len(self.heightList) |
|
915 | 915 | |
|
916 | 916 | def getNChannels(self): |
|
917 | 917 | |
|
918 | 918 | return len(self.channelList) |
|
919 | 919 | |
|
920 | 920 | def getChannelIndexList(self): |
|
921 | 921 | |
|
922 | 922 | return range(self.nChannels) |
|
923 | 923 | |
|
924 | 924 | def getNoise(self, type = 1): |
|
925 | 925 | |
|
926 | 926 | #noise = numpy.zeros(self.nChannels) |
|
927 | 927 | |
|
928 | 928 | if type == 1: |
|
929 | 929 | noise = self.getNoisebyHildebrand() |
|
930 | 930 | |
|
931 | 931 | if type == 2: |
|
932 | 932 | noise = self.getNoisebySort() |
|
933 | 933 | |
|
934 | 934 | if type == 3: |
|
935 | 935 | noise = self.getNoisebyWindow() |
|
936 | 936 | |
|
937 | 937 | return noise |
|
938 | 938 | |
|
939 | 939 | def getTimeInterval(self): |
|
940 | 940 | |
|
941 | 941 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
942 | 942 | |
|
943 | 943 | return timeInterval |
|
944 | 944 | |
|
945 | 945 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
946 | 946 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
947 | 947 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
948 | 948 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
949 | 949 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
950 | 950 | |
|
951 | 951 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
952 | 952 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
953 | 953 | |
|
954 | 954 | |
|
955 | 955 | class Correlation(JROData): |
|
956 | 956 | |
|
957 | 957 | noise = None |
|
958 | 958 | |
|
959 | 959 | SNR = None |
|
960 | 960 | |
|
961 | 961 | #-------------------------------------------------- |
|
962 | 962 | |
|
963 | 963 | mode = None |
|
964 | 964 | |
|
965 | 965 | split = False |
|
966 | 966 | |
|
967 | 967 | data_cf = None |
|
968 | 968 | |
|
969 | 969 | lags = None |
|
970 | 970 | |
|
971 | 971 | lagRange = None |
|
972 | 972 | |
|
973 | 973 | pairsList = None |
|
974 | 974 | |
|
975 | 975 | normFactor = None |
|
976 | 976 | |
|
977 | 977 | #-------------------------------------------------- |
|
978 | 978 | |
|
979 | 979 | # calculateVelocity = None |
|
980 | 980 | |
|
981 | 981 | nLags = None |
|
982 | 982 | |
|
983 | 983 | nPairs = None |
|
984 | 984 | |
|
985 | 985 | nAvg = None |
|
986 | 986 | |
|
987 | 987 | |
|
988 | 988 | def __init__(self): |
|
989 | 989 | ''' |
|
990 | 990 | Constructor |
|
991 | 991 | ''' |
|
992 | 992 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
993 | 993 | |
|
994 | 994 | self.systemHeaderObj = SystemHeader() |
|
995 | 995 | |
|
996 | 996 | self.type = "Correlation" |
|
997 | 997 | |
|
998 | 998 | self.data = None |
|
999 | 999 | |
|
1000 | 1000 | self.dtype = None |
|
1001 | 1001 | |
|
1002 | 1002 | self.nProfiles = None |
|
1003 | 1003 | |
|
1004 | 1004 | self.heightList = None |
|
1005 | 1005 | |
|
1006 | 1006 | self.channelList = None |
|
1007 | 1007 | |
|
1008 | 1008 | self.flagNoData = True |
|
1009 | 1009 | |
|
1010 | 1010 | self.flagDiscontinuousBlock = False |
|
1011 | 1011 | |
|
1012 | 1012 | self.utctime = None |
|
1013 | 1013 | |
|
1014 | 1014 | self.timeZone = None |
|
1015 | 1015 | |
|
1016 | 1016 | self.dstFlag = None |
|
1017 | 1017 | |
|
1018 | 1018 | self.errorCount = None |
|
1019 | 1019 | |
|
1020 | 1020 | self.blocksize = None |
|
1021 | 1021 | |
|
1022 | 1022 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
1023 | 1023 | |
|
1024 | 1024 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
1025 | 1025 | |
|
1026 | 1026 | self.pairsList = None |
|
1027 | 1027 | |
|
1028 | 1028 | self.nPoints = None |
|
1029 | 1029 | |
|
1030 | 1030 | def getPairsList(self): |
|
1031 | 1031 | |
|
1032 | 1032 | return self.pairsList |
|
1033 | 1033 | |
|
1034 | 1034 | def getNoise(self, mode = 2): |
|
1035 | 1035 | |
|
1036 | 1036 | indR = numpy.where(self.lagR == 0)[0][0] |
|
1037 | 1037 | indT = numpy.where(self.lagT == 0)[0][0] |
|
1038 | 1038 | |
|
1039 | 1039 | jspectra0 = self.data_corr[:,:,indR,:] |
|
1040 | 1040 | jspectra = copy.copy(jspectra0) |
|
1041 | 1041 | |
|
1042 | 1042 | num_chan = jspectra.shape[0] |
|
1043 | 1043 | num_hei = jspectra.shape[2] |
|
1044 | 1044 | |
|
1045 | 1045 | freq_dc = jspectra.shape[1]/2 |
|
1046 | 1046 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
1047 | 1047 | |
|
1048 | 1048 | if ind_vel[0]<0: |
|
1049 | 1049 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
1050 | 1050 | |
|
1051 | 1051 | if mode == 1: |
|
1052 | 1052 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
1053 | 1053 | |
|
1054 | 1054 | if mode == 2: |
|
1055 | 1055 | |
|
1056 | 1056 | vel = numpy.array([-2,-1,1,2]) |
|
1057 | 1057 | xx = numpy.zeros([4,4]) |
|
1058 | 1058 | |
|
1059 | 1059 | for fil in range(4): |
|
1060 | 1060 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
1061 | 1061 | |
|
1062 | 1062 | xx_inv = numpy.linalg.inv(xx) |
|
1063 | 1063 | xx_aux = xx_inv[0,:] |
|
1064 | 1064 | |
|
1065 | 1065 | for ich in range(num_chan): |
|
1066 | 1066 | yy = jspectra[ich,ind_vel,:] |
|
1067 | 1067 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
1068 | 1068 | |
|
1069 | 1069 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
1070 | 1070 | cjunkid = sum(junkid) |
|
1071 | 1071 | |
|
1072 | 1072 | if cjunkid.any(): |
|
1073 | 1073 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
1074 | 1074 | |
|
1075 | 1075 | noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:] |
|
1076 | 1076 | |
|
1077 | 1077 | return noise |
|
1078 | 1078 | |
|
1079 | 1079 | def getTimeInterval(self): |
|
1080 | 1080 | |
|
1081 | 1081 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles |
|
1082 | 1082 | |
|
1083 | 1083 | return timeInterval |
|
1084 | 1084 | |
|
1085 | 1085 | def splitFunctions(self): |
|
1086 | 1086 | |
|
1087 | 1087 | pairsList = self.pairsList |
|
1088 | 1088 | ccf_pairs = [] |
|
1089 | 1089 | acf_pairs = [] |
|
1090 | 1090 | ccf_ind = [] |
|
1091 | 1091 | acf_ind = [] |
|
1092 | 1092 | for l in range(len(pairsList)): |
|
1093 | 1093 | chan0 = pairsList[l][0] |
|
1094 | 1094 | chan1 = pairsList[l][1] |
|
1095 | 1095 | |
|
1096 | 1096 | #Obteniendo pares de Autocorrelacion |
|
1097 | 1097 | if chan0 == chan1: |
|
1098 | 1098 | acf_pairs.append(chan0) |
|
1099 | 1099 | acf_ind.append(l) |
|
1100 | 1100 | else: |
|
1101 | 1101 | ccf_pairs.append(pairsList[l]) |
|
1102 | 1102 | ccf_ind.append(l) |
|
1103 | 1103 | |
|
1104 | 1104 | data_acf = self.data_cf[acf_ind] |
|
1105 | 1105 | data_ccf = self.data_cf[ccf_ind] |
|
1106 | 1106 | |
|
1107 | 1107 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
1108 | 1108 | |
|
1109 | 1109 | def getNormFactor(self): |
|
1110 | 1110 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
1111 | 1111 | acf_pairs = numpy.array(acf_pairs) |
|
1112 | 1112 | normFactor = numpy.zeros((self.nPairs,self.nHeights)) |
|
1113 | 1113 | |
|
1114 | 1114 | for p in range(self.nPairs): |
|
1115 | 1115 | pair = self.pairsList[p] |
|
1116 | 1116 | |
|
1117 | 1117 | ch0 = pair[0] |
|
1118 | 1118 | ch1 = pair[1] |
|
1119 | 1119 | |
|
1120 | 1120 | ch0_max = numpy.max(data_acf[acf_pairs==ch0,:,:], axis=1) |
|
1121 | 1121 | ch1_max = numpy.max(data_acf[acf_pairs==ch1,:,:], axis=1) |
|
1122 | 1122 | normFactor[p,:] = numpy.sqrt(ch0_max*ch1_max) |
|
1123 | 1123 | |
|
1124 | 1124 | return normFactor |
|
1125 | 1125 | |
|
1126 | 1126 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1127 | 1127 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") |
|
1128 | 1128 | |
|
1129 | 1129 | class Parameters(Spectra): |
|
1130 | 1130 | |
|
1131 | 1131 | experimentInfo = None #Information about the experiment |
|
1132 | 1132 | |
|
1133 | 1133 | #Information from previous data |
|
1134 | 1134 | |
|
1135 | 1135 | inputUnit = None #Type of data to be processed |
|
1136 | 1136 | |
|
1137 | 1137 | operation = None #Type of operation to parametrize |
|
1138 | 1138 | |
|
1139 | 1139 | #normFactor = None #Normalization Factor |
|
1140 | 1140 | |
|
1141 | 1141 | groupList = None #List of Pairs, Groups, etc |
|
1142 | 1142 | |
|
1143 | 1143 | #Parameters |
|
1144 | 1144 | |
|
1145 | 1145 | data_param = None #Parameters obtained |
|
1146 | 1146 | |
|
1147 | 1147 | data_pre = None #Data Pre Parametrization |
|
1148 | 1148 | |
|
1149 | 1149 | data_SNR = None #Signal to Noise Ratio |
|
1150 | 1150 | |
|
1151 | 1151 | # heightRange = None #Heights |
|
1152 | 1152 | |
|
1153 | 1153 | abscissaList = None #Abscissa, can be velocities, lags or time |
|
1154 | 1154 | |
|
1155 | 1155 | # noise = None #Noise Potency |
|
1156 | 1156 | |
|
1157 | 1157 | utctimeInit = None #Initial UTC time |
|
1158 | 1158 | |
|
1159 | 1159 | paramInterval = None #Time interval to calculate Parameters in seconds |
|
1160 | 1160 | |
|
1161 | 1161 | useLocalTime = True |
|
1162 | 1162 | |
|
1163 | 1163 | #Fitting |
|
1164 | 1164 | |
|
1165 | 1165 | data_error = None #Error of the estimation |
|
1166 | 1166 | |
|
1167 | 1167 | constants = None |
|
1168 | 1168 | |
|
1169 | 1169 | library = None |
|
1170 | 1170 | |
|
1171 | 1171 | #Output signal |
|
1172 | 1172 | |
|
1173 | 1173 | outputInterval = None #Time interval to calculate output signal in seconds |
|
1174 | 1174 | |
|
1175 | 1175 | data_output = None #Out signal |
|
1176 | 1176 | |
|
1177 | 1177 | nAvg = None |
|
1178 | 1178 | |
|
1179 | 1179 | noise_estimation = None |
|
1180 | 1180 | |
|
1181 | GauSPC = None #Fit gaussian SPC | |
|
1182 | ||
|
1181 | 1183 | |
|
1182 | 1184 | def __init__(self): |
|
1183 | 1185 | ''' |
|
1184 | 1186 | Constructor |
|
1185 | 1187 | ''' |
|
1186 | 1188 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1187 | 1189 | |
|
1188 | 1190 | self.systemHeaderObj = SystemHeader() |
|
1189 | 1191 | |
|
1190 | 1192 | self.type = "Parameters" |
|
1191 | 1193 | |
|
1192 | 1194 | def getTimeRange1(self, interval): |
|
1193 | 1195 | |
|
1194 | 1196 | datatime = [] |
|
1195 | 1197 | |
|
1196 | 1198 | if self.useLocalTime: |
|
1197 | 1199 | time1 = self.utctimeInit - self.timeZone*60 |
|
1198 | 1200 | else: |
|
1199 | 1201 | time1 = self.utctimeInit |
|
1200 | 1202 | |
|
1201 | 1203 | datatime.append(time1) |
|
1202 | 1204 | datatime.append(time1 + interval) |
|
1203 | 1205 | datatime = numpy.array(datatime) |
|
1204 | 1206 | |
|
1205 | 1207 | return datatime |
|
1206 | 1208 | |
|
1207 | 1209 | def getTimeInterval(self): |
|
1208 | 1210 | |
|
1209 | 1211 | if hasattr(self, 'timeInterval1'): |
|
1210 | 1212 | return self.timeInterval1 |
|
1211 | 1213 | else: |
|
1212 | 1214 | return self.paramInterval |
|
1213 | 1215 | |
|
1216 | def setValue(self, value): | |
|
1217 | ||
|
1218 | print "This property should not be initialized" | |
|
1219 | ||
|
1220 | return | |
|
1221 | ||
|
1214 | 1222 | def getNoise(self): |
|
1215 | 1223 | |
|
1216 | 1224 | return self.spc_noise |
|
1217 | 1225 | |
|
1218 | 1226 | timeInterval = property(getTimeInterval) |
|
1227 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
@@ -1,782 +1,819 | |||
|
1 | 1 | |
|
2 | 2 | import os |
|
3 | 3 | import time |
|
4 | 4 | import glob |
|
5 | 5 | import datetime |
|
6 | 6 | from multiprocessing import Process |
|
7 | 7 | |
|
8 | 8 | import zmq |
|
9 | 9 | import numpy |
|
10 | 10 | import matplotlib |
|
11 | 11 | import matplotlib.pyplot as plt |
|
12 | 12 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
13 | 13 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator |
|
14 | 14 | |
|
15 | 15 | from schainpy.model.proc.jroproc_base import Operation |
|
16 | 16 | from schainpy.utils import log |
|
17 | 17 | |
|
18 | func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime('%H:%M')) | |
|
18 | jet_values = matplotlib.pyplot.get_cmap("jet", 100)(numpy.arange(100))[10:90] | |
|
19 | blu_values = matplotlib.pyplot.get_cmap("seismic_r", 20)(numpy.arange(20))[10:15] | |
|
20 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list("jro", numpy.vstack((blu_values, jet_values))) | |
|
21 | matplotlib.pyplot.register_cmap(cmap=ncmap) | |
|
19 | 22 | |
|
20 | d1970 = datetime.datetime(1970, 1, 1) | |
|
23 | func = lambda x, pos: '{}'.format(datetime.datetime.fromtimestamp(x).strftime('%H:%M')) | |
|
21 | 24 | |
|
25 | UT1970 = datetime.datetime(1970, 1, 1) - datetime.timedelta(seconds=time.timezone) | |
|
26 | ||
|
27 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'RdBu_r', 'seismic')] | |
|
22 | 28 | |
|
23 | 29 | class PlotData(Operation, Process): |
|
24 | 30 | ''' |
|
25 | 31 | Base class for Schain plotting operations |
|
26 | 32 | ''' |
|
27 | 33 | |
|
28 | 34 | CODE = 'Figure' |
|
29 | 35 | colormap = 'jro' |
|
30 | 36 | bgcolor = 'white' |
|
31 | 37 | CONFLATE = False |
|
32 | 38 | __MAXNUMX = 80 |
|
33 | 39 | __missing = 1E30 |
|
34 | 40 | |
|
35 | 41 | def __init__(self, **kwargs): |
|
36 | 42 | |
|
37 | 43 | Operation.__init__(self, plot=True, **kwargs) |
|
38 | 44 | Process.__init__(self) |
|
39 | 45 | self.kwargs['code'] = self.CODE |
|
40 | 46 | self.mp = False |
|
41 | 47 | self.data = None |
|
42 | 48 | self.isConfig = False |
|
43 | 49 | self.figures = [] |
|
44 | 50 | self.axes = [] |
|
45 | 51 | self.cb_axes = [] |
|
46 | 52 | self.localtime = kwargs.pop('localtime', True) |
|
47 | 53 | self.show = kwargs.get('show', True) |
|
48 | 54 | self.save = kwargs.get('save', False) |
|
49 | 55 | self.colormap = kwargs.get('colormap', self.colormap) |
|
50 | 56 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
51 | 57 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
52 | 58 | self.colormaps = kwargs.get('colormaps', None) |
|
53 | 59 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) |
|
54 | 60 | self.showprofile = kwargs.get('showprofile', False) |
|
55 | 61 | self.title = kwargs.get('wintitle', self.CODE.upper()) |
|
56 | 62 | self.cb_label = kwargs.get('cb_label', None) |
|
57 | 63 | self.cb_labels = kwargs.get('cb_labels', None) |
|
58 | 64 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
59 | 65 | self.zmin = kwargs.get('zmin', None) |
|
60 | 66 | self.zmax = kwargs.get('zmax', None) |
|
61 | 67 | self.zlimits = kwargs.get('zlimits', None) |
|
62 | 68 | self.xmin = kwargs.get('xmin', None) |
|
63 | if self.xmin is not None: | |
|
64 | self.xmin += 5 | |
|
65 | 69 | self.xmax = kwargs.get('xmax', None) |
|
66 | 70 | self.xrange = kwargs.get('xrange', 24) |
|
67 | 71 | self.ymin = kwargs.get('ymin', None) |
|
68 | 72 | self.ymax = kwargs.get('ymax', None) |
|
69 | 73 | self.xlabel = kwargs.get('xlabel', None) |
|
70 | 74 | self.__MAXNUMY = kwargs.get('decimation', 100) |
|
71 | 75 | self.showSNR = kwargs.get('showSNR', False) |
|
72 | 76 | self.oneFigure = kwargs.get('oneFigure', True) |
|
73 | 77 | self.width = kwargs.get('width', None) |
|
74 | 78 | self.height = kwargs.get('height', None) |
|
75 | 79 | self.colorbar = kwargs.get('colorbar', True) |
|
76 | 80 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) |
|
77 | 81 | self.titles = ['' for __ in range(16)] |
|
78 | 82 | |
|
79 | 83 | def __setup(self): |
|
80 | 84 | ''' |
|
81 | 85 | Common setup for all figures, here figures and axes are created |
|
82 | 86 | ''' |
|
83 | 87 | |
|
84 | 88 | self.setup() |
|
85 | 89 | |
|
90 | self.time_label = 'LT' if self.localtime else 'UTC' | |
|
91 | ||
|
86 | 92 | if self.width is None: |
|
87 | 93 | self.width = 8 |
|
88 | 94 | |
|
89 | 95 | self.figures = [] |
|
90 | 96 | self.axes = [] |
|
91 | 97 | self.cb_axes = [] |
|
92 | 98 | self.pf_axes = [] |
|
93 | 99 | self.cmaps = [] |
|
94 | 100 | |
|
95 | 101 | size = '15%' if self.ncols==1 else '30%' |
|
96 | 102 | pad = '4%' if self.ncols==1 else '8%' |
|
97 | 103 | |
|
98 | 104 | if self.oneFigure: |
|
99 | 105 | if self.height is None: |
|
100 | 106 | self.height = 1.4*self.nrows + 1 |
|
101 | 107 | fig = plt.figure(figsize=(self.width, self.height), |
|
102 | 108 | edgecolor='k', |
|
103 | 109 | facecolor='w') |
|
104 | 110 | self.figures.append(fig) |
|
105 | 111 | for n in range(self.nplots): |
|
106 | 112 | ax = fig.add_subplot(self.nrows, self.ncols, n+1) |
|
107 | 113 | ax.tick_params(labelsize=8) |
|
108 | 114 | ax.firsttime = True |
|
115 | ax.index = 0 | |
|
109 | 116 | self.axes.append(ax) |
|
110 | 117 | if self.showprofile: |
|
111 | 118 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
112 | 119 | cax.tick_params(labelsize=8) |
|
113 | 120 | self.pf_axes.append(cax) |
|
114 | 121 | else: |
|
115 | 122 | if self.height is None: |
|
116 | 123 | self.height = 3 |
|
117 | 124 | for n in range(self.nplots): |
|
118 | 125 | fig = plt.figure(figsize=(self.width, self.height), |
|
119 | 126 | edgecolor='k', |
|
120 | 127 | facecolor='w') |
|
121 | 128 | ax = fig.add_subplot(1, 1, 1) |
|
122 | 129 | ax.tick_params(labelsize=8) |
|
123 | 130 | ax.firsttime = True |
|
131 | ax.index = 0 | |
|
124 | 132 | self.figures.append(fig) |
|
125 | 133 | self.axes.append(ax) |
|
126 | 134 | if self.showprofile: |
|
127 | 135 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
128 | 136 | cax.tick_params(labelsize=8) |
|
129 | 137 | self.pf_axes.append(cax) |
|
130 | 138 | |
|
131 | 139 | for n in range(self.nrows): |
|
132 | 140 | if self.colormaps is not None: |
|
133 | 141 | cmap = plt.get_cmap(self.colormaps[n]) |
|
134 | 142 | else: |
|
135 | 143 | cmap = plt.get_cmap(self.colormap) |
|
136 | 144 | cmap.set_bad(self.bgcolor, 1.) |
|
137 | 145 | self.cmaps.append(cmap) |
|
138 | 146 | |
|
147 | for fig in self.figures: | |
|
148 | fig.canvas.mpl_connect('key_press_event', self.event_key_press) | |
|
149 | ||
|
150 | def event_key_press(self, event): | |
|
151 | ''' | |
|
152 | ''' | |
|
153 | ||
|
154 | for ax in self.axes: | |
|
155 | if ax == event.inaxes: | |
|
156 | if event.key == 'down': | |
|
157 | ax.index += 1 | |
|
158 | elif event.key == 'up': | |
|
159 | ax.index -= 1 | |
|
160 | if ax.index < 0: | |
|
161 | ax.index = len(CMAPS) - 1 | |
|
162 | elif ax.index == len(CMAPS): | |
|
163 | ax.index = 0 | |
|
164 | cmap = CMAPS[ax.index] | |
|
165 | ax.cbar.set_cmap(cmap) | |
|
166 | ax.cbar.draw_all() | |
|
167 | ax.plt.set_cmap(cmap) | |
|
168 | ax.cbar.patch.figure.canvas.draw() | |
|
169 | ||
|
139 | 170 | def __add_axes(self, ax, size='30%', pad='8%'): |
|
140 | 171 | ''' |
|
141 | 172 | Add new axes to the given figure |
|
142 | 173 | ''' |
|
143 | 174 | divider = make_axes_locatable(ax) |
|
144 | 175 | nax = divider.new_horizontal(size=size, pad=pad) |
|
145 | 176 | ax.figure.add_axes(nax) |
|
146 | 177 | return nax |
|
147 | 178 | |
|
179 | self.setup() | |
|
148 | 180 | |
|
149 | 181 | def setup(self): |
|
150 | 182 | ''' |
|
151 | 183 | This method should be implemented in the child class, the following |
|
152 | 184 | attributes should be set: |
|
153 | 185 | |
|
154 | 186 | self.nrows: number of rows |
|
155 | 187 | self.ncols: number of cols |
|
156 | 188 | self.nplots: number of plots (channels or pairs) |
|
157 | 189 | self.ylabel: label for Y axes |
|
158 | 190 | self.titles: list of axes title |
|
159 | 191 | |
|
160 | 192 | ''' |
|
161 | 193 | raise(NotImplementedError, 'Implement this method in child class') |
|
162 | 194 | |
|
163 | 195 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
164 | 196 | ''' |
|
165 | 197 | Create a masked array for missing data |
|
166 | 198 | ''' |
|
167 | 199 | if x_buffer.shape[0] < 2: |
|
168 | 200 | return x_buffer, y_buffer, z_buffer |
|
169 | 201 | |
|
170 | 202 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
171 | 203 | x_median = numpy.median(deltas) |
|
172 | 204 | |
|
173 | 205 | index = numpy.where(deltas > 5*x_median) |
|
174 | 206 | |
|
175 | 207 | if len(index[0]) != 0: |
|
176 | 208 | z_buffer[::, index[0], ::] = self.__missing |
|
177 | 209 | z_buffer = numpy.ma.masked_inside(z_buffer, |
|
178 | 210 | 0.99*self.__missing, |
|
179 | 211 | 1.01*self.__missing) |
|
180 | 212 | |
|
181 | 213 | return x_buffer, y_buffer, z_buffer |
|
182 | 214 | |
|
183 | 215 | def decimate(self): |
|
184 | 216 | |
|
185 | 217 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
186 | 218 | dy = int(len(self.y)/self.__MAXNUMY) + 1 |
|
187 | 219 | |
|
188 | 220 | # x = self.x[::dx] |
|
189 | 221 | x = self.x |
|
190 | 222 | y = self.y[::dy] |
|
191 | 223 | z = self.z[::, ::, ::dy] |
|
192 | 224 | |
|
193 | 225 | return x, y, z |
|
194 | 226 | |
|
195 | 227 | def format(self): |
|
196 | 228 | ''' |
|
197 | 229 | Set min and max values, labels, ticks and titles |
|
198 | 230 | ''' |
|
199 | 231 | |
|
200 | 232 | if self.xmin is None: |
|
201 | 233 | xmin = self.min_time |
|
202 | 234 | else: |
|
203 | 235 | if self.xaxis is 'time': |
|
204 | 236 | dt = datetime.datetime.fromtimestamp(self.min_time) |
|
205 | 237 | xmin = (datetime.datetime.combine(dt.date(), |
|
206 |
datetime.time(int(self.xmin), 0, 0))- |
|
|
238 | datetime.time(int(self.xmin), 0, 0))-UT1970).total_seconds() | |
|
207 | 239 | else: |
|
208 | 240 | xmin = self.xmin |
|
209 | 241 | |
|
210 | 242 | if self.xmax is None: |
|
211 | 243 | xmax = xmin+self.xrange*60*60 |
|
212 | 244 | else: |
|
213 | 245 | if self.xaxis is 'time': |
|
214 | 246 | dt = datetime.datetime.fromtimestamp(self.min_time) |
|
215 | 247 | xmax = (datetime.datetime.combine(dt.date(), |
|
216 |
datetime.time(int(self.xmax), 0, 0))- |
|
|
248 | datetime.time(int(self.xmax), 0, 0))-UT1970).total_seconds() | |
|
217 | 249 | else: |
|
218 | 250 | xmax = self.xmax |
|
219 | 251 | |
|
220 | 252 | ymin = self.ymin if self.ymin else numpy.nanmin(self.y) |
|
221 | 253 | ymax = self.ymax if self.ymax else numpy.nanmax(self.y) |
|
222 | 254 | |
|
223 | 255 | ystep = 200 if ymax>= 800 else 100 if ymax>=400 else 50 if ymax>=200 else 20 |
|
224 | 256 | |
|
225 | 257 | for n, ax in enumerate(self.axes): |
|
226 | 258 | if ax.firsttime: |
|
227 | 259 | ax.set_facecolor(self.bgcolor) |
|
228 | 260 | ax.yaxis.set_major_locator(MultipleLocator(ystep)) |
|
229 | 261 | if self.xaxis is 'time': |
|
230 | 262 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
231 | 263 | ax.xaxis.set_major_locator(LinearLocator(9)) |
|
232 | 264 | if self.xlabel is not None: |
|
233 | 265 | ax.set_xlabel(self.xlabel) |
|
234 | 266 | ax.set_ylabel(self.ylabel) |
|
235 | 267 | ax.firsttime = False |
|
236 | 268 | if self.showprofile: |
|
237 | 269 | self.pf_axes[n].set_ylim(ymin, ymax) |
|
238 | 270 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) |
|
239 | 271 | self.pf_axes[n].set_xlabel('dB') |
|
240 | 272 | self.pf_axes[n].grid(b=True, axis='x') |
|
241 | 273 | [tick.set_visible(False) for tick in self.pf_axes[n].get_yticklabels()] |
|
242 | 274 | if self.colorbar: |
|
243 | cb = plt.colorbar(ax.plt, ax=ax, pad=0.02) | |
|
244 | cb.ax.tick_params(labelsize=8) | |
|
275 | ax.cbar = plt.colorbar(ax.plt, ax=ax, pad=0.02, aspect=10) | |
|
276 | ax.cbar.ax.tick_params(labelsize=8) | |
|
245 | 277 | if self.cb_label: |
|
246 | cb.set_label(self.cb_label, size=8) | |
|
278 | ax.cbar.set_label(self.cb_label, size=8) | |
|
247 | 279 | elif self.cb_labels: |
|
248 | cb.set_label(self.cb_labels[n], size=8) | |
|
280 | ax.cbar.set_label(self.cb_labels[n], size=8) | |
|
249 | 281 | |
|
250 |
ax.set_title('{} - {} |
|
|
282 | ax.set_title('{} - {} {}'.format( | |
|
251 | 283 | self.titles[n], |
|
252 |
datetime.datetime.fromtimestamp(self.max_time).strftime('%H:%M:%S') |
|
|
284 | datetime.datetime.fromtimestamp(self.max_time).strftime('%H:%M:%S'), | |
|
285 | self.time_label), | |
|
253 | 286 | size=8) |
|
254 | 287 | ax.set_xlim(xmin, xmax) |
|
255 | 288 | ax.set_ylim(ymin, ymax) |
|
256 | 289 | |
|
257 | ||
|
258 | 290 | def __plot(self): |
|
259 | 291 | ''' |
|
260 | 292 | ''' |
|
261 | 293 | log.success('Plotting', self.name) |
|
262 | 294 | |
|
263 | 295 | self.plot() |
|
264 | 296 | self.format() |
|
265 | 297 | |
|
266 | 298 | for n, fig in enumerate(self.figures): |
|
267 | 299 | if self.nrows == 0 or self.nplots == 0: |
|
268 | 300 | log.warning('No data', self.name) |
|
269 | 301 | continue |
|
270 | 302 | if self.show: |
|
271 | 303 | fig.show() |
|
272 | 304 | |
|
273 | 305 | fig.tight_layout() |
|
274 | 306 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, |
|
275 | 307 | datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d'))) |
|
276 | 308 | # fig.canvas.draw() |
|
277 | 309 | |
|
278 | 310 | if self.save and self.data.ended: |
|
279 | 311 | channels = range(self.nrows) |
|
280 | 312 | if self.oneFigure: |
|
281 | 313 | label = '' |
|
282 | 314 | else: |
|
283 | 315 | label = '_{}'.format(channels[n]) |
|
284 | 316 | figname = os.path.join( |
|
285 | 317 | self.save, |
|
286 | 318 | '{}{}_{}.png'.format( |
|
287 | 319 | self.CODE, |
|
288 | 320 | label, |
|
289 | 321 | datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S') |
|
290 | 322 | ) |
|
291 | 323 | ) |
|
292 | 324 | print 'Saving figure: {}'.format(figname) |
|
293 | 325 | fig.savefig(figname) |
|
294 | 326 | |
|
295 | 327 | def plot(self): |
|
296 | 328 | ''' |
|
297 | 329 | ''' |
|
298 | 330 | raise(NotImplementedError, 'Implement this method in child class') |
|
299 | 331 | |
|
300 | 332 | def run(self): |
|
301 | 333 | |
|
302 | 334 | log.success('Starting', self.name) |
|
303 | 335 | |
|
304 | 336 | context = zmq.Context() |
|
305 | 337 | receiver = context.socket(zmq.SUB) |
|
306 | 338 | receiver.setsockopt(zmq.SUBSCRIBE, '') |
|
307 | 339 | receiver.setsockopt(zmq.CONFLATE, self.CONFLATE) |
|
308 | 340 | |
|
309 | 341 | if 'server' in self.kwargs['parent']: |
|
310 | 342 | receiver.connect('ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server'])) |
|
311 | 343 | else: |
|
312 | 344 | receiver.connect("ipc:///tmp/zmq.plots") |
|
313 | 345 | |
|
314 | 346 | while True: |
|
315 | 347 | try: |
|
316 | 348 |
self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) |
|
317 | 349 | |
|
318 |
|
|
|
319 |
self. |
|
|
350 | if self.localtime: | |
|
351 | self.times = self.data.times - time.timezone | |
|
352 | else: | |
|
353 | self.times = self.data.times | |
|
354 | ||
|
355 | self.min_time = self.times[0] | |
|
356 | self.max_time = self.times[-1] | |
|
320 | 357 | |
|
321 | 358 | if self.isConfig is False: |
|
322 | 359 | self.__setup() |
|
323 | 360 | self.isConfig = True |
|
324 | 361 | |
|
325 | 362 | self.__plot() |
|
326 | 363 | |
|
327 | 364 | except zmq.Again as e: |
|
328 | 365 | log.log('Waiting for data...') |
|
329 | 366 | if self.data: |
|
330 | 367 | plt.pause(self.data.throttle) |
|
331 | 368 | else: |
|
332 | 369 | time.sleep(2) |
|
333 | 370 | |
|
334 | 371 | def close(self): |
|
335 | 372 | if self.data: |
|
336 | 373 | self.__plot() |
|
337 | 374 | |
|
338 | ||
|
339 | 375 | class PlotSpectraData(PlotData): |
|
340 | 376 | ''' |
|
341 | 377 | Plot for Spectra data |
|
342 | 378 | ''' |
|
343 | 379 | |
|
344 | 380 | CODE = 'spc' |
|
345 | 381 | colormap = 'jro' |
|
346 | 382 | |
|
347 | 383 | def setup(self): |
|
348 | 384 | self.nplots = len(self.data.channels) |
|
349 | 385 | self.ncols = int(numpy.sqrt(self.nplots)+ 0.9) |
|
350 | 386 | self.nrows = int((1.0*self.nplots/self.ncols) + 0.9) |
|
351 | 387 | self.width = 3.4*self.ncols |
|
352 | 388 | self.height = 3*self.nrows |
|
353 | 389 | self.cb_label = 'dB' |
|
354 | 390 | if self.showprofile: |
|
355 | 391 | self.width += 0.8*self.ncols |
|
356 | 392 | |
|
357 | 393 | self.ylabel = 'Range [Km]' |
|
358 | 394 | |
|
359 | 395 | def plot(self): |
|
360 | 396 | if self.xaxis == "frequency": |
|
361 | 397 | x = self.data.xrange[0] |
|
362 | 398 | self.xlabel = "Frequency (kHz)" |
|
363 | 399 | elif self.xaxis == "time": |
|
364 | 400 | x = self.data.xrange[1] |
|
365 | 401 | self.xlabel = "Time (ms)" |
|
366 | 402 | else: |
|
367 | 403 | x = self.data.xrange[2] |
|
368 | 404 | self.xlabel = "Velocity (m/s)" |
|
369 | 405 | |
|
370 | 406 | if self.CODE == 'spc_mean': |
|
371 | 407 | x = self.data.xrange[2] |
|
372 | 408 | self.xlabel = "Velocity (m/s)" |
|
373 | 409 | |
|
374 | 410 | self.titles = [] |
|
375 | 411 | |
|
376 | 412 | y = self.data.heights |
|
377 | 413 | self.y = y |
|
378 | 414 | z = self.data['spc'] |
|
379 | 415 | |
|
380 | 416 | for n, ax in enumerate(self.axes): |
|
381 | 417 | noise = self.data['noise'][n][-1] |
|
382 | 418 | if self.CODE == 'spc_mean': |
|
383 | 419 | mean = self.data['mean'][n][-1] |
|
384 | 420 | if ax.firsttime: |
|
385 | 421 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
386 | 422 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
387 | 423 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
388 | 424 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
389 | 425 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
390 | 426 | vmin=self.zmin, |
|
391 | 427 | vmax=self.zmax, |
|
392 | 428 | cmap=plt.get_cmap(self.colormap) |
|
393 | 429 | ) |
|
394 | 430 | |
|
395 | 431 | if self.showprofile: |
|
396 | 432 | ax.plt_profile= self.pf_axes[n].plot(self.data['rti'][n][-1], y)[0] |
|
397 | 433 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
398 | 434 | color="k", linestyle="dashed", lw=1)[0] |
|
399 | 435 | if self.CODE == 'spc_mean': |
|
400 | 436 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
401 | 437 | else: |
|
402 | 438 | ax.plt.set_array(z[n].T.ravel()) |
|
403 | 439 | if self.showprofile: |
|
404 | 440 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
405 | 441 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
406 | 442 | if self.CODE == 'spc_mean': |
|
407 | 443 | ax.plt_mean.set_data(mean, y) |
|
408 | 444 | |
|
409 | 445 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
410 | 446 | self.saveTime = self.max_time |
|
411 | 447 | |
|
412 | 448 | |
|
413 | 449 | class PlotCrossSpectraData(PlotData): |
|
414 | 450 | |
|
415 | 451 | CODE = 'cspc' |
|
416 | 452 | zmin_coh = None |
|
417 | 453 | zmax_coh = None |
|
418 | 454 | zmin_phase = None |
|
419 | 455 | zmax_phase = None |
|
420 | 456 | |
|
421 | 457 | def setup(self): |
|
422 | 458 | |
|
423 | 459 | self.ncols = 4 |
|
424 | 460 | self.nrows = len(self.data.pairs) |
|
425 | 461 | self.nplots = self.nrows*4 |
|
426 | 462 | self.width = 3.4*self.ncols |
|
427 | 463 | self.height = 3*self.nrows |
|
428 | 464 | self.ylabel = 'Range [Km]' |
|
429 | 465 | self.showprofile = False |
|
430 | 466 | |
|
431 | 467 | def plot(self): |
|
432 | 468 | |
|
433 | 469 | if self.xaxis == "frequency": |
|
434 | 470 | x = self.data.xrange[0] |
|
435 | 471 | self.xlabel = "Frequency (kHz)" |
|
436 | 472 | elif self.xaxis == "time": |
|
437 | 473 | x = self.data.xrange[1] |
|
438 | 474 | self.xlabel = "Time (ms)" |
|
439 | 475 | else: |
|
440 | 476 | x = self.data.xrange[2] |
|
441 | 477 | self.xlabel = "Velocity (m/s)" |
|
442 | 478 | |
|
443 | 479 | self.titles = [] |
|
444 | 480 | |
|
445 | 481 | y = self.data.heights |
|
446 | 482 | self.y = y |
|
447 | 483 | spc = self.data['spc'] |
|
448 | 484 | cspc = self.data['cspc'] |
|
449 | 485 | |
|
450 | 486 | for n in range(self.nrows): |
|
451 | 487 | noise = self.data['noise'][n][-1] |
|
452 | 488 | pair = self.data.pairs[n] |
|
453 | 489 | ax = self.axes[4*n] |
|
454 | 490 | ax3 = self.axes[4*n+3] |
|
455 | 491 | if ax.firsttime: |
|
456 | 492 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
457 | 493 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
458 | 494 | self.zmin = self.zmin if self.zmin else numpy.nanmin(spc) |
|
459 | 495 | self.zmax = self.zmax if self.zmax else numpy.nanmax(spc) |
|
460 | 496 | ax.plt = ax.pcolormesh(x, y, spc[pair[0]].T, |
|
461 | 497 | vmin=self.zmin, |
|
462 | 498 | vmax=self.zmax, |
|
463 | 499 | cmap=plt.get_cmap(self.colormap) |
|
464 | 500 | ) |
|
465 | 501 | else: |
|
466 | 502 | ax.plt.set_array(spc[pair[0]].T.ravel()) |
|
467 | 503 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
468 | 504 | |
|
469 | 505 | ax = self.axes[4*n+1] |
|
470 | 506 | if ax.firsttime: |
|
471 | 507 | ax.plt = ax.pcolormesh(x, y, spc[pair[1]].T, |
|
472 | 508 | vmin=self.zmin, |
|
473 | 509 | vmax=self.zmax, |
|
474 | 510 | cmap=plt.get_cmap(self.colormap) |
|
475 | 511 | ) |
|
476 | 512 | else: |
|
477 | 513 | ax.plt.set_array(spc[pair[1]].T.ravel()) |
|
478 | 514 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
479 | 515 | |
|
480 | 516 | out = cspc[n]/numpy.sqrt(spc[pair[0]]*spc[pair[1]]) |
|
481 | 517 | coh = numpy.abs(out) |
|
482 | 518 | phase = numpy.arctan2(out.imag, out.real)*180/numpy.pi |
|
483 | 519 | |
|
484 | 520 | ax = self.axes[4*n+2] |
|
485 | 521 | if ax.firsttime: |
|
486 | 522 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
487 | 523 | vmin=0, |
|
488 | 524 | vmax=1, |
|
489 | 525 | cmap=plt.get_cmap(self.colormap_coh) |
|
490 | 526 | ) |
|
491 | 527 | else: |
|
492 | 528 | ax.plt.set_array(coh.T.ravel()) |
|
493 | 529 | self.titles.append('Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
494 | 530 | |
|
495 | 531 | ax = self.axes[4*n+3] |
|
496 | 532 | if ax.firsttime: |
|
497 | 533 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
498 | 534 | vmin=-180, |
|
499 | 535 | vmax=180, |
|
500 | 536 | cmap=plt.get_cmap(self.colormap_phase) |
|
501 | 537 | ) |
|
502 | 538 | else: |
|
503 | 539 | ax.plt.set_array(phase.T.ravel()) |
|
504 | 540 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
505 | 541 | |
|
506 | 542 | self.saveTime = self.max_time |
|
507 | 543 | |
|
508 | 544 | |
|
509 | 545 | class PlotSpectraMeanData(PlotSpectraData): |
|
510 | 546 | ''' |
|
511 | 547 | Plot for Spectra and Mean |
|
512 | 548 | ''' |
|
513 | 549 | CODE = 'spc_mean' |
|
514 | 550 | colormap = 'jro' |
|
515 | 551 | |
|
516 | 552 | |
|
517 | 553 | class PlotRTIData(PlotData): |
|
518 | 554 | ''' |
|
519 | 555 | Plot for RTI data |
|
520 | 556 | ''' |
|
521 | 557 | |
|
522 | 558 | CODE = 'rti' |
|
523 | 559 | colormap = 'jro' |
|
524 | 560 | |
|
525 | 561 | def setup(self): |
|
526 | 562 | self.xaxis = 'time' |
|
527 | 563 | self.ncols = 1 |
|
528 | 564 | self.nrows = len(self.data.channels) |
|
529 | 565 | self.nplots = len(self.data.channels) |
|
530 | 566 | self.ylabel = 'Range [Km]' |
|
531 | 567 | self.cb_label = 'dB' |
|
532 | 568 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
533 | 569 | |
|
534 | 570 | def plot(self): |
|
535 |
self.x = self. |
|
|
571 | self.x = self.times | |
|
536 | 572 | self.y = self.data.heights |
|
537 | 573 | self.z = self.data[self.CODE] |
|
538 | 574 | self.z = numpy.ma.masked_invalid(self.z) |
|
539 | 575 | |
|
540 | 576 | for n, ax in enumerate(self.axes): |
|
541 | 577 | x, y, z = self.fill_gaps(*self.decimate()) |
|
542 | 578 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
543 | 579 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
544 | 580 | if ax.firsttime: |
|
545 | 581 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
546 | 582 | vmin=self.zmin, |
|
547 | 583 | vmax=self.zmax, |
|
548 | 584 | cmap=plt.get_cmap(self.colormap) |
|
549 | 585 | ) |
|
550 | 586 | if self.showprofile: |
|
551 | 587 | ax.plot_profile= self.pf_axes[n].plot(self.data['rti'][n][-1], self.y)[0] |
|
552 | 588 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
553 | 589 | color="k", linestyle="dashed", lw=1)[0] |
|
554 | 590 | else: |
|
555 | 591 | ax.collections.remove(ax.collections[0]) |
|
556 | 592 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
557 | 593 | vmin=self.zmin, |
|
558 | 594 | vmax=self.zmax, |
|
559 | 595 | cmap=plt.get_cmap(self.colormap) |
|
560 | 596 | ) |
|
561 | 597 | if self.showprofile: |
|
562 | 598 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
563 | 599 | ax.plot_noise.set_data(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y) |
|
564 | 600 | |
|
565 | 601 | self.saveTime = self.min_time |
|
566 | 602 | |
|
567 | 603 | |
|
568 | 604 | class PlotCOHData(PlotRTIData): |
|
569 | 605 | ''' |
|
570 | 606 | Plot for Coherence data |
|
571 | 607 | ''' |
|
572 | 608 | |
|
573 | 609 | CODE = 'coh' |
|
574 | 610 | |
|
575 | 611 | def setup(self): |
|
576 | 612 | self.xaxis = 'time' |
|
577 | 613 | self.ncols = 1 |
|
578 | 614 | self.nrows = len(self.data.pairs) |
|
579 | 615 | self.nplots = len(self.data.pairs) |
|
580 | 616 | self.ylabel = 'Range [Km]' |
|
581 | 617 | if self.CODE == 'coh': |
|
582 | 618 | self.cb_label = '' |
|
583 | 619 | self.titles = ['Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
584 | 620 | else: |
|
585 | 621 | self.cb_label = 'Degrees' |
|
586 | 622 | self.titles = ['Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
587 | 623 | |
|
588 | 624 | |
|
589 | 625 | class PlotPHASEData(PlotCOHData): |
|
590 | 626 | ''' |
|
591 | 627 | Plot for Phase map data |
|
592 | 628 | ''' |
|
593 | 629 | |
|
594 | 630 | CODE = 'phase' |
|
595 | 631 | colormap = 'seismic' |
|
596 | 632 | |
|
597 | 633 | |
|
598 | 634 | class PlotNoiseData(PlotData): |
|
599 | 635 | ''' |
|
600 | 636 | Plot for noise |
|
601 | 637 | ''' |
|
602 | 638 | |
|
603 | 639 | CODE = 'noise' |
|
604 | 640 | |
|
605 | 641 | def setup(self): |
|
606 | 642 | self.xaxis = 'time' |
|
607 | 643 | self.ncols = 1 |
|
608 | 644 | self.nrows = 1 |
|
609 | 645 | self.nplots = 1 |
|
610 | 646 | self.ylabel = 'Intensity [dB]' |
|
611 | 647 | self.titles = ['Noise'] |
|
612 | 648 | self.colorbar = False |
|
613 | 649 | |
|
614 | 650 | def plot(self): |
|
615 | 651 | |
|
616 |
x = self. |
|
|
652 | x = self.times | |
|
617 | 653 | xmin = self.min_time |
|
618 | 654 | xmax = xmin+self.xrange*60*60 |
|
619 | 655 | Y = self.data[self.CODE] |
|
620 | 656 | |
|
621 | 657 | if self.axes[0].firsttime: |
|
622 | 658 | for ch in self.data.channels: |
|
623 | 659 | y = Y[ch] |
|
624 | 660 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
625 | 661 | plt.legend() |
|
626 | 662 | else: |
|
627 | 663 | for ch in self.data.channels: |
|
628 | 664 | y = Y[ch] |
|
629 | 665 | self.axes[0].lines[ch].set_data(x, y) |
|
630 | 666 | |
|
631 | 667 | self.ymin = numpy.nanmin(Y) - 5 |
|
632 | 668 | self.ymax = numpy.nanmax(Y) + 5 |
|
633 | 669 | self.saveTime = self.min_time |
|
634 | 670 | |
|
635 | 671 | |
|
636 | 672 | class PlotSNRData(PlotRTIData): |
|
637 | 673 | ''' |
|
638 | 674 | Plot for SNR Data |
|
639 | 675 | ''' |
|
640 | 676 | |
|
641 | 677 | CODE = 'snr' |
|
642 | 678 | colormap = 'jet' |
|
643 | 679 | |
|
644 | 680 | |
|
645 | 681 | class PlotDOPData(PlotRTIData): |
|
646 | 682 | ''' |
|
647 | 683 | Plot for DOPPLER Data |
|
648 | 684 | ''' |
|
649 | 685 | |
|
650 | 686 | CODE = 'dop' |
|
651 | 687 | colormap = 'jet' |
|
652 | 688 | |
|
653 | 689 | |
|
654 | 690 | class PlotSkyMapData(PlotData): |
|
655 | 691 | ''' |
|
656 | 692 | Plot for meteors detection data |
|
657 | 693 | ''' |
|
658 | 694 | |
|
659 | 695 | CODE = 'met' |
|
660 | 696 | |
|
661 | 697 | def setup(self): |
|
662 | 698 | |
|
663 | 699 | self.ncols = 1 |
|
664 | 700 | self.nrows = 1 |
|
665 | 701 | self.width = 7.2 |
|
666 | 702 | self.height = 7.2 |
|
667 | 703 | |
|
668 | 704 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
669 | 705 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
670 | 706 | |
|
671 | 707 | if self.figure is None: |
|
672 | 708 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
673 | 709 | edgecolor='k', |
|
674 | 710 | facecolor='w') |
|
675 | 711 | else: |
|
676 | 712 | self.figure.clf() |
|
677 | 713 | |
|
678 | 714 | self.ax = plt.subplot2grid((self.nrows, self.ncols), (0, 0), 1, 1, polar=True) |
|
679 | 715 | self.ax.firsttime = True |
|
680 | 716 | |
|
681 | 717 | |
|
682 | 718 | def plot(self): |
|
683 | 719 | |
|
684 |
arrayParameters = numpy.concatenate([self.data['param'][t] for t in self. |
|
|
720 | arrayParameters = numpy.concatenate([self.data['param'][t] for t in self.times]) | |
|
685 | 721 | error = arrayParameters[:,-1] |
|
686 | 722 | indValid = numpy.where(error == 0)[0] |
|
687 | 723 | finalMeteor = arrayParameters[indValid,:] |
|
688 | 724 | finalAzimuth = finalMeteor[:,3] |
|
689 | 725 | finalZenith = finalMeteor[:,4] |
|
690 | 726 | |
|
691 | 727 | x = finalAzimuth*numpy.pi/180 |
|
692 | 728 | y = finalZenith |
|
693 | 729 | |
|
694 | 730 | if self.ax.firsttime: |
|
695 | 731 | self.ax.plot = self.ax.plot(x, y, 'bo', markersize=5)[0] |
|
696 | 732 | self.ax.set_ylim(0,90) |
|
697 | 733 | self.ax.set_yticks(numpy.arange(0,90,20)) |
|
698 | 734 | self.ax.set_xlabel(self.xlabel) |
|
699 | 735 | self.ax.set_ylabel(self.ylabel) |
|
700 | 736 | self.ax.yaxis.labelpad = 40 |
|
701 | 737 | self.ax.firsttime = False |
|
702 | 738 | else: |
|
703 | 739 | self.ax.plot.set_data(x, y) |
|
704 | 740 | |
|
705 | 741 | |
|
706 | 742 | dt1 = datetime.datetime.fromtimestamp(self.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
707 | 743 | dt2 = datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
708 | 744 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
709 | 745 | dt2, |
|
710 | 746 | len(x)) |
|
711 | 747 | self.ax.set_title(title, size=8) |
|
712 | 748 | |
|
713 | 749 | self.saveTime = self.max_time |
|
714 | 750 | |
|
715 | 751 | class PlotParamData(PlotRTIData): |
|
716 | 752 | ''' |
|
717 | 753 | Plot for data_param object |
|
718 | 754 | ''' |
|
719 | 755 | |
|
720 | 756 | CODE = 'param' |
|
721 | 757 | colormap = 'seismic' |
|
722 | 758 | |
|
723 | 759 | def setup(self): |
|
724 | 760 | self.xaxis = 'time' |
|
725 | 761 | self.ncols = 1 |
|
726 | 762 | self.nrows = self.data.shape(self.CODE)[0] |
|
727 | 763 | self.nplots = self.nrows |
|
728 | 764 | if self.showSNR: |
|
729 | 765 | self.nrows += 1 |
|
766 | self.nplots += 1 | |
|
730 | 767 | |
|
731 | 768 | self.ylabel = 'Height [Km]' |
|
732 | 769 | self.titles = self.data.parameters \ |
|
733 | 770 | if self.data.parameters else ['Param {}'.format(x) for x in xrange(self.nrows)] |
|
734 | 771 | if self.showSNR: |
|
735 | 772 | self.titles.append('SNR') |
|
736 | 773 | |
|
737 | 774 | def plot(self): |
|
738 | 775 | self.data.normalize_heights() |
|
739 |
self.x = self. |
|
|
776 | self.x = self.times | |
|
740 | 777 | self.y = self.data.heights |
|
741 | 778 | if self.showSNR: |
|
742 | 779 | self.z = numpy.concatenate( |
|
743 | 780 | (self.data[self.CODE], self.data['snr']) |
|
744 | 781 | ) |
|
745 | 782 | else: |
|
746 | 783 | self.z = self.data[self.CODE] |
|
747 | 784 | |
|
748 | 785 | self.z = numpy.ma.masked_invalid(self.z) |
|
749 | 786 | |
|
750 | 787 | for n, ax in enumerate(self.axes): |
|
751 | 788 | |
|
752 | 789 | x, y, z = self.fill_gaps(*self.decimate()) |
|
753 | 790 | |
|
754 | 791 | if ax.firsttime: |
|
755 | 792 | if self.zlimits is not None: |
|
756 | 793 | self.zmin, self.zmax = self.zlimits[n] |
|
757 | 794 | self.zmax = self.zmax if self.zmax is not None else numpy.nanmax(abs(self.z[:-1, :])) |
|
758 | 795 | self.zmin = self.zmin if self.zmin is not None else -self.zmax |
|
759 | 796 | ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n], |
|
760 | 797 | vmin=self.zmin, |
|
761 | 798 | vmax=self.zmax, |
|
762 | 799 | cmap=self.cmaps[n] |
|
763 | 800 | ) |
|
764 | 801 | else: |
|
765 | 802 | if self.zlimits is not None: |
|
766 | 803 | self.zmin, self.zmax = self.zlimits[n] |
|
767 | 804 | ax.collections.remove(ax.collections[0]) |
|
768 | 805 | ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n], |
|
769 | 806 | vmin=self.zmin, |
|
770 | 807 | vmax=self.zmax, |
|
771 | 808 | cmap=self.cmaps[n] |
|
772 | 809 | ) |
|
773 | 810 | |
|
774 | 811 | self.saveTime = self.min_time |
|
775 | 812 | |
|
776 | 813 | class PlotOuputData(PlotParamData): |
|
777 | 814 | ''' |
|
778 | 815 | Plot data_output object |
|
779 | 816 | ''' |
|
780 | 817 | |
|
781 | 818 | CODE = 'output' |
|
782 | 819 | colormap = 'seismic' |
@@ -1,1945 +1,2151 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | 4 | import inspect |
|
5 | 5 | from figure import Figure, isRealtime, isTimeInHourRange |
|
6 | 6 | from plotting_codes import * |
|
7 | 7 | |
|
8 | 8 | |
|
9 | class FitGauPlot(Figure): | |
|
10 | ||
|
11 | isConfig = None | |
|
12 | __nsubplots = None | |
|
13 | ||
|
14 | WIDTHPROF = None | |
|
15 | HEIGHTPROF = None | |
|
16 | PREFIX = 'fitgau' | |
|
17 | ||
|
18 | def __init__(self, **kwargs): | |
|
19 | Figure.__init__(self, **kwargs) | |
|
20 | self.isConfig = False | |
|
21 | self.__nsubplots = 1 | |
|
22 | ||
|
23 | self.WIDTH = 250 | |
|
24 | self.HEIGHT = 250 | |
|
25 | self.WIDTHPROF = 120 | |
|
26 | self.HEIGHTPROF = 0 | |
|
27 | self.counter_imagwr = 0 | |
|
28 | ||
|
29 | self.PLOT_CODE = SPEC_CODE | |
|
30 | ||
|
31 | self.FTP_WEI = None | |
|
32 | self.EXP_CODE = None | |
|
33 | self.SUB_EXP_CODE = None | |
|
34 | self.PLOT_POS = None | |
|
35 | ||
|
36 | self.__xfilter_ena = False | |
|
37 | self.__yfilter_ena = False | |
|
38 | ||
|
39 | def getSubplots(self): | |
|
40 | ||
|
41 | ncol = int(numpy.sqrt(self.nplots)+0.9) | |
|
42 | nrow = int(self.nplots*1./ncol + 0.9) | |
|
43 | ||
|
44 | return nrow, ncol | |
|
45 | ||
|
46 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
|
47 | ||
|
48 | self.__showprofile = showprofile | |
|
49 | self.nplots = nplots | |
|
50 | ||
|
51 | ncolspan = 1 | |
|
52 | colspan = 1 | |
|
53 | if showprofile: | |
|
54 | ncolspan = 3 | |
|
55 | colspan = 2 | |
|
56 | self.__nsubplots = 2 | |
|
57 | ||
|
58 | self.createFigure(id = id, | |
|
59 | wintitle = wintitle, | |
|
60 | widthplot = self.WIDTH + self.WIDTHPROF, | |
|
61 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
|
62 | show=show) | |
|
63 | ||
|
64 | nrow, ncol = self.getSubplots() | |
|
65 | ||
|
66 | counter = 0 | |
|
67 | for y in range(nrow): | |
|
68 | for x in range(ncol): | |
|
69 | ||
|
70 | if counter >= self.nplots: | |
|
71 | break | |
|
72 | ||
|
73 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
|
74 | ||
|
75 | if showprofile: | |
|
76 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
|
77 | ||
|
78 | counter += 1 | |
|
79 | ||
|
80 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, | |
|
81 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
|
82 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
|
83 | server=None, folder=None, username=None, password=None, | |
|
84 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, | |
|
85 | xaxis="frequency", colormap='jet', normFactor=None , GauSelector = 1): | |
|
86 | ||
|
87 | """ | |
|
88 | ||
|
89 | Input: | |
|
90 | dataOut : | |
|
91 | id : | |
|
92 | wintitle : | |
|
93 | channelList : | |
|
94 | showProfile : | |
|
95 | xmin : None, | |
|
96 | xmax : None, | |
|
97 | ymin : None, | |
|
98 | ymax : None, | |
|
99 | zmin : None, | |
|
100 | zmax : None | |
|
101 | """ | |
|
102 | if realtime: | |
|
103 | if not(isRealtime(utcdatatime = dataOut.utctime)): | |
|
104 | print 'Skipping this plot function' | |
|
105 | return | |
|
106 | ||
|
107 | if channelList == None: | |
|
108 | channelIndexList = dataOut.channelIndexList | |
|
109 | else: | |
|
110 | channelIndexList = [] | |
|
111 | for channel in channelList: | |
|
112 | if channel not in dataOut.channelList: | |
|
113 | raise ValueError, "Channel %d is not in dataOut.channelList" %channel | |
|
114 | channelIndexList.append(dataOut.channelList.index(channel)) | |
|
115 | ||
|
116 | # if normFactor is None: | |
|
117 | # factor = dataOut.normFactor | |
|
118 | # else: | |
|
119 | # factor = normFactor | |
|
120 | if xaxis == "frequency": | |
|
121 | x = dataOut.spc_range[0] | |
|
122 | xlabel = "Frequency (kHz)" | |
|
123 | ||
|
124 | elif xaxis == "time": | |
|
125 | x = dataOut.spc_range[1] | |
|
126 | xlabel = "Time (ms)" | |
|
127 | ||
|
128 | else: | |
|
129 | x = dataOut.spc_range[2] | |
|
130 | xlabel = "Velocity (m/s)" | |
|
131 | ||
|
132 | ylabel = "Range (Km)" | |
|
133 | ||
|
134 | y = dataOut.getHeiRange() | |
|
135 | ||
|
136 | z = dataOut.GauSPC[:,GauSelector,:,:] #GauSelector] #dataOut.data_spc/factor | |
|
137 | print 'GausSPC', z[0,32,10:40] | |
|
138 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
|
139 | zdB = 10*numpy.log10(z) | |
|
140 | ||
|
141 | avg = numpy.average(z, axis=1) | |
|
142 | avgdB = 10*numpy.log10(avg) | |
|
143 | ||
|
144 | noise = dataOut.spc_noise | |
|
145 | noisedB = 10*numpy.log10(noise) | |
|
146 | ||
|
147 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
|
148 | title = wintitle + " Spectra" | |
|
149 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
|
150 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
|
151 | ||
|
152 | if not self.isConfig: | |
|
153 | ||
|
154 | nplots = len(channelIndexList) | |
|
155 | ||
|
156 | self.setup(id=id, | |
|
157 | nplots=nplots, | |
|
158 | wintitle=wintitle, | |
|
159 | showprofile=showprofile, | |
|
160 | show=show) | |
|
161 | ||
|
162 | if xmin == None: xmin = numpy.nanmin(x) | |
|
163 | if xmax == None: xmax = numpy.nanmax(x) | |
|
164 | if ymin == None: ymin = numpy.nanmin(y) | |
|
165 | if ymax == None: ymax = numpy.nanmax(y) | |
|
166 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 | |
|
167 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 | |
|
168 | ||
|
169 | self.FTP_WEI = ftp_wei | |
|
170 | self.EXP_CODE = exp_code | |
|
171 | self.SUB_EXP_CODE = sub_exp_code | |
|
172 | self.PLOT_POS = plot_pos | |
|
173 | ||
|
174 | self.isConfig = True | |
|
175 | ||
|
176 | self.setWinTitle(title) | |
|
177 | ||
|
178 | for i in range(self.nplots): | |
|
179 | index = channelIndexList[i] | |
|
180 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
|
181 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) | |
|
182 | if len(dataOut.beam.codeList) != 0: | |
|
183 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) | |
|
184 | ||
|
185 | axes = self.axesList[i*self.__nsubplots] | |
|
186 | axes.pcolor(x, y, zdB[index,:,:], | |
|
187 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
|
188 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, | |
|
189 | ticksize=9, cblabel='') | |
|
190 | ||
|
191 | if self.__showprofile: | |
|
192 | axes = self.axesList[i*self.__nsubplots +1] | |
|
193 | axes.pline(avgdB[index,:], y, | |
|
194 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
|
195 | xlabel='dB', ylabel='', title='', | |
|
196 | ytick_visible=False, | |
|
197 | grid='x') | |
|
198 | ||
|
199 | noiseline = numpy.repeat(noisedB[index], len(y)) | |
|
200 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) | |
|
201 | ||
|
202 | self.draw() | |
|
203 | ||
|
204 | if figfile == None: | |
|
205 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
|
206 | name = str_datetime | |
|
207 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
|
208 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) | |
|
209 | figfile = self.getFilename(name) | |
|
210 | ||
|
211 | self.save(figpath=figpath, | |
|
212 | figfile=figfile, | |
|
213 | save=save, | |
|
214 | ftp=ftp, | |
|
215 | wr_period=wr_period, | |
|
216 | thisDatetime=thisDatetime) | |
|
217 | ||
|
218 | ||
|
219 | ||
|
9 | 220 | class MomentsPlot(Figure): |
|
10 | 221 | |
|
11 | 222 | isConfig = None |
|
12 | 223 | __nsubplots = None |
|
13 | 224 | |
|
14 | 225 | WIDTHPROF = None |
|
15 | 226 | HEIGHTPROF = None |
|
16 | 227 | PREFIX = 'prm' |
|
17 | 228 | def __init__(self, **kwargs): |
|
18 | 229 | Figure.__init__(self, **kwargs) |
|
19 | 230 | self.isConfig = False |
|
20 | 231 | self.__nsubplots = 1 |
|
21 | 232 | |
|
22 | 233 | self.WIDTH = 280 |
|
23 | 234 | self.HEIGHT = 250 |
|
24 | 235 | self.WIDTHPROF = 120 |
|
25 | 236 | self.HEIGHTPROF = 0 |
|
26 | 237 | self.counter_imagwr = 0 |
|
27 | 238 | |
|
28 | 239 | self.PLOT_CODE = MOMENTS_CODE |
|
29 | 240 | |
|
30 | 241 | self.FTP_WEI = None |
|
31 | 242 | self.EXP_CODE = None |
|
32 | 243 | self.SUB_EXP_CODE = None |
|
33 | 244 | self.PLOT_POS = None |
|
34 | 245 | |
|
35 | 246 | def getSubplots(self): |
|
36 | 247 | |
|
37 | 248 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
38 | 249 | nrow = int(self.nplots*1./ncol + 0.9) |
|
39 | 250 | |
|
40 | 251 | return nrow, ncol |
|
41 | 252 | |
|
42 | 253 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
43 | 254 | |
|
44 | 255 | self.__showprofile = showprofile |
|
45 | 256 | self.nplots = nplots |
|
46 | 257 | |
|
47 | 258 | ncolspan = 1 |
|
48 | 259 | colspan = 1 |
|
49 | 260 | if showprofile: |
|
50 | 261 | ncolspan = 3 |
|
51 | 262 | colspan = 2 |
|
52 | 263 | self.__nsubplots = 2 |
|
53 | 264 | |
|
54 | 265 | self.createFigure(id = id, |
|
55 | 266 | wintitle = wintitle, |
|
56 | 267 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
57 | 268 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
58 | 269 | show=show) |
|
59 | 270 | |
|
60 | 271 | nrow, ncol = self.getSubplots() |
|
61 | 272 | |
|
62 | 273 | counter = 0 |
|
63 | 274 | for y in range(nrow): |
|
64 | 275 | for x in range(ncol): |
|
65 | 276 | |
|
66 | 277 | if counter >= self.nplots: |
|
67 | 278 | break |
|
68 | 279 | |
|
69 | 280 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
70 | 281 | |
|
71 | 282 | if showprofile: |
|
72 | 283 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
73 | 284 | |
|
74 | 285 | counter += 1 |
|
75 | 286 | |
|
76 | 287 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
77 | 288 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
78 | 289 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
79 | 290 | server=None, folder=None, username=None, password=None, |
|
80 | 291 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False): |
|
81 | 292 | |
|
82 | 293 | """ |
|
83 | 294 | |
|
84 | 295 | Input: |
|
85 | 296 | dataOut : |
|
86 | 297 | id : |
|
87 | 298 | wintitle : |
|
88 | 299 | channelList : |
|
89 | 300 | showProfile : |
|
90 | 301 | xmin : None, |
|
91 | 302 | xmax : None, |
|
92 | 303 | ymin : None, |
|
93 | 304 | ymax : None, |
|
94 | 305 | zmin : None, |
|
95 | 306 | zmax : None |
|
96 | 307 | """ |
|
97 | 308 | |
|
98 | 309 | if dataOut.flagNoData: |
|
99 | 310 | return None |
|
100 | 311 | |
|
101 | 312 | if realtime: |
|
102 | 313 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
103 | 314 | print 'Skipping this plot function' |
|
104 | 315 | return |
|
105 | 316 | |
|
106 | 317 | if channelList == None: |
|
107 | 318 | channelIndexList = dataOut.channelIndexList |
|
108 | 319 | else: |
|
109 | 320 | channelIndexList = [] |
|
110 | 321 | for channel in channelList: |
|
111 | 322 | if channel not in dataOut.channelList: |
|
112 | 323 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
113 | 324 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
114 | 325 | |
|
115 | 326 | factor = dataOut.normFactor |
|
116 | 327 | x = dataOut.abscissaList |
|
117 | 328 | y = dataOut.heightList |
|
118 | 329 | |
|
119 | 330 | z = dataOut.data_pre[channelIndexList,:,:]/factor |
|
120 | 331 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
121 | 332 | avg = numpy.average(z, axis=1) |
|
122 | 333 | noise = dataOut.noise/factor |
|
123 | 334 | |
|
124 | 335 | zdB = 10*numpy.log10(z) |
|
125 | 336 | avgdB = 10*numpy.log10(avg) |
|
126 | 337 | noisedB = 10*numpy.log10(noise) |
|
127 | 338 | |
|
128 | 339 | #thisDatetime = dataOut.datatime |
|
129 | 340 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
130 | 341 | title = wintitle + " Parameters" |
|
131 | 342 | xlabel = "Velocity (m/s)" |
|
132 | 343 | ylabel = "Range (Km)" |
|
133 | 344 | |
|
134 | 345 | update_figfile = False |
|
135 | 346 | |
|
136 | 347 | if not self.isConfig: |
|
137 | 348 | |
|
138 | 349 | nplots = len(channelIndexList) |
|
139 | 350 | |
|
140 | 351 | self.setup(id=id, |
|
141 | 352 | nplots=nplots, |
|
142 | 353 | wintitle=wintitle, |
|
143 | 354 | showprofile=showprofile, |
|
144 | 355 | show=show) |
|
145 | 356 | |
|
146 | 357 | if xmin == None: xmin = numpy.nanmin(x) |
|
147 | 358 | if xmax == None: xmax = numpy.nanmax(x) |
|
148 | 359 | if ymin == None: ymin = numpy.nanmin(y) |
|
149 | 360 | if ymax == None: ymax = numpy.nanmax(y) |
|
150 | 361 | if zmin == None: zmin = numpy.nanmin(avgdB)*0.9 |
|
151 | 362 | if zmax == None: zmax = numpy.nanmax(avgdB)*0.9 |
|
152 | 363 | |
|
153 | 364 | self.FTP_WEI = ftp_wei |
|
154 | 365 | self.EXP_CODE = exp_code |
|
155 | 366 | self.SUB_EXP_CODE = sub_exp_code |
|
156 | 367 | self.PLOT_POS = plot_pos |
|
157 | 368 | |
|
158 | 369 | self.isConfig = True |
|
159 | 370 | update_figfile = True |
|
160 | 371 | |
|
161 | 372 | self.setWinTitle(title) |
|
162 | 373 | |
|
163 | 374 | for i in range(self.nplots): |
|
164 | 375 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
165 | 376 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[i], noisedB[i], str_datetime) |
|
166 | 377 | axes = self.axesList[i*self.__nsubplots] |
|
167 | 378 | axes.pcolor(x, y, zdB[i,:,:], |
|
168 | 379 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
169 | 380 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
170 | 381 | ticksize=9, cblabel='') |
|
171 | 382 | #Mean Line |
|
172 | 383 | mean = dataOut.data_param[i, 1, :] |
|
173 | 384 | axes.addpline(mean, y, idline=0, color="black", linestyle="solid", lw=1) |
|
174 | 385 | |
|
175 | 386 | if self.__showprofile: |
|
176 | 387 | axes = self.axesList[i*self.__nsubplots +1] |
|
177 | 388 | axes.pline(avgdB[i], y, |
|
178 | 389 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
179 | 390 | xlabel='dB', ylabel='', title='', |
|
180 | 391 | ytick_visible=False, |
|
181 | 392 | grid='x') |
|
182 | 393 | |
|
183 | 394 | noiseline = numpy.repeat(noisedB[i], len(y)) |
|
184 | 395 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
185 | 396 | |
|
186 | 397 | self.draw() |
|
187 | 398 | |
|
188 | 399 | self.save(figpath=figpath, |
|
189 | 400 | figfile=figfile, |
|
190 | 401 | save=save, |
|
191 | 402 | ftp=ftp, |
|
192 | 403 | wr_period=wr_period, |
|
193 | 404 | thisDatetime=thisDatetime) |
|
194 | 405 | |
|
195 | 406 | |
|
196 | 407 | |
|
197 | 408 | class SkyMapPlot(Figure): |
|
198 | 409 | |
|
199 | 410 | __isConfig = None |
|
200 | 411 | __nsubplots = None |
|
201 | 412 | |
|
202 | 413 | WIDTHPROF = None |
|
203 | 414 | HEIGHTPROF = None |
|
204 | 415 | PREFIX = 'mmap' |
|
205 | 416 | |
|
206 | 417 | def __init__(self, **kwargs): |
|
207 | 418 | Figure.__init__(self, **kwargs) |
|
208 | 419 | self.isConfig = False |
|
209 | 420 | self.__nsubplots = 1 |
|
210 | 421 | |
|
211 | 422 | # self.WIDTH = 280 |
|
212 | 423 | # self.HEIGHT = 250 |
|
213 | 424 | self.WIDTH = 600 |
|
214 | 425 | self.HEIGHT = 600 |
|
215 | 426 | self.WIDTHPROF = 120 |
|
216 | 427 | self.HEIGHTPROF = 0 |
|
217 | 428 | self.counter_imagwr = 0 |
|
218 | 429 | |
|
219 | 430 | self.PLOT_CODE = MSKYMAP_CODE |
|
220 | 431 | |
|
221 | 432 | self.FTP_WEI = None |
|
222 | 433 | self.EXP_CODE = None |
|
223 | 434 | self.SUB_EXP_CODE = None |
|
224 | 435 | self.PLOT_POS = None |
|
225 | 436 | |
|
226 | 437 | def getSubplots(self): |
|
227 | 438 | |
|
228 | 439 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
229 | 440 | nrow = int(self.nplots*1./ncol + 0.9) |
|
230 | 441 | |
|
231 | 442 | return nrow, ncol |
|
232 | 443 | |
|
233 | 444 | def setup(self, id, nplots, wintitle, showprofile=False, show=True): |
|
234 | 445 | |
|
235 | 446 | self.__showprofile = showprofile |
|
236 | 447 | self.nplots = nplots |
|
237 | 448 | |
|
238 | 449 | ncolspan = 1 |
|
239 | 450 | colspan = 1 |
|
240 | 451 | |
|
241 | 452 | self.createFigure(id = id, |
|
242 | 453 | wintitle = wintitle, |
|
243 | 454 | widthplot = self.WIDTH, #+ self.WIDTHPROF, |
|
244 | 455 | heightplot = self.HEIGHT,# + self.HEIGHTPROF, |
|
245 | 456 | show=show) |
|
246 | 457 | |
|
247 | 458 | nrow, ncol = 1,1 |
|
248 | 459 | counter = 0 |
|
249 | 460 | x = 0 |
|
250 | 461 | y = 0 |
|
251 | 462 | self.addAxes(1, 1, 0, 0, 1, 1, True) |
|
252 | 463 | |
|
253 | 464 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False, |
|
254 | 465 | tmin=0, tmax=24, timerange=None, |
|
255 | 466 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
256 | 467 | server=None, folder=None, username=None, password=None, |
|
257 | 468 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False): |
|
258 | 469 | |
|
259 | 470 | """ |
|
260 | 471 | |
|
261 | 472 | Input: |
|
262 | 473 | dataOut : |
|
263 | 474 | id : |
|
264 | 475 | wintitle : |
|
265 | 476 | channelList : |
|
266 | 477 | showProfile : |
|
267 | 478 | xmin : None, |
|
268 | 479 | xmax : None, |
|
269 | 480 | ymin : None, |
|
270 | 481 | ymax : None, |
|
271 | 482 | zmin : None, |
|
272 | 483 | zmax : None |
|
273 | 484 | """ |
|
274 | 485 | |
|
275 | 486 | arrayParameters = dataOut.data_param |
|
276 | 487 | error = arrayParameters[:,-1] |
|
277 | 488 | indValid = numpy.where(error == 0)[0] |
|
278 | 489 | finalMeteor = arrayParameters[indValid,:] |
|
279 | 490 | finalAzimuth = finalMeteor[:,3] |
|
280 | 491 | finalZenith = finalMeteor[:,4] |
|
281 | 492 | |
|
282 | 493 | x = finalAzimuth*numpy.pi/180 |
|
283 | 494 | y = finalZenith |
|
284 | 495 | x1 = [dataOut.ltctime, dataOut.ltctime] |
|
285 | 496 | |
|
286 | 497 | #thisDatetime = dataOut.datatime |
|
287 | 498 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
288 | 499 | title = wintitle + " Parameters" |
|
289 | 500 | xlabel = "Zonal Zenith Angle (deg) " |
|
290 | 501 | ylabel = "Meridional Zenith Angle (deg)" |
|
291 | 502 | update_figfile = False |
|
292 | 503 | |
|
293 | 504 | if not self.isConfig: |
|
294 | 505 | |
|
295 | 506 | nplots = 1 |
|
296 | 507 | |
|
297 | 508 | self.setup(id=id, |
|
298 | 509 | nplots=nplots, |
|
299 | 510 | wintitle=wintitle, |
|
300 | 511 | showprofile=showprofile, |
|
301 | 512 | show=show) |
|
302 | 513 | |
|
303 | 514 | if self.xmin is None and self.xmax is None: |
|
304 | 515 | self.xmin, self.xmax = self.getTimeLim(x1, tmin, tmax, timerange) |
|
305 | 516 | |
|
306 | 517 | if timerange != None: |
|
307 | 518 | self.timerange = timerange |
|
308 | 519 | else: |
|
309 | 520 | self.timerange = self.xmax - self.xmin |
|
310 | 521 | |
|
311 | 522 | self.FTP_WEI = ftp_wei |
|
312 | 523 | self.EXP_CODE = exp_code |
|
313 | 524 | self.SUB_EXP_CODE = sub_exp_code |
|
314 | 525 | self.PLOT_POS = plot_pos |
|
315 | 526 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
316 | 527 | self.firstdate = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
317 | 528 | self.isConfig = True |
|
318 | 529 | update_figfile = True |
|
319 | 530 | |
|
320 | 531 | self.setWinTitle(title) |
|
321 | 532 | |
|
322 | 533 | i = 0 |
|
323 | 534 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
324 | 535 | |
|
325 | 536 | axes = self.axesList[i*self.__nsubplots] |
|
326 | 537 | nevents = axes.x_buffer.shape[0] + x.shape[0] |
|
327 | 538 | title = "Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n" %(self.firstdate,str_datetime,nevents) |
|
328 | 539 | axes.polar(x, y, |
|
329 | 540 | title=title, xlabel=xlabel, ylabel=ylabel, |
|
330 | 541 | ticksize=9, cblabel='') |
|
331 | 542 | |
|
332 | 543 | self.draw() |
|
333 | 544 | |
|
334 | 545 | self.save(figpath=figpath, |
|
335 | 546 | figfile=figfile, |
|
336 | 547 | save=save, |
|
337 | 548 | ftp=ftp, |
|
338 | 549 | wr_period=wr_period, |
|
339 | 550 | thisDatetime=thisDatetime, |
|
340 | 551 | update_figfile=update_figfile) |
|
341 | 552 | |
|
342 | 553 | if dataOut.ltctime >= self.xmax: |
|
343 | 554 | self.isConfigmagwr = wr_period |
|
344 | 555 | self.isConfig = False |
|
345 | 556 | update_figfile = True |
|
346 | 557 | axes.__firsttime = True |
|
347 | 558 | self.xmin += self.timerange |
|
348 | 559 | self.xmax += self.timerange |
|
349 | 560 | |
|
350 | 561 | |
|
351 | 562 | |
|
352 | 563 | |
|
353 | 564 | class WindProfilerPlot(Figure): |
|
354 | 565 | |
|
355 | 566 | __isConfig = None |
|
356 | 567 | __nsubplots = None |
|
357 | 568 | |
|
358 | 569 | WIDTHPROF = None |
|
359 | 570 | HEIGHTPROF = None |
|
360 | 571 | PREFIX = 'wind' |
|
361 | 572 | |
|
362 | 573 | def __init__(self, **kwargs): |
|
363 | 574 | Figure.__init__(self, **kwargs) |
|
364 | 575 | self.timerange = None |
|
365 | 576 | self.isConfig = False |
|
366 | 577 | self.__nsubplots = 1 |
|
367 | 578 | |
|
368 | 579 | self.WIDTH = 800 |
|
369 | 580 | self.HEIGHT = 300 |
|
370 | 581 | self.WIDTHPROF = 120 |
|
371 | 582 | self.HEIGHTPROF = 0 |
|
372 | 583 | self.counter_imagwr = 0 |
|
373 | 584 | |
|
374 | 585 | self.PLOT_CODE = WIND_CODE |
|
375 | 586 | |
|
376 | 587 | self.FTP_WEI = None |
|
377 | 588 | self.EXP_CODE = None |
|
378 | 589 | self.SUB_EXP_CODE = None |
|
379 | 590 | self.PLOT_POS = None |
|
380 | 591 | self.tmin = None |
|
381 | 592 | self.tmax = None |
|
382 | 593 | |
|
383 | 594 | self.xmin = None |
|
384 | 595 | self.xmax = None |
|
385 | 596 | |
|
386 | 597 | self.figfile = None |
|
387 | 598 | |
|
388 | 599 | def getSubplots(self): |
|
389 | 600 | |
|
390 | 601 | ncol = 1 |
|
391 | 602 | nrow = self.nplots |
|
392 | 603 | |
|
393 | 604 | return nrow, ncol |
|
394 | 605 | |
|
395 | 606 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
396 | 607 | |
|
397 | 608 | self.__showprofile = showprofile |
|
398 | 609 | self.nplots = nplots |
|
399 | 610 | |
|
400 | 611 | ncolspan = 1 |
|
401 | 612 | colspan = 1 |
|
402 | 613 | |
|
403 | 614 | self.createFigure(id = id, |
|
404 | 615 | wintitle = wintitle, |
|
405 | 616 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
406 | 617 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
407 | 618 | show=show) |
|
408 | 619 | |
|
409 | 620 | nrow, ncol = self.getSubplots() |
|
410 | 621 | |
|
411 | 622 | counter = 0 |
|
412 | 623 | for y in range(nrow): |
|
413 | 624 | if counter >= self.nplots: |
|
414 | 625 | break |
|
415 | 626 | |
|
416 | 627 | self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1) |
|
417 | 628 | counter += 1 |
|
418 | 629 | |
|
419 | 630 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='False', |
|
420 | 631 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
421 | 632 | zmax_ver = None, zmin_ver = None, SNRmin = None, SNRmax = None, |
|
422 | 633 | timerange=None, SNRthresh = None, |
|
423 | 634 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
424 | 635 | server=None, folder=None, username=None, password=None, |
|
425 | 636 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
426 | 637 | """ |
|
427 | 638 | |
|
428 | 639 | Input: |
|
429 | 640 | dataOut : |
|
430 | 641 | id : |
|
431 | 642 | wintitle : |
|
432 | 643 | channelList : |
|
433 | 644 | showProfile : |
|
434 | 645 | xmin : None, |
|
435 | 646 | xmax : None, |
|
436 | 647 | ymin : None, |
|
437 | 648 | ymax : None, |
|
438 | 649 | zmin : None, |
|
439 | 650 | zmax : None |
|
440 | 651 | """ |
|
441 | 652 | |
|
442 | 653 | # if timerange is not None: |
|
443 | 654 | # self.timerange = timerange |
|
444 | 655 | # |
|
445 | 656 | # tmin = None |
|
446 | 657 | # tmax = None |
|
447 | 658 | |
|
448 | ||
|
449 | x = dataOut.getTimeRange1(dataOut.outputInterval) | |
|
659 | x = dataOut.getTimeRange1(dataOut.paramInterval) | |
|
450 | 660 | y = dataOut.heightList |
|
451 | 661 | z = dataOut.data_output.copy() |
|
452 | 662 | nplots = z.shape[0] #Number of wind dimensions estimated |
|
453 | 663 | nplotsw = nplots |
|
454 | 664 | |
|
455 | 665 | |
|
456 | 666 | #If there is a SNR function defined |
|
457 | 667 | if dataOut.data_SNR is not None: |
|
458 | 668 | nplots += 1 |
|
459 | 669 | SNR = dataOut.data_SNR |
|
460 | 670 | SNRavg = numpy.average(SNR, axis=0) |
|
461 | 671 | |
|
462 | 672 | SNRdB = 10*numpy.log10(SNR) |
|
463 | 673 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
464 | 674 | |
|
465 | 675 | if SNRthresh == None: SNRthresh = -5.0 |
|
466 | 676 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] |
|
467 | 677 | |
|
468 | 678 | for i in range(nplotsw): |
|
469 | 679 | z[i,ind] = numpy.nan |
|
470 | 680 | |
|
471 | 681 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
472 | 682 | #thisDatetime = datetime.datetime.now() |
|
473 | 683 | title = wintitle + "Wind" |
|
474 | 684 | xlabel = "" |
|
475 | 685 | ylabel = "Height (km)" |
|
476 | 686 | update_figfile = False |
|
477 | 687 | |
|
478 | 688 | if not self.isConfig: |
|
479 | 689 | |
|
480 | 690 | self.setup(id=id, |
|
481 | 691 | nplots=nplots, |
|
482 | 692 | wintitle=wintitle, |
|
483 | 693 | showprofile=showprofile, |
|
484 | 694 | show=show) |
|
485 | 695 | |
|
486 | 696 | if timerange is not None: |
|
487 | 697 | self.timerange = timerange |
|
488 | 698 | |
|
489 | 699 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
490 | 700 | |
|
491 | 701 | if ymin == None: ymin = numpy.nanmin(y) |
|
492 | 702 | if ymax == None: ymax = numpy.nanmax(y) |
|
493 | 703 | |
|
494 | 704 | if zmax == None: zmax = numpy.nanmax(abs(z[range(2),:])) |
|
495 | 705 | #if numpy.isnan(zmax): zmax = 50 |
|
496 | 706 | if zmin == None: zmin = -zmax |
|
497 | 707 | |
|
498 | 708 | if nplotsw == 3: |
|
499 | 709 | if zmax_ver == None: zmax_ver = numpy.nanmax(abs(z[2,:])) |
|
500 | 710 | if zmin_ver == None: zmin_ver = -zmax_ver |
|
501 | 711 | |
|
502 | 712 | if dataOut.data_SNR is not None: |
|
503 | 713 | if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB) |
|
504 | 714 | if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB) |
|
505 | 715 | |
|
506 | 716 | |
|
507 | 717 | self.FTP_WEI = ftp_wei |
|
508 | 718 | self.EXP_CODE = exp_code |
|
509 | 719 | self.SUB_EXP_CODE = sub_exp_code |
|
510 | 720 | self.PLOT_POS = plot_pos |
|
511 | 721 | |
|
512 | 722 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
513 | 723 | self.isConfig = True |
|
514 | 724 | self.figfile = figfile |
|
515 | 725 | update_figfile = True |
|
516 | 726 | |
|
517 | 727 | self.setWinTitle(title) |
|
518 | 728 | |
|
519 | 729 | if ((self.xmax - x[1]) < (x[1]-x[0])): |
|
520 | 730 | x[1] = self.xmax |
|
521 | 731 | |
|
522 | 732 | strWind = ['Zonal', 'Meridional', 'Vertical'] |
|
523 | 733 | strCb = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)'] |
|
524 | 734 | zmaxVector = [zmax, zmax, zmax_ver] |
|
525 | 735 | zminVector = [zmin, zmin, zmin_ver] |
|
526 | 736 | windFactor = [1,1,100] |
|
527 | 737 | |
|
528 | 738 | for i in range(nplotsw): |
|
529 | 739 | |
|
530 | 740 | title = "%s Wind: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
531 | 741 | axes = self.axesList[i*self.__nsubplots] |
|
532 | 742 | |
|
533 | 743 | z1 = z[i,:].reshape((1,-1))*windFactor[i] |
|
534 | 744 | #z1=numpy.ma.masked_where(z1==0.,z1) |
|
535 | 745 | |
|
536 | 746 | axes.pcolorbuffer(x, y, z1, |
|
537 | 747 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], |
|
538 | 748 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
539 | 749 | ticksize=9, cblabel=strCb[i], cbsize="1%", colormap="seismic" ) |
|
540 | 750 | |
|
541 | 751 | if dataOut.data_SNR is not None: |
|
542 | 752 | i += 1 |
|
543 | 753 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
544 | 754 | axes = self.axesList[i*self.__nsubplots] |
|
545 | 755 | SNRavgdB = SNRavgdB.reshape((1,-1)) |
|
546 | 756 | axes.pcolorbuffer(x, y, SNRavgdB, |
|
547 | 757 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
548 | 758 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
549 | 759 | ticksize=9, cblabel='', cbsize="1%", colormap="jet") |
|
550 | 760 | |
|
551 | 761 | self.draw() |
|
552 | 762 | |
|
553 | 763 | self.save(figpath=figpath, |
|
554 | 764 | figfile=figfile, |
|
555 | 765 | save=save, |
|
556 | 766 | ftp=ftp, |
|
557 | 767 | wr_period=wr_period, |
|
558 | 768 | thisDatetime=thisDatetime, |
|
559 | 769 | update_figfile=update_figfile) |
|
560 | 770 | |
|
561 |
if dataOut.ltctime + dataOut. |
|
|
771 | if dataOut.ltctime + dataOut.paramInterval >= self.xmax: | |
|
562 | 772 | self.counter_imagwr = wr_period |
|
563 | 773 | self.isConfig = False |
|
564 | 774 | update_figfile = True |
|
565 | 775 | |
|
566 | 776 | |
|
567 | 777 | class ParametersPlot(Figure): |
|
568 | 778 | |
|
569 | 779 | __isConfig = None |
|
570 | 780 | __nsubplots = None |
|
571 | 781 | |
|
572 | 782 | WIDTHPROF = None |
|
573 | 783 | HEIGHTPROF = None |
|
574 | 784 | PREFIX = 'param' |
|
575 | 785 | |
|
576 | 786 | nplots = None |
|
577 | 787 | nchan = None |
|
578 | 788 | |
|
579 | 789 | def __init__(self, **kwargs): |
|
580 | 790 | Figure.__init__(self, **kwargs) |
|
581 | 791 | self.timerange = None |
|
582 | 792 | self.isConfig = False |
|
583 | 793 | self.__nsubplots = 1 |
|
584 | 794 | |
|
585 | 795 | self.WIDTH = 800 |
|
586 | 796 | self.HEIGHT = 180 |
|
587 | 797 | self.WIDTHPROF = 120 |
|
588 | 798 | self.HEIGHTPROF = 0 |
|
589 | 799 | self.counter_imagwr = 0 |
|
590 | 800 | |
|
591 | 801 | self.PLOT_CODE = RTI_CODE |
|
592 | 802 | |
|
593 | 803 | self.FTP_WEI = None |
|
594 | 804 | self.EXP_CODE = None |
|
595 | 805 | self.SUB_EXP_CODE = None |
|
596 | 806 | self.PLOT_POS = None |
|
597 | 807 | self.tmin = None |
|
598 | 808 | self.tmax = None |
|
599 | 809 | |
|
600 | 810 | self.xmin = None |
|
601 | 811 | self.xmax = None |
|
602 | 812 | |
|
603 | 813 | self.figfile = None |
|
604 | 814 | |
|
605 | 815 | def getSubplots(self): |
|
606 | 816 | |
|
607 | 817 | ncol = 1 |
|
608 | 818 | nrow = self.nplots |
|
609 | 819 | |
|
610 | 820 | return nrow, ncol |
|
611 | 821 | |
|
612 | 822 | def setup(self, id, nplots, wintitle, show=True): |
|
613 | 823 | |
|
614 | 824 | self.nplots = nplots |
|
615 | 825 | |
|
616 | 826 | ncolspan = 1 |
|
617 | 827 | colspan = 1 |
|
618 | 828 | |
|
619 | 829 | self.createFigure(id = id, |
|
620 | 830 | wintitle = wintitle, |
|
621 | 831 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
622 | 832 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
623 | 833 | show=show) |
|
624 | 834 | |
|
625 | 835 | nrow, ncol = self.getSubplots() |
|
626 | 836 | |
|
627 | 837 | counter = 0 |
|
628 | 838 | for y in range(nrow): |
|
629 | 839 | for x in range(ncol): |
|
630 | 840 | |
|
631 | 841 | if counter >= self.nplots: |
|
632 | 842 | break |
|
633 | 843 | |
|
634 | 844 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
635 | 845 | |
|
636 | 846 | counter += 1 |
|
637 | 847 | |
|
638 |
def run(self, dataOut, id, wintitle="", channelList=None, paramIndex = 0, colormap= |
|
|
848 | def run(self, dataOut, id, wintitle="", channelList=None, paramIndex = 0, colormap="jet", | |
|
639 | 849 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, timerange=None, |
|
640 | 850 | showSNR=False, SNRthresh = -numpy.inf, SNRmin=None, SNRmax=None, |
|
641 | 851 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
642 | 852 | server=None, folder=None, username=None, password=None, |
|
643 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
|
853 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, HEIGHT=None): | |
|
644 | 854 | """ |
|
645 | 855 | |
|
646 | 856 | Input: |
|
647 | 857 | dataOut : |
|
648 | 858 | id : |
|
649 | 859 | wintitle : |
|
650 | 860 | channelList : |
|
651 | 861 | showProfile : |
|
652 | 862 | xmin : None, |
|
653 | 863 | xmax : None, |
|
654 | 864 | ymin : None, |
|
655 | 865 | ymax : None, |
|
656 | 866 | zmin : None, |
|
657 | 867 | zmax : None |
|
658 | 868 | """ |
|
659 | 869 | |
|
660 | if colormap: | |
|
661 | colormap="jet" | |
|
662 |
|
|
|
663 | colormap="RdBu_r" | |
|
870 | if HEIGHT is not None: | |
|
871 | self.HEIGHT = HEIGHT | |
|
872 | ||
|
664 | 873 | |
|
665 | 874 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
666 | 875 | return |
|
667 | 876 | |
|
668 | 877 | if channelList == None: |
|
669 | 878 | channelIndexList = range(dataOut.data_param.shape[0]) |
|
670 | 879 | else: |
|
671 | 880 | channelIndexList = [] |
|
672 | 881 | for channel in channelList: |
|
673 | 882 | if channel not in dataOut.channelList: |
|
674 | 883 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
675 | 884 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
676 | 885 | |
|
677 | 886 | x = dataOut.getTimeRange1(dataOut.paramInterval) |
|
678 | 887 | y = dataOut.getHeiRange() |
|
679 | 888 | |
|
680 | 889 | if dataOut.data_param.ndim == 3: |
|
681 | 890 | z = dataOut.data_param[channelIndexList,paramIndex,:] |
|
682 | 891 | else: |
|
683 | 892 | z = dataOut.data_param[channelIndexList,:] |
|
684 | 893 | |
|
685 | 894 | if showSNR: |
|
686 | 895 | #SNR data |
|
687 | 896 | SNRarray = dataOut.data_SNR[channelIndexList,:] |
|
688 | 897 | SNRdB = 10*numpy.log10(SNRarray) |
|
689 | 898 | ind = numpy.where(SNRdB < SNRthresh) |
|
690 | 899 | z[ind] = numpy.nan |
|
691 | 900 | |
|
692 | 901 | thisDatetime = dataOut.datatime |
|
693 | 902 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
694 | 903 | title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
695 | 904 | xlabel = "" |
|
696 | 905 | ylabel = "Range (Km)" |
|
697 | 906 | |
|
698 | 907 | update_figfile = False |
|
699 | 908 | |
|
700 | 909 | if not self.isConfig: |
|
701 | 910 | |
|
702 | 911 | nchan = len(channelIndexList) |
|
703 | 912 | self.nchan = nchan |
|
704 | 913 | self.plotFact = 1 |
|
705 | 914 | nplots = nchan |
|
706 | 915 | |
|
707 | 916 | if showSNR: |
|
708 | 917 | nplots = nchan*2 |
|
709 | 918 | self.plotFact = 2 |
|
710 | 919 | if SNRmin == None: SNRmin = numpy.nanmin(SNRdB) |
|
711 | 920 | if SNRmax == None: SNRmax = numpy.nanmax(SNRdB) |
|
712 | 921 | |
|
713 | 922 | self.setup(id=id, |
|
714 | 923 | nplots=nplots, |
|
715 | 924 | wintitle=wintitle, |
|
716 | 925 | show=show) |
|
717 | 926 | |
|
718 | 927 | if timerange != None: |
|
719 | 928 | self.timerange = timerange |
|
720 | 929 | |
|
721 | 930 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
722 | 931 | |
|
723 | 932 | if ymin == None: ymin = numpy.nanmin(y) |
|
724 | 933 | if ymax == None: ymax = numpy.nanmax(y) |
|
725 | 934 | if zmin == None: zmin = numpy.nanmin(z) |
|
726 | 935 | if zmax == None: zmax = numpy.nanmax(z) |
|
727 | 936 | |
|
728 | 937 | self.FTP_WEI = ftp_wei |
|
729 | 938 | self.EXP_CODE = exp_code |
|
730 | 939 | self.SUB_EXP_CODE = sub_exp_code |
|
731 | 940 | self.PLOT_POS = plot_pos |
|
732 | 941 | |
|
733 | 942 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
734 | 943 | self.isConfig = True |
|
735 | 944 | self.figfile = figfile |
|
736 | 945 | update_figfile = True |
|
737 | 946 | |
|
738 | 947 | self.setWinTitle(title) |
|
739 | 948 | |
|
740 | 949 | for i in range(self.nchan): |
|
741 | 950 | index = channelIndexList[i] |
|
742 | 951 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
743 | 952 | axes = self.axesList[i*self.plotFact] |
|
744 | 953 | z1 = z[i,:].reshape((1,-1)) |
|
745 | 954 | axes.pcolorbuffer(x, y, z1, |
|
746 | 955 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
747 | 956 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
748 | 957 | ticksize=9, cblabel='', cbsize="1%",colormap=colormap) |
|
749 | 958 | |
|
750 | 959 | if showSNR: |
|
751 | 960 | title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
752 | 961 | axes = self.axesList[i*self.plotFact + 1] |
|
753 | 962 | SNRdB1 = SNRdB[i,:].reshape((1,-1)) |
|
754 | 963 | axes.pcolorbuffer(x, y, SNRdB1, |
|
755 | 964 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
756 | 965 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
757 | 966 | ticksize=9, cblabel='', cbsize="1%",colormap='jet') |
|
758 | 967 | |
|
759 | 968 | |
|
760 | 969 | self.draw() |
|
761 | 970 | |
|
762 | 971 | if dataOut.ltctime >= self.xmax: |
|
763 | 972 | self.counter_imagwr = wr_period |
|
764 | 973 | self.isConfig = False |
|
765 | 974 | update_figfile = True |
|
766 | 975 | |
|
767 | 976 | self.save(figpath=figpath, |
|
768 | 977 | figfile=figfile, |
|
769 | 978 | save=save, |
|
770 | 979 | ftp=ftp, |
|
771 | 980 | wr_period=wr_period, |
|
772 | 981 | thisDatetime=thisDatetime, |
|
773 | 982 | update_figfile=update_figfile) |
|
774 | 983 | |
|
775 | 984 | |
|
776 | 985 | |
|
777 | 986 | class Parameters1Plot(Figure): |
|
778 | 987 | |
|
779 | 988 | __isConfig = None |
|
780 | 989 | __nsubplots = None |
|
781 | 990 | |
|
782 | 991 | WIDTHPROF = None |
|
783 | 992 | HEIGHTPROF = None |
|
784 | 993 | PREFIX = 'prm' |
|
785 | 994 | |
|
786 | 995 | def __init__(self, **kwargs): |
|
787 | 996 | Figure.__init__(self, **kwargs) |
|
788 | 997 | self.timerange = 2*60*60 |
|
789 | 998 | self.isConfig = False |
|
790 | 999 | self.__nsubplots = 1 |
|
791 | 1000 | |
|
792 | 1001 | self.WIDTH = 800 |
|
793 | 1002 | self.HEIGHT = 180 |
|
794 | 1003 | self.WIDTHPROF = 120 |
|
795 | 1004 | self.HEIGHTPROF = 0 |
|
796 | 1005 | self.counter_imagwr = 0 |
|
797 | 1006 | |
|
798 | 1007 | self.PLOT_CODE = PARMS_CODE |
|
799 | 1008 | |
|
800 | 1009 | self.FTP_WEI = None |
|
801 | 1010 | self.EXP_CODE = None |
|
802 | 1011 | self.SUB_EXP_CODE = None |
|
803 | 1012 | self.PLOT_POS = None |
|
804 | 1013 | self.tmin = None |
|
805 | 1014 | self.tmax = None |
|
806 | 1015 | |
|
807 | 1016 | self.xmin = None |
|
808 | 1017 | self.xmax = None |
|
809 | 1018 | |
|
810 | 1019 | self.figfile = None |
|
811 | 1020 | |
|
812 | 1021 | def getSubplots(self): |
|
813 | 1022 | |
|
814 | 1023 | ncol = 1 |
|
815 | 1024 | nrow = self.nplots |
|
816 | 1025 | |
|
817 | 1026 | return nrow, ncol |
|
818 | 1027 | |
|
819 | 1028 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
820 | 1029 | |
|
821 | 1030 | self.__showprofile = showprofile |
|
822 | 1031 | self.nplots = nplots |
|
823 | 1032 | |
|
824 | 1033 | ncolspan = 1 |
|
825 | 1034 | colspan = 1 |
|
826 | 1035 | |
|
827 | 1036 | self.createFigure(id = id, |
|
828 | 1037 | wintitle = wintitle, |
|
829 | 1038 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
830 | 1039 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
831 | 1040 | show=show) |
|
832 | 1041 | |
|
833 | 1042 | nrow, ncol = self.getSubplots() |
|
834 | 1043 | |
|
835 | 1044 | counter = 0 |
|
836 | 1045 | for y in range(nrow): |
|
837 | 1046 | for x in range(ncol): |
|
838 | 1047 | |
|
839 | 1048 | if counter >= self.nplots: |
|
840 | 1049 | break |
|
841 | 1050 | |
|
842 | 1051 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
843 | 1052 | |
|
844 | 1053 | if showprofile: |
|
845 | 1054 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
846 | 1055 | |
|
847 | 1056 | counter += 1 |
|
848 | 1057 | |
|
849 | 1058 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False, |
|
850 | 1059 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,timerange=None, |
|
851 | 1060 | parameterIndex = None, onlyPositive = False, |
|
852 | 1061 | SNRthresh = -numpy.inf, SNR = True, SNRmin = None, SNRmax = None, onlySNR = False, |
|
853 | 1062 | DOP = True, |
|
854 | 1063 | zlabel = "", parameterName = "", parameterObject = "data_param", |
|
855 | 1064 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
856 | 1065 | server=None, folder=None, username=None, password=None, |
|
857 | 1066 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
858 | 1067 | #print inspect.getargspec(self.run).args |
|
859 | 1068 | """ |
|
860 | 1069 | |
|
861 | 1070 | Input: |
|
862 | 1071 | dataOut : |
|
863 | 1072 | id : |
|
864 | 1073 | wintitle : |
|
865 | 1074 | channelList : |
|
866 | 1075 | showProfile : |
|
867 | 1076 | xmin : None, |
|
868 | 1077 | xmax : None, |
|
869 | 1078 | ymin : None, |
|
870 | 1079 | ymax : None, |
|
871 | 1080 | zmin : None, |
|
872 | 1081 | zmax : None |
|
873 | 1082 | """ |
|
874 | 1083 | |
|
875 | 1084 | data_param = getattr(dataOut, parameterObject) |
|
876 | 1085 | |
|
877 | 1086 | if channelList == None: |
|
878 | 1087 | channelIndexList = numpy.arange(data_param.shape[0]) |
|
879 | 1088 | else: |
|
880 | 1089 | channelIndexList = numpy.array(channelList) |
|
881 | 1090 | |
|
882 | 1091 | nchan = len(channelIndexList) #Number of channels being plotted |
|
883 | 1092 | |
|
884 | 1093 | if nchan < 1: |
|
885 | 1094 | return |
|
886 | 1095 | |
|
887 | 1096 | nGraphsByChannel = 0 |
|
888 | 1097 | |
|
889 | 1098 | if SNR: |
|
890 | 1099 | nGraphsByChannel += 1 |
|
891 | 1100 | if DOP: |
|
892 | 1101 | nGraphsByChannel += 1 |
|
893 | 1102 | |
|
894 | 1103 | if nGraphsByChannel < 1: |
|
895 | 1104 | return |
|
896 | 1105 | |
|
897 | 1106 | nplots = nGraphsByChannel*nchan |
|
898 | 1107 | |
|
899 | 1108 | if timerange is not None: |
|
900 | 1109 | self.timerange = timerange |
|
901 | 1110 | |
|
902 | 1111 | #tmin = None |
|
903 | 1112 | #tmax = None |
|
904 | 1113 | if parameterIndex == None: |
|
905 | 1114 | parameterIndex = 1 |
|
906 | 1115 | |
|
907 | 1116 | x = dataOut.getTimeRange1(dataOut.paramInterval) |
|
908 | 1117 | y = dataOut.heightList |
|
909 | z = data_param[channelIndexList,parameterIndex,:].copy() | |
|
910 | 1118 | |
|
911 | zRange = dataOut.abscissaList | |
|
912 | # nChannels = z.shape[0] #Number of wind dimensions estimated | |
|
913 | # thisDatetime = dataOut.datatime | |
|
1119 | if dataOut.data_param.ndim == 3: | |
|
1120 | z = dataOut.data_param[channelIndexList,parameterIndex,:] | |
|
1121 | else: | |
|
1122 | z = dataOut.data_param[channelIndexList,:] | |
|
914 | 1123 | |
|
915 | 1124 | if dataOut.data_SNR is not None: |
|
916 |
|
|
|
917 | SNRdB = 10*numpy.log10(SNRarray) | |
|
918 | # SNRavgdB = 10*numpy.log10(SNRavg) | |
|
919 | ind = numpy.where(SNRdB < 10**(SNRthresh/10)) | |
|
920 | z[ind] = numpy.nan | |
|
1125 | if dataOut.data_SNR.ndim == 2: | |
|
1126 | SNRavg = numpy.average(dataOut.data_SNR, axis=0) | |
|
1127 | else: | |
|
1128 | SNRavg = dataOut.data_SNR | |
|
1129 | SNRdB = 10*numpy.log10(SNRavg) | |
|
921 | 1130 | |
|
922 | 1131 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
923 | 1132 | title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
924 | 1133 | xlabel = "" |
|
925 | 1134 | ylabel = "Range (Km)" |
|
926 | 1135 | |
|
927 | if (SNR and not onlySNR): nplots = 2*nplots | |
|
928 | ||
|
929 | 1136 | if onlyPositive: |
|
930 | 1137 | colormap = "jet" |
|
931 | 1138 | zmin = 0 |
|
932 | 1139 | else: colormap = "RdBu_r" |
|
933 | 1140 | |
|
934 | 1141 | if not self.isConfig: |
|
935 | 1142 | |
|
936 | 1143 | self.setup(id=id, |
|
937 | 1144 | nplots=nplots, |
|
938 | 1145 | wintitle=wintitle, |
|
939 | 1146 | showprofile=showprofile, |
|
940 | 1147 | show=show) |
|
941 | 1148 | |
|
942 | 1149 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
943 | 1150 | |
|
944 | 1151 | if ymin == None: ymin = numpy.nanmin(y) |
|
945 | 1152 | if ymax == None: ymax = numpy.nanmax(y) |
|
946 |
if zmin == None: zmin = numpy.nanmin(z |
|
|
947 |
if zmax == None: zmax = numpy.nanmax(z |
|
|
1153 | if zmin == None: zmin = numpy.nanmin(z) | |
|
1154 | if zmax == None: zmax = numpy.nanmax(z) | |
|
948 | 1155 | |
|
949 | 1156 | if SNR: |
|
950 | 1157 | if SNRmin == None: SNRmin = numpy.nanmin(SNRdB) |
|
951 | 1158 | if SNRmax == None: SNRmax = numpy.nanmax(SNRdB) |
|
952 | 1159 | |
|
953 | 1160 | self.FTP_WEI = ftp_wei |
|
954 | 1161 | self.EXP_CODE = exp_code |
|
955 | 1162 | self.SUB_EXP_CODE = sub_exp_code |
|
956 | 1163 | self.PLOT_POS = plot_pos |
|
957 | 1164 | |
|
958 | 1165 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
959 | 1166 | self.isConfig = True |
|
960 | 1167 | self.figfile = figfile |
|
961 | 1168 | |
|
962 | 1169 | self.setWinTitle(title) |
|
963 | 1170 | |
|
964 | 1171 | if ((self.xmax - x[1]) < (x[1]-x[0])): |
|
965 | 1172 | x[1] = self.xmax |
|
966 | 1173 | |
|
967 | 1174 | for i in range(nchan): |
|
968 | 1175 | |
|
969 | 1176 | if (SNR and not onlySNR): j = 2*i |
|
970 | 1177 | else: j = i |
|
971 | 1178 | |
|
972 | 1179 | j = nGraphsByChannel*i |
|
973 | 1180 | |
|
974 | 1181 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
975 | 1182 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
976 | 1183 | |
|
977 | 1184 | if not onlySNR: |
|
978 | 1185 | axes = self.axesList[j*self.__nsubplots] |
|
979 | 1186 | z1 = z[i,:].reshape((1,-1)) |
|
980 | 1187 | axes.pcolorbuffer(x, y, z1, |
|
981 | 1188 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
982 | 1189 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap, |
|
983 | 1190 | ticksize=9, cblabel=zlabel, cbsize="1%") |
|
984 | 1191 | |
|
985 | 1192 | if DOP: |
|
986 | 1193 | title = "%s Channel %d: %s" %(parameterName, channelIndexList[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
987 | 1194 | |
|
988 | 1195 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
989 | 1196 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
990 | 1197 | axes = self.axesList[j] |
|
991 | 1198 | z1 = z[i,:].reshape((1,-1)) |
|
992 | 1199 | axes.pcolorbuffer(x, y, z1, |
|
993 | 1200 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
994 | 1201 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap, |
|
995 | 1202 | ticksize=9, cblabel=zlabel, cbsize="1%") |
|
996 | 1203 | |
|
997 | 1204 |
|
|
998 | 1205 |
|
|
999 | 1206 |
|
|
1000 | 1207 |
|
|
1001 | 1208 |
|
|
1002 | 1209 | |
|
1003 | 1210 |
|
|
1004 | ||
|
1005 | z1 = SNRdB[i,:].reshape((1,-1)) | |
|
1211 | z1 = SNRdB.reshape((1,-1)) | |
|
1006 | 1212 |
|
|
1007 | 1213 |
|
|
1008 | 1214 |
|
|
1009 | 1215 |
|
|
1010 | 1216 | |
|
1011 | 1217 | |
|
1012 | 1218 | |
|
1013 | 1219 | self.draw() |
|
1014 | 1220 | |
|
1015 | 1221 | if x[1] >= self.axesList[0].xmax: |
|
1016 | 1222 | self.counter_imagwr = wr_period |
|
1017 | 1223 | self.isConfig = False |
|
1018 | 1224 | self.figfile = None |
|
1019 | 1225 | |
|
1020 | 1226 | self.save(figpath=figpath, |
|
1021 | 1227 | figfile=figfile, |
|
1022 | 1228 | save=save, |
|
1023 | 1229 | ftp=ftp, |
|
1024 | 1230 | wr_period=wr_period, |
|
1025 | 1231 | thisDatetime=thisDatetime, |
|
1026 | 1232 | update_figfile=False) |
|
1027 | 1233 | |
|
1028 | 1234 | class SpectralFittingPlot(Figure): |
|
1029 | 1235 | |
|
1030 | 1236 | __isConfig = None |
|
1031 | 1237 | __nsubplots = None |
|
1032 | 1238 | |
|
1033 | 1239 | WIDTHPROF = None |
|
1034 | 1240 | HEIGHTPROF = None |
|
1035 | 1241 | PREFIX = 'prm' |
|
1036 | 1242 | |
|
1037 | 1243 | |
|
1038 | 1244 | N = None |
|
1039 | 1245 | ippSeconds = None |
|
1040 | 1246 | |
|
1041 | 1247 | def __init__(self, **kwargs): |
|
1042 | 1248 | Figure.__init__(self, **kwargs) |
|
1043 | 1249 | self.isConfig = False |
|
1044 | 1250 | self.__nsubplots = 1 |
|
1045 | 1251 | |
|
1046 | 1252 | self.PLOT_CODE = SPECFIT_CODE |
|
1047 | 1253 | |
|
1048 | 1254 | self.WIDTH = 450 |
|
1049 | 1255 | self.HEIGHT = 250 |
|
1050 | 1256 | self.WIDTHPROF = 0 |
|
1051 | 1257 | self.HEIGHTPROF = 0 |
|
1052 | 1258 | |
|
1053 | 1259 | def getSubplots(self): |
|
1054 | 1260 | |
|
1055 | 1261 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
1056 | 1262 | nrow = int(self.nplots*1./ncol + 0.9) |
|
1057 | 1263 | |
|
1058 | 1264 | return nrow, ncol |
|
1059 | 1265 | |
|
1060 | 1266 | def setup(self, id, nplots, wintitle, showprofile=False, show=True): |
|
1061 | 1267 | |
|
1062 | 1268 | showprofile = False |
|
1063 | 1269 | self.__showprofile = showprofile |
|
1064 | 1270 | self.nplots = nplots |
|
1065 | 1271 | |
|
1066 | 1272 | ncolspan = 5 |
|
1067 | 1273 | colspan = 4 |
|
1068 | 1274 | if showprofile: |
|
1069 | 1275 | ncolspan = 5 |
|
1070 | 1276 | colspan = 4 |
|
1071 | 1277 | self.__nsubplots = 2 |
|
1072 | 1278 | |
|
1073 | 1279 | self.createFigure(id = id, |
|
1074 | 1280 | wintitle = wintitle, |
|
1075 | 1281 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
1076 | 1282 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
1077 | 1283 | show=show) |
|
1078 | 1284 | |
|
1079 | 1285 | nrow, ncol = self.getSubplots() |
|
1080 | 1286 | |
|
1081 | 1287 | counter = 0 |
|
1082 | 1288 | for y in range(nrow): |
|
1083 | 1289 | for x in range(ncol): |
|
1084 | 1290 | |
|
1085 | 1291 | if counter >= self.nplots: |
|
1086 | 1292 | break |
|
1087 | 1293 | |
|
1088 | 1294 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1089 | 1295 | |
|
1090 | 1296 | if showprofile: |
|
1091 | 1297 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
1092 | 1298 | |
|
1093 | 1299 | counter += 1 |
|
1094 | 1300 | |
|
1095 | 1301 | def run(self, dataOut, id, cutHeight=None, fit=False, wintitle="", channelList=None, showprofile=True, |
|
1096 | 1302 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1097 | 1303 | save=False, figpath='./', figfile=None, show=True): |
|
1098 | 1304 | |
|
1099 | 1305 | """ |
|
1100 | 1306 | |
|
1101 | 1307 | Input: |
|
1102 | 1308 | dataOut : |
|
1103 | 1309 | id : |
|
1104 | 1310 | wintitle : |
|
1105 | 1311 | channelList : |
|
1106 | 1312 | showProfile : |
|
1107 | 1313 | xmin : None, |
|
1108 | 1314 | xmax : None, |
|
1109 | 1315 | zmin : None, |
|
1110 | 1316 | zmax : None |
|
1111 | 1317 | """ |
|
1112 | 1318 | |
|
1113 | 1319 | if cutHeight==None: |
|
1114 | 1320 | h=270 |
|
1115 | 1321 | heightindex = numpy.abs(cutHeight - dataOut.heightList).argmin() |
|
1116 | 1322 | cutHeight = dataOut.heightList[heightindex] |
|
1117 | 1323 | |
|
1118 | 1324 | factor = dataOut.normFactor |
|
1119 | 1325 | x = dataOut.abscissaList[:-1] |
|
1120 | 1326 | #y = dataOut.getHeiRange() |
|
1121 | 1327 | |
|
1122 | 1328 | z = dataOut.data_pre[:,:,heightindex]/factor |
|
1123 | 1329 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1124 | 1330 | avg = numpy.average(z, axis=1) |
|
1125 | 1331 | listChannels = z.shape[0] |
|
1126 | 1332 | |
|
1127 | 1333 | #Reconstruct Function |
|
1128 | 1334 | if fit==True: |
|
1129 | 1335 | groupArray = dataOut.groupList |
|
1130 | 1336 | listChannels = groupArray.reshape((groupArray.size)) |
|
1131 | 1337 | listChannels.sort() |
|
1132 | 1338 | spcFitLine = numpy.zeros(z.shape) |
|
1133 | 1339 | constants = dataOut.constants |
|
1134 | 1340 | |
|
1135 | 1341 | nGroups = groupArray.shape[0] |
|
1136 | 1342 | nChannels = groupArray.shape[1] |
|
1137 | 1343 | nProfiles = z.shape[1] |
|
1138 | 1344 | |
|
1139 | 1345 | for f in range(nGroups): |
|
1140 | 1346 | groupChann = groupArray[f,:] |
|
1141 | 1347 | p = dataOut.data_param[f,:,heightindex] |
|
1142 | 1348 | # p = numpy.array([ 89.343967,0.14036615,0.17086219,18.89835291,1.58388365,1.55099167]) |
|
1143 | 1349 | fitLineAux = dataOut.library.modelFunction(p, constants)*nProfiles |
|
1144 | 1350 | fitLineAux = fitLineAux.reshape((nChannels,nProfiles)) |
|
1145 | 1351 | spcFitLine[groupChann,:] = fitLineAux |
|
1146 | 1352 | # spcFitLine = spcFitLine/factor |
|
1147 | 1353 | |
|
1148 | 1354 | z = z[listChannels,:] |
|
1149 | 1355 | spcFitLine = spcFitLine[listChannels,:] |
|
1150 | 1356 | spcFitLinedB = 10*numpy.log10(spcFitLine) |
|
1151 | 1357 | |
|
1152 | 1358 | zdB = 10*numpy.log10(z) |
|
1153 | 1359 | #thisDatetime = dataOut.datatime |
|
1154 | 1360 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1155 | 1361 | title = wintitle + " Doppler Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1156 | 1362 | xlabel = "Velocity (m/s)" |
|
1157 | 1363 | ylabel = "Spectrum" |
|
1158 | 1364 | |
|
1159 | 1365 | if not self.isConfig: |
|
1160 | 1366 | |
|
1161 | 1367 | nplots = listChannels.size |
|
1162 | 1368 | |
|
1163 | 1369 | self.setup(id=id, |
|
1164 | 1370 | nplots=nplots, |
|
1165 | 1371 | wintitle=wintitle, |
|
1166 | 1372 | showprofile=showprofile, |
|
1167 | 1373 | show=show) |
|
1168 | 1374 | |
|
1169 | 1375 | if xmin == None: xmin = numpy.nanmin(x) |
|
1170 | 1376 | if xmax == None: xmax = numpy.nanmax(x) |
|
1171 | 1377 | if ymin == None: ymin = numpy.nanmin(zdB) |
|
1172 | 1378 | if ymax == None: ymax = numpy.nanmax(zdB)+2 |
|
1173 | 1379 | |
|
1174 | 1380 | self.isConfig = True |
|
1175 | 1381 | |
|
1176 | 1382 | self.setWinTitle(title) |
|
1177 | 1383 | for i in range(self.nplots): |
|
1178 | 1384 | # title = "Channel %d: %4.2fdB" %(dataOut.channelList[i]+1, noisedB[i]) |
|
1179 | 1385 | title = "Height %4.1f km\nChannel %d:" %(cutHeight, listChannels[i]) |
|
1180 | 1386 | axes = self.axesList[i*self.__nsubplots] |
|
1181 | 1387 | if fit == False: |
|
1182 | 1388 | axes.pline(x, zdB[i,:], |
|
1183 | 1389 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1184 | 1390 | xlabel=xlabel, ylabel=ylabel, title=title |
|
1185 | 1391 | ) |
|
1186 | 1392 | if fit == True: |
|
1187 | 1393 | fitline=spcFitLinedB[i,:] |
|
1188 | 1394 | y=numpy.vstack([zdB[i,:],fitline] ) |
|
1189 | 1395 | legendlabels=['Data','Fitting'] |
|
1190 | 1396 | axes.pmultilineyaxis(x, y, |
|
1191 | 1397 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1192 | 1398 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
1193 | 1399 | legendlabels=legendlabels, marker=None, |
|
1194 | 1400 | linestyle='solid', grid='both') |
|
1195 | 1401 | |
|
1196 | 1402 | self.draw() |
|
1197 | 1403 | |
|
1198 | 1404 | self.save(figpath=figpath, |
|
1199 | 1405 | figfile=figfile, |
|
1200 | 1406 | save=save, |
|
1201 | 1407 | ftp=ftp, |
|
1202 | 1408 | wr_period=wr_period, |
|
1203 | 1409 | thisDatetime=thisDatetime) |
|
1204 | 1410 | |
|
1205 | 1411 | |
|
1206 | 1412 | class EWDriftsPlot(Figure): |
|
1207 | 1413 | |
|
1208 | 1414 | __isConfig = None |
|
1209 | 1415 | __nsubplots = None |
|
1210 | 1416 | |
|
1211 | 1417 | WIDTHPROF = None |
|
1212 | 1418 | HEIGHTPROF = None |
|
1213 | 1419 | PREFIX = 'drift' |
|
1214 | 1420 | |
|
1215 | 1421 | def __init__(self, **kwargs): |
|
1216 | 1422 | Figure.__init__(self, **kwargs) |
|
1217 | 1423 | self.timerange = 2*60*60 |
|
1218 | 1424 | self.isConfig = False |
|
1219 | 1425 | self.__nsubplots = 1 |
|
1220 | 1426 | |
|
1221 | 1427 | self.WIDTH = 800 |
|
1222 | 1428 | self.HEIGHT = 150 |
|
1223 | 1429 | self.WIDTHPROF = 120 |
|
1224 | 1430 | self.HEIGHTPROF = 0 |
|
1225 | 1431 | self.counter_imagwr = 0 |
|
1226 | 1432 | |
|
1227 | 1433 | self.PLOT_CODE = EWDRIFT_CODE |
|
1228 | 1434 | |
|
1229 | 1435 | self.FTP_WEI = None |
|
1230 | 1436 | self.EXP_CODE = None |
|
1231 | 1437 | self.SUB_EXP_CODE = None |
|
1232 | 1438 | self.PLOT_POS = None |
|
1233 | 1439 | self.tmin = None |
|
1234 | 1440 | self.tmax = None |
|
1235 | 1441 | |
|
1236 | 1442 | self.xmin = None |
|
1237 | 1443 | self.xmax = None |
|
1238 | 1444 | |
|
1239 | 1445 | self.figfile = None |
|
1240 | 1446 | |
|
1241 | 1447 | def getSubplots(self): |
|
1242 | 1448 | |
|
1243 | 1449 | ncol = 1 |
|
1244 | 1450 | nrow = self.nplots |
|
1245 | 1451 | |
|
1246 | 1452 | return nrow, ncol |
|
1247 | 1453 | |
|
1248 | 1454 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1249 | 1455 | |
|
1250 | 1456 | self.__showprofile = showprofile |
|
1251 | 1457 | self.nplots = nplots |
|
1252 | 1458 | |
|
1253 | 1459 | ncolspan = 1 |
|
1254 | 1460 | colspan = 1 |
|
1255 | 1461 | |
|
1256 | 1462 | self.createFigure(id = id, |
|
1257 | 1463 | wintitle = wintitle, |
|
1258 | 1464 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
1259 | 1465 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
1260 | 1466 | show=show) |
|
1261 | 1467 | |
|
1262 | 1468 | nrow, ncol = self.getSubplots() |
|
1263 | 1469 | |
|
1264 | 1470 | counter = 0 |
|
1265 | 1471 | for y in range(nrow): |
|
1266 | 1472 | if counter >= self.nplots: |
|
1267 | 1473 | break |
|
1268 | 1474 | |
|
1269 | 1475 | self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1) |
|
1270 | 1476 | counter += 1 |
|
1271 | 1477 | |
|
1272 | 1478 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
1273 | 1479 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
1274 | 1480 | zmaxVertical = None, zminVertical = None, zmaxZonal = None, zminZonal = None, |
|
1275 | 1481 | timerange=None, SNRthresh = -numpy.inf, SNRmin = None, SNRmax = None, SNR_1 = False, |
|
1276 | 1482 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
1277 | 1483 | server=None, folder=None, username=None, password=None, |
|
1278 | 1484 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1279 | 1485 | """ |
|
1280 | 1486 | |
|
1281 | 1487 | Input: |
|
1282 | 1488 | dataOut : |
|
1283 | 1489 | id : |
|
1284 | 1490 | wintitle : |
|
1285 | 1491 | channelList : |
|
1286 | 1492 | showProfile : |
|
1287 | 1493 | xmin : None, |
|
1288 | 1494 | xmax : None, |
|
1289 | 1495 | ymin : None, |
|
1290 | 1496 | ymax : None, |
|
1291 | 1497 | zmin : None, |
|
1292 | 1498 | zmax : None |
|
1293 | 1499 | """ |
|
1294 | 1500 | |
|
1295 | 1501 | if timerange is not None: |
|
1296 | 1502 | self.timerange = timerange |
|
1297 | 1503 | |
|
1298 | 1504 | tmin = None |
|
1299 | 1505 | tmax = None |
|
1300 | 1506 | |
|
1301 | 1507 | x = dataOut.getTimeRange1(dataOut.outputInterval) |
|
1302 | 1508 | # y = dataOut.heightList |
|
1303 | 1509 | y = dataOut.heightList |
|
1304 | 1510 | |
|
1305 | 1511 | z = dataOut.data_output |
|
1306 | 1512 | nplots = z.shape[0] #Number of wind dimensions estimated |
|
1307 | 1513 | nplotsw = nplots |
|
1308 | 1514 | |
|
1309 | 1515 | #If there is a SNR function defined |
|
1310 | 1516 | if dataOut.data_SNR is not None: |
|
1311 | 1517 | nplots += 1 |
|
1312 | 1518 | SNR = dataOut.data_SNR |
|
1313 | 1519 | |
|
1314 | 1520 | if SNR_1: |
|
1315 | 1521 | SNR += 1 |
|
1316 | 1522 | |
|
1317 | 1523 | SNRavg = numpy.average(SNR, axis=0) |
|
1318 | 1524 | |
|
1319 | 1525 | SNRdB = 10*numpy.log10(SNR) |
|
1320 | 1526 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
1321 | 1527 | |
|
1322 | 1528 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] |
|
1323 | 1529 | |
|
1324 | 1530 | for i in range(nplotsw): |
|
1325 | 1531 | z[i,ind] = numpy.nan |
|
1326 | 1532 | |
|
1327 | 1533 | |
|
1328 | 1534 | showprofile = False |
|
1329 | 1535 | # thisDatetime = dataOut.datatime |
|
1330 | 1536 | thisDatetime = datetime.datetime.utcfromtimestamp(x[1]) |
|
1331 | 1537 | title = wintitle + " EW Drifts" |
|
1332 | 1538 | xlabel = "" |
|
1333 | 1539 | ylabel = "Height (Km)" |
|
1334 | 1540 | |
|
1335 | 1541 | if not self.isConfig: |
|
1336 | 1542 | |
|
1337 | 1543 | self.setup(id=id, |
|
1338 | 1544 | nplots=nplots, |
|
1339 | 1545 | wintitle=wintitle, |
|
1340 | 1546 | showprofile=showprofile, |
|
1341 | 1547 | show=show) |
|
1342 | 1548 | |
|
1343 | 1549 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1344 | 1550 | |
|
1345 | 1551 | if ymin == None: ymin = numpy.nanmin(y) |
|
1346 | 1552 | if ymax == None: ymax = numpy.nanmax(y) |
|
1347 | 1553 | |
|
1348 | 1554 | if zmaxZonal == None: zmaxZonal = numpy.nanmax(abs(z[0,:])) |
|
1349 | 1555 | if zminZonal == None: zminZonal = -zmaxZonal |
|
1350 | 1556 | if zmaxVertical == None: zmaxVertical = numpy.nanmax(abs(z[1,:])) |
|
1351 | 1557 | if zminVertical == None: zminVertical = -zmaxVertical |
|
1352 | 1558 | |
|
1353 | 1559 | if dataOut.data_SNR is not None: |
|
1354 | 1560 | if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB) |
|
1355 | 1561 | if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB) |
|
1356 | 1562 | |
|
1357 | 1563 | self.FTP_WEI = ftp_wei |
|
1358 | 1564 | self.EXP_CODE = exp_code |
|
1359 | 1565 | self.SUB_EXP_CODE = sub_exp_code |
|
1360 | 1566 | self.PLOT_POS = plot_pos |
|
1361 | 1567 | |
|
1362 | 1568 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1363 | 1569 | self.isConfig = True |
|
1364 | 1570 | |
|
1365 | 1571 | |
|
1366 | 1572 | self.setWinTitle(title) |
|
1367 | 1573 | |
|
1368 | 1574 | if ((self.xmax - x[1]) < (x[1]-x[0])): |
|
1369 | 1575 | x[1] = self.xmax |
|
1370 | 1576 | |
|
1371 | 1577 | strWind = ['Zonal','Vertical'] |
|
1372 | 1578 | strCb = 'Velocity (m/s)' |
|
1373 | 1579 | zmaxVector = [zmaxZonal, zmaxVertical] |
|
1374 | 1580 | zminVector = [zminZonal, zminVertical] |
|
1375 | 1581 | |
|
1376 | 1582 | for i in range(nplotsw): |
|
1377 | 1583 | |
|
1378 | 1584 | title = "%s Drifts: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1379 | 1585 | axes = self.axesList[i*self.__nsubplots] |
|
1380 | 1586 | |
|
1381 | 1587 | z1 = z[i,:].reshape((1,-1)) |
|
1382 | 1588 | |
|
1383 | 1589 | axes.pcolorbuffer(x, y, z1, |
|
1384 | 1590 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], |
|
1385 | 1591 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
1386 | 1592 | ticksize=9, cblabel=strCb, cbsize="1%", colormap="RdBu_r") |
|
1387 | 1593 | |
|
1388 | 1594 | if dataOut.data_SNR is not None: |
|
1389 | 1595 | i += 1 |
|
1390 | 1596 | if SNR_1: |
|
1391 | 1597 | title = "Signal Noise Ratio + 1 (SNR+1): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1392 | 1598 | else: |
|
1393 | 1599 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1394 | 1600 | axes = self.axesList[i*self.__nsubplots] |
|
1395 | 1601 | SNRavgdB = SNRavgdB.reshape((1,-1)) |
|
1396 | 1602 | |
|
1397 | 1603 | axes.pcolorbuffer(x, y, SNRavgdB, |
|
1398 | 1604 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
1399 | 1605 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
1400 | 1606 | ticksize=9, cblabel='', cbsize="1%", colormap="jet") |
|
1401 | 1607 | |
|
1402 | 1608 | self.draw() |
|
1403 | 1609 | |
|
1404 | 1610 | if x[1] >= self.axesList[0].xmax: |
|
1405 | 1611 | self.counter_imagwr = wr_period |
|
1406 | 1612 | self.isConfig = False |
|
1407 | 1613 | self.figfile = None |
|
1408 | 1614 | |
|
1409 | 1615 | |
|
1410 | 1616 | |
|
1411 | 1617 | |
|
1412 | 1618 | class PhasePlot(Figure): |
|
1413 | 1619 | |
|
1414 | 1620 | __isConfig = None |
|
1415 | 1621 | __nsubplots = None |
|
1416 | 1622 | |
|
1417 | 1623 | PREFIX = 'mphase' |
|
1418 | 1624 | |
|
1419 | 1625 | |
|
1420 | 1626 | def __init__(self, **kwargs): |
|
1421 | 1627 | Figure.__init__(self, **kwargs) |
|
1422 | 1628 | self.timerange = 24*60*60 |
|
1423 | 1629 | self.isConfig = False |
|
1424 | 1630 | self.__nsubplots = 1 |
|
1425 | 1631 | self.counter_imagwr = 0 |
|
1426 | 1632 | self.WIDTH = 600 |
|
1427 | 1633 | self.HEIGHT = 300 |
|
1428 | 1634 | self.WIDTHPROF = 120 |
|
1429 | 1635 | self.HEIGHTPROF = 0 |
|
1430 | 1636 | self.xdata = None |
|
1431 | 1637 | self.ydata = None |
|
1432 | 1638 | |
|
1433 | 1639 | self.PLOT_CODE = MPHASE_CODE |
|
1434 | 1640 | |
|
1435 | 1641 | self.FTP_WEI = None |
|
1436 | 1642 | self.EXP_CODE = None |
|
1437 | 1643 | self.SUB_EXP_CODE = None |
|
1438 | 1644 | self.PLOT_POS = None |
|
1439 | 1645 | |
|
1440 | 1646 | |
|
1441 | 1647 | self.filename_phase = None |
|
1442 | 1648 | |
|
1443 | 1649 | self.figfile = None |
|
1444 | 1650 | |
|
1445 | 1651 | def getSubplots(self): |
|
1446 | 1652 | |
|
1447 | 1653 | ncol = 1 |
|
1448 | 1654 | nrow = 1 |
|
1449 | 1655 | |
|
1450 | 1656 | return nrow, ncol |
|
1451 | 1657 | |
|
1452 | 1658 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1453 | 1659 | |
|
1454 | 1660 | self.__showprofile = showprofile |
|
1455 | 1661 | self.nplots = nplots |
|
1456 | 1662 | |
|
1457 | 1663 | ncolspan = 7 |
|
1458 | 1664 | colspan = 6 |
|
1459 | 1665 | self.__nsubplots = 2 |
|
1460 | 1666 | |
|
1461 | 1667 | self.createFigure(id = id, |
|
1462 | 1668 | wintitle = wintitle, |
|
1463 | 1669 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1464 | 1670 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1465 | 1671 | show=show) |
|
1466 | 1672 | |
|
1467 | 1673 | nrow, ncol = self.getSubplots() |
|
1468 | 1674 | |
|
1469 | 1675 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1470 | 1676 | |
|
1471 | 1677 | |
|
1472 | 1678 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1473 | 1679 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1474 | 1680 | timerange=None, |
|
1475 | 1681 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1476 | 1682 | server=None, folder=None, username=None, password=None, |
|
1477 | 1683 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1478 | 1684 | |
|
1479 | 1685 | |
|
1480 | 1686 | tmin = None |
|
1481 | 1687 | tmax = None |
|
1482 | 1688 | x = dataOut.getTimeRange1(dataOut.outputInterval) |
|
1483 | 1689 | y = dataOut.getHeiRange() |
|
1484 | 1690 | |
|
1485 | 1691 | |
|
1486 | 1692 | #thisDatetime = dataOut.datatime |
|
1487 | 1693 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
1488 | 1694 | title = wintitle + " Phase of Beacon Signal" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1489 | 1695 | xlabel = "Local Time" |
|
1490 | 1696 | ylabel = "Phase" |
|
1491 | 1697 | |
|
1492 | 1698 | |
|
1493 | 1699 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1494 | 1700 | phase_beacon = dataOut.data_output |
|
1495 | 1701 | update_figfile = False |
|
1496 | 1702 | |
|
1497 | 1703 | if not self.isConfig: |
|
1498 | 1704 | |
|
1499 | 1705 | self.nplots = phase_beacon.size |
|
1500 | 1706 | |
|
1501 | 1707 | self.setup(id=id, |
|
1502 | 1708 | nplots=self.nplots, |
|
1503 | 1709 | wintitle=wintitle, |
|
1504 | 1710 | showprofile=showprofile, |
|
1505 | 1711 | show=show) |
|
1506 | 1712 | |
|
1507 | 1713 | if timerange is not None: |
|
1508 | 1714 | self.timerange = timerange |
|
1509 | 1715 | |
|
1510 | 1716 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1511 | 1717 | |
|
1512 | 1718 | if ymin == None: ymin = numpy.nanmin(phase_beacon) - 10.0 |
|
1513 | 1719 | if ymax == None: ymax = numpy.nanmax(phase_beacon) + 10.0 |
|
1514 | 1720 | |
|
1515 | 1721 | self.FTP_WEI = ftp_wei |
|
1516 | 1722 | self.EXP_CODE = exp_code |
|
1517 | 1723 | self.SUB_EXP_CODE = sub_exp_code |
|
1518 | 1724 | self.PLOT_POS = plot_pos |
|
1519 | 1725 | |
|
1520 | 1726 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1521 | 1727 | self.isConfig = True |
|
1522 | 1728 | self.figfile = figfile |
|
1523 | 1729 | self.xdata = numpy.array([]) |
|
1524 | 1730 | self.ydata = numpy.array([]) |
|
1525 | 1731 | |
|
1526 | 1732 | #open file beacon phase |
|
1527 | 1733 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1528 | 1734 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1529 | 1735 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1530 | 1736 | update_figfile = True |
|
1531 | 1737 | |
|
1532 | 1738 | |
|
1533 | 1739 | #store data beacon phase |
|
1534 | 1740 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1535 | 1741 | |
|
1536 | 1742 | self.setWinTitle(title) |
|
1537 | 1743 | |
|
1538 | 1744 | |
|
1539 | 1745 | title = "Phase Offset %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1540 | 1746 | |
|
1541 | 1747 | legendlabels = ["phase %d"%(chan) for chan in numpy.arange(self.nplots)] |
|
1542 | 1748 | |
|
1543 | 1749 | axes = self.axesList[0] |
|
1544 | 1750 | |
|
1545 | 1751 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1546 | 1752 | |
|
1547 | 1753 | if len(self.ydata)==0: |
|
1548 | 1754 | self.ydata = phase_beacon.reshape(-1,1) |
|
1549 | 1755 | else: |
|
1550 | 1756 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1551 | 1757 | |
|
1552 | 1758 | |
|
1553 | 1759 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1554 | 1760 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1555 | 1761 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1556 | 1762 | XAxisAsTime=True, grid='both' |
|
1557 | 1763 | ) |
|
1558 | 1764 | |
|
1559 | 1765 | self.draw() |
|
1560 | 1766 | |
|
1561 | 1767 | self.save(figpath=figpath, |
|
1562 | 1768 | figfile=figfile, |
|
1563 | 1769 | save=save, |
|
1564 | 1770 | ftp=ftp, |
|
1565 | 1771 | wr_period=wr_period, |
|
1566 | 1772 | thisDatetime=thisDatetime, |
|
1567 | 1773 | update_figfile=update_figfile) |
|
1568 | 1774 | |
|
1569 | 1775 | if dataOut.ltctime + dataOut.outputInterval >= self.xmax: |
|
1570 | 1776 | self.counter_imagwr = wr_period |
|
1571 | 1777 | self.isConfig = False |
|
1572 | 1778 | update_figfile = True |
|
1573 | 1779 | |
|
1574 | 1780 | |
|
1575 | 1781 | |
|
1576 | 1782 | class NSMeteorDetection1Plot(Figure): |
|
1577 | 1783 | |
|
1578 | 1784 | isConfig = None |
|
1579 | 1785 | __nsubplots = None |
|
1580 | 1786 | |
|
1581 | 1787 | WIDTHPROF = None |
|
1582 | 1788 | HEIGHTPROF = None |
|
1583 | 1789 | PREFIX = 'nsm' |
|
1584 | 1790 | |
|
1585 | 1791 | zminList = None |
|
1586 | 1792 | zmaxList = None |
|
1587 | 1793 | cmapList = None |
|
1588 | 1794 | titleList = None |
|
1589 | 1795 | nPairs = None |
|
1590 | 1796 | nChannels = None |
|
1591 | 1797 | nParam = None |
|
1592 | 1798 | |
|
1593 | 1799 | def __init__(self, **kwargs): |
|
1594 | 1800 | Figure.__init__(self, **kwargs) |
|
1595 | 1801 | self.isConfig = False |
|
1596 | 1802 | self.__nsubplots = 1 |
|
1597 | 1803 | |
|
1598 | 1804 | self.WIDTH = 750 |
|
1599 | 1805 | self.HEIGHT = 250 |
|
1600 | 1806 | self.WIDTHPROF = 120 |
|
1601 | 1807 | self.HEIGHTPROF = 0 |
|
1602 | 1808 | self.counter_imagwr = 0 |
|
1603 | 1809 | |
|
1604 | 1810 | self.PLOT_CODE = SPEC_CODE |
|
1605 | 1811 | |
|
1606 | 1812 | self.FTP_WEI = None |
|
1607 | 1813 | self.EXP_CODE = None |
|
1608 | 1814 | self.SUB_EXP_CODE = None |
|
1609 | 1815 | self.PLOT_POS = None |
|
1610 | 1816 | |
|
1611 | 1817 | self.__xfilter_ena = False |
|
1612 | 1818 | self.__yfilter_ena = False |
|
1613 | 1819 | |
|
1614 | 1820 | def getSubplots(self): |
|
1615 | 1821 | |
|
1616 | 1822 | ncol = 3 |
|
1617 | 1823 | nrow = int(numpy.ceil(self.nplots/3.0)) |
|
1618 | 1824 | |
|
1619 | 1825 | return nrow, ncol |
|
1620 | 1826 | |
|
1621 | 1827 | def setup(self, id, nplots, wintitle, show=True): |
|
1622 | 1828 | |
|
1623 | 1829 | self.nplots = nplots |
|
1624 | 1830 | |
|
1625 | 1831 | ncolspan = 1 |
|
1626 | 1832 | colspan = 1 |
|
1627 | 1833 | |
|
1628 | 1834 | self.createFigure(id = id, |
|
1629 | 1835 | wintitle = wintitle, |
|
1630 | 1836 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
1631 | 1837 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
1632 | 1838 | show=show) |
|
1633 | 1839 | |
|
1634 | 1840 | nrow, ncol = self.getSubplots() |
|
1635 | 1841 | |
|
1636 | 1842 | counter = 0 |
|
1637 | 1843 | for y in range(nrow): |
|
1638 | 1844 | for x in range(ncol): |
|
1639 | 1845 | |
|
1640 | 1846 | if counter >= self.nplots: |
|
1641 | 1847 | break |
|
1642 | 1848 | |
|
1643 | 1849 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1644 | 1850 | |
|
1645 | 1851 | counter += 1 |
|
1646 | 1852 | |
|
1647 | 1853 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
1648 | 1854 | xmin=None, xmax=None, ymin=None, ymax=None, SNRmin=None, SNRmax=None, |
|
1649 | 1855 | vmin=None, vmax=None, wmin=None, wmax=None, mode = 'SA', |
|
1650 | 1856 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1651 | 1857 | server=None, folder=None, username=None, password=None, |
|
1652 | 1858 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
1653 | 1859 | xaxis="frequency"): |
|
1654 | 1860 | |
|
1655 | 1861 | """ |
|
1656 | 1862 | |
|
1657 | 1863 | Input: |
|
1658 | 1864 | dataOut : |
|
1659 | 1865 | id : |
|
1660 | 1866 | wintitle : |
|
1661 | 1867 | channelList : |
|
1662 | 1868 | showProfile : |
|
1663 | 1869 | xmin : None, |
|
1664 | 1870 | xmax : None, |
|
1665 | 1871 | ymin : None, |
|
1666 | 1872 | ymax : None, |
|
1667 | 1873 | zmin : None, |
|
1668 | 1874 | zmax : None |
|
1669 | 1875 | """ |
|
1670 | 1876 | #SEPARAR EN DOS PLOTS |
|
1671 | 1877 | nParam = dataOut.data_param.shape[1] - 3 |
|
1672 | 1878 | |
|
1673 | 1879 | utctime = dataOut.data_param[0,0] |
|
1674 | 1880 | tmet = dataOut.data_param[:,1].astype(int) |
|
1675 | 1881 | hmet = dataOut.data_param[:,2].astype(int) |
|
1676 | 1882 | |
|
1677 | 1883 | x = dataOut.abscissaList |
|
1678 | 1884 | y = dataOut.heightList |
|
1679 | 1885 | |
|
1680 | 1886 | z = numpy.zeros((nParam, y.size, x.size - 1)) |
|
1681 | 1887 | z[:,:] = numpy.nan |
|
1682 | 1888 | z[:,hmet,tmet] = dataOut.data_param[:,3:].T |
|
1683 | 1889 | z[0,:,:] = 10*numpy.log10(z[0,:,:]) |
|
1684 | 1890 | |
|
1685 | 1891 | xlabel = "Time (s)" |
|
1686 | 1892 | ylabel = "Range (km)" |
|
1687 | 1893 | |
|
1688 | 1894 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
1689 | 1895 | |
|
1690 | 1896 | if not self.isConfig: |
|
1691 | 1897 | |
|
1692 | 1898 | nplots = nParam |
|
1693 | 1899 | |
|
1694 | 1900 | self.setup(id=id, |
|
1695 | 1901 | nplots=nplots, |
|
1696 | 1902 | wintitle=wintitle, |
|
1697 | 1903 | show=show) |
|
1698 | 1904 | |
|
1699 | 1905 | if xmin is None: xmin = numpy.nanmin(x) |
|
1700 | 1906 | if xmax is None: xmax = numpy.nanmax(x) |
|
1701 | 1907 | if ymin is None: ymin = numpy.nanmin(y) |
|
1702 | 1908 | if ymax is None: ymax = numpy.nanmax(y) |
|
1703 | 1909 | if SNRmin is None: SNRmin = numpy.nanmin(z[0,:]) |
|
1704 | 1910 | if SNRmax is None: SNRmax = numpy.nanmax(z[0,:]) |
|
1705 | 1911 | if vmax is None: vmax = numpy.nanmax(numpy.abs(z[1,:])) |
|
1706 | 1912 | if vmin is None: vmin = -vmax |
|
1707 | 1913 | if wmin is None: wmin = 0 |
|
1708 | 1914 | if wmax is None: wmax = 50 |
|
1709 | 1915 | |
|
1710 | 1916 | pairsList = dataOut.groupList |
|
1711 | 1917 | self.nPairs = len(dataOut.groupList) |
|
1712 | 1918 | |
|
1713 | 1919 | zminList = [SNRmin, vmin, cmin] + [pmin]*self.nPairs |
|
1714 | 1920 | zmaxList = [SNRmax, vmax, cmax] + [pmax]*self.nPairs |
|
1715 | 1921 | titleList = ["SNR","Radial Velocity","Coherence"] |
|
1716 | 1922 | cmapList = ["jet","RdBu_r","jet"] |
|
1717 | 1923 | |
|
1718 | 1924 | for i in range(self.nPairs): |
|
1719 | 1925 | strAux1 = "Phase Difference "+ str(pairsList[i][0]) + str(pairsList[i][1]) |
|
1720 | 1926 | titleList = titleList + [strAux1] |
|
1721 | 1927 | cmapList = cmapList + ["RdBu_r"] |
|
1722 | 1928 | |
|
1723 | 1929 | self.zminList = zminList |
|
1724 | 1930 | self.zmaxList = zmaxList |
|
1725 | 1931 | self.cmapList = cmapList |
|
1726 | 1932 | self.titleList = titleList |
|
1727 | 1933 | |
|
1728 | 1934 | self.FTP_WEI = ftp_wei |
|
1729 | 1935 | self.EXP_CODE = exp_code |
|
1730 | 1936 | self.SUB_EXP_CODE = sub_exp_code |
|
1731 | 1937 | self.PLOT_POS = plot_pos |
|
1732 | 1938 | |
|
1733 | 1939 | self.isConfig = True |
|
1734 | 1940 | |
|
1735 | 1941 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
1736 | 1942 | |
|
1737 | 1943 | for i in range(nParam): |
|
1738 | 1944 | title = self.titleList[i] + ": " +str_datetime |
|
1739 | 1945 | axes = self.axesList[i] |
|
1740 | 1946 | axes.pcolor(x, y, z[i,:].T, |
|
1741 | 1947 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=self.zminList[i], zmax=self.zmaxList[i], |
|
1742 | 1948 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=self.cmapList[i],ticksize=9, cblabel='') |
|
1743 | 1949 | self.draw() |
|
1744 | 1950 | |
|
1745 | 1951 | if figfile == None: |
|
1746 | 1952 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1747 | 1953 | name = str_datetime |
|
1748 | 1954 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
1749 | 1955 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
1750 | 1956 | figfile = self.getFilename(name) |
|
1751 | 1957 | |
|
1752 | 1958 | self.save(figpath=figpath, |
|
1753 | 1959 | figfile=figfile, |
|
1754 | 1960 | save=save, |
|
1755 | 1961 | ftp=ftp, |
|
1756 | 1962 | wr_period=wr_period, |
|
1757 | 1963 | thisDatetime=thisDatetime) |
|
1758 | 1964 | |
|
1759 | 1965 | |
|
1760 | 1966 | class NSMeteorDetection2Plot(Figure): |
|
1761 | 1967 | |
|
1762 | 1968 | isConfig = None |
|
1763 | 1969 | __nsubplots = None |
|
1764 | 1970 | |
|
1765 | 1971 | WIDTHPROF = None |
|
1766 | 1972 | HEIGHTPROF = None |
|
1767 | 1973 | PREFIX = 'nsm' |
|
1768 | 1974 | |
|
1769 | 1975 | zminList = None |
|
1770 | 1976 | zmaxList = None |
|
1771 | 1977 | cmapList = None |
|
1772 | 1978 | titleList = None |
|
1773 | 1979 | nPairs = None |
|
1774 | 1980 | nChannels = None |
|
1775 | 1981 | nParam = None |
|
1776 | 1982 | |
|
1777 | 1983 | def __init__(self, **kwargs): |
|
1778 | 1984 | Figure.__init__(self, **kwargs) |
|
1779 | 1985 | self.isConfig = False |
|
1780 | 1986 | self.__nsubplots = 1 |
|
1781 | 1987 | |
|
1782 | 1988 | self.WIDTH = 750 |
|
1783 | 1989 | self.HEIGHT = 250 |
|
1784 | 1990 | self.WIDTHPROF = 120 |
|
1785 | 1991 | self.HEIGHTPROF = 0 |
|
1786 | 1992 | self.counter_imagwr = 0 |
|
1787 | 1993 | |
|
1788 | 1994 | self.PLOT_CODE = SPEC_CODE |
|
1789 | 1995 | |
|
1790 | 1996 | self.FTP_WEI = None |
|
1791 | 1997 | self.EXP_CODE = None |
|
1792 | 1998 | self.SUB_EXP_CODE = None |
|
1793 | 1999 | self.PLOT_POS = None |
|
1794 | 2000 | |
|
1795 | 2001 | self.__xfilter_ena = False |
|
1796 | 2002 | self.__yfilter_ena = False |
|
1797 | 2003 | |
|
1798 | 2004 | def getSubplots(self): |
|
1799 | 2005 | |
|
1800 | 2006 | ncol = 3 |
|
1801 | 2007 | nrow = int(numpy.ceil(self.nplots/3.0)) |
|
1802 | 2008 | |
|
1803 | 2009 | return nrow, ncol |
|
1804 | 2010 | |
|
1805 | 2011 | def setup(self, id, nplots, wintitle, show=True): |
|
1806 | 2012 | |
|
1807 | 2013 | self.nplots = nplots |
|
1808 | 2014 | |
|
1809 | 2015 | ncolspan = 1 |
|
1810 | 2016 | colspan = 1 |
|
1811 | 2017 | |
|
1812 | 2018 | self.createFigure(id = id, |
|
1813 | 2019 | wintitle = wintitle, |
|
1814 | 2020 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
1815 | 2021 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
1816 | 2022 | show=show) |
|
1817 | 2023 | |
|
1818 | 2024 | nrow, ncol = self.getSubplots() |
|
1819 | 2025 | |
|
1820 | 2026 | counter = 0 |
|
1821 | 2027 | for y in range(nrow): |
|
1822 | 2028 | for x in range(ncol): |
|
1823 | 2029 | |
|
1824 | 2030 | if counter >= self.nplots: |
|
1825 | 2031 | break |
|
1826 | 2032 | |
|
1827 | 2033 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1828 | 2034 | |
|
1829 | 2035 | counter += 1 |
|
1830 | 2036 | |
|
1831 | 2037 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
1832 | 2038 | xmin=None, xmax=None, ymin=None, ymax=None, SNRmin=None, SNRmax=None, |
|
1833 | 2039 | vmin=None, vmax=None, wmin=None, wmax=None, mode = 'SA', |
|
1834 | 2040 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1835 | 2041 | server=None, folder=None, username=None, password=None, |
|
1836 | 2042 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
1837 | 2043 | xaxis="frequency"): |
|
1838 | 2044 | |
|
1839 | 2045 | """ |
|
1840 | 2046 | |
|
1841 | 2047 | Input: |
|
1842 | 2048 | dataOut : |
|
1843 | 2049 | id : |
|
1844 | 2050 | wintitle : |
|
1845 | 2051 | channelList : |
|
1846 | 2052 | showProfile : |
|
1847 | 2053 | xmin : None, |
|
1848 | 2054 | xmax : None, |
|
1849 | 2055 | ymin : None, |
|
1850 | 2056 | ymax : None, |
|
1851 | 2057 | zmin : None, |
|
1852 | 2058 | zmax : None |
|
1853 | 2059 | """ |
|
1854 | 2060 | #Rebuild matrix |
|
1855 | 2061 | utctime = dataOut.data_param[0,0] |
|
1856 | 2062 | cmet = dataOut.data_param[:,1].astype(int) |
|
1857 | 2063 | tmet = dataOut.data_param[:,2].astype(int) |
|
1858 | 2064 | hmet = dataOut.data_param[:,3].astype(int) |
|
1859 | 2065 | |
|
1860 | 2066 | nParam = 3 |
|
1861 | 2067 | nChan = len(dataOut.groupList) |
|
1862 | 2068 | x = dataOut.abscissaList |
|
1863 | 2069 | y = dataOut.heightList |
|
1864 | 2070 | |
|
1865 | 2071 | z = numpy.full((nChan, nParam, y.size, x.size - 1),numpy.nan) |
|
1866 | 2072 | z[cmet,:,hmet,tmet] = dataOut.data_param[:,4:] |
|
1867 | 2073 | z[:,0,:,:] = 10*numpy.log10(z[:,0,:,:]) #logarithmic scale |
|
1868 | 2074 | z = numpy.reshape(z, (nChan*nParam, y.size, x.size-1)) |
|
1869 | 2075 | |
|
1870 | 2076 | xlabel = "Time (s)" |
|
1871 | 2077 | ylabel = "Range (km)" |
|
1872 | 2078 | |
|
1873 | 2079 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
1874 | 2080 | |
|
1875 | 2081 | if not self.isConfig: |
|
1876 | 2082 | |
|
1877 | 2083 | nplots = nParam*nChan |
|
1878 | 2084 | |
|
1879 | 2085 | self.setup(id=id, |
|
1880 | 2086 | nplots=nplots, |
|
1881 | 2087 | wintitle=wintitle, |
|
1882 | 2088 | show=show) |
|
1883 | 2089 | |
|
1884 | 2090 | if xmin is None: xmin = numpy.nanmin(x) |
|
1885 | 2091 | if xmax is None: xmax = numpy.nanmax(x) |
|
1886 | 2092 | if ymin is None: ymin = numpy.nanmin(y) |
|
1887 | 2093 | if ymax is None: ymax = numpy.nanmax(y) |
|
1888 | 2094 | if SNRmin is None: SNRmin = numpy.nanmin(z[0,:]) |
|
1889 | 2095 | if SNRmax is None: SNRmax = numpy.nanmax(z[0,:]) |
|
1890 | 2096 | if vmax is None: vmax = numpy.nanmax(numpy.abs(z[1,:])) |
|
1891 | 2097 | if vmin is None: vmin = -vmax |
|
1892 | 2098 | if wmin is None: wmin = 0 |
|
1893 | 2099 | if wmax is None: wmax = 50 |
|
1894 | 2100 | |
|
1895 | 2101 | self.nChannels = nChan |
|
1896 | 2102 | |
|
1897 | 2103 | zminList = [] |
|
1898 | 2104 | zmaxList = [] |
|
1899 | 2105 | titleList = [] |
|
1900 | 2106 | cmapList = [] |
|
1901 | 2107 | for i in range(self.nChannels): |
|
1902 | 2108 | strAux1 = "SNR Channel "+ str(i) |
|
1903 | 2109 | strAux2 = "Radial Velocity Channel "+ str(i) |
|
1904 | 2110 | strAux3 = "Spectral Width Channel "+ str(i) |
|
1905 | 2111 | |
|
1906 | 2112 | titleList = titleList + [strAux1,strAux2,strAux3] |
|
1907 | 2113 | cmapList = cmapList + ["jet","RdBu_r","jet"] |
|
1908 | 2114 | zminList = zminList + [SNRmin,vmin,wmin] |
|
1909 | 2115 | zmaxList = zmaxList + [SNRmax,vmax,wmax] |
|
1910 | 2116 | |
|
1911 | 2117 | self.zminList = zminList |
|
1912 | 2118 | self.zmaxList = zmaxList |
|
1913 | 2119 | self.cmapList = cmapList |
|
1914 | 2120 | self.titleList = titleList |
|
1915 | 2121 | |
|
1916 | 2122 | self.FTP_WEI = ftp_wei |
|
1917 | 2123 | self.EXP_CODE = exp_code |
|
1918 | 2124 | self.SUB_EXP_CODE = sub_exp_code |
|
1919 | 2125 | self.PLOT_POS = plot_pos |
|
1920 | 2126 | |
|
1921 | 2127 | self.isConfig = True |
|
1922 | 2128 | |
|
1923 | 2129 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
1924 | 2130 | |
|
1925 | 2131 | for i in range(self.nplots): |
|
1926 | 2132 | title = self.titleList[i] + ": " +str_datetime |
|
1927 | 2133 | axes = self.axesList[i] |
|
1928 | 2134 | axes.pcolor(x, y, z[i,:].T, |
|
1929 | 2135 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=self.zminList[i], zmax=self.zmaxList[i], |
|
1930 | 2136 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=self.cmapList[i],ticksize=9, cblabel='') |
|
1931 | 2137 | self.draw() |
|
1932 | 2138 | |
|
1933 | 2139 | if figfile == None: |
|
1934 | 2140 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1935 | 2141 | name = str_datetime |
|
1936 | 2142 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
1937 | 2143 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
1938 | 2144 | figfile = self.getFilename(name) |
|
1939 | 2145 | |
|
1940 | 2146 | self.save(figpath=figpath, |
|
1941 | 2147 | figfile=figfile, |
|
1942 | 2148 | save=save, |
|
1943 | 2149 | ftp=ftp, |
|
1944 | 2150 | wr_period=wr_period, |
|
1945 | 2151 | thisDatetime=thisDatetime) |
@@ -1,1535 +1,1542 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 9, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | ''' |
|
6 | 6 | import os |
|
7 | 7 | import datetime |
|
8 | 8 | import numpy |
|
9 | 9 | |
|
10 | 10 | from figure import Figure, isRealtime, isTimeInHourRange |
|
11 | 11 | from plotting_codes import * |
|
12 | 12 | |
|
13 | 13 | |
|
14 | 14 | class SpectraPlot(Figure): |
|
15 | 15 | |
|
16 | 16 | isConfig = None |
|
17 | 17 | __nsubplots = None |
|
18 | 18 | |
|
19 | 19 | WIDTHPROF = None |
|
20 | 20 | HEIGHTPROF = None |
|
21 | 21 | PREFIX = 'spc' |
|
22 | 22 | |
|
23 | 23 | def __init__(self, **kwargs): |
|
24 | 24 | Figure.__init__(self, **kwargs) |
|
25 | 25 | self.isConfig = False |
|
26 | 26 | self.__nsubplots = 1 |
|
27 | 27 | |
|
28 | 28 | self.WIDTH = 1000 |
|
29 | 29 | self.HEIGHT = 1000 |
|
30 | 30 | self.WIDTHPROF = 120 |
|
31 | 31 | self.HEIGHTPROF = 0 |
|
32 | 32 | self.counter_imagwr = 0 |
|
33 | 33 | |
|
34 | 34 | self.PLOT_CODE = SPEC_CODE |
|
35 | 35 | |
|
36 | 36 | self.FTP_WEI = None |
|
37 | 37 | self.EXP_CODE = None |
|
38 | 38 | self.SUB_EXP_CODE = None |
|
39 | 39 | self.PLOT_POS = None |
|
40 | 40 | |
|
41 | 41 | self.__xfilter_ena = False |
|
42 | 42 | self.__yfilter_ena = False |
|
43 | 43 | |
|
44 | 44 | def getSubplots(self): |
|
45 | 45 | |
|
46 | 46 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
47 | 47 | nrow = int(self.nplots*1./ncol + 0.9) |
|
48 | 48 | |
|
49 | 49 | return nrow, ncol |
|
50 | 50 | |
|
51 | 51 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
52 | 52 | |
|
53 | 53 | self.__showprofile = showprofile |
|
54 | 54 | self.nplots = nplots |
|
55 | 55 | |
|
56 | 56 | ncolspan = 1 |
|
57 | 57 | colspan = 1 |
|
58 | 58 | if showprofile: |
|
59 | 59 | ncolspan = 3 |
|
60 | 60 | colspan = 2 |
|
61 | 61 | self.__nsubplots = 2 |
|
62 | 62 | |
|
63 | 63 | self.createFigure(id = id, |
|
64 | 64 | wintitle = wintitle, |
|
65 | 65 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
66 | 66 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
67 | 67 | show=show) |
|
68 | 68 | |
|
69 | 69 | nrow, ncol = self.getSubplots() |
|
70 | 70 | |
|
71 | 71 | counter = 0 |
|
72 | 72 | for y in range(nrow): |
|
73 | 73 | for x in range(ncol): |
|
74 | 74 | |
|
75 | 75 | if counter >= self.nplots: |
|
76 | 76 | break |
|
77 | 77 | |
|
78 | 78 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
79 | 79 | |
|
80 | 80 | if showprofile: |
|
81 | 81 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
82 | 82 | |
|
83 | 83 | counter += 1 |
|
84 | 84 | |
|
85 | 85 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
86 | 86 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
87 | 87 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
88 | 88 | server=None, folder=None, username=None, password=None, |
|
89 | 89 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
90 | xaxis="velocity", **kwargs): | |
|
90 | xaxis="frequency", colormap='jet', normFactor=None): | |
|
91 | 91 | |
|
92 | 92 | """ |
|
93 | 93 | |
|
94 | 94 | Input: |
|
95 | 95 | dataOut : |
|
96 | 96 | id : |
|
97 | 97 | wintitle : |
|
98 | 98 | channelList : |
|
99 | 99 | showProfile : |
|
100 | 100 | xmin : None, |
|
101 | 101 | xmax : None, |
|
102 | 102 | ymin : None, |
|
103 | 103 | ymax : None, |
|
104 | 104 | zmin : None, |
|
105 | 105 | zmax : None |
|
106 | 106 | """ |
|
107 | ||
|
108 | colormap = kwargs.get('colormap','jet') | |
|
109 | ||
|
110 | 107 | if realtime: |
|
111 | 108 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
112 | 109 | print 'Skipping this plot function' |
|
113 | 110 | return |
|
114 | 111 | |
|
115 | 112 | if channelList == None: |
|
116 | 113 | channelIndexList = dataOut.channelIndexList |
|
117 | 114 | else: |
|
118 | 115 | channelIndexList = [] |
|
119 | 116 | for channel in channelList: |
|
120 | 117 | if channel not in dataOut.channelList: |
|
121 | 118 | raise ValueError, "Channel %d is not in dataOut.channelList" %channel |
|
122 | 119 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
123 | 120 | |
|
121 | if normFactor is None: | |
|
124 | 122 | factor = dataOut.normFactor |
|
125 | ||
|
123 | else: | |
|
124 | factor = normFactor | |
|
126 | 125 | if xaxis == "frequency": |
|
127 | 126 | x = dataOut.getFreqRange(1)/1000. |
|
128 | 127 | xlabel = "Frequency (kHz)" |
|
129 | 128 | |
|
130 | 129 | elif xaxis == "time": |
|
131 | 130 | x = dataOut.getAcfRange(1) |
|
132 | 131 | xlabel = "Time (ms)" |
|
133 | 132 | |
|
134 | 133 | else: |
|
135 | 134 | x = dataOut.getVelRange(1) |
|
136 | 135 | xlabel = "Velocity (m/s)" |
|
137 | 136 | |
|
138 | 137 | ylabel = "Range (Km)" |
|
139 | 138 | |
|
140 | 139 | y = dataOut.getHeiRange() |
|
141 | 140 | |
|
142 | 141 | z = dataOut.data_spc/factor |
|
143 | 142 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
144 | 143 | zdB = 10*numpy.log10(z) |
|
145 | 144 | |
|
146 | 145 | avg = numpy.average(z, axis=1) |
|
147 | 146 | avgdB = 10*numpy.log10(avg) |
|
148 | 147 | |
|
149 | 148 | noise = dataOut.getNoise()/factor |
|
150 | 149 | noisedB = 10*numpy.log10(noise) |
|
151 | 150 | |
|
152 | 151 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
153 | 152 | title = wintitle + " Spectra" |
|
154 | 153 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
155 | 154 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
156 | 155 | |
|
157 | 156 | if not self.isConfig: |
|
158 | 157 | |
|
159 | 158 | nplots = len(channelIndexList) |
|
160 | 159 | |
|
161 | 160 | self.setup(id=id, |
|
162 | 161 | nplots=nplots, |
|
163 | 162 | wintitle=wintitle, |
|
164 | 163 | showprofile=showprofile, |
|
165 | 164 | show=show) |
|
166 | 165 | |
|
167 | 166 | if xmin == None: xmin = numpy.nanmin(x) |
|
168 | 167 | if xmax == None: xmax = numpy.nanmax(x) |
|
169 | 168 | if ymin == None: ymin = numpy.nanmin(y) |
|
170 | 169 | if ymax == None: ymax = numpy.nanmax(y) |
|
171 | 170 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
172 | 171 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
173 | 172 | |
|
174 | 173 | self.FTP_WEI = ftp_wei |
|
175 | 174 | self.EXP_CODE = exp_code |
|
176 | 175 | self.SUB_EXP_CODE = sub_exp_code |
|
177 | 176 | self.PLOT_POS = plot_pos |
|
178 | 177 | |
|
179 | 178 | self.isConfig = True |
|
180 | 179 | |
|
181 | 180 | self.setWinTitle(title) |
|
182 | 181 | |
|
183 | 182 | for i in range(self.nplots): |
|
184 | 183 | index = channelIndexList[i] |
|
185 | 184 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
186 | 185 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) |
|
187 | 186 | if len(dataOut.beam.codeList) != 0: |
|
188 | 187 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) |
|
189 | 188 | |
|
190 | 189 | axes = self.axesList[i*self.__nsubplots] |
|
191 | 190 | axes.pcolor(x, y, zdB[index,:,:], |
|
192 | 191 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
193 | 192 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, |
|
194 | 193 | ticksize=9, cblabel='') |
|
195 | 194 | |
|
196 | 195 | if self.__showprofile: |
|
197 | 196 | axes = self.axesList[i*self.__nsubplots +1] |
|
198 | 197 | axes.pline(avgdB[index,:], y, |
|
199 | 198 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
200 | 199 | xlabel='dB', ylabel='', title='', |
|
201 | 200 | ytick_visible=False, |
|
202 | 201 | grid='x') |
|
203 | 202 | |
|
204 | 203 | noiseline = numpy.repeat(noisedB[index], len(y)) |
|
205 | 204 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
206 | 205 | |
|
207 | 206 | self.draw() |
|
208 | 207 | |
|
209 | 208 | if figfile == None: |
|
210 | 209 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
211 | 210 | name = str_datetime |
|
212 | 211 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
213 | 212 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
214 | 213 | figfile = self.getFilename(name) |
|
215 | 214 | |
|
216 | 215 | self.save(figpath=figpath, |
|
217 | 216 | figfile=figfile, |
|
218 | 217 | save=save, |
|
219 | 218 | ftp=ftp, |
|
220 | 219 | wr_period=wr_period, |
|
221 | 220 | thisDatetime=thisDatetime) |
|
222 | 221 | |
|
223 | 222 | class CrossSpectraPlot(Figure): |
|
224 | 223 | |
|
225 | 224 | isConfig = None |
|
226 | 225 | __nsubplots = None |
|
227 | 226 | |
|
228 | 227 | WIDTH = None |
|
229 | 228 | HEIGHT = None |
|
230 | 229 | WIDTHPROF = None |
|
231 | 230 | HEIGHTPROF = None |
|
232 | 231 | PREFIX = 'cspc' |
|
233 | 232 | |
|
234 | 233 | def __init__(self, **kwargs): |
|
235 | 234 | Figure.__init__(self, **kwargs) |
|
236 | 235 | self.isConfig = False |
|
237 | 236 | self.__nsubplots = 4 |
|
238 | 237 | self.counter_imagwr = 0 |
|
239 | 238 | self.WIDTH = 250 |
|
240 | 239 | self.HEIGHT = 250 |
|
241 | 240 | self.WIDTHPROF = 0 |
|
242 | 241 | self.HEIGHTPROF = 0 |
|
243 | 242 | |
|
244 | 243 | self.PLOT_CODE = CROSS_CODE |
|
245 | 244 | self.FTP_WEI = None |
|
246 | 245 | self.EXP_CODE = None |
|
247 | 246 | self.SUB_EXP_CODE = None |
|
248 | 247 | self.PLOT_POS = None |
|
249 | 248 | |
|
250 | 249 | def getSubplots(self): |
|
251 | 250 | |
|
252 | 251 | ncol = 4 |
|
253 | 252 | nrow = self.nplots |
|
254 | 253 | |
|
255 | 254 | return nrow, ncol |
|
256 | 255 | |
|
257 | 256 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
258 | 257 | |
|
259 | 258 | self.__showprofile = showprofile |
|
260 | 259 | self.nplots = nplots |
|
261 | 260 | |
|
262 | 261 | ncolspan = 1 |
|
263 | 262 | colspan = 1 |
|
264 | 263 | |
|
265 | 264 | self.createFigure(id = id, |
|
266 | 265 | wintitle = wintitle, |
|
267 | 266 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
268 | 267 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
269 | 268 | show=True) |
|
270 | 269 | |
|
271 | 270 | nrow, ncol = self.getSubplots() |
|
272 | 271 | |
|
273 | 272 | counter = 0 |
|
274 | 273 | for y in range(nrow): |
|
275 | 274 | for x in range(ncol): |
|
276 | 275 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
277 | 276 | |
|
278 | 277 | counter += 1 |
|
279 | 278 | |
|
280 | 279 | def run(self, dataOut, id, wintitle="", pairsList=None, |
|
281 | 280 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
282 | 281 | coh_min=None, coh_max=None, phase_min=None, phase_max=None, |
|
283 | 282 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
284 | 283 | power_cmap='jet', coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
285 | 284 | server=None, folder=None, username=None, password=None, |
|
286 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, | |
|
285 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, | |
|
287 | 286 | xaxis='frequency'): |
|
288 | 287 | |
|
289 | 288 | """ |
|
290 | 289 | |
|
291 | 290 | Input: |
|
292 | 291 | dataOut : |
|
293 | 292 | id : |
|
294 | 293 | wintitle : |
|
295 | 294 | channelList : |
|
296 | 295 | showProfile : |
|
297 | 296 | xmin : None, |
|
298 | 297 | xmax : None, |
|
299 | 298 | ymin : None, |
|
300 | 299 | ymax : None, |
|
301 | 300 | zmin : None, |
|
302 | 301 | zmax : None |
|
303 | 302 | """ |
|
304 | 303 | |
|
305 | 304 | if pairsList == None: |
|
306 | 305 | pairsIndexList = dataOut.pairsIndexList |
|
307 | 306 | else: |
|
308 | 307 | pairsIndexList = [] |
|
309 | 308 | for pair in pairsList: |
|
310 | 309 | if pair not in dataOut.pairsList: |
|
311 | 310 | raise ValueError, "Pair %s is not in dataOut.pairsList" %str(pair) |
|
312 | 311 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
313 | 312 | |
|
314 | 313 | if not pairsIndexList: |
|
315 | 314 | return |
|
316 | 315 | |
|
317 | 316 | if len(pairsIndexList) > 4: |
|
318 | 317 | pairsIndexList = pairsIndexList[0:4] |
|
319 | 318 | |
|
319 | if normFactor is None: | |
|
320 | 320 | factor = dataOut.normFactor |
|
321 | else: | |
|
322 | factor = normFactor | |
|
321 | 323 | x = dataOut.getVelRange(1) |
|
322 | 324 | y = dataOut.getHeiRange() |
|
323 | 325 | z = dataOut.data_spc[:,:,:]/factor |
|
324 | 326 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
325 | 327 | |
|
326 | 328 | noise = dataOut.noise/factor |
|
327 | 329 | |
|
328 | 330 | zdB = 10*numpy.log10(z) |
|
329 | 331 | noisedB = 10*numpy.log10(noise) |
|
330 | 332 | |
|
331 | 333 | if coh_min == None: |
|
332 | 334 | coh_min = 0.0 |
|
333 | 335 | if coh_max == None: |
|
334 | 336 | coh_max = 1.0 |
|
335 | 337 | |
|
336 | 338 | if phase_min == None: |
|
337 | 339 | phase_min = -180 |
|
338 | 340 | if phase_max == None: |
|
339 | 341 | phase_max = 180 |
|
340 | 342 | |
|
341 | 343 | #thisDatetime = dataOut.datatime |
|
342 | 344 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
343 | 345 | title = wintitle + " Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
344 | 346 | # xlabel = "Velocity (m/s)" |
|
345 | 347 | ylabel = "Range (Km)" |
|
346 | 348 | |
|
347 | 349 | if xaxis == "frequency": |
|
348 | 350 | x = dataOut.getFreqRange(1)/1000. |
|
349 | 351 | xlabel = "Frequency (kHz)" |
|
350 | 352 | |
|
351 | 353 | elif xaxis == "time": |
|
352 | 354 | x = dataOut.getAcfRange(1) |
|
353 | 355 | xlabel = "Time (ms)" |
|
354 | 356 | |
|
355 | 357 | else: |
|
356 | 358 | x = dataOut.getVelRange(1) |
|
357 | 359 | xlabel = "Velocity (m/s)" |
|
358 | 360 | |
|
359 | 361 | if not self.isConfig: |
|
360 | 362 | |
|
361 | 363 | nplots = len(pairsIndexList) |
|
362 | 364 | |
|
363 | 365 | self.setup(id=id, |
|
364 | 366 | nplots=nplots, |
|
365 | 367 | wintitle=wintitle, |
|
366 | 368 | showprofile=False, |
|
367 | 369 | show=show) |
|
368 | 370 | |
|
369 | 371 | avg = numpy.abs(numpy.average(z, axis=1)) |
|
370 | 372 | avgdB = 10*numpy.log10(avg) |
|
371 | 373 | |
|
372 | 374 | if xmin == None: xmin = numpy.nanmin(x) |
|
373 | 375 | if xmax == None: xmax = numpy.nanmax(x) |
|
374 | 376 | if ymin == None: ymin = numpy.nanmin(y) |
|
375 | 377 | if ymax == None: ymax = numpy.nanmax(y) |
|
376 | 378 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
377 | 379 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
378 | 380 | |
|
379 | 381 | self.FTP_WEI = ftp_wei |
|
380 | 382 | self.EXP_CODE = exp_code |
|
381 | 383 | self.SUB_EXP_CODE = sub_exp_code |
|
382 | 384 | self.PLOT_POS = plot_pos |
|
383 | 385 | |
|
384 | 386 | self.isConfig = True |
|
385 | 387 | |
|
386 | 388 | self.setWinTitle(title) |
|
387 | 389 | |
|
388 | 390 | for i in range(self.nplots): |
|
389 | 391 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
390 | 392 | |
|
391 | 393 | chan_index0 = dataOut.channelList.index(pair[0]) |
|
392 | 394 | chan_index1 = dataOut.channelList.index(pair[1]) |
|
393 | 395 | |
|
394 | 396 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
395 | 397 | title = "Ch%d: %4.2fdB: %s" %(pair[0], noisedB[chan_index0], str_datetime) |
|
396 | 398 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index0,:,:]/factor) |
|
397 | 399 | axes0 = self.axesList[i*self.__nsubplots] |
|
398 | 400 | axes0.pcolor(x, y, zdB, |
|
399 | 401 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
400 | 402 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
401 | 403 | ticksize=9, colormap=power_cmap, cblabel='') |
|
402 | 404 | |
|
403 | 405 | title = "Ch%d: %4.2fdB: %s" %(pair[1], noisedB[chan_index1], str_datetime) |
|
404 | 406 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index1,:,:]/factor) |
|
405 | 407 | axes0 = self.axesList[i*self.__nsubplots+1] |
|
406 | 408 | axes0.pcolor(x, y, zdB, |
|
407 | 409 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
408 | 410 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
409 | 411 | ticksize=9, colormap=power_cmap, cblabel='') |
|
410 | 412 | |
|
411 | 413 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:]) |
|
412 | 414 | coherence = numpy.abs(coherenceComplex) |
|
413 | 415 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
414 | 416 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi |
|
415 | 417 | |
|
416 | 418 | title = "Coherence Ch%d * Ch%d" %(pair[0], pair[1]) |
|
417 | 419 | axes0 = self.axesList[i*self.__nsubplots+2] |
|
418 | 420 | axes0.pcolor(x, y, coherence, |
|
419 | 421 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=coh_min, zmax=coh_max, |
|
420 | 422 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
421 | 423 | ticksize=9, colormap=coherence_cmap, cblabel='') |
|
422 | 424 | |
|
423 | 425 | title = "Phase Ch%d * Ch%d" %(pair[0], pair[1]) |
|
424 | 426 | axes0 = self.axesList[i*self.__nsubplots+3] |
|
425 | 427 | axes0.pcolor(x, y, phase, |
|
426 | 428 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
427 | 429 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
428 | 430 | ticksize=9, colormap=phase_cmap, cblabel='') |
|
429 | 431 | |
|
430 | 432 | |
|
431 | 433 | |
|
432 | 434 | self.draw() |
|
433 | 435 | |
|
434 | 436 | self.save(figpath=figpath, |
|
435 | 437 | figfile=figfile, |
|
436 | 438 | save=save, |
|
437 | 439 | ftp=ftp, |
|
438 | 440 | wr_period=wr_period, |
|
439 | 441 | thisDatetime=thisDatetime) |
|
440 | 442 | |
|
441 | 443 | |
|
442 | 444 | class RTIPlot(Figure): |
|
443 | 445 | |
|
444 | 446 | __isConfig = None |
|
445 | 447 | __nsubplots = None |
|
446 | 448 | |
|
447 | 449 | WIDTHPROF = None |
|
448 | 450 | HEIGHTPROF = None |
|
449 | 451 | PREFIX = 'rti' |
|
450 | 452 | |
|
451 | 453 | def __init__(self, **kwargs): |
|
452 | 454 | |
|
453 | 455 | Figure.__init__(self, **kwargs) |
|
454 | 456 | self.timerange = None |
|
455 | 457 | self.isConfig = False |
|
456 | 458 | self.__nsubplots = 1 |
|
457 | 459 | |
|
458 | 460 | self.WIDTH = 800 |
|
459 | 461 | self.HEIGHT = 180 |
|
460 | 462 | self.WIDTHPROF = 120 |
|
461 | 463 | self.HEIGHTPROF = 0 |
|
462 | 464 | self.counter_imagwr = 0 |
|
463 | 465 | |
|
464 | 466 | self.PLOT_CODE = RTI_CODE |
|
465 | 467 | |
|
466 | 468 | self.FTP_WEI = None |
|
467 | 469 | self.EXP_CODE = None |
|
468 | 470 | self.SUB_EXP_CODE = None |
|
469 | 471 | self.PLOT_POS = None |
|
470 | 472 | self.tmin = None |
|
471 | 473 | self.tmax = None |
|
472 | 474 | |
|
473 | 475 | self.xmin = None |
|
474 | 476 | self.xmax = None |
|
475 | 477 | |
|
476 | 478 | self.figfile = None |
|
477 | 479 | |
|
478 | 480 | def getSubplots(self): |
|
479 | 481 | |
|
480 | 482 | ncol = 1 |
|
481 | 483 | nrow = self.nplots |
|
482 | 484 | |
|
483 | 485 | return nrow, ncol |
|
484 | 486 | |
|
485 | 487 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
486 | 488 | |
|
487 | 489 | self.__showprofile = showprofile |
|
488 | 490 | self.nplots = nplots |
|
489 | 491 | |
|
490 | 492 | ncolspan = 1 |
|
491 | 493 | colspan = 1 |
|
492 | 494 | if showprofile: |
|
493 | 495 | ncolspan = 7 |
|
494 | 496 | colspan = 6 |
|
495 | 497 | self.__nsubplots = 2 |
|
496 | 498 | |
|
497 | 499 | self.createFigure(id = id, |
|
498 | 500 | wintitle = wintitle, |
|
499 | 501 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
500 | 502 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
501 | 503 | show=show) |
|
502 | 504 | |
|
503 | 505 | nrow, ncol = self.getSubplots() |
|
504 | 506 | |
|
505 | 507 | counter = 0 |
|
506 | 508 | for y in range(nrow): |
|
507 | 509 | for x in range(ncol): |
|
508 | 510 | |
|
509 | 511 | if counter >= self.nplots: |
|
510 | 512 | break |
|
511 | 513 | |
|
512 | 514 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
513 | 515 | |
|
514 | 516 | if showprofile: |
|
515 | 517 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
516 | 518 | |
|
517 | 519 | counter += 1 |
|
518 | 520 | |
|
519 | 521 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
520 | 522 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
521 | timerange=None, | |
|
523 | timerange=None, colormap='jet', | |
|
522 | 524 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
523 | 525 | server=None, folder=None, username=None, password=None, |
|
524 |
ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, |
|
|
526 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, HEIGHT=None): | |
|
525 | 527 | |
|
526 | 528 | """ |
|
527 | 529 | |
|
528 | 530 | Input: |
|
529 | 531 | dataOut : |
|
530 | 532 | id : |
|
531 | 533 | wintitle : |
|
532 | 534 | channelList : |
|
533 | 535 | showProfile : |
|
534 | 536 | xmin : None, |
|
535 | 537 | xmax : None, |
|
536 | 538 | ymin : None, |
|
537 | 539 | ymax : None, |
|
538 | 540 | zmin : None, |
|
539 | 541 | zmax : None |
|
540 | 542 | """ |
|
541 | 543 | |
|
542 | colormap = kwargs.get('colormap', 'jet') | |
|
544 | #colormap = kwargs.get('colormap', 'jet') | |
|
545 | if HEIGHT is not None: | |
|
546 | self.HEIGHT = HEIGHT | |
|
547 | ||
|
543 | 548 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
544 | 549 | return |
|
545 | 550 | |
|
546 | 551 | if channelList == None: |
|
547 | 552 | channelIndexList = dataOut.channelIndexList |
|
548 | 553 | else: |
|
549 | 554 | channelIndexList = [] |
|
550 | 555 | for channel in channelList: |
|
551 | 556 | if channel not in dataOut.channelList: |
|
552 | 557 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
553 | 558 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
554 | 559 | |
|
555 |
if |
|
|
560 | if normFactor is None: | |
|
556 | 561 | factor = dataOut.normFactor |
|
557 | 562 | else: |
|
558 |
factor = |
|
|
563 | factor = normFactor | |
|
559 | 564 | |
|
560 | 565 | # factor = dataOut.normFactor |
|
561 | 566 | x = dataOut.getTimeRange() |
|
562 | 567 | y = dataOut.getHeiRange() |
|
563 | 568 | |
|
564 |
|
|
|
565 |
|
|
|
566 |
|
|
|
567 |
|
|
|
568 | avgdB = dataOut.getPower() | |
|
569 | z = dataOut.data_spc/factor | |
|
570 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
|
571 | avg = numpy.average(z, axis=1) | |
|
572 | avgdB = 10.*numpy.log10(avg) | |
|
573 | # avgdB = dataOut.getPower() | |
|
574 | ||
|
569 | 575 | |
|
570 | 576 | thisDatetime = dataOut.datatime |
|
571 | 577 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
572 | 578 | title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
573 | 579 | xlabel = "" |
|
574 | 580 | ylabel = "Range (Km)" |
|
575 | 581 | |
|
576 | 582 | update_figfile = False |
|
577 | 583 | |
|
578 | 584 | if dataOut.ltctime >= self.xmax: |
|
579 | 585 | self.counter_imagwr = wr_period |
|
580 | 586 | self.isConfig = False |
|
581 | 587 | update_figfile = True |
|
582 | 588 | |
|
583 | 589 | if not self.isConfig: |
|
584 | 590 | |
|
585 | 591 | nplots = len(channelIndexList) |
|
586 | 592 | |
|
587 | 593 | self.setup(id=id, |
|
588 | 594 | nplots=nplots, |
|
589 | 595 | wintitle=wintitle, |
|
590 | 596 | showprofile=showprofile, |
|
591 | 597 | show=show) |
|
592 | 598 | |
|
593 | 599 | if timerange != None: |
|
594 | 600 | self.timerange = timerange |
|
595 | 601 | |
|
596 | 602 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
597 | 603 | |
|
598 | 604 | noise = dataOut.noise/factor |
|
599 | 605 | noisedB = 10*numpy.log10(noise) |
|
600 | 606 | |
|
601 | 607 | if ymin == None: ymin = numpy.nanmin(y) |
|
602 | 608 | if ymax == None: ymax = numpy.nanmax(y) |
|
603 | 609 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
604 | 610 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
605 | 611 | |
|
606 | 612 | self.FTP_WEI = ftp_wei |
|
607 | 613 | self.EXP_CODE = exp_code |
|
608 | 614 | self.SUB_EXP_CODE = sub_exp_code |
|
609 | 615 | self.PLOT_POS = plot_pos |
|
610 | 616 | |
|
611 | 617 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
612 | 618 | self.isConfig = True |
|
613 | 619 | self.figfile = figfile |
|
614 | 620 | update_figfile = True |
|
615 | 621 | |
|
616 | 622 | self.setWinTitle(title) |
|
617 | 623 | |
|
618 | 624 | for i in range(self.nplots): |
|
619 | 625 | index = channelIndexList[i] |
|
620 | 626 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
621 | 627 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
622 | 628 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
623 | 629 | axes = self.axesList[i*self.__nsubplots] |
|
624 | 630 | zdB = avgdB[index].reshape((1,-1)) |
|
625 | 631 | axes.pcolorbuffer(x, y, zdB, |
|
626 | 632 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
627 | 633 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
628 | 634 | ticksize=9, cblabel='', cbsize="1%", colormap=colormap) |
|
629 | 635 | |
|
630 | 636 | if self.__showprofile: |
|
631 | 637 | axes = self.axesList[i*self.__nsubplots +1] |
|
632 | 638 | axes.pline(avgdB[index], y, |
|
633 | 639 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
634 | 640 | xlabel='dB', ylabel='', title='', |
|
635 | 641 | ytick_visible=False, |
|
636 | 642 | grid='x') |
|
637 | 643 | |
|
638 | 644 | self.draw() |
|
639 | 645 | |
|
640 | 646 | self.save(figpath=figpath, |
|
641 | 647 | figfile=figfile, |
|
642 | 648 | save=save, |
|
643 | 649 | ftp=ftp, |
|
644 | 650 | wr_period=wr_period, |
|
645 | 651 | thisDatetime=thisDatetime, |
|
646 | 652 | update_figfile=update_figfile) |
|
647 | 653 | |
|
648 | 654 | class CoherenceMap(Figure): |
|
649 | 655 | isConfig = None |
|
650 | 656 | __nsubplots = None |
|
651 | 657 | |
|
652 | 658 | WIDTHPROF = None |
|
653 | 659 | HEIGHTPROF = None |
|
654 | 660 | PREFIX = 'cmap' |
|
655 | 661 | |
|
656 | 662 | def __init__(self, **kwargs): |
|
657 | 663 | Figure.__init__(self, **kwargs) |
|
658 | 664 | self.timerange = 2*60*60 |
|
659 | 665 | self.isConfig = False |
|
660 | 666 | self.__nsubplots = 1 |
|
661 | 667 | |
|
662 | 668 | self.WIDTH = 800 |
|
663 | 669 | self.HEIGHT = 180 |
|
664 | 670 | self.WIDTHPROF = 120 |
|
665 | 671 | self.HEIGHTPROF = 0 |
|
666 | 672 | self.counter_imagwr = 0 |
|
667 | 673 | |
|
668 | 674 | self.PLOT_CODE = COH_CODE |
|
669 | 675 | |
|
670 | 676 | self.FTP_WEI = None |
|
671 | 677 | self.EXP_CODE = None |
|
672 | 678 | self.SUB_EXP_CODE = None |
|
673 | 679 | self.PLOT_POS = None |
|
674 | 680 | self.counter_imagwr = 0 |
|
675 | 681 | |
|
676 | 682 | self.xmin = None |
|
677 | 683 | self.xmax = None |
|
678 | 684 | |
|
679 | 685 | def getSubplots(self): |
|
680 | 686 | ncol = 1 |
|
681 | 687 | nrow = self.nplots*2 |
|
682 | 688 | |
|
683 | 689 | return nrow, ncol |
|
684 | 690 | |
|
685 | 691 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
686 | 692 | self.__showprofile = showprofile |
|
687 | 693 | self.nplots = nplots |
|
688 | 694 | |
|
689 | 695 | ncolspan = 1 |
|
690 | 696 | colspan = 1 |
|
691 | 697 | if showprofile: |
|
692 | 698 | ncolspan = 7 |
|
693 | 699 | colspan = 6 |
|
694 | 700 | self.__nsubplots = 2 |
|
695 | 701 | |
|
696 | 702 | self.createFigure(id = id, |
|
697 | 703 | wintitle = wintitle, |
|
698 | 704 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
699 | 705 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
700 | 706 | show=True) |
|
701 | 707 | |
|
702 | 708 | nrow, ncol = self.getSubplots() |
|
703 | 709 | |
|
704 | 710 | for y in range(nrow): |
|
705 | 711 | for x in range(ncol): |
|
706 | 712 | |
|
707 | 713 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
708 | 714 | |
|
709 | 715 | if showprofile: |
|
710 | 716 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
711 | 717 | |
|
712 | 718 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
713 | 719 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
714 | 720 | timerange=None, phase_min=None, phase_max=None, |
|
715 | 721 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
716 | 722 | coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
717 | 723 | server=None, folder=None, username=None, password=None, |
|
718 | 724 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
719 | 725 | |
|
720 | 726 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
721 | 727 | return |
|
722 | 728 | |
|
723 | 729 | if pairsList == None: |
|
724 | 730 | pairsIndexList = dataOut.pairsIndexList |
|
725 | 731 | else: |
|
726 | 732 | pairsIndexList = [] |
|
727 | 733 | for pair in pairsList: |
|
728 | 734 | if pair not in dataOut.pairsList: |
|
729 | 735 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
730 | 736 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
731 | 737 | |
|
732 | 738 | if pairsIndexList == []: |
|
733 | 739 | return |
|
734 | 740 | |
|
735 | 741 | if len(pairsIndexList) > 4: |
|
736 | 742 | pairsIndexList = pairsIndexList[0:4] |
|
737 | 743 | |
|
738 | 744 | if phase_min == None: |
|
739 | 745 | phase_min = -180 |
|
740 | 746 | if phase_max == None: |
|
741 | 747 | phase_max = 180 |
|
742 | 748 | |
|
743 | 749 | x = dataOut.getTimeRange() |
|
744 | 750 | y = dataOut.getHeiRange() |
|
745 | 751 | |
|
746 | 752 | thisDatetime = dataOut.datatime |
|
747 | 753 | |
|
748 | 754 | title = wintitle + " CoherenceMap" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
749 | 755 | xlabel = "" |
|
750 | 756 | ylabel = "Range (Km)" |
|
751 | 757 | update_figfile = False |
|
752 | 758 | |
|
753 | 759 | if not self.isConfig: |
|
754 | 760 | nplots = len(pairsIndexList) |
|
755 | 761 | self.setup(id=id, |
|
756 | 762 | nplots=nplots, |
|
757 | 763 | wintitle=wintitle, |
|
758 | 764 | showprofile=showprofile, |
|
759 | 765 | show=show) |
|
760 | 766 | |
|
761 | 767 | if timerange != None: |
|
762 | 768 | self.timerange = timerange |
|
763 | 769 | |
|
764 | 770 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
765 | 771 | |
|
766 | 772 | if ymin == None: ymin = numpy.nanmin(y) |
|
767 | 773 | if ymax == None: ymax = numpy.nanmax(y) |
|
768 | 774 | if zmin == None: zmin = 0. |
|
769 | 775 | if zmax == None: zmax = 1. |
|
770 | 776 | |
|
771 | 777 | self.FTP_WEI = ftp_wei |
|
772 | 778 | self.EXP_CODE = exp_code |
|
773 | 779 | self.SUB_EXP_CODE = sub_exp_code |
|
774 | 780 | self.PLOT_POS = plot_pos |
|
775 | 781 | |
|
776 | 782 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
777 | 783 | |
|
778 | 784 | self.isConfig = True |
|
779 | 785 | update_figfile = True |
|
780 | 786 | |
|
781 | 787 | self.setWinTitle(title) |
|
782 | 788 | |
|
783 | 789 | for i in range(self.nplots): |
|
784 | 790 | |
|
785 | 791 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
786 | 792 | |
|
787 | 793 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0) |
|
788 | 794 | powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0) |
|
789 | 795 | powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0) |
|
790 | 796 | |
|
791 | 797 | |
|
792 | 798 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
793 | 799 | coherence = numpy.abs(avgcoherenceComplex) |
|
794 | 800 | |
|
795 | 801 | z = coherence.reshape((1,-1)) |
|
796 | 802 | |
|
797 | 803 | counter = 0 |
|
798 | 804 | |
|
799 | 805 | title = "Coherence Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
800 | 806 | axes = self.axesList[i*self.__nsubplots*2] |
|
801 | 807 | axes.pcolorbuffer(x, y, z, |
|
802 | 808 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
803 | 809 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
804 | 810 | ticksize=9, cblabel='', colormap=coherence_cmap, cbsize="1%") |
|
805 | 811 | |
|
806 | 812 | if self.__showprofile: |
|
807 | 813 | counter += 1 |
|
808 | 814 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
809 | 815 | axes.pline(coherence, y, |
|
810 | 816 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
811 | 817 | xlabel='', ylabel='', title='', ticksize=7, |
|
812 | 818 | ytick_visible=False, nxticks=5, |
|
813 | 819 | grid='x') |
|
814 | 820 | |
|
815 | 821 | counter += 1 |
|
816 | 822 | |
|
817 | 823 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
818 | 824 | |
|
819 | 825 | z = phase.reshape((1,-1)) |
|
820 | 826 | |
|
821 | 827 | title = "Phase Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
822 | 828 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
823 | 829 | axes.pcolorbuffer(x, y, z, |
|
824 | 830 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
825 | 831 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
826 | 832 | ticksize=9, cblabel='', colormap=phase_cmap, cbsize="1%") |
|
827 | 833 | |
|
828 | 834 | if self.__showprofile: |
|
829 | 835 | counter += 1 |
|
830 | 836 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
831 | 837 | axes.pline(phase, y, |
|
832 | 838 | xmin=phase_min, xmax=phase_max, ymin=ymin, ymax=ymax, |
|
833 | 839 | xlabel='', ylabel='', title='', ticksize=7, |
|
834 | 840 | ytick_visible=False, nxticks=4, |
|
835 | 841 | grid='x') |
|
836 | 842 | |
|
837 | 843 | self.draw() |
|
838 | 844 | |
|
839 | 845 | if dataOut.ltctime >= self.xmax: |
|
840 | 846 | self.counter_imagwr = wr_period |
|
841 | 847 | self.isConfig = False |
|
842 | 848 | update_figfile = True |
|
843 | 849 | |
|
844 | 850 | self.save(figpath=figpath, |
|
845 | 851 | figfile=figfile, |
|
846 | 852 | save=save, |
|
847 | 853 | ftp=ftp, |
|
848 | 854 | wr_period=wr_period, |
|
849 | 855 | thisDatetime=thisDatetime, |
|
850 | 856 | update_figfile=update_figfile) |
|
851 | 857 | |
|
852 | 858 | class PowerProfilePlot(Figure): |
|
853 | 859 | |
|
854 | 860 | isConfig = None |
|
855 | 861 | __nsubplots = None |
|
856 | 862 | |
|
857 | 863 | WIDTHPROF = None |
|
858 | 864 | HEIGHTPROF = None |
|
859 | 865 | PREFIX = 'spcprofile' |
|
860 | 866 | |
|
861 | 867 | def __init__(self, **kwargs): |
|
862 | 868 | Figure.__init__(self, **kwargs) |
|
863 | 869 | self.isConfig = False |
|
864 | 870 | self.__nsubplots = 1 |
|
865 | 871 | |
|
866 | 872 | self.PLOT_CODE = POWER_CODE |
|
867 | 873 | |
|
868 | 874 | self.WIDTH = 300 |
|
869 | 875 | self.HEIGHT = 500 |
|
870 | 876 | self.counter_imagwr = 0 |
|
871 | 877 | |
|
872 | 878 | def getSubplots(self): |
|
873 | 879 | ncol = 1 |
|
874 | 880 | nrow = 1 |
|
875 | 881 | |
|
876 | 882 | return nrow, ncol |
|
877 | 883 | |
|
878 | 884 | def setup(self, id, nplots, wintitle, show): |
|
879 | 885 | |
|
880 | 886 | self.nplots = nplots |
|
881 | 887 | |
|
882 | 888 | ncolspan = 1 |
|
883 | 889 | colspan = 1 |
|
884 | 890 | |
|
885 | 891 | self.createFigure(id = id, |
|
886 | 892 | wintitle = wintitle, |
|
887 | 893 | widthplot = self.WIDTH, |
|
888 | 894 | heightplot = self.HEIGHT, |
|
889 | 895 | show=show) |
|
890 | 896 | |
|
891 | 897 | nrow, ncol = self.getSubplots() |
|
892 | 898 | |
|
893 | 899 | counter = 0 |
|
894 | 900 | for y in range(nrow): |
|
895 | 901 | for x in range(ncol): |
|
896 | 902 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
897 | 903 | |
|
898 | 904 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
899 | 905 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
900 | 906 | save=False, figpath='./', figfile=None, show=True, |
|
901 | 907 | ftp=False, wr_period=1, server=None, |
|
902 | 908 | folder=None, username=None, password=None): |
|
903 | 909 | |
|
904 | 910 | |
|
905 | 911 | if channelList == None: |
|
906 | 912 | channelIndexList = dataOut.channelIndexList |
|
907 | 913 | channelList = dataOut.channelList |
|
908 | 914 | else: |
|
909 | 915 | channelIndexList = [] |
|
910 | 916 | for channel in channelList: |
|
911 | 917 | if channel not in dataOut.channelList: |
|
912 | 918 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
913 | 919 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
914 | 920 | |
|
915 | 921 | factor = dataOut.normFactor |
|
916 | 922 | |
|
917 | 923 | y = dataOut.getHeiRange() |
|
918 | 924 | |
|
919 | 925 | #for voltage |
|
920 | 926 | if dataOut.type == 'Voltage': |
|
921 | 927 | x = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) |
|
922 | 928 | x = x.real |
|
923 | 929 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
924 | 930 | |
|
925 | 931 | #for spectra |
|
926 | 932 | if dataOut.type == 'Spectra': |
|
927 | 933 | x = dataOut.data_spc[channelIndexList,:,:]/factor |
|
928 | 934 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
929 | 935 | x = numpy.average(x, axis=1) |
|
930 | 936 | |
|
931 | 937 | |
|
932 | 938 | xdB = 10*numpy.log10(x) |
|
933 | 939 | |
|
934 | 940 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
935 | 941 | title = wintitle + " Power Profile %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
936 | 942 | xlabel = "dB" |
|
937 | 943 | ylabel = "Range (Km)" |
|
938 | 944 | |
|
939 | 945 | if not self.isConfig: |
|
940 | 946 | |
|
941 | 947 | nplots = 1 |
|
942 | 948 | |
|
943 | 949 | self.setup(id=id, |
|
944 | 950 | nplots=nplots, |
|
945 | 951 | wintitle=wintitle, |
|
946 | 952 | show=show) |
|
947 | 953 | |
|
948 | 954 | if ymin == None: ymin = numpy.nanmin(y) |
|
949 | 955 | if ymax == None: ymax = numpy.nanmax(y) |
|
950 | 956 | if xmin == None: xmin = numpy.nanmin(xdB)*0.9 |
|
951 | 957 | if xmax == None: xmax = numpy.nanmax(xdB)*1.1 |
|
952 | 958 | |
|
953 | 959 | self.isConfig = True |
|
954 | 960 | |
|
955 | 961 | self.setWinTitle(title) |
|
956 | 962 | |
|
957 | 963 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
958 | 964 | axes = self.axesList[0] |
|
959 | 965 | |
|
960 | 966 | legendlabels = ["channel %d"%x for x in channelList] |
|
961 | 967 | axes.pmultiline(xdB, y, |
|
962 | 968 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
963 | 969 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
964 | 970 | ytick_visible=True, nxticks=5, |
|
965 | 971 | grid='x') |
|
966 | 972 | |
|
967 | 973 | self.draw() |
|
968 | 974 | |
|
969 | 975 | self.save(figpath=figpath, |
|
970 | 976 | figfile=figfile, |
|
971 | 977 | save=save, |
|
972 | 978 | ftp=ftp, |
|
973 | 979 | wr_period=wr_period, |
|
974 | 980 | thisDatetime=thisDatetime) |
|
975 | 981 | |
|
976 | 982 | class SpectraCutPlot(Figure): |
|
977 | 983 | |
|
978 | 984 | isConfig = None |
|
979 | 985 | __nsubplots = None |
|
980 | 986 | |
|
981 | 987 | WIDTHPROF = None |
|
982 | 988 | HEIGHTPROF = None |
|
983 | 989 | PREFIX = 'spc_cut' |
|
984 | 990 | |
|
985 | 991 | def __init__(self, **kwargs): |
|
986 | 992 | Figure.__init__(self, **kwargs) |
|
987 | 993 | self.isConfig = False |
|
988 | 994 | self.__nsubplots = 1 |
|
989 | 995 | |
|
990 | 996 | self.PLOT_CODE = POWER_CODE |
|
991 | 997 | |
|
992 | 998 | self.WIDTH = 700 |
|
993 | 999 | self.HEIGHT = 500 |
|
994 | 1000 | self.counter_imagwr = 0 |
|
995 | 1001 | |
|
996 | 1002 | def getSubplots(self): |
|
997 | 1003 | ncol = 1 |
|
998 | 1004 | nrow = 1 |
|
999 | 1005 | |
|
1000 | 1006 | return nrow, ncol |
|
1001 | 1007 | |
|
1002 | 1008 | def setup(self, id, nplots, wintitle, show): |
|
1003 | 1009 | |
|
1004 | 1010 | self.nplots = nplots |
|
1005 | 1011 | |
|
1006 | 1012 | ncolspan = 1 |
|
1007 | 1013 | colspan = 1 |
|
1008 | 1014 | |
|
1009 | 1015 | self.createFigure(id = id, |
|
1010 | 1016 | wintitle = wintitle, |
|
1011 | 1017 | widthplot = self.WIDTH, |
|
1012 | 1018 | heightplot = self.HEIGHT, |
|
1013 | 1019 | show=show) |
|
1014 | 1020 | |
|
1015 | 1021 | nrow, ncol = self.getSubplots() |
|
1016 | 1022 | |
|
1017 | 1023 | counter = 0 |
|
1018 | 1024 | for y in range(nrow): |
|
1019 | 1025 | for x in range(ncol): |
|
1020 | 1026 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1021 | 1027 | |
|
1022 | 1028 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
1023 | 1029 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1024 | 1030 | save=False, figpath='./', figfile=None, show=True, |
|
1025 | 1031 | ftp=False, wr_period=1, server=None, |
|
1026 | 1032 | folder=None, username=None, password=None, |
|
1027 | 1033 | xaxis="frequency"): |
|
1028 | 1034 | |
|
1029 | 1035 | |
|
1030 | 1036 | if channelList == None: |
|
1031 | 1037 | channelIndexList = dataOut.channelIndexList |
|
1032 | 1038 | channelList = dataOut.channelList |
|
1033 | 1039 | else: |
|
1034 | 1040 | channelIndexList = [] |
|
1035 | 1041 | for channel in channelList: |
|
1036 | 1042 | if channel not in dataOut.channelList: |
|
1037 | 1043 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
1038 | 1044 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1039 | 1045 | |
|
1040 | 1046 | factor = dataOut.normFactor |
|
1041 | 1047 | |
|
1042 | 1048 | y = dataOut.getHeiRange() |
|
1043 | 1049 | |
|
1044 | 1050 | z = dataOut.data_spc/factor |
|
1045 | 1051 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1046 | 1052 | |
|
1047 | 1053 | hei_index = numpy.arange(25)*3 + 20 |
|
1048 | 1054 | |
|
1049 | 1055 | if xaxis == "frequency": |
|
1050 | 1056 | x = dataOut.getFreqRange()/1000. |
|
1051 | 1057 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1052 | 1058 | xlabel = "Frequency (kHz)" |
|
1053 | 1059 | ylabel = "Power (dB)" |
|
1054 | 1060 | |
|
1055 | 1061 | elif xaxis == "time": |
|
1056 | 1062 | x = dataOut.getAcfRange() |
|
1057 | 1063 | zdB = z[0,:,hei_index] |
|
1058 | 1064 | xlabel = "Time (ms)" |
|
1059 | 1065 | ylabel = "ACF" |
|
1060 | 1066 | |
|
1061 | 1067 | else: |
|
1062 | 1068 | x = dataOut.getVelRange() |
|
1063 | 1069 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1064 | 1070 | xlabel = "Velocity (m/s)" |
|
1065 | 1071 | ylabel = "Power (dB)" |
|
1066 | 1072 | |
|
1067 | 1073 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1068 | 1074 | title = wintitle + " Range Cuts %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1069 | 1075 | |
|
1070 | 1076 | if not self.isConfig: |
|
1071 | 1077 | |
|
1072 | 1078 | nplots = 1 |
|
1073 | 1079 | |
|
1074 | 1080 | self.setup(id=id, |
|
1075 | 1081 | nplots=nplots, |
|
1076 | 1082 | wintitle=wintitle, |
|
1077 | 1083 | show=show) |
|
1078 | 1084 | |
|
1079 | 1085 | if xmin == None: xmin = numpy.nanmin(x)*0.9 |
|
1080 | 1086 | if xmax == None: xmax = numpy.nanmax(x)*1.1 |
|
1081 | 1087 | if ymin == None: ymin = numpy.nanmin(zdB) |
|
1082 | 1088 | if ymax == None: ymax = numpy.nanmax(zdB) |
|
1083 | 1089 | |
|
1084 | 1090 | self.isConfig = True |
|
1085 | 1091 | |
|
1086 | 1092 | self.setWinTitle(title) |
|
1087 | 1093 | |
|
1088 | 1094 | title = "Spectra Cuts: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1089 | 1095 | axes = self.axesList[0] |
|
1090 | 1096 | |
|
1091 | 1097 | legendlabels = ["Range = %dKm" %y[i] for i in hei_index] |
|
1092 | 1098 | |
|
1093 | 1099 | axes.pmultilineyaxis( x, zdB, |
|
1094 | 1100 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1095 | 1101 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
1096 | 1102 | ytick_visible=True, nxticks=5, |
|
1097 | 1103 | grid='x') |
|
1098 | 1104 | |
|
1099 | 1105 | self.draw() |
|
1100 | 1106 | |
|
1101 | 1107 | self.save(figpath=figpath, |
|
1102 | 1108 | figfile=figfile, |
|
1103 | 1109 | save=save, |
|
1104 | 1110 | ftp=ftp, |
|
1105 | 1111 | wr_period=wr_period, |
|
1106 | 1112 | thisDatetime=thisDatetime) |
|
1107 | 1113 | |
|
1108 | 1114 | class Noise(Figure): |
|
1109 | 1115 | |
|
1110 | 1116 | isConfig = None |
|
1111 | 1117 | __nsubplots = None |
|
1112 | 1118 | |
|
1113 | 1119 | PREFIX = 'noise' |
|
1114 | 1120 | |
|
1121 | ||
|
1115 | 1122 | def __init__(self, **kwargs): |
|
1116 | 1123 | Figure.__init__(self, **kwargs) |
|
1117 | 1124 | self.timerange = 24*60*60 |
|
1118 | 1125 | self.isConfig = False |
|
1119 | 1126 | self.__nsubplots = 1 |
|
1120 | 1127 | self.counter_imagwr = 0 |
|
1121 | 1128 | self.WIDTH = 800 |
|
1122 | 1129 | self.HEIGHT = 400 |
|
1123 | 1130 | self.WIDTHPROF = 120 |
|
1124 | 1131 | self.HEIGHTPROF = 0 |
|
1125 | 1132 | self.xdata = None |
|
1126 | 1133 | self.ydata = None |
|
1127 | 1134 | |
|
1128 | 1135 | self.PLOT_CODE = NOISE_CODE |
|
1129 | 1136 | |
|
1130 | 1137 | self.FTP_WEI = None |
|
1131 | 1138 | self.EXP_CODE = None |
|
1132 | 1139 | self.SUB_EXP_CODE = None |
|
1133 | 1140 | self.PLOT_POS = None |
|
1134 | 1141 | self.figfile = None |
|
1135 | 1142 | |
|
1136 | 1143 | self.xmin = None |
|
1137 | 1144 | self.xmax = None |
|
1138 | 1145 | |
|
1139 | 1146 | def getSubplots(self): |
|
1140 | 1147 | |
|
1141 | 1148 | ncol = 1 |
|
1142 | 1149 | nrow = 1 |
|
1143 | 1150 | |
|
1144 | 1151 | return nrow, ncol |
|
1145 | 1152 | |
|
1146 | 1153 | def openfile(self, filename): |
|
1147 | 1154 | dirname = os.path.dirname(filename) |
|
1148 | 1155 | |
|
1149 | 1156 | if not os.path.exists(dirname): |
|
1150 | 1157 | os.mkdir(dirname) |
|
1151 | 1158 | |
|
1152 | 1159 | f = open(filename,'w+') |
|
1153 | 1160 | f.write('\n\n') |
|
1154 | 1161 | f.write('JICAMARCA RADIO OBSERVATORY - Noise \n') |
|
1155 | 1162 | f.write('DD MM YYYY HH MM SS Channel0 Channel1 Channel2 Channel3\n\n' ) |
|
1156 | 1163 | f.close() |
|
1157 | 1164 | |
|
1158 | 1165 | def save_data(self, filename_phase, data, data_datetime): |
|
1159 | 1166 | |
|
1160 | 1167 | f=open(filename_phase,'a') |
|
1161 | 1168 | |
|
1162 | 1169 | timetuple_data = data_datetime.timetuple() |
|
1163 | 1170 | day = str(timetuple_data.tm_mday) |
|
1164 | 1171 | month = str(timetuple_data.tm_mon) |
|
1165 | 1172 | year = str(timetuple_data.tm_year) |
|
1166 | 1173 | hour = str(timetuple_data.tm_hour) |
|
1167 | 1174 | minute = str(timetuple_data.tm_min) |
|
1168 | 1175 | second = str(timetuple_data.tm_sec) |
|
1169 | 1176 | |
|
1170 | 1177 | data_msg = '' |
|
1171 | 1178 | for i in range(len(data)): |
|
1172 | 1179 | data_msg += str(data[i]) + ' ' |
|
1173 | 1180 | |
|
1174 | 1181 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' ' + data_msg + '\n') |
|
1175 | 1182 | f.close() |
|
1176 | 1183 | |
|
1177 | 1184 | |
|
1178 | 1185 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1179 | 1186 | |
|
1180 | 1187 | self.__showprofile = showprofile |
|
1181 | 1188 | self.nplots = nplots |
|
1182 | 1189 | |
|
1183 | 1190 | ncolspan = 7 |
|
1184 | 1191 | colspan = 6 |
|
1185 | 1192 | self.__nsubplots = 2 |
|
1186 | 1193 | |
|
1187 | 1194 | self.createFigure(id = id, |
|
1188 | 1195 | wintitle = wintitle, |
|
1189 | 1196 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1190 | 1197 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1191 | 1198 | show=show) |
|
1192 | 1199 | |
|
1193 | 1200 | nrow, ncol = self.getSubplots() |
|
1194 | 1201 | |
|
1195 | 1202 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1196 | 1203 | |
|
1197 | 1204 | |
|
1198 | 1205 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
1199 | 1206 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1200 | 1207 | timerange=None, |
|
1201 | 1208 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1202 | 1209 | server=None, folder=None, username=None, password=None, |
|
1203 | 1210 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1204 | 1211 | |
|
1205 | 1212 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1206 | 1213 | return |
|
1207 | 1214 | |
|
1208 | 1215 | if channelList == None: |
|
1209 | 1216 | channelIndexList = dataOut.channelIndexList |
|
1210 | 1217 | channelList = dataOut.channelList |
|
1211 | 1218 | else: |
|
1212 | 1219 | channelIndexList = [] |
|
1213 | 1220 | for channel in channelList: |
|
1214 | 1221 | if channel not in dataOut.channelList: |
|
1215 | 1222 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
1216 | 1223 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1217 | 1224 | |
|
1218 | 1225 | x = dataOut.getTimeRange() |
|
1219 | 1226 | #y = dataOut.getHeiRange() |
|
1220 | 1227 | factor = dataOut.normFactor |
|
1221 | 1228 | noise = dataOut.noise[channelIndexList]/factor |
|
1222 | 1229 | noisedB = 10*numpy.log10(noise) |
|
1223 | 1230 | |
|
1224 | 1231 | thisDatetime = dataOut.datatime |
|
1225 | 1232 | |
|
1226 | 1233 | title = wintitle + " Noise" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1227 | 1234 | xlabel = "" |
|
1228 | 1235 | ylabel = "Intensity (dB)" |
|
1229 | 1236 | update_figfile = False |
|
1230 | 1237 | |
|
1231 | 1238 | if not self.isConfig: |
|
1232 | 1239 | |
|
1233 | 1240 | nplots = 1 |
|
1234 | 1241 | |
|
1235 | 1242 | self.setup(id=id, |
|
1236 | 1243 | nplots=nplots, |
|
1237 | 1244 | wintitle=wintitle, |
|
1238 | 1245 | showprofile=showprofile, |
|
1239 | 1246 | show=show) |
|
1240 | 1247 | |
|
1241 | 1248 | if timerange != None: |
|
1242 | 1249 | self.timerange = timerange |
|
1243 | 1250 | |
|
1244 | 1251 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1245 | 1252 | |
|
1246 | 1253 | if ymin == None: ymin = numpy.floor(numpy.nanmin(noisedB)) - 10.0 |
|
1247 | 1254 | if ymax == None: ymax = numpy.nanmax(noisedB) + 10.0 |
|
1248 | 1255 | |
|
1249 | 1256 | self.FTP_WEI = ftp_wei |
|
1250 | 1257 | self.EXP_CODE = exp_code |
|
1251 | 1258 | self.SUB_EXP_CODE = sub_exp_code |
|
1252 | 1259 | self.PLOT_POS = plot_pos |
|
1253 | 1260 | |
|
1254 | 1261 | |
|
1255 | 1262 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1256 | 1263 | self.isConfig = True |
|
1257 | 1264 | self.figfile = figfile |
|
1258 | 1265 | self.xdata = numpy.array([]) |
|
1259 | 1266 | self.ydata = numpy.array([]) |
|
1260 | 1267 | |
|
1261 | 1268 | update_figfile = True |
|
1262 | 1269 | |
|
1263 | 1270 | #open file beacon phase |
|
1264 | 1271 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1265 | 1272 | noise_file = os.path.join(path,'%s.txt'%self.name) |
|
1266 | 1273 | self.filename_noise = os.path.join(figpath,noise_file) |
|
1267 | 1274 | |
|
1268 | 1275 | self.setWinTitle(title) |
|
1269 | 1276 | |
|
1270 | 1277 | title = "Noise %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1271 | 1278 | |
|
1272 | 1279 | legendlabels = ["channel %d"%(idchannel) for idchannel in channelList] |
|
1273 | 1280 | axes = self.axesList[0] |
|
1274 | 1281 | |
|
1275 | 1282 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1276 | 1283 | |
|
1277 | 1284 | if len(self.ydata)==0: |
|
1278 | 1285 | self.ydata = noisedB.reshape(-1,1) |
|
1279 | 1286 | else: |
|
1280 | 1287 | self.ydata = numpy.hstack((self.ydata, noisedB.reshape(-1,1))) |
|
1281 | 1288 | |
|
1282 | 1289 | |
|
1283 | 1290 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1284 | 1291 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1285 | 1292 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1286 | 1293 | XAxisAsTime=True, grid='both' |
|
1287 | 1294 | ) |
|
1288 | 1295 | |
|
1289 | 1296 | self.draw() |
|
1290 | 1297 | |
|
1291 | 1298 | if dataOut.ltctime >= self.xmax: |
|
1292 | 1299 | self.counter_imagwr = wr_period |
|
1293 | 1300 | self.isConfig = False |
|
1294 | 1301 | update_figfile = True |
|
1295 | 1302 | |
|
1296 | 1303 | self.save(figpath=figpath, |
|
1297 | 1304 | figfile=figfile, |
|
1298 | 1305 | save=save, |
|
1299 | 1306 | ftp=ftp, |
|
1300 | 1307 | wr_period=wr_period, |
|
1301 | 1308 | thisDatetime=thisDatetime, |
|
1302 | 1309 | update_figfile=update_figfile) |
|
1303 | 1310 | |
|
1304 | 1311 | #store data beacon phase |
|
1305 | 1312 | if save: |
|
1306 | 1313 | self.save_data(self.filename_noise, noisedB, thisDatetime) |
|
1307 | 1314 | |
|
1308 | 1315 | class BeaconPhase(Figure): |
|
1309 | 1316 | |
|
1310 | 1317 | __isConfig = None |
|
1311 | 1318 | __nsubplots = None |
|
1312 | 1319 | |
|
1313 | 1320 | PREFIX = 'beacon_phase' |
|
1314 | 1321 | |
|
1315 | 1322 | def __init__(self, **kwargs): |
|
1316 | 1323 | Figure.__init__(self, **kwargs) |
|
1317 | 1324 | self.timerange = 24*60*60 |
|
1318 | 1325 | self.isConfig = False |
|
1319 | 1326 | self.__nsubplots = 1 |
|
1320 | 1327 | self.counter_imagwr = 0 |
|
1321 | 1328 | self.WIDTH = 800 |
|
1322 | 1329 | self.HEIGHT = 400 |
|
1323 | 1330 | self.WIDTHPROF = 120 |
|
1324 | 1331 | self.HEIGHTPROF = 0 |
|
1325 | 1332 | self.xdata = None |
|
1326 | 1333 | self.ydata = None |
|
1327 | 1334 | |
|
1328 | 1335 | self.PLOT_CODE = BEACON_CODE |
|
1329 | 1336 | |
|
1330 | 1337 | self.FTP_WEI = None |
|
1331 | 1338 | self.EXP_CODE = None |
|
1332 | 1339 | self.SUB_EXP_CODE = None |
|
1333 | 1340 | self.PLOT_POS = None |
|
1334 | 1341 | |
|
1335 | 1342 | self.filename_phase = None |
|
1336 | 1343 | |
|
1337 | 1344 | self.figfile = None |
|
1338 | 1345 | |
|
1339 | 1346 | self.xmin = None |
|
1340 | 1347 | self.xmax = None |
|
1341 | 1348 | |
|
1342 | 1349 | def getSubplots(self): |
|
1343 | 1350 | |
|
1344 | 1351 | ncol = 1 |
|
1345 | 1352 | nrow = 1 |
|
1346 | 1353 | |
|
1347 | 1354 | return nrow, ncol |
|
1348 | 1355 | |
|
1349 | 1356 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1350 | 1357 | |
|
1351 | 1358 | self.__showprofile = showprofile |
|
1352 | 1359 | self.nplots = nplots |
|
1353 | 1360 | |
|
1354 | 1361 | ncolspan = 7 |
|
1355 | 1362 | colspan = 6 |
|
1356 | 1363 | self.__nsubplots = 2 |
|
1357 | 1364 | |
|
1358 | 1365 | self.createFigure(id = id, |
|
1359 | 1366 | wintitle = wintitle, |
|
1360 | 1367 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1361 | 1368 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1362 | 1369 | show=show) |
|
1363 | 1370 | |
|
1364 | 1371 | nrow, ncol = self.getSubplots() |
|
1365 | 1372 | |
|
1366 | 1373 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1367 | 1374 | |
|
1368 | 1375 | def save_phase(self, filename_phase): |
|
1369 | 1376 | f = open(filename_phase,'w+') |
|
1370 | 1377 | f.write('\n\n') |
|
1371 | 1378 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1372 | 1379 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1373 | 1380 | f.close() |
|
1374 | 1381 | |
|
1375 | 1382 | def save_data(self, filename_phase, data, data_datetime): |
|
1376 | 1383 | f=open(filename_phase,'a') |
|
1377 | 1384 | timetuple_data = data_datetime.timetuple() |
|
1378 | 1385 | day = str(timetuple_data.tm_mday) |
|
1379 | 1386 | month = str(timetuple_data.tm_mon) |
|
1380 | 1387 | year = str(timetuple_data.tm_year) |
|
1381 | 1388 | hour = str(timetuple_data.tm_hour) |
|
1382 | 1389 | minute = str(timetuple_data.tm_min) |
|
1383 | 1390 | second = str(timetuple_data.tm_sec) |
|
1384 | 1391 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1385 | 1392 | f.close() |
|
1386 | 1393 | |
|
1387 | 1394 | |
|
1388 | 1395 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1389 | 1396 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1390 | 1397 | timerange=None, |
|
1391 | 1398 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1392 | 1399 | server=None, folder=None, username=None, password=None, |
|
1393 | 1400 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1394 | 1401 | |
|
1395 | 1402 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1396 | 1403 | return |
|
1397 | 1404 | |
|
1398 | 1405 | if pairsList == None: |
|
1399 | 1406 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1400 | 1407 | else: |
|
1401 | 1408 | pairsIndexList = [] |
|
1402 | 1409 | for pair in pairsList: |
|
1403 | 1410 | if pair not in dataOut.pairsList: |
|
1404 | 1411 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
1405 | 1412 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1406 | 1413 | |
|
1407 | 1414 | if pairsIndexList == []: |
|
1408 | 1415 | return |
|
1409 | 1416 | |
|
1410 | 1417 | # if len(pairsIndexList) > 4: |
|
1411 | 1418 | # pairsIndexList = pairsIndexList[0:4] |
|
1412 | 1419 | |
|
1413 | 1420 | hmin_index = None |
|
1414 | 1421 | hmax_index = None |
|
1415 | 1422 | |
|
1416 | 1423 | if hmin != None and hmax != None: |
|
1417 | 1424 | indexes = numpy.arange(dataOut.nHeights) |
|
1418 | 1425 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1419 | 1426 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1420 | 1427 | |
|
1421 | 1428 | if hmin_list.any(): |
|
1422 | 1429 | hmin_index = hmin_list[0] |
|
1423 | 1430 | |
|
1424 | 1431 | if hmax_list.any(): |
|
1425 | 1432 | hmax_index = hmax_list[-1]+1 |
|
1426 | 1433 | |
|
1427 | 1434 | x = dataOut.getTimeRange() |
|
1428 | 1435 | #y = dataOut.getHeiRange() |
|
1429 | 1436 | |
|
1430 | 1437 | |
|
1431 | 1438 | thisDatetime = dataOut.datatime |
|
1432 | 1439 | |
|
1433 | 1440 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1434 | 1441 | xlabel = "Local Time" |
|
1435 | 1442 | ylabel = "Phase (degrees)" |
|
1436 | 1443 | |
|
1437 | 1444 | update_figfile = False |
|
1438 | 1445 | |
|
1439 | 1446 | nplots = len(pairsIndexList) |
|
1440 | 1447 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1441 | 1448 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1442 | 1449 | for i in range(nplots): |
|
1443 | 1450 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1444 | 1451 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1445 | 1452 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1446 | 1453 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1447 | 1454 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1448 | 1455 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1449 | 1456 | |
|
1450 | 1457 | #print "Phase %d%d" %(pair[0], pair[1]) |
|
1451 | 1458 | #print phase[dataOut.beacon_heiIndexList] |
|
1452 | 1459 | |
|
1453 | 1460 | if dataOut.beacon_heiIndexList: |
|
1454 | 1461 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1455 | 1462 | else: |
|
1456 | 1463 | phase_beacon[i] = numpy.average(phase) |
|
1457 | 1464 | |
|
1458 | 1465 | if not self.isConfig: |
|
1459 | 1466 | |
|
1460 | 1467 | nplots = len(pairsIndexList) |
|
1461 | 1468 | |
|
1462 | 1469 | self.setup(id=id, |
|
1463 | 1470 | nplots=nplots, |
|
1464 | 1471 | wintitle=wintitle, |
|
1465 | 1472 | showprofile=showprofile, |
|
1466 | 1473 | show=show) |
|
1467 | 1474 | |
|
1468 | 1475 | if timerange != None: |
|
1469 | 1476 | self.timerange = timerange |
|
1470 | 1477 | |
|
1471 | 1478 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1472 | 1479 | |
|
1473 | 1480 | if ymin == None: ymin = 0 |
|
1474 | 1481 | if ymax == None: ymax = 360 |
|
1475 | 1482 | |
|
1476 | 1483 | self.FTP_WEI = ftp_wei |
|
1477 | 1484 | self.EXP_CODE = exp_code |
|
1478 | 1485 | self.SUB_EXP_CODE = sub_exp_code |
|
1479 | 1486 | self.PLOT_POS = plot_pos |
|
1480 | 1487 | |
|
1481 | 1488 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1482 | 1489 | self.isConfig = True |
|
1483 | 1490 | self.figfile = figfile |
|
1484 | 1491 | self.xdata = numpy.array([]) |
|
1485 | 1492 | self.ydata = numpy.array([]) |
|
1486 | 1493 | |
|
1487 | 1494 | update_figfile = True |
|
1488 | 1495 | |
|
1489 | 1496 | #open file beacon phase |
|
1490 | 1497 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1491 | 1498 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1492 | 1499 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1493 | 1500 | #self.save_phase(self.filename_phase) |
|
1494 | 1501 | |
|
1495 | 1502 | |
|
1496 | 1503 | #store data beacon phase |
|
1497 | 1504 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1498 | 1505 | |
|
1499 | 1506 | self.setWinTitle(title) |
|
1500 | 1507 | |
|
1501 | 1508 | |
|
1502 | 1509 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1503 | 1510 | |
|
1504 | 1511 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1505 | 1512 | |
|
1506 | 1513 | axes = self.axesList[0] |
|
1507 | 1514 | |
|
1508 | 1515 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1509 | 1516 | |
|
1510 | 1517 | if len(self.ydata)==0: |
|
1511 | 1518 | self.ydata = phase_beacon.reshape(-1,1) |
|
1512 | 1519 | else: |
|
1513 | 1520 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1514 | 1521 | |
|
1515 | 1522 | |
|
1516 | 1523 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1517 | 1524 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1518 | 1525 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1519 | 1526 | XAxisAsTime=True, grid='both' |
|
1520 | 1527 | ) |
|
1521 | 1528 | |
|
1522 | 1529 | self.draw() |
|
1523 | 1530 | |
|
1524 | 1531 | if dataOut.ltctime >= self.xmax: |
|
1525 | 1532 | self.counter_imagwr = wr_period |
|
1526 | 1533 | self.isConfig = False |
|
1527 | 1534 | update_figfile = True |
|
1528 | 1535 | |
|
1529 | 1536 | self.save(figpath=figpath, |
|
1530 | 1537 | figfile=figfile, |
|
1531 | 1538 | save=save, |
|
1532 | 1539 | ftp=ftp, |
|
1533 | 1540 | wr_period=wr_period, |
|
1534 | 1541 | thisDatetime=thisDatetime, |
|
1535 | 1542 | update_figfile=update_figfile) |
@@ -1,14 +1,20 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JRODataIO.py 169 2012-11-19 21:57:03Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | from jroIO_voltage import * |
|
8 | 8 | from jroIO_spectra import * |
|
9 | 9 | from jroIO_heispectra import * |
|
10 | 10 | from jroIO_usrp import * |
|
11 | 11 | from jroIO_digitalRF import * |
|
12 | 12 | from jroIO_kamisr import * |
|
13 | 13 | from jroIO_param import * |
|
14 | 14 | from jroIO_hf import * |
|
15 | ||
|
16 | from jroIO_madrigal import * | |
|
17 | ||
|
18 | from bltrIO_param import * | |
|
19 | from jroIO_bltr import * | |
|
20 | from jroIO_mira35c import * |
@@ -1,1795 +1,1834 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 2, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | ''' |
|
6 | 6 | import os |
|
7 | 7 | import sys |
|
8 | 8 | import glob |
|
9 | 9 | import time |
|
10 | 10 | import numpy |
|
11 | 11 | import fnmatch |
|
12 | 12 | import inspect |
|
13 |
import time |
|
|
13 | import time | |
|
14 | import datetime | |
|
14 | 15 | import traceback |
|
15 | 16 | import zmq |
|
16 | 17 | |
|
17 | 18 | try: |
|
18 | 19 | from gevent import sleep |
|
19 | 20 | except: |
|
20 | 21 | from time import sleep |
|
21 | 22 | |
|
22 | 23 | from schainpy.model.data.jroheaderIO import PROCFLAG, BasicHeader, SystemHeader, RadarControllerHeader, ProcessingHeader |
|
23 | 24 | from schainpy.model.data.jroheaderIO import get_dtype_index, get_numpy_dtype, get_procflag_dtype, get_dtype_width |
|
24 | 25 | |
|
25 | 26 | LOCALTIME = True |
|
26 | 27 | |
|
28 | ||
|
27 | 29 | def isNumber(cad): |
|
28 | 30 | """ |
|
29 | 31 | Chequea si el conjunto de caracteres que componen un string puede ser convertidos a un numero. |
|
30 | 32 | |
|
31 | 33 | Excepciones: |
|
32 | 34 | Si un determinado string no puede ser convertido a numero |
|
33 | 35 | Input: |
|
34 | 36 | str, string al cual se le analiza para determinar si convertible a un numero o no |
|
35 | 37 | |
|
36 | 38 | Return: |
|
37 | 39 | True : si el string es uno numerico |
|
38 | 40 | False : no es un string numerico |
|
39 | 41 | """ |
|
40 | 42 | try: |
|
41 | 43 |
float( |
|
42 | 44 | return True |
|
43 | 45 | except: |
|
44 | 46 | return False |
|
45 | 47 | |
|
48 | ||
|
46 | 49 | def isFileInEpoch(filename, startUTSeconds, endUTSeconds): |
|
47 | 50 | """ |
|
48 | 51 | Esta funcion determina si un archivo de datos se encuentra o no dentro del rango de fecha especificado. |
|
49 | 52 | |
|
50 | 53 | Inputs: |
|
51 | 54 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) |
|
52 | 55 | |
|
53 | 56 | startUTSeconds : fecha inicial del rango seleccionado. La fecha esta dada en |
|
54 | 57 | segundos contados desde 01/01/1970. |
|
55 | 58 | endUTSeconds : fecha final del rango seleccionado. La fecha esta dada en |
|
56 | 59 | segundos contados desde 01/01/1970. |
|
57 | 60 | |
|
58 | 61 | Return: |
|
59 | 62 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de |
|
60 | 63 | fecha especificado, de lo contrario retorna False. |
|
61 | 64 | |
|
62 | 65 | Excepciones: |
|
63 | 66 | Si el archivo no existe o no puede ser abierto |
|
64 | 67 | Si la cabecera no puede ser leida. |
|
65 | 68 | |
|
66 | 69 | """ |
|
67 | 70 | basicHeaderObj = BasicHeader(LOCALTIME) |
|
68 | 71 | |
|
69 | 72 | try: |
|
70 | 73 | fp = open(filename,'rb') |
|
71 | 74 | except IOError: |
|
72 | 75 | print "The file %s can't be opened" %(filename) |
|
73 | 76 | return 0 |
|
74 | 77 | |
|
75 | 78 | sts = basicHeaderObj.read(fp) |
|
76 | 79 | fp.close() |
|
77 | 80 | |
|
78 | 81 | if not(sts): |
|
79 | 82 | print "Skipping the file %s because it has not a valid header" %(filename) |
|
80 | 83 | return 0 |
|
81 | 84 | |
|
82 | 85 | if not ((startUTSeconds <= basicHeaderObj.utc) and (endUTSeconds > basicHeaderObj.utc)): |
|
83 | 86 | return 0 |
|
84 | 87 | |
|
85 | 88 | return 1 |
|
86 | 89 | |
|
90 | ||
|
87 | 91 | def isTimeInRange(thisTime, startTime, endTime): |
|
88 | 92 | |
|
89 | 93 | if endTime >= startTime: |
|
90 | 94 | if (thisTime < startTime) or (thisTime > endTime): |
|
91 | 95 | return 0 |
|
92 | 96 | |
|
93 | 97 | return 1 |
|
94 | 98 | else: |
|
95 | 99 | if (thisTime < startTime) and (thisTime > endTime): |
|
96 | 100 | return 0 |
|
97 | 101 | |
|
98 | 102 | return 1 |
|
99 | 103 | |
|
104 | ||
|
100 | 105 | def isFileInTimeRange(filename, startDate, endDate, startTime, endTime): |
|
101 | 106 | """ |
|
102 | 107 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. |
|
103 | 108 | |
|
104 | 109 | Inputs: |
|
105 | 110 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) |
|
106 | 111 | |
|
107 | 112 | startDate : fecha inicial del rango seleccionado en formato datetime.date |
|
108 | 113 | |
|
109 | 114 | endDate : fecha final del rango seleccionado en formato datetime.date |
|
110 | 115 | |
|
111 | 116 | startTime : tiempo inicial del rango seleccionado en formato datetime.time |
|
112 | 117 | |
|
113 | 118 | endTime : tiempo final del rango seleccionado en formato datetime.time |
|
114 | 119 | |
|
115 | 120 | Return: |
|
116 | 121 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de |
|
117 | 122 | fecha especificado, de lo contrario retorna False. |
|
118 | 123 | |
|
119 | 124 | Excepciones: |
|
120 | 125 | Si el archivo no existe o no puede ser abierto |
|
121 | 126 | Si la cabecera no puede ser leida. |
|
122 | 127 | |
|
123 | 128 | """ |
|
124 | 129 | |
|
125 | ||
|
126 | 130 | try: |
|
127 | 131 | fp = open(filename,'rb') |
|
128 | 132 | except IOError: |
|
129 | 133 | print "The file %s can't be opened" %(filename) |
|
130 | 134 | return None |
|
131 | 135 | |
|
132 | 136 | firstBasicHeaderObj = BasicHeader(LOCALTIME) |
|
133 | 137 | systemHeaderObj = SystemHeader() |
|
134 | 138 | radarControllerHeaderObj = RadarControllerHeader() |
|
135 | 139 | processingHeaderObj = ProcessingHeader() |
|
136 | 140 | |
|
137 | 141 | lastBasicHeaderObj = BasicHeader(LOCALTIME) |
|
138 | 142 | |
|
139 | 143 | sts = firstBasicHeaderObj.read(fp) |
|
140 | 144 | |
|
141 | 145 | if not(sts): |
|
142 | 146 | print "[Reading] Skipping the file %s because it has not a valid header" %(filename) |
|
143 | 147 | return None |
|
144 | 148 | |
|
145 | 149 | if not systemHeaderObj.read(fp): |
|
146 | 150 | return None |
|
147 | 151 | |
|
148 | 152 | if not radarControllerHeaderObj.read(fp): |
|
149 | 153 | return None |
|
150 | 154 | |
|
151 | 155 | if not processingHeaderObj.read(fp): |
|
152 | 156 | return None |
|
153 | 157 | |
|
154 | 158 | filesize = os.path.getsize(filename) |
|
155 | 159 | |
|
156 | 160 | offset = processingHeaderObj.blockSize + 24 #header size |
|
157 | 161 | |
|
158 | 162 | if filesize <= offset: |
|
159 | 163 | print "[Reading] %s: This file has not enough data" %filename |
|
160 | 164 | return None |
|
161 | 165 | |
|
162 | 166 | fp.seek(-offset, 2) |
|
163 | 167 | |
|
164 | 168 | sts = lastBasicHeaderObj.read(fp) |
|
165 | 169 | |
|
166 | 170 | fp.close() |
|
167 | 171 | |
|
168 | 172 | thisDatetime = lastBasicHeaderObj.datatime |
|
169 | 173 | thisTime_last_block = thisDatetime.time() |
|
170 | 174 | |
|
171 | 175 | thisDatetime = firstBasicHeaderObj.datatime |
|
172 | 176 | thisDate = thisDatetime.date() |
|
173 | 177 | thisTime_first_block = thisDatetime.time() |
|
174 | 178 | |
|
175 | 179 | #General case |
|
176 | 180 | # o>>>>>>>>>>>>>><<<<<<<<<<<<<<o |
|
177 | 181 | #-----------o----------------------------o----------- |
|
178 | 182 | # startTime endTime |
|
179 | 183 | |
|
180 | 184 | if endTime >= startTime: |
|
181 | 185 | if (thisTime_last_block < startTime) or (thisTime_first_block > endTime): |
|
182 | 186 | return None |
|
183 | 187 | |
|
184 | 188 | return thisDatetime |
|
185 | 189 | |
|
186 | 190 | #If endTime < startTime then endTime belongs to the next day |
|
187 | 191 | |
|
188 | ||
|
189 | 192 | #<<<<<<<<<<<o o>>>>>>>>>>> |
|
190 | 193 | #-----------o----------------------------o----------- |
|
191 | 194 | # endTime startTime |
|
192 | 195 | |
|
193 | 196 | if (thisDate == startDate) and (thisTime_last_block < startTime): |
|
194 | 197 | return None |
|
195 | 198 | |
|
196 | 199 | if (thisDate == endDate) and (thisTime_first_block > endTime): |
|
197 | 200 | return None |
|
198 | 201 | |
|
199 | 202 | if (thisTime_last_block < startTime) and (thisTime_first_block > endTime): |
|
200 | 203 | return None |
|
201 | 204 | |
|
202 | 205 | return thisDatetime |
|
203 | 206 | |
|
207 | ||
|
204 | 208 | def isFolderInDateRange(folder, startDate=None, endDate=None): |
|
205 | 209 | """ |
|
206 | 210 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. |
|
207 | 211 | |
|
208 | 212 | Inputs: |
|
209 | 213 | folder : nombre completo del directorio. |
|
210 | 214 | Su formato deberia ser "/path_root/?YYYYDDD" |
|
211 | 215 | |
|
212 | 216 | siendo: |
|
213 | 217 | YYYY : Anio (ejemplo 2015) |
|
214 | 218 | DDD : Dia del anio (ejemplo 305) |
|
215 | 219 | |
|
216 | 220 | startDate : fecha inicial del rango seleccionado en formato datetime.date |
|
217 | 221 | |
|
218 | 222 | endDate : fecha final del rango seleccionado en formato datetime.date |
|
219 | 223 | |
|
220 | 224 | Return: |
|
221 | 225 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de |
|
222 | 226 | fecha especificado, de lo contrario retorna False. |
|
223 | 227 | Excepciones: |
|
224 | 228 | Si el directorio no tiene el formato adecuado |
|
225 | 229 | """ |
|
226 | 230 | |
|
227 | 231 | basename = os.path.basename(folder) |
|
228 | 232 | |
|
229 | 233 | if not isRadarFolder(basename): |
|
230 | 234 | print "The folder %s has not the rigth format" %folder |
|
231 | 235 | return 0 |
|
232 | 236 | |
|
233 | 237 | if startDate and endDate: |
|
234 | 238 | thisDate = getDateFromRadarFolder(basename) |
|
235 | 239 | |
|
236 | 240 | if thisDate < startDate: |
|
237 | 241 | return 0 |
|
238 | 242 | |
|
239 | 243 | if thisDate > endDate: |
|
240 | 244 | return 0 |
|
241 | 245 | |
|
242 | 246 | return 1 |
|
243 | 247 | |
|
248 | ||
|
244 | 249 | def isFileInDateRange(filename, startDate=None, endDate=None): |
|
245 | 250 | """ |
|
246 | 251 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. |
|
247 | 252 | |
|
248 | 253 | Inputs: |
|
249 | 254 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) |
|
250 | 255 | |
|
251 | 256 | Su formato deberia ser "?YYYYDDDsss" |
|
252 | 257 | |
|
253 | 258 | siendo: |
|
254 | 259 | YYYY : Anio (ejemplo 2015) |
|
255 | 260 | DDD : Dia del anio (ejemplo 305) |
|
256 | 261 | sss : set |
|
257 | 262 | |
|
258 | 263 | startDate : fecha inicial del rango seleccionado en formato datetime.date |
|
259 | 264 | |
|
260 | 265 | endDate : fecha final del rango seleccionado en formato datetime.date |
|
261 | 266 | |
|
262 | 267 | Return: |
|
263 | 268 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de |
|
264 | 269 | fecha especificado, de lo contrario retorna False. |
|
265 | 270 | Excepciones: |
|
266 | 271 | Si el archivo no tiene el formato adecuado |
|
267 | 272 | """ |
|
268 | 273 | |
|
269 | 274 | basename = os.path.basename(filename) |
|
270 | 275 | |
|
271 | 276 | if not isRadarFile(basename): |
|
272 | 277 | print "The filename %s has not the rigth format" %filename |
|
273 | 278 | return 0 |
|
274 | 279 | |
|
275 | 280 | if startDate and endDate: |
|
276 | 281 | thisDate = getDateFromRadarFile(basename) |
|
277 | 282 | |
|
278 | 283 | if thisDate < startDate: |
|
279 | 284 | return 0 |
|
280 | 285 | |
|
281 | 286 | if thisDate > endDate: |
|
282 | 287 | return 0 |
|
283 | 288 | |
|
284 | 289 | return 1 |
|
285 | 290 | |
|
291 | ||
|
286 | 292 | def getFileFromSet(path, ext, set): |
|
287 | 293 | validFilelist = [] |
|
288 | 294 | fileList = os.listdir(path) |
|
289 | 295 | |
|
290 | 296 | # 0 1234 567 89A BCDE |
|
291 | 297 | # H YYYY DDD SSS .ext |
|
292 | 298 | |
|
293 | 299 | for thisFile in fileList: |
|
294 | 300 | try: |
|
295 | 301 | year = int(thisFile[1:5]) |
|
296 | 302 |
doy |
|
297 | 303 | except: |
|
298 | 304 | continue |
|
299 | 305 | |
|
300 | 306 | if (os.path.splitext(thisFile)[-1].lower() != ext.lower()): |
|
301 | 307 | continue |
|
302 | 308 | |
|
303 | 309 | validFilelist.append(thisFile) |
|
304 | 310 | |
|
305 | myfile = fnmatch.filter(validFilelist,'*%4.4d%3.3d%3.3d*'%(year,doy,set)) | |
|
311 | myfile = fnmatch.filter( | |
|
312 | validFilelist, '*%4.4d%3.3d%3.3d*' % (year, doy, set)) | |
|
306 | 313 | |
|
307 | 314 | if len(myfile)!= 0: |
|
308 | 315 | return myfile[0] |
|
309 | 316 | else: |
|
310 | 317 | filename = '*%4.4d%3.3d%3.3d%s'%(year,doy,set,ext.lower()) |
|
311 | 318 | print 'the filename %s does not exist'%filename |
|
312 | 319 | print '...going to the last file: ' |
|
313 | 320 | |
|
314 | 321 | if validFilelist: |
|
315 | 322 |
validFilelist = sorted( |
|
316 | 323 | return validFilelist[-1] |
|
317 | 324 | |
|
318 | 325 | return None |
|
319 | 326 | |
|
327 | ||
|
320 | 328 | def getlastFileFromPath(path, ext): |
|
321 | 329 | """ |
|
322 | 330 | Depura el fileList dejando solo los que cumplan el formato de "PYYYYDDDSSS.ext" |
|
323 | 331 | al final de la depuracion devuelve el ultimo file de la lista que quedo. |
|
324 | 332 | |
|
325 | 333 | Input: |
|
326 | 334 | fileList : lista conteniendo todos los files (sin path) que componen una determinada carpeta |
|
327 | 335 | ext : extension de los files contenidos en una carpeta |
|
328 | 336 | |
|
329 | 337 | Return: |
|
330 | 338 | El ultimo file de una determinada carpeta, no se considera el path. |
|
331 | 339 | """ |
|
332 | 340 | validFilelist = [] |
|
333 | 341 | fileList = os.listdir(path) |
|
334 | 342 | |
|
335 | 343 | # 0 1234 567 89A BCDE |
|
336 | 344 | # H YYYY DDD SSS .ext |
|
337 | 345 | |
|
338 | 346 | for thisFile in fileList: |
|
339 | 347 | |
|
340 | 348 | year = thisFile[1:5] |
|
341 | 349 | if not isNumber(year): |
|
342 | 350 | continue |
|
343 | 351 | |
|
344 | 352 | doy = thisFile[5:8] |
|
345 | 353 | if not isNumber(doy): |
|
346 | 354 | continue |
|
347 | 355 | |
|
348 | 356 | year = int(year) |
|
349 | 357 | doy = int(doy) |
|
350 | 358 | |
|
351 | 359 | if (os.path.splitext(thisFile)[-1].lower() != ext.lower()): |
|
352 | 360 | continue |
|
353 | 361 | |
|
354 | 362 | validFilelist.append(thisFile) |
|
355 | 363 | |
|
356 | 364 | if validFilelist: |
|
357 | 365 |
validFilelist = sorted( |
|
358 | 366 | return validFilelist[-1] |
|
359 | 367 | |
|
360 | 368 | return None |
|
361 | 369 | |
|
370 | ||
|
362 | 371 | def checkForRealPath(path, foldercounter, year, doy, set, ext): |
|
363 | 372 | """ |
|
364 | 373 | Por ser Linux Case Sensitive entonces checkForRealPath encuentra el nombre correcto de un path, |
|
365 | 374 | Prueba por varias combinaciones de nombres entre mayusculas y minusculas para determinar |
|
366 | 375 | el path exacto de un determinado file. |
|
367 | 376 | |
|
368 | 377 | Example : |
|
369 | 378 | nombre correcto del file es .../.../D2009307/P2009307367.ext |
|
370 | 379 | |
|
371 | 380 | Entonces la funcion prueba con las siguientes combinaciones |
|
372 | 381 | .../.../y2009307367.ext |
|
373 | 382 | .../.../Y2009307367.ext |
|
374 | 383 | .../.../x2009307/y2009307367.ext |
|
375 | 384 | .../.../x2009307/Y2009307367.ext |
|
376 | 385 | .../.../X2009307/y2009307367.ext |
|
377 | 386 | .../.../X2009307/Y2009307367.ext |
|
378 | 387 | siendo para este caso, la ultima combinacion de letras, identica al file buscado |
|
379 | 388 | |
|
380 | 389 | Return: |
|
381 | 390 | Si encuentra la cobinacion adecuada devuelve el path completo y el nombre del file |
|
382 | 391 | caso contrario devuelve None como path y el la ultima combinacion de nombre en mayusculas |
|
383 | 392 | para el filename |
|
384 | 393 | """ |
|
385 | 394 | fullfilename = None |
|
386 | 395 | find_flag = False |
|
387 | 396 | filename = None |
|
388 | 397 | |
|
389 | 398 | prefixDirList = [None,'d','D'] |
|
390 | 399 | if ext.lower() == ".r": #voltage |
|
391 | 400 | prefixFileList = ['d','D'] |
|
392 | 401 | elif ext.lower() == ".pdata": #spectra |
|
393 | 402 | prefixFileList = ['p','P'] |
|
394 | 403 | else: |
|
395 | 404 | return None, filename |
|
396 | 405 | |
|
397 | 406 | #barrido por las combinaciones posibles |
|
398 | 407 | for prefixDir in prefixDirList: |
|
399 | 408 | thispath = path |
|
400 | 409 | if prefixDir != None: |
|
401 | 410 | #formo el nombre del directorio xYYYYDDD (x=d o x=D) |
|
402 | 411 | if foldercounter == 0: |
|
403 |
thispath = os.path.join(path, "%s%04d%03d" % |
|
|
412 | thispath = os.path.join(path, "%s%04d%03d" % | |
|
413 | (prefixDir, year, doy)) | |
|
404 | 414 | else: |
|
405 |
thispath = os.path.join(path, "%s%04d%03d_%02d" % ( |
|
|
415 | thispath = os.path.join(path, "%s%04d%03d_%02d" % ( | |
|
416 | prefixDir, year, doy, foldercounter)) | |
|
406 | 417 | for prefixFile in prefixFileList: #barrido por las dos combinaciones posibles de "D" |
|
407 |
|
|
|
408 | fullfilename = os.path.join( thispath, filename ) #formo el path completo | |
|
418 | # formo el nombre del file xYYYYDDDSSS.ext | |
|
419 | filename = "%s%04d%03d%03d%s" % (prefixFile, year, doy, set, ext) | |
|
420 | fullfilename = os.path.join( | |
|
421 | thispath, filename) # formo el path completo | |
|
409 | 422 | |
|
410 | 423 |
if os.path.exists( |
|
411 | 424 | find_flag = True |
|
412 | 425 | break |
|
413 | 426 | if find_flag: |
|
414 | 427 | break |
|
415 | 428 | |
|
416 | 429 | if not(find_flag): |
|
417 | 430 | return None, filename |
|
418 | 431 | |
|
419 | 432 | return fullfilename, filename |
|
420 | 433 | |
|
434 | ||
|
421 | 435 | def isRadarFolder(folder): |
|
422 | 436 | try: |
|
423 | 437 | year = int(folder[1:5]) |
|
424 | 438 | doy = int(folder[5:8]) |
|
425 | 439 | except: |
|
426 | 440 | return 0 |
|
427 | 441 | |
|
428 | 442 | return 1 |
|
429 | 443 | |
|
444 | ||
|
430 | 445 | def isRadarFile(file): |
|
431 | 446 |
|
|
432 | 447 |
|
|
433 | 448 |
|
|
434 | 449 |
|
|
435 | 450 |
|
|
436 | 451 |
|
|
437 | 452 | |
|
438 | 453 |
|
|
439 | 454 | |
|
455 | ||
|
440 | 456 | def getDateFromRadarFile(file): |
|
441 | 457 | try: |
|
442 | 458 | year = int(file[1:5]) |
|
443 | 459 | doy = int(file[5:8]) |
|
444 | 460 | set = int(file[8:11]) |
|
445 | 461 | except: |
|
446 | 462 | return None |
|
447 | 463 | |
|
448 | 464 | thisDate = datetime.date(year, 1, 1) + datetime.timedelta(doy-1) |
|
449 | 465 | return thisDate |
|
450 | 466 | |
|
467 | ||
|
451 | 468 | def getDateFromRadarFolder(folder): |
|
452 | 469 | try: |
|
453 | 470 | year = int(folder[1:5]) |
|
454 | 471 | doy = int(folder[5:8]) |
|
455 | 472 | except: |
|
456 | 473 | return None |
|
457 | 474 | |
|
458 | 475 | thisDate = datetime.date(year, 1, 1) + datetime.timedelta(doy-1) |
|
459 | 476 | return thisDate |
|
460 | 477 | |
|
478 | ||
|
461 | 479 | class JRODataIO: |
|
462 | 480 | |
|
463 | 481 | c = 3E8 |
|
464 | 482 | |
|
465 | 483 | isConfig = False |
|
466 | 484 | |
|
467 | 485 | basicHeaderObj = None |
|
468 | 486 | |
|
469 | 487 | systemHeaderObj = None |
|
470 | 488 | |
|
471 | 489 | radarControllerHeaderObj = None |
|
472 | 490 | |
|
473 | 491 | processingHeaderObj = None |
|
474 | 492 | |
|
475 | 493 | dtype = None |
|
476 | 494 | |
|
477 | 495 | pathList = [] |
|
478 | 496 | |
|
479 | 497 | filenameList = [] |
|
480 | 498 | |
|
481 | 499 | filename = None |
|
482 | 500 | |
|
483 | 501 | ext = None |
|
484 | 502 | |
|
485 | 503 | flagIsNewFile = 1 |
|
486 | 504 | |
|
487 | 505 | flagDiscontinuousBlock = 0 |
|
488 | 506 | |
|
489 | 507 | flagIsNewBlock = 0 |
|
490 | 508 | |
|
491 | 509 | fp = None |
|
492 | 510 | |
|
493 | 511 | firstHeaderSize = 0 |
|
494 | 512 | |
|
495 | 513 | basicHeaderSize = 24 |
|
496 | 514 | |
|
497 | 515 | versionFile = 1103 |
|
498 | 516 | |
|
499 | 517 | fileSize = None |
|
500 | 518 | |
|
501 | 519 | # ippSeconds = None |
|
502 | 520 | |
|
503 | 521 | fileSizeByHeader = None |
|
504 | 522 | |
|
505 | 523 | fileIndex = None |
|
506 | 524 | |
|
507 | 525 | profileIndex = None |
|
508 | 526 | |
|
509 | 527 | blockIndex = None |
|
510 | 528 | |
|
511 | 529 | nTotalBlocks = None |
|
512 | 530 | |
|
513 | 531 | maxTimeStep = 30 |
|
514 | 532 | |
|
515 | 533 | lastUTTime = None |
|
516 | 534 | |
|
517 | 535 | datablock = None |
|
518 | 536 | |
|
519 | 537 | dataOut = None |
|
520 | 538 | |
|
521 | 539 | blocksize = None |
|
522 | 540 | |
|
523 | 541 | getByBlock = False |
|
524 | 542 | |
|
525 | 543 | def __init__(self): |
|
526 | 544 | |
|
527 | 545 | raise NotImplementedError |
|
528 | 546 | |
|
529 | 547 | def run(self): |
|
530 | 548 | |
|
531 | 549 | raise NotImplementedError |
|
532 | 550 | |
|
533 | 551 | def getDtypeWidth(self): |
|
534 | 552 | |
|
535 | 553 | dtype_index = get_dtype_index(self.dtype) |
|
536 | 554 | dtype_width = get_dtype_width(dtype_index) |
|
537 | 555 | |
|
538 | 556 | return dtype_width |
|
539 | 557 | |
|
540 | 558 | def getAllowedArgs(self): |
|
541 | 559 | return inspect.getargspec(self.run).args |
|
542 | 560 | |
|
561 | ||
|
543 | 562 | class JRODataReader(JRODataIO): |
|
544 | 563 | |
|
545 | 564 | online = 0 |
|
546 | 565 | |
|
547 | 566 | realtime = 0 |
|
548 | 567 | |
|
549 | 568 | nReadBlocks = 0 |
|
550 | 569 | |
|
551 | 570 |
delay |
|
552 | 571 | |
|
553 | 572 |
nTries |
|
554 | 573 | |
|
555 | 574 |
nFiles = 3 |
|
556 | 575 | |
|
557 | 576 | path = None |
|
558 | 577 | |
|
559 | 578 | foldercounter = 0 |
|
560 | 579 | |
|
561 | 580 | flagNoMoreFiles = 0 |
|
562 | 581 | |
|
563 | 582 | datetimeList = [] |
|
564 | 583 | |
|
565 | 584 | __isFirstTimeOnline = 1 |
|
566 | 585 | |
|
567 | 586 | __printInfo = True |
|
568 | 587 | |
|
569 | 588 | profileIndex = None |
|
570 | 589 | |
|
571 | 590 | nTxs = 1 |
|
572 | 591 | |
|
573 | 592 | txIndex = None |
|
574 | 593 | |
|
575 | 594 | #Added-------------------- |
|
576 | 595 | |
|
577 | 596 | selBlocksize = None |
|
578 | 597 | |
|
579 | 598 | selBlocktime = None |
|
580 | 599 | |
|
581 | 600 | def __init__(self): |
|
582 | ||
|
583 | 601 | """ |
|
584 | 602 | This class is used to find data files |
|
585 | 603 | |
|
586 | 604 | Example: |
|
587 | 605 | reader = JRODataReader() |
|
588 | 606 | fileList = reader.findDataFiles() |
|
589 | 607 | |
|
590 | 608 | """ |
|
591 | 609 | pass |
|
592 | 610 | |
|
593 | ||
|
594 | 611 | def createObjByDefault(self): |
|
595 | 612 | """ |
|
596 | 613 | |
|
597 | 614 | """ |
|
598 | 615 | raise NotImplementedError |
|
599 | 616 | |
|
600 | 617 | def getBlockDimension(self): |
|
601 | 618 | |
|
602 | 619 | raise NotImplementedError |
|
603 | 620 | |
|
604 | 621 | def searchFilesOffLine(self, |
|
605 | 622 | path, |
|
606 | 623 | startDate=None, |
|
607 | 624 | endDate=None, |
|
608 | 625 | startTime=datetime.time(0,0,0), |
|
609 | 626 | endTime=datetime.time(23,59,59), |
|
610 | 627 | set=None, |
|
611 | 628 | expLabel='', |
|
612 | 629 | ext='.r', |
|
613 | 630 | cursor=None, |
|
614 | 631 | skip=None, |
|
615 | 632 | walk=True): |
|
616 | 633 | |
|
617 | 634 | self.filenameList = [] |
|
618 | 635 | self.datetimeList = [] |
|
619 | 636 | |
|
620 | 637 | pathList = [] |
|
621 | 638 | |
|
622 | dateList, pathList = self.findDatafiles(path, startDate, endDate, expLabel, ext, walk, include_path=True) | |
|
639 | dateList, pathList = self.findDatafiles( | |
|
640 | path, startDate, endDate, expLabel, ext, walk, include_path=True) | |
|
623 | 641 | |
|
624 | 642 | if dateList == []: |
|
625 | 643 | return [], [] |
|
626 | 644 | |
|
627 | 645 | if len(dateList) > 1: |
|
628 | 646 | print "[Reading] Data found for date range [%s - %s]: total days = %d" %(startDate, endDate, len(dateList)) |
|
629 | 647 | else: |
|
630 | 648 | print "[Reading] Data found for date range [%s - %s]: date = %s" %(startDate, endDate, dateList[0]) |
|
631 | 649 | |
|
632 | 650 | filenameList = [] |
|
633 | 651 | datetimeList = [] |
|
634 | 652 | |
|
635 | 653 | for thisPath in pathList: |
|
636 | 654 | |
|
637 | 655 | fileList = glob.glob1(thisPath, "*%s" %ext) |
|
638 | 656 | fileList.sort() |
|
639 | 657 | |
|
640 | 658 | skippedFileList = [] |
|
641 | 659 | |
|
642 | 660 | if cursor is not None and skip is not None: |
|
643 | 661 | |
|
644 | 662 | if skip == 0: |
|
645 | 663 | skippedFileList = [] |
|
646 | 664 | else: |
|
647 |
skippedFileList = fileList[cursor* |
|
|
665 | skippedFileList = fileList[cursor * | |
|
666 | skip: cursor * skip + skip] | |
|
648 | 667 | |
|
649 | 668 | else: |
|
650 | 669 | skippedFileList = fileList |
|
651 | 670 | |
|
652 | 671 | for file in skippedFileList: |
|
653 | 672 | |
|
654 | 673 | filename = os.path.join(thisPath,file) |
|
655 | 674 | |
|
656 | 675 | if not isFileInDateRange(filename, startDate, endDate): |
|
657 | 676 | continue |
|
658 | 677 | |
|
659 |
thisDatetime = isFileInTimeRange( |
|
|
678 | thisDatetime = isFileInTimeRange( | |
|
679 | filename, startDate, endDate, startTime, endTime) | |
|
660 | 680 | |
|
661 | 681 | if not(thisDatetime): |
|
662 | 682 | continue |
|
663 | 683 | |
|
664 | 684 | filenameList.append(filename) |
|
665 | 685 | datetimeList.append(thisDatetime) |
|
666 | 686 | |
|
667 | 687 | if not(filenameList): |
|
668 | 688 | print "[Reading] Time range selected invalid [%s - %s]: No *%s files in %s)" %(startTime, endTime, ext, path) |
|
669 | 689 | return [], [] |
|
670 | 690 | |
|
671 | 691 | print "[Reading] %d file(s) was(were) found in time range: %s - %s" %(len(filenameList), startTime, endTime) |
|
672 | 692 | |
|
673 | 693 | |
|
674 | 694 | # for i in range(len(filenameList)): |
|
675 | 695 | # print "[Reading] %s -> [%s]" %(filenameList[i], datetimeList[i].ctime()) |
|
676 | 696 | |
|
677 | 697 | self.filenameList = filenameList |
|
678 | 698 | self.datetimeList = datetimeList |
|
679 | 699 | |
|
680 | 700 | return pathList, filenameList |
|
681 | 701 | |
|
682 | 702 |
def __searchFilesOnLine(self, path, expLabel |
|
683 | ||
|
684 | 703 | """ |
|
685 | 704 | Busca el ultimo archivo de la ultima carpeta (determinada o no por startDateTime) y |
|
686 | 705 | devuelve el archivo encontrado ademas de otros datos. |
|
687 | 706 | |
|
688 | 707 | Input: |
|
689 | 708 | path : carpeta donde estan contenidos los files que contiene data |
|
690 | 709 | |
|
691 | 710 | expLabel : Nombre del subexperimento (subfolder) |
|
692 | 711 | |
|
693 | 712 | ext : extension de los files |
|
694 | 713 | |
|
695 | 714 | walk : Si es habilitado no realiza busquedas dentro de los ubdirectorios (doypath) |
|
696 | 715 | |
|
697 | 716 | Return: |
|
698 | 717 | directory : eL directorio donde esta el file encontrado |
|
699 | 718 | filename : el ultimo file de una determinada carpeta |
|
700 | 719 | year : el anho |
|
701 | 720 | doy : el numero de dia del anho |
|
702 | 721 | set : el set del archivo |
|
703 | 722 | |
|
704 | 723 | |
|
705 | 724 | """ |
|
706 | 725 | if not os.path.isdir(path): |
|
707 | 726 | return None, None, None, None, None, None |
|
708 | 727 | |
|
709 | 728 | dirList = [] |
|
710 | 729 | |
|
711 | 730 | if not walk: |
|
712 | 731 | fullpath = path |
|
713 | 732 | foldercounter = 0 |
|
714 | 733 | else: |
|
715 | 734 | #Filtra solo los directorios |
|
716 | 735 | for thisPath in os.listdir(path): |
|
717 | 736 | if not os.path.isdir(os.path.join(path,thisPath)): |
|
718 | 737 | continue |
|
719 | 738 | if not isRadarFolder(thisPath): |
|
720 | 739 | continue |
|
721 | 740 | |
|
722 | 741 | dirList.append(thisPath) |
|
723 | 742 | |
|
724 | 743 | if not(dirList): |
|
725 | 744 | return None, None, None, None, None, None |
|
726 | 745 | |
|
727 | 746 |
dirList = sorted( |
|
728 | 747 | |
|
729 | 748 | doypath = dirList[-1] |
|
730 |
foldercounter = int(doypath.split('_')[1]) if len( |
|
|
749 | foldercounter = int(doypath.split('_')[1]) if len( | |
|
750 | doypath.split('_')) > 1 else 0 | |
|
731 | 751 | fullpath = os.path.join(path, doypath, expLabel) |
|
732 | 752 | |
|
733 | ||
|
734 | 753 |
print "[Reading] %s folder was found: " %(fullpath |
|
735 | 754 | |
|
736 | 755 | if set == None: |
|
737 | 756 | filename = getlastFileFromPath(fullpath, ext) |
|
738 | 757 | else: |
|
739 | 758 | filename = getFileFromSet(fullpath, ext, set) |
|
740 | 759 | |
|
741 | 760 | if not(filename): |
|
742 | 761 | return None, None, None, None, None, None |
|
743 | 762 | |
|
744 | 763 | print "[Reading] %s file was found" %(filename) |
|
745 | 764 | |
|
746 | 765 | if not(self.__verifyFile(os.path.join(fullpath, filename))): |
|
747 | 766 | return None, None, None, None, None, None |
|
748 | 767 | |
|
749 | 768 |
year = int( |
|
750 | 769 |
doy |
|
751 | 770 |
set |
|
752 | 771 | |
|
753 | 772 | return fullpath, foldercounter, filename, year, doy, set |
|
754 | 773 | |
|
755 | 774 | def __setNextFileOffline(self): |
|
756 | 775 | |
|
757 | 776 | idFile = self.fileIndex |
|
758 | 777 | |
|
759 | 778 | while (True): |
|
760 | 779 | idFile += 1 |
|
761 | 780 | if not(idFile < len(self.filenameList)): |
|
762 | 781 | self.flagNoMoreFiles = 1 |
|
763 | 782 | # print "[Reading] No more Files" |
|
764 | 783 | return 0 |
|
765 | 784 | |
|
766 | 785 | filename = self.filenameList[idFile] |
|
767 | 786 | |
|
768 | 787 | if not(self.__verifyFile(filename)): |
|
769 | 788 | continue |
|
770 | 789 | |
|
771 | 790 | fileSize = os.path.getsize(filename) |
|
772 | 791 | fp = open(filename,'rb') |
|
773 | 792 | break |
|
774 | 793 | |
|
775 | 794 | self.flagIsNewFile = 1 |
|
776 | 795 | self.fileIndex = idFile |
|
777 | 796 | self.filename = filename |
|
778 | 797 | self.fileSize = fileSize |
|
779 | 798 | self.fp = fp |
|
780 | 799 | |
|
781 | 800 | # print "[Reading] Setting the file: %s"%self.filename |
|
782 | 801 | |
|
783 | 802 | return 1 |
|
784 | 803 | |
|
785 | 804 | def __setNextFileOnline(self): |
|
786 | 805 | """ |
|
787 | 806 | Busca el siguiente file que tenga suficiente data para ser leida, dentro de un folder especifico, si |
|
788 | 807 | no encuentra un file valido espera un tiempo determinado y luego busca en los posibles n files |
|
789 | 808 | siguientes. |
|
790 | 809 | |
|
791 | 810 | Affected: |
|
792 | 811 | self.flagIsNewFile |
|
793 | 812 | self.filename |
|
794 | 813 | self.fileSize |
|
795 | 814 | self.fp |
|
796 | 815 | self.set |
|
797 | 816 | self.flagNoMoreFiles |
|
798 | 817 | |
|
799 | 818 | Return: |
|
800 | 819 | 0 : si luego de una busqueda del siguiente file valido este no pudo ser encontrado |
|
801 | 820 | 1 : si el file fue abierto con exito y esta listo a ser leido |
|
802 | 821 | |
|
803 | 822 | Excepciones: |
|
804 | 823 | Si un determinado file no puede ser abierto |
|
805 | 824 | """ |
|
806 | 825 | nFiles = 0 |
|
807 | 826 | fileOk_flag = False |
|
808 | 827 | firstTime_flag = True |
|
809 | 828 | |
|
810 | 829 | self.set += 1 |
|
811 | 830 | |
|
812 | 831 | if self.set > 999: |
|
813 | 832 | self.set = 0 |
|
814 | 833 | self.foldercounter += 1 |
|
815 | 834 | |
|
816 | 835 | #busca el 1er file disponible |
|
817 | fullfilename, filename = checkForRealPath( self.path, self.foldercounter, self.year, self.doy, self.set, self.ext ) | |
|
836 | fullfilename, filename = checkForRealPath( | |
|
837 | self.path, self.foldercounter, self.year, self.doy, self.set, self.ext) | |
|
818 | 838 | if fullfilename: |
|
819 | 839 | if self.__verifyFile(fullfilename, False): |
|
820 | 840 | fileOk_flag = True |
|
821 | 841 | |
|
822 | 842 | #si no encuentra un file entonces espera y vuelve a buscar |
|
823 | 843 | if not(fileOk_flag): |
|
824 |
|
|
|
844 | # busco en los siguientes self.nFiles+1 files posibles | |
|
845 | for nFiles in range(self.nFiles + 1): | |
|
825 | 846 | |
|
826 | 847 | if firstTime_flag: #si es la 1era vez entonces hace el for self.nTries veces |
|
827 | 848 | tries = self.nTries |
|
828 | 849 | else: |
|
829 | 850 | tries = 1 #si no es la 1era vez entonces solo lo hace una vez |
|
830 | 851 | |
|
831 | 852 |
for nTries in range( |
|
832 | 853 | if firstTime_flag: |
|
833 | 854 |
print "\t[Reading] Waiting %0.2f sec for the next file: \"%s\" , try %03d ..." % ( |
|
834 | 855 |
sleep( |
|
835 | 856 | else: |
|
836 | 857 | print "\t[Reading] Searching the next \"%s%04d%03d%03d%s\" file ..." % (self.optchar, self.year, self.doy, self.set, self.ext) |
|
837 | 858 | |
|
838 |
fullfilename, filename = checkForRealPath( |
|
|
859 | fullfilename, filename = checkForRealPath( | |
|
860 | self.path, self.foldercounter, self.year, self.doy, self.set, self.ext) | |
|
839 | 861 | if fullfilename: |
|
840 | 862 | if self.__verifyFile(fullfilename): |
|
841 | 863 | fileOk_flag = True |
|
842 | 864 | break |
|
843 | 865 | |
|
844 | 866 | if fileOk_flag: |
|
845 | 867 | break |
|
846 | 868 | |
|
847 | 869 | firstTime_flag = False |
|
848 | 870 | |
|
849 | 871 | print "\t[Reading] Skipping the file \"%s\" due to this file doesn't exist" % filename |
|
850 | 872 | self.set += 1 |
|
851 | 873 | |
|
852 |
|
|
|
874 | # si no encuentro el file buscado cambio de carpeta y busco en la siguiente carpeta | |
|
875 | if nFiles == (self.nFiles - 1): | |
|
853 | 876 | self.set = 0 |
|
854 | 877 | self.doy += 1 |
|
855 | 878 | self.foldercounter = 0 |
|
856 | 879 | |
|
857 | 880 | if fileOk_flag: |
|
858 | 881 |
self.fileSize = os.path.getsize( |
|
859 | 882 | self.filename = fullfilename |
|
860 | 883 | self.flagIsNewFile = 1 |
|
861 |
if self.fp != None: |
|
|
884 | if self.fp != None: | |
|
885 | self.fp.close() | |
|
862 | 886 | self.fp = open(fullfilename, 'rb') |
|
863 | 887 | self.flagNoMoreFiles = 0 |
|
864 | 888 | # print '[Reading] Setting the file: %s' % fullfilename |
|
865 | 889 | else: |
|
866 | 890 | self.fileSize = 0 |
|
867 | 891 | self.filename = None |
|
868 | 892 | self.flagIsNewFile = 0 |
|
869 | 893 | self.fp = None |
|
870 | 894 | self.flagNoMoreFiles = 1 |
|
871 | 895 | # print '[Reading] No more files to read' |
|
872 | 896 | |
|
873 | 897 | return fileOk_flag |
|
874 | 898 | |
|
875 | 899 | def setNextFile(self): |
|
876 | 900 | if self.fp != None: |
|
877 | 901 | self.fp.close() |
|
878 | 902 | |
|
879 | 903 | if self.online: |
|
880 | 904 | newFile = self.__setNextFileOnline() |
|
881 | 905 | else: |
|
882 | 906 | newFile = self.__setNextFileOffline() |
|
883 | 907 | |
|
884 | 908 | if not(newFile): |
|
885 | 909 | print '[Reading] No more files to read' |
|
886 | 910 | return 0 |
|
887 | 911 | |
|
888 | 912 | if self.verbose: |
|
889 | 913 | print '[Reading] Setting the file: %s' % self.filename |
|
890 | 914 | |
|
891 | 915 | self.__readFirstHeader() |
|
892 | 916 | self.nReadBlocks = 0 |
|
893 | 917 | return 1 |
|
894 | 918 | |
|
895 | 919 | def __waitNewBlock(self): |
|
896 | 920 | """ |
|
897 | 921 | Return 1 si se encontro un nuevo bloque de datos, 0 de otra forma. |
|
898 | 922 | |
|
899 | 923 | Si el modo de lectura es OffLine siempre retorn 0 |
|
900 | 924 | """ |
|
901 | 925 | if not self.online: |
|
902 | 926 | return 0 |
|
903 | 927 | |
|
904 | 928 | if (self.nReadBlocks >= self.processingHeaderObj.dataBlocksPerFile): |
|
905 | 929 | return 0 |
|
906 | 930 | |
|
907 | 931 | currentPointer = self.fp.tell() |
|
908 | 932 | |
|
909 | 933 | neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize |
|
910 | 934 | |
|
911 | 935 |
for nTries in range( |
|
912 | 936 | |
|
913 | 937 | self.fp.close() |
|
914 | 938 |
self.fp = open( |
|
915 | 939 |
self.fp.seek( |
|
916 | 940 | |
|
917 | 941 |
self.fileSize = os.path.getsize( |
|
918 | 942 | currentSize = self.fileSize - currentPointer |
|
919 | 943 | |
|
920 | 944 |
if ( |
|
921 | 945 | self.basicHeaderObj.read(self.fp) |
|
922 | 946 | return 1 |
|
923 | 947 | |
|
924 | 948 | if self.fileSize == self.fileSizeByHeader: |
|
925 | 949 | # self.flagEoF = True |
|
926 | 950 | return 0 |
|
927 | 951 | |
|
928 | 952 | print "[Reading] Waiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries+1) |
|
929 | 953 |
sleep( |
|
930 | 954 | |
|
931 | ||
|
932 | 955 | return 0 |
|
933 | 956 | |
|
934 | 957 | def waitDataBlock(self,pointer_location): |
|
935 | 958 | |
|
936 | 959 | currentPointer = pointer_location |
|
937 | 960 | |
|
938 | 961 | neededSize = self.processingHeaderObj.blockSize #+ self.basicHeaderSize |
|
939 | 962 | |
|
940 | 963 |
for nTries in range( |
|
941 | 964 | self.fp.close() |
|
942 | 965 |
self.fp = open( |
|
943 | 966 |
self.fp.seek( |
|
944 | 967 | |
|
945 | 968 |
self.fileSize = os.path.getsize( |
|
946 | 969 | currentSize = self.fileSize - currentPointer |
|
947 | 970 | |
|
948 | 971 |
if ( |
|
949 | 972 | return 1 |
|
950 | 973 | |
|
951 | 974 | print "[Reading] Waiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries+1) |
|
952 | 975 |
sleep( |
|
953 | 976 | |
|
954 | 977 | return 0 |
|
955 | 978 | |
|
956 | 979 | def __jumpToLastBlock(self): |
|
957 | 980 | |
|
958 | 981 | if not(self.__isFirstTimeOnline): |
|
959 | 982 | return |
|
960 | 983 | |
|
961 | 984 | csize = self.fileSize - self.fp.tell() |
|
962 | 985 | blocksize = self.processingHeaderObj.blockSize |
|
963 | 986 | |
|
964 | 987 | #salta el primer bloque de datos |
|
965 | 988 | if csize > self.processingHeaderObj.blockSize: |
|
966 | 989 | self.fp.seek(self.fp.tell() + blocksize) |
|
967 | 990 | else: |
|
968 | 991 | return |
|
969 | 992 | |
|
970 | 993 | csize = self.fileSize - self.fp.tell() |
|
971 | 994 | neededsize = self.processingHeaderObj.blockSize + self.basicHeaderSize |
|
972 | 995 | while True: |
|
973 | 996 | |
|
974 | 997 | if self.fp.tell()<self.fileSize: |
|
975 | 998 | self.fp.seek(self.fp.tell() + neededsize) |
|
976 | 999 | else: |
|
977 | 1000 | self.fp.seek(self.fp.tell() - neededsize) |
|
978 | 1001 | break |
|
979 | 1002 | |
|
980 | 1003 | # csize = self.fileSize - self.fp.tell() |
|
981 | 1004 | # neededsize = self.processingHeaderObj.blockSize + self.basicHeaderSize |
|
982 | 1005 | # factor = int(csize/neededsize) |
|
983 | 1006 | # if factor > 0: |
|
984 | 1007 | # self.fp.seek(self.fp.tell() + factor*neededsize) |
|
985 | 1008 | |
|
986 | 1009 | self.flagIsNewFile = 0 |
|
987 | 1010 | self.__isFirstTimeOnline = 0 |
|
988 | 1011 | |
|
989 | 1012 | def __setNewBlock(self): |
|
990 | 1013 | #if self.server is None: |
|
991 | 1014 | if self.fp == None: |
|
992 | 1015 | return 0 |
|
993 | 1016 | |
|
994 | 1017 | # if self.online: |
|
995 | 1018 |
# self.__jumpToLastBlock() |
|
996 | 1019 | |
|
997 | 1020 | if self.flagIsNewFile: |
|
998 | 1021 | self.lastUTTime = self.basicHeaderObj.utc |
|
999 | 1022 | return 1 |
|
1000 | 1023 | |
|
1001 | 1024 | if self.realtime: |
|
1002 | 1025 | self.flagDiscontinuousBlock = 1 |
|
1003 | 1026 | if not(self.setNextFile()): |
|
1004 | 1027 | return 0 |
|
1005 | 1028 | else: |
|
1006 | 1029 |
return 1 |
|
1007 | 1030 | #if self.server is None: |
|
1008 | 1031 | currentSize = self.fileSize - self.fp.tell() |
|
1009 | 1032 | neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize |
|
1010 | 1033 | if (currentSize >= neededSize): |
|
1011 | 1034 | self.basicHeaderObj.read(self.fp) |
|
1012 | 1035 | self.lastUTTime = self.basicHeaderObj.utc |
|
1013 | 1036 | return 1 |
|
1014 | 1037 | # else: |
|
1015 | 1038 | # self.basicHeaderObj.read(self.zHeader) |
|
1016 | 1039 | # self.lastUTTime = self.basicHeaderObj.utc |
|
1017 | 1040 | # return 1 |
|
1018 | 1041 | if self.__waitNewBlock(): |
|
1019 | 1042 | self.lastUTTime = self.basicHeaderObj.utc |
|
1020 | 1043 | return 1 |
|
1021 | 1044 | #if self.server is None: |
|
1022 | 1045 | if not(self.setNextFile()): |
|
1023 | 1046 | return 0 |
|
1024 | 1047 | |
|
1025 |
deltaTime = self.basicHeaderObj.utc - self.lastUTTime |
|
|
1048 | deltaTime = self.basicHeaderObj.utc - self.lastUTTime | |
|
1026 | 1049 | self.lastUTTime = self.basicHeaderObj.utc |
|
1027 | 1050 | |
|
1028 | 1051 | self.flagDiscontinuousBlock = 0 |
|
1029 | 1052 | |
|
1030 | 1053 | if deltaTime > self.maxTimeStep: |
|
1031 | 1054 | self.flagDiscontinuousBlock = 1 |
|
1032 | 1055 | |
|
1033 | 1056 | return 1 |
|
1034 | 1057 | |
|
1035 | 1058 | def readNextBlock(self): |
|
1036 | 1059 | |
|
1037 | 1060 | #Skip block out of startTime and endTime |
|
1038 | 1061 |
while True: |
|
1039 | 1062 |
if not(self.__setNewBlock()): |
|
1040 | 1063 | return 0 |
|
1041 | 1064 | |
|
1042 | 1065 | if not(self.readBlock()): |
|
1043 | 1066 | return 0 |
|
1044 | 1067 | |
|
1045 | 1068 | self.getBasicHeader() |
|
1046 | 1069 | |
|
1047 | 1070 | if not isTimeInRange(self.dataOut.datatime.time(), self.startTime, self.endTime): |
|
1048 | 1071 | |
|
1049 | 1072 | print "[Reading] Block No. %d/%d -> %s [Skipping]" %(self.nReadBlocks, |
|
1050 | 1073 | self.processingHeaderObj.dataBlocksPerFile, |
|
1051 | 1074 | self.dataOut.datatime.ctime()) |
|
1052 | 1075 | continue |
|
1053 | 1076 | |
|
1054 | 1077 | break |
|
1055 | 1078 | |
|
1056 | 1079 | if self.verbose: |
|
1057 | 1080 | print "[Reading] Block No. %d/%d -> %s" %(self.nReadBlocks, |
|
1058 | 1081 | self.processingHeaderObj.dataBlocksPerFile, |
|
1059 | 1082 | self.dataOut.datatime.ctime()) |
|
1060 | 1083 | return 1 |
|
1061 | 1084 | |
|
1062 | 1085 | def __readFirstHeader(self): |
|
1063 | 1086 | |
|
1064 | 1087 | self.basicHeaderObj.read(self.fp) |
|
1065 | 1088 | self.systemHeaderObj.read(self.fp) |
|
1066 | 1089 | self.radarControllerHeaderObj.read(self.fp) |
|
1067 | 1090 | self.processingHeaderObj.read(self.fp) |
|
1068 | 1091 | |
|
1069 | 1092 | self.firstHeaderSize = self.basicHeaderObj.size |
|
1070 | 1093 | |
|
1071 |
datatype = int(numpy.log2((self.processingHeaderObj.processFlags & |
|
|
1094 | datatype = int(numpy.log2((self.processingHeaderObj.processFlags & | |
|
1095 | PROCFLAG.DATATYPE_MASK)) - numpy.log2(PROCFLAG.DATATYPE_CHAR)) | |
|
1072 | 1096 | if datatype == 0: |
|
1073 | 1097 | datatype_str = numpy.dtype([('real','<i1'),('imag','<i1')]) |
|
1074 | 1098 | elif datatype == 1: |
|
1075 | 1099 | datatype_str = numpy.dtype([('real','<i2'),('imag','<i2')]) |
|
1076 | 1100 | elif datatype == 2: |
|
1077 | 1101 | datatype_str = numpy.dtype([('real','<i4'),('imag','<i4')]) |
|
1078 | 1102 | elif datatype == 3: |
|
1079 | 1103 | datatype_str = numpy.dtype([('real','<i8'),('imag','<i8')]) |
|
1080 | 1104 | elif datatype == 4: |
|
1081 | 1105 | datatype_str = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
1082 | 1106 | elif datatype == 5: |
|
1083 | 1107 | datatype_str = numpy.dtype([('real','<f8'),('imag','<f8')]) |
|
1084 | 1108 | else: |
|
1085 | 1109 | raise ValueError, 'Data type was not defined' |
|
1086 | 1110 | |
|
1087 | 1111 | self.dtype = datatype_str |
|
1088 | 1112 | #self.ippSeconds = 2 * 1000 * self.radarControllerHeaderObj.ipp / self.c |
|
1089 |
self.fileSizeByHeader = self.processingHeaderObj.dataBlocksPerFile * self.processingHeaderObj.blockSize + |
|
|
1113 | self.fileSizeByHeader = self.processingHeaderObj.dataBlocksPerFile * self.processingHeaderObj.blockSize + \ | |
|
1114 | self.firstHeaderSize + self.basicHeaderSize * \ | |
|
1115 | (self.processingHeaderObj.dataBlocksPerFile - 1) | |
|
1090 | 1116 | # self.dataOut.channelList = numpy.arange(self.systemHeaderObj.numChannels) |
|
1091 | 1117 | # self.dataOut.channelIndexList = numpy.arange(self.systemHeaderObj.numChannels) |
|
1092 | 1118 | self.getBlockDimension() |
|
1093 | 1119 | |
|
1094 | 1120 | def __verifyFile(self, filename, msgFlag=True): |
|
1095 | 1121 | |
|
1096 | 1122 | msg = None |
|
1097 | 1123 | |
|
1098 | 1124 | try: |
|
1099 | 1125 | fp = open(filename, 'rb') |
|
1100 | 1126 | except IOError: |
|
1101 | 1127 | |
|
1102 | 1128 | if msgFlag: |
|
1103 | 1129 | print "[Reading] File %s can't be opened" % (filename) |
|
1104 | 1130 | |
|
1105 | 1131 | return False |
|
1106 | 1132 | |
|
1107 | 1133 | currentPosition = fp.tell() |
|
1108 | 1134 | neededSize = self.processingHeaderObj.blockSize + self.firstHeaderSize |
|
1109 | 1135 | |
|
1110 | 1136 | if neededSize == 0: |
|
1111 | 1137 | basicHeaderObj = BasicHeader(LOCALTIME) |
|
1112 | 1138 | systemHeaderObj = SystemHeader() |
|
1113 | 1139 | radarControllerHeaderObj = RadarControllerHeader() |
|
1114 | 1140 | processingHeaderObj = ProcessingHeader() |
|
1115 | 1141 | |
|
1116 | 1142 |
if not( |
|
1117 | 1143 | fp.close() |
|
1118 | 1144 | return False |
|
1119 | 1145 | |
|
1120 | 1146 |
if not( |
|
1121 | 1147 | fp.close() |
|
1122 | 1148 | return False |
|
1123 | 1149 | |
|
1124 | 1150 |
if not( |
|
1125 | 1151 | fp.close() |
|
1126 | 1152 | return False |
|
1127 | 1153 | |
|
1128 | 1154 |
if not( |
|
1129 | 1155 | fp.close() |
|
1130 | 1156 | return False |
|
1131 | 1157 | |
|
1132 | 1158 | neededSize = processingHeaderObj.blockSize + basicHeaderObj.size |
|
1133 | 1159 | else: |
|
1134 | 1160 | msg = "[Reading] Skipping the file %s due to it hasn't enough data" %filename |
|
1135 | 1161 | |
|
1136 | 1162 | fp.close() |
|
1137 | 1163 | |
|
1138 | 1164 | fileSize = os.path.getsize(filename) |
|
1139 | 1165 | currentSize = fileSize - currentPosition |
|
1140 | 1166 | |
|
1141 | 1167 | if currentSize < neededSize: |
|
1142 | 1168 | if msgFlag and (msg != None): |
|
1143 | 1169 | print msg |
|
1144 | 1170 | return False |
|
1145 | 1171 | |
|
1146 | 1172 | return True |
|
1147 | 1173 | |
|
1148 | 1174 | def findDatafiles(self, path, startDate=None, endDate=None, expLabel='', ext='.r', walk=True, include_path=False): |
|
1149 | 1175 | |
|
1150 | 1176 | path_empty = True |
|
1151 | 1177 | |
|
1152 | 1178 | dateList = [] |
|
1153 | 1179 | pathList = [] |
|
1154 | 1180 | |
|
1155 | 1181 | multi_path = path.split(',') |
|
1156 | 1182 | |
|
1157 | 1183 | if not walk: |
|
1158 | 1184 | |
|
1159 | 1185 | for single_path in multi_path: |
|
1160 | 1186 | |
|
1161 | 1187 | if not os.path.isdir(single_path): |
|
1162 | 1188 | continue |
|
1163 | 1189 | |
|
1164 | 1190 | fileList = glob.glob1(single_path, "*"+ext) |
|
1165 | 1191 | |
|
1166 | 1192 | if not fileList: |
|
1167 | 1193 | continue |
|
1168 | 1194 | |
|
1169 | 1195 | path_empty = False |
|
1170 | 1196 | |
|
1171 | 1197 | fileList.sort() |
|
1172 | 1198 | |
|
1173 | 1199 | for thisFile in fileList: |
|
1174 | 1200 | |
|
1175 | 1201 | if not os.path.isfile(os.path.join(single_path, thisFile)): |
|
1176 | 1202 | continue |
|
1177 | 1203 | |
|
1178 | 1204 | if not isRadarFile(thisFile): |
|
1179 | 1205 | continue |
|
1180 | 1206 | |
|
1181 | 1207 | if not isFileInDateRange(thisFile, startDate, endDate): |
|
1182 | 1208 | continue |
|
1183 | 1209 | |
|
1184 | 1210 | thisDate = getDateFromRadarFile(thisFile) |
|
1185 | 1211 | |
|
1186 | 1212 | if thisDate in dateList: |
|
1187 | 1213 | continue |
|
1188 | 1214 | |
|
1189 | 1215 | dateList.append(thisDate) |
|
1190 | 1216 | pathList.append(single_path) |
|
1191 | 1217 | |
|
1192 | 1218 | else: |
|
1193 | 1219 | for single_path in multi_path: |
|
1194 | 1220 | |
|
1195 | 1221 | if not os.path.isdir(single_path): |
|
1196 | 1222 | continue |
|
1197 | 1223 | |
|
1198 | 1224 | dirList = [] |
|
1199 | 1225 | |
|
1200 | 1226 | for thisPath in os.listdir(single_path): |
|
1201 | 1227 | |
|
1202 | 1228 | if not os.path.isdir(os.path.join(single_path,thisPath)): |
|
1203 | 1229 | continue |
|
1204 | 1230 | |
|
1205 | 1231 | if not isRadarFolder(thisPath): |
|
1206 | 1232 | continue |
|
1207 | 1233 | |
|
1208 | 1234 | if not isFolderInDateRange(thisPath, startDate, endDate): |
|
1209 | 1235 | continue |
|
1210 | 1236 | |
|
1211 | 1237 | dirList.append(thisPath) |
|
1212 | 1238 | |
|
1213 | 1239 | if not dirList: |
|
1214 | 1240 | continue |
|
1215 | 1241 | |
|
1216 | 1242 | dirList.sort() |
|
1217 | 1243 | |
|
1218 | 1244 | for thisDir in dirList: |
|
1219 | 1245 | |
|
1220 | 1246 | datapath = os.path.join(single_path, thisDir, expLabel) |
|
1221 | 1247 | fileList = glob.glob1(datapath, "*"+ext) |
|
1222 | 1248 | |
|
1223 | 1249 | if not fileList: |
|
1224 | 1250 | continue |
|
1225 | 1251 | |
|
1226 | 1252 | path_empty = False |
|
1227 | 1253 | |
|
1228 | 1254 | thisDate = getDateFromRadarFolder(thisDir) |
|
1229 | 1255 | |
|
1230 | 1256 | pathList.append(datapath) |
|
1231 | 1257 | dateList.append(thisDate) |
|
1232 | 1258 | |
|
1233 | 1259 | dateList.sort() |
|
1234 | 1260 | |
|
1235 | 1261 | if walk: |
|
1236 | 1262 | pattern_path = os.path.join(multi_path[0], "[dYYYYDDD]", expLabel) |
|
1237 | 1263 | else: |
|
1238 | 1264 | pattern_path = multi_path[0] |
|
1239 | 1265 | |
|
1240 | 1266 | if path_empty: |
|
1241 | 1267 | print "[Reading] No *%s files in %s for %s to %s" %(ext, pattern_path, startDate, endDate) |
|
1242 | 1268 | else: |
|
1243 | 1269 | if not dateList: |
|
1244 | 1270 | print "[Reading] Date range selected invalid [%s - %s]: No *%s files in %s)" %(startDate, endDate, ext, path) |
|
1245 | 1271 | |
|
1246 | 1272 | if include_path: |
|
1247 | 1273 | return dateList, pathList |
|
1248 | 1274 | |
|
1249 | 1275 | return dateList |
|
1250 | 1276 | |
|
1251 | 1277 | def setup(self, |
|
1252 | 1278 |
|
|
1253 | 1279 |
|
|
1254 | 1280 |
|
|
1255 | 1281 |
|
|
1256 | 1282 |
|
|
1257 | 1283 |
|
|
1258 | 1284 |
|
|
1259 | 1285 |
|
|
1260 | 1286 |
|
|
1261 | 1287 |
|
|
1262 | 1288 |
|
|
1263 | 1289 |
|
|
1264 | 1290 |
|
|
1265 | 1291 |
|
|
1266 | 1292 |
|
|
1267 | 1293 |
|
|
1268 | 1294 |
|
|
1269 | 1295 |
|
|
1270 | 1296 |
|
|
1271 | 1297 |
|
|
1272 | 1298 |
|
|
1273 | **kwargs): | |
|
1299 | format=None, | |
|
1300 | oneDDict=None, | |
|
1301 | twoDDict=None, | |
|
1302 | ind2DList=None): | |
|
1274 | 1303 | if server is not None: |
|
1275 | 1304 | if 'tcp://' in server: |
|
1276 | 1305 | address = server |
|
1277 | 1306 | else: |
|
1278 | 1307 | address = 'ipc:///tmp/%s' % server |
|
1279 | 1308 | self.server = address |
|
1280 | 1309 | self.context = zmq.Context() |
|
1281 | 1310 | self.receiver = self.context.socket(zmq.PULL) |
|
1282 | 1311 | self.receiver.connect(self.server) |
|
1283 | 1312 | time.sleep(0.5) |
|
1284 | 1313 | print '[Starting] ReceiverData from {}'.format(self.server) |
|
1285 | 1314 |
else: |
|
1286 | 1315 | self.server = None |
|
1287 | 1316 | if path == None: |
|
1288 | 1317 | raise ValueError, "[Reading] The path is not valid" |
|
1289 | 1318 | |
|
1290 | 1319 | if ext == None: |
|
1291 | 1320 | ext = self.ext |
|
1292 | 1321 | |
|
1293 | 1322 | if online: |
|
1294 | 1323 | print "[Reading] Searching files in online mode..." |
|
1295 | 1324 | |
|
1296 | 1325 |
for nTries in range( |
|
1297 |
fullpath, foldercounter, file, year, doy, set = self.__searchFilesOnLine( |
|
|
1326 | fullpath, foldercounter, file, year, doy, set = self.__searchFilesOnLine( | |
|
1327 | path=path, expLabel=expLabel, ext=ext, walk=walk, set=set) | |
|
1298 | 1328 | |
|
1299 | 1329 | if fullpath: |
|
1300 | 1330 | break |
|
1301 | 1331 | |
|
1302 | 1332 | print '[Reading] Waiting %0.2f sec for an valid file in %s: try %02d ...' % (self.delay, path, nTries+1) |
|
1303 | 1333 |
sleep( |
|
1304 | 1334 | |
|
1305 | 1335 | if not(fullpath): |
|
1306 | 1336 | print "[Reading] There 'isn't any valid file in %s" % path |
|
1307 | 1337 | return |
|
1308 | 1338 | |
|
1309 | 1339 | self.year = year |
|
1310 | 1340 |
self.doy |
|
1311 | 1341 |
self.set |
|
1312 | 1342 | self.path = path |
|
1313 | 1343 | self.foldercounter = foldercounter |
|
1314 | 1344 | last_set = None |
|
1315 | 1345 | else: |
|
1316 | 1346 | print "[Reading] Searching files in offline mode ..." |
|
1317 | 1347 | pathList, filenameList = self.searchFilesOffLine(path, startDate=startDate, endDate=endDate, |
|
1318 | 1348 | startTime=startTime, endTime=endTime, |
|
1319 | 1349 | set=set, expLabel=expLabel, ext=ext, |
|
1320 | 1350 | walk=walk, cursor=cursor, |
|
1321 | 1351 | skip=skip) |
|
1322 | 1352 | |
|
1323 | 1353 | if not(pathList): |
|
1324 | 1354 | self.fileIndex = -1 |
|
1325 | 1355 | self.pathList = [] |
|
1326 | 1356 | self.filenameList = [] |
|
1327 | 1357 | return |
|
1328 | 1358 | |
|
1329 | 1359 | self.fileIndex = -1 |
|
1330 | 1360 | self.pathList = pathList |
|
1331 | 1361 | self.filenameList = filenameList |
|
1332 | 1362 | file_name = os.path.basename(filenameList[-1]) |
|
1333 | 1363 | basename, ext = os.path.splitext(file_name) |
|
1334 | 1364 | last_set = int(basename[-3:]) |
|
1335 | 1365 | |
|
1336 | 1366 | self.online = online |
|
1337 | 1367 | self.realtime = realtime |
|
1338 | 1368 | self.delay = delay |
|
1339 | 1369 | ext = ext.lower() |
|
1340 | 1370 | self.ext = ext |
|
1341 | 1371 | self.getByBlock = getblock |
|
1342 | 1372 | self.nTxs = nTxs |
|
1343 | 1373 | self.startTime = startTime |
|
1344 | 1374 | self.endTime = endTime |
|
1345 | 1375 | |
|
1346 | 1376 | #Added----------------- |
|
1347 | 1377 | self.selBlocksize = blocksize |
|
1348 | 1378 | self.selBlocktime = blocktime |
|
1349 | 1379 | |
|
1350 | 1380 | # Verbose----------- |
|
1351 | 1381 | self.verbose = verbose |
|
1352 | 1382 | self.warnings = warnings |
|
1353 | 1383 | |
|
1354 | 1384 | if not(self.setNextFile()): |
|
1355 | 1385 | if (startDate!=None) and (endDate!=None): |
|
1356 | 1386 | print "[Reading] No files in range: %s - %s" %(datetime.datetime.combine(startDate,startTime).ctime(), datetime.datetime.combine(endDate,endTime).ctime()) |
|
1357 | 1387 | elif startDate != None: |
|
1358 | 1388 | print "[Reading] No files in range: %s" %(datetime.datetime.combine(startDate,startTime).ctime()) |
|
1359 | 1389 | else: |
|
1360 | 1390 | print "[Reading] No files" |
|
1361 | 1391 | |
|
1362 | 1392 | self.fileIndex = -1 |
|
1363 | 1393 | self.pathList = [] |
|
1364 | 1394 | self.filenameList = [] |
|
1365 | 1395 | return |
|
1366 | 1396 | |
|
1367 | 1397 | # self.getBasicHeader() |
|
1368 | 1398 | |
|
1369 | 1399 | if last_set != None: |
|
1370 | self.dataOut.last_block = last_set * self.processingHeaderObj.dataBlocksPerFile + self.basicHeaderObj.dataBlock | |
|
1400 | self.dataOut.last_block = last_set * \ | |
|
1401 | self.processingHeaderObj.dataBlocksPerFile + self.basicHeaderObj.dataBlock | |
|
1371 | 1402 | return |
|
1372 | 1403 | |
|
1373 | 1404 | def getBasicHeader(self): |
|
1374 | 1405 | |
|
1375 |
self.dataOut.utctime = self.basicHeaderObj.utc + self.basicHeaderObj.miliSecond/ |
|
|
1406 | self.dataOut.utctime = self.basicHeaderObj.utc + self.basicHeaderObj.miliSecond / \ | |
|
1407 | 1000. + self.profileIndex * self.radarControllerHeaderObj.ippSeconds | |
|
1376 | 1408 | |
|
1377 | 1409 | self.dataOut.flagDiscontinuousBlock = self.flagDiscontinuousBlock |
|
1378 | 1410 | |
|
1379 | 1411 | self.dataOut.timeZone = self.basicHeaderObj.timeZone |
|
1380 | 1412 | |
|
1381 | 1413 | self.dataOut.dstFlag = self.basicHeaderObj.dstFlag |
|
1382 | 1414 | |
|
1383 | 1415 | self.dataOut.errorCount = self.basicHeaderObj.errorCount |
|
1384 | 1416 | |
|
1385 | 1417 | self.dataOut.useLocalTime = self.basicHeaderObj.useLocalTime |
|
1386 | 1418 | |
|
1387 | 1419 | self.dataOut.ippSeconds = self.radarControllerHeaderObj.ippSeconds/self.nTxs |
|
1388 | 1420 | |
|
1389 | 1421 | # self.dataOut.nProfiles = self.processingHeaderObj.profilesPerBlock*self.nTxs |
|
1390 | 1422 | |
|
1391 | ||
|
1392 | 1423 | def getFirstHeader(self): |
|
1393 | 1424 | |
|
1394 | 1425 | raise NotImplementedError |
|
1395 | 1426 | |
|
1396 | 1427 | def getData(self): |
|
1397 | 1428 | |
|
1398 | 1429 | raise NotImplementedError |
|
1399 | 1430 | |
|
1400 | 1431 | def hasNotDataInBuffer(self): |
|
1401 | 1432 | |
|
1402 | 1433 | raise NotImplementedError |
|
1403 | 1434 | |
|
1404 | 1435 | def readBlock(self): |
|
1405 | 1436 | |
|
1406 | 1437 | raise NotImplementedError |
|
1407 | 1438 | |
|
1408 | 1439 | def isEndProcess(self): |
|
1409 | 1440 | |
|
1410 | 1441 | return self.flagNoMoreFiles |
|
1411 | 1442 | |
|
1412 | 1443 | def printReadBlocks(self): |
|
1413 | 1444 | |
|
1414 | 1445 | print "[Reading] Number of read blocks per file %04d" %self.nReadBlocks |
|
1415 | 1446 | |
|
1416 | 1447 | def printTotalBlocks(self): |
|
1417 | 1448 | |
|
1418 | 1449 | print "[Reading] Number of read blocks %04d" %self.nTotalBlocks |
|
1419 | 1450 | |
|
1420 | 1451 | def printNumberOfBlock(self): |
|
1452 | 'SPAM!' | |
|
1421 | 1453 | |
|
1422 | if self.flagIsNewBlock: | |
|
1423 | print "[Reading] Block No. %d/%d -> %s" %(self.nReadBlocks, | |
|
1424 | self.processingHeaderObj.dataBlocksPerFile, | |
|
1425 | self.dataOut.datatime.ctime()) | |
|
1454 | # if self.flagIsNewBlock: | |
|
1455 | # print "[Reading] Block No. %d/%d -> %s" %(self.nReadBlocks, | |
|
1456 | # self.processingHeaderObj.dataBlocksPerFile, | |
|
1457 | # self.dataOut.datatime.ctime()) | |
|
1426 | 1458 | |
|
1427 | 1459 | def printInfo(self): |
|
1428 | 1460 | |
|
1429 | 1461 | if self.__printInfo == False: |
|
1430 | 1462 | return |
|
1431 | 1463 | |
|
1432 | 1464 | self.basicHeaderObj.printInfo() |
|
1433 | 1465 | self.systemHeaderObj.printInfo() |
|
1434 | 1466 | self.radarControllerHeaderObj.printInfo() |
|
1435 | 1467 | self.processingHeaderObj.printInfo() |
|
1436 | 1468 | |
|
1437 | 1469 | self.__printInfo = False |
|
1438 | 1470 | |
|
1439 | 1471 | def run(self, |
|
1440 | 1472 | path=None, |
|
1441 | 1473 | startDate=None, |
|
1442 | 1474 | endDate=None, |
|
1443 | 1475 | startTime=datetime.time(0,0,0), |
|
1444 | 1476 | endTime=datetime.time(23,59,59), |
|
1445 | 1477 | set=None, |
|
1446 | 1478 |
expLabel |
|
1447 | 1479 |
ext |
|
1448 | 1480 |
online |
|
1449 | 1481 |
delay |
|
1450 | 1482 |
walk |
|
1451 | 1483 |
getblock |
|
1452 | 1484 |
nTxs |
|
1453 | 1485 | realtime=False, |
|
1454 | 1486 | blocksize=None, |
|
1455 | 1487 | blocktime=None, |
|
1456 | queue=None, | |
|
1457 | 1488 | skip=None, |
|
1458 | 1489 | cursor=None, |
|
1459 | 1490 | warnings=True, |
|
1460 | 1491 | server=None, |
|
1461 |
verbose=True, |
|
|
1492 | verbose=True, | |
|
1493 | format=None, | |
|
1494 | oneDDict=None, | |
|
1495 | twoDDict=None, | |
|
1496 | ind2DList=None, **kwargs): | |
|
1497 | ||
|
1462 | 1498 | if not(self.isConfig): |
|
1463 | 1499 | self.setup(path=path, |
|
1464 | 1500 | startDate=startDate, |
|
1465 | 1501 | endDate=endDate, |
|
1466 | 1502 | startTime=startTime, |
|
1467 | 1503 | endTime=endTime, |
|
1468 | 1504 | set=set, |
|
1469 | 1505 | expLabel=expLabel, |
|
1470 | 1506 | ext=ext, |
|
1471 | 1507 | online=online, |
|
1472 | 1508 | delay=delay, |
|
1473 | 1509 | walk=walk, |
|
1474 | 1510 | getblock=getblock, |
|
1475 | 1511 | nTxs=nTxs, |
|
1476 | 1512 | realtime=realtime, |
|
1477 | 1513 | blocksize=blocksize, |
|
1478 | 1514 | blocktime=blocktime, |
|
1479 | 1515 | skip=skip, |
|
1480 | 1516 | cursor=cursor, |
|
1481 | 1517 | warnings=warnings, |
|
1482 | 1518 | server=server, |
|
1483 |
verbose=verbose |
|
|
1519 | verbose=verbose, | |
|
1520 | format=format, | |
|
1521 | oneDDict=oneDDict, | |
|
1522 | twoDDict=twoDDict, | |
|
1523 | ind2DList=ind2DList) | |
|
1484 | 1524 | self.isConfig = True |
|
1485 | 1525 | if server is None: |
|
1486 | 1526 | self.getData() |
|
1487 | 1527 |
else: |
|
1488 | 1528 | self.getFromServer() |
|
1489 | 1529 | |
|
1530 | ||
|
1490 | 1531 | class JRODataWriter(JRODataIO): |
|
1491 | 1532 | |
|
1492 | 1533 | """ |
|
1493 | 1534 | Esta clase permite escribir datos a archivos procesados (.r o ,pdata). La escritura |
|
1494 | 1535 | de los datos siempre se realiza por bloques. |
|
1495 | 1536 | """ |
|
1496 | 1537 | |
|
1497 | 1538 | blockIndex = 0 |
|
1498 | 1539 | |
|
1499 | 1540 | path = None |
|
1500 | 1541 | |
|
1501 | 1542 | setFile = None |
|
1502 | 1543 | |
|
1503 | 1544 | profilesPerBlock = None |
|
1504 | 1545 | |
|
1505 | 1546 | blocksPerFile = None |
|
1506 | 1547 | |
|
1507 | 1548 | nWriteBlocks = 0 |
|
1508 | 1549 | |
|
1509 | 1550 | fileDate = None |
|
1510 | 1551 | |
|
1511 | 1552 | def __init__(self, dataOut=None): |
|
1512 | 1553 | raise NotImplementedError |
|
1513 | 1554 | |
|
1514 | ||
|
1515 | 1555 | def hasAllDataInBuffer(self): |
|
1516 | 1556 | raise NotImplementedError |
|
1517 | 1557 | |
|
1518 | ||
|
1519 | 1558 | def setBlockDimension(self): |
|
1520 | 1559 | raise NotImplementedError |
|
1521 | 1560 | |
|
1522 | ||
|
1523 | 1561 | def writeBlock(self): |
|
1524 | 1562 | raise NotImplementedError |
|
1525 | 1563 | |
|
1526 | ||
|
1527 | 1564 | def putData(self): |
|
1528 | 1565 | raise NotImplementedError |
|
1529 | 1566 | |
|
1530 | ||
|
1531 | 1567 | def getProcessFlags(self): |
|
1532 | 1568 | |
|
1533 | 1569 | processFlags = 0 |
|
1534 | 1570 | |
|
1535 | 1571 | dtype_index = get_dtype_index(self.dtype) |
|
1536 | 1572 | procflag_dtype = get_procflag_dtype(dtype_index) |
|
1537 | 1573 | |
|
1538 | 1574 | processFlags += procflag_dtype |
|
1539 | 1575 | |
|
1540 | 1576 | if self.dataOut.flagDecodeData: |
|
1541 | 1577 | processFlags += PROCFLAG.DECODE_DATA |
|
1542 | 1578 | |
|
1543 | 1579 | if self.dataOut.flagDeflipData: |
|
1544 | 1580 | processFlags += PROCFLAG.DEFLIP_DATA |
|
1545 | 1581 | |
|
1546 | 1582 | if self.dataOut.code is not None: |
|
1547 | 1583 | processFlags += PROCFLAG.DEFINE_PROCESS_CODE |
|
1548 | 1584 | |
|
1549 | 1585 | if self.dataOut.nCohInt > 1: |
|
1550 | 1586 | processFlags += PROCFLAG.COHERENT_INTEGRATION |
|
1551 | 1587 | |
|
1552 | 1588 | if self.dataOut.type == "Spectra": |
|
1553 | 1589 | if self.dataOut.nIncohInt > 1: |
|
1554 | 1590 | processFlags += PROCFLAG.INCOHERENT_INTEGRATION |
|
1555 | 1591 | |
|
1556 | 1592 | if self.dataOut.data_dc is not None: |
|
1557 | 1593 | processFlags += PROCFLAG.SAVE_CHANNELS_DC |
|
1558 | 1594 | |
|
1559 | 1595 | if self.dataOut.flagShiftFFT: |
|
1560 | 1596 | processFlags += PROCFLAG.SHIFT_FFT_DATA |
|
1561 | 1597 | |
|
1562 | 1598 | return processFlags |
|
1563 | 1599 | |
|
1564 | 1600 | def setBasicHeader(self): |
|
1565 | 1601 | |
|
1566 | 1602 | self.basicHeaderObj.size = self.basicHeaderSize #bytes |
|
1567 | 1603 | self.basicHeaderObj.version = self.versionFile |
|
1568 | 1604 | self.basicHeaderObj.dataBlock = self.nTotalBlocks |
|
1569 | 1605 | |
|
1570 | 1606 | utc = numpy.floor(self.dataOut.utctime) |
|
1571 | 1607 |
milisecond |
|
1572 | 1608 | |
|
1573 | 1609 | self.basicHeaderObj.utc = utc |
|
1574 | 1610 | self.basicHeaderObj.miliSecond = milisecond |
|
1575 | 1611 | self.basicHeaderObj.timeZone = self.dataOut.timeZone |
|
1576 | 1612 | self.basicHeaderObj.dstFlag = self.dataOut.dstFlag |
|
1577 | 1613 | self.basicHeaderObj.errorCount = self.dataOut.errorCount |
|
1578 | 1614 | |
|
1579 | 1615 | def setFirstHeader(self): |
|
1580 | 1616 | """ |
|
1581 | 1617 | Obtiene una copia del First Header |
|
1582 | 1618 | |
|
1583 | 1619 | Affected: |
|
1584 | 1620 | |
|
1585 | 1621 | self.basicHeaderObj |
|
1586 | 1622 | self.systemHeaderObj |
|
1587 | 1623 | self.radarControllerHeaderObj |
|
1588 | 1624 | self.processingHeaderObj self. |
|
1589 | 1625 | |
|
1590 | 1626 | Return: |
|
1591 | 1627 | None |
|
1592 | 1628 | """ |
|
1593 | 1629 | |
|
1594 | 1630 | raise NotImplementedError |
|
1595 | 1631 | |
|
1596 | 1632 | def __writeFirstHeader(self): |
|
1597 | 1633 | """ |
|
1598 | 1634 | Escribe el primer header del file es decir el Basic header y el Long header (SystemHeader, RadarControllerHeader, ProcessingHeader) |
|
1599 | 1635 | |
|
1600 | 1636 | Affected: |
|
1601 | 1637 | __dataType |
|
1602 | 1638 | |
|
1603 | 1639 | Return: |
|
1604 | 1640 | None |
|
1605 | 1641 | """ |
|
1606 | 1642 | |
|
1607 | 1643 | # CALCULAR PARAMETROS |
|
1608 | 1644 | |
|
1609 |
sizeLongHeader = self.systemHeaderObj.size + |
|
|
1645 | sizeLongHeader = self.systemHeaderObj.size + \ | |
|
1646 | self.radarControllerHeaderObj.size + self.processingHeaderObj.size | |
|
1610 | 1647 | self.basicHeaderObj.size = self.basicHeaderSize + sizeLongHeader |
|
1611 | 1648 | |
|
1612 | 1649 | self.basicHeaderObj.write(self.fp) |
|
1613 | 1650 | self.systemHeaderObj.write(self.fp) |
|
1614 | 1651 | self.radarControllerHeaderObj.write(self.fp) |
|
1615 | 1652 | self.processingHeaderObj.write(self.fp) |
|
1616 | 1653 | |
|
1617 | 1654 | def __setNewBlock(self): |
|
1618 | 1655 | """ |
|
1619 | 1656 | Si es un nuevo file escribe el First Header caso contrario escribe solo el Basic Header |
|
1620 | 1657 | |
|
1621 | 1658 | Return: |
|
1622 | 1659 | 0 : si no pudo escribir nada |
|
1623 | 1660 | 1 : Si escribio el Basic el First Header |
|
1624 | 1661 | """ |
|
1625 | 1662 | if self.fp == None: |
|
1626 | 1663 | self.setNextFile() |
|
1627 | 1664 | |
|
1628 | 1665 | if self.flagIsNewFile: |
|
1629 | 1666 | return 1 |
|
1630 | 1667 | |
|
1631 | 1668 | if self.blockIndex < self.processingHeaderObj.dataBlocksPerFile: |
|
1632 | 1669 | self.basicHeaderObj.write(self.fp) |
|
1633 | 1670 | return 1 |
|
1634 | 1671 | |
|
1635 | 1672 |
if not( |
|
1636 | 1673 | return 0 |
|
1637 | 1674 | |
|
1638 | 1675 | return 1 |
|
1639 | 1676 | |
|
1640 | ||
|
1641 | 1677 | def writeNextBlock(self): |
|
1642 | 1678 | """ |
|
1643 | 1679 | Selecciona el bloque siguiente de datos y los escribe en un file |
|
1644 | 1680 | |
|
1645 | 1681 | Return: |
|
1646 | 1682 | 0 : Si no hizo pudo escribir el bloque de datos |
|
1647 | 1683 | 1 : Si no pudo escribir el bloque de datos |
|
1648 | 1684 | """ |
|
1649 | 1685 |
if not( |
|
1650 | 1686 | return 0 |
|
1651 | 1687 | |
|
1652 | 1688 | self.writeBlock() |
|
1653 | 1689 | |
|
1654 | 1690 | print "[Writing] Block No. %d/%d" %(self.blockIndex, |
|
1655 | 1691 | self.processingHeaderObj.dataBlocksPerFile) |
|
1656 | 1692 | |
|
1657 | 1693 | return 1 |
|
1658 | 1694 | |
|
1659 | 1695 | def setNextFile(self): |
|
1660 | 1696 | """ |
|
1661 | 1697 | Determina el siguiente file que sera escrito |
|
1662 | 1698 | |
|
1663 | 1699 | Affected: |
|
1664 | 1700 | self.filename |
|
1665 | 1701 | self.subfolder |
|
1666 | 1702 | self.fp |
|
1667 | 1703 | self.setFile |
|
1668 | 1704 | self.flagIsNewFile |
|
1669 | 1705 | |
|
1670 | 1706 | Return: |
|
1671 | 1707 | 0 : Si el archivo no puede ser escrito |
|
1672 | 1708 | 1 : Si el archivo esta listo para ser escrito |
|
1673 | 1709 | """ |
|
1674 | 1710 | ext = self.ext |
|
1675 | 1711 | path = self.path |
|
1676 | 1712 | |
|
1677 | 1713 | if self.fp != None: |
|
1678 | 1714 | self.fp.close() |
|
1679 | 1715 | |
|
1680 | 1716 |
timeTuple = time.localtime( |
|
1681 | 1717 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
1682 | 1718 | |
|
1683 | 1719 |
fullpath = os.path.join( |
|
1684 | 1720 | setFile = self.setFile |
|
1685 | 1721 | |
|
1686 | 1722 |
if not( |
|
1687 | 1723 | os.mkdir(fullpath) |
|
1688 | 1724 | setFile = -1 #inicializo mi contador de seteo |
|
1689 | 1725 | else: |
|
1690 | 1726 |
filesList = os.listdir( |
|
1691 | 1727 |
if len( |
|
1692 | 1728 |
filesList = sorted( |
|
1693 | 1729 | filen = filesList[-1] |
|
1694 | 1730 | # el filename debera tener el siguiente formato |
|
1695 | 1731 | # 0 1234 567 89A BCDE (hex) |
|
1696 | 1732 | # x YYYY DDD SSS .ext |
|
1697 | 1733 |
if isNumber( |
|
1698 |
|
|
|
1734 | # inicializo mi contador de seteo al seteo del ultimo file | |
|
1735 | setFile = int(filen[8:11]) | |
|
1699 | 1736 | else: |
|
1700 | 1737 | setFile = -1 |
|
1701 | 1738 | else: |
|
1702 | 1739 | setFile = -1 #inicializo mi contador de seteo |
|
1703 | 1740 | |
|
1704 | 1741 | setFile += 1 |
|
1705 | 1742 | |
|
1706 | 1743 | #If this is a new day it resets some values |
|
1707 | 1744 | if self.dataOut.datatime.date() > self.fileDate: |
|
1708 | 1745 | setFile = 0 |
|
1709 | 1746 | self.nTotalBlocks = 0 |
|
1710 | 1747 | |
|
1711 | filen = '%s%4.4d%3.3d%3.3d%s' % (self.optchar, timeTuple.tm_year, timeTuple.tm_yday, setFile, ext ) | |
|
1748 | filen = '%s%4.4d%3.3d%3.3d%s' % ( | |
|
1749 | self.optchar, timeTuple.tm_year, timeTuple.tm_yday, setFile, ext) | |
|
1712 | 1750 | |
|
1713 | 1751 |
filename = os.path.join( |
|
1714 | 1752 | |
|
1715 | 1753 |
fp = open( |
|
1716 | 1754 | |
|
1717 | 1755 | self.blockIndex = 0 |
|
1718 | 1756 | |
|
1719 | 1757 | #guardando atributos |
|
1720 | 1758 | self.filename = filename |
|
1721 | 1759 | self.subfolder = subfolder |
|
1722 | 1760 | self.fp = fp |
|
1723 | 1761 | self.setFile = setFile |
|
1724 | 1762 | self.flagIsNewFile = 1 |
|
1725 | 1763 | self.fileDate = self.dataOut.datatime.date() |
|
1726 | 1764 | |
|
1727 | 1765 | self.setFirstHeader() |
|
1728 | 1766 | |
|
1729 | 1767 | print '[Writing] Opening file: %s'%self.filename |
|
1730 | 1768 | |
|
1731 | 1769 | self.__writeFirstHeader() |
|
1732 | 1770 | |
|
1733 | 1771 | return 1 |
|
1734 | 1772 | |
|
1735 | 1773 | def setup(self, dataOut, path, blocksPerFile, profilesPerBlock=64, set=None, ext=None, datatype=4): |
|
1736 | 1774 | """ |
|
1737 | 1775 | Setea el tipo de formato en la cual sera guardada la data y escribe el First Header |
|
1738 | 1776 | |
|
1739 | 1777 | Inputs: |
|
1740 | 1778 | path : directory where data will be saved |
|
1741 | 1779 | profilesPerBlock : number of profiles per block |
|
1742 | 1780 | set : initial file set |
|
1743 | 1781 | datatype : An integer number that defines data type: |
|
1744 | 1782 | 0 : int8 (1 byte) |
|
1745 | 1783 | 1 : int16 (2 bytes) |
|
1746 | 1784 | 2 : int32 (4 bytes) |
|
1747 | 1785 | 3 : int64 (8 bytes) |
|
1748 | 1786 | 4 : float32 (4 bytes) |
|
1749 | 1787 | 5 : double64 (8 bytes) |
|
1750 | 1788 | |
|
1751 | 1789 | Return: |
|
1752 | 1790 | 0 : Si no realizo un buen seteo |
|
1753 | 1791 | 1 : Si realizo un buen seteo |
|
1754 | 1792 | """ |
|
1755 | 1793 | |
|
1756 | 1794 | if ext == None: |
|
1757 | 1795 | ext = self.ext |
|
1758 | 1796 | |
|
1759 | 1797 | self.ext = ext.lower() |
|
1760 | 1798 | |
|
1761 | 1799 | self.path = path |
|
1762 | 1800 | |
|
1763 | 1801 | if set is None: |
|
1764 | 1802 | self.setFile = -1 |
|
1765 | 1803 | else: |
|
1766 | 1804 | self.setFile = set - 1 |
|
1767 | 1805 | |
|
1768 | 1806 | self.blocksPerFile = blocksPerFile |
|
1769 | 1807 | |
|
1770 | 1808 | self.profilesPerBlock = profilesPerBlock |
|
1771 | 1809 | |
|
1772 | 1810 | self.dataOut = dataOut |
|
1773 | 1811 | self.fileDate = self.dataOut.datatime.date() |
|
1774 | 1812 | #By default |
|
1775 | 1813 | self.dtype = self.dataOut.dtype |
|
1776 | 1814 | |
|
1777 | 1815 | if datatype is not None: |
|
1778 | 1816 | self.dtype = get_numpy_dtype(datatype) |
|
1779 | 1817 | |
|
1780 | 1818 | if not(self.setNextFile()): |
|
1781 | 1819 | print "[Writing] There isn't a next file" |
|
1782 | 1820 | return 0 |
|
1783 | 1821 | |
|
1784 | 1822 | self.setBlockDimension() |
|
1785 | 1823 | |
|
1786 | 1824 | return 1 |
|
1787 | 1825 | |
|
1788 | 1826 | def run(self, dataOut, path, blocksPerFile, profilesPerBlock=64, set=None, ext=None, datatype=4, **kwargs): |
|
1789 | 1827 | |
|
1790 | 1828 | if not(self.isConfig): |
|
1791 | 1829 | |
|
1792 |
self.setup(dataOut, path, blocksPerFile, profilesPerBlock=profilesPerBlock, |
|
|
1830 | self.setup(dataOut, path, blocksPerFile, profilesPerBlock=profilesPerBlock, | |
|
1831 | set=set, ext=ext, datatype=datatype, **kwargs) | |
|
1793 | 1832 | self.isConfig = True |
|
1794 | 1833 | |
|
1795 | 1834 | self.putData() |
@@ -1,1095 +1,1095 | |||
|
1 | 1 | import numpy |
|
2 | 2 | import time |
|
3 | 3 | import os |
|
4 | 4 | import h5py |
|
5 | 5 | import re |
|
6 | 6 | import datetime |
|
7 | 7 | |
|
8 | 8 | from schainpy.model.data.jrodata import * |
|
9 | 9 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation |
|
10 | 10 | # from jroIO_base import * |
|
11 | 11 | from schainpy.model.io.jroIO_base import * |
|
12 | 12 | import schainpy |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class ParamReader(ProcessingUnit): |
|
16 | 16 | ''' |
|
17 | 17 | Reads HDF5 format files |
|
18 | 18 | |
|
19 | 19 | path |
|
20 | 20 | |
|
21 | 21 | startDate |
|
22 | 22 | |
|
23 | 23 | endDate |
|
24 | 24 | |
|
25 | 25 | startTime |
|
26 | 26 | |
|
27 | 27 | endTime |
|
28 | 28 | ''' |
|
29 | 29 | |
|
30 | 30 | ext = ".hdf5" |
|
31 | 31 | |
|
32 | 32 | optchar = "D" |
|
33 | 33 | |
|
34 | 34 | timezone = None |
|
35 | 35 | |
|
36 | 36 | startTime = None |
|
37 | 37 | |
|
38 | 38 | endTime = None |
|
39 | 39 | |
|
40 | 40 | fileIndex = None |
|
41 | 41 | |
|
42 | 42 | utcList = None #To select data in the utctime list |
|
43 | 43 | |
|
44 | 44 | blockList = None #List to blocks to be read from the file |
|
45 | 45 | |
|
46 | 46 | blocksPerFile = None #Number of blocks to be read |
|
47 | 47 | |
|
48 | 48 | blockIndex = None |
|
49 | 49 | |
|
50 | 50 | path = None |
|
51 | 51 | |
|
52 | 52 | #List of Files |
|
53 | 53 | |
|
54 | 54 | filenameList = None |
|
55 | 55 | |
|
56 | 56 | datetimeList = None |
|
57 | 57 | |
|
58 | 58 | #Hdf5 File |
|
59 | 59 | |
|
60 | 60 | listMetaname = None |
|
61 | 61 | |
|
62 | 62 | listMeta = None |
|
63 | 63 | |
|
64 | 64 | listDataname = None |
|
65 | 65 | |
|
66 | 66 | listData = None |
|
67 | 67 | |
|
68 | 68 | listShapes = None |
|
69 | 69 | |
|
70 | 70 | fp = None |
|
71 | 71 | |
|
72 | 72 | #dataOut reconstruction |
|
73 | 73 | |
|
74 | 74 | dataOut = None |
|
75 | 75 | |
|
76 | 76 | |
|
77 | 77 | def __init__(self, **kwargs): |
|
78 | 78 | ProcessingUnit.__init__(self, **kwargs) |
|
79 | 79 | self.dataOut = Parameters() |
|
80 | 80 | return |
|
81 | 81 | |
|
82 | 82 | def setup(self, **kwargs): |
|
83 | 83 | |
|
84 | 84 | path = kwargs['path'] |
|
85 | 85 | startDate = kwargs['startDate'] |
|
86 | 86 | endDate = kwargs['endDate'] |
|
87 | 87 | startTime = kwargs['startTime'] |
|
88 | 88 | endTime = kwargs['endTime'] |
|
89 | 89 | walk = kwargs['walk'] |
|
90 | 90 | if kwargs.has_key('ext'): |
|
91 | 91 | ext = kwargs['ext'] |
|
92 | 92 | else: |
|
93 | 93 | ext = '.hdf5' |
|
94 | 94 | if kwargs.has_key('timezone'): |
|
95 | 95 | self.timezone = kwargs['timezone'] |
|
96 | 96 | else: |
|
97 | 97 | self.timezone = 'lt' |
|
98 | 98 | |
|
99 | 99 | print "[Reading] Searching files in offline mode ..." |
|
100 | 100 | pathList, filenameList = self.searchFilesOffLine(path, startDate=startDate, endDate=endDate, |
|
101 | 101 | startTime=startTime, endTime=endTime, |
|
102 | 102 | ext=ext, walk=walk) |
|
103 | 103 | |
|
104 | 104 | if not(filenameList): |
|
105 | 105 | print "There is no files into the folder: %s"%(path) |
|
106 | 106 | sys.exit(-1) |
|
107 | 107 | |
|
108 | 108 | self.fileIndex = -1 |
|
109 | 109 | self.startTime = startTime |
|
110 | 110 | self.endTime = endTime |
|
111 | 111 | |
|
112 | 112 | self.__readMetadata() |
|
113 | 113 | |
|
114 | 114 | self.__setNextFileOffline() |
|
115 | 115 | |
|
116 | 116 | return |
|
117 | 117 | |
|
118 | 118 | def searchFilesOffLine(self, |
|
119 | 119 | path, |
|
120 | 120 | startDate=None, |
|
121 | 121 | endDate=None, |
|
122 | 122 | startTime=datetime.time(0,0,0), |
|
123 | 123 | endTime=datetime.time(23,59,59), |
|
124 | 124 | ext='.hdf5', |
|
125 | 125 | walk=True): |
|
126 | 126 | |
|
127 | 127 | expLabel = '' |
|
128 | 128 | self.filenameList = [] |
|
129 | 129 | self.datetimeList = [] |
|
130 | 130 | |
|
131 | 131 | pathList = [] |
|
132 | 132 | |
|
133 | 133 | JRODataObj = JRODataReader() |
|
134 | 134 | dateList, pathList = JRODataObj.findDatafiles(path, startDate, endDate, expLabel, ext, walk, include_path=True) |
|
135 | 135 | |
|
136 | 136 | if dateList == []: |
|
137 | 137 | print "[Reading] No *%s files in %s from %s to %s)"%(ext, path, |
|
138 | 138 | datetime.datetime.combine(startDate,startTime).ctime(), |
|
139 | 139 | datetime.datetime.combine(endDate,endTime).ctime()) |
|
140 | 140 | |
|
141 | 141 | return None, None |
|
142 | 142 | |
|
143 | 143 | if len(dateList) > 1: |
|
144 | 144 | print "[Reading] %d days were found in date range: %s - %s" %(len(dateList), startDate, endDate) |
|
145 | 145 | else: |
|
146 | 146 | print "[Reading] data was found for the date %s" %(dateList[0]) |
|
147 | 147 | |
|
148 | 148 | filenameList = [] |
|
149 | 149 | datetimeList = [] |
|
150 | 150 | |
|
151 | 151 | #---------------------------------------------------------------------------------- |
|
152 | 152 | |
|
153 | 153 | for thisPath in pathList: |
|
154 | 154 | # thisPath = pathList[pathDict[file]] |
|
155 | 155 | |
|
156 | 156 | fileList = glob.glob1(thisPath, "*%s" %ext) |
|
157 | 157 | fileList.sort() |
|
158 | 158 | |
|
159 | 159 | for file in fileList: |
|
160 | 160 | |
|
161 | 161 | filename = os.path.join(thisPath,file) |
|
162 | 162 | |
|
163 | 163 | if not isFileInDateRange(filename, startDate, endDate): |
|
164 | 164 | continue |
|
165 | 165 | |
|
166 | 166 | thisDatetime = self.__isFileInTimeRange(filename, startDate, endDate, startTime, endTime) |
|
167 | 167 | |
|
168 | 168 | if not(thisDatetime): |
|
169 | 169 | continue |
|
170 | 170 | |
|
171 | 171 | filenameList.append(filename) |
|
172 | 172 | datetimeList.append(thisDatetime) |
|
173 | 173 | |
|
174 | 174 | if not(filenameList): |
|
175 | 175 | print "[Reading] Any file was found int time range %s - %s" %(datetime.datetime.combine(startDate,startTime).ctime(), datetime.datetime.combine(endDate,endTime).ctime()) |
|
176 | 176 | return None, None |
|
177 | 177 | |
|
178 | 178 | print "[Reading] %d file(s) was(were) found in time range: %s - %s" %(len(filenameList), startTime, endTime) |
|
179 | 179 | |
|
180 | 180 | |
|
181 | for i in range(len(filenameList)): | |
|
182 | print "[Reading] %s -> [%s]" %(filenameList[i], datetimeList[i].ctime()) | |
|
181 | # for i in range(len(filenameList)): | |
|
182 | # print "[Reading] %s -> [%s]" %(filenameList[i], datetimeList[i].ctime()) | |
|
183 | 183 | |
|
184 | 184 | self.filenameList = filenameList |
|
185 | 185 | self.datetimeList = datetimeList |
|
186 | 186 | |
|
187 | 187 | return pathList, filenameList |
|
188 | 188 | |
|
189 | 189 | def __isFileInTimeRange(self,filename, startDate, endDate, startTime, endTime): |
|
190 | 190 | |
|
191 | 191 | """ |
|
192 | 192 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. |
|
193 | 193 | |
|
194 | 194 | Inputs: |
|
195 | 195 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) |
|
196 | 196 | |
|
197 | 197 | startDate : fecha inicial del rango seleccionado en formato datetime.date |
|
198 | 198 | |
|
199 | 199 | endDate : fecha final del rango seleccionado en formato datetime.date |
|
200 | 200 | |
|
201 | 201 | startTime : tiempo inicial del rango seleccionado en formato datetime.time |
|
202 | 202 | |
|
203 | 203 | endTime : tiempo final del rango seleccionado en formato datetime.time |
|
204 | 204 | |
|
205 | 205 | Return: |
|
206 | 206 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de |
|
207 | 207 | fecha especificado, de lo contrario retorna False. |
|
208 | 208 | |
|
209 | 209 | Excepciones: |
|
210 | 210 | Si el archivo no existe o no puede ser abierto |
|
211 | 211 | Si la cabecera no puede ser leida. |
|
212 | 212 | |
|
213 | 213 | """ |
|
214 | 214 | |
|
215 | 215 | try: |
|
216 | 216 | fp = h5py.File(filename,'r') |
|
217 | 217 | grp1 = fp['Data'] |
|
218 | 218 | |
|
219 | 219 | except IOError: |
|
220 | 220 | traceback.print_exc() |
|
221 | 221 | raise IOError, "The file %s can't be opened" %(filename) |
|
222 | 222 | #chino rata |
|
223 | 223 | #In case has utctime attribute |
|
224 | 224 | grp2 = grp1['utctime'] |
|
225 | 225 | # thisUtcTime = grp2.value[0] - 5*3600 #To convert to local time |
|
226 | 226 | thisUtcTime = grp2.value[0] |
|
227 | 227 | |
|
228 | 228 | fp.close() |
|
229 | 229 | |
|
230 | 230 | if self.timezone == 'lt': |
|
231 | 231 | thisUtcTime -= 5*3600 |
|
232 | 232 | |
|
233 | 233 | thisDatetime = datetime.datetime.fromtimestamp(thisUtcTime[0] + 5*3600) |
|
234 | 234 | # thisDatetime = datetime.datetime.fromtimestamp(thisUtcTime[0]) |
|
235 | 235 | thisDate = thisDatetime.date() |
|
236 | 236 | thisTime = thisDatetime.time() |
|
237 | 237 | |
|
238 | 238 | startUtcTime = (datetime.datetime.combine(thisDate,startTime)- datetime.datetime(1970, 1, 1)).total_seconds() |
|
239 | 239 | endUtcTime = (datetime.datetime.combine(thisDate,endTime)- datetime.datetime(1970, 1, 1)).total_seconds() |
|
240 | 240 | |
|
241 | 241 | #General case |
|
242 | 242 | # o>>>>>>>>>>>>>><<<<<<<<<<<<<<o |
|
243 | 243 | #-----------o----------------------------o----------- |
|
244 | 244 | # startTime endTime |
|
245 | 245 | |
|
246 | 246 | if endTime >= startTime: |
|
247 | 247 | thisUtcLog = numpy.logical_and(thisUtcTime > startUtcTime, thisUtcTime < endUtcTime) |
|
248 | 248 | if numpy.any(thisUtcLog): #If there is one block between the hours mentioned |
|
249 | 249 | return thisDatetime |
|
250 | 250 | return None |
|
251 | 251 | |
|
252 | 252 | #If endTime < startTime then endTime belongs to the next day |
|
253 | 253 | #<<<<<<<<<<<o o>>>>>>>>>>> |
|
254 | 254 | #-----------o----------------------------o----------- |
|
255 | 255 | # endTime startTime |
|
256 | 256 | |
|
257 | 257 | if (thisDate == startDate) and numpy.all(thisUtcTime < startUtcTime): |
|
258 | 258 | return None |
|
259 | 259 | |
|
260 | 260 | if (thisDate == endDate) and numpy.all(thisUtcTime > endUtcTime): |
|
261 | 261 | return None |
|
262 | 262 | |
|
263 | 263 | if numpy.all(thisUtcTime < startUtcTime) and numpy.all(thisUtcTime > endUtcTime): |
|
264 | 264 | return None |
|
265 | 265 | |
|
266 | 266 | return thisDatetime |
|
267 | 267 | |
|
268 | 268 | def __setNextFileOffline(self): |
|
269 | 269 | |
|
270 | 270 | self.fileIndex += 1 |
|
271 | 271 | idFile = self.fileIndex |
|
272 | 272 | |
|
273 | 273 | if not(idFile < len(self.filenameList)): |
|
274 | 274 | print "No more Files" |
|
275 | 275 | return 0 |
|
276 | 276 | |
|
277 | 277 | filename = self.filenameList[idFile] |
|
278 | 278 | |
|
279 | 279 | filePointer = h5py.File(filename,'r') |
|
280 | 280 | |
|
281 | 281 | self.filename = filename |
|
282 | 282 | |
|
283 | 283 | self.fp = filePointer |
|
284 | 284 | |
|
285 | 285 | print "Setting the file: %s"%self.filename |
|
286 | 286 | |
|
287 | 287 | # self.__readMetadata() |
|
288 | 288 | self.__setBlockList() |
|
289 | 289 | self.__readData() |
|
290 | 290 | # self.nRecords = self.fp['Data'].attrs['blocksPerFile'] |
|
291 | 291 | # self.nRecords = self.fp['Data'].attrs['nRecords'] |
|
292 | 292 | self.blockIndex = 0 |
|
293 | 293 | return 1 |
|
294 | 294 | |
|
295 | 295 | def __setBlockList(self): |
|
296 | 296 | ''' |
|
297 | 297 | Selects the data within the times defined |
|
298 | 298 | |
|
299 | 299 | self.fp |
|
300 | 300 | self.startTime |
|
301 | 301 | self.endTime |
|
302 | 302 | |
|
303 | 303 | self.blockList |
|
304 | 304 | self.blocksPerFile |
|
305 | 305 | |
|
306 | 306 | ''' |
|
307 | 307 | fp = self.fp |
|
308 | 308 | startTime = self.startTime |
|
309 | 309 | endTime = self.endTime |
|
310 | 310 | |
|
311 | 311 | grp = fp['Data'] |
|
312 | 312 | thisUtcTime = grp['utctime'].value.astype(numpy.float)[0] |
|
313 | 313 | |
|
314 | 314 | #ERROOOOR |
|
315 | 315 | if self.timezone == 'lt': |
|
316 | 316 | thisUtcTime -= 5*3600 |
|
317 | 317 | |
|
318 | 318 | thisDatetime = datetime.datetime.fromtimestamp(thisUtcTime[0] + 5*3600) |
|
319 | 319 | |
|
320 | 320 | thisDate = thisDatetime.date() |
|
321 | 321 | thisTime = thisDatetime.time() |
|
322 | 322 | |
|
323 | 323 | startUtcTime = (datetime.datetime.combine(thisDate,startTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
324 | 324 | endUtcTime = (datetime.datetime.combine(thisDate,endTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
325 | 325 | |
|
326 | 326 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] |
|
327 | 327 | |
|
328 | 328 | self.blockList = ind |
|
329 | 329 | self.blocksPerFile = len(ind) |
|
330 | 330 | |
|
331 | 331 | return |
|
332 | 332 | |
|
333 | 333 | def __readMetadata(self): |
|
334 | 334 | ''' |
|
335 | 335 | Reads Metadata |
|
336 | 336 | |
|
337 | 337 | self.pathMeta |
|
338 | 338 | |
|
339 | 339 | self.listShapes |
|
340 | 340 | self.listMetaname |
|
341 | 341 | self.listMeta |
|
342 | 342 | |
|
343 | 343 | ''' |
|
344 | 344 | |
|
345 | 345 | # grp = self.fp['Data'] |
|
346 | 346 | # pathMeta = os.path.join(self.path, grp.attrs['metadata']) |
|
347 | 347 | # |
|
348 | 348 | # if pathMeta == self.pathMeta: |
|
349 | 349 | # return |
|
350 | 350 | # else: |
|
351 | 351 | # self.pathMeta = pathMeta |
|
352 | 352 | # |
|
353 | 353 | # filePointer = h5py.File(self.pathMeta,'r') |
|
354 | 354 | # groupPointer = filePointer['Metadata'] |
|
355 | 355 | |
|
356 | 356 | filename = self.filenameList[0] |
|
357 | 357 | |
|
358 | 358 | fp = h5py.File(filename,'r') |
|
359 | 359 | |
|
360 | 360 | gp = fp['Metadata'] |
|
361 | 361 | |
|
362 | 362 | listMetaname = [] |
|
363 | 363 | listMetadata = [] |
|
364 | 364 | for item in gp.items(): |
|
365 | 365 | name = item[0] |
|
366 | 366 | |
|
367 | 367 | if name=='array dimensions': |
|
368 | 368 | table = gp[name][:] |
|
369 | 369 | listShapes = {} |
|
370 | 370 | for shapes in table: |
|
371 | 371 | listShapes[shapes[0]] = numpy.array([shapes[1],shapes[2],shapes[3],shapes[4],shapes[5]]) |
|
372 | 372 | else: |
|
373 | 373 | data = gp[name].value |
|
374 | 374 | listMetaname.append(name) |
|
375 | 375 | listMetadata.append(data) |
|
376 | 376 | |
|
377 | 377 | # if name=='type': |
|
378 | 378 | # self.__initDataOut(data) |
|
379 | 379 | |
|
380 | 380 | self.listShapes = listShapes |
|
381 | 381 | self.listMetaname = listMetaname |
|
382 | 382 | self.listMeta = listMetadata |
|
383 | 383 | |
|
384 | 384 | fp.close() |
|
385 | 385 | return |
|
386 | 386 | |
|
387 | 387 | def __readData(self): |
|
388 | 388 | grp = self.fp['Data'] |
|
389 | 389 | listdataname = [] |
|
390 | 390 | listdata = [] |
|
391 | 391 | |
|
392 | 392 | for item in grp.items(): |
|
393 | 393 | name = item[0] |
|
394 | 394 | listdataname.append(name) |
|
395 | 395 | |
|
396 | 396 | array = self.__setDataArray(grp[name],self.listShapes[name]) |
|
397 | 397 | listdata.append(array) |
|
398 | 398 | |
|
399 | 399 | self.listDataname = listdataname |
|
400 | 400 | self.listData = listdata |
|
401 | 401 | return |
|
402 | 402 | |
|
403 | 403 | def __setDataArray(self, dataset, shapes): |
|
404 | 404 | |
|
405 | 405 | nDims = shapes[0] |
|
406 | 406 | |
|
407 | 407 | nDim2 = shapes[1] #Dimension 0 |
|
408 | 408 | |
|
409 | 409 | nDim1 = shapes[2] #Dimension 1, number of Points or Parameters |
|
410 | 410 | |
|
411 | 411 | nDim0 = shapes[3] #Dimension 2, number of samples or ranges |
|
412 | 412 | |
|
413 | 413 | mode = shapes[4] #Mode of storing |
|
414 | 414 | |
|
415 | 415 | blockList = self.blockList |
|
416 | 416 | |
|
417 | 417 | blocksPerFile = self.blocksPerFile |
|
418 | 418 | |
|
419 | 419 | #Depending on what mode the data was stored |
|
420 | 420 | if mode == 0: #Divided in channels |
|
421 | 421 | arrayData = dataset.value.astype(numpy.float)[0][blockList] |
|
422 | 422 | if mode == 1: #Divided in parameter |
|
423 | 423 | strds = 'table' |
|
424 | 424 | nDatas = nDim1 |
|
425 | 425 | newShapes = (blocksPerFile,nDim2,nDim0) |
|
426 | 426 | elif mode==2: #Concatenated in a table |
|
427 | 427 | strds = 'table0' |
|
428 | 428 | arrayData = dataset[strds].value |
|
429 | 429 | #Selecting part of the dataset |
|
430 | 430 | utctime = arrayData[:,0] |
|
431 | 431 | u, indices = numpy.unique(utctime, return_index=True) |
|
432 | 432 | |
|
433 | 433 | if blockList.size != indices.size: |
|
434 | 434 | indMin = indices[blockList[0]] |
|
435 | 435 | if blockList[1] + 1 >= indices.size: |
|
436 | 436 | arrayData = arrayData[indMin:,:] |
|
437 | 437 | else: |
|
438 | 438 | indMax = indices[blockList[1] + 1] |
|
439 | 439 | arrayData = arrayData[indMin:indMax,:] |
|
440 | 440 | return arrayData |
|
441 | 441 | |
|
442 | 442 | # One dimension |
|
443 | 443 | if nDims == 0: |
|
444 | 444 | arrayData = dataset.value.astype(numpy.float)[0][blockList] |
|
445 | 445 | |
|
446 | 446 | # Two dimensions |
|
447 | 447 | elif nDims == 2: |
|
448 | 448 | arrayData = numpy.zeros((blocksPerFile,nDim1,nDim0)) |
|
449 | 449 | newShapes = (blocksPerFile,nDim0) |
|
450 | 450 | nDatas = nDim1 |
|
451 | 451 | |
|
452 | 452 | for i in range(nDatas): |
|
453 | 453 | data = dataset[strds + str(i)].value |
|
454 | 454 | arrayData[:,i,:] = data[blockList,:] |
|
455 | 455 | |
|
456 | 456 | # Three dimensions |
|
457 | 457 | else: |
|
458 | 458 | arrayData = numpy.zeros((blocksPerFile,nDim2,nDim1,nDim0)) |
|
459 | 459 | for i in range(nDatas): |
|
460 | 460 | |
|
461 | 461 | data = dataset[strds + str(i)].value |
|
462 | 462 | |
|
463 | 463 | for b in range(blockList.size): |
|
464 | 464 | arrayData[b,:,i,:] = data[:,:,blockList[b]] |
|
465 | 465 | |
|
466 | 466 | return arrayData |
|
467 | 467 | |
|
468 | 468 | def __setDataOut(self): |
|
469 | 469 | listMeta = self.listMeta |
|
470 | 470 | listMetaname = self.listMetaname |
|
471 | 471 | listDataname = self.listDataname |
|
472 | 472 | listData = self.listData |
|
473 | 473 | listShapes = self.listShapes |
|
474 | 474 | |
|
475 | 475 | blockIndex = self.blockIndex |
|
476 | 476 | # blockList = self.blockList |
|
477 | 477 | |
|
478 | 478 | for i in range(len(listMeta)): |
|
479 | 479 | setattr(self.dataOut,listMetaname[i],listMeta[i]) |
|
480 | 480 | |
|
481 | 481 | for j in range(len(listData)): |
|
482 | 482 | nShapes = listShapes[listDataname[j]][0] |
|
483 | 483 | mode = listShapes[listDataname[j]][4] |
|
484 | 484 | if nShapes == 1: |
|
485 | 485 | setattr(self.dataOut,listDataname[j],listData[j][blockIndex]) |
|
486 | 486 | elif nShapes > 1: |
|
487 | 487 | setattr(self.dataOut,listDataname[j],listData[j][blockIndex,:]) |
|
488 | 488 | elif mode==0: |
|
489 | 489 | setattr(self.dataOut,listDataname[j],listData[j][blockIndex]) |
|
490 | 490 | #Mode Meteors |
|
491 | 491 | elif mode ==2: |
|
492 | 492 | selectedData = self.__selectDataMode2(listData[j], blockIndex) |
|
493 | 493 | setattr(self.dataOut, listDataname[j], selectedData) |
|
494 | 494 | return |
|
495 | 495 | |
|
496 | 496 | def __selectDataMode2(self, data, blockIndex): |
|
497 | 497 | utctime = data[:,0] |
|
498 | 498 | aux, indices = numpy.unique(utctime, return_inverse=True) |
|
499 | 499 | selInd = numpy.where(indices == blockIndex)[0] |
|
500 | 500 | selData = data[selInd,:] |
|
501 | 501 | |
|
502 | 502 | return selData |
|
503 | 503 | |
|
504 | 504 | def getData(self): |
|
505 | 505 | |
|
506 | 506 | # if self.flagNoMoreFiles: |
|
507 | 507 | # self.dataOut.flagNoData = True |
|
508 | 508 | # print 'Process finished' |
|
509 | 509 | # return 0 |
|
510 | 510 | # |
|
511 | 511 | if self.blockIndex==self.blocksPerFile: |
|
512 | 512 | if not( self.__setNextFileOffline() ): |
|
513 | 513 | self.dataOut.flagNoData = True |
|
514 | 514 | return 0 |
|
515 | 515 | |
|
516 | 516 | # if self.datablock == None: # setear esta condicion cuando no hayan datos por leers |
|
517 | 517 | # self.dataOut.flagNoData = True |
|
518 | 518 | # return 0 |
|
519 | 519 | # self.__readData() |
|
520 | 520 | self.__setDataOut() |
|
521 | 521 | self.dataOut.flagNoData = False |
|
522 | 522 | |
|
523 | 523 | self.blockIndex += 1 |
|
524 | 524 | |
|
525 | 525 | return |
|
526 | 526 | |
|
527 | 527 | def run(self, **kwargs): |
|
528 | 528 | |
|
529 | 529 | if not(self.isConfig): |
|
530 | 530 | self.setup(**kwargs) |
|
531 | 531 | # self.setObjProperties() |
|
532 | 532 | self.isConfig = True |
|
533 | 533 | |
|
534 | 534 | self.getData() |
|
535 | 535 | |
|
536 | 536 | return |
|
537 | 537 | |
|
538 | 538 | class ParamWriter(Operation): |
|
539 | 539 | ''' |
|
540 | 540 | HDF5 Writer, stores parameters data in HDF5 format files |
|
541 | 541 | |
|
542 | 542 | path: path where the files will be stored |
|
543 | 543 | |
|
544 | 544 | blocksPerFile: number of blocks that will be saved in per HDF5 format file |
|
545 | 545 | |
|
546 | 546 | mode: selects the data stacking mode: '0' channels, '1' parameters, '3' table (for meteors) |
|
547 | 547 | |
|
548 | 548 | metadataList: list of attributes that will be stored as metadata |
|
549 | 549 | |
|
550 | 550 | dataList: list of attributes that will be stores as data |
|
551 | 551 | |
|
552 | 552 | ''' |
|
553 | 553 | |
|
554 | 554 | |
|
555 | 555 | ext = ".hdf5" |
|
556 | 556 | |
|
557 | 557 | optchar = "D" |
|
558 | 558 | |
|
559 | 559 | metaoptchar = "M" |
|
560 | 560 | |
|
561 | 561 | metaFile = None |
|
562 | 562 | |
|
563 | 563 | filename = None |
|
564 | 564 | |
|
565 | 565 | path = None |
|
566 | 566 | |
|
567 | 567 | setFile = None |
|
568 | 568 | |
|
569 | 569 | fp = None |
|
570 | 570 | |
|
571 | 571 | grp = None |
|
572 | 572 | |
|
573 | 573 | ds = None |
|
574 | 574 | |
|
575 | 575 | firsttime = True |
|
576 | 576 | |
|
577 | 577 | #Configurations |
|
578 | 578 | |
|
579 | 579 | blocksPerFile = None |
|
580 | 580 | |
|
581 | 581 | blockIndex = None |
|
582 | 582 | |
|
583 | 583 | dataOut = None |
|
584 | 584 | |
|
585 | 585 | #Data Arrays |
|
586 | 586 | |
|
587 | 587 | dataList = None |
|
588 | 588 | |
|
589 | 589 | metadataList = None |
|
590 | 590 | |
|
591 | 591 | # arrayDim = None |
|
592 | 592 | |
|
593 | 593 | dsList = None #List of dictionaries with dataset properties |
|
594 | 594 | |
|
595 | 595 | tableDim = None |
|
596 | 596 | |
|
597 | 597 | # dtype = [('arrayName', 'S20'),('nChannels', 'i'), ('nPoints', 'i'), ('nSamples', 'i'),('mode', 'b')] |
|
598 | 598 | |
|
599 | 599 | dtype = [('arrayName', 'S20'),('nDimensions', 'i'), ('dim2', 'i'), ('dim1', 'i'),('dim0', 'i'),('mode', 'b')] |
|
600 | 600 | |
|
601 | 601 | currentDay = None |
|
602 | 602 | |
|
603 | 603 | lastTime = None |
|
604 | 604 | |
|
605 | 605 | def __init__(self, **kwargs): |
|
606 | 606 | Operation.__init__(self, **kwargs) |
|
607 | 607 | self.isConfig = False |
|
608 | 608 | return |
|
609 | 609 | |
|
610 | 610 | def setup(self, dataOut, path=None, blocksPerFile=10, metadataList=None, dataList=None, mode=None, **kwargs): |
|
611 | 611 | self.path = path |
|
612 | 612 | self.blocksPerFile = blocksPerFile |
|
613 | 613 | self.metadataList = metadataList |
|
614 | 614 | self.dataList = dataList |
|
615 | 615 | self.dataOut = dataOut |
|
616 | 616 | self.mode = mode |
|
617 | 617 | |
|
618 | 618 | if self.mode is not None: |
|
619 | 619 | self.mode = numpy.zeros(len(self.dataList)) + mode |
|
620 | 620 | else: |
|
621 | 621 | self.mode = numpy.ones(len(self.dataList)) |
|
622 | 622 | |
|
623 | 623 | arrayDim = numpy.zeros((len(self.dataList),5)) |
|
624 | 624 | |
|
625 | 625 | #Table dimensions |
|
626 | 626 | dtype0 = self.dtype |
|
627 | 627 | tableList = [] |
|
628 | 628 | |
|
629 | 629 | #Dictionary and list of tables |
|
630 | 630 | dsList = [] |
|
631 | 631 | |
|
632 | 632 | for i in range(len(self.dataList)): |
|
633 | 633 | dsDict = {} |
|
634 | 634 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
635 | 635 | dsDict['variable'] = self.dataList[i] |
|
636 | 636 | #--------------------- Conditionals ------------------------ |
|
637 | 637 | #There is no data |
|
638 | 638 | if dataAux is None: |
|
639 | 639 | return 0 |
|
640 | 640 | |
|
641 | 641 | #Not array, just a number |
|
642 | 642 | #Mode 0 |
|
643 | 643 | if type(dataAux)==float or type(dataAux)==int: |
|
644 | 644 | dsDict['mode'] = 0 |
|
645 | 645 | dsDict['nDim'] = 0 |
|
646 | 646 | arrayDim[i,0] = 0 |
|
647 | 647 | dsList.append(dsDict) |
|
648 | 648 | |
|
649 | 649 | #Mode 2: meteors |
|
650 | 650 | elif mode[i] == 2: |
|
651 | 651 | # dsDict['nDim'] = 0 |
|
652 | 652 | dsDict['dsName'] = 'table0' |
|
653 | 653 | dsDict['mode'] = 2 # Mode meteors |
|
654 | 654 | dsDict['shape'] = dataAux.shape[-1] |
|
655 | 655 | dsDict['nDim'] = 0 |
|
656 | 656 | dsDict['dsNumber'] = 1 |
|
657 | 657 | |
|
658 | 658 | arrayDim[i,3] = dataAux.shape[-1] |
|
659 | 659 | arrayDim[i,4] = mode[i] #Mode the data was stored |
|
660 | 660 | |
|
661 | 661 | dsList.append(dsDict) |
|
662 | 662 | |
|
663 | 663 | #Mode 1 |
|
664 | 664 | else: |
|
665 | 665 | arrayDim0 = dataAux.shape #Data dimensions |
|
666 | 666 | arrayDim[i,0] = len(arrayDim0) #Number of array dimensions |
|
667 | 667 | arrayDim[i,4] = mode[i] #Mode the data was stored |
|
668 | 668 | |
|
669 | 669 | strtable = 'table' |
|
670 | 670 | dsDict['mode'] = 1 # Mode parameters |
|
671 | 671 | |
|
672 | 672 | # Three-dimension arrays |
|
673 | 673 | if len(arrayDim0) == 3: |
|
674 | 674 | arrayDim[i,1:-1] = numpy.array(arrayDim0) |
|
675 | 675 | nTables = int(arrayDim[i,2]) |
|
676 | 676 | dsDict['dsNumber'] = nTables |
|
677 | 677 | dsDict['shape'] = arrayDim[i,2:4] |
|
678 | 678 | dsDict['nDim'] = 3 |
|
679 | 679 | |
|
680 | 680 | for j in range(nTables): |
|
681 | 681 | dsDict = dsDict.copy() |
|
682 | 682 | dsDict['dsName'] = strtable + str(j) |
|
683 | 683 | dsList.append(dsDict) |
|
684 | 684 | |
|
685 | 685 | # Two-dimension arrays |
|
686 | 686 | elif len(arrayDim0) == 2: |
|
687 | 687 | arrayDim[i,2:-1] = numpy.array(arrayDim0) |
|
688 | 688 | nTables = int(arrayDim[i,2]) |
|
689 | 689 | dsDict['dsNumber'] = nTables |
|
690 | 690 | dsDict['shape'] = arrayDim[i,3] |
|
691 | 691 | dsDict['nDim'] = 2 |
|
692 | 692 | |
|
693 | 693 | for j in range(nTables): |
|
694 | 694 | dsDict = dsDict.copy() |
|
695 | 695 | dsDict['dsName'] = strtable + str(j) |
|
696 | 696 | dsList.append(dsDict) |
|
697 | 697 | |
|
698 | 698 | # One-dimension arrays |
|
699 | 699 | elif len(arrayDim0) == 1: |
|
700 | 700 | arrayDim[i,3] = arrayDim0[0] |
|
701 | 701 | dsDict['shape'] = arrayDim0[0] |
|
702 | 702 | dsDict['dsNumber'] = 1 |
|
703 | 703 | dsDict['dsName'] = strtable + str(0) |
|
704 | 704 | dsDict['nDim'] = 1 |
|
705 | 705 | dsList.append(dsDict) |
|
706 | 706 | |
|
707 | 707 | table = numpy.array((self.dataList[i],) + tuple(arrayDim[i,:]),dtype = dtype0) |
|
708 | 708 | tableList.append(table) |
|
709 | 709 | |
|
710 | 710 | # self.arrayDim = arrayDim |
|
711 | 711 | self.dsList = dsList |
|
712 | 712 | self.tableDim = numpy.array(tableList, dtype = dtype0) |
|
713 | 713 | self.blockIndex = 0 |
|
714 | 714 | |
|
715 | 715 | timeTuple = time.localtime(dataOut.utctime) |
|
716 | 716 | self.currentDay = timeTuple.tm_yday |
|
717 | 717 | return 1 |
|
718 | 718 | |
|
719 | 719 | def putMetadata(self): |
|
720 | 720 | |
|
721 | 721 | fp = self.createMetadataFile() |
|
722 | 722 | self.writeMetadata(fp) |
|
723 | 723 | fp.close() |
|
724 | 724 | return |
|
725 | 725 | |
|
726 | 726 | def createMetadataFile(self): |
|
727 | 727 | ext = self.ext |
|
728 | 728 | path = self.path |
|
729 | 729 | setFile = self.setFile |
|
730 | 730 | |
|
731 | 731 | timeTuple = time.localtime(self.dataOut.utctime) |
|
732 | 732 | |
|
733 | 733 | subfolder = '' |
|
734 | 734 | fullpath = os.path.join( path, subfolder ) |
|
735 | 735 | |
|
736 | 736 | if not( os.path.exists(fullpath) ): |
|
737 | 737 | os.mkdir(fullpath) |
|
738 | 738 | setFile = -1 #inicializo mi contador de seteo |
|
739 | 739 | |
|
740 | 740 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
741 | 741 | fullpath = os.path.join( path, subfolder ) |
|
742 | 742 | |
|
743 | 743 | if not( os.path.exists(fullpath) ): |
|
744 | 744 | os.mkdir(fullpath) |
|
745 | 745 | setFile = -1 #inicializo mi contador de seteo |
|
746 | 746 | |
|
747 | 747 | else: |
|
748 | 748 | filesList = os.listdir( fullpath ) |
|
749 | 749 | filesList = sorted( filesList, key=str.lower ) |
|
750 | 750 | if len( filesList ) > 0: |
|
751 | 751 | filesList = [k for k in filesList if 'M' in k] |
|
752 | 752 | filen = filesList[-1] |
|
753 | 753 | # el filename debera tener el siguiente formato |
|
754 | 754 | # 0 1234 567 89A BCDE (hex) |
|
755 | 755 | # x YYYY DDD SSS .ext |
|
756 | 756 | if isNumber( filen[8:11] ): |
|
757 | 757 | setFile = int( filen[8:11] ) #inicializo mi contador de seteo al seteo del ultimo file |
|
758 | 758 | else: |
|
759 | 759 | setFile = -1 |
|
760 | 760 | else: |
|
761 | 761 | setFile = -1 #inicializo mi contador de seteo |
|
762 | 762 | |
|
763 | 763 | if self.setType is None: |
|
764 | 764 | setFile += 1 |
|
765 | 765 | file = '%s%4.4d%3.3d%03d%s' % (self.metaoptchar, |
|
766 | 766 | timeTuple.tm_year, |
|
767 | 767 | timeTuple.tm_yday, |
|
768 | 768 | setFile, |
|
769 | 769 | ext ) |
|
770 | 770 | else: |
|
771 | 771 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min |
|
772 | 772 | file = '%s%4.4d%3.3d%04d%s' % (self.metaoptchar, |
|
773 | 773 | timeTuple.tm_year, |
|
774 | 774 | timeTuple.tm_yday, |
|
775 | 775 | setFile, |
|
776 | 776 | ext ) |
|
777 | 777 | |
|
778 | 778 | filename = os.path.join( path, subfolder, file ) |
|
779 | 779 | self.metaFile = file |
|
780 | 780 | #Setting HDF5 File |
|
781 | 781 | fp = h5py.File(filename,'w') |
|
782 | 782 | |
|
783 | 783 | return fp |
|
784 | 784 | |
|
785 | 785 | def writeMetadata(self, fp): |
|
786 | 786 | |
|
787 | 787 | grp = fp.create_group("Metadata") |
|
788 | 788 | grp.create_dataset('array dimensions', data = self.tableDim, dtype = self.dtype) |
|
789 | 789 | |
|
790 | 790 | for i in range(len(self.metadataList)): |
|
791 | 791 | grp.create_dataset(self.metadataList[i], data=getattr(self.dataOut, self.metadataList[i])) |
|
792 | 792 | return |
|
793 | 793 | |
|
794 | 794 | def timeFlag(self): |
|
795 | 795 | currentTime = self.dataOut.utctime |
|
796 | 796 | |
|
797 | 797 | if self.lastTime is None: |
|
798 | 798 | self.lastTime = currentTime |
|
799 | 799 | |
|
800 | 800 | #Day |
|
801 | 801 | timeTuple = time.localtime(currentTime) |
|
802 | 802 | dataDay = timeTuple.tm_yday |
|
803 | 803 | |
|
804 | 804 | #Time |
|
805 | 805 | timeDiff = currentTime - self.lastTime |
|
806 | 806 | |
|
807 | 807 | #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora |
|
808 | 808 | if dataDay != self.currentDay: |
|
809 | 809 | self.currentDay = dataDay |
|
810 | 810 | return True |
|
811 | 811 | elif timeDiff > 3*60*60: |
|
812 | 812 | self.lastTime = currentTime |
|
813 | 813 | return True |
|
814 | 814 | else: |
|
815 | 815 | self.lastTime = currentTime |
|
816 | 816 | return False |
|
817 | 817 | |
|
818 | 818 | def setNextFile(self): |
|
819 | 819 | |
|
820 | 820 | ext = self.ext |
|
821 | 821 | path = self.path |
|
822 | 822 | setFile = self.setFile |
|
823 | 823 | mode = self.mode |
|
824 | 824 | |
|
825 | 825 | timeTuple = time.localtime(self.dataOut.utctime) |
|
826 | 826 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
827 | 827 | |
|
828 | 828 | fullpath = os.path.join( path, subfolder ) |
|
829 | 829 | |
|
830 | 830 | if os.path.exists(fullpath): |
|
831 | 831 | filesList = os.listdir( fullpath ) |
|
832 | 832 | filesList = [k for k in filesList if 'D' in k] |
|
833 | 833 | if len( filesList ) > 0: |
|
834 | 834 | filesList = sorted( filesList, key=str.lower ) |
|
835 | 835 | filen = filesList[-1] |
|
836 | 836 | # el filename debera tener el siguiente formato |
|
837 | 837 | # 0 1234 567 89A BCDE (hex) |
|
838 | 838 | # x YYYY DDD SSS .ext |
|
839 | 839 | if isNumber( filen[8:11] ): |
|
840 | 840 | setFile = int( filen[8:11] ) #inicializo mi contador de seteo al seteo del ultimo file |
|
841 | 841 | else: |
|
842 | 842 | setFile = -1 |
|
843 | 843 | else: |
|
844 | 844 | setFile = -1 #inicializo mi contador de seteo |
|
845 | 845 | else: |
|
846 | 846 | os.makedirs(fullpath) |
|
847 | 847 | setFile = -1 #inicializo mi contador de seteo |
|
848 | 848 | |
|
849 | 849 | if self.setType is None: |
|
850 | 850 | setFile += 1 |
|
851 | 851 | file = '%s%4.4d%3.3d%03d%s' % (self.metaoptchar, |
|
852 | 852 | timeTuple.tm_year, |
|
853 | 853 | timeTuple.tm_yday, |
|
854 | 854 | setFile, |
|
855 | 855 | ext ) |
|
856 | 856 | else: |
|
857 | 857 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min |
|
858 | 858 | file = '%s%4.4d%3.3d%04d%s' % (self.metaoptchar, |
|
859 | 859 | timeTuple.tm_year, |
|
860 | 860 | timeTuple.tm_yday, |
|
861 | 861 | setFile, |
|
862 | 862 | ext ) |
|
863 | 863 | |
|
864 | 864 | filename = os.path.join( path, subfolder, file ) |
|
865 | 865 | |
|
866 | 866 | #Setting HDF5 File |
|
867 | 867 | fp = h5py.File(filename,'w') |
|
868 | 868 | #write metadata |
|
869 | 869 | self.writeMetadata(fp) |
|
870 | 870 | #Write data |
|
871 | 871 | grp = fp.create_group("Data") |
|
872 | 872 | # grp.attrs['metadata'] = self.metaFile |
|
873 | 873 | |
|
874 | 874 | # grp.attrs['blocksPerFile'] = 0 |
|
875 | 875 | ds = [] |
|
876 | 876 | data = [] |
|
877 | 877 | dsList = self.dsList |
|
878 | 878 | i = 0 |
|
879 | 879 | while i < len(dsList): |
|
880 | 880 | dsInfo = dsList[i] |
|
881 | 881 | #One-dimension data |
|
882 | 882 | if dsInfo['mode'] == 0: |
|
883 | 883 | # ds0 = grp.create_dataset(self.dataList[i], (1,1), maxshape=(1,self.blocksPerFile) , chunks = True, dtype='S20') |
|
884 | 884 | ds0 = grp.create_dataset(dsInfo['variable'], (1,1), maxshape=(1,self.blocksPerFile) , chunks = True, dtype=numpy.float64) |
|
885 | 885 | ds.append(ds0) |
|
886 | 886 | data.append([]) |
|
887 | 887 | i += 1 |
|
888 | 888 | continue |
|
889 | 889 | # nDimsForDs.append(nDims[i]) |
|
890 | 890 | |
|
891 | 891 | elif dsInfo['mode'] == 2: |
|
892 | 892 | grp0 = grp.create_group(dsInfo['variable']) |
|
893 | 893 | ds0 = grp0.create_dataset(dsInfo['dsName'], (1,dsInfo['shape']), data = numpy.zeros((1,dsInfo['shape'])) , maxshape=(None,dsInfo['shape']), chunks=True) |
|
894 | 894 | ds.append(ds0) |
|
895 | 895 | data.append([]) |
|
896 | 896 | i += 1 |
|
897 | 897 | continue |
|
898 | 898 | |
|
899 | 899 | elif dsInfo['mode'] == 1: |
|
900 | 900 | grp0 = grp.create_group(dsInfo['variable']) |
|
901 | 901 | |
|
902 | 902 | for j in range(dsInfo['dsNumber']): |
|
903 | 903 | dsInfo = dsList[i] |
|
904 | 904 | tableName = dsInfo['dsName'] |
|
905 | 905 | shape = int(dsInfo['shape']) |
|
906 | 906 | |
|
907 | 907 | if dsInfo['nDim'] == 3: |
|
908 | 908 | ds0 = grp0.create_dataset(tableName, (shape[0],shape[1],1) , data = numpy.zeros((shape[0],shape[1],1)), maxshape = (None,shape[1],None), chunks=True) |
|
909 | 909 | else: |
|
910 | 910 | ds0 = grp0.create_dataset(tableName, (1,shape), data = numpy.zeros((1,shape)) , maxshape=(None,shape), chunks=True) |
|
911 | 911 | |
|
912 | 912 | ds.append(ds0) |
|
913 | 913 | data.append([]) |
|
914 | 914 | i += 1 |
|
915 | 915 | # nDimsForDs.append(nDims[i]) |
|
916 | 916 | |
|
917 | 917 | fp.flush() |
|
918 | 918 | fp.close() |
|
919 | 919 | |
|
920 | 920 | # self.nDatas = nDatas |
|
921 | 921 | # self.nDims = nDims |
|
922 | 922 | # self.nDimsForDs = nDimsForDs |
|
923 | 923 | #Saving variables |
|
924 | 924 | print 'Writing the file: %s'%filename |
|
925 | 925 | self.filename = filename |
|
926 | 926 | # self.fp = fp |
|
927 | 927 | # self.grp = grp |
|
928 | 928 | # self.grp.attrs.modify('nRecords', 1) |
|
929 | 929 | self.ds = ds |
|
930 | 930 | self.data = data |
|
931 | 931 | # self.setFile = setFile |
|
932 | 932 | self.firsttime = True |
|
933 | 933 | self.blockIndex = 0 |
|
934 | 934 | return |
|
935 | 935 | |
|
936 | 936 | def putData(self): |
|
937 | 937 | |
|
938 | 938 | if self.blockIndex == self.blocksPerFile or self.timeFlag(): |
|
939 | 939 | self.setNextFile() |
|
940 | 940 | |
|
941 | 941 | # if not self.firsttime: |
|
942 | 942 | self.readBlock() |
|
943 | 943 | self.setBlock() #Prepare data to be written |
|
944 | 944 | self.writeBlock() #Write data |
|
945 | 945 | |
|
946 | 946 | return |
|
947 | 947 | |
|
948 | 948 | def readBlock(self): |
|
949 | 949 | |
|
950 | 950 | ''' |
|
951 | 951 | data Array configured |
|
952 | 952 | |
|
953 | 953 | |
|
954 | 954 | self.data |
|
955 | 955 | ''' |
|
956 | 956 | dsList = self.dsList |
|
957 | 957 | ds = self.ds |
|
958 | 958 | #Setting HDF5 File |
|
959 | 959 | fp = h5py.File(self.filename,'r+') |
|
960 | 960 | grp = fp["Data"] |
|
961 | 961 | ind = 0 |
|
962 | 962 | |
|
963 | 963 | # grp.attrs['blocksPerFile'] = 0 |
|
964 | 964 | while ind < len(dsList): |
|
965 | 965 | dsInfo = dsList[ind] |
|
966 | 966 | |
|
967 | 967 | if dsInfo['mode'] == 0: |
|
968 | 968 | ds0 = grp[dsInfo['variable']] |
|
969 | 969 | ds[ind] = ds0 |
|
970 | 970 | ind += 1 |
|
971 | 971 | else: |
|
972 | 972 | |
|
973 | 973 | grp0 = grp[dsInfo['variable']] |
|
974 | 974 | |
|
975 | 975 | for j in range(dsInfo['dsNumber']): |
|
976 | 976 | dsInfo = dsList[ind] |
|
977 | 977 | ds0 = grp0[dsInfo['dsName']] |
|
978 | 978 | ds[ind] = ds0 |
|
979 | 979 | ind += 1 |
|
980 | 980 | |
|
981 | 981 | self.fp = fp |
|
982 | 982 | self.grp = grp |
|
983 | 983 | self.ds = ds |
|
984 | 984 | |
|
985 | 985 | return |
|
986 | 986 | |
|
987 | 987 | def setBlock(self): |
|
988 | 988 | ''' |
|
989 | 989 | data Array configured |
|
990 | 990 | |
|
991 | 991 | |
|
992 | 992 | self.data |
|
993 | 993 | ''' |
|
994 | 994 | #Creating Arrays |
|
995 | 995 | dsList = self.dsList |
|
996 | 996 | data = self.data |
|
997 | 997 | ind = 0 |
|
998 | 998 | |
|
999 | 999 | while ind < len(dsList): |
|
1000 | 1000 | dsInfo = dsList[ind] |
|
1001 | 1001 | dataAux = getattr(self.dataOut, dsInfo['variable']) |
|
1002 | 1002 | |
|
1003 | 1003 | mode = dsInfo['mode'] |
|
1004 | 1004 | nDim = dsInfo['nDim'] |
|
1005 | 1005 | |
|
1006 | 1006 | if mode == 0 or mode == 2 or nDim == 1: |
|
1007 | 1007 | data[ind] = dataAux |
|
1008 | 1008 | ind += 1 |
|
1009 | 1009 | # elif nDim == 1: |
|
1010 | 1010 | # data[ind] = numpy.reshape(dataAux,(numpy.size(dataAux),1)) |
|
1011 | 1011 | # ind += 1 |
|
1012 | 1012 | elif nDim == 2: |
|
1013 | 1013 | for j in range(dsInfo['dsNumber']): |
|
1014 | 1014 | data[ind] = dataAux[j,:] |
|
1015 | 1015 | ind += 1 |
|
1016 | 1016 | elif nDim == 3: |
|
1017 | 1017 | for j in range(dsInfo['dsNumber']): |
|
1018 | 1018 | data[ind] = dataAux[:,j,:] |
|
1019 | 1019 | ind += 1 |
|
1020 | 1020 | |
|
1021 | 1021 | self.data = data |
|
1022 | 1022 | return |
|
1023 | 1023 | |
|
1024 | 1024 | def writeBlock(self): |
|
1025 | 1025 | ''' |
|
1026 | 1026 | Saves the block in the HDF5 file |
|
1027 | 1027 | ''' |
|
1028 | 1028 | dsList = self.dsList |
|
1029 | 1029 | |
|
1030 | 1030 | for i in range(len(self.ds)): |
|
1031 | 1031 | dsInfo = dsList[i] |
|
1032 | 1032 | nDim = dsInfo['nDim'] |
|
1033 | 1033 | mode = dsInfo['mode'] |
|
1034 | 1034 | |
|
1035 | 1035 | # First time |
|
1036 | 1036 | if self.firsttime: |
|
1037 | 1037 | # self.ds[i].resize(self.data[i].shape) |
|
1038 | 1038 | # self.ds[i][self.blockIndex,:] = self.data[i] |
|
1039 | 1039 | if type(self.data[i]) == numpy.ndarray: |
|
1040 | 1040 | |
|
1041 | 1041 | if nDim == 3: |
|
1042 | 1042 | self.data[i] = self.data[i].reshape((self.data[i].shape[0],self.data[i].shape[1],1)) |
|
1043 | 1043 | self.ds[i].resize(self.data[i].shape) |
|
1044 | 1044 | if mode == 2: |
|
1045 | 1045 | self.ds[i].resize(self.data[i].shape) |
|
1046 | 1046 | self.ds[i][:] = self.data[i] |
|
1047 | 1047 | else: |
|
1048 | 1048 | |
|
1049 | 1049 | # From second time |
|
1050 | 1050 | # Meteors! |
|
1051 | 1051 | if mode == 2: |
|
1052 | 1052 | dataShape = self.data[i].shape |
|
1053 | 1053 | dsShape = self.ds[i].shape |
|
1054 | 1054 | self.ds[i].resize((self.ds[i].shape[0] + dataShape[0],self.ds[i].shape[1])) |
|
1055 | 1055 | self.ds[i][dsShape[0]:,:] = self.data[i] |
|
1056 | 1056 | # No dimension |
|
1057 | 1057 | elif mode == 0: |
|
1058 | 1058 | self.ds[i].resize((self.ds[i].shape[0], self.ds[i].shape[1] + 1)) |
|
1059 | 1059 | self.ds[i][0,-1] = self.data[i] |
|
1060 | 1060 | # One dimension |
|
1061 | 1061 | elif nDim == 1: |
|
1062 | 1062 | self.ds[i].resize((self.ds[i].shape[0] + 1, self.ds[i].shape[1])) |
|
1063 | 1063 | self.ds[i][-1,:] = self.data[i] |
|
1064 | 1064 | # Two dimension |
|
1065 | 1065 | elif nDim == 2: |
|
1066 | 1066 | self.ds[i].resize((self.ds[i].shape[0] + 1,self.ds[i].shape[1])) |
|
1067 | 1067 | self.ds[i][self.blockIndex,:] = self.data[i] |
|
1068 | 1068 | # Three dimensions |
|
1069 | 1069 | elif nDim == 3: |
|
1070 | 1070 | self.ds[i].resize((self.ds[i].shape[0],self.ds[i].shape[1],self.ds[i].shape[2]+1)) |
|
1071 | 1071 | self.ds[i][:,:,-1] = self.data[i] |
|
1072 | 1072 | |
|
1073 | 1073 | self.firsttime = False |
|
1074 | 1074 | self.blockIndex += 1 |
|
1075 | 1075 | |
|
1076 | 1076 | #Close to save changes |
|
1077 | 1077 | self.fp.flush() |
|
1078 | 1078 | self.fp.close() |
|
1079 | 1079 | return |
|
1080 | 1080 | |
|
1081 | 1081 | def run(self, dataOut, path=None, blocksPerFile=10, metadataList=None, dataList=None, mode=None, **kwargs): |
|
1082 | 1082 | |
|
1083 | 1083 | if not(self.isConfig): |
|
1084 | 1084 | flagdata = self.setup(dataOut, path=path, blocksPerFile=blocksPerFile, |
|
1085 | 1085 | metadataList=metadataList, dataList=dataList, mode=mode, **kwargs) |
|
1086 | 1086 | |
|
1087 | 1087 | if not(flagdata): |
|
1088 | 1088 | return |
|
1089 | 1089 | |
|
1090 | 1090 | self.isConfig = True |
|
1091 | 1091 | # self.putMetadata() |
|
1092 | 1092 | self.setNextFile() |
|
1093 | 1093 | |
|
1094 | 1094 | self.putData() |
|
1095 | 1095 | return |
@@ -1,14 +1,15 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: Processor.py 1 2012-11-12 18:56:07Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | from jroproc_voltage import * |
|
8 | 8 | from jroproc_spectra import * |
|
9 | 9 | from jroproc_heispectra import * |
|
10 | 10 | from jroproc_amisr import * |
|
11 | 11 | from jroproc_correlation import * |
|
12 | 12 | from jroproc_parameters import * |
|
13 | 13 | from jroproc_spectra_lags import * |
|
14 | 14 | from jroproc_spectra_acf import * |
|
15 | from bltrproc_parameters import * |
@@ -1,604 +1,607 | |||
|
1 | 1 | ''' |
|
2 | 2 | @author: Juan C. Espinoza |
|
3 | 3 | ''' |
|
4 | 4 | |
|
5 | 5 | import time |
|
6 | 6 | import json |
|
7 | 7 | import numpy |
|
8 | 8 | import paho.mqtt.client as mqtt |
|
9 | 9 | import zmq |
|
10 | 10 | import datetime |
|
11 | 11 | from zmq.utils.monitor import recv_monitor_message |
|
12 | 12 | from functools import wraps |
|
13 | 13 | from threading import Thread |
|
14 | 14 | from multiprocessing import Process |
|
15 | 15 | |
|
16 | 16 | from schainpy.model.proc.jroproc_base import Operation, ProcessingUnit |
|
17 | 17 | from schainpy.model.data.jrodata import JROData |
|
18 | 18 | from schainpy.utils import log |
|
19 | 19 | |
|
20 | 20 | MAXNUMX = 100 |
|
21 | 21 | MAXNUMY = 100 |
|
22 | 22 | |
|
23 | 23 | class PrettyFloat(float): |
|
24 | 24 | def __repr__(self): |
|
25 | 25 | return '%.2f' % self |
|
26 | 26 | |
|
27 | 27 | def roundFloats(obj): |
|
28 | 28 | if isinstance(obj, list): |
|
29 | 29 | return map(roundFloats, obj) |
|
30 | 30 | elif isinstance(obj, float): |
|
31 | 31 | return round(obj, 2) |
|
32 | 32 | |
|
33 | 33 | def decimate(z, MAXNUMY): |
|
34 | 34 | dy = int(len(z[0])/MAXNUMY) + 1 |
|
35 | 35 | |
|
36 | 36 | return z[::, ::dy] |
|
37 | 37 | |
|
38 | 38 | class throttle(object): |
|
39 | 39 | ''' |
|
40 | 40 | Decorator that prevents a function from being called more than once every |
|
41 | 41 | time period. |
|
42 | 42 | To create a function that cannot be called more than once a minute, but |
|
43 | 43 | will sleep until it can be called: |
|
44 | 44 | @throttle(minutes=1) |
|
45 | 45 | def foo(): |
|
46 | 46 | pass |
|
47 | 47 | |
|
48 | 48 | for i in range(10): |
|
49 | 49 | foo() |
|
50 | 50 | print "This function has run %s times." % i |
|
51 | 51 | ''' |
|
52 | 52 | |
|
53 | 53 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
54 | 54 | self.throttle_period = datetime.timedelta( |
|
55 | 55 | seconds=seconds, minutes=minutes, hours=hours |
|
56 | 56 | ) |
|
57 | 57 | |
|
58 | 58 | self.time_of_last_call = datetime.datetime.min |
|
59 | 59 | |
|
60 | 60 | def __call__(self, fn): |
|
61 | 61 | @wraps(fn) |
|
62 | 62 | def wrapper(*args, **kwargs): |
|
63 | 63 | now = datetime.datetime.now() |
|
64 | 64 | time_since_last_call = now - self.time_of_last_call |
|
65 | 65 | time_left = self.throttle_period - time_since_last_call |
|
66 | 66 | |
|
67 | 67 | if time_left > datetime.timedelta(seconds=0): |
|
68 | 68 | return |
|
69 | 69 | |
|
70 | 70 | self.time_of_last_call = datetime.datetime.now() |
|
71 | 71 | return fn(*args, **kwargs) |
|
72 | 72 | |
|
73 | 73 | return wrapper |
|
74 | 74 | |
|
75 | 75 | class Data(object): |
|
76 | 76 | ''' |
|
77 | 77 | Object to hold data to be plotted |
|
78 | 78 | ''' |
|
79 | 79 | |
|
80 | 80 | def __init__(self, plottypes, throttle_value): |
|
81 | 81 | self.plottypes = plottypes |
|
82 | 82 | self.throttle = throttle_value |
|
83 | 83 | self.ended = False |
|
84 | 84 | self.__times = [] |
|
85 | 85 | |
|
86 | 86 | def __str__(self): |
|
87 | 87 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
88 | 88 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.__times)) |
|
89 | 89 | |
|
90 | 90 | def __len__(self): |
|
91 | 91 | return len(self.__times) |
|
92 | 92 | |
|
93 | 93 | def __getitem__(self, key): |
|
94 | 94 | if key not in self.data: |
|
95 | 95 | raise KeyError(log.error('Missing key: {}'.format(key))) |
|
96 | 96 | |
|
97 | 97 | if 'spc' in key: |
|
98 | 98 | ret = self.data[key] |
|
99 | 99 | else: |
|
100 | 100 | ret = numpy.array([self.data[key][x] for x in self.times]) |
|
101 | 101 | if ret.ndim > 1: |
|
102 | 102 | ret = numpy.swapaxes(ret, 0, 1) |
|
103 | 103 | return ret |
|
104 | 104 | |
|
105 | 105 | def setup(self): |
|
106 | 106 | ''' |
|
107 | 107 | Configure object |
|
108 | 108 | ''' |
|
109 | 109 | |
|
110 | 110 | self.ended = False |
|
111 | 111 | self.data = {} |
|
112 | 112 | self.__times = [] |
|
113 | 113 | self.__heights = [] |
|
114 | 114 | self.__all_heights = set() |
|
115 | 115 | for plot in self.plottypes: |
|
116 | if 'snr' in plot: | |
|
117 | plot = 'snr' | |
|
116 | 118 | self.data[plot] = {} |
|
117 | 119 | |
|
118 | 120 | def shape(self, key): |
|
119 | 121 | ''' |
|
120 | 122 | Get the shape of the one-element data for the given key |
|
121 | 123 | ''' |
|
122 | 124 | |
|
123 | 125 | if len(self.data[key]): |
|
124 | 126 | if 'spc' in key: |
|
125 | 127 | return self.data[key].shape |
|
126 | 128 | return self.data[key][self.__times[0]].shape |
|
127 | 129 | return (0,) |
|
128 | 130 | |
|
129 | 131 | def update(self, dataOut): |
|
130 | 132 | ''' |
|
131 | 133 | Update data object with new dataOut |
|
132 | 134 | ''' |
|
133 | 135 | |
|
134 | 136 | tm = dataOut.utctime |
|
135 | 137 | if tm in self.__times: |
|
136 | 138 | return |
|
137 | 139 | |
|
138 | 140 | self.parameters = getattr(dataOut, 'parameters', []) |
|
139 | 141 | self.pairs = dataOut.pairsList |
|
140 | 142 | self.channels = dataOut.channelList |
|
141 | self.xrange = (dataOut.getFreqRange(1)/1000. , dataOut.getAcfRange(1) , dataOut.getVelRange(1)) | |
|
142 | 143 | self.interval = dataOut.getTimeInterval() |
|
144 | if 'spc' in self.plottypes or 'cspc' in self.plottypes: | |
|
145 | self.xrange = (dataOut.getFreqRange(1)/1000. , dataOut.getAcfRange(1) , dataOut.getVelRange(1)) | |
|
143 | 146 | self.__heights.append(dataOut.heightList) |
|
144 | 147 | self.__all_heights.update(dataOut.heightList) |
|
145 | 148 | self.__times.append(tm) |
|
146 | 149 | |
|
147 | 150 | for plot in self.plottypes: |
|
148 | 151 | if plot == 'spc': |
|
149 | 152 | z = dataOut.data_spc/dataOut.normFactor |
|
150 | 153 | self.data[plot] = 10*numpy.log10(z) |
|
151 | 154 | if plot == 'cspc': |
|
152 | 155 | self.data[plot] = dataOut.data_cspc |
|
153 | 156 | if plot == 'noise': |
|
154 | 157 | self.data[plot][tm] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
155 | 158 | if plot == 'rti': |
|
156 | 159 | self.data[plot][tm] = dataOut.getPower() |
|
157 | 160 | if plot == 'snr_db': |
|
158 | 161 | self.data['snr'][tm] = dataOut.data_SNR |
|
159 | 162 | if plot == 'snr': |
|
160 | 163 | self.data[plot][tm] = 10*numpy.log10(dataOut.data_SNR) |
|
161 | 164 | if plot == 'dop': |
|
162 | 165 | self.data[plot][tm] = 10*numpy.log10(dataOut.data_DOP) |
|
163 | 166 | if plot == 'mean': |
|
164 | 167 | self.data[plot][tm] = dataOut.data_MEAN |
|
165 | 168 | if plot == 'std': |
|
166 | 169 | self.data[plot][tm] = dataOut.data_STD |
|
167 | 170 | if plot == 'coh': |
|
168 | 171 | self.data[plot][tm] = dataOut.getCoherence() |
|
169 | 172 | if plot == 'phase': |
|
170 | 173 | self.data[plot][tm] = dataOut.getCoherence(phase=True) |
|
171 | 174 | if plot == 'output': |
|
172 | 175 | self.data[plot][tm] = dataOut.data_output |
|
173 | 176 | if plot == 'param': |
|
174 | 177 | self.data[plot][tm] = dataOut.data_param |
|
175 | 178 | |
|
176 | 179 | def normalize_heights(self): |
|
177 | 180 | ''' |
|
178 | 181 | Ensure same-dimension of the data for different heighList |
|
179 | 182 | ''' |
|
180 | 183 | |
|
181 | 184 | H = numpy.array(list(self.__all_heights)) |
|
182 | 185 | H.sort() |
|
183 | 186 | for key in self.data: |
|
184 | 187 | shape = self.shape(key)[:-1] + H.shape |
|
185 | 188 | for tm, obj in self.data[key].items(): |
|
186 | 189 | h = self.__heights[self.__times.index(tm)] |
|
187 | 190 | if H.size == h.size: |
|
188 | 191 | continue |
|
189 | 192 | index = numpy.where(numpy.in1d(H, h))[0] |
|
190 | 193 | dummy = numpy.zeros(shape) + numpy.nan |
|
191 | 194 | if len(shape) == 2: |
|
192 | 195 | dummy[:, index] = obj |
|
193 | 196 | else: |
|
194 | 197 | dummy[index] = obj |
|
195 | 198 | self.data[key][tm] = dummy |
|
196 | 199 | |
|
197 | 200 | self.__heights = [H for tm in self.__times] |
|
198 | 201 | |
|
199 | 202 | def jsonify(self, decimate=False): |
|
200 | 203 | ''' |
|
201 | 204 | Convert data to json |
|
202 | 205 | ''' |
|
203 | 206 | |
|
204 | 207 | ret = {} |
|
205 | 208 | tm = self.times[-1] |
|
206 | 209 | |
|
207 | 210 | for key, value in self.data: |
|
208 | 211 | if key in ('spc', 'cspc'): |
|
209 | 212 | ret[key] = roundFloats(self.data[key].to_list()) |
|
210 | 213 | else: |
|
211 | 214 | ret[key] = roundFloats(self.data[key][tm].to_list()) |
|
212 | 215 | |
|
213 | 216 | ret['timestamp'] = tm |
|
214 | 217 | ret['interval'] = self.interval |
|
215 | 218 | |
|
216 | 219 | @property |
|
217 | 220 | def times(self): |
|
218 | 221 | ''' |
|
219 | 222 | Return the list of times of the current data |
|
220 | 223 | ''' |
|
221 | 224 | |
|
222 | 225 | ret = numpy.array(self.__times) |
|
223 | 226 | ret.sort() |
|
224 | 227 | return ret |
|
225 | 228 | |
|
226 | 229 | @property |
|
227 | 230 | def heights(self): |
|
228 | 231 | ''' |
|
229 | 232 | Return the list of heights of the current data |
|
230 | 233 | ''' |
|
231 | 234 | |
|
232 | 235 | return numpy.array(self.__heights[-1]) |
|
233 | 236 | |
|
234 | 237 | class PublishData(Operation): |
|
235 | 238 | ''' |
|
236 | 239 | Operation to send data over zmq. |
|
237 | 240 | ''' |
|
238 | 241 | |
|
239 | 242 | def __init__(self, **kwargs): |
|
240 | 243 | """Inicio.""" |
|
241 | 244 | Operation.__init__(self, **kwargs) |
|
242 | 245 | self.isConfig = False |
|
243 | 246 | self.client = None |
|
244 | 247 | self.zeromq = None |
|
245 | 248 | self.mqtt = None |
|
246 | 249 | |
|
247 | 250 | def on_disconnect(self, client, userdata, rc): |
|
248 | 251 | if rc != 0: |
|
249 | 252 | log.warning('Unexpected disconnection.') |
|
250 | 253 | self.connect() |
|
251 | 254 | |
|
252 | 255 | def connect(self): |
|
253 | 256 | log.warning('trying to connect') |
|
254 | 257 | try: |
|
255 | 258 | self.client.connect( |
|
256 | 259 | host=self.host, |
|
257 | 260 | port=self.port, |
|
258 | 261 | keepalive=60*10, |
|
259 | 262 | bind_address='') |
|
260 | 263 | self.client.loop_start() |
|
261 | 264 | # self.client.publish( |
|
262 | 265 | # self.topic + 'SETUP', |
|
263 | 266 | # json.dumps(setup), |
|
264 | 267 | # retain=True |
|
265 | 268 | # ) |
|
266 | 269 | except: |
|
267 | 270 | log.error('MQTT Conection error.') |
|
268 | 271 | self.client = False |
|
269 | 272 | |
|
270 | 273 | def setup(self, port=1883, username=None, password=None, clientId="user", zeromq=1, verbose=True, **kwargs): |
|
271 | 274 | self.counter = 0 |
|
272 | 275 | self.topic = kwargs.get('topic', 'schain') |
|
273 | 276 | self.delay = kwargs.get('delay', 0) |
|
274 | 277 | self.plottype = kwargs.get('plottype', 'spectra') |
|
275 | 278 | self.host = kwargs.get('host', "10.10.10.82") |
|
276 | 279 | self.port = kwargs.get('port', 3000) |
|
277 | 280 | self.clientId = clientId |
|
278 | 281 | self.cnt = 0 |
|
279 | 282 | self.zeromq = zeromq |
|
280 | 283 | self.mqtt = kwargs.get('plottype', 0) |
|
281 | 284 | self.client = None |
|
282 | 285 | self.verbose = verbose |
|
283 | 286 | setup = [] |
|
284 | 287 | if mqtt is 1: |
|
285 | 288 | self.client = mqtt.Client( |
|
286 | 289 | client_id=self.clientId + self.topic + 'SCHAIN', |
|
287 | 290 | clean_session=True) |
|
288 | 291 | self.client.on_disconnect = self.on_disconnect |
|
289 | 292 | self.connect() |
|
290 | 293 | for plot in self.plottype: |
|
291 | 294 | setup.append({ |
|
292 | 295 | 'plot': plot, |
|
293 | 296 | 'topic': self.topic + plot, |
|
294 | 297 | 'title': getattr(self, plot + '_' + 'title', False), |
|
295 | 298 | 'xlabel': getattr(self, plot + '_' + 'xlabel', False), |
|
296 | 299 | 'ylabel': getattr(self, plot + '_' + 'ylabel', False), |
|
297 | 300 | 'xrange': getattr(self, plot + '_' + 'xrange', False), |
|
298 | 301 | 'yrange': getattr(self, plot + '_' + 'yrange', False), |
|
299 | 302 | 'zrange': getattr(self, plot + '_' + 'zrange', False), |
|
300 | 303 | }) |
|
301 | 304 | if zeromq is 1: |
|
302 | 305 | context = zmq.Context() |
|
303 | 306 | self.zmq_socket = context.socket(zmq.PUSH) |
|
304 | 307 | server = kwargs.get('server', 'zmq.pipe') |
|
305 | 308 | |
|
306 | 309 | if 'tcp://' in server: |
|
307 | 310 | address = server |
|
308 | 311 | else: |
|
309 | 312 | address = 'ipc:///tmp/%s' % server |
|
310 | 313 | |
|
311 | 314 | self.zmq_socket.connect(address) |
|
312 | 315 | time.sleep(1) |
|
313 | 316 | |
|
314 | 317 | |
|
315 | 318 | def publish_data(self): |
|
316 | 319 | self.dataOut.finished = False |
|
317 | 320 | if self.mqtt is 1: |
|
318 | 321 | yData = self.dataOut.heightList[:2].tolist() |
|
319 | 322 | if self.plottype == 'spectra': |
|
320 | 323 | data = getattr(self.dataOut, 'data_spc') |
|
321 | 324 | z = data/self.dataOut.normFactor |
|
322 | 325 | zdB = 10*numpy.log10(z) |
|
323 | 326 | xlen, ylen = zdB[0].shape |
|
324 | 327 | dx = int(xlen/MAXNUMX) + 1 |
|
325 | 328 | dy = int(ylen/MAXNUMY) + 1 |
|
326 | 329 | Z = [0 for i in self.dataOut.channelList] |
|
327 | 330 | for i in self.dataOut.channelList: |
|
328 | 331 | Z[i] = zdB[i][::dx, ::dy].tolist() |
|
329 | 332 | payload = { |
|
330 | 333 | 'timestamp': self.dataOut.utctime, |
|
331 | 334 | 'data': roundFloats(Z), |
|
332 | 335 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
333 | 336 | 'interval': self.dataOut.getTimeInterval(), |
|
334 | 337 | 'type': self.plottype, |
|
335 | 338 | 'yData': yData |
|
336 | 339 | } |
|
337 | 340 | |
|
338 | 341 | elif self.plottype in ('rti', 'power'): |
|
339 | 342 | data = getattr(self.dataOut, 'data_spc') |
|
340 | 343 | z = data/self.dataOut.normFactor |
|
341 | 344 | avg = numpy.average(z, axis=1) |
|
342 | 345 | avgdB = 10*numpy.log10(avg) |
|
343 | 346 | xlen, ylen = z[0].shape |
|
344 | 347 | dy = numpy.floor(ylen/self.__MAXNUMY) + 1 |
|
345 | 348 | AVG = [0 for i in self.dataOut.channelList] |
|
346 | 349 | for i in self.dataOut.channelList: |
|
347 | 350 | AVG[i] = avgdB[i][::dy].tolist() |
|
348 | 351 | payload = { |
|
349 | 352 | 'timestamp': self.dataOut.utctime, |
|
350 | 353 | 'data': roundFloats(AVG), |
|
351 | 354 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
352 | 355 | 'interval': self.dataOut.getTimeInterval(), |
|
353 | 356 | 'type': self.plottype, |
|
354 | 357 | 'yData': yData |
|
355 | 358 | } |
|
356 | 359 | elif self.plottype == 'noise': |
|
357 | 360 | noise = self.dataOut.getNoise()/self.dataOut.normFactor |
|
358 | 361 | noisedB = 10*numpy.log10(noise) |
|
359 | 362 | payload = { |
|
360 | 363 | 'timestamp': self.dataOut.utctime, |
|
361 | 364 | 'data': roundFloats(noisedB.reshape(-1, 1).tolist()), |
|
362 | 365 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
363 | 366 | 'interval': self.dataOut.getTimeInterval(), |
|
364 | 367 | 'type': self.plottype, |
|
365 | 368 | 'yData': yData |
|
366 | 369 | } |
|
367 | 370 | elif self.plottype == 'snr': |
|
368 | 371 | data = getattr(self.dataOut, 'data_SNR') |
|
369 | 372 | avgdB = 10*numpy.log10(data) |
|
370 | 373 | |
|
371 | 374 | ylen = data[0].size |
|
372 | 375 | dy = numpy.floor(ylen/self.__MAXNUMY) + 1 |
|
373 | 376 | AVG = [0 for i in self.dataOut.channelList] |
|
374 | 377 | for i in self.dataOut.channelList: |
|
375 | 378 | AVG[i] = avgdB[i][::dy].tolist() |
|
376 | 379 | payload = { |
|
377 | 380 | 'timestamp': self.dataOut.utctime, |
|
378 | 381 | 'data': roundFloats(AVG), |
|
379 | 382 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
380 | 383 | 'type': self.plottype, |
|
381 | 384 | 'yData': yData |
|
382 | 385 | } |
|
383 | 386 | else: |
|
384 | 387 | print "Tipo de grafico invalido" |
|
385 | 388 | payload = { |
|
386 | 389 | 'data': 'None', |
|
387 | 390 | 'timestamp': 'None', |
|
388 | 391 | 'type': None |
|
389 | 392 | } |
|
390 | 393 | |
|
391 | 394 | self.client.publish(self.topic + self.plottype, json.dumps(payload), qos=0) |
|
392 | 395 | |
|
393 | 396 | if self.zeromq is 1: |
|
394 | 397 | if self.verbose: |
|
395 | 398 | log.log( |
|
396 | 399 | '{} - {}'.format(self.dataOut.type, self.dataOut.datatime), |
|
397 | 400 | 'Sending' |
|
398 | 401 | ) |
|
399 | 402 | self.zmq_socket.send_pyobj(self.dataOut) |
|
400 | 403 | |
|
401 | 404 | def run(self, dataOut, **kwargs): |
|
402 | 405 | self.dataOut = dataOut |
|
403 | 406 | if not self.isConfig: |
|
404 | 407 | self.setup(**kwargs) |
|
405 | 408 | self.isConfig = True |
|
406 | 409 | |
|
407 | 410 | self.publish_data() |
|
408 | 411 | time.sleep(self.delay) |
|
409 | 412 | |
|
410 | 413 | def close(self): |
|
411 | 414 | if self.zeromq is 1: |
|
412 | 415 | self.dataOut.finished = True |
|
413 | 416 | self.zmq_socket.send_pyobj(self.dataOut) |
|
414 | 417 | time.sleep(0.1) |
|
415 | 418 | self.zmq_socket.close() |
|
416 | 419 | if self.client: |
|
417 | 420 | self.client.loop_stop() |
|
418 | 421 | self.client.disconnect() |
|
419 | 422 | |
|
420 | 423 | |
|
421 | 424 | class ReceiverData(ProcessingUnit): |
|
422 | 425 | |
|
423 | 426 | def __init__(self, **kwargs): |
|
424 | 427 | |
|
425 | 428 | ProcessingUnit.__init__(self, **kwargs) |
|
426 | 429 | |
|
427 | 430 | self.isConfig = False |
|
428 | 431 | server = kwargs.get('server', 'zmq.pipe') |
|
429 | 432 | if 'tcp://' in server: |
|
430 | 433 | address = server |
|
431 | 434 | else: |
|
432 | 435 | address = 'ipc:///tmp/%s' % server |
|
433 | 436 | |
|
434 | 437 | self.address = address |
|
435 | 438 | self.dataOut = JROData() |
|
436 | 439 | |
|
437 | 440 | def setup(self): |
|
438 | 441 | |
|
439 | 442 | self.context = zmq.Context() |
|
440 | 443 | self.receiver = self.context.socket(zmq.PULL) |
|
441 | 444 | self.receiver.bind(self.address) |
|
442 | 445 | time.sleep(0.5) |
|
443 | 446 | log.success('ReceiverData from {}'.format(self.address)) |
|
444 | 447 | |
|
445 | 448 | |
|
446 | 449 | def run(self): |
|
447 | 450 | |
|
448 | 451 | if not self.isConfig: |
|
449 | 452 | self.setup() |
|
450 | 453 | self.isConfig = True |
|
451 | 454 | |
|
452 | 455 | self.dataOut = self.receiver.recv_pyobj() |
|
453 | 456 | log.log('{} - {}'.format(self.dataOut.type, |
|
454 | 457 | self.dataOut.datatime.ctime(),), |
|
455 | 458 | 'Receiving') |
|
456 | 459 | |
|
457 | 460 | |
|
458 | 461 | class PlotterReceiver(ProcessingUnit, Process): |
|
459 | 462 | |
|
460 | 463 | throttle_value = 5 |
|
461 | 464 | |
|
462 | 465 | def __init__(self, **kwargs): |
|
463 | 466 | |
|
464 | 467 | ProcessingUnit.__init__(self, **kwargs) |
|
465 | 468 | Process.__init__(self) |
|
466 | 469 | self.mp = False |
|
467 | 470 | self.isConfig = False |
|
468 | 471 | self.isWebConfig = False |
|
469 | 472 | self.connections = 0 |
|
470 | 473 | server = kwargs.get('server', 'zmq.pipe') |
|
471 | 474 | plot_server = kwargs.get('plot_server', 'zmq.web') |
|
472 | 475 | if 'tcp://' in server: |
|
473 | 476 | address = server |
|
474 | 477 | else: |
|
475 | 478 | address = 'ipc:///tmp/%s' % server |
|
476 | 479 | |
|
477 | 480 | if 'tcp://' in plot_server: |
|
478 | 481 | plot_address = plot_server |
|
479 | 482 | else: |
|
480 | 483 | plot_address = 'ipc:///tmp/%s' % plot_server |
|
481 | 484 | |
|
482 | 485 | self.address = address |
|
483 | 486 | self.plot_address = plot_address |
|
484 | 487 | self.plottypes = [s.strip() for s in kwargs.get('plottypes', 'rti').split(',')] |
|
485 | 488 | self.realtime = kwargs.get('realtime', False) |
|
486 | 489 | self.throttle_value = kwargs.get('throttle', 5) |
|
487 | 490 | self.sendData = self.initThrottle(self.throttle_value) |
|
488 | 491 | self.dates = [] |
|
489 | 492 | self.setup() |
|
490 | 493 | |
|
491 | 494 | def setup(self): |
|
492 | 495 | |
|
493 | 496 | self.data = Data(self.plottypes, self.throttle_value) |
|
494 | 497 | self.isConfig = True |
|
495 | 498 | |
|
496 | 499 | def event_monitor(self, monitor): |
|
497 | 500 | |
|
498 | 501 | events = {} |
|
499 | 502 | |
|
500 | 503 | for name in dir(zmq): |
|
501 | 504 | if name.startswith('EVENT_'): |
|
502 | 505 | value = getattr(zmq, name) |
|
503 | 506 | events[value] = name |
|
504 | 507 | |
|
505 | 508 | while monitor.poll(): |
|
506 | 509 | evt = recv_monitor_message(monitor) |
|
507 | 510 | if evt['event'] == 32: |
|
508 | 511 | self.connections += 1 |
|
509 | 512 | if evt['event'] == 512: |
|
510 | 513 | pass |
|
511 | 514 | |
|
512 | 515 | evt.update({'description': events[evt['event']]}) |
|
513 | 516 | |
|
514 | 517 | if evt['event'] == zmq.EVENT_MONITOR_STOPPED: |
|
515 | 518 | break |
|
516 | 519 | monitor.close() |
|
517 | 520 | print('event monitor thread done!') |
|
518 | 521 | |
|
519 | 522 | def initThrottle(self, throttle_value): |
|
520 | 523 | |
|
521 | 524 | @throttle(seconds=throttle_value) |
|
522 | 525 | def sendDataThrottled(fn_sender, data): |
|
523 | 526 | fn_sender(data) |
|
524 | 527 | |
|
525 | 528 | return sendDataThrottled |
|
526 | 529 | |
|
527 | 530 | def send(self, data): |
|
528 | 531 | log.success('Sending {}'.format(data), self.name) |
|
529 | 532 | self.sender.send_pyobj(data) |
|
530 | 533 | |
|
531 | 534 | def run(self): |
|
532 | 535 | |
|
533 | 536 | log.success( |
|
534 | 537 | 'Starting from {}'.format(self.address), |
|
535 | 538 | self.name |
|
536 | 539 | ) |
|
537 | 540 | |
|
538 | 541 | self.context = zmq.Context() |
|
539 | 542 | self.receiver = self.context.socket(zmq.PULL) |
|
540 | 543 | self.receiver.bind(self.address) |
|
541 | 544 | monitor = self.receiver.get_monitor_socket() |
|
542 | 545 | self.sender = self.context.socket(zmq.PUB) |
|
543 | 546 | if self.realtime: |
|
544 | 547 | self.sender_web = self.context.socket(zmq.PUB) |
|
545 | 548 | self.sender_web.connect(self.plot_address) |
|
546 | 549 | time.sleep(1) |
|
547 | 550 | |
|
548 | 551 | if 'server' in self.kwargs: |
|
549 | 552 | self.sender.bind("ipc:///tmp/{}.plots".format(self.kwargs['server'])) |
|
550 | 553 | else: |
|
551 | 554 | self.sender.bind("ipc:///tmp/zmq.plots") |
|
552 | 555 | |
|
553 | 556 | time.sleep(2) |
|
554 | 557 | |
|
555 | 558 | t = Thread(target=self.event_monitor, args=(monitor,)) |
|
556 | 559 | t.start() |
|
557 | 560 | |
|
558 | 561 | while True: |
|
559 | 562 | dataOut = self.receiver.recv_pyobj() |
|
560 | 563 | dt = datetime.datetime.fromtimestamp(dataOut.utctime).date() |
|
561 | 564 | sended = False |
|
562 | 565 | if dt not in self.dates: |
|
563 | 566 | if self.data: |
|
564 | 567 | self.data.ended = True |
|
565 | 568 | self.send(self.data) |
|
566 | 569 | sended = True |
|
567 | 570 | self.data.setup() |
|
568 | 571 | self.dates.append(dt) |
|
569 | 572 | |
|
570 | 573 | self.data.update(dataOut) |
|
571 | 574 | |
|
572 | 575 | if dataOut.finished is True: |
|
573 | 576 | self.connections -= 1 |
|
574 | 577 | if self.connections == 0 and dt in self.dates: |
|
575 | 578 | self.data.ended = True |
|
576 | 579 | self.send(self.data) |
|
577 | 580 | self.data.setup() |
|
578 | 581 | else: |
|
579 | 582 | if self.realtime: |
|
580 | 583 | self.send(self.data) |
|
581 | 584 | # self.sender_web.send_string(self.data.jsonify()) |
|
582 | 585 | else: |
|
583 | 586 | if not sended: |
|
584 | 587 | self.sendData(self.send, self.data) |
|
585 | 588 | |
|
586 | 589 | return |
|
587 | 590 | |
|
588 | 591 | def sendToWeb(self): |
|
589 | 592 | |
|
590 | 593 | if not self.isWebConfig: |
|
591 | 594 | context = zmq.Context() |
|
592 | 595 | sender_web_config = context.socket(zmq.PUB) |
|
593 | 596 | if 'tcp://' in self.plot_address: |
|
594 | 597 | dum, address, port = self.plot_address.split(':') |
|
595 | 598 | conf_address = '{}:{}:{}'.format(dum, address, int(port)+1) |
|
596 | 599 | else: |
|
597 | 600 | conf_address = self.plot_address + '.config' |
|
598 | 601 | sender_web_config.bind(conf_address) |
|
599 | 602 | time.sleep(1) |
|
600 | 603 | for kwargs in self.operationKwargs.values(): |
|
601 | 604 | if 'plot' in kwargs: |
|
602 | 605 | log.success('[Sending] Config data to web for {}'.format(kwargs['code'].upper())) |
|
603 | 606 | sender_web_config.send_string(json.dumps(kwargs)) |
|
604 | 607 | self.isWebConfig = True No newline at end of file |
|
1 | NO CONTENT: file was removed |
General Comments 0
You need to be logged in to leave comments.
Login now