@@ -1,108 +1,112 | |||||
1 | import numpy |
|
1 | import numpy | |
2 |
|
2 | from Model.Spectra import Spectra | ||
3 | from Model.JROHeader import * |
|
|||
4 | from Model.Voltage import Voltage |
|
|||
5 |
|
3 | |||
6 |
def hildebrand_sekhon(Data, navg=1 |
|
4 | def hildebrand_sekhon(Data, navg=1): | |
7 | """ |
|
5 | """ | |
8 | This method is for the objective determination of de noise level in Doppler spectra. This |
|
6 | This method is for the objective determination of de noise level in Doppler spectra. This | |
9 | implementation technique is based on the fact that the standard deviation of the spectral |
|
7 | implementation technique is based on the fact that the standard deviation of the spectral | |
10 | densities is equal to the mean spectral density for white Gaussian noise |
|
8 | densities is equal to the mean spectral density for white Gaussian noise | |
11 |
|
9 | |||
12 | Inputs: |
|
10 | Inputs: | |
13 | Data : heights |
|
11 | Data : heights | |
14 | navg : numbers of averages |
|
12 | navg : numbers of averages | |
15 |
|
13 | |||
16 | Return: |
|
14 | Return: | |
17 | -1 : any error |
|
15 | -1 : any error | |
18 | anoise : noise's level |
|
16 | anoise : noise's level | |
19 | """ |
|
17 | """ | |
20 | divisor = 8 |
|
18 | divisor = 8 | |
21 | ratio = 7 / divisor |
|
19 | ratio = 7 / divisor | |
22 | data = Data.reshape(-1) |
|
20 | data = Data.reshape(-1) | |
23 | npts = data.size #numbers of points of the data |
|
21 | npts = data.size #numbers of points of the data | |
24 |
|
22 | |||
25 | if npts < 32: |
|
23 | if npts < 32: | |
26 | print "error in noise - requires at least 32 points" |
|
24 | print "error in noise - requires at least 32 points" | |
27 | return -1.0 |
|
25 | return -1.0 | |
28 |
|
26 | |||
29 | # data sorted in ascending order |
|
27 | # data sorted in ascending order | |
30 | nmin = int(npts/divisor + ratio); |
|
28 | nmin = int(npts/divisor + ratio); | |
31 | s = 0.0 |
|
29 | s = 0.0 | |
32 | s2 = 0.0 |
|
30 | s2 = 0.0 | |
33 | data2 = data[:npts] |
|
31 | data2 = data[:npts] | |
34 | data2.sort() |
|
32 | data2.sort() | |
35 |
|
33 | |||
36 | for i in range(nmin): |
|
34 | for i in range(nmin): | |
37 | s += data2[i] |
|
35 | s += data2[i] | |
38 | s2 += data2[i]**2; |
|
36 | s2 += data2[i]**2; | |
39 |
|
37 | |||
40 | icount = nmin |
|
38 | icount = nmin | |
41 | iflag = 0 |
|
39 | iflag = 0 | |
42 |
|
40 | |||
43 | for i in range(nmin, npts): |
|
41 | for i in range(nmin, npts): | |
44 | s += data2[i]; |
|
42 | s += data2[i]; | |
45 | s2 += data2[i]**2 |
|
43 | s2 += data2[i]**2 | |
46 | icount=icount+1; |
|
44 | icount=icount+1; | |
47 | p = s / float(icount); |
|
45 | p = s / float(icount); | |
48 | p2 = p**2; |
|
46 | p2 = p**2; | |
49 | q = s2 / float(icount) - p2; |
|
47 | q = s2 / float(icount) - p2; | |
50 | leftc = p2; |
|
48 | leftc = p2; | |
51 | rightc = q * float(navg); |
|
49 | rightc = q * float(navg); | |
52 |
|
50 | |||
53 | if leftc > rightc: |
|
51 | if leftc > rightc: | |
54 | iflag = 1; #No weather signal |
|
52 | iflag = 1; #No weather signal | |
55 | # Signal detect: R2 < 1 (R2 = leftc/rightc) |
|
53 | # Signal detect: R2 < 1 (R2 = leftc/rightc) | |
56 | if(leftc < rightc): |
|
54 | if(leftc < rightc): | |
57 | if iflag: |
|
55 | if iflag: | |
58 | break |
|
56 | break | |
59 |
|
57 | |||
60 | anoise = 0.0; |
|
58 | anoise = 0.0; | |
61 | for j in range(i): |
|
59 | for j in range(i): | |
62 | anoise += data2[j]; |
|
60 | anoise += data2[j]; | |
63 |
|
61 | |||
64 | anoise = anoise / float(i); |
|
62 | anoise = anoise / float(i); | |
65 |
|
63 | |||
66 | return anoise; |
|
64 | return anoise; | |
67 |
|
65 | |||
68 |
|
66 | |||
69 | class Noise(): |
|
67 | class Noise(): | |
70 | """ |
|
68 | """ | |
71 | Clase que implementa los metodos necesarios para deternimar el nivel de ruido en un Spectro Doppler |
|
69 | Clase que implementa los metodos necesarios para deternimar el nivel de ruido en un Spectro Doppler | |
72 | """ |
|
70 | """ | |
73 | m_DataObj = None |
|
71 | m_DataObj = None | |
74 |
|
72 | |||
75 |
|
73 | |||
76 |
def __init__(self, m_ |
|
74 | def __init__(self, m_Spectra=None): | |
77 | """ |
|
75 | """ | |
78 | Inicializador de la clase Noise para la la determinacion del nivel de ruido en un Spectro Doppler. |
|
76 | Inicializador de la clase Noise para la la determinacion del nivel de ruido en un Spectro Doppler. | |
79 |
|
77 | |||
80 | Affected: |
|
78 | Affected: | |
81 | self.m_DataObj |
|
79 | self.m_DataObj | |
82 |
|
80 | |||
83 | Return: |
|
81 | Return: | |
84 | None |
|
82 | None | |
85 | """ |
|
83 | """ | |
86 |
|
|
84 | if m_Spectra == None: | |
87 |
|
|
85 | m_Spectra = Spectra() | |
88 |
|
|
86 | ||
89 |
|
|
87 | if not(isinstance(m_Spectra, Spectra)): | |
90 |
|
|
88 | raise ValueError, "in Noise class, m_Spectra must be an Spectra class object" | |
91 |
|
89 | |||
92 |
self.m_DataObj = m_ |
|
90 | self.m_DataObj = m_Spectra | |
93 |
|
91 | |||
94 |
|
92 | |||
95 | def getNoiseLevelByHildebrandSekhon(self): |
|
93 | def getNoiseLevelByHildebrandSekhon(self): | |
96 | """ |
|
94 | """ | |
97 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
95 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
98 |
|
96 | |||
99 | Return: |
|
97 | Return: | |
100 | noise level |
|
98 | noise level | |
101 | """ |
|
99 | """ | |
102 |
data = self.m_DataObj.data |
|
100 | data = self.m_DataObj.data_spc | |
103 | #heights = numpy.transpose( Data, (2,0,1) ) # channel x profile x height |
|
101 | daux = None | |
104 | #data = Data[0,0,:] |
|
102 | ||
|
103 | for channel in range(self.m_DataObj.nChannels): | |||
|
104 | daux = data[channel,:,:] | |||
|
105 | noiselevel = hildebrand_sekhon(daux) | |||
|
106 | print noiselevel | |||
105 |
|
107 | |||
106 | noiselevel = hildebrand_sekhon(data) |
|
|||
107 |
|
108 | |||
|
109 | for pair in range(self.m_DataObj.nPairs): | |||
|
110 | daux = data[pair,:,:] | |||
|
111 | noiselevel = hildebrand_sekhon(daux) | |||
108 | print noiselevel |
|
112 | print noiselevel |
General Comments 0
You need to be logged in to leave comments.
Login now