@@ -1,1076 +1,1076 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Definition of diferent Data objects for different types of data |
|
6 | 6 | |
|
7 | 7 | Here you will find the diferent data objects for the different types |
|
8 | 8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
9 | 9 | processing units and operations. Currently the supported data objects are: |
|
10 | 10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
11 | 11 | """ |
|
12 | 12 | |
|
13 | 13 | import copy |
|
14 | 14 | import numpy |
|
15 | 15 | import datetime |
|
16 | 16 | import json |
|
17 | 17 | |
|
18 | 18 | import schainpy.admin |
|
19 | 19 | from schainpy.utils import log |
|
20 | 20 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
21 | 21 | from schainpy.model.data import _noise |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def getNumpyDtype(dataTypeCode): |
|
25 | 25 | |
|
26 | 26 | if dataTypeCode == 0: |
|
27 | 27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
28 | 28 | elif dataTypeCode == 1: |
|
29 | 29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
30 | 30 | elif dataTypeCode == 2: |
|
31 | 31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
32 | 32 | elif dataTypeCode == 3: |
|
33 | 33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
34 | 34 | elif dataTypeCode == 4: |
|
35 | 35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
36 | 36 | elif dataTypeCode == 5: |
|
37 | 37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
38 | 38 | else: |
|
39 | 39 | raise ValueError('dataTypeCode was not defined') |
|
40 | 40 | |
|
41 | 41 | return numpyDtype |
|
42 | 42 | |
|
43 | 43 | |
|
44 | 44 | def getDataTypeCode(numpyDtype): |
|
45 | 45 | |
|
46 | 46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
47 | 47 | datatype = 0 |
|
48 | 48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
49 | 49 | datatype = 1 |
|
50 | 50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
51 | 51 | datatype = 2 |
|
52 | 52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
53 | 53 | datatype = 3 |
|
54 | 54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
55 | 55 | datatype = 4 |
|
56 | 56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
57 | 57 | datatype = 5 |
|
58 | 58 | else: |
|
59 | 59 | datatype = None |
|
60 | 60 | |
|
61 | 61 | return datatype |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | def hildebrand_sekhon(data, navg): |
|
65 | 65 | """ |
|
66 | 66 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
67 | 67 | implementation technique is based on the fact that the standard deviation of the spectral |
|
68 | 68 | densities is equal to the mean spectral density for white Gaussian noise |
|
69 | 69 | |
|
70 | 70 | Inputs: |
|
71 | 71 | Data : heights |
|
72 | 72 | navg : numbers of averages |
|
73 | 73 | |
|
74 | 74 | Return: |
|
75 | 75 | mean : noise's level |
|
76 | 76 | """ |
|
77 | 77 | |
|
78 | 78 | sortdata = numpy.sort(data, axis=None) |
|
79 | 79 | ''' |
|
80 | 80 | lenOfData = len(sortdata) |
|
81 | 81 | nums_min = lenOfData*0.2 |
|
82 | 82 | |
|
83 | 83 | if nums_min <= 5: |
|
84 | 84 | |
|
85 | 85 | nums_min = 5 |
|
86 | 86 | |
|
87 | 87 | sump = 0. |
|
88 | 88 | sumq = 0. |
|
89 | 89 | |
|
90 | 90 | j = 0 |
|
91 | 91 | cont = 1 |
|
92 | 92 | |
|
93 | 93 | while((cont == 1)and(j < lenOfData)): |
|
94 | 94 | |
|
95 | 95 | sump += sortdata[j] |
|
96 | 96 | sumq += sortdata[j]**2 |
|
97 | 97 | |
|
98 | 98 | if j > nums_min: |
|
99 | 99 | rtest = float(j)/(j-1) + 1.0/navg |
|
100 | 100 | if ((sumq*j) > (rtest*sump**2)): |
|
101 | 101 | j = j - 1 |
|
102 | 102 | sump = sump - sortdata[j] |
|
103 | 103 | sumq = sumq - sortdata[j]**2 |
|
104 | 104 | cont = 0 |
|
105 | 105 | |
|
106 | 106 | j += 1 |
|
107 | 107 | |
|
108 | 108 | lnoise = sump / j |
|
109 | 109 | ''' |
|
110 | 110 | return _noise.hildebrand_sekhon(sortdata, navg) |
|
111 | 111 | |
|
112 | 112 | |
|
113 | 113 | class Beam: |
|
114 | 114 | |
|
115 | 115 | def __init__(self): |
|
116 | 116 | self.codeList = [] |
|
117 | 117 | self.azimuthList = [] |
|
118 | 118 | self.zenithList = [] |
|
119 | 119 | |
|
120 | 120 | |
|
121 | 121 | |
|
122 | 122 | class GenericData(object): |
|
123 | 123 | |
|
124 | 124 | flagNoData = True |
|
125 | 125 | |
|
126 | 126 | def copy(self, inputObj=None): |
|
127 | 127 | |
|
128 | 128 | if inputObj == None: |
|
129 | 129 | return copy.deepcopy(self) |
|
130 | 130 | |
|
131 | 131 | for key in list(inputObj.__dict__.keys()): |
|
132 | 132 | |
|
133 | 133 | attribute = inputObj.__dict__[key] |
|
134 | 134 | |
|
135 | 135 | # If this attribute is a tuple or list |
|
136 | 136 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
137 | 137 | self.__dict__[key] = attribute[:] |
|
138 | 138 | continue |
|
139 | 139 | |
|
140 | 140 | # If this attribute is another object or instance |
|
141 | 141 | if hasattr(attribute, '__dict__'): |
|
142 | 142 | self.__dict__[key] = attribute.copy() |
|
143 | 143 | continue |
|
144 | 144 | |
|
145 | 145 | self.__dict__[key] = inputObj.__dict__[key] |
|
146 | 146 | |
|
147 | 147 | def deepcopy(self): |
|
148 | 148 | |
|
149 | 149 | return copy.deepcopy(self) |
|
150 | 150 | |
|
151 | 151 | def isEmpty(self): |
|
152 | 152 | |
|
153 | 153 | return self.flagNoData |
|
154 | 154 | |
|
155 | 155 | def isReady(self): |
|
156 | 156 | |
|
157 | 157 | return not self.flagNoData |
|
158 | 158 | |
|
159 | 159 | |
|
160 | 160 | class JROData(GenericData): |
|
161 | 161 | |
|
162 | 162 | systemHeaderObj = SystemHeader() |
|
163 | 163 | radarControllerHeaderObj = RadarControllerHeader() |
|
164 | 164 | type = None |
|
165 | 165 | datatype = None # dtype but in string |
|
166 | 166 | nProfiles = None |
|
167 | 167 | heightList = None |
|
168 | 168 | channelList = None |
|
169 | 169 | flagDiscontinuousBlock = False |
|
170 | 170 | useLocalTime = False |
|
171 | 171 | utctime = None |
|
172 | 172 | timeZone = None |
|
173 | 173 | dstFlag = None |
|
174 | 174 | errorCount = None |
|
175 | 175 | blocksize = None |
|
176 | 176 | flagDecodeData = False # asumo q la data no esta decodificada |
|
177 | 177 | flagDeflipData = False # asumo q la data no esta sin flip |
|
178 | 178 | flagShiftFFT = False |
|
179 | 179 | nCohInt = None |
|
180 | 180 | windowOfFilter = 1 |
|
181 | 181 | C = 3e8 |
|
182 | 182 | frequency = 49.92e6 |
|
183 | 183 | realtime = False |
|
184 | 184 | beacon_heiIndexList = None |
|
185 | 185 | last_block = None |
|
186 | 186 | blocknow = None |
|
187 | 187 | azimuth = None |
|
188 | 188 | zenith = None |
|
189 | 189 | beam = Beam() |
|
190 | 190 | profileIndex = None |
|
191 | 191 | error = None |
|
192 | 192 | data = None |
|
193 | 193 | nmodes = None |
|
194 | 194 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
195 | 195 | codeList = None |
|
196 | 196 | azimuthList = None |
|
197 | 197 | elevationList = None |
|
198 | 198 | |
|
199 | 199 | def __str__(self): |
|
200 | 200 | |
|
201 | 201 | return '{} - {}'.format(self.type, self.datatime()) |
|
202 | 202 | |
|
203 | 203 | def getNoise(self): |
|
204 | 204 | |
|
205 | 205 | raise NotImplementedError |
|
206 | 206 | |
|
207 | 207 | @property |
|
208 | 208 | def nChannels(self): |
|
209 | 209 | |
|
210 | 210 | return len(self.channelList) |
|
211 | 211 | |
|
212 | 212 | @property |
|
213 | 213 | def channelIndexList(self): |
|
214 | 214 | |
|
215 | 215 | return list(range(self.nChannels)) |
|
216 | 216 | |
|
217 | 217 | @property |
|
218 | 218 | def nHeights(self): |
|
219 | 219 | |
|
220 | 220 | return len(self.heightList) |
|
221 | 221 | |
|
222 | 222 | def getDeltaH(self): |
|
223 | 223 | |
|
224 | 224 | return self.heightList[1] - self.heightList[0] |
|
225 | 225 | |
|
226 | 226 | @property |
|
227 | 227 | def ltctime(self): |
|
228 | 228 | |
|
229 | 229 | if self.useLocalTime: |
|
230 | 230 | return self.utctime - self.timeZone * 60 |
|
231 | 231 | |
|
232 | 232 | return self.utctime |
|
233 | 233 | |
|
234 | 234 | @property |
|
235 | 235 | def datatime(self): |
|
236 | 236 | |
|
237 | 237 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
238 | 238 | return datatimeValue |
|
239 | 239 | |
|
240 | 240 | def getTimeRange(self): |
|
241 | 241 | |
|
242 | 242 | datatime = [] |
|
243 | 243 | |
|
244 | 244 | datatime.append(self.ltctime) |
|
245 | 245 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
246 | 246 | |
|
247 | 247 | datatime = numpy.array(datatime) |
|
248 | 248 | |
|
249 | 249 | return datatime |
|
250 | 250 | |
|
251 | 251 | def getFmaxTimeResponse(self): |
|
252 | 252 | |
|
253 | 253 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
254 | 254 | |
|
255 | 255 | PRF = 1. / (period * self.nCohInt) |
|
256 | 256 | |
|
257 | 257 | fmax = PRF |
|
258 | 258 | |
|
259 | 259 | return fmax |
|
260 | 260 | |
|
261 | 261 | def getFmax(self): |
|
262 | 262 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
263 | 263 | |
|
264 | 264 | fmax = PRF |
|
265 | 265 | return fmax |
|
266 | 266 | |
|
267 | 267 | def getVmax(self): |
|
268 | 268 | |
|
269 | 269 | _lambda = self.C / self.frequency |
|
270 | 270 | |
|
271 | 271 | vmax = self.getFmax() * _lambda / 2 |
|
272 | 272 | |
|
273 | 273 | return vmax |
|
274 | 274 | |
|
275 | 275 | @property |
|
276 | 276 | def ippSeconds(self): |
|
277 | 277 | ''' |
|
278 | 278 | ''' |
|
279 | 279 | return self.radarControllerHeaderObj.ippSeconds |
|
280 | 280 | |
|
281 | 281 | @ippSeconds.setter |
|
282 | 282 | def ippSeconds(self, ippSeconds): |
|
283 | 283 | ''' |
|
284 | 284 | ''' |
|
285 | 285 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
286 | 286 | |
|
287 | 287 | @property |
|
288 | 288 | def code(self): |
|
289 | 289 | ''' |
|
290 | 290 | ''' |
|
291 | 291 | return self.radarControllerHeaderObj.code |
|
292 | 292 | |
|
293 | 293 | @code.setter |
|
294 | 294 | def code(self, code): |
|
295 | 295 | ''' |
|
296 | 296 | ''' |
|
297 | 297 | self.radarControllerHeaderObj.code = code |
|
298 | 298 | |
|
299 | 299 | @property |
|
300 | 300 | def nCode(self): |
|
301 | 301 | ''' |
|
302 | 302 | ''' |
|
303 | 303 | return self.radarControllerHeaderObj.nCode |
|
304 | 304 | |
|
305 | 305 | @nCode.setter |
|
306 | 306 | def nCode(self, ncode): |
|
307 | 307 | ''' |
|
308 | 308 | ''' |
|
309 | 309 | self.radarControllerHeaderObj.nCode = ncode |
|
310 | 310 | |
|
311 | 311 | @property |
|
312 | 312 | def nBaud(self): |
|
313 | 313 | ''' |
|
314 | 314 | ''' |
|
315 | 315 | return self.radarControllerHeaderObj.nBaud |
|
316 | 316 | |
|
317 | 317 | @nBaud.setter |
|
318 | 318 | def nBaud(self, nbaud): |
|
319 | 319 | ''' |
|
320 | 320 | ''' |
|
321 | 321 | self.radarControllerHeaderObj.nBaud = nbaud |
|
322 | 322 | |
|
323 | 323 | @property |
|
324 | 324 | def ipp(self): |
|
325 | 325 | ''' |
|
326 | 326 | ''' |
|
327 | 327 | return self.radarControllerHeaderObj.ipp |
|
328 | 328 | |
|
329 | 329 | @ipp.setter |
|
330 | 330 | def ipp(self, ipp): |
|
331 | 331 | ''' |
|
332 | 332 | ''' |
|
333 | 333 | self.radarControllerHeaderObj.ipp = ipp |
|
334 | 334 | |
|
335 | 335 | @property |
|
336 | 336 | def metadata(self): |
|
337 | 337 | ''' |
|
338 | 338 | ''' |
|
339 | 339 | |
|
340 | 340 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
341 | 341 | |
|
342 | 342 | |
|
343 | 343 | class Voltage(JROData): |
|
344 | 344 | |
|
345 | 345 | dataPP_POW = None |
|
346 | 346 | dataPP_DOP = None |
|
347 | 347 | dataPP_WIDTH = None |
|
348 | 348 | dataPP_SNR = None |
|
349 | 349 | |
|
350 | 350 | def __init__(self): |
|
351 | 351 | ''' |
|
352 | 352 | Constructor |
|
353 | 353 | ''' |
|
354 | 354 | |
|
355 | 355 | self.useLocalTime = True |
|
356 | 356 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
357 | 357 | self.systemHeaderObj = SystemHeader() |
|
358 | 358 | self.type = "Voltage" |
|
359 | 359 | self.data = None |
|
360 | 360 | self.nProfiles = None |
|
361 | 361 | self.heightList = None |
|
362 | 362 | self.channelList = None |
|
363 | 363 | self.flagNoData = True |
|
364 | 364 | self.flagDiscontinuousBlock = False |
|
365 | 365 | self.utctime = None |
|
366 | 366 | self.timeZone = 0 |
|
367 | 367 | self.dstFlag = None |
|
368 | 368 | self.errorCount = None |
|
369 | 369 | self.nCohInt = None |
|
370 | 370 | self.blocksize = None |
|
371 | 371 | self.flagCohInt = False |
|
372 | 372 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
373 | 373 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
374 | 374 | self.flagShiftFFT = False |
|
375 | 375 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
376 | 376 | self.profileIndex = 0 |
|
377 | 377 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
378 | 378 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
379 | 379 | |
|
380 | 380 | def getNoisebyHildebrand(self, channel=None): |
|
381 | 381 | """ |
|
382 | 382 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
383 | 383 | |
|
384 | 384 | Return: |
|
385 | 385 | noiselevel |
|
386 | 386 | """ |
|
387 | 387 | |
|
388 | 388 | if channel != None: |
|
389 | 389 | data = self.data[channel] |
|
390 | 390 | nChannels = 1 |
|
391 | 391 | else: |
|
392 | 392 | data = self.data |
|
393 | 393 | nChannels = self.nChannels |
|
394 | 394 | |
|
395 | 395 | noise = numpy.zeros(nChannels) |
|
396 | 396 | power = data * numpy.conjugate(data) |
|
397 | 397 | |
|
398 | 398 | for thisChannel in range(nChannels): |
|
399 | 399 | if nChannels == 1: |
|
400 | 400 | daux = power[:].real |
|
401 | 401 | else: |
|
402 | 402 | daux = power[thisChannel, :].real |
|
403 | 403 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
404 | 404 | |
|
405 | 405 | return noise |
|
406 | 406 | |
|
407 | 407 | def getNoise(self, type=1, channel=None): |
|
408 | 408 | |
|
409 | 409 | if type == 1: |
|
410 | 410 | noise = self.getNoisebyHildebrand(channel) |
|
411 | 411 | |
|
412 | 412 | return noise |
|
413 | 413 | |
|
414 | 414 | def getPower(self, channel=None): |
|
415 | 415 | |
|
416 | 416 | if channel != None: |
|
417 | 417 | data = self.data[channel] |
|
418 | 418 | else: |
|
419 | 419 | data = self.data |
|
420 | 420 | |
|
421 | 421 | power = data * numpy.conjugate(data) |
|
422 | 422 | powerdB = 10 * numpy.log10(power.real) |
|
423 | 423 | powerdB = numpy.squeeze(powerdB) |
|
424 | 424 | |
|
425 | 425 | return powerdB |
|
426 | 426 | |
|
427 | 427 | @property |
|
428 | 428 | def timeInterval(self): |
|
429 | 429 | |
|
430 | 430 | return self.ippSeconds * self.nCohInt |
|
431 | 431 | |
|
432 | 432 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
433 | 433 | |
|
434 | 434 | |
|
435 | 435 | class Spectra(JROData): |
|
436 | 436 | |
|
437 | 437 | def __init__(self): |
|
438 | 438 | ''' |
|
439 | 439 | Constructor |
|
440 | 440 | ''' |
|
441 | 441 | |
|
442 | 442 | self.data_dc = None |
|
443 | 443 | self.data_spc = None |
|
444 | 444 | self.data_cspc = None |
|
445 | 445 | self.useLocalTime = True |
|
446 | 446 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
447 | 447 | self.systemHeaderObj = SystemHeader() |
|
448 | 448 | self.type = "Spectra" |
|
449 | 449 | self.timeZone = 0 |
|
450 | 450 | self.nProfiles = None |
|
451 | 451 | self.heightList = None |
|
452 | 452 | self.channelList = None |
|
453 | 453 | self.pairsList = None |
|
454 | 454 | self.flagNoData = True |
|
455 | 455 | self.flagDiscontinuousBlock = False |
|
456 | 456 | self.utctime = None |
|
457 | 457 | self.nCohInt = None |
|
458 | 458 | self.nIncohInt = None |
|
459 | 459 | self.blocksize = None |
|
460 | 460 | self.nFFTPoints = None |
|
461 | 461 | self.wavelength = None |
|
462 | 462 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
463 | 463 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
464 | 464 | self.flagShiftFFT = False |
|
465 | 465 | self.ippFactor = 1 |
|
466 | 466 | self.beacon_heiIndexList = [] |
|
467 | 467 | self.noise_estimation = None |
|
468 | 468 | self.codeList = [] |
|
469 | 469 | self.azimuthList = [] |
|
470 | 470 | self.elevationList = [] |
|
471 | 471 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
472 | 472 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] |
|
473 | 473 | |
|
474 | 474 | |
|
475 | 475 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
476 | 476 | """ |
|
477 | 477 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
478 | 478 | |
|
479 | 479 | Return: |
|
480 | 480 | noiselevel |
|
481 | 481 | """ |
|
482 | 482 | |
|
483 | 483 | noise = numpy.zeros(self.nChannels) |
|
484 | 484 | for channel in range(self.nChannels): |
|
485 | 485 | daux = self.data_spc[channel, |
|
486 | 486 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
487 | 487 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
488 | 488 | |
|
489 | 489 | return noise |
|
490 | 490 | |
|
491 | 491 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
492 | ||
|
492 | ||
|
493 | 493 | if self.noise_estimation is not None: |
|
494 | 494 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
495 | 495 | return self.noise_estimation |
|
496 | 496 | else: |
|
497 | 497 | noise = self.getNoisebyHildebrand( |
|
498 | 498 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
499 | 499 | return noise |
|
500 | 500 | |
|
501 | 501 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
502 | 502 | |
|
503 | 503 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
504 | 504 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
505 | 505 | |
|
506 | 506 | return freqrange |
|
507 | 507 | |
|
508 | 508 | def getAcfRange(self, extrapoints=0): |
|
509 | 509 | |
|
510 | 510 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
511 | 511 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
512 | 512 | |
|
513 | 513 | return freqrange |
|
514 | 514 | |
|
515 | 515 | def getFreqRange(self, extrapoints=0): |
|
516 | 516 | |
|
517 | 517 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
518 | 518 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
519 | 519 | |
|
520 | 520 | return freqrange |
|
521 | 521 | |
|
522 | 522 | def getVelRange(self, extrapoints=0): |
|
523 | 523 | |
|
524 | 524 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
525 | 525 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
526 | 526 | |
|
527 | 527 | if self.nmodes: |
|
528 | 528 | return velrange/self.nmodes |
|
529 | 529 | else: |
|
530 | 530 | return velrange |
|
531 | 531 | |
|
532 | 532 | @property |
|
533 | 533 | def nPairs(self): |
|
534 | 534 | |
|
535 | 535 | return len(self.pairsList) |
|
536 | 536 | |
|
537 | 537 | @property |
|
538 | 538 | def pairsIndexList(self): |
|
539 | 539 | |
|
540 | 540 | return list(range(self.nPairs)) |
|
541 | 541 | |
|
542 | 542 | @property |
|
543 | 543 | def normFactor(self): |
|
544 | 544 | |
|
545 | 545 | pwcode = 1 |
|
546 | 546 | |
|
547 | 547 | if self.flagDecodeData: |
|
548 | 548 | pwcode = numpy.sum(self.code[0]**2) |
|
549 | 549 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
550 | 550 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
551 | 551 | |
|
552 | 552 | return normFactor |
|
553 | 553 | |
|
554 | 554 | @property |
|
555 | 555 | def flag_cspc(self): |
|
556 | 556 | |
|
557 | 557 | if self.data_cspc is None: |
|
558 | 558 | return True |
|
559 | 559 | |
|
560 | 560 | return False |
|
561 | 561 | |
|
562 | 562 | @property |
|
563 | 563 | def flag_dc(self): |
|
564 | 564 | |
|
565 | 565 | if self.data_dc is None: |
|
566 | 566 | return True |
|
567 | 567 | |
|
568 | 568 | return False |
|
569 | 569 | |
|
570 | 570 | @property |
|
571 | 571 | def timeInterval(self): |
|
572 | 572 | |
|
573 | 573 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
574 | 574 | if self.nmodes: |
|
575 | 575 | return self.nmodes*timeInterval |
|
576 | 576 | else: |
|
577 | 577 | return timeInterval |
|
578 | 578 | |
|
579 | 579 | def getPower(self): |
|
580 | 580 | |
|
581 | 581 | factor = self.normFactor |
|
582 | 582 | z = self.data_spc / factor |
|
583 | 583 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
584 | 584 | avg = numpy.average(z, axis=1) |
|
585 | 585 | |
|
586 | 586 | return 10 * numpy.log10(avg) |
|
587 | 587 | |
|
588 | 588 | def getCoherence(self, pairsList=None, phase=False): |
|
589 | 589 | |
|
590 | 590 | z = [] |
|
591 | 591 | if pairsList is None: |
|
592 | 592 | pairsIndexList = self.pairsIndexList |
|
593 | 593 | else: |
|
594 | 594 | pairsIndexList = [] |
|
595 | 595 | for pair in pairsList: |
|
596 | 596 | if pair not in self.pairsList: |
|
597 | 597 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
598 | 598 | pair)) |
|
599 | 599 | pairsIndexList.append(self.pairsList.index(pair)) |
|
600 | 600 | for i in range(len(pairsIndexList)): |
|
601 | 601 | pair = self.pairsList[pairsIndexList[i]] |
|
602 | 602 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
603 | 603 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
604 | 604 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
605 | 605 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
606 | 606 | if phase: |
|
607 | 607 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
608 | 608 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
609 | 609 | else: |
|
610 | 610 | data = numpy.abs(avgcoherenceComplex) |
|
611 | 611 | |
|
612 | 612 | z.append(data) |
|
613 | 613 | |
|
614 | 614 | return numpy.array(z) |
|
615 | 615 | |
|
616 | 616 | def setValue(self, value): |
|
617 | 617 | |
|
618 | 618 | print("This property should not be initialized") |
|
619 | 619 | |
|
620 | 620 | return |
|
621 | 621 | |
|
622 | 622 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
623 | 623 | |
|
624 | 624 | |
|
625 | 625 | class SpectraHeis(Spectra): |
|
626 | 626 | |
|
627 | 627 | def __init__(self): |
|
628 | 628 | |
|
629 | 629 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
630 | 630 | self.systemHeaderObj = SystemHeader() |
|
631 | 631 | self.type = "SpectraHeis" |
|
632 | 632 | self.nProfiles = None |
|
633 | 633 | self.heightList = None |
|
634 | 634 | self.channelList = None |
|
635 | 635 | self.flagNoData = True |
|
636 | 636 | self.flagDiscontinuousBlock = False |
|
637 | 637 | self.utctime = None |
|
638 | 638 | self.blocksize = None |
|
639 | 639 | self.profileIndex = 0 |
|
640 | 640 | self.nCohInt = 1 |
|
641 | 641 | self.nIncohInt = 1 |
|
642 | 642 | |
|
643 | 643 | @property |
|
644 | 644 | def normFactor(self): |
|
645 | 645 | pwcode = 1 |
|
646 | 646 | if self.flagDecodeData: |
|
647 | 647 | pwcode = numpy.sum(self.code[0]**2) |
|
648 | 648 | |
|
649 | 649 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
650 | 650 | |
|
651 | 651 | return normFactor |
|
652 | 652 | |
|
653 | 653 | @property |
|
654 | 654 | def timeInterval(self): |
|
655 | 655 | |
|
656 | 656 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
657 | 657 | |
|
658 | 658 | |
|
659 | 659 | class Fits(JROData): |
|
660 | 660 | |
|
661 | 661 | def __init__(self): |
|
662 | 662 | |
|
663 | 663 | self.type = "Fits" |
|
664 | 664 | self.nProfiles = None |
|
665 | 665 | self.heightList = None |
|
666 | 666 | self.channelList = None |
|
667 | 667 | self.flagNoData = True |
|
668 | 668 | self.utctime = None |
|
669 | 669 | self.nCohInt = 1 |
|
670 | 670 | self.nIncohInt = 1 |
|
671 | 671 | self.useLocalTime = True |
|
672 | 672 | self.profileIndex = 0 |
|
673 | 673 | self.timeZone = 0 |
|
674 | 674 | |
|
675 | 675 | def getTimeRange(self): |
|
676 | 676 | |
|
677 | 677 | datatime = [] |
|
678 | 678 | |
|
679 | 679 | datatime.append(self.ltctime) |
|
680 | 680 | datatime.append(self.ltctime + self.timeInterval) |
|
681 | 681 | |
|
682 | 682 | datatime = numpy.array(datatime) |
|
683 | 683 | |
|
684 | 684 | return datatime |
|
685 | 685 | |
|
686 | 686 | def getChannelIndexList(self): |
|
687 | 687 | |
|
688 | 688 | return list(range(self.nChannels)) |
|
689 | 689 | |
|
690 | 690 | def getNoise(self, type=1): |
|
691 | 691 | |
|
692 | 692 | |
|
693 | 693 | if type == 1: |
|
694 | 694 | noise = self.getNoisebyHildebrand() |
|
695 | 695 | |
|
696 | 696 | if type == 2: |
|
697 | 697 | noise = self.getNoisebySort() |
|
698 | 698 | |
|
699 | 699 | if type == 3: |
|
700 | 700 | noise = self.getNoisebyWindow() |
|
701 | 701 | |
|
702 | 702 | return noise |
|
703 | 703 | |
|
704 | 704 | @property |
|
705 | 705 | def timeInterval(self): |
|
706 | 706 | |
|
707 | 707 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
708 | 708 | |
|
709 | 709 | return timeInterval |
|
710 | 710 | |
|
711 | 711 | @property |
|
712 | 712 | def ippSeconds(self): |
|
713 | 713 | ''' |
|
714 | 714 | ''' |
|
715 | 715 | return self.ipp_sec |
|
716 | 716 | |
|
717 | 717 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
718 | 718 | |
|
719 | 719 | |
|
720 | 720 | class Correlation(JROData): |
|
721 | 721 | |
|
722 | 722 | def __init__(self): |
|
723 | 723 | ''' |
|
724 | 724 | Constructor |
|
725 | 725 | ''' |
|
726 | 726 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
727 | 727 | self.systemHeaderObj = SystemHeader() |
|
728 | 728 | self.type = "Correlation" |
|
729 | 729 | self.data = None |
|
730 | 730 | self.dtype = None |
|
731 | 731 | self.nProfiles = None |
|
732 | 732 | self.heightList = None |
|
733 | 733 | self.channelList = None |
|
734 | 734 | self.flagNoData = True |
|
735 | 735 | self.flagDiscontinuousBlock = False |
|
736 | 736 | self.utctime = None |
|
737 | 737 | self.timeZone = 0 |
|
738 | 738 | self.dstFlag = None |
|
739 | 739 | self.errorCount = None |
|
740 | 740 | self.blocksize = None |
|
741 | 741 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
742 | 742 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
743 | 743 | self.pairsList = None |
|
744 | 744 | self.nPoints = None |
|
745 | 745 | |
|
746 | 746 | def getPairsList(self): |
|
747 | 747 | |
|
748 | 748 | return self.pairsList |
|
749 | 749 | |
|
750 | 750 | def getNoise(self, mode=2): |
|
751 | 751 | |
|
752 | 752 | indR = numpy.where(self.lagR == 0)[0][0] |
|
753 | 753 | indT = numpy.where(self.lagT == 0)[0][0] |
|
754 | 754 | |
|
755 | 755 | jspectra0 = self.data_corr[:, :, indR, :] |
|
756 | 756 | jspectra = copy.copy(jspectra0) |
|
757 | 757 | |
|
758 | 758 | num_chan = jspectra.shape[0] |
|
759 | 759 | num_hei = jspectra.shape[2] |
|
760 | 760 | |
|
761 | 761 | freq_dc = jspectra.shape[1] / 2 |
|
762 | 762 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
763 | 763 | |
|
764 | 764 | if ind_vel[0] < 0: |
|
765 | 765 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
766 | 766 | range(0, 1))] + self.num_prof |
|
767 | 767 | |
|
768 | 768 | if mode == 1: |
|
769 | 769 | jspectra[:, freq_dc, :] = ( |
|
770 | 770 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
771 | 771 | |
|
772 | 772 | if mode == 2: |
|
773 | 773 | |
|
774 | 774 | vel = numpy.array([-2, -1, 1, 2]) |
|
775 | 775 | xx = numpy.zeros([4, 4]) |
|
776 | 776 | |
|
777 | 777 | for fil in range(4): |
|
778 | 778 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
779 | 779 | |
|
780 | 780 | xx_inv = numpy.linalg.inv(xx) |
|
781 | 781 | xx_aux = xx_inv[0, :] |
|
782 | 782 | |
|
783 | 783 | for ich in range(num_chan): |
|
784 | 784 | yy = jspectra[ich, ind_vel, :] |
|
785 | 785 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
786 | 786 | |
|
787 | 787 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
788 | 788 | cjunkid = sum(junkid) |
|
789 | 789 | |
|
790 | 790 | if cjunkid.any(): |
|
791 | 791 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
792 | 792 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
793 | 793 | |
|
794 | 794 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
795 | 795 | |
|
796 | 796 | return noise |
|
797 | 797 | |
|
798 | 798 | @property |
|
799 | 799 | def timeInterval(self): |
|
800 | 800 | |
|
801 | 801 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
802 | 802 | |
|
803 | 803 | def splitFunctions(self): |
|
804 | 804 | |
|
805 | 805 | pairsList = self.pairsList |
|
806 | 806 | ccf_pairs = [] |
|
807 | 807 | acf_pairs = [] |
|
808 | 808 | ccf_ind = [] |
|
809 | 809 | acf_ind = [] |
|
810 | 810 | for l in range(len(pairsList)): |
|
811 | 811 | chan0 = pairsList[l][0] |
|
812 | 812 | chan1 = pairsList[l][1] |
|
813 | 813 | |
|
814 | 814 | # Obteniendo pares de Autocorrelacion |
|
815 | 815 | if chan0 == chan1: |
|
816 | 816 | acf_pairs.append(chan0) |
|
817 | 817 | acf_ind.append(l) |
|
818 | 818 | else: |
|
819 | 819 | ccf_pairs.append(pairsList[l]) |
|
820 | 820 | ccf_ind.append(l) |
|
821 | 821 | |
|
822 | 822 | data_acf = self.data_cf[acf_ind] |
|
823 | 823 | data_ccf = self.data_cf[ccf_ind] |
|
824 | 824 | |
|
825 | 825 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
826 | 826 | |
|
827 | 827 | @property |
|
828 | 828 | def normFactor(self): |
|
829 | 829 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
830 | 830 | acf_pairs = numpy.array(acf_pairs) |
|
831 | 831 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
832 | 832 | |
|
833 | 833 | for p in range(self.nPairs): |
|
834 | 834 | pair = self.pairsList[p] |
|
835 | 835 | |
|
836 | 836 | ch0 = pair[0] |
|
837 | 837 | ch1 = pair[1] |
|
838 | 838 | |
|
839 | 839 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
840 | 840 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
841 | 841 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
842 | 842 | |
|
843 | 843 | return normFactor |
|
844 | 844 | |
|
845 | 845 | |
|
846 | 846 | class Parameters(Spectra): |
|
847 | 847 | |
|
848 | 848 | groupList = None # List of Pairs, Groups, etc |
|
849 | 849 | data_param = None # Parameters obtained |
|
850 | 850 | data_pre = None # Data Pre Parametrization |
|
851 | 851 | data_SNR = None # Signal to Noise Ratio |
|
852 | 852 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
853 | 853 | utctimeInit = None # Initial UTC time |
|
854 | 854 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
855 | 855 | useLocalTime = True |
|
856 | 856 | # Fitting |
|
857 | 857 | data_error = None # Error of the estimation |
|
858 | 858 | constants = None |
|
859 | 859 | library = None |
|
860 | 860 | # Output signal |
|
861 | 861 | outputInterval = None # Time interval to calculate output signal in seconds |
|
862 | 862 | data_output = None # Out signal |
|
863 | 863 | nAvg = None |
|
864 | 864 | noise_estimation = None |
|
865 | 865 | GauSPC = None # Fit gaussian SPC |
|
866 | 866 | |
|
867 | 867 | def __init__(self): |
|
868 | 868 | ''' |
|
869 | 869 | Constructor |
|
870 | 870 | ''' |
|
871 | 871 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
872 | 872 | self.systemHeaderObj = SystemHeader() |
|
873 | 873 | self.type = "Parameters" |
|
874 | 874 | self.timeZone = 0 |
|
875 | 875 | |
|
876 | 876 | def getTimeRange1(self, interval): |
|
877 | 877 | |
|
878 | 878 | datatime = [] |
|
879 | 879 | |
|
880 | 880 | if self.useLocalTime: |
|
881 | 881 | time1 = self.utctimeInit - self.timeZone * 60 |
|
882 | 882 | else: |
|
883 | 883 | time1 = self.utctimeInit |
|
884 | 884 | |
|
885 | 885 | datatime.append(time1) |
|
886 | 886 | datatime.append(time1 + interval) |
|
887 | 887 | datatime = numpy.array(datatime) |
|
888 | 888 | |
|
889 | 889 | return datatime |
|
890 | 890 | |
|
891 | 891 | @property |
|
892 | 892 | def timeInterval(self): |
|
893 | 893 | |
|
894 | 894 | if hasattr(self, 'timeInterval1'): |
|
895 | 895 | return self.timeInterval1 |
|
896 | 896 | else: |
|
897 | 897 | return self.paramInterval |
|
898 | 898 | |
|
899 | 899 | def setValue(self, value): |
|
900 | 900 | |
|
901 | 901 | print("This property should not be initialized") |
|
902 | 902 | |
|
903 | 903 | return |
|
904 | 904 | |
|
905 | 905 | def getNoise(self): |
|
906 | 906 | |
|
907 | 907 | return self.spc_noise |
|
908 | 908 | |
|
909 | 909 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
910 | 910 | |
|
911 | 911 | |
|
912 | 912 | class PlotterData(object): |
|
913 | 913 | ''' |
|
914 | 914 | Object to hold data to be plotted |
|
915 | 915 | ''' |
|
916 | 916 | |
|
917 | 917 | MAXNUMX = 200 |
|
918 | 918 | MAXNUMY = 200 |
|
919 | 919 | |
|
920 | 920 | def __init__(self, code, exp_code, localtime=True): |
|
921 | 921 | |
|
922 | 922 | self.key = code |
|
923 | 923 | self.exp_code = exp_code |
|
924 | 924 | self.ready = False |
|
925 | 925 | self.flagNoData = False |
|
926 | 926 | self.localtime = localtime |
|
927 | 927 | self.data = {} |
|
928 | 928 | self.meta = {} |
|
929 | 929 | self.__heights = [] |
|
930 | 930 | |
|
931 | 931 | def __str__(self): |
|
932 | 932 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
933 | 933 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
934 | 934 | |
|
935 | 935 | def __len__(self): |
|
936 | 936 | return len(self.data) |
|
937 | 937 | |
|
938 | 938 | def __getitem__(self, key): |
|
939 | 939 | if isinstance(key, int): |
|
940 | 940 | return self.data[self.times[key]] |
|
941 | 941 | elif isinstance(key, str): |
|
942 | 942 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
943 | 943 | if ret.ndim > 1: |
|
944 | 944 | ret = numpy.swapaxes(ret, 0, 1) |
|
945 | 945 | return ret |
|
946 | 946 | |
|
947 | 947 | def __contains__(self, key): |
|
948 | 948 | return key in self.data[self.min_time] |
|
949 | 949 | |
|
950 | 950 | def setup(self): |
|
951 | 951 | ''' |
|
952 | 952 | Configure object |
|
953 | 953 | ''' |
|
954 | 954 | self.type = '' |
|
955 | 955 | self.ready = False |
|
956 | 956 | del self.data |
|
957 | 957 | self.data = {} |
|
958 | 958 | self.__heights = [] |
|
959 | 959 | self.__all_heights = set() |
|
960 | 960 | |
|
961 | 961 | def shape(self, key): |
|
962 | 962 | ''' |
|
963 | 963 | Get the shape of the one-element data for the given key |
|
964 | 964 | ''' |
|
965 | 965 | |
|
966 | 966 | if len(self.data[self.min_time][key]): |
|
967 | 967 | return self.data[self.min_time][key].shape |
|
968 | 968 | return (0,) |
|
969 | 969 | |
|
970 | 970 | def update(self, data, tm, meta={}): |
|
971 | 971 | ''' |
|
972 | 972 | Update data object with new dataOut |
|
973 | 973 | ''' |
|
974 | 974 | |
|
975 | 975 | self.data[tm] = data |
|
976 | 976 | |
|
977 | 977 | for key, value in meta.items(): |
|
978 | 978 | setattr(self, key, value) |
|
979 | 979 | |
|
980 | 980 | def normalize_heights(self): |
|
981 | 981 | ''' |
|
982 | 982 | Ensure same-dimension of the data for different heighList |
|
983 | 983 | ''' |
|
984 | 984 | |
|
985 | 985 | H = numpy.array(list(self.__all_heights)) |
|
986 | 986 | H.sort() |
|
987 | 987 | for key in self.data: |
|
988 | 988 | shape = self.shape(key)[:-1] + H.shape |
|
989 | 989 | for tm, obj in list(self.data[key].items()): |
|
990 | 990 | h = self.__heights[self.times.tolist().index(tm)] |
|
991 | 991 | if H.size == h.size: |
|
992 | 992 | continue |
|
993 | 993 | index = numpy.where(numpy.in1d(H, h))[0] |
|
994 | 994 | dummy = numpy.zeros(shape) + numpy.nan |
|
995 | 995 | if len(shape) == 2: |
|
996 | 996 | dummy[:, index] = obj |
|
997 | 997 | else: |
|
998 | 998 | dummy[index] = obj |
|
999 | 999 | self.data[key][tm] = dummy |
|
1000 | 1000 | |
|
1001 | 1001 | self.__heights = [H for tm in self.times] |
|
1002 | 1002 | |
|
1003 | 1003 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
1004 | 1004 | ''' |
|
1005 | 1005 | Convert data to json |
|
1006 | 1006 | ''' |
|
1007 | 1007 | |
|
1008 | 1008 | meta = {} |
|
1009 | 1009 | meta['xrange'] = [] |
|
1010 | 1010 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 |
|
1011 | 1011 | tmp = self.data[tm][self.key] |
|
1012 | 1012 | shape = tmp.shape |
|
1013 | 1013 | if len(shape) == 2: |
|
1014 | 1014 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1015 | 1015 | elif len(shape) == 3: |
|
1016 | 1016 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 |
|
1017 | 1017 | data = self.roundFloats( |
|
1018 | 1018 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1019 | 1019 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1020 | 1020 | else: |
|
1021 | 1021 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1022 | 1022 | |
|
1023 | 1023 | ret = { |
|
1024 | 1024 | 'plot': plot_name, |
|
1025 | 1025 | 'code': self.exp_code, |
|
1026 | 1026 | 'time': float(tm), |
|
1027 | 1027 | 'data': data, |
|
1028 | 1028 | } |
|
1029 | 1029 | meta['type'] = plot_type |
|
1030 | 1030 | meta['interval'] = float(self.interval) |
|
1031 | 1031 | meta['localtime'] = self.localtime |
|
1032 | 1032 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1033 | 1033 | meta.update(self.meta) |
|
1034 | 1034 | ret['metadata'] = meta |
|
1035 | 1035 | return json.dumps(ret) |
|
1036 | 1036 | |
|
1037 | 1037 | @property |
|
1038 | 1038 | def times(self): |
|
1039 | 1039 | ''' |
|
1040 | 1040 | Return the list of times of the current data |
|
1041 | 1041 | ''' |
|
1042 | 1042 | |
|
1043 | 1043 | ret = [t for t in self.data] |
|
1044 | 1044 | ret.sort() |
|
1045 | 1045 | return numpy.array(ret) |
|
1046 | 1046 | |
|
1047 | 1047 | @property |
|
1048 | 1048 | def min_time(self): |
|
1049 | 1049 | ''' |
|
1050 | 1050 | Return the minimun time value |
|
1051 | 1051 | ''' |
|
1052 | 1052 | |
|
1053 | 1053 | return self.times[0] |
|
1054 | 1054 | |
|
1055 | 1055 | @property |
|
1056 | 1056 | def max_time(self): |
|
1057 | 1057 | ''' |
|
1058 | 1058 | Return the maximun time value |
|
1059 | 1059 | ''' |
|
1060 | 1060 | |
|
1061 | 1061 | return self.times[-1] |
|
1062 | 1062 | |
|
1063 | 1063 | # @property |
|
1064 | 1064 | # def heights(self): |
|
1065 | 1065 | # ''' |
|
1066 | 1066 | # Return the list of heights of the current data |
|
1067 | 1067 | # ''' |
|
1068 | 1068 | |
|
1069 | 1069 | # return numpy.array(self.__heights[-1]) |
|
1070 | 1070 | |
|
1071 | 1071 | @staticmethod |
|
1072 | 1072 | def roundFloats(obj): |
|
1073 | 1073 | if isinstance(obj, list): |
|
1074 | 1074 | return list(map(PlotterData.roundFloats, obj)) |
|
1075 | 1075 | elif isinstance(obj, float): |
|
1076 | 1076 | return round(obj, 2) |
@@ -1,961 +1,962 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Classes to plot Spectra data |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import numpy |
|
11 | 11 | |
|
12 | 12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
13 | 13 | from itertools import combinations |
|
14 | 14 | |
|
15 | 15 | |
|
16 | 16 | class SpectraPlot(Plot): |
|
17 | 17 | ''' |
|
18 | 18 | Plot for Spectra data |
|
19 | 19 | ''' |
|
20 | 20 | |
|
21 | 21 | CODE = 'spc' |
|
22 | 22 | colormap = 'jet' |
|
23 | 23 | plot_type = 'pcolor' |
|
24 | 24 | buffering = False |
|
25 | 25 | channelList = [] |
|
26 | 26 | |
|
27 | 27 | def setup(self): |
|
28 | 28 | |
|
29 | 29 | self.nplots = len(self.data.channels) |
|
30 | 30 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
31 | 31 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
32 | 32 | self.height = 2.6 * self.nrows |
|
33 | 33 | |
|
34 | 34 | self.cb_label = 'dB' |
|
35 | 35 | if self.showprofile: |
|
36 | 36 | self.width = 4 * self.ncols |
|
37 | 37 | else: |
|
38 | 38 | self.width = 3.5 * self.ncols |
|
39 | 39 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
40 | 40 | self.ylabel = 'Range [km]' |
|
41 | 41 | |
|
42 | 42 | |
|
43 | 43 | def update_list(self,dataOut): |
|
44 | 44 | if len(self.channelList) == 0: |
|
45 | 45 | self.channelList = dataOut.channelList |
|
46 | 46 | |
|
47 | 47 | def update(self, dataOut): |
|
48 | 48 | |
|
49 | 49 | self.update_list(dataOut) |
|
50 | 50 | data = {} |
|
51 | 51 | meta = {} |
|
52 | 52 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
53 | 53 | data['spc'] = spc |
|
54 | 54 | data['rti'] = dataOut.getPower() |
|
55 | 55 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
56 | 56 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
57 | 57 | if self.CODE == 'spc_moments': |
|
58 | 58 | data['moments'] = dataOut.moments |
|
59 | 59 | |
|
60 | 60 | return data, meta |
|
61 | 61 | |
|
62 | 62 | def plot(self): |
|
63 | 63 | if self.xaxis == "frequency": |
|
64 | 64 | x = self.data.xrange[0] |
|
65 | 65 | self.xlabel = "Frequency (kHz)" |
|
66 | 66 | elif self.xaxis == "time": |
|
67 | 67 | x = self.data.xrange[1] |
|
68 | 68 | self.xlabel = "Time (ms)" |
|
69 | 69 | else: |
|
70 | 70 | x = self.data.xrange[2] |
|
71 | 71 | self.xlabel = "Velocity (m/s)" |
|
72 | 72 | |
|
73 | 73 | if self.CODE == 'spc_moments': |
|
74 | 74 | x = self.data.xrange[2] |
|
75 | 75 | self.xlabel = "Velocity (m/s)" |
|
76 | 76 | |
|
77 | 77 | self.titles = [] |
|
78 | 78 | y = self.data.yrange |
|
79 | 79 | self.y = y |
|
80 | 80 | |
|
81 | 81 | data = self.data[-1] |
|
82 | 82 | z = data['spc'] |
|
83 | 83 | |
|
84 | 84 | for n, ax in enumerate(self.axes): |
|
85 | 85 | noise = data['noise'][n] |
|
86 | 86 | if self.CODE == 'spc_moments': |
|
87 | 87 | mean = data['moments'][n, 1] |
|
88 | 88 | if ax.firsttime: |
|
89 | 89 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
90 | 90 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
91 | 91 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
92 | 92 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
93 | 93 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
94 | 94 | vmin=self.zmin, |
|
95 | 95 | vmax=self.zmax, |
|
96 | 96 | cmap=plt.get_cmap(self.colormap) |
|
97 | 97 | ) |
|
98 | 98 | |
|
99 | 99 | if self.showprofile: |
|
100 | 100 | ax.plt_profile = self.pf_axes[n].plot( |
|
101 | 101 | data['rti'][n], y)[0] |
|
102 | 102 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
103 | 103 | color="k", linestyle="dashed", lw=1)[0] |
|
104 | 104 | if self.CODE == 'spc_moments': |
|
105 | 105 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
106 | 106 | else: |
|
107 | 107 | ax.plt.set_array(z[n].T.ravel()) |
|
108 | 108 | if self.showprofile: |
|
109 | 109 | ax.plt_profile.set_data(data['rti'][n], y) |
|
110 | 110 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
111 | 111 | if self.CODE == 'spc_moments': |
|
112 | 112 | ax.plt_mean.set_data(mean, y) |
|
113 | 113 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
114 | 114 | |
|
115 | 115 | |
|
116 | 116 | class CrossSpectraPlot(Plot): |
|
117 | 117 | |
|
118 | 118 | CODE = 'cspc' |
|
119 | 119 | colormap = 'jet' |
|
120 | 120 | plot_type = 'pcolor' |
|
121 | 121 | zmin_coh = None |
|
122 | 122 | zmax_coh = None |
|
123 | 123 | zmin_phase = None |
|
124 | 124 | zmax_phase = None |
|
125 | 125 | realChannels = None |
|
126 | 126 | crossPairs = None |
|
127 | 127 | |
|
128 | 128 | def setup(self): |
|
129 | 129 | |
|
130 | 130 | self.ncols = 4 |
|
131 | 131 | self.nplots = len(self.data.pairs) * 2 |
|
132 | 132 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
133 | 133 | self.width = 3.1 * self.ncols |
|
134 | 134 | self.height = 2.6 * self.nrows |
|
135 | 135 | self.ylabel = 'Range [km]' |
|
136 | 136 | self.showprofile = False |
|
137 | 137 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
138 | 138 | |
|
139 | 139 | def update(self, dataOut): |
|
140 | 140 | |
|
141 | 141 | data = {} |
|
142 | 142 | meta = {} |
|
143 | 143 | |
|
144 | 144 | spc = dataOut.data_spc |
|
145 | 145 | cspc = dataOut.data_cspc |
|
146 | 146 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
147 | 147 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) |
|
148 | 148 | meta['pairs'] = rawPairs |
|
149 | 149 | |
|
150 | 150 | if self.crossPairs == None: |
|
151 | 151 | self.crossPairs = dataOut.pairsList |
|
152 | 152 | |
|
153 | 153 | tmp = [] |
|
154 | 154 | |
|
155 | 155 | for n, pair in enumerate(meta['pairs']): |
|
156 | 156 | |
|
157 | 157 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
158 | 158 | coh = numpy.abs(out) |
|
159 | 159 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
160 | 160 | tmp.append(coh) |
|
161 | 161 | tmp.append(phase) |
|
162 | 162 | |
|
163 | 163 | data['cspc'] = numpy.array(tmp) |
|
164 | 164 | |
|
165 | 165 | return data, meta |
|
166 | 166 | |
|
167 | 167 | def plot(self): |
|
168 | 168 | |
|
169 | 169 | if self.xaxis == "frequency": |
|
170 | 170 | x = self.data.xrange[0] |
|
171 | 171 | self.xlabel = "Frequency (kHz)" |
|
172 | 172 | elif self.xaxis == "time": |
|
173 | 173 | x = self.data.xrange[1] |
|
174 | 174 | self.xlabel = "Time (ms)" |
|
175 | 175 | else: |
|
176 | 176 | x = self.data.xrange[2] |
|
177 | 177 | self.xlabel = "Velocity (m/s)" |
|
178 | 178 | |
|
179 | 179 | self.titles = [] |
|
180 | 180 | |
|
181 | 181 | y = self.data.yrange |
|
182 | 182 | self.y = y |
|
183 | 183 | |
|
184 | 184 | data = self.data[-1] |
|
185 | 185 | cspc = data['cspc'] |
|
186 | 186 | |
|
187 | 187 | for n in range(len(self.data.pairs)): |
|
188 | 188 | |
|
189 | 189 | pair = self.crossPairs[n] |
|
190 | 190 | |
|
191 | 191 | coh = cspc[n*2] |
|
192 | 192 | phase = cspc[n*2+1] |
|
193 | 193 | ax = self.axes[2 * n] |
|
194 | 194 | |
|
195 | 195 | if ax.firsttime: |
|
196 | 196 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
197 | 197 | vmin=self.zmin_coh, |
|
198 | 198 | vmax=self.zmax_coh, |
|
199 | 199 | cmap=plt.get_cmap(self.colormap_coh) |
|
200 | 200 | ) |
|
201 | 201 | else: |
|
202 | 202 | ax.plt.set_array(coh.T.ravel()) |
|
203 | 203 | self.titles.append( |
|
204 | 204 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
205 | 205 | |
|
206 | 206 | ax = self.axes[2 * n + 1] |
|
207 | 207 | if ax.firsttime: |
|
208 | 208 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
209 | 209 | vmin=-180, |
|
210 | 210 | vmax=180, |
|
211 | 211 | cmap=plt.get_cmap(self.colormap_phase) |
|
212 | 212 | ) |
|
213 | 213 | else: |
|
214 | 214 | ax.plt.set_array(phase.T.ravel()) |
|
215 | 215 | |
|
216 | 216 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
217 | 217 | |
|
218 | 218 | |
|
219 | 219 | class RTIPlot(Plot): |
|
220 | 220 | ''' |
|
221 | 221 | Plot for RTI data |
|
222 | 222 | ''' |
|
223 | 223 | |
|
224 | 224 | CODE = 'rti' |
|
225 | 225 | colormap = 'jet' |
|
226 | 226 | plot_type = 'pcolorbuffer' |
|
227 | 227 | titles = None |
|
228 | 228 | channelList = [] |
|
229 | 229 | |
|
230 | 230 | def setup(self): |
|
231 | 231 | self.xaxis = 'time' |
|
232 | 232 | self.ncols = 1 |
|
233 | 233 | #print("dataChannels ",self.data.channels) |
|
234 | 234 | self.nrows = len(self.data.channels) |
|
235 | 235 | self.nplots = len(self.data.channels) |
|
236 | 236 | self.ylabel = 'Range [km]' |
|
237 | 237 | self.xlabel = 'Time' |
|
238 | 238 | self.cb_label = 'dB' |
|
239 | 239 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
240 | 240 | self.titles = ['{} Channel {}'.format( |
|
241 | 241 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
242 | 242 | |
|
243 | 243 | def update_list(self,dataOut): |
|
244 | 244 | |
|
245 | 245 | self.channelList = dataOut.channelList |
|
246 | 246 | |
|
247 | 247 | |
|
248 | 248 | def update(self, dataOut): |
|
249 | 249 | if len(self.channelList) == 0: |
|
250 | 250 | self.update_list(dataOut) |
|
251 | 251 | data = {} |
|
252 | 252 | meta = {} |
|
253 | 253 | data['rti'] = dataOut.getPower() |
|
254 | 254 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
255 | 255 | return data, meta |
|
256 | 256 | |
|
257 | 257 | def plot(self): |
|
258 | 258 | |
|
259 | 259 | self.x = self.data.times |
|
260 | 260 | self.y = self.data.yrange |
|
261 | 261 | self.z = self.data[self.CODE] |
|
262 | 262 | self.z = numpy.array(self.z, dtype=float) |
|
263 | 263 | self.z = numpy.ma.masked_invalid(self.z) |
|
264 | 264 | |
|
265 | 265 | try: |
|
266 | 266 | if self.channelList != None: |
|
267 | 267 | self.titles = ['{} Channel {}'.format( |
|
268 | 268 | self.CODE.upper(), x) for x in self.channelList] |
|
269 | 269 | except: |
|
270 | 270 | if self.channelList.any() != None: |
|
271 | 271 | self.titles = ['{} Channel {}'.format( |
|
272 | 272 | self.CODE.upper(), x) for x in self.channelList] |
|
273 | 273 | if self.decimation is None: |
|
274 | 274 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
275 | 275 | else: |
|
276 | 276 | x, y, z = self.fill_gaps(*self.decimate()) |
|
277 | 277 | dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes |
|
278 | 278 | for n, ax in enumerate(self.axes): |
|
279 | 279 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
280 | 280 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
281 | 281 | data = self.data[-1] |
|
282 | 282 | if ax.firsttime: |
|
283 | 283 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
284 | 284 | vmin=self.zmin, |
|
285 | 285 | vmax=self.zmax, |
|
286 | 286 | cmap=plt.get_cmap(self.colormap) |
|
287 | 287 | ) |
|
288 | 288 | if self.showprofile: |
|
289 | 289 | ax.plot_profile = self.pf_axes[n].plot(data[self.CODE][n], self.y)[0] |
|
290 | 290 | |
|
291 | 291 | if "noise" in self.data: |
|
292 | 292 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
293 | 293 | color="k", linestyle="dashed", lw=1)[0] |
|
294 | 294 | else: |
|
295 | 295 | ax.collections.remove(ax.collections[0]) |
|
296 | 296 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
297 | 297 | vmin=self.zmin, |
|
298 | 298 | vmax=self.zmax, |
|
299 | 299 | cmap=plt.get_cmap(self.colormap) |
|
300 | 300 | ) |
|
301 | 301 | if self.showprofile: |
|
302 | 302 | ax.plot_profile.set_data(data[self.CODE][n], self.y) |
|
303 | 303 | if "noise" in self.data: |
|
304 | 304 | ax.plot_noise.set_data(numpy.repeat( |
|
305 | 305 | data['noise'][n], len(self.y)), self.y) |
|
306 | 306 | |
|
307 | 307 | |
|
308 | 308 | class CoherencePlot(RTIPlot): |
|
309 | 309 | ''' |
|
310 | 310 | Plot for Coherence data |
|
311 | 311 | ''' |
|
312 | 312 | |
|
313 | 313 | CODE = 'coh' |
|
314 | 314 | |
|
315 | 315 | def setup(self): |
|
316 | 316 | self.xaxis = 'time' |
|
317 | 317 | self.ncols = 1 |
|
318 | 318 | self.nrows = len(self.data.pairs) |
|
319 | 319 | self.nplots = len(self.data.pairs) |
|
320 | 320 | self.ylabel = 'Range [km]' |
|
321 | 321 | self.xlabel = 'Time' |
|
322 | 322 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
323 | 323 | if self.CODE == 'coh': |
|
324 | 324 | self.cb_label = '' |
|
325 | 325 | self.titles = [ |
|
326 | 326 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
327 | 327 | else: |
|
328 | 328 | self.cb_label = 'Degrees' |
|
329 | 329 | self.titles = [ |
|
330 | 330 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
331 | 331 | |
|
332 | 332 | def update(self, dataOut): |
|
333 | 333 | self.update_list(dataOut) |
|
334 | 334 | data = {} |
|
335 | 335 | meta = {} |
|
336 | 336 | data['coh'] = dataOut.getCoherence() |
|
337 | 337 | meta['pairs'] = dataOut.pairsList |
|
338 | 338 | |
|
339 | 339 | |
|
340 | 340 | return data, meta |
|
341 | 341 | |
|
342 | 342 | class PhasePlot(CoherencePlot): |
|
343 | 343 | ''' |
|
344 | 344 | Plot for Phase map data |
|
345 | 345 | ''' |
|
346 | 346 | |
|
347 | 347 | CODE = 'phase' |
|
348 | 348 | colormap = 'seismic' |
|
349 | 349 | |
|
350 | 350 | def update(self, dataOut): |
|
351 | 351 | |
|
352 | 352 | data = {} |
|
353 | 353 | meta = {} |
|
354 | 354 | data['phase'] = dataOut.getCoherence(phase=True) |
|
355 | 355 | meta['pairs'] = dataOut.pairsList |
|
356 | 356 | |
|
357 | 357 | return data, meta |
|
358 | 358 | |
|
359 | 359 | class NoisePlot(Plot): |
|
360 | 360 | ''' |
|
361 | 361 | Plot for noise |
|
362 | 362 | ''' |
|
363 | 363 | |
|
364 | 364 | CODE = 'noise' |
|
365 | 365 | plot_type = 'scatterbuffer' |
|
366 | 366 | |
|
367 | 367 | def setup(self): |
|
368 | 368 | self.xaxis = 'time' |
|
369 | 369 | self.ncols = 1 |
|
370 | 370 | self.nrows = 1 |
|
371 | 371 | self.nplots = 1 |
|
372 | 372 | self.ylabel = 'Intensity [dB]' |
|
373 | 373 | self.xlabel = 'Time' |
|
374 | 374 | self.titles = ['Noise'] |
|
375 | 375 | self.colorbar = False |
|
376 | 376 | self.plots_adjust.update({'right': 0.85 }) |
|
377 | 377 | |
|
378 | 378 | def update(self, dataOut): |
|
379 | 379 | |
|
380 | 380 | data = {} |
|
381 | 381 | meta = {} |
|
382 |
|
|
|
382 | noise = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) | |
|
383 | data['noise'] = noise | |
|
383 | 384 | meta['yrange'] = numpy.array([]) |
|
384 | 385 | |
|
385 | 386 | return data, meta |
|
386 | 387 | |
|
387 | 388 | def plot(self): |
|
388 | 389 | |
|
389 | 390 | x = self.data.times |
|
390 | 391 | xmin = self.data.min_time |
|
391 | 392 | xmax = xmin + self.xrange * 60 * 60 |
|
392 | 393 | Y = self.data['noise'] |
|
393 | 394 | |
|
394 | 395 | if self.axes[0].firsttime: |
|
395 | self.ymin = numpy.nanmin(Y) - 5 | |
|
396 | self.ymax = numpy.nanmax(Y) + 5 | |
|
396 | if self.ymin is None: self.ymin = numpy.nanmin(Y) - 5 | |
|
397 | if self.ymax is None: self.ymax = numpy.nanmax(Y) + 5 | |
|
397 | 398 | for ch in self.data.channels: |
|
398 | 399 | y = Y[ch] |
|
399 | 400 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
400 | 401 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
401 | 402 | else: |
|
402 | 403 | for ch in self.data.channels: |
|
403 | 404 | y = Y[ch] |
|
404 | 405 | self.axes[0].lines[ch].set_data(x, y) |
|
405 | 406 | |
|
406 | 407 | |
|
407 | 408 | class PowerProfilePlot(Plot): |
|
408 | 409 | |
|
409 | 410 | CODE = 'pow_profile' |
|
410 | 411 | plot_type = 'scatter' |
|
411 | 412 | |
|
412 | 413 | def setup(self): |
|
413 | 414 | |
|
414 | 415 | self.ncols = 1 |
|
415 | 416 | self.nrows = 1 |
|
416 | 417 | self.nplots = 1 |
|
417 | 418 | self.height = 4 |
|
418 | 419 | self.width = 3 |
|
419 | 420 | self.ylabel = 'Range [km]' |
|
420 | 421 | self.xlabel = 'Intensity [dB]' |
|
421 | 422 | self.titles = ['Power Profile'] |
|
422 | 423 | self.colorbar = False |
|
423 | 424 | |
|
424 | 425 | def update(self, dataOut): |
|
425 | 426 | |
|
426 | 427 | data = {} |
|
427 | 428 | meta = {} |
|
428 | 429 | data[self.CODE] = dataOut.getPower() |
|
429 | 430 | |
|
430 | 431 | return data, meta |
|
431 | 432 | |
|
432 | 433 | def plot(self): |
|
433 | 434 | |
|
434 | 435 | y = self.data.yrange |
|
435 | 436 | self.y = y |
|
436 | 437 | |
|
437 | 438 | x = self.data[-1][self.CODE] |
|
438 | 439 | |
|
439 | 440 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
440 | 441 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
441 | 442 | |
|
442 | 443 | if self.axes[0].firsttime: |
|
443 | 444 | for ch in self.data.channels: |
|
444 | 445 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
445 | 446 | plt.legend() |
|
446 | 447 | else: |
|
447 | 448 | for ch in self.data.channels: |
|
448 | 449 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
449 | 450 | |
|
450 | 451 | |
|
451 | 452 | class SpectraCutPlot(Plot): |
|
452 | 453 | |
|
453 | 454 | CODE = 'spc_cut' |
|
454 | 455 | plot_type = 'scatter' |
|
455 | 456 | buffering = False |
|
456 | 457 | heights = [] |
|
457 | 458 | channelList = [] |
|
458 | 459 | maintitle = "Spectra Cuts" |
|
459 | 460 | |
|
460 | 461 | def setup(self): |
|
461 | 462 | |
|
462 | 463 | self.nplots = len(self.data.channels) |
|
463 | 464 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
464 | 465 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
465 | 466 | self.width = 3.6 * self.ncols + 1.5 |
|
466 | 467 | self.height = 3 * self.nrows |
|
467 | 468 | self.ylabel = 'Power [dB]' |
|
468 | 469 | self.colorbar = False |
|
469 | 470 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
470 | 471 | if self.selectedHeight: |
|
471 | 472 | self.maintitle = "Spectra Cut for %d km " %(int(self.selectedHeight)) |
|
472 | 473 | |
|
473 | 474 | def update(self, dataOut): |
|
474 | 475 | if len(self.channelList) == 0: |
|
475 | 476 | self.channelList = dataOut.channelList |
|
476 | 477 | |
|
477 | 478 | self.heights = dataOut.heightList |
|
478 | 479 | if self.selectedHeight: |
|
479 | 480 | index_list = numpy.where(self.heights >= self.selectedHeight) |
|
480 | 481 | self.height_index = index_list[0] |
|
481 | 482 | self.height_index = self.height_index[0] |
|
482 | 483 | #print(self.height_index) |
|
483 | 484 | data = {} |
|
484 | 485 | meta = {} |
|
485 | 486 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
486 | 487 | if self.selectedHeight: |
|
487 | 488 | data['spc'] = spc[:,:,self.height_index] |
|
488 | 489 | else: |
|
489 | 490 | data['spc'] = spc |
|
490 | 491 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
491 | 492 | |
|
492 | 493 | return data, meta |
|
493 | 494 | |
|
494 | 495 | def plot(self): |
|
495 | 496 | if self.xaxis == "frequency": |
|
496 | 497 | x = self.data.xrange[0][1:] |
|
497 | 498 | self.xlabel = "Frequency (kHz)" |
|
498 | 499 | elif self.xaxis == "time": |
|
499 | 500 | x = self.data.xrange[1] |
|
500 | 501 | self.xlabel = "Time (ms)" |
|
501 | 502 | else: |
|
502 | 503 | x = self.data.xrange[2] |
|
503 | 504 | self.xlabel = "Velocity (m/s)" |
|
504 | 505 | |
|
505 | 506 | self.titles = [] |
|
506 | 507 | |
|
507 | 508 | y = self.data.yrange |
|
508 | 509 | z = self.data[-1]['spc'] |
|
509 | 510 | #print(z.shape) |
|
510 | 511 | if self.height_index: |
|
511 | 512 | index = numpy.array(self.height_index) |
|
512 | 513 | else: |
|
513 | 514 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
514 | 515 | |
|
515 | 516 | for n, ax in enumerate(self.axes): |
|
516 | 517 | if ax.firsttime: |
|
517 | 518 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
518 | 519 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
519 | 520 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
520 | 521 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
521 | 522 | if self.selectedHeight: |
|
522 | 523 | ax.plt = ax.plot(x, z[n,:]) |
|
523 | 524 | |
|
524 | 525 | else: |
|
525 | 526 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
526 | 527 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
527 | 528 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
528 | 529 | else: |
|
529 | 530 | for i, line in enumerate(ax.plt): |
|
530 | 531 | if self.selectedHeight: |
|
531 | 532 | line.set_data(x, z[n, :]) |
|
532 | 533 | else: |
|
533 | 534 | line.set_data(x, z[n, :, index[i]]) |
|
534 | 535 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
535 | 536 | plt.suptitle(self.maintitle) |
|
536 | 537 | |
|
537 | 538 | class BeaconPhase(Plot): |
|
538 | 539 | |
|
539 | 540 | __isConfig = None |
|
540 | 541 | __nsubplots = None |
|
541 | 542 | |
|
542 | 543 | PREFIX = 'beacon_phase' |
|
543 | 544 | |
|
544 | 545 | def __init__(self): |
|
545 | 546 | Plot.__init__(self) |
|
546 | 547 | self.timerange = 24*60*60 |
|
547 | 548 | self.isConfig = False |
|
548 | 549 | self.__nsubplots = 1 |
|
549 | 550 | self.counter_imagwr = 0 |
|
550 | 551 | self.WIDTH = 800 |
|
551 | 552 | self.HEIGHT = 400 |
|
552 | 553 | self.WIDTHPROF = 120 |
|
553 | 554 | self.HEIGHTPROF = 0 |
|
554 | 555 | self.xdata = None |
|
555 | 556 | self.ydata = None |
|
556 | 557 | |
|
557 | 558 | self.PLOT_CODE = BEACON_CODE |
|
558 | 559 | |
|
559 | 560 | self.FTP_WEI = None |
|
560 | 561 | self.EXP_CODE = None |
|
561 | 562 | self.SUB_EXP_CODE = None |
|
562 | 563 | self.PLOT_POS = None |
|
563 | 564 | |
|
564 | 565 | self.filename_phase = None |
|
565 | 566 | |
|
566 | 567 | self.figfile = None |
|
567 | 568 | |
|
568 | 569 | self.xmin = None |
|
569 | 570 | self.xmax = None |
|
570 | 571 | |
|
571 | 572 | def getSubplots(self): |
|
572 | 573 | |
|
573 | 574 | ncol = 1 |
|
574 | 575 | nrow = 1 |
|
575 | 576 | |
|
576 | 577 | return nrow, ncol |
|
577 | 578 | |
|
578 | 579 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
579 | 580 | |
|
580 | 581 | self.__showprofile = showprofile |
|
581 | 582 | self.nplots = nplots |
|
582 | 583 | |
|
583 | 584 | ncolspan = 7 |
|
584 | 585 | colspan = 6 |
|
585 | 586 | self.__nsubplots = 2 |
|
586 | 587 | |
|
587 | 588 | self.createFigure(id = id, |
|
588 | 589 | wintitle = wintitle, |
|
589 | 590 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
590 | 591 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
591 | 592 | show=show) |
|
592 | 593 | |
|
593 | 594 | nrow, ncol = self.getSubplots() |
|
594 | 595 | |
|
595 | 596 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
596 | 597 | |
|
597 | 598 | def save_phase(self, filename_phase): |
|
598 | 599 | f = open(filename_phase,'w+') |
|
599 | 600 | f.write('\n\n') |
|
600 | 601 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
601 | 602 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
602 | 603 | f.close() |
|
603 | 604 | |
|
604 | 605 | def save_data(self, filename_phase, data, data_datetime): |
|
605 | 606 | f=open(filename_phase,'a') |
|
606 | 607 | timetuple_data = data_datetime.timetuple() |
|
607 | 608 | day = str(timetuple_data.tm_mday) |
|
608 | 609 | month = str(timetuple_data.tm_mon) |
|
609 | 610 | year = str(timetuple_data.tm_year) |
|
610 | 611 | hour = str(timetuple_data.tm_hour) |
|
611 | 612 | minute = str(timetuple_data.tm_min) |
|
612 | 613 | second = str(timetuple_data.tm_sec) |
|
613 | 614 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
614 | 615 | f.close() |
|
615 | 616 | |
|
616 | 617 | def plot(self): |
|
617 | 618 | log.warning('TODO: Not yet implemented...') |
|
618 | 619 | |
|
619 | 620 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
620 | 621 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
621 | 622 | timerange=None, |
|
622 | 623 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
623 | 624 | server=None, folder=None, username=None, password=None, |
|
624 | 625 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
625 | 626 | |
|
626 | 627 | if dataOut.flagNoData: |
|
627 | 628 | return dataOut |
|
628 | 629 | |
|
629 | 630 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
630 | 631 | return |
|
631 | 632 | |
|
632 | 633 | if pairsList == None: |
|
633 | 634 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
634 | 635 | else: |
|
635 | 636 | pairsIndexList = [] |
|
636 | 637 | for pair in pairsList: |
|
637 | 638 | if pair not in dataOut.pairsList: |
|
638 | 639 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
639 | 640 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
640 | 641 | |
|
641 | 642 | if pairsIndexList == []: |
|
642 | 643 | return |
|
643 | 644 | |
|
644 | 645 | # if len(pairsIndexList) > 4: |
|
645 | 646 | # pairsIndexList = pairsIndexList[0:4] |
|
646 | 647 | |
|
647 | 648 | hmin_index = None |
|
648 | 649 | hmax_index = None |
|
649 | 650 | |
|
650 | 651 | if hmin != None and hmax != None: |
|
651 | 652 | indexes = numpy.arange(dataOut.nHeights) |
|
652 | 653 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
653 | 654 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
654 | 655 | |
|
655 | 656 | if hmin_list.any(): |
|
656 | 657 | hmin_index = hmin_list[0] |
|
657 | 658 | |
|
658 | 659 | if hmax_list.any(): |
|
659 | 660 | hmax_index = hmax_list[-1]+1 |
|
660 | 661 | |
|
661 | 662 | x = dataOut.getTimeRange() |
|
662 | 663 | |
|
663 | 664 | thisDatetime = dataOut.datatime |
|
664 | 665 | |
|
665 | 666 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
666 | 667 | xlabel = "Local Time" |
|
667 | 668 | ylabel = "Phase (degrees)" |
|
668 | 669 | |
|
669 | 670 | update_figfile = False |
|
670 | 671 | |
|
671 | 672 | nplots = len(pairsIndexList) |
|
672 | 673 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
673 | 674 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
674 | 675 | for i in range(nplots): |
|
675 | 676 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
676 | 677 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
677 | 678 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
678 | 679 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
679 | 680 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
680 | 681 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
681 | 682 | |
|
682 | 683 | if dataOut.beacon_heiIndexList: |
|
683 | 684 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
684 | 685 | else: |
|
685 | 686 | phase_beacon[i] = numpy.average(phase) |
|
686 | 687 | |
|
687 | 688 | if not self.isConfig: |
|
688 | 689 | |
|
689 | 690 | nplots = len(pairsIndexList) |
|
690 | 691 | |
|
691 | 692 | self.setup(id=id, |
|
692 | 693 | nplots=nplots, |
|
693 | 694 | wintitle=wintitle, |
|
694 | 695 | showprofile=showprofile, |
|
695 | 696 | show=show) |
|
696 | 697 | |
|
697 | 698 | if timerange != None: |
|
698 | 699 | self.timerange = timerange |
|
699 | 700 | |
|
700 | 701 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
701 | 702 | |
|
702 | 703 | if ymin == None: ymin = 0 |
|
703 | 704 | if ymax == None: ymax = 360 |
|
704 | 705 | |
|
705 | 706 | self.FTP_WEI = ftp_wei |
|
706 | 707 | self.EXP_CODE = exp_code |
|
707 | 708 | self.SUB_EXP_CODE = sub_exp_code |
|
708 | 709 | self.PLOT_POS = plot_pos |
|
709 | 710 | |
|
710 | 711 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
711 | 712 | self.isConfig = True |
|
712 | 713 | self.figfile = figfile |
|
713 | 714 | self.xdata = numpy.array([]) |
|
714 | 715 | self.ydata = numpy.array([]) |
|
715 | 716 | |
|
716 | 717 | update_figfile = True |
|
717 | 718 | |
|
718 | 719 | #open file beacon phase |
|
719 | 720 | path = '%s%03d' %(self.PREFIX, self.id) |
|
720 | 721 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
721 | 722 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
722 | 723 | #self.save_phase(self.filename_phase) |
|
723 | 724 | |
|
724 | 725 | |
|
725 | 726 | #store data beacon phase |
|
726 | 727 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
727 | 728 | |
|
728 | 729 | self.setWinTitle(title) |
|
729 | 730 | |
|
730 | 731 | |
|
731 | 732 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
732 | 733 | |
|
733 | 734 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
734 | 735 | |
|
735 | 736 | axes = self.axesList[0] |
|
736 | 737 | |
|
737 | 738 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
738 | 739 | |
|
739 | 740 | if len(self.ydata)==0: |
|
740 | 741 | self.ydata = phase_beacon.reshape(-1,1) |
|
741 | 742 | else: |
|
742 | 743 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
743 | 744 | |
|
744 | 745 | |
|
745 | 746 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
746 | 747 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
747 | 748 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
748 | 749 | XAxisAsTime=True, grid='both' |
|
749 | 750 | ) |
|
750 | 751 | |
|
751 | 752 | self.draw() |
|
752 | 753 | |
|
753 | 754 | if dataOut.ltctime >= self.xmax: |
|
754 | 755 | self.counter_imagwr = wr_period |
|
755 | 756 | self.isConfig = False |
|
756 | 757 | update_figfile = True |
|
757 | 758 | |
|
758 | 759 | self.save(figpath=figpath, |
|
759 | 760 | figfile=figfile, |
|
760 | 761 | save=save, |
|
761 | 762 | ftp=ftp, |
|
762 | 763 | wr_period=wr_period, |
|
763 | 764 | thisDatetime=thisDatetime, |
|
764 | 765 | update_figfile=update_figfile) |
|
765 | 766 | |
|
766 | 767 | return dataOut |
|
767 | 768 | |
|
768 | 769 | class NoiselessSpectraPlot(Plot): |
|
769 | 770 | ''' |
|
770 | 771 | Plot for Spectra data, subtracting |
|
771 | 772 | the noise in all channels, using for |
|
772 | 773 | amisr-14 data |
|
773 | 774 | ''' |
|
774 | 775 | |
|
775 | 776 | CODE = 'noiseless_spc' |
|
776 | 777 | colormap = 'nipy_spectral' |
|
777 | 778 | plot_type = 'pcolor' |
|
778 | 779 | buffering = False |
|
779 | 780 | channelList = [] |
|
780 | 781 | |
|
781 | 782 | def setup(self): |
|
782 | 783 | |
|
783 | 784 | self.nplots = len(self.data.channels) |
|
784 | 785 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
785 | 786 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
786 | 787 | self.height = 2.6 * self.nrows |
|
787 | 788 | |
|
788 | 789 | self.cb_label = 'dB' |
|
789 | 790 | if self.showprofile: |
|
790 | 791 | self.width = 4 * self.ncols |
|
791 | 792 | else: |
|
792 | 793 | self.width = 3.5 * self.ncols |
|
793 | 794 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
794 | 795 | self.ylabel = 'Range [km]' |
|
795 | 796 | |
|
796 | 797 | |
|
797 | 798 | def update_list(self,dataOut): |
|
798 | 799 | if len(self.channelList) == 0: |
|
799 | 800 | self.channelList = dataOut.channelList |
|
800 | 801 | |
|
801 | 802 | def update(self, dataOut): |
|
802 | 803 | |
|
803 | 804 | self.update_list(dataOut) |
|
804 | 805 | data = {} |
|
805 | 806 | meta = {} |
|
806 | 807 | n0 = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
807 | 808 | (nch, nff, nh) = dataOut.data_spc.shape |
|
808 | 809 | n1 = numpy.repeat(n0,nh, axis=0).reshape((nch,nh)) |
|
809 | 810 | noise = numpy.repeat(n1,nff, axis=1).reshape((nch,nff,nh)) |
|
810 | 811 | #print(noise.shape, "noise", noise) |
|
811 | 812 | |
|
812 | 813 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) - noise |
|
813 | 814 | |
|
814 | 815 | data['spc'] = spc |
|
815 | 816 | data['rti'] = dataOut.getPower() - n1 |
|
816 | 817 | |
|
817 | 818 | data['noise'] = n0 |
|
818 | 819 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
819 | 820 | |
|
820 | 821 | return data, meta |
|
821 | 822 | |
|
822 | 823 | def plot(self): |
|
823 | 824 | if self.xaxis == "frequency": |
|
824 | 825 | x = self.data.xrange[0] |
|
825 | 826 | self.xlabel = "Frequency (kHz)" |
|
826 | 827 | elif self.xaxis == "time": |
|
827 | 828 | x = self.data.xrange[1] |
|
828 | 829 | self.xlabel = "Time (ms)" |
|
829 | 830 | else: |
|
830 | 831 | x = self.data.xrange[2] |
|
831 | 832 | self.xlabel = "Velocity (m/s)" |
|
832 | 833 | |
|
833 | 834 | self.titles = [] |
|
834 | 835 | y = self.data.yrange |
|
835 | 836 | self.y = y |
|
836 | 837 | |
|
837 | 838 | data = self.data[-1] |
|
838 | 839 | z = data['spc'] |
|
839 | 840 | |
|
840 | 841 | for n, ax in enumerate(self.axes): |
|
841 | 842 | noise = data['noise'][n] |
|
842 | 843 | |
|
843 | 844 | if ax.firsttime: |
|
844 | 845 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
845 | 846 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
846 | 847 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
847 | 848 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
848 | 849 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
849 | 850 | vmin=self.zmin, |
|
850 | 851 | vmax=self.zmax, |
|
851 | 852 | cmap=plt.get_cmap(self.colormap) |
|
852 | 853 | ) |
|
853 | 854 | |
|
854 | 855 | if self.showprofile: |
|
855 | 856 | ax.plt_profile = self.pf_axes[n].plot( |
|
856 | 857 | data['rti'][n], y)[0] |
|
857 | 858 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
858 | 859 | color="k", linestyle="dashed", lw=1)[0] |
|
859 | 860 | |
|
860 | 861 | else: |
|
861 | 862 | ax.plt.set_array(z[n].T.ravel()) |
|
862 | 863 | if self.showprofile: |
|
863 | 864 | ax.plt_profile.set_data(data['rti'][n], y) |
|
864 | 865 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
865 | 866 | |
|
866 | 867 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
867 | 868 | |
|
868 | 869 | |
|
869 | 870 | class NoiselessRTIPlot(Plot): |
|
870 | 871 | ''' |
|
871 | 872 | Plot for RTI data |
|
872 | 873 | ''' |
|
873 | 874 | |
|
874 | 875 | CODE = 'noiseless_rti' |
|
875 | 876 | colormap = 'jet' |
|
876 | 877 | plot_type = 'pcolorbuffer' |
|
877 | 878 | titles = None |
|
878 | 879 | channelList = [] |
|
879 | 880 | |
|
880 | 881 | def setup(self): |
|
881 | 882 | self.xaxis = 'time' |
|
882 | 883 | self.ncols = 1 |
|
883 | 884 | #print("dataChannels ",self.data.channels) |
|
884 | 885 | self.nrows = len(self.data.channels) |
|
885 | 886 | self.nplots = len(self.data.channels) |
|
886 | 887 | self.ylabel = 'Range [km]' |
|
887 | 888 | self.xlabel = 'Time' |
|
888 | 889 | self.cb_label = 'dB' |
|
889 | 890 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
890 | 891 | self.titles = ['{} Channel {}'.format( |
|
891 | 892 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
892 | 893 | |
|
893 | 894 | def update_list(self,dataOut): |
|
894 | 895 | |
|
895 | 896 | self.channelList = dataOut.channelList |
|
896 | 897 | |
|
897 | 898 | |
|
898 | 899 | def update(self, dataOut): |
|
899 | 900 | if len(self.channelList) == 0: |
|
900 | 901 | self.update_list(dataOut) |
|
901 | 902 | data = {} |
|
902 | 903 | meta = {} |
|
903 | 904 | |
|
904 | 905 | n0 = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
905 | 906 | (nch, nff, nh) = dataOut.data_spc.shape |
|
906 | 907 | noise = numpy.repeat(n0,nh, axis=0).reshape((nch,nh)) |
|
907 | 908 | |
|
908 | 909 | |
|
909 | 910 | data['noiseless_rti'] = dataOut.getPower() - noise |
|
910 | 911 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
911 | 912 | return data, meta |
|
912 | 913 | |
|
913 | 914 | def plot(self): |
|
914 | 915 | |
|
915 | 916 | self.x = self.data.times |
|
916 | 917 | self.y = self.data.yrange |
|
917 | 918 | self.z = self.data['noiseless_rti'] |
|
918 | 919 | self.z = numpy.array(self.z, dtype=float) |
|
919 | 920 | self.z = numpy.ma.masked_invalid(self.z) |
|
920 | 921 | |
|
921 | 922 | try: |
|
922 | 923 | if self.channelList != None: |
|
923 | 924 | self.titles = ['{} Channel {}'.format( |
|
924 | 925 | self.CODE.upper(), x) for x in self.channelList] |
|
925 | 926 | except: |
|
926 | 927 | if self.channelList.any() != None: |
|
927 | 928 | self.titles = ['{} Channel {}'.format( |
|
928 | 929 | self.CODE.upper(), x) for x in self.channelList] |
|
929 | 930 | if self.decimation is None: |
|
930 | 931 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
931 | 932 | else: |
|
932 | 933 | x, y, z = self.fill_gaps(*self.decimate()) |
|
933 | 934 | dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes |
|
934 | 935 | for n, ax in enumerate(self.axes): |
|
935 | 936 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
936 | 937 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
937 | 938 | data = self.data[-1] |
|
938 | 939 | if ax.firsttime: |
|
939 | 940 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
940 | 941 | vmin=self.zmin, |
|
941 | 942 | vmax=self.zmax, |
|
942 | 943 | cmap=plt.get_cmap(self.colormap) |
|
943 | 944 | ) |
|
944 | 945 | if self.showprofile: |
|
945 | 946 | ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0] |
|
946 | 947 | |
|
947 | 948 | if "noise" in self.data: |
|
948 | 949 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
949 | 950 | color="k", linestyle="dashed", lw=1)[0] |
|
950 | 951 | else: |
|
951 | 952 | ax.collections.remove(ax.collections[0]) |
|
952 | 953 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
953 | 954 | vmin=self.zmin, |
|
954 | 955 | vmax=self.zmax, |
|
955 | 956 | cmap=plt.get_cmap(self.colormap) |
|
956 | 957 | ) |
|
957 | 958 | if self.showprofile: |
|
958 | 959 | ax.plot_profile.set_data(data['noiseless_rti'][n], self.y) |
|
959 | 960 | if "noise" in self.data: |
|
960 | 961 | ax.plot_noise.set_data(numpy.repeat( |
|
961 | 962 | data['noise'][n], len(self.y)), self.y) |
@@ -1,1688 +1,1814 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Spectra processing Unit and operations |
|
6 | 6 | |
|
7 | 7 | Here you will find the processing unit `SpectraProc` and several operations |
|
8 | 8 | to work with Spectra data type |
|
9 | 9 | """ |
|
10 | 10 | |
|
11 | 11 | import time |
|
12 | 12 | import itertools |
|
13 | 13 | |
|
14 | 14 | import numpy |
|
15 | 15 | import math |
|
16 | 16 | |
|
17 | 17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
18 | 18 | from schainpy.model.data.jrodata import Spectra |
|
19 | 19 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
20 | 20 | from schainpy.utils import log |
|
21 | 21 | |
|
22 | 22 | from scipy.optimize import curve_fit |
|
23 | 23 | |
|
24 | 24 | class SpectraProc(ProcessingUnit): |
|
25 | 25 | |
|
26 | 26 | def __init__(self): |
|
27 | 27 | |
|
28 | 28 | ProcessingUnit.__init__(self) |
|
29 | 29 | |
|
30 | 30 | self.buffer = None |
|
31 | 31 | self.firstdatatime = None |
|
32 | 32 | self.profIndex = 0 |
|
33 | 33 | self.dataOut = Spectra() |
|
34 | 34 | self.id_min = None |
|
35 | 35 | self.id_max = None |
|
36 | 36 | self.setupReq = False #Agregar a todas las unidades de proc |
|
37 | 37 | |
|
38 | 38 | def __updateSpecFromVoltage(self): |
|
39 | 39 | |
|
40 | 40 | self.dataOut.timeZone = self.dataIn.timeZone |
|
41 | 41 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
42 | 42 | self.dataOut.errorCount = self.dataIn.errorCount |
|
43 | 43 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
44 | 44 | try: |
|
45 | 45 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
46 | 46 | except: |
|
47 | 47 | pass |
|
48 | 48 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
49 | 49 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
50 | 50 | self.dataOut.channelList = self.dataIn.channelList |
|
51 | 51 | self.dataOut.heightList = self.dataIn.heightList |
|
52 | 52 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
53 | 53 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
54 | 54 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
55 | 55 | self.dataOut.utctime = self.firstdatatime |
|
56 | 56 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
57 | 57 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
58 | 58 | self.dataOut.flagShiftFFT = False |
|
59 | 59 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
60 | 60 | self.dataOut.nIncohInt = 1 |
|
61 | 61 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
62 | 62 | self.dataOut.frequency = self.dataIn.frequency |
|
63 | 63 | self.dataOut.realtime = self.dataIn.realtime |
|
64 | 64 | self.dataOut.azimuth = self.dataIn.azimuth |
|
65 | 65 | self.dataOut.zenith = self.dataIn.zenith |
|
66 | 66 | self.dataOut.codeList = self.dataIn.codeList |
|
67 | 67 | self.dataOut.azimuthList = self.dataIn.azimuthList |
|
68 | 68 | self.dataOut.elevationList = self.dataIn.elevationList |
|
69 | 69 | |
|
70 | 70 | |
|
71 | 71 | def __getFft(self): |
|
72 | 72 | """ |
|
73 | 73 | Convierte valores de Voltaje a Spectra |
|
74 | 74 | |
|
75 | 75 | Affected: |
|
76 | 76 | self.dataOut.data_spc |
|
77 | 77 | self.dataOut.data_cspc |
|
78 | 78 | self.dataOut.data_dc |
|
79 | 79 | self.dataOut.heightList |
|
80 | 80 | self.profIndex |
|
81 | 81 | self.buffer |
|
82 | 82 | self.dataOut.flagNoData |
|
83 | 83 | """ |
|
84 | 84 | fft_volt = numpy.fft.fft( |
|
85 | 85 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
86 | 86 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
87 | 87 | dc = fft_volt[:, 0, :] |
|
88 | 88 | |
|
89 | 89 | # calculo de self-spectra |
|
90 | 90 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
91 | 91 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
92 | 92 | spc = spc.real |
|
93 | 93 | |
|
94 | 94 | blocksize = 0 |
|
95 | 95 | blocksize += dc.size |
|
96 | 96 | blocksize += spc.size |
|
97 | 97 | |
|
98 | 98 | cspc = None |
|
99 | 99 | pairIndex = 0 |
|
100 | 100 | if self.dataOut.pairsList != None: |
|
101 | 101 | # calculo de cross-spectra |
|
102 | 102 | cspc = numpy.zeros( |
|
103 | 103 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
104 | 104 | for pair in self.dataOut.pairsList: |
|
105 | 105 | if pair[0] not in self.dataOut.channelList: |
|
106 | 106 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
107 | 107 | str(pair), str(self.dataOut.channelList))) |
|
108 | 108 | if pair[1] not in self.dataOut.channelList: |
|
109 | 109 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
110 | 110 | str(pair), str(self.dataOut.channelList))) |
|
111 | 111 | |
|
112 | 112 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
113 | 113 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
114 | 114 | pairIndex += 1 |
|
115 | 115 | blocksize += cspc.size |
|
116 | 116 | |
|
117 | 117 | self.dataOut.data_spc = spc |
|
118 | 118 | self.dataOut.data_cspc = cspc |
|
119 | 119 | self.dataOut.data_dc = dc |
|
120 | 120 | self.dataOut.blockSize = blocksize |
|
121 | 121 | self.dataOut.flagShiftFFT = False |
|
122 | 122 | |
|
123 | 123 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): |
|
124 | 124 | |
|
125 | 125 | if self.dataIn.type == "Spectra": |
|
126 | 126 | |
|
127 | 127 | try: |
|
128 | 128 | self.dataOut.copy(self.dataIn) |
|
129 | 129 | |
|
130 | 130 | except Exception as e: |
|
131 | 131 | print(e) |
|
132 | 132 | |
|
133 | 133 | if shift_fft: |
|
134 | 134 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
135 | 135 | shift = int(self.dataOut.nFFTPoints/2) |
|
136 | 136 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
137 | 137 | |
|
138 | 138 | if self.dataOut.data_cspc is not None: |
|
139 | 139 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
140 | 140 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
141 | 141 | if pairsList: |
|
142 | 142 | self.__selectPairs(pairsList) |
|
143 | 143 | |
|
144 | 144 | |
|
145 | 145 | elif self.dataIn.type == "Voltage": |
|
146 | 146 | |
|
147 | 147 | self.dataOut.flagNoData = True |
|
148 | 148 | |
|
149 | 149 | if nFFTPoints == None: |
|
150 | 150 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
151 | 151 | |
|
152 | 152 | if nProfiles == None: |
|
153 | 153 | nProfiles = nFFTPoints |
|
154 | 154 | |
|
155 | 155 | if ippFactor == None: |
|
156 | 156 | self.dataOut.ippFactor = 1 |
|
157 | 157 | |
|
158 | 158 | self.dataOut.nFFTPoints = nFFTPoints |
|
159 | 159 | |
|
160 | 160 | if self.buffer is None: |
|
161 | 161 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
162 | 162 | nProfiles, |
|
163 | 163 | self.dataIn.nHeights), |
|
164 | 164 | dtype='complex') |
|
165 | 165 | |
|
166 | 166 | if self.dataIn.flagDataAsBlock: |
|
167 | 167 | nVoltProfiles = self.dataIn.data.shape[1] |
|
168 | 168 | |
|
169 | 169 | if nVoltProfiles == nProfiles: |
|
170 | 170 | self.buffer = self.dataIn.data.copy() |
|
171 | 171 | self.profIndex = nVoltProfiles |
|
172 | 172 | |
|
173 | 173 | elif nVoltProfiles < nProfiles: |
|
174 | 174 | |
|
175 | 175 | if self.profIndex == 0: |
|
176 | 176 | self.id_min = 0 |
|
177 | 177 | self.id_max = nVoltProfiles |
|
178 | 178 | |
|
179 | 179 | self.buffer[:, self.id_min:self.id_max, |
|
180 | 180 | :] = self.dataIn.data |
|
181 | 181 | self.profIndex += nVoltProfiles |
|
182 | 182 | self.id_min += nVoltProfiles |
|
183 | 183 | self.id_max += nVoltProfiles |
|
184 | 184 | else: |
|
185 | 185 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
186 | 186 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
187 | 187 | self.dataOut.flagNoData = True |
|
188 | 188 | else: |
|
189 | 189 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
190 | 190 | self.profIndex += 1 |
|
191 | 191 | |
|
192 | 192 | if self.firstdatatime == None: |
|
193 | 193 | self.firstdatatime = self.dataIn.utctime |
|
194 | 194 | |
|
195 | 195 | if self.profIndex == nProfiles: |
|
196 | 196 | self.__updateSpecFromVoltage() |
|
197 | 197 | if pairsList == None: |
|
198 | 198 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
199 | 199 | else: |
|
200 | 200 | self.dataOut.pairsList = pairsList |
|
201 | 201 | self.__getFft() |
|
202 | 202 | self.dataOut.flagNoData = False |
|
203 | 203 | self.firstdatatime = None |
|
204 | 204 | self.profIndex = 0 |
|
205 | self.dataOut.noise_estimation = None | |
|
205 | 206 | else: |
|
206 | 207 | raise ValueError("The type of input object '%s' is not valid".format( |
|
207 | 208 | self.dataIn.type)) |
|
208 | 209 | |
|
209 | 210 | def __selectPairs(self, pairsList): |
|
210 | 211 | |
|
211 | 212 | if not pairsList: |
|
212 | 213 | return |
|
213 | 214 | |
|
214 | 215 | pairs = [] |
|
215 | 216 | pairsIndex = [] |
|
216 | 217 | |
|
217 | 218 | for pair in pairsList: |
|
218 | 219 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
219 | 220 | continue |
|
220 | 221 | pairs.append(pair) |
|
221 | 222 | pairsIndex.append(pairs.index(pair)) |
|
222 | 223 | |
|
223 | 224 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
224 | 225 | self.dataOut.pairsList = pairs |
|
225 | 226 | |
|
226 | 227 | return |
|
227 | 228 | |
|
228 | 229 | def selectFFTs(self, minFFT, maxFFT ): |
|
229 | 230 | """ |
|
230 | 231 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
231 | 232 | minFFT<= FFT <= maxFFT |
|
232 | 233 | """ |
|
233 | 234 | |
|
234 | 235 | if (minFFT > maxFFT): |
|
235 | 236 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
236 | 237 | |
|
237 | 238 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
238 | 239 | minFFT = self.dataOut.getFreqRange()[0] |
|
239 | 240 | |
|
240 | 241 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
241 | 242 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
242 | 243 | |
|
243 | 244 | minIndex = 0 |
|
244 | 245 | maxIndex = 0 |
|
245 | 246 | FFTs = self.dataOut.getFreqRange() |
|
246 | 247 | |
|
247 | 248 | inda = numpy.where(FFTs >= minFFT) |
|
248 | 249 | indb = numpy.where(FFTs <= maxFFT) |
|
249 | 250 | |
|
250 | 251 | try: |
|
251 | 252 | minIndex = inda[0][0] |
|
252 | 253 | except: |
|
253 | 254 | minIndex = 0 |
|
254 | 255 | |
|
255 | 256 | try: |
|
256 | 257 | maxIndex = indb[0][-1] |
|
257 | 258 | except: |
|
258 | 259 | maxIndex = len(FFTs) |
|
259 | 260 | |
|
260 | 261 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
261 | 262 | |
|
262 | 263 | return 1 |
|
263 | 264 | |
|
264 | 265 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
265 | 266 | newheis = numpy.where( |
|
266 | 267 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
267 | 268 | |
|
268 | 269 | if hei_ref != None: |
|
269 | 270 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
270 | 271 | |
|
271 | 272 | minIndex = min(newheis[0]) |
|
272 | 273 | maxIndex = max(newheis[0]) |
|
273 | 274 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
274 | 275 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
275 | 276 | |
|
276 | 277 | # determina indices |
|
277 | 278 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
278 | 279 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
279 | 280 | avg_dB = 10 * \ |
|
280 | 281 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
281 | 282 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
282 | 283 | beacon_heiIndexList = [] |
|
283 | 284 | for val in avg_dB.tolist(): |
|
284 | 285 | if val >= beacon_dB[0]: |
|
285 | 286 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
286 | 287 | |
|
287 | 288 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
288 | 289 | data_cspc = None |
|
289 | 290 | if self.dataOut.data_cspc is not None: |
|
290 | 291 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
291 | 292 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
292 | 293 | |
|
293 | 294 | data_dc = None |
|
294 | 295 | if self.dataOut.data_dc is not None: |
|
295 | 296 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
296 | 297 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
297 | 298 | |
|
298 | 299 | self.dataOut.data_spc = data_spc |
|
299 | 300 | self.dataOut.data_cspc = data_cspc |
|
300 | 301 | self.dataOut.data_dc = data_dc |
|
301 | 302 | self.dataOut.heightList = heightList |
|
302 | 303 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
303 | 304 | |
|
304 | 305 | return 1 |
|
305 | 306 | |
|
306 | 307 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
307 | 308 | """ |
|
308 | 309 | |
|
309 | 310 | """ |
|
310 | 311 | |
|
311 | 312 | if (minIndex < 0) or (minIndex > maxIndex): |
|
312 | 313 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
313 | 314 | |
|
314 | 315 | if (maxIndex >= self.dataOut.nProfiles): |
|
315 | 316 | maxIndex = self.dataOut.nProfiles-1 |
|
316 | 317 | |
|
317 | 318 | #Spectra |
|
318 | 319 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
319 | 320 | |
|
320 | 321 | data_cspc = None |
|
321 | 322 | if self.dataOut.data_cspc is not None: |
|
322 | 323 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
323 | 324 | |
|
324 | 325 | data_dc = None |
|
325 | 326 | if self.dataOut.data_dc is not None: |
|
326 | 327 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
327 | 328 | |
|
328 | 329 | self.dataOut.data_spc = data_spc |
|
329 | 330 | self.dataOut.data_cspc = data_cspc |
|
330 | 331 | self.dataOut.data_dc = data_dc |
|
331 | 332 | |
|
332 | 333 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
333 | 334 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
334 | 335 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
335 | 336 | |
|
336 | 337 | return 1 |
|
337 | 338 | |
|
338 | 339 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
339 | 340 | # validacion de rango |
|
340 | 341 | if minHei == None: |
|
341 | 342 | minHei = self.dataOut.heightList[0] |
|
342 | 343 | |
|
343 | 344 | if maxHei == None: |
|
344 | 345 | maxHei = self.dataOut.heightList[-1] |
|
345 | 346 | |
|
346 | 347 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
347 | 348 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
348 | 349 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
349 | 350 | minHei = self.dataOut.heightList[0] |
|
350 | 351 | |
|
351 | 352 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
352 | 353 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
353 | 354 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
354 | 355 | maxHei = self.dataOut.heightList[-1] |
|
355 | 356 | |
|
356 | 357 | # validacion de velocidades |
|
357 | 358 | velrange = self.dataOut.getVelRange(1) |
|
358 | 359 | |
|
359 | 360 | if minVel == None: |
|
360 | 361 | minVel = velrange[0] |
|
361 | 362 | |
|
362 | 363 | if maxVel == None: |
|
363 | 364 | maxVel = velrange[-1] |
|
364 | 365 | |
|
365 | 366 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
366 | 367 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
367 | 368 | print('minVel is setting to %.2f' % (velrange[0])) |
|
368 | 369 | minVel = velrange[0] |
|
369 | 370 | |
|
370 | 371 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
371 | 372 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
372 | 373 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
373 | 374 | maxVel = velrange[-1] |
|
374 | 375 | |
|
375 | 376 | # seleccion de indices para rango |
|
376 | 377 | minIndex = 0 |
|
377 | 378 | maxIndex = 0 |
|
378 | 379 | heights = self.dataOut.heightList |
|
379 | 380 | |
|
380 | 381 | inda = numpy.where(heights >= minHei) |
|
381 | 382 | indb = numpy.where(heights <= maxHei) |
|
382 | 383 | |
|
383 | 384 | try: |
|
384 | 385 | minIndex = inda[0][0] |
|
385 | 386 | except: |
|
386 | 387 | minIndex = 0 |
|
387 | 388 | |
|
388 | 389 | try: |
|
389 | 390 | maxIndex = indb[0][-1] |
|
390 | 391 | except: |
|
391 | 392 | maxIndex = len(heights) |
|
392 | 393 | |
|
393 | 394 | if (minIndex < 0) or (minIndex > maxIndex): |
|
394 | 395 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
395 | 396 | minIndex, maxIndex)) |
|
396 | 397 | |
|
397 | 398 | if (maxIndex >= self.dataOut.nHeights): |
|
398 | 399 | maxIndex = self.dataOut.nHeights - 1 |
|
399 | 400 | |
|
400 | 401 | # seleccion de indices para velocidades |
|
401 | 402 | indminvel = numpy.where(velrange >= minVel) |
|
402 | 403 | indmaxvel = numpy.where(velrange <= maxVel) |
|
403 | 404 | try: |
|
404 | 405 | minIndexVel = indminvel[0][0] |
|
405 | 406 | except: |
|
406 | 407 | minIndexVel = 0 |
|
407 | 408 | |
|
408 | 409 | try: |
|
409 | 410 | maxIndexVel = indmaxvel[0][-1] |
|
410 | 411 | except: |
|
411 | 412 | maxIndexVel = len(velrange) |
|
412 | 413 | |
|
413 | 414 | # seleccion del espectro |
|
414 | 415 | data_spc = self.dataOut.data_spc[:, |
|
415 | 416 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
416 | 417 | # estimacion de ruido |
|
417 | 418 | noise = numpy.zeros(self.dataOut.nChannels) |
|
418 | 419 | |
|
419 | 420 | for channel in range(self.dataOut.nChannels): |
|
420 | 421 | daux = data_spc[channel, :, :] |
|
421 | 422 | sortdata = numpy.sort(daux, axis=None) |
|
422 | 423 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
423 | 424 | |
|
424 | 425 | self.dataOut.noise_estimation = noise.copy() |
|
425 | 426 | |
|
426 | 427 | return 1 |
|
427 | 428 | |
|
428 | 429 | class removeDC(Operation): |
|
429 | 430 | |
|
430 | 431 | def run(self, dataOut, mode=2): |
|
431 | 432 | self.dataOut = dataOut |
|
432 | 433 | jspectra = self.dataOut.data_spc |
|
433 | 434 | jcspectra = self.dataOut.data_cspc |
|
434 | 435 | |
|
435 | 436 | num_chan = jspectra.shape[0] |
|
436 | 437 | num_hei = jspectra.shape[2] |
|
437 | 438 | |
|
438 | 439 | if jcspectra is not None: |
|
439 | 440 | jcspectraExist = True |
|
440 | 441 | num_pairs = jcspectra.shape[0] |
|
441 | 442 | else: |
|
442 | 443 | jcspectraExist = False |
|
443 | 444 | |
|
444 | 445 | freq_dc = int(jspectra.shape[1] / 2) |
|
445 | 446 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
446 | 447 | ind_vel = ind_vel.astype(int) |
|
447 | 448 | |
|
448 | 449 | if ind_vel[0] < 0: |
|
449 | 450 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
450 | 451 | |
|
451 | 452 | if mode == 1: |
|
452 | 453 | jspectra[:, freq_dc, :] = ( |
|
453 | 454 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
454 | 455 | |
|
455 | 456 | if jcspectraExist: |
|
456 | 457 | jcspectra[:, freq_dc, :] = ( |
|
457 | 458 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
458 | 459 | |
|
459 | 460 | if mode == 2: |
|
460 | 461 | |
|
461 | 462 | vel = numpy.array([-2, -1, 1, 2]) |
|
462 | 463 | xx = numpy.zeros([4, 4]) |
|
463 | 464 | |
|
464 | 465 | for fil in range(4): |
|
465 | 466 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
466 | 467 | |
|
467 | 468 | xx_inv = numpy.linalg.inv(xx) |
|
468 | 469 | xx_aux = xx_inv[0, :] |
|
469 | 470 | |
|
470 | 471 | for ich in range(num_chan): |
|
471 | 472 | yy = jspectra[ich, ind_vel, :] |
|
472 | 473 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
473 | 474 | |
|
474 | 475 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
475 | 476 | cjunkid = sum(junkid) |
|
476 | 477 | |
|
477 | 478 | if cjunkid.any(): |
|
478 | 479 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
479 | 480 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
480 | 481 | |
|
481 | 482 | if jcspectraExist: |
|
482 | 483 | for ip in range(num_pairs): |
|
483 | 484 | yy = jcspectra[ip, ind_vel, :] |
|
484 | 485 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
485 | 486 | |
|
486 | 487 | self.dataOut.data_spc = jspectra |
|
487 | 488 | self.dataOut.data_cspc = jcspectra |
|
488 | 489 | |
|
489 | 490 | return self.dataOut |
|
490 | 491 | |
|
492 | class getNoise(Operation): | |
|
493 | def __init__(self): | |
|
494 | ||
|
495 | Operation.__init__(self) | |
|
496 | ||
|
497 | def run(self, dataOut, minHei=None, maxHei=None, minVel=None, maxVel=None, minFreq= None, maxFreq=None,): | |
|
498 | self.dataOut = dataOut.copy() | |
|
499 | print("1: ",dataOut.noise_estimation, dataOut.normFactor) | |
|
500 | ||
|
501 | if minHei == None: | |
|
502 | minHei = self.dataOut.heightList[0] | |
|
503 | ||
|
504 | if maxHei == None: | |
|
505 | maxHei = self.dataOut.heightList[-1] | |
|
506 | ||
|
507 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
|
508 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
|
509 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
|
510 | minHei = self.dataOut.heightList[0] | |
|
511 | ||
|
512 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
|
513 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
|
514 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
|
515 | maxHei = self.dataOut.heightList[-1] | |
|
516 | ||
|
517 | ||
|
518 | #indices relativos a los puntos de fft, puede ser de acuerdo a velocidad o frecuencia | |
|
519 | minIndexFFT = 0 | |
|
520 | maxIndexFFT = 0 | |
|
521 | # validacion de velocidades | |
|
522 | indminPoint = None | |
|
523 | indmaxPoint = None | |
|
524 | ||
|
525 | if minVel == None and maxVel == None: | |
|
526 | ||
|
527 | freqrange = self.dataOut.getFreqRange(1) | |
|
528 | ||
|
529 | if minFreq == None: | |
|
530 | minFreq = freqrange[0] | |
|
531 | ||
|
532 | if maxFreq == None: | |
|
533 | maxFreq = freqrange[-1] | |
|
534 | ||
|
535 | if (minFreq < freqrange[0]) or (minFreq > maxFreq): | |
|
536 | print('minFreq: %.2f is out of the frequency range' % (minFreq)) | |
|
537 | print('minFreq is setting to %.2f' % (freqrange[0])) | |
|
538 | minFreq = freqrange[0] | |
|
539 | ||
|
540 | if (maxFreq > freqrange[-1]) or (maxFreq < minFreq): | |
|
541 | print('maxFreq: %.2f is out of the frequency range' % (maxFreq)) | |
|
542 | print('maxFreq is setting to %.2f' % (freqrange[-1])) | |
|
543 | maxFreq = freqrange[-1] | |
|
544 | ||
|
545 | indminPoint = numpy.where(freqrange >= minFreq) | |
|
546 | indmaxPoint = numpy.where(freqrange <= maxFreq) | |
|
547 | ||
|
548 | else: | |
|
549 | velrange = self.dataOut.getVelRange(1) | |
|
550 | ||
|
551 | if minVel == None: | |
|
552 | minVel = velrange[0] | |
|
553 | ||
|
554 | if maxVel == None: | |
|
555 | maxVel = velrange[-1] | |
|
556 | ||
|
557 | if (minVel < velrange[0]) or (minVel > maxVel): | |
|
558 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |
|
559 | print('minVel is setting to %.2f' % (velrange[0])) | |
|
560 | minVel = velrange[0] | |
|
561 | ||
|
562 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
|
563 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |
|
564 | print('maxVel is setting to %.2f' % (velrange[-1])) | |
|
565 | maxVel = velrange[-1] | |
|
566 | ||
|
567 | indminPoint = numpy.where(velrange >= minVel) | |
|
568 | indmaxPoint = numpy.where(velrange <= maxVel) | |
|
569 | ||
|
570 | ||
|
571 | # seleccion de indices para rango | |
|
572 | minIndex = 0 | |
|
573 | maxIndex = 0 | |
|
574 | heights = self.dataOut.heightList | |
|
575 | ||
|
576 | inda = numpy.where(heights >= minHei) | |
|
577 | indb = numpy.where(heights <= maxHei) | |
|
578 | ||
|
579 | try: | |
|
580 | minIndex = inda[0][0] | |
|
581 | except: | |
|
582 | minIndex = 0 | |
|
583 | ||
|
584 | try: | |
|
585 | maxIndex = indb[0][-1] | |
|
586 | except: | |
|
587 | maxIndex = len(heights) | |
|
588 | ||
|
589 | if (minIndex < 0) or (minIndex > maxIndex): | |
|
590 | raise ValueError("some value in (%d,%d) is not valid" % ( | |
|
591 | minIndex, maxIndex)) | |
|
592 | ||
|
593 | if (maxIndex >= self.dataOut.nHeights): | |
|
594 | maxIndex = self.dataOut.nHeights - 1 | |
|
595 | #############################################################3 | |
|
596 | # seleccion de indices para velocidades | |
|
597 | ||
|
598 | try: | |
|
599 | minIndexFFT = indminPoint[0][0] | |
|
600 | except: | |
|
601 | minIndexFFT = 0 | |
|
602 | ||
|
603 | try: | |
|
604 | maxIndexFFT = indmaxPoint[0][-1] | |
|
605 | except: | |
|
606 | maxIndexFFT = len( self.dataOut.getFreqRange(1)) | |
|
607 | ||
|
608 | #print(minIndex, maxIndex,minIndexVel, maxIndexVel) | |
|
609 | noise = self.dataOut.getNoise(xmin_index=minIndexFFT, xmax_index=maxIndexFFT, ymin_index=minIndex, ymax_index=maxIndex) | |
|
610 | ||
|
611 | self.dataOut.noise_estimation = noise.copy() | |
|
612 | #print("2: ",10*numpy.log10(self.dataOut.noise_estimation/64)) | |
|
613 | return self.dataOut | |
|
614 | ||
|
615 | ||
|
616 | ||
|
491 | 617 | # import matplotlib.pyplot as plt |
|
492 | 618 | |
|
493 | 619 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): |
|
494 | 620 | z = (x - a1) / a2 |
|
495 | 621 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 |
|
496 | 622 | return y |
|
497 | 623 | |
|
498 | 624 | |
|
499 | 625 | class CleanRayleigh(Operation): |
|
500 | 626 | |
|
501 | 627 | def __init__(self): |
|
502 | 628 | |
|
503 | 629 | Operation.__init__(self) |
|
504 | 630 | self.i=0 |
|
505 | 631 | self.isConfig = False |
|
506 | 632 | self.__dataReady = False |
|
507 | 633 | self.__profIndex = 0 |
|
508 | 634 | self.byTime = False |
|
509 | 635 | self.byProfiles = False |
|
510 | 636 | |
|
511 | 637 | self.bloques = None |
|
512 | 638 | self.bloque0 = None |
|
513 | 639 | |
|
514 | 640 | self.index = 0 |
|
515 | 641 | |
|
516 | 642 | self.buffer = 0 |
|
517 | 643 | self.buffer2 = 0 |
|
518 | 644 | self.buffer3 = 0 |
|
519 | 645 | |
|
520 | 646 | |
|
521 | 647 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): |
|
522 | 648 | |
|
523 | 649 | self.nChannels = dataOut.nChannels |
|
524 | 650 | self.nProf = dataOut.nProfiles |
|
525 | 651 | self.nPairs = dataOut.data_cspc.shape[0] |
|
526 | 652 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
527 | 653 | self.spectra = dataOut.data_spc |
|
528 | 654 | self.cspectra = dataOut.data_cspc |
|
529 | 655 | self.heights = dataOut.heightList #alturas totales |
|
530 | 656 | self.nHeights = len(self.heights) |
|
531 | 657 | self.min_hei = min_hei |
|
532 | 658 | self.max_hei = max_hei |
|
533 | 659 | if (self.min_hei == None): |
|
534 | 660 | self.min_hei = 0 |
|
535 | 661 | if (self.max_hei == None): |
|
536 | 662 | self.max_hei = dataOut.heightList[-1] |
|
537 | 663 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() |
|
538 | 664 | self.heightsClean = self.heights[self.hval] #alturas filtradas |
|
539 | 665 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas |
|
540 | 666 | self.nHeightsClean = len(self.heightsClean) |
|
541 | 667 | self.channels = dataOut.channelList |
|
542 | 668 | self.nChan = len(self.channels) |
|
543 | 669 | self.nIncohInt = dataOut.nIncohInt |
|
544 | 670 | self.__initime = dataOut.utctime |
|
545 | 671 | self.maxAltInd = self.hval[-1]+1 |
|
546 | 672 | self.minAltInd = self.hval[0] |
|
547 | 673 | |
|
548 | 674 | self.crosspairs = dataOut.pairsList |
|
549 | 675 | self.nPairs = len(self.crosspairs) |
|
550 | 676 | self.normFactor = dataOut.normFactor |
|
551 | 677 | self.nFFTPoints = dataOut.nFFTPoints |
|
552 | 678 | self.ippSeconds = dataOut.ippSeconds |
|
553 | 679 | self.currentTime = self.__initime |
|
554 | 680 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
555 | 681 | self.factor_stdv = factor_stdv |
|
556 | 682 | |
|
557 | 683 | if n != None : |
|
558 | 684 | self.byProfiles = True |
|
559 | 685 | self.nIntProfiles = n |
|
560 | 686 | else: |
|
561 | 687 | self.__integrationtime = timeInterval |
|
562 | 688 | |
|
563 | 689 | self.__dataReady = False |
|
564 | 690 | self.isConfig = True |
|
565 | 691 | |
|
566 | 692 | |
|
567 | 693 | |
|
568 | 694 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): |
|
569 | 695 | |
|
570 | 696 | if not self.isConfig : |
|
571 | 697 | |
|
572 | 698 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) |
|
573 | 699 | |
|
574 | 700 | tini=dataOut.utctime |
|
575 | 701 | |
|
576 | 702 | if self.byProfiles: |
|
577 | 703 | if self.__profIndex == self.nIntProfiles: |
|
578 | 704 | self.__dataReady = True |
|
579 | 705 | else: |
|
580 | 706 | if (tini - self.__initime) >= self.__integrationtime: |
|
581 | 707 | |
|
582 | 708 | self.__dataReady = True |
|
583 | 709 | self.__initime = tini |
|
584 | 710 | |
|
585 | 711 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): |
|
586 | 712 | |
|
587 | 713 | if self.__dataReady: |
|
588 | 714 | |
|
589 | 715 | self.__profIndex = 0 |
|
590 | 716 | jspc = self.buffer |
|
591 | 717 | jcspc = self.buffer2 |
|
592 | 718 | #jnoise = self.buffer3 |
|
593 | 719 | self.buffer = dataOut.data_spc |
|
594 | 720 | self.buffer2 = dataOut.data_cspc |
|
595 | 721 | #self.buffer3 = dataOut.noise |
|
596 | 722 | self.currentTime = dataOut.utctime |
|
597 | 723 | if numpy.any(jspc) : |
|
598 | 724 | #print( jspc.shape, jcspc.shape) |
|
599 | 725 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) |
|
600 | 726 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) |
|
601 | 727 | self.__dataReady = False |
|
602 | 728 | #print( jspc.shape, jcspc.shape) |
|
603 | 729 | dataOut.flagNoData = False |
|
604 | 730 | else: |
|
605 | 731 | dataOut.flagNoData = True |
|
606 | 732 | self.__dataReady = False |
|
607 | 733 | return dataOut |
|
608 | 734 | else: |
|
609 | 735 | #print( len(self.buffer)) |
|
610 | 736 | if numpy.any(self.buffer): |
|
611 | 737 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) |
|
612 | 738 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) |
|
613 | 739 | self.buffer3 += dataOut.data_dc |
|
614 | 740 | else: |
|
615 | 741 | self.buffer = dataOut.data_spc |
|
616 | 742 | self.buffer2 = dataOut.data_cspc |
|
617 | 743 | self.buffer3 = dataOut.data_dc |
|
618 | 744 | #print self.index, self.fint |
|
619 | 745 | #print self.buffer2.shape |
|
620 | 746 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO |
|
621 | 747 | self.__profIndex += 1 |
|
622 | 748 | return dataOut ## NOTE: REV |
|
623 | 749 | |
|
624 | 750 | |
|
625 | 751 | #index = tini.tm_hour*12+tini.tm_min/5 |
|
626 | 752 | '''REVISAR''' |
|
627 | 753 | # jspc = jspc/self.nFFTPoints/self.normFactor |
|
628 | 754 | # jcspc = jcspc/self.nFFTPoints/self.normFactor |
|
629 | 755 | |
|
630 | 756 | |
|
631 | 757 | |
|
632 | 758 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
633 | 759 | dataOut.data_spc = tmp_spectra |
|
634 | 760 | dataOut.data_cspc = tmp_cspectra |
|
635 | 761 | |
|
636 | 762 | #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
637 | 763 | |
|
638 | 764 | dataOut.data_dc = self.buffer3 |
|
639 | 765 | dataOut.nIncohInt *= self.nIntProfiles |
|
640 | 766 | dataOut.utctime = self.currentTime #tiempo promediado |
|
641 | 767 | #print("Time: ",time.localtime(dataOut.utctime)) |
|
642 | 768 | # dataOut.data_spc = sat_spectra |
|
643 | 769 | # dataOut.data_cspc = sat_cspectra |
|
644 | 770 | self.buffer = 0 |
|
645 | 771 | self.buffer2 = 0 |
|
646 | 772 | self.buffer3 = 0 |
|
647 | 773 | |
|
648 | 774 | return dataOut |
|
649 | 775 | |
|
650 | 776 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): |
|
651 | 777 | #print("OP cleanRayleigh") |
|
652 | 778 | #import matplotlib.pyplot as plt |
|
653 | 779 | #for k in range(149): |
|
654 | 780 | #channelsProcssd = [] |
|
655 | 781 | #channelA_ok = False |
|
656 | 782 | #rfunc = cspectra.copy() #self.bloques |
|
657 | 783 | rfunc = spectra.copy() |
|
658 | 784 | #rfunc = cspectra |
|
659 | 785 | #val_spc = spectra*0.0 #self.bloque0*0.0 |
|
660 | 786 | #val_cspc = cspectra*0.0 #self.bloques*0.0 |
|
661 | 787 | #in_sat_spectra = spectra.copy() #self.bloque0 |
|
662 | 788 | #in_sat_cspectra = cspectra.copy() #self.bloques |
|
663 | 789 | |
|
664 | 790 | |
|
665 | 791 | ###ONLY FOR TEST: |
|
666 | 792 | raxs = math.ceil(math.sqrt(self.nPairs)) |
|
667 | 793 | caxs = math.ceil(self.nPairs/raxs) |
|
668 | 794 | if self.nPairs <4: |
|
669 | 795 | raxs = 2 |
|
670 | 796 | caxs = 2 |
|
671 | 797 | #print(raxs, caxs) |
|
672 | 798 | fft_rev = 14 #nFFT to plot |
|
673 | 799 | hei_rev = ((self.heights >= 550) & (self.heights <= 551)).nonzero() #hei to plot |
|
674 | 800 | hei_rev = hei_rev[0] |
|
675 | 801 | #print(hei_rev) |
|
676 | 802 | |
|
677 | 803 | #print numpy.absolute(rfunc[:,0,0,14]) |
|
678 | 804 | |
|
679 | 805 | gauss_fit, covariance = None, None |
|
680 | 806 | for ih in range(self.minAltInd,self.maxAltInd): |
|
681 | 807 | for ifreq in range(self.nFFTPoints): |
|
682 | 808 | ''' |
|
683 | 809 | ###ONLY FOR TEST: |
|
684 | 810 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
685 | 811 | fig, axs = plt.subplots(raxs, caxs) |
|
686 | 812 | fig2, axs2 = plt.subplots(raxs, caxs) |
|
687 | 813 | col_ax = 0 |
|
688 | 814 | row_ax = 0 |
|
689 | 815 | ''' |
|
690 | 816 | #print(self.nPairs) |
|
691 | 817 | for ii in range(self.nChan): #PARES DE CANALES SELF y CROSS |
|
692 | 818 | # if self.crosspairs[ii][1]-self.crosspairs[ii][0] > 1: # APLICAR SOLO EN PARES CONTIGUOS |
|
693 | 819 | # continue |
|
694 | 820 | # if not self.crosspairs[ii][0] in channelsProcssd: |
|
695 | 821 | # channelA_ok = True |
|
696 | 822 | #print("pair: ",self.crosspairs[ii]) |
|
697 | 823 | ''' |
|
698 | 824 | ###ONLY FOR TEST: |
|
699 | 825 | if (col_ax%caxs==0 and col_ax!=0 and self.nPairs !=1): |
|
700 | 826 | col_ax = 0 |
|
701 | 827 | row_ax += 1 |
|
702 | 828 | ''' |
|
703 | 829 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? |
|
704 | 830 | #print(func2clean.shape) |
|
705 | 831 | val = (numpy.isfinite(func2clean)==True).nonzero() |
|
706 | 832 | |
|
707 | 833 | if len(val)>0: #limitador |
|
708 | 834 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) |
|
709 | 835 | if min_val <= -40 : |
|
710 | 836 | min_val = -40 |
|
711 | 837 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 |
|
712 | 838 | if max_val >= 200 : |
|
713 | 839 | max_val = 200 |
|
714 | 840 | #print min_val, max_val |
|
715 | 841 | step = 1 |
|
716 | 842 | #print("Getting bins and the histogram") |
|
717 | 843 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step |
|
718 | 844 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
719 | 845 | #print(len(y_dist),len(binstep[:-1])) |
|
720 | 846 | #print(row_ax,col_ax, " ..") |
|
721 | 847 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) |
|
722 | 848 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) |
|
723 | 849 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) |
|
724 | 850 | parg = [numpy.amax(y_dist),mean,sigma] |
|
725 | 851 | |
|
726 | 852 | newY = None |
|
727 | 853 | |
|
728 | 854 | try : |
|
729 | 855 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) |
|
730 | 856 | mode = gauss_fit[1] |
|
731 | 857 | stdv = gauss_fit[2] |
|
732 | 858 | #print(" FIT OK",gauss_fit) |
|
733 | 859 | ''' |
|
734 | 860 | ###ONLY FOR TEST: |
|
735 | 861 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
736 | 862 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) |
|
737 | 863 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
738 | 864 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
739 | 865 | axs[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
740 | 866 | ''' |
|
741 | 867 | except: |
|
742 | 868 | mode = mean |
|
743 | 869 | stdv = sigma |
|
744 | 870 | #print("FIT FAIL") |
|
745 | 871 | #continue |
|
746 | 872 | |
|
747 | 873 | |
|
748 | 874 | #print(mode,stdv) |
|
749 | 875 | #Removing echoes greater than mode + std_factor*stdv |
|
750 | 876 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() |
|
751 | 877 | #noval tiene los indices que se van a remover |
|
752 | 878 | #print("Chan ",ii," novals: ",len(noval[0])) |
|
753 | 879 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) |
|
754 | 880 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() |
|
755 | 881 | #print(novall) |
|
756 | 882 | #print(" ",self.pairsArray[ii]) |
|
757 | 883 | #cross_pairs = self.pairsArray[ii] |
|
758 | 884 | #Getting coherent echoes which are removed. |
|
759 | 885 | # if len(novall[0]) > 0: |
|
760 | 886 | # |
|
761 | 887 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 |
|
762 | 888 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 |
|
763 | 889 | # val_cspc[novall[0],ii,ifreq,ih] = 1 |
|
764 | 890 | #print("OUT NOVALL 1") |
|
765 | 891 | try: |
|
766 | 892 | pair = (self.channels[ii],self.channels[ii + 1]) |
|
767 | 893 | except: |
|
768 | 894 | pair = (99,99) |
|
769 | 895 | #print("par ", pair) |
|
770 | 896 | if ( pair in self.crosspairs): |
|
771 | 897 | q = self.crosspairs.index(pair) |
|
772 | 898 | #print("estΓ‘ aqui: ", q, (ii,ii + 1)) |
|
773 | 899 | new_a = numpy.delete(cspectra[:,q,ifreq,ih], noval[0]) |
|
774 | 900 | cspectra[noval,q,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra |
|
775 | 901 | |
|
776 | 902 | #if channelA_ok: |
|
777 | 903 | #chA = self.channels.index(cross_pairs[0]) |
|
778 | 904 | new_b = numpy.delete(spectra[:,ii,ifreq,ih], noval[0]) |
|
779 | 905 | spectra[noval,ii,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A |
|
780 | 906 | #channelA_ok = False |
|
781 | 907 | |
|
782 | 908 | # chB = self.channels.index(cross_pairs[1]) |
|
783 | 909 | # new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) |
|
784 | 910 | # spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B |
|
785 | 911 | # |
|
786 | 912 | # channelsProcssd.append(self.crosspairs[ii][0]) # save channel A |
|
787 | 913 | # channelsProcssd.append(self.crosspairs[ii][1]) # save channel B |
|
788 | 914 | ''' |
|
789 | 915 | ###ONLY FOR TEST: |
|
790 | 916 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
791 | 917 | func2clean = 10*numpy.log10(numpy.absolute(spectra[:,ii,ifreq,ih])) |
|
792 | 918 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
793 | 919 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
794 | 920 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
795 | 921 | axs2[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
796 | 922 | ''' |
|
797 | 923 | ''' |
|
798 | 924 | ###ONLY FOR TEST: |
|
799 | 925 | col_ax += 1 #contador de ploteo columnas |
|
800 | 926 | ##print(col_ax) |
|
801 | 927 | ###ONLY FOR TEST: |
|
802 | 928 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
803 | 929 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" |
|
804 | 930 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" |
|
805 | 931 | fig.suptitle(title) |
|
806 | 932 | fig2.suptitle(title2) |
|
807 | 933 | plt.show() |
|
808 | 934 | ''' |
|
809 | 935 | ################################################################################################## |
|
810 | 936 | |
|
811 | 937 | #print("Getting average of the spectra and cross-spectra from incoherent echoes.") |
|
812 | 938 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan |
|
813 | 939 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan |
|
814 | 940 | for ih in range(self.nHeights): |
|
815 | 941 | for ifreq in range(self.nFFTPoints): |
|
816 | 942 | for ich in range(self.nChan): |
|
817 | 943 | tmp = spectra[:,ich,ifreq,ih] |
|
818 | 944 | valid = (numpy.isfinite(tmp[:])==True).nonzero() |
|
819 | 945 | |
|
820 | 946 | if len(valid[0]) >0 : |
|
821 | 947 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
822 | 948 | |
|
823 | 949 | for icr in range(self.nPairs): |
|
824 | 950 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) |
|
825 | 951 | valid = (numpy.isfinite(tmp)==True).nonzero() |
|
826 | 952 | if len(valid[0]) > 0: |
|
827 | 953 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
828 | 954 | |
|
829 | 955 | return out_spectra, out_cspectra |
|
830 | 956 | |
|
831 | 957 | def REM_ISOLATED_POINTS(self,array,rth): |
|
832 | 958 | # import matplotlib.pyplot as plt |
|
833 | 959 | if rth == None : |
|
834 | 960 | rth = 4 |
|
835 | 961 | #print("REM ISO") |
|
836 | 962 | num_prof = len(array[0,:,0]) |
|
837 | 963 | num_hei = len(array[0,0,:]) |
|
838 | 964 | n2d = len(array[:,0,0]) |
|
839 | 965 | |
|
840 | 966 | for ii in range(n2d) : |
|
841 | 967 | #print ii,n2d |
|
842 | 968 | tmp = array[ii,:,:] |
|
843 | 969 | #print tmp.shape, array[ii,101,:],array[ii,102,:] |
|
844 | 970 | |
|
845 | 971 | # fig = plt.figure(figsize=(6,5)) |
|
846 | 972 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
847 | 973 | # ax = fig.add_axes([left, bottom, width, height]) |
|
848 | 974 | # x = range(num_prof) |
|
849 | 975 | # y = range(num_hei) |
|
850 | 976 | # cp = ax.contour(y,x,tmp) |
|
851 | 977 | # ax.clabel(cp, inline=True,fontsize=10) |
|
852 | 978 | # plt.show() |
|
853 | 979 | |
|
854 | 980 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) |
|
855 | 981 | tmp = numpy.reshape(tmp,num_prof*num_hei) |
|
856 | 982 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() |
|
857 | 983 | indxs2 = (tmp > 0).nonzero() |
|
858 | 984 | |
|
859 | 985 | indxs1 = (indxs1[0]) |
|
860 | 986 | indxs2 = indxs2[0] |
|
861 | 987 | #indxs1 = numpy.array(indxs1[0]) |
|
862 | 988 | #indxs2 = numpy.array(indxs2[0]) |
|
863 | 989 | indxs = None |
|
864 | 990 | #print indxs1 , indxs2 |
|
865 | 991 | for iv in range(len(indxs2)): |
|
866 | 992 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) |
|
867 | 993 | #print len(indxs2), indv |
|
868 | 994 | if len(indv[0]) > 0 : |
|
869 | 995 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) |
|
870 | 996 | # print indxs |
|
871 | 997 | indxs = indxs[1:] |
|
872 | 998 | #print(indxs, len(indxs)) |
|
873 | 999 | if len(indxs) < 4 : |
|
874 | 1000 | array[ii,:,:] = 0. |
|
875 | 1001 | return |
|
876 | 1002 | |
|
877 | 1003 | xpos = numpy.mod(indxs ,num_hei) |
|
878 | 1004 | ypos = (indxs / num_hei) |
|
879 | 1005 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) |
|
880 | 1006 | #print sx |
|
881 | 1007 | xpos = xpos[sx] |
|
882 | 1008 | ypos = ypos[sx] |
|
883 | 1009 | |
|
884 | 1010 | # *********************************** Cleaning isolated points ********************************** |
|
885 | 1011 | ic = 0 |
|
886 | 1012 | while True : |
|
887 | 1013 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) |
|
888 | 1014 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) |
|
889 | 1015 | #plt.plot(r) |
|
890 | 1016 | #plt.show() |
|
891 | 1017 | no_coh1 = (numpy.isfinite(r)==True).nonzero() |
|
892 | 1018 | no_coh2 = (r <= rth).nonzero() |
|
893 | 1019 | #print r, no_coh1, no_coh2 |
|
894 | 1020 | no_coh1 = numpy.array(no_coh1[0]) |
|
895 | 1021 | no_coh2 = numpy.array(no_coh2[0]) |
|
896 | 1022 | no_coh = None |
|
897 | 1023 | #print valid1 , valid2 |
|
898 | 1024 | for iv in range(len(no_coh2)): |
|
899 | 1025 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) |
|
900 | 1026 | if len(indv[0]) > 0 : |
|
901 | 1027 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) |
|
902 | 1028 | no_coh = no_coh[1:] |
|
903 | 1029 | #print len(no_coh), no_coh |
|
904 | 1030 | if len(no_coh) < 4 : |
|
905 | 1031 | #print xpos[ic], ypos[ic], ic |
|
906 | 1032 | # plt.plot(r) |
|
907 | 1033 | # plt.show() |
|
908 | 1034 | xpos[ic] = numpy.nan |
|
909 | 1035 | ypos[ic] = numpy.nan |
|
910 | 1036 | |
|
911 | 1037 | ic = ic + 1 |
|
912 | 1038 | if (ic == len(indxs)) : |
|
913 | 1039 | break |
|
914 | 1040 | #print( xpos, ypos) |
|
915 | 1041 | |
|
916 | 1042 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() |
|
917 | 1043 | #print indxs[0] |
|
918 | 1044 | if len(indxs[0]) < 4 : |
|
919 | 1045 | array[ii,:,:] = 0. |
|
920 | 1046 | return |
|
921 | 1047 | |
|
922 | 1048 | xpos = xpos[indxs[0]] |
|
923 | 1049 | ypos = ypos[indxs[0]] |
|
924 | 1050 | for i in range(0,len(ypos)): |
|
925 | 1051 | ypos[i]=int(ypos[i]) |
|
926 | 1052 | junk = tmp |
|
927 | 1053 | tmp = junk*0.0 |
|
928 | 1054 | |
|
929 | 1055 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] |
|
930 | 1056 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) |
|
931 | 1057 | |
|
932 | 1058 | #print array.shape |
|
933 | 1059 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) |
|
934 | 1060 | #print tmp.shape |
|
935 | 1061 | |
|
936 | 1062 | # fig = plt.figure(figsize=(6,5)) |
|
937 | 1063 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
938 | 1064 | # ax = fig.add_axes([left, bottom, width, height]) |
|
939 | 1065 | # x = range(num_prof) |
|
940 | 1066 | # y = range(num_hei) |
|
941 | 1067 | # cp = ax.contour(y,x,array[ii,:,:]) |
|
942 | 1068 | # ax.clabel(cp, inline=True,fontsize=10) |
|
943 | 1069 | # plt.show() |
|
944 | 1070 | return array |
|
945 | 1071 | |
|
946 | 1072 | |
|
947 | 1073 | class IntegrationFaradaySpectra(Operation): |
|
948 | 1074 | |
|
949 | 1075 | __profIndex = 0 |
|
950 | 1076 | __withOverapping = False |
|
951 | 1077 | |
|
952 | 1078 | __byTime = False |
|
953 | 1079 | __initime = None |
|
954 | 1080 | __lastdatatime = None |
|
955 | 1081 | __integrationtime = None |
|
956 | 1082 | |
|
957 | 1083 | __buffer_spc = None |
|
958 | 1084 | __buffer_cspc = None |
|
959 | 1085 | __buffer_dc = None |
|
960 | 1086 | |
|
961 | 1087 | __dataReady = False |
|
962 | 1088 | |
|
963 | 1089 | __timeInterval = None |
|
964 | 1090 | |
|
965 | 1091 | n = None |
|
966 | 1092 | |
|
967 | 1093 | def __init__(self): |
|
968 | 1094 | |
|
969 | 1095 | Operation.__init__(self) |
|
970 | 1096 | |
|
971 | 1097 | def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None): |
|
972 | 1098 | """ |
|
973 | 1099 | Set the parameters of the integration class. |
|
974 | 1100 | |
|
975 | 1101 | Inputs: |
|
976 | 1102 | |
|
977 | 1103 | n : Number of coherent integrations |
|
978 | 1104 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
979 | 1105 | overlapping : |
|
980 | 1106 | |
|
981 | 1107 | """ |
|
982 | 1108 | |
|
983 | 1109 | self.__initime = None |
|
984 | 1110 | self.__lastdatatime = 0 |
|
985 | 1111 | |
|
986 | 1112 | self.__buffer_spc = [] |
|
987 | 1113 | self.__buffer_cspc = [] |
|
988 | 1114 | self.__buffer_dc = 0 |
|
989 | 1115 | |
|
990 | 1116 | self.__profIndex = 0 |
|
991 | 1117 | self.__dataReady = False |
|
992 | 1118 | self.__byTime = False |
|
993 | 1119 | |
|
994 | 1120 | #self.ByLags = dataOut.ByLags ###REDEFINIR |
|
995 | 1121 | self.ByLags = False |
|
996 | 1122 | |
|
997 | 1123 | if DPL != None: |
|
998 | 1124 | self.DPL=DPL |
|
999 | 1125 | else: |
|
1000 | 1126 | #self.DPL=dataOut.DPL ###REDEFINIR |
|
1001 | 1127 | self.DPL=0 |
|
1002 | 1128 | |
|
1003 | 1129 | if n is None and timeInterval is None: |
|
1004 | 1130 | raise ValueError("n or timeInterval should be specified ...") |
|
1005 | 1131 | |
|
1006 | 1132 | if n is not None: |
|
1007 | 1133 | self.n = int(n) |
|
1008 | 1134 | else: |
|
1009 | 1135 | |
|
1010 | 1136 | self.__integrationtime = int(timeInterval) |
|
1011 | 1137 | self.n = None |
|
1012 | 1138 | self.__byTime = True |
|
1013 | 1139 | |
|
1014 | 1140 | def putData(self, data_spc, data_cspc, data_dc): |
|
1015 | 1141 | """ |
|
1016 | 1142 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1017 | 1143 | |
|
1018 | 1144 | """ |
|
1019 | 1145 | |
|
1020 | 1146 | self.__buffer_spc.append(data_spc) |
|
1021 | 1147 | |
|
1022 | 1148 | if data_cspc is None: |
|
1023 | 1149 | self.__buffer_cspc = None |
|
1024 | 1150 | else: |
|
1025 | 1151 | self.__buffer_cspc.append(data_cspc) |
|
1026 | 1152 | |
|
1027 | 1153 | if data_dc is None: |
|
1028 | 1154 | self.__buffer_dc = None |
|
1029 | 1155 | else: |
|
1030 | 1156 | self.__buffer_dc += data_dc |
|
1031 | 1157 | |
|
1032 | 1158 | self.__profIndex += 1 |
|
1033 | 1159 | |
|
1034 | 1160 | return |
|
1035 | 1161 | |
|
1036 | 1162 | def hildebrand_sekhon_Integration(self,data,navg): |
|
1037 | 1163 | |
|
1038 | 1164 | sortdata = numpy.sort(data, axis=None) |
|
1039 | 1165 | sortID=data.argsort() |
|
1040 | 1166 | lenOfData = len(sortdata) |
|
1041 | 1167 | nums_min = lenOfData*0.75 |
|
1042 | 1168 | if nums_min <= 5: |
|
1043 | 1169 | nums_min = 5 |
|
1044 | 1170 | sump = 0. |
|
1045 | 1171 | sumq = 0. |
|
1046 | 1172 | j = 0 |
|
1047 | 1173 | cont = 1 |
|
1048 | 1174 | while((cont == 1)and(j < lenOfData)): |
|
1049 | 1175 | sump += sortdata[j] |
|
1050 | 1176 | sumq += sortdata[j]**2 |
|
1051 | 1177 | if j > nums_min: |
|
1052 | 1178 | rtest = float(j)/(j-1) + 1.0/navg |
|
1053 | 1179 | if ((sumq*j) > (rtest*sump**2)): |
|
1054 | 1180 | j = j - 1 |
|
1055 | 1181 | sump = sump - sortdata[j] |
|
1056 | 1182 | sumq = sumq - sortdata[j]**2 |
|
1057 | 1183 | cont = 0 |
|
1058 | 1184 | j += 1 |
|
1059 | 1185 | #lnoise = sump / j |
|
1060 | 1186 | |
|
1061 | 1187 | return j,sortID |
|
1062 | 1188 | |
|
1063 | 1189 | def pushData(self): |
|
1064 | 1190 | """ |
|
1065 | 1191 | Return the sum of the last profiles and the profiles used in the sum. |
|
1066 | 1192 | |
|
1067 | 1193 | Affected: |
|
1068 | 1194 | |
|
1069 | 1195 | self.__profileIndex |
|
1070 | 1196 | |
|
1071 | 1197 | """ |
|
1072 | 1198 | bufferH=None |
|
1073 | 1199 | buffer=None |
|
1074 | 1200 | buffer1=None |
|
1075 | 1201 | buffer_cspc=None |
|
1076 | 1202 | self.__buffer_spc=numpy.array(self.__buffer_spc) |
|
1077 | 1203 | self.__buffer_cspc=numpy.array(self.__buffer_cspc) |
|
1078 | 1204 | freq_dc = int(self.__buffer_spc.shape[2] / 2) |
|
1079 | 1205 | #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) |
|
1080 | 1206 | for k in range(7,self.nHeights): |
|
1081 | 1207 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) |
|
1082 | 1208 | outliers_IDs_cspc=[] |
|
1083 | 1209 | cspc_outliers_exist=False |
|
1084 | 1210 | for i in range(self.nChannels):#dataOut.nChannels): |
|
1085 | 1211 | |
|
1086 | 1212 | buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) |
|
1087 | 1213 | indexes=[] |
|
1088 | 1214 | #sortIDs=[] |
|
1089 | 1215 | outliers_IDs=[] |
|
1090 | 1216 | |
|
1091 | 1217 | for j in range(self.nProfiles): |
|
1092 | 1218 | # if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 |
|
1093 | 1219 | # continue |
|
1094 | 1220 | # if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 |
|
1095 | 1221 | # continue |
|
1096 | 1222 | buffer=buffer1[:,j] |
|
1097 | 1223 | index,sortID=self.hildebrand_sekhon_Integration(buffer,1) |
|
1098 | 1224 | |
|
1099 | 1225 | indexes.append(index) |
|
1100 | 1226 | #sortIDs.append(sortID) |
|
1101 | 1227 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) |
|
1102 | 1228 | |
|
1103 | 1229 | outliers_IDs=numpy.array(outliers_IDs) |
|
1104 | 1230 | outliers_IDs=outliers_IDs.ravel() |
|
1105 | 1231 | outliers_IDs=numpy.unique(outliers_IDs) |
|
1106 | 1232 | outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) |
|
1107 | 1233 | indexes=numpy.array(indexes) |
|
1108 | 1234 | indexmin=numpy.min(indexes) |
|
1109 | 1235 | |
|
1110 | 1236 | if indexmin != buffer1.shape[0]: |
|
1111 | 1237 | cspc_outliers_exist=True |
|
1112 | 1238 | ###sortdata=numpy.sort(buffer1,axis=0) |
|
1113 | 1239 | ###avg2=numpy.mean(sortdata[:indexmin,:],axis=0) |
|
1114 | 1240 | lt=outliers_IDs |
|
1115 | 1241 | avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) |
|
1116 | 1242 | |
|
1117 | 1243 | for p in list(outliers_IDs): |
|
1118 | 1244 | buffer1[p,:]=avg |
|
1119 | 1245 | |
|
1120 | 1246 | self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) |
|
1121 | 1247 | ###cspc IDs |
|
1122 | 1248 | #indexmin_cspc+=indexmin_cspc |
|
1123 | 1249 | outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) |
|
1124 | 1250 | |
|
1125 | 1251 | #if not breakFlag: |
|
1126 | 1252 | outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) |
|
1127 | 1253 | if cspc_outliers_exist: |
|
1128 | 1254 | #sortdata=numpy.sort(buffer_cspc,axis=0) |
|
1129 | 1255 | #avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0) |
|
1130 | 1256 | lt=outliers_IDs_cspc |
|
1131 | 1257 | |
|
1132 | 1258 | avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) |
|
1133 | 1259 | for p in list(outliers_IDs_cspc): |
|
1134 | 1260 | buffer_cspc[p,:]=avg |
|
1135 | 1261 | |
|
1136 | 1262 | self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) |
|
1137 | 1263 | #else: |
|
1138 | 1264 | #break |
|
1139 | 1265 | |
|
1140 | 1266 | |
|
1141 | 1267 | |
|
1142 | 1268 | |
|
1143 | 1269 | buffer=None |
|
1144 | 1270 | bufferH=None |
|
1145 | 1271 | buffer1=None |
|
1146 | 1272 | buffer_cspc=None |
|
1147 | 1273 | |
|
1148 | 1274 | #print("cpsc",self.__buffer_cspc[:,0,0,0,0]) |
|
1149 | 1275 | #print(self.__profIndex) |
|
1150 | 1276 | #exit() |
|
1151 | 1277 | |
|
1152 | 1278 | buffer=None |
|
1153 | 1279 | #print(self.__buffer_spc[:,1,3,20,0]) |
|
1154 | 1280 | #print(self.__buffer_spc[:,1,5,37,0]) |
|
1155 | 1281 | data_spc = numpy.sum(self.__buffer_spc,axis=0) |
|
1156 | 1282 | data_cspc = numpy.sum(self.__buffer_cspc,axis=0) |
|
1157 | 1283 | |
|
1158 | 1284 | #print(numpy.shape(data_spc)) |
|
1159 | 1285 | #data_spc[1,4,20,0]=numpy.nan |
|
1160 | 1286 | |
|
1161 | 1287 | #data_cspc = self.__buffer_cspc |
|
1162 | 1288 | data_dc = self.__buffer_dc |
|
1163 | 1289 | n = self.__profIndex |
|
1164 | 1290 | |
|
1165 | 1291 | self.__buffer_spc = [] |
|
1166 | 1292 | self.__buffer_cspc = [] |
|
1167 | 1293 | self.__buffer_dc = 0 |
|
1168 | 1294 | self.__profIndex = 0 |
|
1169 | 1295 | |
|
1170 | 1296 | return data_spc, data_cspc, data_dc, n |
|
1171 | 1297 | |
|
1172 | 1298 | def byProfiles(self, *args): |
|
1173 | 1299 | |
|
1174 | 1300 | self.__dataReady = False |
|
1175 | 1301 | avgdata_spc = None |
|
1176 | 1302 | avgdata_cspc = None |
|
1177 | 1303 | avgdata_dc = None |
|
1178 | 1304 | |
|
1179 | 1305 | self.putData(*args) |
|
1180 | 1306 | |
|
1181 | 1307 | if self.__profIndex == self.n: |
|
1182 | 1308 | |
|
1183 | 1309 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1184 | 1310 | self.n = n |
|
1185 | 1311 | self.__dataReady = True |
|
1186 | 1312 | |
|
1187 | 1313 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1188 | 1314 | |
|
1189 | 1315 | def byTime(self, datatime, *args): |
|
1190 | 1316 | |
|
1191 | 1317 | self.__dataReady = False |
|
1192 | 1318 | avgdata_spc = None |
|
1193 | 1319 | avgdata_cspc = None |
|
1194 | 1320 | avgdata_dc = None |
|
1195 | 1321 | |
|
1196 | 1322 | self.putData(*args) |
|
1197 | 1323 | |
|
1198 | 1324 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1199 | 1325 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1200 | 1326 | self.n = n |
|
1201 | 1327 | self.__dataReady = True |
|
1202 | 1328 | |
|
1203 | 1329 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1204 | 1330 | |
|
1205 | 1331 | def integrate(self, datatime, *args): |
|
1206 | 1332 | |
|
1207 | 1333 | if self.__profIndex == 0: |
|
1208 | 1334 | self.__initime = datatime |
|
1209 | 1335 | |
|
1210 | 1336 | if self.__byTime: |
|
1211 | 1337 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1212 | 1338 | datatime, *args) |
|
1213 | 1339 | else: |
|
1214 | 1340 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1215 | 1341 | |
|
1216 | 1342 | if not self.__dataReady: |
|
1217 | 1343 | return None, None, None, None |
|
1218 | 1344 | |
|
1219 | 1345 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1220 | 1346 | |
|
1221 | 1347 | def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False): |
|
1222 | 1348 | if n == 1: |
|
1223 | 1349 | return dataOut |
|
1224 | 1350 | |
|
1225 | 1351 | dataOut.flagNoData = True |
|
1226 | 1352 | |
|
1227 | 1353 | if not self.isConfig: |
|
1228 | 1354 | self.setup(dataOut, n, timeInterval, overlapping,DPL ) |
|
1229 | 1355 | self.isConfig = True |
|
1230 | 1356 | |
|
1231 | 1357 | if not self.ByLags: |
|
1232 | 1358 | self.nProfiles=dataOut.nProfiles |
|
1233 | 1359 | self.nChannels=dataOut.nChannels |
|
1234 | 1360 | self.nHeights=dataOut.nHeights |
|
1235 | 1361 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1236 | 1362 | dataOut.data_spc, |
|
1237 | 1363 | dataOut.data_cspc, |
|
1238 | 1364 | dataOut.data_dc) |
|
1239 | 1365 | else: |
|
1240 | 1366 | self.nProfiles=dataOut.nProfiles |
|
1241 | 1367 | self.nChannels=dataOut.nChannels |
|
1242 | 1368 | self.nHeights=dataOut.nHeights |
|
1243 | 1369 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1244 | 1370 | dataOut.dataLag_spc, |
|
1245 | 1371 | dataOut.dataLag_cspc, |
|
1246 | 1372 | dataOut.dataLag_dc) |
|
1247 | 1373 | |
|
1248 | 1374 | if self.__dataReady: |
|
1249 | 1375 | |
|
1250 | 1376 | if not self.ByLags: |
|
1251 | 1377 | |
|
1252 | 1378 | dataOut.data_spc = numpy.squeeze(avgdata_spc) |
|
1253 | 1379 | dataOut.data_cspc = numpy.squeeze(avgdata_cspc) |
|
1254 | 1380 | dataOut.data_dc = avgdata_dc |
|
1255 | 1381 | else: |
|
1256 | 1382 | dataOut.dataLag_spc = avgdata_spc |
|
1257 | 1383 | dataOut.dataLag_cspc = avgdata_cspc |
|
1258 | 1384 | dataOut.dataLag_dc = avgdata_dc |
|
1259 | 1385 | |
|
1260 | 1386 | dataOut.data_spc=dataOut.dataLag_spc[:,:,:,dataOut.LagPlot] |
|
1261 | 1387 | dataOut.data_cspc=dataOut.dataLag_cspc[:,:,:,dataOut.LagPlot] |
|
1262 | 1388 | dataOut.data_dc=dataOut.dataLag_dc[:,:,dataOut.LagPlot] |
|
1263 | 1389 | |
|
1264 | 1390 | |
|
1265 | 1391 | dataOut.nIncohInt *= self.n |
|
1266 | 1392 | dataOut.utctime = avgdatatime |
|
1267 | 1393 | dataOut.flagNoData = False |
|
1268 | 1394 | |
|
1269 | 1395 | return dataOut |
|
1270 | 1396 | |
|
1271 | 1397 | class removeInterference(Operation): |
|
1272 | 1398 | |
|
1273 | 1399 | def removeInterference2(self): |
|
1274 | 1400 | |
|
1275 | 1401 | cspc = self.dataOut.data_cspc |
|
1276 | 1402 | spc = self.dataOut.data_spc |
|
1277 | 1403 | Heights = numpy.arange(cspc.shape[2]) |
|
1278 | 1404 | realCspc = numpy.abs(cspc) |
|
1279 | 1405 | |
|
1280 | 1406 | for i in range(cspc.shape[0]): |
|
1281 | 1407 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
1282 | 1408 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
1283 | 1409 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
1284 | 1410 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
1285 | 1411 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
1286 | 1412 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
1287 | 1413 | |
|
1288 | 1414 | |
|
1289 | 1415 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
1290 | 1416 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
1291 | 1417 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
1292 | 1418 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
1293 | 1419 | |
|
1294 | 1420 | self.dataOut.data_cspc = cspc |
|
1295 | 1421 | |
|
1296 | 1422 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
1297 | 1423 | |
|
1298 | 1424 | jspectra = self.dataOut.data_spc |
|
1299 | 1425 | jcspectra = self.dataOut.data_cspc |
|
1300 | 1426 | jnoise = self.dataOut.getNoise() |
|
1301 | 1427 | num_incoh = self.dataOut.nIncohInt |
|
1302 | 1428 | |
|
1303 | 1429 | num_channel = jspectra.shape[0] |
|
1304 | 1430 | num_prof = jspectra.shape[1] |
|
1305 | 1431 | num_hei = jspectra.shape[2] |
|
1306 | 1432 | |
|
1307 | 1433 | # hei_interf |
|
1308 | 1434 | if hei_interf is None: |
|
1309 | 1435 | count_hei = int(num_hei / 2) |
|
1310 | 1436 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
1311 | 1437 | hei_interf = numpy.asarray(hei_interf)[0] |
|
1312 | 1438 | # nhei_interf |
|
1313 | 1439 | if (nhei_interf == None): |
|
1314 | 1440 | nhei_interf = 5 |
|
1315 | 1441 | if (nhei_interf < 1): |
|
1316 | 1442 | nhei_interf = 1 |
|
1317 | 1443 | if (nhei_interf > count_hei): |
|
1318 | 1444 | nhei_interf = count_hei |
|
1319 | 1445 | if (offhei_interf == None): |
|
1320 | 1446 | offhei_interf = 0 |
|
1321 | 1447 | |
|
1322 | 1448 | ind_hei = list(range(num_hei)) |
|
1323 | 1449 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
1324 | 1450 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
1325 | 1451 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
1326 | 1452 | num_mask_prof = mask_prof.size |
|
1327 | 1453 | comp_mask_prof = [0, num_prof / 2] |
|
1328 | 1454 | |
|
1329 | 1455 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
1330 | 1456 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
1331 | 1457 | jnoise = numpy.nan |
|
1332 | 1458 | noise_exist = jnoise[0] < numpy.Inf |
|
1333 | 1459 | |
|
1334 | 1460 | # Subrutina de Remocion de la Interferencia |
|
1335 | 1461 | for ich in range(num_channel): |
|
1336 | 1462 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1337 | 1463 | power = jspectra[ich, mask_prof, :] |
|
1338 | 1464 | power = power[:, hei_interf] |
|
1339 | 1465 | power = power.sum(axis=0) |
|
1340 | 1466 | psort = power.ravel().argsort() |
|
1341 | 1467 | |
|
1342 | 1468 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
1343 | 1469 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
1344 | 1470 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1345 | 1471 | |
|
1346 | 1472 | if noise_exist: |
|
1347 | 1473 | # tmp_noise = jnoise[ich] / num_prof |
|
1348 | 1474 | tmp_noise = jnoise[ich] |
|
1349 | 1475 | junkspc_interf = junkspc_interf - tmp_noise |
|
1350 | 1476 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
1351 | 1477 | |
|
1352 | 1478 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
1353 | 1479 | jspc_interf = jspc_interf.transpose() |
|
1354 | 1480 | # Calculando el espectro de interferencia promedio |
|
1355 | 1481 | noiseid = numpy.where( |
|
1356 | 1482 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
1357 | 1483 | noiseid = noiseid[0] |
|
1358 | 1484 | cnoiseid = noiseid.size |
|
1359 | 1485 | interfid = numpy.where( |
|
1360 | 1486 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
1361 | 1487 | interfid = interfid[0] |
|
1362 | 1488 | cinterfid = interfid.size |
|
1363 | 1489 | |
|
1364 | 1490 | if (cnoiseid > 0): |
|
1365 | 1491 | jspc_interf[noiseid] = 0 |
|
1366 | 1492 | |
|
1367 | 1493 | # Expandiendo los perfiles a limpiar |
|
1368 | 1494 | if (cinterfid > 0): |
|
1369 | 1495 | new_interfid = ( |
|
1370 | 1496 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
1371 | 1497 | new_interfid = numpy.asarray(new_interfid) |
|
1372 | 1498 | new_interfid = {x for x in new_interfid} |
|
1373 | 1499 | new_interfid = numpy.array(list(new_interfid)) |
|
1374 | 1500 | new_cinterfid = new_interfid.size |
|
1375 | 1501 | else: |
|
1376 | 1502 | new_cinterfid = 0 |
|
1377 | 1503 | |
|
1378 | 1504 | for ip in range(new_cinterfid): |
|
1379 | 1505 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
1380 | 1506 | jspc_interf[new_interfid[ip] |
|
1381 | 1507 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
1382 | 1508 | |
|
1383 | 1509 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
1384 | 1510 | ind_hei] - jspc_interf # Corregir indices |
|
1385 | 1511 | |
|
1386 | 1512 | # Removiendo la interferencia del punto de mayor interferencia |
|
1387 | 1513 | ListAux = jspc_interf[mask_prof].tolist() |
|
1388 | 1514 | maxid = ListAux.index(max(ListAux)) |
|
1389 | 1515 | |
|
1390 | 1516 | if cinterfid > 0: |
|
1391 | 1517 | for ip in range(cinterfid * (interf == 2) - 1): |
|
1392 | 1518 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
1393 | 1519 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1394 | 1520 | cind = len(ind) |
|
1395 | 1521 | |
|
1396 | 1522 | if (cind > 0): |
|
1397 | 1523 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
1398 | 1524 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
1399 | 1525 | numpy.sqrt(num_incoh)) |
|
1400 | 1526 | |
|
1401 | 1527 | ind = numpy.array([-2, -1, 1, 2]) |
|
1402 | 1528 | xx = numpy.zeros([4, 4]) |
|
1403 | 1529 | |
|
1404 | 1530 | for id1 in range(4): |
|
1405 | 1531 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1406 | 1532 | |
|
1407 | 1533 | xx_inv = numpy.linalg.inv(xx) |
|
1408 | 1534 | xx = xx_inv[:, 0] |
|
1409 | 1535 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1410 | 1536 | yy = jspectra[ich, mask_prof[ind], :] |
|
1411 | 1537 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
1412 | 1538 | yy.transpose(), xx) |
|
1413 | 1539 | |
|
1414 | 1540 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
1415 | 1541 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1416 | 1542 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
1417 | 1543 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
1418 | 1544 | |
|
1419 | 1545 | # Remocion de Interferencia en el Cross Spectra |
|
1420 | 1546 | if jcspectra is None: |
|
1421 | 1547 | return jspectra, jcspectra |
|
1422 | 1548 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
1423 | 1549 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
1424 | 1550 | |
|
1425 | 1551 | for ip in range(num_pairs): |
|
1426 | 1552 | |
|
1427 | 1553 | #------------------------------------------- |
|
1428 | 1554 | |
|
1429 | 1555 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
1430 | 1556 | cspower = cspower[:, hei_interf] |
|
1431 | 1557 | cspower = cspower.sum(axis=0) |
|
1432 | 1558 | |
|
1433 | 1559 | cspsort = cspower.ravel().argsort() |
|
1434 | 1560 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
1435 | 1561 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1436 | 1562 | junkcspc_interf = junkcspc_interf.transpose() |
|
1437 | 1563 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
1438 | 1564 | |
|
1439 | 1565 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1440 | 1566 | |
|
1441 | 1567 | median_real = int(numpy.median(numpy.real( |
|
1442 | 1568 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1443 | 1569 | median_imag = int(numpy.median(numpy.imag( |
|
1444 | 1570 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1445 | 1571 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
1446 | 1572 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
1447 | 1573 | median_real, median_imag) |
|
1448 | 1574 | |
|
1449 | 1575 | for iprof in range(num_prof): |
|
1450 | 1576 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
1451 | 1577 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
1452 | 1578 | |
|
1453 | 1579 | # Removiendo la Interferencia |
|
1454 | 1580 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
1455 | 1581 | :, ind_hei] - jcspc_interf |
|
1456 | 1582 | |
|
1457 | 1583 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1458 | 1584 | maxid = ListAux.index(max(ListAux)) |
|
1459 | 1585 | |
|
1460 | 1586 | ind = numpy.array([-2, -1, 1, 2]) |
|
1461 | 1587 | xx = numpy.zeros([4, 4]) |
|
1462 | 1588 | |
|
1463 | 1589 | for id1 in range(4): |
|
1464 | 1590 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1465 | 1591 | |
|
1466 | 1592 | xx_inv = numpy.linalg.inv(xx) |
|
1467 | 1593 | xx = xx_inv[:, 0] |
|
1468 | 1594 | |
|
1469 | 1595 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1470 | 1596 | yy = jcspectra[ip, mask_prof[ind], :] |
|
1471 | 1597 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1472 | 1598 | |
|
1473 | 1599 | # Guardar Resultados |
|
1474 | 1600 | self.dataOut.data_spc = jspectra |
|
1475 | 1601 | self.dataOut.data_cspc = jcspectra |
|
1476 | 1602 | |
|
1477 | 1603 | return 1 |
|
1478 | 1604 | |
|
1479 | 1605 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): |
|
1480 | 1606 | |
|
1481 | 1607 | self.dataOut = dataOut |
|
1482 | 1608 | |
|
1483 | 1609 | if mode == 1: |
|
1484 | 1610 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
1485 | 1611 | elif mode == 2: |
|
1486 | 1612 | self.removeInterference2() |
|
1487 | 1613 | |
|
1488 | 1614 | return self.dataOut |
|
1489 | 1615 | |
|
1490 | 1616 | |
|
1491 | 1617 | class IncohInt(Operation): |
|
1492 | 1618 | |
|
1493 | 1619 | __profIndex = 0 |
|
1494 | 1620 | __withOverapping = False |
|
1495 | 1621 | |
|
1496 | 1622 | __byTime = False |
|
1497 | 1623 | __initime = None |
|
1498 | 1624 | __lastdatatime = None |
|
1499 | 1625 | __integrationtime = None |
|
1500 | 1626 | |
|
1501 | 1627 | __buffer_spc = None |
|
1502 | 1628 | __buffer_cspc = None |
|
1503 | 1629 | __buffer_dc = None |
|
1504 | 1630 | |
|
1505 | 1631 | __dataReady = False |
|
1506 | 1632 | |
|
1507 | 1633 | __timeInterval = None |
|
1508 | 1634 | |
|
1509 | 1635 | n = None |
|
1510 | 1636 | |
|
1511 | 1637 | def __init__(self): |
|
1512 | 1638 | |
|
1513 | 1639 | Operation.__init__(self) |
|
1514 | 1640 | |
|
1515 | 1641 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1516 | 1642 | """ |
|
1517 | 1643 | Set the parameters of the integration class. |
|
1518 | 1644 | |
|
1519 | 1645 | Inputs: |
|
1520 | 1646 | |
|
1521 | 1647 | n : Number of coherent integrations |
|
1522 | 1648 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1523 | 1649 | overlapping : |
|
1524 | 1650 | |
|
1525 | 1651 | """ |
|
1526 | 1652 | |
|
1527 | 1653 | self.__initime = None |
|
1528 | 1654 | self.__lastdatatime = 0 |
|
1529 | 1655 | |
|
1530 | 1656 | self.__buffer_spc = 0 |
|
1531 | 1657 | self.__buffer_cspc = 0 |
|
1532 | 1658 | self.__buffer_dc = 0 |
|
1533 | 1659 | |
|
1534 | 1660 | self.__profIndex = 0 |
|
1535 | 1661 | self.__dataReady = False |
|
1536 | 1662 | self.__byTime = False |
|
1537 | 1663 | |
|
1538 | 1664 | if n is None and timeInterval is None: |
|
1539 | 1665 | raise ValueError("n or timeInterval should be specified ...") |
|
1540 | 1666 | |
|
1541 | 1667 | if n is not None: |
|
1542 | 1668 | self.n = int(n) |
|
1543 | 1669 | else: |
|
1544 | 1670 | |
|
1545 | 1671 | self.__integrationtime = int(timeInterval) |
|
1546 | 1672 | self.n = None |
|
1547 | 1673 | self.__byTime = True |
|
1548 | 1674 | |
|
1549 | 1675 | def putData(self, data_spc, data_cspc, data_dc): |
|
1550 | 1676 | """ |
|
1551 | 1677 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1552 | 1678 | |
|
1553 | 1679 | """ |
|
1554 | 1680 | |
|
1555 | 1681 | self.__buffer_spc += data_spc |
|
1556 | 1682 | |
|
1557 | 1683 | if data_cspc is None: |
|
1558 | 1684 | self.__buffer_cspc = None |
|
1559 | 1685 | else: |
|
1560 | 1686 | self.__buffer_cspc += data_cspc |
|
1561 | 1687 | |
|
1562 | 1688 | if data_dc is None: |
|
1563 | 1689 | self.__buffer_dc = None |
|
1564 | 1690 | else: |
|
1565 | 1691 | self.__buffer_dc += data_dc |
|
1566 | 1692 | |
|
1567 | 1693 | self.__profIndex += 1 |
|
1568 | 1694 | |
|
1569 | 1695 | return |
|
1570 | 1696 | |
|
1571 | 1697 | def pushData(self): |
|
1572 | 1698 | """ |
|
1573 | 1699 | Return the sum of the last profiles and the profiles used in the sum. |
|
1574 | 1700 | |
|
1575 | 1701 | Affected: |
|
1576 | 1702 | |
|
1577 | 1703 | self.__profileIndex |
|
1578 | 1704 | |
|
1579 | 1705 | """ |
|
1580 | 1706 | |
|
1581 | 1707 | data_spc = self.__buffer_spc |
|
1582 | 1708 | data_cspc = self.__buffer_cspc |
|
1583 | 1709 | data_dc = self.__buffer_dc |
|
1584 | 1710 | n = self.__profIndex |
|
1585 | 1711 | |
|
1586 | 1712 | self.__buffer_spc = 0 |
|
1587 | 1713 | self.__buffer_cspc = 0 |
|
1588 | 1714 | self.__buffer_dc = 0 |
|
1589 | 1715 | self.__profIndex = 0 |
|
1590 | 1716 | |
|
1591 | 1717 | return data_spc, data_cspc, data_dc, n |
|
1592 | 1718 | |
|
1593 | 1719 | def byProfiles(self, *args): |
|
1594 | 1720 | |
|
1595 | 1721 | self.__dataReady = False |
|
1596 | 1722 | avgdata_spc = None |
|
1597 | 1723 | avgdata_cspc = None |
|
1598 | 1724 | avgdata_dc = None |
|
1599 | 1725 | |
|
1600 | 1726 | self.putData(*args) |
|
1601 | 1727 | |
|
1602 | 1728 | if self.__profIndex == self.n: |
|
1603 | 1729 | |
|
1604 | 1730 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1605 | 1731 | self.n = n |
|
1606 | 1732 | self.__dataReady = True |
|
1607 | 1733 | |
|
1608 | 1734 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1609 | 1735 | |
|
1610 | 1736 | def byTime(self, datatime, *args): |
|
1611 | 1737 | |
|
1612 | 1738 | self.__dataReady = False |
|
1613 | 1739 | avgdata_spc = None |
|
1614 | 1740 | avgdata_cspc = None |
|
1615 | 1741 | avgdata_dc = None |
|
1616 | 1742 | |
|
1617 | 1743 | self.putData(*args) |
|
1618 | 1744 | |
|
1619 | 1745 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1620 | 1746 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1621 | 1747 | self.n = n |
|
1622 | 1748 | self.__dataReady = True |
|
1623 | 1749 | |
|
1624 | 1750 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1625 | 1751 | |
|
1626 | 1752 | def integrate(self, datatime, *args): |
|
1627 | 1753 | |
|
1628 | 1754 | if self.__profIndex == 0: |
|
1629 | 1755 | self.__initime = datatime |
|
1630 | 1756 | |
|
1631 | 1757 | if self.__byTime: |
|
1632 | 1758 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1633 | 1759 | datatime, *args) |
|
1634 | 1760 | else: |
|
1635 | 1761 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1636 | 1762 | |
|
1637 | 1763 | if not self.__dataReady: |
|
1638 | 1764 | return None, None, None, None |
|
1639 | 1765 | |
|
1640 | 1766 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1641 | 1767 | |
|
1642 | 1768 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1643 | 1769 | if n == 1: |
|
1644 | 1770 | return dataOut |
|
1645 | 1771 | |
|
1646 | 1772 | dataOut.flagNoData = True |
|
1647 | 1773 | |
|
1648 | 1774 | if not self.isConfig: |
|
1649 | 1775 | self.setup(n, timeInterval, overlapping) |
|
1650 | 1776 | self.isConfig = True |
|
1651 | 1777 | |
|
1652 | 1778 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1653 | 1779 | dataOut.data_spc, |
|
1654 | 1780 | dataOut.data_cspc, |
|
1655 | 1781 | dataOut.data_dc) |
|
1656 | 1782 | |
|
1657 | 1783 | if self.__dataReady: |
|
1658 | 1784 | |
|
1659 | 1785 | dataOut.data_spc = avgdata_spc |
|
1660 | 1786 | dataOut.data_cspc = avgdata_cspc |
|
1661 | 1787 | dataOut.data_dc = avgdata_dc |
|
1662 | 1788 | dataOut.nIncohInt *= self.n |
|
1663 | 1789 | dataOut.utctime = avgdatatime |
|
1664 | 1790 | dataOut.flagNoData = False |
|
1665 | 1791 | |
|
1666 | 1792 | return dataOut |
|
1667 | 1793 | |
|
1668 | 1794 | class dopplerFlip(Operation): |
|
1669 | 1795 | |
|
1670 | 1796 | def run(self, dataOut): |
|
1671 | 1797 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1672 | 1798 | self.dataOut = dataOut |
|
1673 | 1799 | # JULIA-oblicua, indice 2 |
|
1674 | 1800 | # arreglo 2: (num_profiles, num_heights) |
|
1675 | 1801 | jspectra = self.dataOut.data_spc[2] |
|
1676 | 1802 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
1677 | 1803 | num_profiles = jspectra.shape[0] |
|
1678 | 1804 | freq_dc = int(num_profiles / 2) |
|
1679 | 1805 | # Flip con for |
|
1680 | 1806 | for j in range(num_profiles): |
|
1681 | 1807 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1682 | 1808 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1683 | 1809 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1684 | 1810 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1685 | 1811 | # canal modificado es re-escrito en el arreglo de canales |
|
1686 | 1812 | self.dataOut.data_spc[2] = jspectra_tmp |
|
1687 | 1813 | |
|
1688 | 1814 | return self.dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now