This diff has been collapsed as it changes many lines, (880 lines changed) Show them Hide them | |||
@@ -27,7 +27,6 import matplotlib.pyplot as plt | |||
|
27 | 27 | |
|
28 | 28 | SPEED_OF_LIGHT = 299792458 |
|
29 | 29 | |
|
30 | ||
|
31 | 30 | '''solving pickling issue''' |
|
32 | 31 | |
|
33 | 32 | def _pickle_method(method): |
@@ -223,56 +222,64 class RemoveWideGC(Operation): | |||
|
223 | 222 | self.ir = 0 |
|
224 | 223 | |
|
225 | 224 | def run(self, dataOut, ClutterWidth=2.5): |
|
225 | # print ('Entering RemoveWideGC ... ') | |
|
226 | 226 | |
|
227 | 227 | self.spc = dataOut.data_pre[0].copy() |
|
228 | 228 | self.spc_out = dataOut.data_pre[0].copy() |
|
229 | 229 | self.Num_Chn = self.spc.shape[0] |
|
230 |
self.Num_Hei = self.spc.shape[ |
|
|
230 | self.Num_Hei = self.spc.shape[2] | |
|
231 | 231 | VelRange = dataOut.spc_range[2][:-1] |
|
232 | 232 | dv = VelRange[1]-VelRange[0] |
|
233 | 233 | |
|
234 | 234 | # Find the velocities that corresponds to zero |
|
235 | gc_values = numpy.where(numpy.abs(VelRange) <= ClutterWidth) | |
|
235 | gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth)) | |
|
236 | 236 | |
|
237 | 237 | # Removing novalid data from the spectra |
|
238 | for ich in range(self.Num_Chn): | |
|
239 | # Estimate the noise at aech range | |
|
240 | ||
|
241 | for ir in range(self.Num_Hei): | |
|
242 | # Estimate the noise at aech range | |
|
238 | for ich in range(self.Num_Chn) : | |
|
239 | for ir in range(self.Num_Hei) : | |
|
240 | # Estimate the noise at each range | |
|
243 | 241 | HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt) |
|
242 | ||
|
244 | 243 | # Removing the noise floor at each range |
|
245 | 244 | novalid = numpy.where(self.spc[ich,:,ir] < HSn) |
|
246 | self.spc[novalid,ir] = HSn | |
|
247 | ||
|
248 |
junk = |
|
|
249 |
j1index = numpy.where(numpy.diff |
|
|
250 |
j2index = numpy.where(numpy.diff |
|
|
251 | junk3 = numpy.diff(j1index) | |
|
252 | junk4 = numpy.diff(j2index) | |
|
253 | ||
|
254 | valleyindex = j2index[junk4>1] | |
|
255 | peakindex = j1index[junk3>1] | |
|
256 | ||
|
257 | # Identify the clutter (close to zero) | |
|
258 | isvalid = numpy.where(where.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv) | |
|
259 | # if isempty(isvalid) | |
|
260 | # continue | |
|
261 |
|
|
|
262 | # [~,vindex]= numpy.max(spc[gc_values[peakindex[isvalid]],ir]) | |
|
263 | # isvalid = isvalid[vindex] | |
|
245 | self.spc[ich,novalid,ir] = HSn | |
|
246 | ||
|
247 | junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn) | |
|
248 | j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0)) | |
|
249 | j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0)) | |
|
250 | if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) : | |
|
251 | continue | |
|
252 | junk3 = numpy.squeeze(numpy.diff(j1index)) | |
|
253 | junk4 = numpy.squeeze(numpy.diff(j2index)) | |
|
254 | ||
|
255 | valleyindex = j2index[numpy.where(junk4>1)] | |
|
256 | peakindex = j1index[numpy.where(junk3>1)] | |
|
257 | ||
|
258 | isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv)) | |
|
259 | if numpy.size(isvalid) == 0 : | |
|
260 | continue | |
|
261 | if numpy.size(isvalid) >1 : | |
|
262 | vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir]) | |
|
263 | isvalid = isvalid[vindex] | |
|
264 | ||
|
264 | 265 | # clutter peak |
|
265 | 266 | gcpeak = peakindex[isvalid] |
|
266 | # left and right index of the clutter | |
|
267 | gcvl = valleyindex[numpy.where(valleyindex < gcpeak, 1, 'last' )] | |
|
268 | gcvr = valleyindex[numpy.where(valleyindex > gcpeak, 1)] | |
|
267 | vl = numpy.where(valleyindex < gcpeak) | |
|
268 | if numpy.size(vl) == 0: | |
|
269 | continue | |
|
270 | gcvl = valleyindex[vl[0][-1]] | |
|
271 | vr = numpy.where(valleyindex > gcpeak) | |
|
272 | if numpy.size(vr) == 0: | |
|
273 | continue | |
|
274 | gcvr = valleyindex[vr[0][0]] | |
|
269 | 275 | |
|
270 | 276 | # Removing the clutter |
|
271 |
interpindex = [gc_values |
|
|
277 | interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]]) | |
|
272 | 278 | gcindex = gc_values[gcvl+1:gcvr-1] |
|
273 | 279 | self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir]) |
|
274 | 280 | |
|
275 | 281 | dataOut.data_pre[0] = self.spc_out |
|
282 | #print ('Leaving RemoveWideGC ... ') | |
|
276 | 283 | return dataOut |
|
277 | 284 | |
|
278 | 285 | class SpectralFilters(Operation): |
@@ -297,14 +304,14 class SpectralFilters(Operation): | |||
|
297 | 304 | Operation.__init__(self) |
|
298 | 305 | self.i = 0 |
|
299 | 306 | |
|
300 |
def run(self, dataOut, |
|
|
307 | def run(self, dataOut, ): | |
|
301 | 308 | |
|
302 | 309 | self.spc = dataOut.data_pre[0].copy() |
|
303 | 310 | self.Num_Chn = self.spc.shape[0] |
|
304 | 311 | VelRange = dataOut.spc_range[2] |
|
305 | 312 | |
|
306 | 313 | # novalid corresponds to data within the Negative and PositiveLimit |
|
307 | novalid = numpy.where((VelRange[:-1] >= NegativeLimit) & (VelRange[:-1] <= PositiveLimit)) | |
|
314 | ||
|
308 | 315 | |
|
309 | 316 | # Removing novalid data from the spectra |
|
310 | 317 | for i in range(self.Num_Chn): |
@@ -331,135 +338,186 class GaussianFit(Operation): | |||
|
331 | 338 | self.i=0 |
|
332 | 339 | |
|
333 | 340 | |
|
334 | def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
|
341 | # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
|
342 | def run(self, dataOut, SNRdBlimit=-9, method='generalized'): | |
|
335 | 343 | """This routine will find a couple of generalized Gaussians to a power spectrum |
|
344 | methods: generalized, squared | |
|
336 | 345 | input: spc |
|
337 | 346 | output: |
|
338 |
|
|
|
347 | noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1 | |
|
339 | 348 | """ |
|
340 | ||
|
349 | print ('Entering ',method,' double Gaussian fit') | |
|
341 | 350 | self.spc = dataOut.data_pre[0].copy() |
|
342 | 351 | self.Num_Hei = self.spc.shape[2] |
|
343 | 352 | self.Num_Bin = self.spc.shape[1] |
|
344 | 353 | self.Num_Chn = self.spc.shape[0] |
|
345 | Vrange = dataOut.abscissaList | |
|
346 | ||
|
347 | GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
|
348 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
|
349 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
|
350 | SPC_ch1[:] = numpy.NaN | |
|
351 | SPC_ch2[:] = numpy.NaN | |
|
352 | ||
|
353 | 354 | |
|
354 | 355 | start_time = time.time() |
|
355 | 356 | |
|
356 | noise_ = dataOut.spc_noise[0].copy() | |
|
357 | ||
|
358 | ||
|
359 | 357 | pool = Pool(processes=self.Num_Chn) |
|
360 |
args = [( |
|
|
358 | args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)] | |
|
361 | 359 | objs = [self for __ in range(self.Num_Chn)] |
|
362 | 360 | attrs = list(zip(objs, args)) |
|
363 |
|
|
|
364 | dataOut.SPCparam = numpy.asarray(SPCparam) | |
|
365 | ||
|
366 | ''' Parameters: | |
|
367 | 1. Amplitude | |
|
368 | 2. Shift | |
|
369 | 3. Width | |
|
370 | 4. Power | |
|
371 | ''' | |
|
361 | DGauFitParam = pool.map(target, attrs) | |
|
362 | # Parameters: | |
|
363 | # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power | |
|
364 | dataOut.DGauFitParams = numpy.asarray(DGauFitParam) | |
|
365 | ||
|
366 | # Double Gaussian Curves | |
|
367 | gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
|
368 | gau0[:] = numpy.NaN | |
|
369 | gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
|
370 | gau1[:] = numpy.NaN | |
|
371 | x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1))) | |
|
372 | for iCh in range(self.Num_Chn): | |
|
373 | N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin)) | |
|
374 | N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin)) | |
|
375 | A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin)) | |
|
376 | A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin)) | |
|
377 | v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin)) | |
|
378 | v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin)) | |
|
379 | s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin)) | |
|
380 | s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin)) | |
|
381 | if method == 'genealized': | |
|
382 | p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin)) | |
|
383 | p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin)) | |
|
384 | elif method == 'squared': | |
|
385 | p0 = 2. | |
|
386 | p1 = 2. | |
|
387 | gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0 | |
|
388 | gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1 | |
|
389 | dataOut.GaussFit0 = gau0 | |
|
390 | dataOut.GaussFit1 = gau1 | |
|
391 | ||
|
392 | print('Leaving ',method ,' double Gaussian fit') | |
|
393 | return dataOut | |
|
372 | 394 | |
|
373 | 395 | def FitGau(self, X): |
|
374 | ||
|
375 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X | |
|
376 | ||
|
377 | SPCparam = [] | |
|
378 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
|
379 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
|
380 | SPC_ch1[:] = 0 #numpy.NaN | |
|
381 | SPC_ch2[:] = 0 #numpy.NaN | |
|
382 | ||
|
383 | ||
|
384 | ||
|
396 | # print('Entering FitGau') | |
|
397 | # Assigning the variables | |
|
398 | Vrange, ch, wnoise, num_intg, SNRlimit = X | |
|
399 | # Noise Limits | |
|
400 | noisebl = wnoise * 0.9 | |
|
401 | noisebh = wnoise * 1.1 | |
|
402 | # Radar Velocity | |
|
403 | Va = max(Vrange) | |
|
404 | deltav = Vrange[1] - Vrange[0] | |
|
405 | x = numpy.arange(self.Num_Bin) | |
|
406 | ||
|
407 | # print ('stop 0') | |
|
408 | ||
|
409 | # 5 parameters, 2 Gaussians | |
|
410 | DGauFitParam = numpy.zeros([5, self.Num_Hei,2]) | |
|
411 | DGauFitParam[:] = numpy.NaN | |
|
412 | ||
|
413 | # SPCparam = [] | |
|
414 | # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
|
415 | # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
|
416 | # SPC_ch1[:] = 0 #numpy.NaN | |
|
417 | # SPC_ch2[:] = 0 #numpy.NaN | |
|
418 | # print ('stop 1') | |
|
385 | 419 | for ht in range(self.Num_Hei): |
|
386 | ||
|
387 | ||
|
420 | # print (ht) | |
|
421 | # print ('stop 2') | |
|
422 | # Spectra at each range | |
|
388 | 423 | spc = numpy.asarray(self.spc)[ch,:,ht] |
|
424 | snr = ( spc.mean() - wnoise ) / wnoise | |
|
425 | snrdB = 10.*numpy.log10(snr) | |
|
389 | 426 | |
|
427 | #print ('stop 3') | |
|
428 | if snrdB < SNRlimit : | |
|
429 | # snr = numpy.NaN | |
|
430 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
|
431 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
|
432 | # SPCparam = (SPC_ch1,SPC_ch2) | |
|
433 | # print ('SNR less than SNRth') | |
|
434 | continue | |
|
435 | # wnoise = hildebrand_sekhon(spc,num_intg) | |
|
436 | # print ('stop 2.01') | |
|
390 | 437 | ############################################# |
|
391 | 438 | # normalizing spc and noise |
|
392 | 439 | # This part differs from gg1 |
|
393 | spc_norm_max = max(spc) | |
|
440 | # spc_norm_max = max(spc) #commented by D. Scipión 19.03.2021 | |
|
394 | 441 | #spc = spc / spc_norm_max |
|
395 | pnoise = pnoise #/ spc_norm_max | |
|
442 | # pnoise = pnoise #/ spc_norm_max #commented by D. Scipión 19.03.2021 | |
|
396 | 443 | ############################################# |
|
397 | 444 | |
|
445 | # print ('stop 2.1') | |
|
398 | 446 | fatspectra=1.0 |
|
399 | ||
|
400 | wnoise = noise_ #/ spc_norm_max | |
|
447 | # noise per channel.... we might want to use the noise at each range | |
|
448 | ||
|
449 | # wnoise = noise_ #/ spc_norm_max #commented by D. Scipión 19.03.2021 | |
|
401 | 450 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
402 | 451 | #if wnoise>1.1*pnoise: # to be tested later |
|
403 | 452 | # wnoise=pnoise |
|
404 |
noisebl=wnoise*0.9 |
|
|
405 | noisebh=wnoise*1.1 | |
|
406 | spc=spc-wnoise | |
|
453 | # noisebl = wnoise*0.9 | |
|
454 | # noisebh = wnoise*1.1 | |
|
455 | spc = spc - wnoise # signal | |
|
407 | 456 | |
|
408 | minx=numpy.argmin(spc) | |
|
457 | # print ('stop 2.2') | |
|
458 | minx = numpy.argmin(spc) | |
|
409 | 459 | #spcs=spc.copy() |
|
410 | spcs=numpy.roll(spc,-minx) | |
|
411 | cum=numpy.cumsum(spcs) | |
|
412 | tot_noise=wnoise * self.Num_Bin #64; | |
|
413 | ||
|
414 | snr = sum(spcs)/tot_noise | |
|
415 | snrdB=10.*numpy.log10(snr) | |
|
416 | ||
|
417 | if snrdB < SNRlimit : | |
|
418 |
|
|
|
419 |
|
|
|
420 | SPC_ch1[:,ht] = 0#numpy.NaN | |
|
421 | SPCparam = (SPC_ch1,SPC_ch2) | |
|
422 | continue | |
|
460 | spcs = numpy.roll(spc,-minx) | |
|
461 | cum = numpy.cumsum(spcs) | |
|
462 | # tot_noise = wnoise * self.Num_Bin #64; | |
|
463 | ||
|
464 | # print ('stop 2.3') | |
|
465 | # snr = sum(spcs) / tot_noise | |
|
466 | # snrdB = 10.*numpy.log10(snr) | |
|
467 | #print ('stop 3') | |
|
468 | # if snrdB < SNRlimit : | |
|
469 | # snr = numpy.NaN | |
|
470 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
|
471 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
|
472 | # SPCparam = (SPC_ch1,SPC_ch2) | |
|
473 | # print ('SNR less than SNRth') | |
|
474 | # continue | |
|
423 | 475 | |
|
424 | 476 | |
|
425 | 477 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
426 | 478 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
427 | ||
|
428 |
cummax=max(cum) |
|
|
429 | epsi=0.08*fatspectra # cumsum to narrow down the energy region | |
|
430 |
cumlo=cummax*epsi |
|
|
431 | cumhi=cummax*(1-epsi) | |
|
432 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
|
433 | ||
|
434 | ||
|
479 | # print ('stop 4') | |
|
480 | cummax = max(cum) | |
|
481 | epsi = 0.08 * fatspectra # cumsum to narrow down the energy region | |
|
482 | cumlo = cummax * epsi | |
|
483 | cumhi = cummax * (1-epsi) | |
|
484 | powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
|
485 | ||
|
486 | # print ('stop 5') | |
|
435 | 487 | if len(powerindex) < 1:# case for powerindex 0 |
|
488 | # print ('powerindex < 1') | |
|
436 | 489 | continue |
|
437 | powerlo=powerindex[0] | |
|
438 | powerhi=powerindex[-1] | |
|
439 | powerwidth=powerhi-powerlo | |
|
440 | ||
|
441 | firstpeak=powerlo+powerwidth/10.# first gaussian energy location | |
|
442 | secondpeak=powerhi-powerwidth/10.#second gaussian energy location | |
|
443 | midpeak=(firstpeak+secondpeak)/2. | |
|
444 |
|
|
|
445 | secondamp=spcs[int(secondpeak)] | |
|
446 | midamp=spcs[int(midpeak)] | |
|
490 | powerlo = powerindex[0] | |
|
491 | powerhi = powerindex[-1] | |
|
492 | powerwidth = powerhi-powerlo | |
|
493 | if powerwidth <= 1: | |
|
494 | # print('powerwidth <= 1') | |
|
495 | continue | |
|
496 | ||
|
497 | # print ('stop 6') | |
|
498 | firstpeak = powerlo + powerwidth/10.# first gaussian energy location | |
|
499 | secondpeak = powerhi - powerwidth/10. #second gaussian energy location | |
|
500 | midpeak = (firstpeak + secondpeak)/2. | |
|
501 | firstamp = spcs[int(firstpeak)] | |
|
502 | secondamp = spcs[int(secondpeak)] | |
|
503 | midamp = spcs[int(midpeak)] | |
|
447 | 504 | |
|
448 | x=numpy.arange( self.Num_Bin ) | |
|
449 | y_data=spc+wnoise | |
|
505 | y_data = spc + wnoise | |
|
450 | 506 | |
|
451 | 507 | ''' single Gaussian ''' |
|
452 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) | |
|
453 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
|
454 | power0=2. | |
|
455 | amplitude0=midamp | |
|
456 | state0=[shift0,width0,amplitude0,power0,wnoise] | |
|
457 |
bnds=(( |
|
|
458 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |
|
459 | ||
|
460 | chiSq1=lsq1[1]; | |
|
461 | ||
|
462 | ||
|
508 | shift0 = numpy.mod(midpeak+minx, self.Num_Bin ) | |
|
509 | width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
|
510 | power0 = 2. | |
|
511 | amplitude0 = midamp | |
|
512 | state0 = [shift0,width0,amplitude0,power0,wnoise] | |
|
513 | bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
|
514 | lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True) | |
|
515 | # print ('stop 7.1') | |
|
516 | # print (bnds) | |
|
517 | ||
|
518 | chiSq1=lsq1[1] | |
|
519 | ||
|
520 | # print ('stop 8') | |
|
463 | 521 | if fatspectra<1.0 and powerwidth<4: |
|
464 | 522 | choice=0 |
|
465 | 523 | Amplitude0=lsq1[0][2] |
@@ -473,127 +531,142 class GaussianFit(Operation): | |||
|
473 | 531 | noise=lsq1[0][4] |
|
474 | 532 | #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
475 | 533 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
476 | ||
|
477 | ''' two gaussians ''' | |
|
534 | ||
|
535 | # print ('stop 9') | |
|
536 | ''' two Gaussians ''' | |
|
478 | 537 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
479 |
shift0=numpy.mod(firstpeak+minx, self.Num_Bin ) |
|
|
480 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) | |
|
481 |
width0=powerwidth/6. |
|
|
482 | width1=width0 | |
|
483 |
power0=2. |
|
|
484 | power1=power0 | |
|
485 |
amplitude0=firstamp |
|
|
486 | amplitude1=secondamp | |
|
487 | state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
|
538 | shift0 = numpy.mod(firstpeak+minx, self.Num_Bin ) | |
|
539 | shift1 = numpy.mod(secondpeak+minx, self.Num_Bin ) | |
|
540 | width0 = powerwidth/6. | |
|
541 | width1 = width0 | |
|
542 | power0 = 2. | |
|
543 | power1 = power0 | |
|
544 | amplitude0 = firstamp | |
|
545 | amplitude1 = secondamp | |
|
546 | state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
|
488 | 547 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
489 |
bnds=(( |
|
|
548 | bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
|
490 | 549 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
491 | 550 | |
|
551 | # print ('stop 10') | |
|
492 | 552 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) |
|
493 | 553 | |
|
554 | # print ('stop 11') | |
|
555 | chiSq2 = lsq2[1] | |
|
494 | 556 | |
|
495 | chiSq2=lsq2[1]; | |
|
496 | ||
|
497 | ||
|
557 | # print ('stop 12') | |
|
498 | 558 | |
|
499 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
|
559 | oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
|
500 | 560 | |
|
561 | # print ('stop 13') | |
|
501 | 562 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error |
|
502 | 563 | if oneG: |
|
503 | choice=0 | |
|
564 | choice = 0 | |
|
504 | 565 | else: |
|
505 | w1=lsq2[0][1]; w2=lsq2[0][5] | |
|
506 | a1=lsq2[0][2]; a2=lsq2[0][6] | |
|
507 | p1=lsq2[0][3]; p2=lsq2[0][7] | |
|
508 |
s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1 |
|
|
509 |
s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2 |
|
|
510 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling | |
|
566 | w1 = lsq2[0][1]; w2 = lsq2[0][5] | |
|
567 | a1 = lsq2[0][2]; a2 = lsq2[0][6] | |
|
568 | p1 = lsq2[0][3]; p2 = lsq2[0][7] | |
|
569 | s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1 | |
|
570 | s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2 | |
|
571 | gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling | |
|
511 | 572 | |
|
512 | 573 | if gp1>gp2: |
|
513 | 574 | if a1>0.7*a2: |
|
514 | choice=1 | |
|
575 | choice = 1 | |
|
515 | 576 | else: |
|
516 | choice=2 | |
|
577 | choice = 2 | |
|
517 | 578 | elif gp2>gp1: |
|
518 | 579 | if a2>0.7*a1: |
|
519 | choice=2 | |
|
580 | choice = 2 | |
|
520 | 581 | else: |
|
521 | choice=1 | |
|
582 | choice = 1 | |
|
522 | 583 | else: |
|
523 | choice=numpy.argmax([a1,a2])+1 | |
|
584 | choice = numpy.argmax([a1,a2])+1 | |
|
524 | 585 | #else: |
|
525 | 586 | #choice=argmin([std2a,std2b])+1 |
|
526 | 587 | |
|
527 | 588 | else: # with low SNR go to the most energetic peak |
|
528 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
|
529 | ||
|
530 | ||
|
531 |
shift0=lsq2[0][0] |
|
|
532 |
vel0=Vrange[0] + shift0* |
|
|
533 |
shift1=lsq2[0][4] |
|
|
534 |
vel1=Vrange[0] + shift1 |
|
|
535 | ||
|
536 | max_vel = 1.0 | |
|
537 | ||
|
589 | choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
|
590 | ||
|
591 | # print ('stop 14') | |
|
592 | shift0 = lsq2[0][0] | |
|
593 | vel0 = Vrange[0] + shift0 * deltav | |
|
594 | shift1 = lsq2[0][4] | |
|
595 | # vel1=Vrange[0] + shift1 * deltav | |
|
596 | ||
|
597 | # max_vel = 1.0 | |
|
598 | # Va = max(Vrange) | |
|
599 | # deltav = Vrange[1]-Vrange[0] | |
|
600 | # print ('stop 15') | |
|
538 | 601 | #first peak will be 0, second peak will be 1 |
|
539 | if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range | |
|
540 | shift0=lsq2[0][0] | |
|
541 |
|
|
|
542 |
|
|
|
543 |
p0=lsq2[0][ |
|
|
544 | ||
|
545 | shift1=lsq2[0][4] | |
|
546 |
|
|
|
547 |
|
|
|
548 |
p1=lsq2[0][ |
|
|
549 |
|
|
|
602 | # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.Scipión 19.03.2021 | |
|
603 | if vel0 > -Va and vel0 < Va : #first peak is in the correct range | |
|
604 | shift0 = lsq2[0][0] | |
|
605 | width0 = lsq2[0][1] | |
|
606 | Amplitude0 = lsq2[0][2] | |
|
607 | p0 = lsq2[0][3] | |
|
608 | ||
|
609 | shift1 = lsq2[0][4] | |
|
610 | width1 = lsq2[0][5] | |
|
611 | Amplitude1 = lsq2[0][6] | |
|
612 | p1 = lsq2[0][7] | |
|
613 | noise = lsq2[0][8] | |
|
550 | 614 | else: |
|
551 | shift1=lsq2[0][0] | |
|
552 | width1=lsq2[0][1] | |
|
553 | Amplitude1=lsq2[0][2] | |
|
554 | p1=lsq2[0][3] | |
|
615 | shift1 = lsq2[0][0] | |
|
616 | width1 = lsq2[0][1] | |
|
617 | Amplitude1 = lsq2[0][2] | |
|
618 | p1 = lsq2[0][3] | |
|
555 | 619 | |
|
556 | shift0=lsq2[0][4] | |
|
557 | width0=lsq2[0][5] | |
|
558 | Amplitude0=lsq2[0][6] | |
|
559 | p0=lsq2[0][7] | |
|
560 | noise=lsq2[0][8] | |
|
620 | shift0 = lsq2[0][4] | |
|
621 | width0 = lsq2[0][5] | |
|
622 | Amplitude0 = lsq2[0][6] | |
|
623 | p0 = lsq2[0][7] | |
|
624 | noise = lsq2[0][8] | |
|
561 | 625 | |
|
562 | 626 | if Amplitude0<0.05: # in case the peak is noise |
|
563 |
shift0,width0,Amplitude0,p0 = [ |
|
|
627 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] | |
|
564 | 628 | if Amplitude1<0.05: |
|
565 |
shift1,width1,Amplitude1,p1 = [ |
|
|
566 | ||
|
567 | ||
|
568 |
SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0) |
|
|
569 |
SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1) |
|
|
570 | SPCparam = (SPC_ch1,SPC_ch2) | |
|
571 | ||
|
572 | ||
|
573 | return GauSPC | |
|
629 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] | |
|
630 | ||
|
631 | # print ('stop 16 ') | |
|
632 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0) | |
|
633 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1) | |
|
634 | # SPCparam = (SPC_ch1,SPC_ch2) | |
|
635 | ||
|
636 | DGauFitParam[0,ht,0] = noise | |
|
637 | DGauFitParam[0,ht,1] = noise | |
|
638 | DGauFitParam[1,ht,0] = Amplitude0 | |
|
639 | DGauFitParam[1,ht,1] = Amplitude1 | |
|
640 | DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav | |
|
641 | DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav | |
|
642 | DGauFitParam[3,ht,0] = width0 * deltav | |
|
643 | DGauFitParam[3,ht,1] = width1 * deltav | |
|
644 | DGauFitParam[4,ht,0] = p0 | |
|
645 | DGauFitParam[4,ht,1] = p1 | |
|
646 | ||
|
647 | # print (DGauFitParam.shape) | |
|
648 | # print ('Leaving FitGau') | |
|
649 | return DGauFitParam | |
|
650 | # return SPCparam | |
|
651 | # return GauSPC | |
|
574 | 652 | |
|
575 | 653 | def y_model1(self,x,state): |
|
576 | shift0,width0,amplitude0,power0,noise=state | |
|
577 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
|
578 | ||
|
579 |
model0 |
|
|
580 | ||
|
581 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) | |
|
582 | return model0+model0u+model0d+noise | |
|
654 | shift0, width0, amplitude0, power0, noise = state | |
|
655 | model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0) | |
|
656 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | |
|
657 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |
|
658 | return model0 + model0u + model0d + noise | |
|
583 | 659 | |
|
584 | 660 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist |
|
585 | shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state | |
|
586 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
|
587 | ||
|
588 |
model0 |
|
|
589 | ||
|
590 |
model |
|
|
591 | model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1) | |
|
592 | ||
|
593 | model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) | |
|
594 | ||
|
595 | model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) | |
|
596 | return model0+model0u+model0d+model1+model1u+model1d+noise | |
|
661 | shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state | |
|
662 | model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
|
663 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | |
|
664 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |
|
665 | ||
|
666 | model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1) | |
|
667 | model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1) | |
|
668 | model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1) | |
|
669 | return model0 + model0u + model0d + model1 + model1u + model1d + noise | |
|
597 | 670 | |
|
598 | 671 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. |
|
599 | 672 | |
@@ -625,7 +698,9 class PrecipitationProc(Operation): | |||
|
625 | 698 | self.i=0 |
|
626 | 699 | |
|
627 | 700 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, |
|
628 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350): | |
|
701 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30): | |
|
702 | ||
|
703 | # print ('Entering PrecepitationProc ... ') | |
|
629 | 704 | |
|
630 | 705 | if radar == "MIRA35C" : |
|
631 | 706 | |
@@ -673,7 +748,6 class PrecipitationProc(Operation): | |||
|
673 | 748 | SignalPower[numpy.where(SignalPower < 0)] = 1e-20 |
|
674 | 749 | |
|
675 | 750 | SPCmean = numpy.mean(SignalPower, 0) |
|
676 | ||
|
677 | 751 | Pr = SPCmean[:,:]/dataOut.normFactor |
|
678 | 752 | |
|
679 | 753 | # Declaring auxiliary variables |
@@ -708,9 +782,9 class PrecipitationProc(Operation): | |||
|
708 | 782 | |
|
709 | 783 | # Censoring the data |
|
710 | 784 | # Removing data with SNRth < 0dB se debe considerar el SNR por canal |
|
711 |
SNRth = 10**( |
|
|
712 |
novalid = numpy.where((dataOut.data_ |
|
|
713 |
W = numpy.nanmean(dataOut.data_ |
|
|
785 | SNRth = 10**(SNRdBlimit/10) #-30dB | |
|
786 | novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better | |
|
787 | W = numpy.nanmean(dataOut.data_dop,0) | |
|
714 | 788 | W[novalid] = numpy.NaN |
|
715 | 789 | Ze_org[novalid] = numpy.NaN |
|
716 | 790 | RR[novalid] = numpy.NaN |
@@ -720,8 +794,10 class PrecipitationProc(Operation): | |||
|
720 | 794 | dataOut.channelList = [0,1,2] |
|
721 | 795 | |
|
722 | 796 | dataOut.data_param[0]=10*numpy.log10(Ze_org) |
|
723 | dataOut.data_param[1]=W | |
|
797 | dataOut.data_param[1]=-W | |
|
724 | 798 | dataOut.data_param[2]=RR |
|
799 | ||
|
800 | # print ('Leaving PrecepitationProc ... ') | |
|
725 | 801 | return dataOut |
|
726 | 802 | |
|
727 | 803 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C |
@@ -792,23 +868,11 class FullSpectralAnalysis(Operation): | |||
|
792 | 868 | Parameters affected: Winds, height range, SNR |
|
793 | 869 | |
|
794 | 870 | """ |
|
795 |
def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRlimit= |
|
|
796 | ||
|
797 | self.indice=int(numpy.random.rand()*1000) | |
|
871 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30, | |
|
872 | minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None): | |
|
798 | 873 | |
|
799 | 874 | spc = dataOut.data_pre[0].copy() |
|
800 | 875 | cspc = dataOut.data_pre[1] |
|
801 | ||
|
802 | """Erick: NOTE THE RANGE OF THE PULSE TX MUST BE REMOVED""" | |
|
803 | ||
|
804 | SNRspc = spc.copy() | |
|
805 | SNRspc[:,:,0:7]= numpy.NaN # D. Scipión... the cleaning should not be hardwired in the code... it needs to be flexible... NEEDS TO BE REMOVED | |
|
806 | ||
|
807 | """##########################################""" | |
|
808 | ||
|
809 | ||
|
810 | nChannel = spc.shape[0] | |
|
811 | nProfiles = spc.shape[1] | |
|
812 | 876 | nHeights = spc.shape[2] |
|
813 | 877 | |
|
814 | 878 | # first_height = 0.75 #km (ref: data header 20170822) |
@@ -835,112 +899,81 class FullSpectralAnalysis(Operation): | |||
|
835 | 899 | else: |
|
836 | 900 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) |
|
837 | 901 | |
|
838 | FrecRange = dataOut.spc_range[0] | |
|
839 | ||
|
840 | data_SNR=numpy.zeros([nProfiles]) | |
|
841 | noise = dataOut.noise | |
|
842 | ||
|
843 | dataOut.data_snr = (numpy.mean(SNRspc,axis=1)- noise[0]) / noise[0] | |
|
844 | ||
|
845 | dataOut.data_snr[numpy.where( dataOut.data_snr <0 )] = 1e-20 | |
|
846 | ||
|
847 | ||
|
848 | data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN | |
|
849 | ||
|
850 | velocityX=[] | |
|
851 | velocityY=[] | |
|
852 | velocityV=[] | |
|
902 | # 4 variables: zonal, meridional, vertical, and average SNR | |
|
903 | data_param = numpy.zeros([4,nHeights]) * numpy.NaN | |
|
904 | velocityX = numpy.zeros([nHeights]) * numpy.NaN | |
|
905 | velocityY = numpy.zeros([nHeights]) * numpy.NaN | |
|
906 | velocityZ = numpy.zeros([nHeights]) * numpy.NaN | |
|
853 | 907 | |
|
854 | dbSNR = 10*numpy.log10(dataOut.data_snr) | |
|
855 | dbSNR = numpy.average(dbSNR,0) | |
|
908 | dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0)) | |
|
856 | 909 | |
|
857 | 910 | '''***********************************************WIND ESTIMATION**************************************''' |
|
858 | ||
|
859 | 911 | for Height in range(nHeights): |
|
860 | 912 | |
|
861 | 913 | if Height >= range_min and Height < range_max: |
|
862 |
# error_code |
|
|
863 |
[Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, |
|
|
864 | else: | |
|
865 | Vzon,Vmer,Vver = 0., 0., numpy.NaN | |
|
866 | ||
|
867 | ||
|
868 | if abs(Vzon) < 100. and abs(Vzon) > 0. and abs(Vmer) < 100. and abs(Vmer) > 0.: | |
|
869 | velocityX=numpy.append(velocityX, Vzon) | |
|
870 | velocityY=numpy.append(velocityY, -Vmer) | |
|
871 | ||
|
872 | else: | |
|
873 | velocityX=numpy.append(velocityX, numpy.NaN) | |
|
874 | velocityY=numpy.append(velocityY, numpy.NaN) | |
|
875 | ||
|
876 | if dbSNR[Height] > SNRlimit: | |
|
877 | velocityV=numpy.append(velocityV, -Vver) # reason for this minus sign -> convention? (taken from Ericks version) D.S. yes! | |
|
878 | else: | |
|
879 | velocityV=numpy.append(velocityV, numpy.NaN) | |
|
880 | ||
|
881 | ||
|
882 | '''Change the numpy.array (velocityX) sign when trying to process BLTR data (Erick)''' | |
|
883 | data_output[0] = numpy.array(velocityX) | |
|
884 | data_output[1] = numpy.array(velocityY) | |
|
885 | data_output[2] = velocityV | |
|
886 | ||
|
887 | ||
|
888 | dataOut.data_output = data_output | |
|
889 | ||
|
914 | # error_code will be useful in future analysis | |
|
915 | [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, | |
|
916 | ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency) | |
|
917 | ||
|
918 | if abs(Vzon) < 100. and abs(Vmer) < 100.: | |
|
919 | velocityX[Height] = Vzon | |
|
920 | velocityY[Height] = -Vmer | |
|
921 | velocityZ[Height] = Vver | |
|
922 | ||
|
923 | # Censoring data with SNR threshold | |
|
924 | dbSNR [dbSNR < SNRdBlimit] = numpy.NaN | |
|
925 | ||
|
926 | data_param[0] = velocityX | |
|
927 | data_param[1] = velocityY | |
|
928 | data_param[2] = velocityZ | |
|
929 | data_param[3] = dbSNR | |
|
930 | dataOut.data_param = data_param | |
|
890 | 931 | return dataOut |
|
891 | 932 | |
|
892 | ||
|
893 | 933 | def moving_average(self,x, N=2): |
|
894 | 934 | """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """ |
|
895 | 935 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] |
|
896 | 936 | |
|
897 | 937 | def gaus(self,xSamples,Amp,Mu,Sigma): |
|
898 |
return |
|
|
938 | return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2) | |
|
899 | 939 | |
|
900 | 940 | def Moments(self, ySamples, xSamples): |
|
901 | 941 | Power = numpy.nanmean(ySamples) # Power, 0th Moment |
|
902 | 942 | yNorm = ySamples / numpy.nansum(ySamples) |
|
903 | 943 | RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment |
|
904 |
Sigma2 = |
|
|
905 |
StdDev = Sigma2 |
|
|
944 | Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment | |
|
945 | StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral | |
|
906 | 946 | return numpy.array([Power,RadVel,StdDev]) |
|
907 | 947 | |
|
908 | 948 | def StopWindEstimation(self, error_code): |
|
909 | ''' | |
|
910 | the wind calculation and returns zeros | |
|
911 | ''' | |
|
912 | Vzon = 0 | |
|
913 | Vmer = 0 | |
|
914 | Vver = numpy.nan | |
|
949 | Vzon = numpy.NaN | |
|
950 | Vmer = numpy.NaN | |
|
951 | Vver = numpy.NaN | |
|
915 | 952 | return Vzon, Vmer, Vver, error_code |
|
916 | 953 | |
|
917 | 954 | def AntiAliasing(self, interval, maxstep): |
|
918 | 955 | """ |
|
919 | 956 | function to prevent errors from aliased values when computing phaseslope |
|
920 | 957 | """ |
|
921 |
antialiased = numpy.zeros(len(interval)) |
|
|
958 | antialiased = numpy.zeros(len(interval)) | |
|
922 | 959 | copyinterval = interval.copy() |
|
923 | 960 | |
|
924 | 961 | antialiased[0] = copyinterval[0] |
|
925 | 962 | |
|
926 | 963 | for i in range(1,len(antialiased)): |
|
927 | ||
|
928 | 964 | step = interval[i] - interval[i-1] |
|
929 | ||
|
930 | 965 | if step > maxstep: |
|
931 | 966 | copyinterval -= 2*numpy.pi |
|
932 | 967 | antialiased[i] = copyinterval[i] |
|
933 | ||
|
934 | 968 | elif step < maxstep*(-1): |
|
935 | 969 | copyinterval += 2*numpy.pi |
|
936 | 970 | antialiased[i] = copyinterval[i] |
|
937 | ||
|
938 | 971 | else: |
|
939 | 972 | antialiased[i] = copyinterval[i].copy() |
|
940 | 973 | |
|
941 | 974 | return antialiased |
|
942 | 975 | |
|
943 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit): | |
|
976 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq): | |
|
944 | 977 | """ |
|
945 | 978 | Function that Calculates Zonal, Meridional and Vertical wind velocities. |
|
946 | 979 | Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019. |
@@ -972,46 +1005,40 class FullSpectralAnalysis(Operation): | |||
|
972 | 1005 | |
|
973 | 1006 | error_code = 0 |
|
974 | 1007 | |
|
975 | ||
|
976 | SPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]]) # for normalized spc values for one height | |
|
977 | phase = numpy.ones([spc.shape[0],spc.shape[1]]) # phase between channels | |
|
978 | CSPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) # for normalized cspc values | |
|
979 | PhaseSlope = numpy.zeros(spc.shape[0]) # slope of the phases, channelwise | |
|
980 | PhaseInter = numpy.ones(spc.shape[0]) # intercept to the slope of the phases, channelwise | |
|
981 | xFrec = AbbsisaRange[0][0:spc.shape[1]] # frequency range | |
|
982 | xVel = AbbsisaRange[2][0:spc.shape[1]] # velocity range | |
|
983 | SPCav = numpy.average(spc, axis=0)-numpy.average(noise) # spc[0]-noise[0] %D.S. why??? I suggest only spc.... | |
|
984 | ||
|
985 | SPCmoments_vel = self.Moments(SPCav, xVel ) # SPCmoments_vel[1] corresponds to vertical velocity and is used to determine if signal corresponds to wind (if .. <3) | |
|
986 | # D.S. I suggest to each moment to be calculated independently, because the signal level y/o interferences are not the same in all channels and | |
|
987 | # signal or SNR seems to be contaminated | |
|
988 | CSPCmoments = [] | |
|
1008 | nChan = spc.shape[0] | |
|
1009 | nProf = spc.shape[1] | |
|
1010 | nPair = cspc.shape[0] | |
|
1011 | ||
|
1012 | SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height | |
|
1013 | CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values | |
|
1014 | phase = numpy.zeros([nPair, nProf]) # phase between channels | |
|
1015 | PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise | |
|
1016 | PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise | |
|
1017 | xFrec = AbbsisaRange[0][:-1] # frequency range | |
|
1018 | xVel = AbbsisaRange[2][:-1] # velocity range | |
|
1019 | xSamples = xFrec # the frequency range is taken | |
|
1020 | delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x | |
|
1021 | ||
|
1022 | # only consider velocities with in NegativeLimit and PositiveLimit | |
|
1023 | if (NegativeLimit is None): | |
|
1024 | NegativeLimit = numpy.min(xVel) | |
|
1025 | if (PositiveLimit is None): | |
|
1026 | PositiveLimit = numpy.max(xVel) | |
|
1027 | xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit)) | |
|
1028 | xSamples_zoom = xSamples[xvalid] | |
|
989 | 1029 | |
|
990 | 1030 | '''Getting Eij and Nij''' |
|
991 | ||
|
992 | 1031 | Xi01, Xi02, Xi12 = ChanDist[:,0] |
|
993 | 1032 | Eta01, Eta02, Eta12 = ChanDist[:,1] |
|
994 | 1033 | |
|
995 | # update nov 19 | |
|
996 | widthlimit = 7 # maximum width in Hz of the gaussian, empirically determined. Anything above 10 is unrealistic, often values between 1 and 5 correspond to proper fits. | |
|
997 | ||
|
1034 | # spwd limit - updated by D. Scipión 30.03.2021 | |
|
1035 | widthlimit = 10 | |
|
998 | 1036 | '''************************* SPC is normalized ********************************''' |
|
999 | ||
|
1000 | spc_norm = spc.copy() # need copy() because untouched spc is needed for normalization of cspc below | |
|
1001 | spc_norm = numpy.where(numpy.isfinite(spc_norm), spc_norm, numpy.NAN) | |
|
1002 | ||
|
1003 | # D. Scipión: It is necessary to define DeltaF or DeltaV... it is wrong to use Factor_Norm. It's constant... not a variable | |
|
1004 | ||
|
1037 | spc_norm = spc.copy() | |
|
1005 | 1038 | # For each channel |
|
1006 |
for i in range( |
|
|
1007 | ||
|
1008 | spc_sub = spc_norm[i,:] - noise[i] # spc not smoothed here or in previous version. | |
|
1009 | # D. Scipión: Factor_Norm has to be replaced by DeltaF or DeltaV - It's a constant | |
|
1010 | Factor_Norm = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc_sub)) # usually = Freq range / nfft | |
|
1011 | normalized_spc = spc_sub / (numpy.nansum(numpy.abs(spc_sub)) * Factor_Norm) | |
|
1012 | ||
|
1013 | xSamples = xFrec # the frequency range is taken | |
|
1014 | SPC_Samples[i] = normalized_spc # Normalized SPC values are taken | |
|
1039 | for i in range(nChan): | |
|
1040 | spc_sub = spc_norm[i,:] - noise[i] # only the signal power | |
|
1041 | SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x) | |
|
1015 | 1042 | |
|
1016 | 1043 | '''********************** FITTING MEAN SPC GAUSSIAN **********************''' |
|
1017 | 1044 | |
@@ -1025,30 +1052,26 class FullSpectralAnalysis(Operation): | |||
|
1025 | 1052 | due to subtraction of the noise, some values are below zero. Raw "spc" values should be |
|
1026 | 1053 | >= 0, as it is the modulus squared of the signals (complex * it's conjugate) |
|
1027 | 1054 | """ |
|
1028 | ||
|
1029 | SPCMean = numpy.average(SPC_Samples, axis=0) | |
|
1030 | ||
|
1031 | popt = [1e-10,0,1e-10] | |
|
1032 | SPCMoments = self.Moments(SPCMean, xSamples) | |
|
1033 | ||
|
1034 | if dbSNR > SNRlimit and numpy.abs(SPCmoments_vel[1]) < 3: | |
|
1055 | # initial conditions | |
|
1056 | popt = [1e-10,0,1e-10] | |
|
1057 | # Spectra average | |
|
1058 | SPCMean = numpy.average(SPC_Samples,0) | |
|
1059 | # Moments in frequency | |
|
1060 | SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom) | |
|
1061 | ||
|
1062 | # Gauss Fit SPC in frequency domain | |
|
1063 | if dbSNR > SNRlimit: # only if SNR > SNRth | |
|
1035 | 1064 | try: |
|
1036 | popt,pcov = curve_fit(self.gaus,xSamples,SPCMean,p0=SPCMoments)#, bounds=(-numpy.inf, [numpy.inf, numpy.inf, 10])). Setting bounds does not make the code faster but only keeps the fit from finding the minimum. | |
|
1037 | if popt[2] > widthlimit: # CONDITION | |
|
1065 | popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments) | |
|
1066 | if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION | |
|
1038 | 1067 | return self.StopWindEstimation(error_code = 1) |
|
1039 | ||
|
1040 | FitGauss = self.gaus(xSamples,*popt) | |
|
1041 | ||
|
1068 | FitGauss = self.gaus(xSamples_zoom,*popt) | |
|
1042 | 1069 | except :#RuntimeError: |
|
1043 | 1070 | return self.StopWindEstimation(error_code = 2) |
|
1044 | ||
|
1045 | 1071 | else: |
|
1046 | 1072 | return self.StopWindEstimation(error_code = 3) |
|
1047 | 1073 | |
|
1048 | ||
|
1049 | ||
|
1050 | 1074 | '''***************************** CSPC Normalization ************************* |
|
1051 | new section: | |
|
1052 | 1075 | The Spc spectra are used to normalize the crossspectra. Peaks from precipitation |
|
1053 | 1076 | influence the norm which is not desired. First, a range is identified where the |
|
1054 | 1077 | wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area |
@@ -1060,161 +1083,82 class FullSpectralAnalysis(Operation): | |||
|
1060 | 1083 | |
|
1061 | 1084 | A norm is found according to Briggs 92. |
|
1062 | 1085 | ''' |
|
1063 | ||
|
1064 | radarWavelength = 0.6741 # meters | |
|
1065 | # D.S. This does not need to hardwired... It has to be in function of the radar frequency | |
|
1066 | ||
|
1067 | count_limit_freq = numpy.abs(popt[1]) + widthlimit # Hz, m/s can be also used if velocity is desired abscissa. | |
|
1068 | # count_limit_freq = numpy.max(xFrec) | |
|
1069 | ||
|
1070 | channel_integrals = numpy.zeros(3) | |
|
1071 | ||
|
1072 | for i in range(spc.shape[0]): | |
|
1073 | ''' | |
|
1074 | find the point in array corresponding to count_limit frequency. | |
|
1075 | sum over all frequencies in the range around zero Hz @ math.ceil(N_freq/2) | |
|
1076 | ''' | |
|
1077 | N_freq = numpy.count_nonzero(~numpy.isnan(spc[i,:])) | |
|
1078 | count_limit_int = int(math.ceil( count_limit_freq / numpy.max(xFrec) * (N_freq / 2) )) # gives integer point | |
|
1079 | sum_wind = numpy.nansum( spc[i, (math.ceil(N_freq/2) - count_limit_int) : (math.ceil(N_freq / 2) + count_limit_int)] ) #N_freq/2 is where frequency (velocity) is zero, i.e. middle of spectrum. | |
|
1080 | sum_noise = (numpy.mean(spc[i, :4]) + numpy.mean(spc[i, -6:-2]))/2.0 * (N_freq - 2*count_limit_int) | |
|
1081 | channel_integrals[i] = (sum_noise + sum_wind) * (2*numpy.max(xFrec) / N_freq) | |
|
1082 | ||
|
1083 | ||
|
1084 | cross_integrals_peak = numpy.zeros(3) | |
|
1085 | # cross_integrals_totalrange = numpy.zeros(3) | |
|
1086 | ||
|
1087 | for i in range(spc.shape[0]): | |
|
1088 | ||
|
1089 | cspc_norm = cspc[i,:].copy() # cspc not smoothed here or in previous version | |
|
1090 | ||
|
1086 | # for each pair | |
|
1087 | for i in range(nPair): | |
|
1088 | cspc_norm = cspc[i,:].copy() | |
|
1091 | 1089 | chan_index0 = pairsList[i][0] |
|
1092 | 1090 | chan_index1 = pairsList[i][1] |
|
1093 | ||
|
1094 | cross_integrals_peak[i] = channel_integrals[chan_index0]*channel_integrals[chan_index1] | |
|
1095 | normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_peak[i]) | |
|
1096 | CSPC_Samples[i] = normalized_cspc | |
|
1097 | ||
|
1098 | ''' Finding cross integrals without subtracting any peaks:''' | |
|
1099 | # FactorNorm0 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index0,:])) | |
|
1100 | # FactorNorm1 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index1,:])) | |
|
1101 | # cross_integrals_totalrange[i] = (numpy.nansum(spc[chan_index0,:])) * FactorNorm0 * (numpy.nansum(spc[chan_index1,:])) * FactorNorm1 | |
|
1102 | # normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_totalrange[i]) | |
|
1103 | # CSPC_Samples[i] = normalized_cspc | |
|
1104 | ||
|
1105 | ||
|
1091 | CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x) | |
|
1106 | 1092 | phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real) |
|
1107 | 1093 | |
|
1094 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom), | |
|
1095 | self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom), | |
|
1096 | self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)]) | |
|
1108 | 1097 | |
|
1109 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0]), xSamples), | |
|
1110 | self.Moments(numpy.abs(CSPC_Samples[1]), xSamples), | |
|
1111 | self.Moments(numpy.abs(CSPC_Samples[2]), xSamples)]) | |
|
1112 | ||
|
1113 | ||
|
1114 | '''***Sorting out NaN entries***''' | |
|
1115 | CSPCMask01 = numpy.abs(CSPC_Samples[0]) | |
|
1116 | CSPCMask02 = numpy.abs(CSPC_Samples[1]) | |
|
1117 | CSPCMask12 = numpy.abs(CSPC_Samples[2]) | |
|
1118 | ||
|
1119 | mask01 = ~numpy.isnan(CSPCMask01) | |
|
1120 | mask02 = ~numpy.isnan(CSPCMask02) | |
|
1121 | mask12 = ~numpy.isnan(CSPCMask12) | |
|
1122 | ||
|
1123 | CSPCMask01 = CSPCMask01[mask01] | |
|
1124 | CSPCMask02 = CSPCMask02[mask02] | |
|
1125 | CSPCMask12 = CSPCMask12[mask12] | |
|
1126 | ||
|
1127 | ||
|
1128 | popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10] | |
|
1129 | FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0 | |
|
1098 | popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10] | |
|
1099 | FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)) | |
|
1130 | 1100 | |
|
1131 | 1101 | '''*******************************FIT GAUSS CSPC************************************''' |
|
1132 | ||
|
1133 | 1102 | try: |
|
1134 |
popt01,pcov = curve_fit(self.gaus,xSamples |
|
|
1103 | popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0]) | |
|
1135 | 1104 | if popt01[2] > widthlimit: # CONDITION |
|
1136 | 1105 | return self.StopWindEstimation(error_code = 4) |
|
1137 | ||
|
1138 | popt02,pcov = curve_fit(self.gaus,xSamples[mask02],numpy.abs(CSPCMask02),p0=CSPCmoments[1]) | |
|
1106 | popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1]) | |
|
1139 | 1107 | if popt02[2] > widthlimit: # CONDITION |
|
1140 | 1108 | return self.StopWindEstimation(error_code = 4) |
|
1141 | ||
|
1142 | popt12,pcov = curve_fit(self.gaus,xSamples[mask12],numpy.abs(CSPCMask12),p0=CSPCmoments[2]) | |
|
1109 | popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2]) | |
|
1143 | 1110 | if popt12[2] > widthlimit: # CONDITION |
|
1144 | 1111 | return self.StopWindEstimation(error_code = 4) |
|
1145 | 1112 | |
|
1146 | FitGauss01 = self.gaus(xSamples, *popt01) | |
|
1147 | FitGauss02 = self.gaus(xSamples, *popt02) | |
|
1148 | FitGauss12 = self.gaus(xSamples, *popt12) | |
|
1149 | ||
|
1113 | FitGauss01 = self.gaus(xSamples_zoom, *popt01) | |
|
1114 | FitGauss02 = self.gaus(xSamples_zoom, *popt02) | |
|
1115 | FitGauss12 = self.gaus(xSamples_zoom, *popt12) | |
|
1150 | 1116 | except: |
|
1151 | 1117 | return self.StopWindEstimation(error_code = 5) |
|
1152 | 1118 | |
|
1153 | 1119 | |
|
1154 | 1120 | '''************* Getting Fij ***************''' |
|
1155 | ||
|
1156 | ||
|
1157 | #Punto en Eje X de la Gaussiana donde se encuentra el centro -- x-axis point of the gaussian where the center is located | |
|
1158 | # -> PointGauCenter | |
|
1121 | # x-axis point of the gaussian where the center is located from GaussFit of spectra | |
|
1159 | 1122 | GaussCenter = popt[1] |
|
1160 | ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()] | |
|
1161 | PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0] | |
|
1123 | ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()] | |
|
1124 | PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0] | |
|
1162 | 1125 | |
|
1163 |
# |
|
|
1126 | # Point where e^-1 is located in the gaussian | |
|
1164 | 1127 | PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1) |
|
1165 |
FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # |
|
|
1128 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss" | |
|
1166 | 1129 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] |
|
1167 | ||
|
1168 | Fij = numpy.abs(xSamples[PointFij] - xSamples[PointGauCenter]) | |
|
1130 | Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter]) | |
|
1169 | 1131 | |
|
1170 | 1132 | '''********** Taking frequency ranges from mean SPCs **********''' |
|
1171 | ||
|
1172 | #GaussCenter = popt[1] #Primer momento 01 | |
|
1173 | GauWidth = popt[2] * 3/2 #Ancho de banda de Gau01 -- Bandwidth of Gau01 TODO why *3/2? | |
|
1133 | GauWidth = popt[2] * 3/2 # Bandwidth of Gau01 | |
|
1174 | 1134 | Range = numpy.empty(2) |
|
1175 | 1135 | Range[0] = GaussCenter - GauWidth |
|
1176 | 1136 | Range[1] = GaussCenter + GauWidth |
|
1177 |
# |
|
|
1178 | ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()] | |
|
1179 | ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()] | |
|
1180 | ||
|
1181 |
PointRangeM |
|
|
1182 | PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0] | |
|
1183 | ||
|
1137 | # Point in x-axis where the bandwidth is located (min:max) | |
|
1138 | ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()] | |
|
1139 | ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()] | |
|
1140 | PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0] | |
|
1141 | PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0] | |
|
1184 | 1142 | Range = numpy.array([ PointRangeMin, PointRangeMax ]) |
|
1185 | ||
|
1186 | FrecRange = xFrec[ Range[0] : Range[1] ] | |
|
1187 | ||
|
1143 | FrecRange = xSamples_zoom[ Range[0] : Range[1] ] | |
|
1188 | 1144 | |
|
1189 | 1145 | '''************************** Getting Phase Slope ***************************''' |
|
1190 | ||
|
1191 | for i in range(1,3): # Changed to only compute two | |
|
1192 | ||
|
1193 | if len(FrecRange) > 5 and len(FrecRange) < spc.shape[1] * 0.3: | |
|
1194 | # PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=1) #used before to smooth phase with N=3 | |
|
1195 | PhaseRange = phase[i,Range[0]:Range[1]].copy() | |
|
1196 | ||
|
1146 | for i in range(nPair): | |
|
1147 | if len(FrecRange) > 5: | |
|
1148 | PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy() | |
|
1197 | 1149 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) |
|
1198 | ||
|
1199 | ||
|
1200 | 1150 | if len(FrecRange) == len(PhaseRange): |
|
1201 | ||
|
1202 | 1151 | try: |
|
1203 | 1152 | slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5)) |
|
1204 | 1153 | PhaseSlope[i] = slope |
|
1205 | 1154 | PhaseInter[i] = intercept |
|
1206 | ||
|
1207 | 1155 | except: |
|
1208 | 1156 | return self.StopWindEstimation(error_code = 6) |
|
1209 | ||
|
1210 | 1157 | else: |
|
1211 | 1158 | return self.StopWindEstimation(error_code = 7) |
|
1212 | ||
|
1213 | 1159 | else: |
|
1214 | 1160 | return self.StopWindEstimation(error_code = 8) |
|
1215 | 1161 | |
|
1216 | ||
|
1217 | ||
|
1218 | 1162 | '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***''' |
|
1219 | 1163 | |
|
1220 | 1164 | '''Getting constant C''' |
@@ -1222,9 +1166,12 class FullSpectralAnalysis(Operation): | |||
|
1222 | 1166 | |
|
1223 | 1167 | '''****** Getting constants F and G ******''' |
|
1224 | 1168 | MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) |
|
1225 | MijResult0 = (-PhaseSlope[1] * cC) / (2*numpy.pi) | |
|
1226 |
MijResult |
|
|
1227 | MijResults = numpy.array([MijResult0,MijResult1]) | |
|
1169 | # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]]) | |
|
1170 | # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi) | |
|
1171 | MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi) | |
|
1172 | MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi) | |
|
1173 | # MijResults = numpy.array([MijResult0, MijResult1, MijResult2]) | |
|
1174 | MijResults = numpy.array([MijResult1, MijResult2]) | |
|
1228 | 1175 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
1229 | 1176 | |
|
1230 | 1177 | '''****** Getting constants A, B and H ******''' |
@@ -1232,39 +1179,22 class FullSpectralAnalysis(Operation): | |||
|
1232 | 1179 | W02 = numpy.nanmax( FitGauss02 ) |
|
1233 | 1180 | W12 = numpy.nanmax( FitGauss12 ) |
|
1234 | 1181 | |
|
1235 | WijResult0 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) | |
|
1236 |
WijResult |
|
|
1237 | WijResult2 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) | |
|
1238 | ||
|
1239 | WijResults = numpy.array([WijResult0, WijResult1, WijResult2]) | |
|
1182 | WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) | |
|
1183 | WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC)) | |
|
1184 | WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) | |
|
1185 | WijResults = numpy.array([WijResult01, WijResult02, WijResult12]) | |
|
1240 | 1186 | |
|
1241 | 1187 | WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) |
|
1242 | 1188 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
1243 | 1189 | |
|
1244 | 1190 | VxVy = numpy.array([[cA,cH],[cH,cB]]) |
|
1245 | 1191 | VxVyResults = numpy.array([-cF,-cG]) |
|
1246 |
(V |
|
|
1247 | ||
|
1248 | Vzon = Vy | |
|
1249 | Vmer = Vx | |
|
1250 | ||
|
1251 | # Vmag=numpy.sqrt(Vzon**2+Vmer**2) # unused | |
|
1252 | # Vang=numpy.arctan2(Vmer,Vzon) # unused | |
|
1253 | ||
|
1254 | ||
|
1255 | ''' using frequency as abscissa. Due to three channels, the offzenith angle is zero | |
|
1256 | and Vrad equal to Vver. formula taken from Briggs 92, figure 4. | |
|
1257 | ''' | |
|
1258 | if numpy.abs( popt[1] ) < 3.5 and len(FrecRange) > 4: | |
|
1259 | Vver = 0.5 * radarWavelength * popt[1] * 100 # *100 to get cm (/s) | |
|
1260 | else: | |
|
1261 | Vver = numpy.NaN | |
|
1262 | ||
|
1192 | (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults) | |
|
1193 | Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq) | |
|
1263 | 1194 | error_code = 0 |
|
1264 | 1195 | |
|
1265 | 1196 | return Vzon, Vmer, Vver, error_code |
|
1266 | 1197 | |
|
1267 | ||
|
1268 | 1198 | class SpectralMoments(Operation): |
|
1269 | 1199 | |
|
1270 | 1200 | ''' |
General Comments 0
You need to be logged in to leave comments.
Login now