@@ -756,6 +756,89 class EDensityPlot(Plot): | |||
|
756 | 756 | plt.legend(loc='upper left',fontsize=8.5) |
|
757 | 757 | #plt.legend(loc='lower left',fontsize=8.5) |
|
758 | 758 | |
|
759 | class RelativeDenPlot(Plot): | |
|
760 | ''' | |
|
761 | Written by R. Flores | |
|
762 | ''' | |
|
763 | ''' | |
|
764 | Plot for electron density | |
|
765 | ''' | |
|
766 | ||
|
767 | CODE = 'den' | |
|
768 | #plot_name = 'Electron Density' | |
|
769 | plot_type = 'scatterbuffer' | |
|
770 | ||
|
771 | def setup(self): | |
|
772 | ||
|
773 | self.ncols = 1 | |
|
774 | self.nrows = 1 | |
|
775 | self.nplots = 1 | |
|
776 | self.ylabel = 'Range [km]' | |
|
777 | self.xlabel = r'$\mathrm{N_e}$ Relative Electron Density ($\mathrm{1/cm^3}$)' | |
|
778 | self.titles = ['Electron Density'] | |
|
779 | self.width = 3.5 | |
|
780 | self.height = 5.5 | |
|
781 | self.colorbar = False | |
|
782 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
|
783 | ||
|
784 | def update(self, dataOut): | |
|
785 | data = {} | |
|
786 | meta = {} | |
|
787 | ||
|
788 | data['den_power'] = dataOut.ph2 | |
|
789 | data['den_error'] = dataOut.sdp2 | |
|
790 | ||
|
791 | meta['yrange'] = dataOut.heightList | |
|
792 | ||
|
793 | return data, meta | |
|
794 | ||
|
795 | def plot(self): | |
|
796 | ||
|
797 | y = self.data.yrange | |
|
798 | ||
|
799 | ax = self.axes[0] | |
|
800 | ||
|
801 | data = self.data[-1] | |
|
802 | ||
|
803 | DenPow = data['den_power'] | |
|
804 | errDenPow = data['den_error'] | |
|
805 | ||
|
806 | if ax.firsttime: | |
|
807 | self.autoxticks=False | |
|
808 | ax.errorbar(DenPow, y, fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power',markersize=2,linestyle='-') | |
|
809 | ||
|
810 | plt.legend(loc='upper left',fontsize=8.5) | |
|
811 | #plt.legend(loc='lower left',fontsize=8.5) | |
|
812 | ax.set_xscale("log", nonposx='clip') | |
|
813 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) | |
|
814 | self.ystep_given=100 | |
|
815 | ax.set_yticks(grid_y_ticks,minor=True) | |
|
816 | locmaj = LogLocator(base=10,numticks=12) | |
|
817 | ax.xaxis.set_major_locator(locmaj) | |
|
818 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) | |
|
819 | ax.xaxis.set_minor_locator(locmin) | |
|
820 | ax.xaxis.set_minor_formatter(NullFormatter()) | |
|
821 | ax.grid(which='minor') | |
|
822 | ||
|
823 | else: | |
|
824 | dataBefore = self.data[-2] | |
|
825 | DenPowBefore = dataBefore['den_power'] | |
|
826 | self.clear_figures() | |
|
827 | ax.errorbar(DenPow, y, fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power',markersize=2,linestyle='-') | |
|
828 | ax.errorbar(DenPowBefore, y, elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") | |
|
829 | ||
|
830 | ax.set_xscale("log", nonposx='clip') | |
|
831 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) | |
|
832 | ax.set_yticks(grid_y_ticks,minor=True) | |
|
833 | locmaj = LogLocator(base=10,numticks=12) | |
|
834 | ax.xaxis.set_major_locator(locmaj) | |
|
835 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) | |
|
836 | ax.xaxis.set_minor_locator(locmin) | |
|
837 | ax.xaxis.set_minor_formatter(NullFormatter()) | |
|
838 | ax.grid(which='minor') | |
|
839 | plt.legend(loc='upper left',fontsize=8.5) | |
|
840 | #plt.legend(loc='lower left',fontsize=8.5) | |
|
841 | ||
|
759 | 842 | class FaradayAnglePlot(Plot): |
|
760 | 843 | ''' |
|
761 | 844 | Written by R. Flores |
@@ -360,13 +360,14 class HDFWriter(Operation): | |||
|
360 | 360 | Operation.__init__(self) |
|
361 | 361 | return |
|
362 | 362 | |
|
363 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None): | |
|
363 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None, uniqueChannel=False): | |
|
364 | 364 | self.path = path |
|
365 | 365 | self.blocksPerFile = blocksPerFile |
|
366 | 366 | self.metadataList = metadataList |
|
367 | 367 | self.dataList = [s.strip() for s in dataList] |
|
368 | 368 | self.setType = setType |
|
369 | 369 | self.description = description |
|
370 | self.uniqueChannel = uniqueChannel | |
|
370 | 371 | |
|
371 | 372 | if self.metadataList is None: |
|
372 | 373 | self.metadataList = self.dataOut.metadata_list |
@@ -388,6 +389,9 class HDFWriter(Operation): | |||
|
388 | 389 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
|
389 | 390 | dsDict['nDim'] = 0 |
|
390 | 391 | else: |
|
392 | if uniqueChannel: #Creates extra dimension to avoid the creation of multiple channels | |
|
393 | dataAux = numpy.expand_dims(dataAux, axis=0) | |
|
394 | ||
|
391 | 395 | dsDict['nDim'] = len(dataAux.shape) |
|
392 | 396 | dsDict['shape'] = dataAux.shape |
|
393 | 397 | dsDict['dsNumber'] = dataAux.shape[0] |
@@ -422,18 +426,19 class HDFWriter(Operation): | |||
|
422 | 426 | return False |
|
423 | 427 | |
|
424 | 428 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, |
|
425 | dataList=[], setType=None, description={}): | |
|
429 | dataList=[], setType=None, description={}, uniqueChannel= False): | |
|
426 | 430 | |
|
427 | 431 | self.dataOut = dataOut |
|
428 | 432 | if not(self.isConfig): |
|
429 | 433 | self.setup(path=path, blocksPerFile=blocksPerFile, |
|
430 | 434 | metadataList=metadataList, dataList=dataList, |
|
431 | setType=setType, description=description) | |
|
435 | setType=setType, description=description, uniqueChannel=uniqueChannel) | |
|
432 | 436 | |
|
433 | 437 | self.isConfig = True |
|
434 | 438 | self.setNextFile() |
|
435 | 439 | |
|
436 | 440 | self.putData() |
|
441 | ||
|
437 | 442 | return |
|
438 | 443 | |
|
439 | 444 | def setNextFile(self): |
@@ -490,7 +495,7 class HDFWriter(Operation): | |||
|
490 | 495 | self.writeData(self.fp) |
|
491 | 496 | |
|
492 | 497 | def getLabel(self, name, x=None): |
|
493 | ||
|
498 | #print("x: ", x) | |
|
494 | 499 | if x is None: |
|
495 | 500 | if 'Data' in self.description: |
|
496 | 501 | data = self.description['Data'] |
@@ -558,7 +563,7 class HDFWriter(Operation): | |||
|
558 | 563 | |
|
559 | 564 | dtsets = [] |
|
560 | 565 | data = [] |
|
561 | ||
|
566 | #print("self.dsList: ", self.dsList) | |
|
562 | 567 | for dsInfo in self.dsList: |
|
563 | 568 | if dsInfo['nDim'] == 0: |
|
564 | 569 | ds = grp.create_dataset( |
@@ -582,6 +587,11 class HDFWriter(Operation): | |||
|
582 | 587 | dtype=dsInfo['dtype']) |
|
583 | 588 | dtsets.append(ds) |
|
584 | 589 | data.append((dsInfo['variable'], i)) |
|
590 | ||
|
591 | if self.uniqueChannel: #Deletes extra dimension created to avoid the creation of multiple channels | |
|
592 | dataAux = getattr(self.dataOut, dsInfo['variable']) | |
|
593 | dataAux = dataAux[0] | |
|
594 | ||
|
585 | 595 | fp.flush() |
|
586 | 596 | |
|
587 | 597 | log.log('Creating file: {}'.format(fp.filename), self.name) |
@@ -779,6 +779,73 class removeInterference(Operation): | |||
|
779 | 779 | |
|
780 | 780 | return self.dataOut |
|
781 | 781 | |
|
782 | class removeInterferenceAtFreq(Operation): | |
|
783 | ''' | |
|
784 | Written by R. Flores | |
|
785 | ''' | |
|
786 | """Operation to remove interfernce at a known frequency(s). | |
|
787 | ||
|
788 | Parameters: | |
|
789 | ----------- | |
|
790 | None | |
|
791 | ||
|
792 | Example | |
|
793 | -------- | |
|
794 | ||
|
795 | op = proc_unit.addOperation(name='removeInterferenceAtFreq') | |
|
796 | ||
|
797 | """ | |
|
798 | ||
|
799 | def __init__(self): | |
|
800 | ||
|
801 | Operation.__init__(self) | |
|
802 | ||
|
803 | def run(self, dataOut, freq = None, freqList = None): | |
|
804 | ||
|
805 | VelRange = dataOut.getVelRange() | |
|
806 | #print("VelRange: ", VelRange) | |
|
807 | ||
|
808 | freq_ids = [] | |
|
809 | ||
|
810 | if freq is not None: | |
|
811 | #print("freq") | |
|
812 | #if freq < 0: | |
|
813 | inda = numpy.where(VelRange >= freq) | |
|
814 | minIndex = inda[0][0] | |
|
815 | #print(numpy.shape(dataOut.dataLag_spc)) | |
|
816 | dataOut.data_spc[:,minIndex,:] = numpy.nan | |
|
817 | ||
|
818 | #inda = numpy.where(VelRange >= ymin_noise) | |
|
819 | #indb = numpy.where(VelRange <= ymax_noise) | |
|
820 | ||
|
821 | #minIndex = inda[0][0] | |
|
822 | #maxIndex = indb[0][-1] | |
|
823 | ||
|
824 | elif freqList is not None: | |
|
825 | #print("freqList") | |
|
826 | for freq in freqList: | |
|
827 | #if freq < 0: | |
|
828 | inda = numpy.where(VelRange >= freq) | |
|
829 | minIndex = inda[0][0] | |
|
830 | #print(numpy.shape(dataOut.dataLag_spc)) | |
|
831 | if freq > 0: | |
|
832 | #dataOut.data_spc[:,minIndex-1,:] = numpy.nan | |
|
833 | freq_ids.append(minIndex-1) | |
|
834 | else: | |
|
835 | #dataOut.data_spc[:,minIndex,:] = numpy.nan | |
|
836 | freq_ids.append(minIndex) | |
|
837 | else: | |
|
838 | raise ValueError("freq or freqList should be specified ...") | |
|
839 | ||
|
840 | #freq_ids = numpy.array(freq_ids).flatten() | |
|
841 | ||
|
842 | avg = numpy.mean(dataOut.data_spc[:,[t for t in range(dataOut.data_spc.shape[0]) if t not in freq_ids],:],axis=1) | |
|
843 | ||
|
844 | for p in list(freq_ids): | |
|
845 | dataOut.data_spc[:,p,:] = avg#numpy.nan | |
|
846 | ||
|
847 | ||
|
848 | return dataOut | |
|
782 | 849 | |
|
783 | 850 | class IncohInt(Operation): |
|
784 | 851 |
@@ -2877,8 +2877,8 class IntegrationFaradaySpectraNoLags(Operation): | |||
|
2877 | 2877 | self.__lastdatatime = 0 |
|
2878 | 2878 | |
|
2879 | 2879 | self.__buffer_spc = [] |
|
2880 |
|
|
|
2881 | self.__buffer_cspc = None | |
|
2880 | self.__buffer_cspc = [] | |
|
2881 | #self.__buffer_cspc = None | |
|
2882 | 2882 | self.__buffer_dc = 0 |
|
2883 | 2883 | |
|
2884 | 2884 | self.__profIndex = 0 |
@@ -3210,9 +3210,9 class IntegrationFaradaySpectraNoLags(Operation): | |||
|
3210 | 3210 | #print(self.__buffer_spc[:,1,3,20,0]) |
|
3211 | 3211 | #print(self.__buffer_spc[:,1,5,37,0]) |
|
3212 | 3212 | data_spc = numpy.sum(self.__buffer_spc,axis=0) |
|
3213 | print("data_spc: ", data_spc[0,:,0]) | |
|
3214 | print("data_spc: ", data_spc[0,:,7]) | |
|
3215 | print("shape: ", numpy.shape(data_spc)) | |
|
3213 | #print("data_spc: ", data_spc[0,:,0]) | |
|
3214 | #print("data_spc: ", data_spc[0,:,7]) | |
|
3215 | #print("shape: ", numpy.shape(data_spc)) | |
|
3216 | 3216 | #exit(1) |
|
3217 | 3217 | #data_cspc = numpy.sum(self.__buffer_cspc,axis=0) |
|
3218 | 3218 | if self.__buffer_cspc is not None: |
@@ -3228,8 +3228,8 class IntegrationFaradaySpectraNoLags(Operation): | |||
|
3228 | 3228 | n = self.__profIndex |
|
3229 | 3229 | |
|
3230 | 3230 | self.__buffer_spc = [] |
|
3231 |
|
|
|
3232 | self.__buffer_cspc = None | |
|
3231 | self.__buffer_cspc = [] | |
|
3232 | #self.__buffer_cspc = None | |
|
3233 | 3233 | self.__buffer_dc = 0 |
|
3234 | 3234 | self.__profIndex = 0 |
|
3235 | 3235 | |
@@ -3292,12 +3292,13 class IntegrationFaradaySpectraNoLags(Operation): | |||
|
3292 | 3292 | #print(numpy.shape(dataOut.data_spc)) |
|
3293 | 3293 | #print(numpy.shape(dataOut.data_cspc)) |
|
3294 | 3294 | #exit(1) |
|
3295 | dataOut.data_cspc = None | |
|
3295 | #dataOut.data_cspc = None | |
|
3296 | 3296 | if not self.isConfig: |
|
3297 | 3297 | self.setup(dataOut, n, timeInterval, overlapping,DPL ) |
|
3298 | 3298 | self.isConfig = True |
|
3299 | 3299 | |
|
3300 | 3300 | if not self.ByLags: |
|
3301 | #print("dataOut.data_cspc: ", dataOut.data_cspc) | |
|
3301 | 3302 | self.nProfiles=dataOut.nProfiles |
|
3302 | 3303 | self.nChannels=dataOut.nChannels |
|
3303 | 3304 | self.nHeights=dataOut.nHeights |
@@ -3320,6 +3321,7 class IntegrationFaradaySpectraNoLags(Operation): | |||
|
3320 | 3321 | |
|
3321 | 3322 | dataOut.data_spc = numpy.squeeze(avgdata_spc) |
|
3322 | 3323 | dataOut.data_cspc = numpy.squeeze(avgdata_cspc) |
|
3324 | dataOut.data_cspc = numpy.expand_dims(dataOut.data_cspc, axis=0) | |
|
3323 | 3325 | dataOut.data_dc = avgdata_dc |
|
3324 | 3326 | else: |
|
3325 | 3327 | dataOut.dataLag_spc = avgdata_spc |
@@ -4290,7 +4292,7 class SpectraDataToFaraday_MST(Operation): #MST MODE | |||
|
4290 | 4292 | dataOut.pan = dataOut.tnoise[0] |
|
4291 | 4293 | dataOut.pbn = dataOut.tnoise[1] |
|
4292 | 4294 | |
|
4293 | def noise(self,dataOut): | |
|
4295 | def noise(self,dataOut,minIndex,maxIndex): | |
|
4294 | 4296 | |
|
4295 | 4297 | dataOut.noise_lag = numpy.zeros((dataOut.nChannels),'float32') |
|
4296 | 4298 | #print("Lags") |
@@ -4312,9 +4314,9 class SpectraDataToFaraday_MST(Operation): #MST MODE | |||
|
4312 | 4314 | #dataOut.noise_lag[1] = dataOut.getNoise(ymin_index=80,ymax_index=106)[1] |
|
4313 | 4315 | if dataOut.flagDecodeData: |
|
4314 | 4316 | #dataOut.noise_lag[1] = dataOut.getNoise(ymin_index=150,ymax_index=200)[1] |
|
4315 | dataOut.noise_lag[1] = dataOut.getNoise()[1] | |
|
4317 | dataOut.noise_lag[1] = dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[1] | |
|
4316 | 4318 | else: |
|
4317 | dataOut.noise_lag[1] = dataOut.getNoise()[1] | |
|
4319 | dataOut.noise_lag[1] = dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[1] | |
|
4318 | 4320 | #else: |
|
4319 | 4321 | #dataOut.noise_lag[1,lag] = numpy.mean(dataOut.noise_lag[1,:6]) |
|
4320 | 4322 | #dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46) |
@@ -4324,9 +4326,9 class SpectraDataToFaraday_MST(Operation): #MST MODE | |||
|
4324 | 4326 | dataOut.data_spc = dataOut.dataLag_spc[:,:,:,0] |
|
4325 | 4327 | if dataOut.flagDecodeData: |
|
4326 | 4328 | #dataOut.noise_lag[0] = dataOut.getNoise(ymin_index=150,ymax_index=200)[0] |
|
4327 | dataOut.noise_lag[0] = dataOut.getNoise()[0] | |
|
4329 | dataOut.noise_lag[0] = dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[0] | |
|
4328 | 4330 | else: |
|
4329 | dataOut.noise_lag[0] = dataOut.getNoise()[0] | |
|
4331 | dataOut.noise_lag[0] = dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[0] | |
|
4330 | 4332 | |
|
4331 | 4333 | dataOut.tnoise = dataOut.noise_lag/float(dataOut.nProfiles*dataOut.nIncohInt) |
|
4332 | 4334 | #dataOut.tnoise /= float(dataOut.nProfiles*dataOut.nIncohInt) |
@@ -4392,12 +4394,7 class SpectraDataToFaraday_MST(Operation): #MST MODE | |||
|
4392 | 4394 | input() |
|
4393 | 4395 | ''' |
|
4394 | 4396 | |
|
4395 | ||
|
4396 | ||
|
4397 | ||
|
4398 | ||
|
4399 | ||
|
4400 | def run(self,dataOut): | |
|
4397 | def run(self,dataOut,ymin_noise = None,ymax_noise = None): | |
|
4401 | 4398 | |
|
4402 | 4399 | dataOut.paramInterval=0#int(dataOut.nint*dataOut.header[7][0]*2 ) |
|
4403 | 4400 | dataOut.lat=-11.95 |
@@ -4421,28 +4418,52 class SpectraDataToFaraday_MST(Operation): #MST MODE | |||
|
4421 | 4418 | dataOut.data_spc /= dataOut.windowOfFilter |
|
4422 | 4419 | dataOut.data_cspc /= dataOut.windowOfFilter |
|
4423 | 4420 | ''' |
|
4424 | #print(dataOut.data_spc.shape) | |
|
4425 | print("*****************Sum: ", numpy.sum(dataOut.data_spc[0])) | |
|
4426 |
print("***************** |
|
|
4421 | #print("dataOut.data_spc.shape: ", dataOut.data_spc.shape) | |
|
4422 | #print("dataOut.data_cspc.shape: ", dataOut.data_cspc.shape) | |
|
4423 | #print("*****************Sum: ", numpy.sum(dataOut.data_spc[0])) | |
|
4424 | #print("*******************normFactor: *******************", dataOut.normFactor) | |
|
4427 | 4425 | dataOut.dataLag_spc = numpy.stack((dataOut.data_spc, dataOut.data_spc), axis=-1) |
|
4428 | 4426 | dataOut.dataLag_cspc = numpy.stack((dataOut.data_cspc, dataOut.data_cspc), axis=-1) |
|
4429 | 4427 | #print(dataOut.dataLag_spc.shape) |
|
4430 | 4428 | dataOut.DPL = numpy.shape(dataOut.dataLag_spc)[-1] |
|
4429 | ||
|
4431 | 4430 | #exit(1) |
|
4432 | 4431 | self.ConvertData(dataOut) |
|
4433 | self.noise(dataOut) | |
|
4432 | ||
|
4433 | inda = numpy.where(dataOut.heightList >= ymin_noise) | |
|
4434 | indb = numpy.where(dataOut.heightList <= ymax_noise) | |
|
4435 | ||
|
4436 | minIndex = inda[0][0] | |
|
4437 | maxIndex = indb[0][-1] | |
|
4438 | ||
|
4439 | #print("ymin_noise: ", dataOut.heightList[minIndex]) | |
|
4440 | #print("ymax_noise: ", dataOut.heightList[maxIndex]) | |
|
4441 | ||
|
4442 | self.noise(dataOut,minIndex,maxIndex) | |
|
4434 | 4443 | dataOut.NAVG=16#dataOut.rnint2[0] #CHECK THIS! |
|
4435 | 4444 | dataOut.MAXNRANGENDT=dataOut.NDP |
|
4436 | ''' | |
|
4437 | if dataOut.flagDecodeData: | |
|
4438 | print(dataOut.kabxys_integrated[4][:,0,0]) | |
|
4445 | #''' | |
|
4446 | if 0: | |
|
4447 | #print(dataOut.kabxys_integrated[4][:,0,0]) | |
|
4448 | #print("dataOut.heightList: ", dataOut.heightList) | |
|
4449 | #print("dataOut.pbn: ", dataOut.pbn) | |
|
4450 | print("INSIDE") | |
|
4439 | 4451 | import matplotlib.pyplot as plt |
|
4440 | plt.plot(dataOut.kabxys_integrated[4][:,0,0],dataOut.heightList) | |
|
4441 | plt.axvline(dataOut.pan) | |
|
4442 | plt.xlim(1.1*1e3,0.6*1e6) | |
|
4443 | plt.ylim(30,90) | |
|
4452 | #print("dataOut.getPower(): ", dataOut.getPower()) | |
|
4453 | plt.plot(10*numpy.log10(dataOut.kabxys_integrated[4][:,0,0]),dataOut.heightList) | |
|
4454 | #plt.plot(10**((dataOut.getPower()[1])/10),dataOut.heightList) | |
|
4455 | #plt.plot(dataOut.getPower()[0],dataOut.heightList) | |
|
4456 | #plt.plot(dataOut.dataLag_spc[:,:,:,0],dataOut.heightList) | |
|
4457 | plt.axvline(10*numpy.log10(dataOut.pan)) | |
|
4458 | #print(dataOut.nProfiles) | |
|
4459 | #plt.axvline(10*numpy.log10(1*dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[0]/dataOut.normFactor)) | |
|
4460 | #print("10*numpy.log10(dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[1]/dataOut.normFactor): ", 10*numpy.log10(dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[1]/dataOut.normFactor)) | |
|
4461 | #plt.xlim(1,25000) | |
|
4462 | #plt.xlim(15,20) | |
|
4463 | #plt.ylim(30,90) | |
|
4464 | plt.grid() | |
|
4444 | 4465 | plt.show() |
|
4445 | ''' | |
|
4466 | #''' | |
|
4446 | 4467 | dataOut.DPL = 1 |
|
4447 | 4468 | return dataOut |
|
4448 | 4469 |
@@ -3115,6 +3115,8 class DoublePulseACFs(Operation): | |||
|
3115 | 3115 | dataOut.p[i,j]=pa+pb-(dataOut.pan+dataOut.pbn) |
|
3116 | 3116 | ''' |
|
3117 | 3117 | #print("init 2.6",pa,dataOut.pan) |
|
3118 | #dataOut.pan = 23600/2 | |
|
3119 | #dataOut.pbn = 23600/2 | |
|
3118 | 3120 | dataOut.p[i,j]=pa+pb-(dataOut.pan+dataOut.pbn) |
|
3119 | 3121 | #print(i,j,dataOut.p[i,j]) |
|
3120 | 3122 | dataOut.sdp[i,j]=2*dataOut.rnint2[j]*((pa+pb)*(pa+pb)) |
@@ -3122,7 +3124,16 class DoublePulseACFs(Operation): | |||
|
3122 | 3124 | |
|
3123 | 3125 | rhorp=dataOut.kabxys_integrated[8][i,j,0]+dataOut.kabxys_integrated[11][i,j,0] |
|
3124 | 3126 | rhoip=dataOut.kabxys_integrated[10][i,j,0]-dataOut.kabxys_integrated[9][i,j,0] |
|
3125 | ||
|
3127 | ''' | |
|
3128 | import matplotlib.pyplot as plt | |
|
3129 | plt.plot(numpy.abs(dataOut.kabxys_integrated[4][:,j,0]+dataOut.kabxys_integrated[5][:,j,0])+numpy.abs(dataOut.kabxys_integrated[6][:,j,0]+dataOut.kabxys_integrated[7][:,j,0]),dataOut.heightList) | |
|
3130 | plt.axvline((dataOut.pan+dataOut.pbn)) | |
|
3131 | plt.xlim(20000,30000) | |
|
3132 | #plt.plot(numpy.abs(dataOut.kabxys_integrated[4][:,j,0]+dataOut.kabxys_integrated[5][:,j,0])+numpy.abs(dataOut.kabxys_integrated[6][:,j,0]+dataOut.kabxys_integrated[7][:,j,0])-(dataOut.pan+dataOut.pbn),dataOut.heightList) | |
|
3133 | #plt.xlim(1,10000) | |
|
3134 | plt.grid() | |
|
3135 | plt.show() | |
|
3136 | ''' | |
|
3126 | 3137 | if ((pa>dataOut.pan)&(pb>dataOut.pbn)): |
|
3127 | 3138 | |
|
3128 | 3139 | ss4=numpy.abs((pa-dataOut.pan)*(pb-dataOut.pbn)) |
@@ -3206,6 +3217,18 class DoublePulseACFs(Operation): | |||
|
3206 | 3217 | #print("p: ",dataOut.p[33,:]) |
|
3207 | 3218 | #exit(1) |
|
3208 | 3219 | #''' |
|
3220 | ''' | |
|
3221 | import matplotlib.pyplot as plt | |
|
3222 | #plt.plot(numpy.abs(dataOut.kabxys_integrated[4][:,j,0]+dataOut.kabxys_integrated[5][:,j,0])+numpy.abs(dataOut.kabxys_integrated[6][:,j,0]+dataOut.kabxys_integrated[7][:,j,0]),dataOut.heightList) | |
|
3223 | #plt.axvline((dataOut.pan+dataOut.pbn)) | |
|
3224 | print(numpy.shape(dataOut.p)) | |
|
3225 | plt.plot(dataOut.p[:,0]*dataOut.heightList*dataOut.heightList,dataOut.heightList) | |
|
3226 | ||
|
3227 | #plt.xlim(1,100000000) | |
|
3228 | plt.xlim(100,100000000) | |
|
3229 | plt.grid() | |
|
3230 | plt.show() | |
|
3231 | ''' | |
|
3209 | 3232 | #print(numpy.sum(dataOut.rhor)) |
|
3210 | 3233 | #exit(1) |
|
3211 | 3234 | return dataOut |
@@ -3442,9 +3465,19 class FaradayAngleAndDPPower(Operation): | |||
|
3442 | 3465 | dataOut.flagTeTiCorrection = False |
|
3443 | 3466 | #print("ph2: ", numpy.sum(dataOut.ph2[:16])) |
|
3444 | 3467 | #print("ph2: ", numpy.sum(dataOut.ph2[16:32])) |
|
3468 | ''' | |
|
3469 | import matplotlib.pyplot as plt | |
|
3470 | #plt.plot(numpy.abs(dataOut.kabxys_integrated[4][:,j,0]+dataOut.kabxys_integrated[5][:,j,0])+numpy.abs(dataOut.kabxys_integrated[6][:,j,0]+dataOut.kabxys_integrated[7][:,j,0]),dataOut.heightList) | |
|
3471 | #plt.axvline((dataOut.pan+dataOut.pbn)) | |
|
3472 | #print(numpy.shape(dataOut.p)) | |
|
3473 | plt.plot(dataOut.ph2,dataOut.heightList) | |
|
3445 | 3474 | |
|
3475 | plt.xlim(1000,1000000000) | |
|
3476 | #plt.ylim(50,400) | |
|
3477 | plt.grid() | |
|
3478 | plt.show() | |
|
3446 | 3479 | #exit(1) |
|
3447 | ||
|
3480 | ''' | |
|
3448 | 3481 | return dataOut |
|
3449 | 3482 | |
|
3450 | 3483 |
General Comments 0
You need to be logged in to leave comments.
Login now