@@ -1,399 +1,400 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Oct 24, 2016 |
|
3 | 3 | |
|
4 | 4 | @author: roj- LouVD |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import numpy |
|
8 | 8 | import datetime |
|
9 | 9 | import time |
|
10 | 10 | |
|
11 | 11 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation |
|
12 | 12 | from schainpy.model.data.jrodata import Parameters |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class BLTRParametersProc(ProcessingUnit): |
|
16 | 16 | ''' |
|
17 | 17 | Processing unit for BLTR parameters data (winds) |
|
18 | 18 | |
|
19 | 19 | Inputs: |
|
20 | 20 | self.dataOut.nmodes - Number of operation modes |
|
21 | 21 | self.dataOut.nchannels - Number of channels |
|
22 | 22 | self.dataOut.nranges - Number of ranges |
|
23 | 23 | |
|
24 | 24 | self.dataOut.data_snr - SNR array |
|
25 | 25 | self.dataOut.data_output - Zonal, Vertical and Meridional velocity array |
|
26 | 26 | self.dataOut.height - Height array (km) |
|
27 | 27 | self.dataOut.time - Time array (seconds) |
|
28 | 28 | |
|
29 | 29 | self.dataOut.fileIndex -Index of the file currently read |
|
30 | 30 | self.dataOut.lat - Latitude coordinate of BLTR location |
|
31 | 31 | |
|
32 | 32 | self.dataOut.doy - Experiment doy (number of the day in the current year) |
|
33 | 33 | self.dataOut.month - Experiment month |
|
34 | 34 | self.dataOut.day - Experiment day |
|
35 | 35 | self.dataOut.year - Experiment year |
|
36 | 36 | ''' |
|
37 | 37 | |
|
38 | 38 | def __init__(self): |
|
39 | 39 | ''' |
|
40 | 40 | Inputs: None |
|
41 | 41 | ''' |
|
42 | 42 | ProcessingUnit.__init__(self) |
|
43 | 43 | self.dataOut = Parameters() |
|
44 | 44 | |
|
45 | 45 | def setup(self, mode): |
|
46 | 46 | ''' |
|
47 | 47 | ''' |
|
48 | 48 | self.dataOut.mode = mode |
|
49 | 49 | |
|
50 | 50 | def run(self, mode, snr_threshold=None): |
|
51 | 51 | ''' |
|
52 | 52 | Inputs: |
|
53 | 53 | mode = High resolution (0) or Low resolution (1) data |
|
54 | 54 | snr_threshold = snr filter value |
|
55 | 55 | ''' |
|
56 | 56 | |
|
57 | 57 | if not self.isConfig: |
|
58 | 58 | self.setup(mode) |
|
59 | 59 | self.isConfig = True |
|
60 | 60 | |
|
61 | 61 | if self.dataIn.type == 'Parameters': |
|
62 | 62 | self.dataOut.copy(self.dataIn) |
|
63 | 63 | |
|
64 | 64 | self.dataOut.data_param = self.dataOut.data[mode] |
|
65 | 65 | self.dataOut.heightList = self.dataOut.height[0] |
|
66 | 66 | self.dataOut.data_snr = self.dataOut.data_snr[mode] |
|
67 | 67 | SNRavg = numpy.average(self.dataOut.data_snr, axis=0) |
|
68 | 68 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
69 | 69 | self.dataOut.data_snr_avg_db = SNRavgdB.reshape(1, *SNRavgdB.shape) |
|
70 | 70 | |
|
71 | # Censoring Data | |
|
71 | 72 | if snr_threshold is not None: |
|
72 | 73 | for i in range(3): |
|
73 | 74 | self.dataOut.data_param[i][SNRavgdB <= snr_threshold] = numpy.nan |
|
74 | 75 | |
|
75 | 76 | # TODO |
|
76 | 77 | |
|
77 | 78 | class OutliersFilter(Operation): |
|
78 | 79 | |
|
79 | 80 | def __init__(self): |
|
80 | 81 | ''' |
|
81 | 82 | ''' |
|
82 | 83 | Operation.__init__(self) |
|
83 | 84 | |
|
84 | 85 | def run(self, svalue2, method, factor, filter, npoints=9): |
|
85 | 86 | ''' |
|
86 | 87 | Inputs: |
|
87 | 88 | svalue - string to select array velocity |
|
88 | 89 | svalue2 - string to choose axis filtering |
|
89 | 90 | method - 0 for SMOOTH or 1 for MEDIAN |
|
90 | 91 | factor - number used to set threshold |
|
91 | 92 | filter - 1 for data filtering using the standard deviation criteria else 0 |
|
92 | 93 | npoints - number of points for mask filter |
|
93 | 94 | ''' |
|
94 | 95 | |
|
95 | 96 | print(' Outliers Filter {} {} / threshold = {}'.format(svalue, svalue, factor)) |
|
96 | 97 | |
|
97 | 98 | |
|
98 | 99 | yaxis = self.dataOut.heightList |
|
99 | 100 | xaxis = numpy.array([[self.dataOut.utctime]]) |
|
100 | 101 | |
|
101 | 102 | # Zonal |
|
102 | 103 | value_temp = self.dataOut.data_output[0] |
|
103 | 104 | |
|
104 | 105 | # Zonal |
|
105 | 106 | value_temp = self.dataOut.data_output[1] |
|
106 | 107 | |
|
107 | 108 | # Vertical |
|
108 | 109 | value_temp = numpy.transpose(self.dataOut.data_output[2]) |
|
109 | 110 | |
|
110 | 111 | htemp = yaxis |
|
111 | 112 | std = value_temp |
|
112 | 113 | for h in range(len(htemp)): |
|
113 | 114 | nvalues_valid = len(numpy.where(numpy.isfinite(value_temp[h]))[0]) |
|
114 | 115 | minvalid = npoints |
|
115 | 116 | |
|
116 | 117 | #only if valid values greater than the minimum required (10%) |
|
117 | 118 | if nvalues_valid > minvalid: |
|
118 | 119 | |
|
119 | 120 | if method == 0: |
|
120 | 121 | #SMOOTH |
|
121 | 122 | w = value_temp[h] - self.Smooth(input=value_temp[h], width=npoints, edge_truncate=1) |
|
122 | 123 | |
|
123 | 124 | |
|
124 | 125 | if method == 1: |
|
125 | 126 | #MEDIAN |
|
126 | 127 | w = value_temp[h] - self.Median(input=value_temp[h], width = npoints) |
|
127 | 128 | |
|
128 | 129 | dw = numpy.std(w[numpy.where(numpy.isfinite(w))],ddof = 1) |
|
129 | 130 | |
|
130 | 131 | threshold = dw*factor |
|
131 | 132 | value_temp[numpy.where(w > threshold),h] = numpy.nan |
|
132 | 133 | value_temp[numpy.where(w < -1*threshold),h] = numpy.nan |
|
133 | 134 | |
|
134 | 135 | |
|
135 | 136 | #At the end |
|
136 | 137 | if svalue2 == 'inHeight': |
|
137 | 138 | value_temp = numpy.transpose(value_temp) |
|
138 | 139 | output_array[:,m] = value_temp |
|
139 | 140 | |
|
140 | 141 | if svalue == 'zonal': |
|
141 | 142 | self.dataOut.data_output[0] = output_array |
|
142 | 143 | |
|
143 | 144 | elif svalue == 'meridional': |
|
144 | 145 | self.dataOut.data_output[1] = output_array |
|
145 | 146 | |
|
146 | 147 | elif svalue == 'vertical': |
|
147 | 148 | self.dataOut.data_output[2] = output_array |
|
148 | 149 | |
|
149 | 150 | return self.dataOut.data_output |
|
150 | 151 | |
|
151 | 152 | |
|
152 | 153 | def Median(self,input,width): |
|
153 | 154 | ''' |
|
154 | 155 | Inputs: |
|
155 | 156 | input - Velocity array |
|
156 | 157 | width - Number of points for mask filter |
|
157 | 158 | |
|
158 | 159 | ''' |
|
159 | 160 | |
|
160 | 161 | if numpy.mod(width,2) == 1: |
|
161 | 162 | pc = int((width - 1) / 2) |
|
162 | 163 | cont = 0 |
|
163 | 164 | output = [] |
|
164 | 165 | |
|
165 | 166 | for i in range(len(input)): |
|
166 | 167 | if i >= pc and i < len(input) - pc: |
|
167 | 168 | new2 = input[i-pc:i+pc+1] |
|
168 | 169 | temp = numpy.where(numpy.isfinite(new2)) |
|
169 | 170 | new = new2[temp] |
|
170 | 171 | value = numpy.median(new) |
|
171 | 172 | output.append(value) |
|
172 | 173 | |
|
173 | 174 | output = numpy.array(output) |
|
174 | 175 | output = numpy.hstack((input[0:pc],output)) |
|
175 | 176 | output = numpy.hstack((output,input[-pc:len(input)])) |
|
176 | 177 | |
|
177 | 178 | return output |
|
178 | 179 | |
|
179 | 180 | def Smooth(self,input,width,edge_truncate = None): |
|
180 | 181 | ''' |
|
181 | 182 | Inputs: |
|
182 | 183 | input - Velocity array |
|
183 | 184 | width - Number of points for mask filter |
|
184 | 185 | edge_truncate - 1 for truncate the convolution product else |
|
185 | 186 | |
|
186 | 187 | ''' |
|
187 | 188 | |
|
188 | 189 | if numpy.mod(width,2) == 0: |
|
189 | 190 | real_width = width + 1 |
|
190 | 191 | nzeros = width / 2 |
|
191 | 192 | else: |
|
192 | 193 | real_width = width |
|
193 | 194 | nzeros = (width - 1) / 2 |
|
194 | 195 | |
|
195 | 196 | half_width = int(real_width)/2 |
|
196 | 197 | length = len(input) |
|
197 | 198 | |
|
198 | 199 | gate = numpy.ones(real_width,dtype='float') |
|
199 | 200 | norm_of_gate = numpy.sum(gate) |
|
200 | 201 | |
|
201 | 202 | nan_process = 0 |
|
202 | 203 | nan_id = numpy.where(numpy.isnan(input)) |
|
203 | 204 | if len(nan_id[0]) > 0: |
|
204 | 205 | nan_process = 1 |
|
205 | 206 | pb = numpy.zeros(len(input)) |
|
206 | 207 | pb[nan_id] = 1. |
|
207 | 208 | input[nan_id] = 0. |
|
208 | 209 | |
|
209 | 210 | if edge_truncate == True: |
|
210 | 211 | output = numpy.convolve(input/norm_of_gate,gate,mode='same') |
|
211 | 212 | elif edge_truncate == False or edge_truncate == None: |
|
212 | 213 | output = numpy.convolve(input/norm_of_gate,gate,mode='valid') |
|
213 | 214 | output = numpy.hstack((input[0:half_width],output)) |
|
214 | 215 | output = numpy.hstack((output,input[len(input)-half_width:len(input)])) |
|
215 | 216 | |
|
216 | 217 | if nan_process: |
|
217 | 218 | pb = numpy.convolve(pb/norm_of_gate,gate,mode='valid') |
|
218 | 219 | pb = numpy.hstack((numpy.zeros(half_width),pb)) |
|
219 | 220 | pb = numpy.hstack((pb,numpy.zeros(half_width))) |
|
220 | 221 | output[numpy.where(pb > 0.9999)] = numpy.nan |
|
221 | 222 | input[nan_id] = numpy.nan |
|
222 | 223 | return output |
|
223 | 224 | |
|
224 | 225 | def Average(self,aver=0,nhaver=1): |
|
225 | 226 | ''' |
|
226 | 227 | Inputs: |
|
227 | 228 | aver - Indicates the time period over which is averaged or consensus data |
|
228 | 229 | nhaver - Indicates the decimation factor in heights |
|
229 | 230 | |
|
230 | 231 | ''' |
|
231 | 232 | nhpoints = 48 |
|
232 | 233 | |
|
233 | 234 | lat_piura = -5.17 |
|
234 | 235 | lat_huancayo = -12.04 |
|
235 | 236 | lat_porcuya = -5.8 |
|
236 | 237 | |
|
237 | 238 | if '%2.2f'%self.dataOut.lat == '%2.2f'%lat_piura: |
|
238 | 239 | hcm = 3. |
|
239 | 240 | if self.dataOut.year == 2003 : |
|
240 | 241 | if self.dataOut.doy >= 25 and self.dataOut.doy < 64: |
|
241 | 242 | nhpoints = 12 |
|
242 | 243 | |
|
243 | 244 | elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_huancayo: |
|
244 | 245 | hcm = 3. |
|
245 | 246 | if self.dataOut.year == 2003 : |
|
246 | 247 | if self.dataOut.doy >= 25 and self.dataOut.doy < 64: |
|
247 | 248 | nhpoints = 12 |
|
248 | 249 | |
|
249 | 250 | |
|
250 | 251 | elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_porcuya: |
|
251 | 252 | hcm = 5.#2 |
|
252 | 253 | |
|
253 | 254 | pdata = 0.2 |
|
254 | 255 | taver = [1,2,3,4,6,8,12,24] |
|
255 | 256 | t0 = 0 |
|
256 | 257 | tf = 24 |
|
257 | 258 | ntime =(tf-t0)/taver[aver] |
|
258 | 259 | ti = numpy.arange(ntime) |
|
259 | 260 | tf = numpy.arange(ntime) + taver[aver] |
|
260 | 261 | |
|
261 | 262 | |
|
262 | 263 | old_height = self.dataOut.heightList |
|
263 | 264 | |
|
264 | 265 | if nhaver > 1: |
|
265 | 266 | num_hei = len(self.dataOut.heightList)/nhaver/self.dataOut.nmodes |
|
266 | 267 | deltha = 0.05*nhaver |
|
267 | 268 | minhvalid = pdata*nhaver |
|
268 | 269 | for im in range(self.dataOut.nmodes): |
|
269 | 270 | new_height = numpy.arange(num_hei)*deltha + self.dataOut.height[im,0] + deltha/2. |
|
270 | 271 | |
|
271 | 272 | |
|
272 | 273 | data_fHeigths_List = [] |
|
273 | 274 | data_fZonal_List = [] |
|
274 | 275 | data_fMeridional_List = [] |
|
275 | 276 | data_fVertical_List = [] |
|
276 | 277 | startDTList = [] |
|
277 | 278 | |
|
278 | 279 | |
|
279 | 280 | for i in range(ntime): |
|
280 | 281 | height = old_height |
|
281 | 282 | |
|
282 | 283 | start = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(ti[i])) - datetime.timedelta(hours = 5) |
|
283 | 284 | stop = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(tf[i])) - datetime.timedelta(hours = 5) |
|
284 | 285 | |
|
285 | 286 | |
|
286 | 287 | limit_sec1 = time.mktime(start.timetuple()) |
|
287 | 288 | limit_sec2 = time.mktime(stop.timetuple()) |
|
288 | 289 | |
|
289 | 290 | t1 = numpy.where(self.f_timesec >= limit_sec1) |
|
290 | 291 | t2 = numpy.where(self.f_timesec < limit_sec2) |
|
291 | 292 | time_select = [] |
|
292 | 293 | for val_sec in t1[0]: |
|
293 | 294 | if val_sec in t2[0]: |
|
294 | 295 | time_select.append(val_sec) |
|
295 | 296 | |
|
296 | 297 | |
|
297 | 298 | time_select = numpy.array(time_select,dtype = 'int') |
|
298 | 299 | minvalid = numpy.ceil(pdata*nhpoints) |
|
299 | 300 | |
|
300 | 301 | zon_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
301 | 302 | mer_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
302 | 303 | ver_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
303 | 304 | |
|
304 | 305 | if nhaver > 1: |
|
305 | 306 | new_zon_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
306 | 307 | new_mer_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
307 | 308 | new_ver_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
308 | 309 | |
|
309 | 310 | if len(time_select) > minvalid: |
|
310 | 311 | time_average = self.f_timesec[time_select] |
|
311 | 312 | |
|
312 | 313 | for im in range(self.dataOut.nmodes): |
|
313 | 314 | |
|
314 | 315 | for ih in range(self.dataOut.nranges): |
|
315 | 316 | if numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) >= minvalid: |
|
316 | 317 | zon_aver[ih,im] = numpy.nansum(self.f_zon[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) |
|
317 | 318 | |
|
318 | 319 | if numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) >= minvalid: |
|
319 | 320 | mer_aver[ih,im] = numpy.nansum(self.f_mer[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) |
|
320 | 321 | |
|
321 | 322 | if numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) >= minvalid: |
|
322 | 323 | ver_aver[ih,im] = numpy.nansum(self.f_ver[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) |
|
323 | 324 | |
|
324 | 325 | if nhaver > 1: |
|
325 | 326 | for ih in range(num_hei): |
|
326 | 327 | hvalid = numpy.arange(nhaver) + nhaver*ih |
|
327 | 328 | |
|
328 | 329 | if numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) >= minvalid: |
|
329 | 330 | new_zon_aver[ih,im] = numpy.nansum(zon_aver[hvalid,im]) / numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) |
|
330 | 331 | |
|
331 | 332 | if numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) >= minvalid: |
|
332 | 333 | new_mer_aver[ih,im] = numpy.nansum(mer_aver[hvalid,im]) / numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) |
|
333 | 334 | |
|
334 | 335 | if numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) >= minvalid: |
|
335 | 336 | new_ver_aver[ih,im] = numpy.nansum(ver_aver[hvalid,im]) / numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) |
|
336 | 337 | if nhaver > 1: |
|
337 | 338 | zon_aver = new_zon_aver |
|
338 | 339 | mer_aver = new_mer_aver |
|
339 | 340 | ver_aver = new_ver_aver |
|
340 | 341 | height = new_height |
|
341 | 342 | |
|
342 | 343 | |
|
343 | 344 | tstart = time_average[0] |
|
344 | 345 | tend = time_average[-1] |
|
345 | 346 | startTime = time.gmtime(tstart) |
|
346 | 347 | |
|
347 | 348 | year = startTime.tm_year |
|
348 | 349 | month = startTime.tm_mon |
|
349 | 350 | day = startTime.tm_mday |
|
350 | 351 | hour = startTime.tm_hour |
|
351 | 352 | minute = startTime.tm_min |
|
352 | 353 | second = startTime.tm_sec |
|
353 | 354 | |
|
354 | 355 | startDTList.append(datetime.datetime(year,month,day,hour,minute,second)) |
|
355 | 356 | |
|
356 | 357 | |
|
357 | 358 | o_height = numpy.array([]) |
|
358 | 359 | o_zon_aver = numpy.array([]) |
|
359 | 360 | o_mer_aver = numpy.array([]) |
|
360 | 361 | o_ver_aver = numpy.array([]) |
|
361 | 362 | if self.dataOut.nmodes > 1: |
|
362 | 363 | for im in range(self.dataOut.nmodes): |
|
363 | 364 | |
|
364 | 365 | if im == 0: |
|
365 | 366 | h_select = numpy.where(numpy.bitwise_and(height[0,:] >=0,height[0,:] <= hcm,numpy.isfinite(height[0,:]))) |
|
366 | 367 | else: |
|
367 | 368 | h_select = numpy.where(numpy.bitwise_and(height[1,:] > hcm,height[1,:] < 20,numpy.isfinite(height[1,:]))) |
|
368 | 369 | |
|
369 | 370 | |
|
370 | 371 | ht = h_select[0] |
|
371 | 372 | |
|
372 | 373 | o_height = numpy.hstack((o_height,height[im,ht])) |
|
373 | 374 | o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im])) |
|
374 | 375 | o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im])) |
|
375 | 376 | o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im])) |
|
376 | 377 | |
|
377 | 378 | data_fHeigths_List.append(o_height) |
|
378 | 379 | data_fZonal_List.append(o_zon_aver) |
|
379 | 380 | data_fMeridional_List.append(o_mer_aver) |
|
380 | 381 | data_fVertical_List.append(o_ver_aver) |
|
381 | 382 | |
|
382 | 383 | |
|
383 | 384 | else: |
|
384 | 385 | h_select = numpy.where(numpy.bitwise_and(height[0,:] <= hcm,numpy.isfinite(height[0,:]))) |
|
385 | 386 | ht = h_select[0] |
|
386 | 387 | o_height = numpy.hstack((o_height,height[im,ht])) |
|
387 | 388 | o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im])) |
|
388 | 389 | o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im])) |
|
389 | 390 | o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im])) |
|
390 | 391 | |
|
391 | 392 | data_fHeigths_List.append(o_height) |
|
392 | 393 | data_fZonal_List.append(o_zon_aver) |
|
393 | 394 | data_fMeridional_List.append(o_mer_aver) |
|
394 | 395 | data_fVertical_List.append(o_ver_aver) |
|
395 | 396 | |
|
396 | 397 | |
|
397 | 398 | return startDTList, data_fHeigths_List, data_fZonal_List, data_fMeridional_List, data_fVertical_List |
|
398 | 399 | |
|
399 | 400 |
This diff has been collapsed as it changes many lines, (1164 lines changed) Show them Hide them | |||
@@ -1,4000 +1,3886 | |||
|
1 | 1 | import numpy |
|
2 | 2 |
|
|
3 | 3 |
|
|
4 | 4 |
|
|
5 | 5 |
|
|
6 | 6 |
|
|
7 | 7 |
|
|
8 | 8 |
|
|
9 | 9 |
|
|
10 | 10 |
|
|
11 | 11 |
|
|
12 | 12 |
|
|
13 | 13 |
|
|
14 | 14 | |
|
15 | 15 |
|
|
16 | 16 |
|
|
17 | 17 |
|
|
18 | 18 |
|
|
19 | 19 |
|
|
20 | 20 |
|
|
21 | 21 |
|
|
22 | 22 |
|
|
23 | 23 |
|
|
24 | 24 |
|
|
25 | 25 | |
|
26 | 26 |
|
|
27 | 27 | |
|
28 | 28 |
|
|
29 | 29 | |
|
30 | ||
|
31 | 30 |
|
|
32 | 31 | |
|
33 | 32 |
|
|
34 | 33 |
|
|
35 | 34 |
|
|
36 | 35 |
|
|
37 | 36 |
|
|
38 | 37 | |
|
39 | 38 |
|
|
40 | 39 |
|
|
41 | 40 |
|
|
42 | 41 |
|
|
43 | 42 |
|
|
44 | 43 |
|
|
45 | 44 |
|
|
46 | 45 |
|
|
47 | 46 |
|
|
48 | 47 | |
|
49 | 48 | |
|
50 | 49 |
|
|
51 | 50 | |
|
52 | 51 |
|
|
53 | 52 |
|
|
54 | 53 | |
|
55 | 54 |
|
|
56 | 55 |
|
|
57 | 56 | |
|
58 | 57 |
|
|
59 | 58 |
|
|
60 | 59 |
|
|
61 | 60 |
|
|
62 | 61 |
|
|
63 | 62 |
|
|
64 | 63 | |
|
65 | 64 |
|
|
66 | 65 | |
|
67 | 66 |
|
|
68 | 67 | |
|
69 | 68 |
|
|
70 | 69 |
|
|
71 | 70 |
|
|
72 | 71 |
|
|
73 | 72 | |
|
74 | 73 |
|
|
75 | 74 |
|
|
76 | 75 |
|
|
77 | 76 |
|
|
78 | 77 |
|
|
79 | 78 |
|
|
80 | 79 |
|
|
81 | 80 |
|
|
82 | 81 |
|
|
83 | 82 |
|
|
84 | 83 |
|
|
85 | 84 |
|
|
86 | 85 |
|
|
87 | 86 |
|
|
88 | 87 |
|
|
89 | 88 |
|
|
90 | 89 |
|
|
91 | 90 |
|
|
92 | 91 |
|
|
93 | 92 |
|
|
94 | 93 |
|
|
95 | 94 |
|
|
96 | 95 |
|
|
97 | 96 |
|
|
98 | 97 | |
|
99 | 98 |
|
|
100 | 99 | |
|
101 | 100 | |
|
102 | 101 | |
|
103 | 102 |
|
|
104 | 103 | |
|
105 | 104 |
|
|
106 | 105 | |
|
107 | 106 |
|
|
108 | 107 |
|
|
109 | 108 |
|
|
110 | 109 |
|
|
111 | 110 |
|
|
112 | 111 |
|
|
113 | 112 |
|
|
114 | 113 | |
|
115 | 114 |
|
|
116 | 115 |
|
|
117 | 116 | |
|
118 | 117 |
|
|
119 | 118 |
|
|
120 | 119 | |
|
121 | 120 |
|
|
122 | 121 |
|
|
123 | 122 | |
|
124 | 123 |
|
|
125 | 124 |
|
|
126 | 125 |
|
|
127 | 126 | |
|
128 | 127 |
|
|
129 | 128 | |
|
130 | 129 |
|
|
131 | 130 | |
|
132 |
|
|
|
131 | self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc] | |
|
133 | 132 |
|
|
134 | 133 |
|
|
135 | 134 |
|
|
136 | 135 |
|
|
137 | 136 |
|
|
138 | 137 |
|
|
139 | 138 |
|
|
140 | 139 |
|
|
141 | 140 |
|
|
142 | 141 |
|
|
143 | 142 |
|
|
144 | 143 |
|
|
145 | 144 |
|
|
146 | 145 | |
|
147 | 146 |
|
|
148 | 147 |
|
|
149 | 148 |
|
|
150 | 149 | |
|
151 | 150 |
|
|
152 | 151 |
|
|
153 | 152 |
|
|
154 | 153 | |
|
155 | 154 |
|
|
156 | 155 |
|
|
157 | 156 | |
|
158 | 157 |
|
|
159 | 158 |
|
|
160 | 159 | |
|
161 | 160 |
|
|
162 | 161 |
|
|
163 | 162 | |
|
164 | 163 | |
|
165 | 164 | |
|
166 | 165 |
|
|
167 | 166 | |
|
168 | 167 |
|
|
169 | 168 |
|
|
170 | 169 | |
|
171 | 170 |
|
|
172 | 171 |
|
|
173 | 172 |
|
|
174 | 173 | |
|
175 | 174 |
|
|
176 | 175 |
|
|
177 | 176 |
|
|
178 | 177 |
|
|
179 | 178 |
|
|
180 | 179 | |
|
181 | 180 |
|
|
182 | 181 | |
|
183 | 182 |
|
|
184 | 183 |
|
|
185 | 184 |
|
|
186 | 185 | |
|
187 | 186 |
|
|
188 | 187 | |
|
189 | 188 |
|
|
190 | 189 |
|
|
191 | 190 |
|
|
192 | 191 | |
|
193 | 192 |
|
|
194 | 193 | |
|
195 | 194 | |
|
196 | 195 |
|
|
197 | 196 | |
|
198 | 197 |
|
|
199 | 198 | |
|
200 | 199 |
|
|
201 | 200 | |
|
201 | class RemoveWideGC(Operation): | |
|
202 | ''' This class remove the wide clutter and replace it with a simple interpolation points | |
|
203 | This mainly applies to CLAIRE radar | |
|
202 | 204 | |
|
203 | class SpectralFilters(Operation): | |
|
204 | ||
|
205 | '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR | |
|
206 | ||
|
207 | LimitR : It is the limit in m/s of Rainfall | |
|
208 | LimitW : It is the limit in m/s for Winds | |
|
205 | ClutterWidth : Width to look for the clutter peak | |
|
209 | 206 | |
|
210 | 207 | Input: |
|
211 | 208 | |
|
212 | 209 | self.dataOut.data_pre : SPC and CSPC |
|
213 | 210 | self.dataOut.spc_range : To select wind and rainfall velocities |
|
214 | 211 | |
|
215 | 212 | Affected: |
|
216 | 213 | |
|
217 | 214 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind |
|
218 | self.dataOut.spcparam_range : Used in SpcParamPlot | |
|
219 | self.dataOut.SPCparam : Used in PrecipitationProc | |
|
220 | ||
|
221 | 215 | |
|
216 | Written by D. ScipiΓ³n 25.02.2021 | |
|
222 | 217 | ''' |
|
223 | ||
|
224 | 218 |
|
|
225 | 219 |
|
|
226 |
|
|
|
227 | ||
|
228 | def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5): | |
|
229 | ||
|
230 | ||
|
231 | #Limite de vientos | |
|
232 | LimitR = PositiveLimit | |
|
233 | LimitN = NegativeLimit | |
|
220 | self.i = 0 | |
|
221 | self.ich = 0 | |
|
222 | self.ir = 0 | |
|
223 | ||
|
224 | def run(self, dataOut, ClutterWidth=2.5): | |
|
225 | # print ('Entering RemoveWideGC ... ') | |
|
234 | 226 | |
|
235 | 227 |
|
|
236 |
|
|
|
237 | ||
|
238 | self.Num_Hei = self.spc.shape[2] | |
|
239 | self.Num_Bin = self.spc.shape[1] | |
|
228 | self.spc_out = dataOut.data_pre[0].copy() | |
|
240 | 229 |
|
|
230 | self.Num_Hei = self.spc.shape[2] | |
|
231 | VelRange = dataOut.spc_range[2][:-1] | |
|
232 | dv = VelRange[1]-VelRange[0] | |
|
233 | ||
|
234 | # Find the velocities that corresponds to zero | |
|
235 | gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth)) | |
|
236 | ||
|
237 | # Removing novalid data from the spectra | |
|
238 | for ich in range(self.Num_Chn) : | |
|
239 | for ir in range(self.Num_Hei) : | |
|
240 | # Estimate the noise at each range | |
|
241 | HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt) | |
|
242 | ||
|
243 | # Removing the noise floor at each range | |
|
244 | novalid = numpy.where(self.spc[ich,:,ir] < HSn) | |
|
245 | self.spc[ich,novalid,ir] = HSn | |
|
246 | ||
|
247 | junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn) | |
|
248 | j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0)) | |
|
249 | j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0)) | |
|
250 | if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) : | |
|
251 | continue | |
|
252 | junk3 = numpy.squeeze(numpy.diff(j1index)) | |
|
253 | junk4 = numpy.squeeze(numpy.diff(j2index)) | |
|
254 | ||
|
255 | valleyindex = j2index[numpy.where(junk4>1)] | |
|
256 | peakindex = j1index[numpy.where(junk3>1)] | |
|
257 | ||
|
258 | isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv)) | |
|
259 | if numpy.size(isvalid) == 0 : | |
|
260 | continue | |
|
261 | if numpy.size(isvalid) >1 : | |
|
262 | vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir]) | |
|
263 | isvalid = isvalid[vindex] | |
|
264 | ||
|
265 | # clutter peak | |
|
266 | gcpeak = peakindex[isvalid] | |
|
267 | vl = numpy.where(valleyindex < gcpeak) | |
|
268 | if numpy.size(vl) == 0: | |
|
269 | continue | |
|
270 | gcvl = valleyindex[vl[0][-1]] | |
|
271 | vr = numpy.where(valleyindex > gcpeak) | |
|
272 | if numpy.size(vr) == 0: | |
|
273 | continue | |
|
274 | gcvr = valleyindex[vr[0][0]] | |
|
275 | ||
|
276 | # Removing the clutter | |
|
277 | interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]]) | |
|
278 | gcindex = gc_values[gcvl+1:gcvr-1] | |
|
279 | self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir]) | |
|
280 | ||
|
281 | dataOut.data_pre[0] = self.spc_out | |
|
282 | #print ('Leaving RemoveWideGC ... ') | |
|
283 | return dataOut | |
|
241 | 284 | |
|
242 | VelRange = dataOut.spc_range[2] | |
|
243 | TimeRange = dataOut.spc_range[1] | |
|
244 | FrecRange = dataOut.spc_range[0] | |
|
245 | ||
|
246 | Vmax= 2*numpy.max(dataOut.spc_range[2]) | |
|
247 | Tmax= 2*numpy.max(dataOut.spc_range[1]) | |
|
248 | Fmax= 2*numpy.max(dataOut.spc_range[0]) | |
|
249 | ||
|
250 | Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()] | |
|
251 | Breaker1R=numpy.where(VelRange == Breaker1R) | |
|
252 | ||
|
253 | Delta = self.Num_Bin/2 - Breaker1R[0] | |
|
254 | ||
|
255 | ||
|
256 | '''Reacomodando SPCrange''' | |
|
257 | ||
|
258 | VelRange=numpy.roll(VelRange,-(int(self.Num_Bin/2)) ,axis=0) | |
|
259 | ||
|
260 | VelRange[-(int(self.Num_Bin/2)):]+= Vmax | |
|
285 | class SpectralFilters(Operation): | |
|
286 | ''' This class allows to replace the novalid values with noise for each channel | |
|
287 | This applies to CLAIRE RADAR | |
|
261 | 288 | |
|
262 | FrecRange=numpy.roll(FrecRange,-(int(self.Num_Bin/2)),axis=0) | |
|
289 | PositiveLimit : RightLimit of novalid data | |
|
290 | NegativeLimit : LeftLimit of novalid data | |
|
263 | 291 | |
|
264 | FrecRange[-(int(self.Num_Bin/2)):]+= Fmax | |
|
292 | Input: | |
|
265 | 293 | |
|
266 | TimeRange=numpy.roll(TimeRange,-(int(self.Num_Bin/2)),axis=0) | |
|
294 | self.dataOut.data_pre : SPC and CSPC | |
|
295 | self.dataOut.spc_range : To select wind and rainfall velocities | |
|
267 | 296 | |
|
268 | TimeRange[-(int(self.Num_Bin/2)):]+= Tmax | |
|
297 | Affected: | |
|
269 | 298 | |
|
270 | ''' ------------------ ''' | |
|
299 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |
|
271 | 300 | |
|
272 | Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()] | |
|
273 | Breaker2R=numpy.where(VelRange == Breaker2R) | |
|
301 | Written by D. ScipiΓ³n 29.01.2021 | |
|
302 | ''' | |
|
303 | def __init__(self): | |
|
304 | Operation.__init__(self) | |
|
305 | self.i = 0 | |
|
306 | ||
|
307 | def run(self, dataOut, ): | |
|
274 | 308 | |
|
309 | self.spc = dataOut.data_pre[0].copy() | |
|
310 | self.Num_Chn = self.spc.shape[0] | |
|
311 | VelRange = dataOut.spc_range[2] | |
|
275 | 312 | |
|
276 | SPCroll = numpy.roll(self.spc,-(int(self.Num_Bin/2)) ,axis=1) | |
|
313 | # novalid corresponds to data within the Negative and PositiveLimit | |
|
314 | ||
|
277 | 315 | |
|
278 | SPCcut = SPCroll.copy() | |
|
316 | # Removing novalid data from the spectra | |
|
279 | 317 |
|
|
280 | ||
|
281 | SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i] | |
|
282 | SPCcut[i,-int(Delta):,:] = dataOut.noise[i] | |
|
283 | ||
|
284 | SPCcut[i]=SPCcut[i]- dataOut.noise[i] | |
|
285 | SPCcut[ numpy.where( SPCcut<0 ) ] = 1e-20 | |
|
286 | ||
|
287 | SPCroll[i]=SPCroll[i]-dataOut.noise[i] | |
|
288 | SPCroll[ numpy.where( SPCroll<0 ) ] = 1e-20 | |
|
289 | ||
|
290 | SPC_ch1 = SPCroll | |
|
291 | ||
|
292 | SPC_ch2 = SPCcut | |
|
293 | ||
|
294 | SPCparam = (SPC_ch1, SPC_ch2, self.spc) | |
|
295 | dataOut.SPCparam = numpy.asarray(SPCparam) | |
|
296 | ||
|
297 | ||
|
298 | dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1]) | |
|
299 | ||
|
300 | dataOut.spcparam_range[2]=VelRange | |
|
301 | dataOut.spcparam_range[1]=TimeRange | |
|
302 | dataOut.spcparam_range[0]=FrecRange | |
|
318 | self.spc[i,novalid,:] = dataOut.noise[i] | |
|
319 | dataOut.data_pre[0] = self.spc | |
|
303 | 320 |
|
|
304 | 321 | |
|
305 | 322 |
|
|
306 | 323 | |
|
307 | 324 |
|
|
308 | 325 | Function that fit of one and two generalized gaussians (gg) based |
|
309 | 326 | on the PSD shape across an "power band" identified from a cumsum of |
|
310 | 327 | the measured spectrum - noise. |
|
311 | 328 | |
|
312 | 329 | Input: |
|
313 | 330 | self.dataOut.data_pre : SelfSpectra |
|
314 | 331 | |
|
315 | 332 | Output: |
|
316 | 333 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 |
|
317 | 334 | |
|
318 | 335 | ''' |
|
319 | 336 |
|
|
320 | 337 |
|
|
321 | 338 |
|
|
322 | 339 | |
|
323 | 340 | |
|
324 |
|
|
|
341 | # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
|
342 | def run(self, dataOut, SNRdBlimit=-9, method='generalized'): | |
|
325 | 343 |
|
|
344 | methods: generalized, squared | |
|
326 | 345 | input: spc |
|
327 | 346 | output: |
|
328 |
|
|
|
347 | noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1 | |
|
329 | 348 | """ |
|
330 | ||
|
349 | print ('Entering ',method,' double Gaussian fit') | |
|
331 | 350 |
|
|
332 | 351 |
|
|
333 | 352 |
|
|
334 | 353 |
|
|
335 | Vrange = dataOut.abscissaList | |
|
336 | ||
|
337 | GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
|
338 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
|
339 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
|
340 | SPC_ch1[:] = numpy.NaN | |
|
341 | SPC_ch2[:] = numpy.NaN | |
|
342 | ||
|
343 | 354 | |
|
344 | 355 |
|
|
345 | 356 | |
|
346 | noise_ = dataOut.spc_noise[0].copy() | |
|
347 | ||
|
348 | ||
|
349 | 357 |
|
|
350 |
|
|
|
358 | args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)] | |
|
351 | 359 |
|
|
352 | 360 |
|
|
353 |
|
|
|
354 | dataOut.SPCparam = numpy.asarray(SPCparam) | |
|
355 | ||
|
356 | ''' Parameters: | |
|
357 | 1. Amplitude | |
|
358 | 2. Shift | |
|
359 | 3. Width | |
|
360 | 4. Power | |
|
361 | ''' | |
|
361 | DGauFitParam = pool.map(target, attrs) | |
|
362 | # Parameters: | |
|
363 | # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power | |
|
364 | dataOut.DGauFitParams = numpy.asarray(DGauFitParam) | |
|
365 | ||
|
366 | # Double Gaussian Curves | |
|
367 | gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
|
368 | gau0[:] = numpy.NaN | |
|
369 | gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
|
370 | gau1[:] = numpy.NaN | |
|
371 | x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1))) | |
|
372 | for iCh in range(self.Num_Chn): | |
|
373 | N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin)) | |
|
374 | N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin)) | |
|
375 | A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin)) | |
|
376 | A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin)) | |
|
377 | v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin)) | |
|
378 | v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin)) | |
|
379 | s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin)) | |
|
380 | s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin)) | |
|
381 | if method == 'genealized': | |
|
382 | p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin)) | |
|
383 | p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin)) | |
|
384 | elif method == 'squared': | |
|
385 | p0 = 2. | |
|
386 | p1 = 2. | |
|
387 | gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0 | |
|
388 | gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1 | |
|
389 | dataOut.GaussFit0 = gau0 | |
|
390 | dataOut.GaussFit1 = gau1 | |
|
391 | ||
|
392 | print('Leaving ',method ,' double Gaussian fit') | |
|
393 | return dataOut | |
|
362 | 394 | |
|
363 | 395 |
|
|
364 | ||
|
365 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X | |
|
366 | ||
|
367 | SPCparam = [] | |
|
368 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
|
369 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
|
370 | SPC_ch1[:] = 0#numpy.NaN | |
|
371 | SPC_ch2[:] = 0#numpy.NaN | |
|
372 | ||
|
373 | ||
|
374 | ||
|
396 | # print('Entering FitGau') | |
|
397 | # Assigning the variables | |
|
398 | Vrange, ch, wnoise, num_intg, SNRlimit = X | |
|
399 | # Noise Limits | |
|
400 | noisebl = wnoise * 0.9 | |
|
401 | noisebh = wnoise * 1.1 | |
|
402 | # Radar Velocity | |
|
403 | Va = max(Vrange) | |
|
404 | deltav = Vrange[1] - Vrange[0] | |
|
405 | x = numpy.arange(self.Num_Bin) | |
|
406 | ||
|
407 | # print ('stop 0') | |
|
408 | ||
|
409 | # 5 parameters, 2 Gaussians | |
|
410 | DGauFitParam = numpy.zeros([5, self.Num_Hei,2]) | |
|
411 | DGauFitParam[:] = numpy.NaN | |
|
412 | ||
|
413 | # SPCparam = [] | |
|
414 | # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
|
415 | # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
|
416 | # SPC_ch1[:] = 0 #numpy.NaN | |
|
417 | # SPC_ch2[:] = 0 #numpy.NaN | |
|
418 | # print ('stop 1') | |
|
375 | 419 |
|
|
376 | ||
|
377 | ||
|
420 | # print (ht) | |
|
421 | # print ('stop 2') | |
|
422 | # Spectra at each range | |
|
378 | 423 |
|
|
424 | snr = ( spc.mean() - wnoise ) / wnoise | |
|
425 | snrdB = 10.*numpy.log10(snr) | |
|
379 | 426 | |
|
427 | #print ('stop 3') | |
|
428 | if snrdB < SNRlimit : | |
|
429 | # snr = numpy.NaN | |
|
430 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
|
431 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
|
432 | # SPCparam = (SPC_ch1,SPC_ch2) | |
|
433 | # print ('SNR less than SNRth') | |
|
434 | continue | |
|
435 | # wnoise = hildebrand_sekhon(spc,num_intg) | |
|
436 | # print ('stop 2.01') | |
|
380 | 437 |
|
|
381 | 438 |
|
|
382 | 439 |
|
|
383 |
|
|
|
440 | # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021 | |
|
384 | 441 |
|
|
385 |
|
|
|
442 | # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021 | |
|
386 | 443 |
|
|
387 | 444 | |
|
445 | # print ('stop 2.1') | |
|
388 | 446 |
|
|
389 | ||
|
390 | wnoise = noise_ #/ spc_norm_max | |
|
447 | # noise per channel.... we might want to use the noise at each range | |
|
448 | ||
|
449 | # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021 | |
|
391 | 450 |
|
|
392 | 451 |
|
|
393 | 452 |
|
|
394 |
|
|
|
395 |
|
|
|
396 |
|
|
|
453 | # noisebl = wnoise*0.9 | |
|
454 | # noisebh = wnoise*1.1 | |
|
455 | spc = spc - wnoise # signal | |
|
397 | 456 | |
|
398 | minx=numpy.argmin(spc) | |
|
457 | # print ('stop 2.2') | |
|
458 | minx = numpy.argmin(spc) | |
|
399 | 459 |
|
|
400 |
|
|
|
401 |
|
|
|
402 |
|
|
|
403 | ||
|
404 | snr = sum(spcs)/tot_noise | |
|
405 | snrdB=10.*numpy.log10(snr) | |
|
406 | ||
|
407 | if snrdB < SNRlimit : | |
|
408 | snr = numpy.NaN | |
|
409 |
|
|
|
410 |
|
|
|
411 | SPCparam = (SPC_ch1,SPC_ch2) | |
|
412 | continue | |
|
460 | spcs = numpy.roll(spc,-minx) | |
|
461 | cum = numpy.cumsum(spcs) | |
|
462 | # tot_noise = wnoise * self.Num_Bin #64; | |
|
463 | ||
|
464 | # print ('stop 2.3') | |
|
465 | # snr = sum(spcs) / tot_noise | |
|
466 | # snrdB = 10.*numpy.log10(snr) | |
|
467 | #print ('stop 3') | |
|
468 | # if snrdB < SNRlimit : | |
|
469 | # snr = numpy.NaN | |
|
470 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
|
471 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
|
472 | # SPCparam = (SPC_ch1,SPC_ch2) | |
|
473 | # print ('SNR less than SNRth') | |
|
474 | # continue | |
|
413 | 475 | |
|
414 | 476 | |
|
415 | 477 |
|
|
416 | 478 |
|
|
417 | ||
|
418 |
|
|
|
419 |
|
|
|
420 |
|
|
|
421 |
|
|
|
422 |
|
|
|
423 | ||
|
424 | ||
|
479 | # print ('stop 4') | |
|
480 | cummax = max(cum) | |
|
481 | epsi = 0.08 * fatspectra # cumsum to narrow down the energy region | |
|
482 | cumlo = cummax * epsi | |
|
483 | cumhi = cummax * (1-epsi) | |
|
484 | powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
|
485 | ||
|
486 | # print ('stop 5') | |
|
425 | 487 |
|
|
488 | # print ('powerindex < 1') | |
|
426 | 489 |
|
|
427 |
|
|
|
428 |
|
|
|
429 |
|
|
|
430 | ||
|
431 | firstpeak=powerlo+powerwidth/10.# first gaussian energy location | |
|
432 | secondpeak=powerhi-powerwidth/10.#second gaussian energy location | |
|
433 | midpeak=(firstpeak+secondpeak)/2. | |
|
434 | firstamp=spcs[int(firstpeak)] | |
|
435 | secondamp=spcs[int(secondpeak)] | |
|
436 | midamp=spcs[int(midpeak)] | |
|
490 | powerlo = powerindex[0] | |
|
491 | powerhi = powerindex[-1] | |
|
492 | powerwidth = powerhi-powerlo | |
|
493 | if powerwidth <= 1: | |
|
494 | # print('powerwidth <= 1') | |
|
495 | continue | |
|
496 | ||
|
497 | # print ('stop 6') | |
|
498 | firstpeak = powerlo + powerwidth/10.# first gaussian energy location | |
|
499 | secondpeak = powerhi - powerwidth/10. #second gaussian energy location | |
|
500 | midpeak = (firstpeak + secondpeak)/2. | |
|
501 | firstamp = spcs[int(firstpeak)] | |
|
502 | secondamp = spcs[int(secondpeak)] | |
|
503 | midamp = spcs[int(midpeak)] | |
|
437 | 504 | |
|
438 | x=numpy.arange( self.Num_Bin ) | |
|
439 | y_data=spc+wnoise | |
|
505 | y_data = spc + wnoise | |
|
440 | 506 | |
|
441 | 507 |
|
|
442 |
|
|
|
443 |
|
|
|
444 |
|
|
|
445 |
|
|
|
446 |
|
|
|
447 |
|
|
|
448 |
|
|
|
449 | ||
|
450 | chiSq1=lsq1[1]; | |
|
451 | ||
|
452 | ||
|
508 | shift0 = numpy.mod(midpeak+minx, self.Num_Bin ) | |
|
509 | width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
|
510 | power0 = 2. | |
|
511 | amplitude0 = midamp | |
|
512 | state0 = [shift0,width0,amplitude0,power0,wnoise] | |
|
513 | bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
|
514 | lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True) | |
|
515 | # print ('stop 7.1') | |
|
516 | # print (bnds) | |
|
517 | ||
|
518 | chiSq1=lsq1[1] | |
|
519 | ||
|
520 | # print ('stop 8') | |
|
453 | 521 |
|
|
454 | 522 |
|
|
455 | 523 |
|
|
456 | 524 |
|
|
457 | 525 |
|
|
458 | 526 |
|
|
459 | 527 |
|
|
460 | 528 |
|
|
461 | 529 |
|
|
462 | 530 |
|
|
463 | 531 |
|
|
464 | 532 |
|
|
465 | 533 |
|
|
466 | ||
|
467 | ''' two gaussians ''' | |
|
534 | ||
|
535 | # print ('stop 9') | |
|
536 | ''' two Gaussians ''' | |
|
468 | 537 |
|
|
469 |
|
|
|
470 |
|
|
|
471 |
|
|
|
472 |
|
|
|
473 |
|
|
|
474 |
|
|
|
475 |
|
|
|
476 |
|
|
|
477 |
|
|
|
538 | shift0 = numpy.mod(firstpeak+minx, self.Num_Bin ) | |
|
539 | shift1 = numpy.mod(secondpeak+minx, self.Num_Bin ) | |
|
540 | width0 = powerwidth/6. | |
|
541 | width1 = width0 | |
|
542 | power0 = 2. | |
|
543 | power1 = power0 | |
|
544 | amplitude0 = firstamp | |
|
545 | amplitude1 = secondamp | |
|
546 | state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
|
478 | 547 |
|
|
479 |
|
|
|
548 | bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
|
480 | 549 |
|
|
481 | 550 | |
|
551 | # print ('stop 10') | |
|
482 | 552 |
|
|
483 | 553 | |
|
554 | # print ('stop 11') | |
|
555 | chiSq2 = lsq2[1] | |
|
484 | 556 | |
|
485 | chiSq2=lsq2[1]; | |
|
486 | ||
|
487 | ||
|
557 | # print ('stop 12') | |
|
488 | 558 | |
|
489 |
|
|
|
559 | oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
|
490 | 560 | |
|
561 | # print ('stop 13') | |
|
491 | 562 |
|
|
492 | 563 |
|
|
493 |
|
|
|
564 | choice = 0 | |
|
494 | 565 |
|
|
495 |
|
|
|
496 |
|
|
|
497 |
|
|
|
498 |
|
|
|
499 |
|
|
|
500 |
|
|
|
566 | w1 = lsq2[0][1]; w2 = lsq2[0][5] | |
|
567 | a1 = lsq2[0][2]; a2 = lsq2[0][6] | |
|
568 | p1 = lsq2[0][3]; p2 = lsq2[0][7] | |
|
569 | s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1 | |
|
570 | s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2 | |
|
571 | gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling | |
|
501 | 572 | |
|
502 | 573 |
|
|
503 | 574 |
|
|
504 |
|
|
|
575 | choice = 1 | |
|
505 | 576 |
|
|
506 |
|
|
|
577 | choice = 2 | |
|
507 | 578 |
|
|
508 | 579 |
|
|
509 |
|
|
|
580 | choice = 2 | |
|
510 | 581 |
|
|
511 |
|
|
|
582 | choice = 1 | |
|
512 | 583 |
|
|
513 |
|
|
|
584 | choice = numpy.argmax([a1,a2])+1 | |
|
514 | 585 |
|
|
515 | 586 |
|
|
516 | 587 | |
|
517 | 588 |
|
|
518 |
|
|
|
519 | ||
|
520 | ||
|
521 |
|
|
|
522 |
|
|
|
523 |
|
|
|
524 |
|
|
|
525 | ||
|
526 |
|
|
|
527 | ||
|
589 | choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
|
590 | ||
|
591 | # print ('stop 14') | |
|
592 | shift0 = lsq2[0][0] | |
|
593 | vel0 = Vrange[0] + shift0 * deltav | |
|
594 | shift1 = lsq2[0][4] | |
|
595 | # vel1=Vrange[0] + shift1 * deltav | |
|
596 | ||
|
597 | # max_vel = 1.0 | |
|
598 | # Va = max(Vrange) | |
|
599 | # deltav = Vrange[1]-Vrange[0] | |
|
600 | # print ('stop 15') | |
|
528 | 601 |
|
|
529 |
|
|
|
530 | shift0=lsq2[0][0] | |
|
531 |
|
|
|
532 |
|
|
|
533 |
|
|
|
534 | ||
|
535 | shift1=lsq2[0][4] | |
|
536 |
|
|
|
537 |
|
|
|
538 |
|
|
|
539 |
|
|
|
602 | # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021 | |
|
603 | if vel0 > -Va and vel0 < Va : #first peak is in the correct range | |
|
604 | shift0 = lsq2[0][0] | |
|
605 | width0 = lsq2[0][1] | |
|
606 | Amplitude0 = lsq2[0][2] | |
|
607 | p0 = lsq2[0][3] | |
|
608 | ||
|
609 | shift1 = lsq2[0][4] | |
|
610 | width1 = lsq2[0][5] | |
|
611 | Amplitude1 = lsq2[0][6] | |
|
612 | p1 = lsq2[0][7] | |
|
613 | noise = lsq2[0][8] | |
|
540 | 614 |
|
|
541 |
|
|
|
542 |
|
|
|
543 |
|
|
|
544 |
|
|
|
615 | shift1 = lsq2[0][0] | |
|
616 | width1 = lsq2[0][1] | |
|
617 | Amplitude1 = lsq2[0][2] | |
|
618 | p1 = lsq2[0][3] | |
|
545 | 619 | |
|
546 |
|
|
|
547 |
|
|
|
548 |
|
|
|
549 |
|
|
|
550 |
|
|
|
620 | shift0 = lsq2[0][4] | |
|
621 | width0 = lsq2[0][5] | |
|
622 | Amplitude0 = lsq2[0][6] | |
|
623 | p0 = lsq2[0][7] | |
|
624 | noise = lsq2[0][8] | |
|
551 | 625 | |
|
552 | 626 |
|
|
553 |
|
|
|
627 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] | |
|
554 | 628 |
|
|
555 |
|
|
|
556 | ||
|
557 | ||
|
558 |
|
|
|
559 |
|
|
|
560 |
|
|
|
561 | ||
|
562 | ||
|
563 | return GauSPC | |
|
629 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] | |
|
630 | ||
|
631 | # print ('stop 16 ') | |
|
632 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0) | |
|
633 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1) | |
|
634 | # SPCparam = (SPC_ch1,SPC_ch2) | |
|
635 | ||
|
636 | DGauFitParam[0,ht,0] = noise | |
|
637 | DGauFitParam[0,ht,1] = noise | |
|
638 | DGauFitParam[1,ht,0] = Amplitude0 | |
|
639 | DGauFitParam[1,ht,1] = Amplitude1 | |
|
640 | DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav | |
|
641 | DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav | |
|
642 | DGauFitParam[3,ht,0] = width0 * deltav | |
|
643 | DGauFitParam[3,ht,1] = width1 * deltav | |
|
644 | DGauFitParam[4,ht,0] = p0 | |
|
645 | DGauFitParam[4,ht,1] = p1 | |
|
646 | ||
|
647 | # print (DGauFitParam.shape) | |
|
648 | # print ('Leaving FitGau') | |
|
649 | return DGauFitParam | |
|
650 | # return SPCparam | |
|
651 | # return GauSPC | |
|
564 | 652 | |
|
565 | 653 |
|
|
566 |
|
|
|
567 |
|
|
|
568 | ||
|
569 |
|
|
|
570 | ||
|
571 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) | |
|
572 | return model0+model0u+model0d+noise | |
|
654 | shift0, width0, amplitude0, power0, noise = state | |
|
655 | model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0) | |
|
656 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | |
|
657 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |
|
658 | return model0 + model0u + model0d + noise | |
|
573 | 659 | |
|
574 | 660 |
|
|
575 |
|
|
|
576 |
|
|
|
577 | ||
|
578 |
|
|
|
579 | ||
|
580 |
|
|
|
581 |
|
|
|
582 | ||
|
583 | model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) | |
|
584 | ||
|
585 | model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) | |
|
586 | return model0+model0u+model0d+model1+model1u+model1d+noise | |
|
661 | shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state | |
|
662 | model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
|
663 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | |
|
664 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |
|
665 | ||
|
666 | model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1) | |
|
667 | model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1) | |
|
668 | model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1) | |
|
669 | return model0 + model0u + model0d + model1 + model1u + model1d + noise | |
|
587 | 670 | |
|
588 | 671 |
|
|
589 | 672 | |
|
590 | 673 |
|
|
591 | 674 | |
|
592 | 675 |
|
|
593 | 676 |
|
|
594 | 677 | |
|
595 | 678 | |
|
596 | 679 | |
|
597 | 680 |
|
|
598 | 681 | |
|
599 | 682 |
|
|
600 | 683 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) |
|
601 | 684 | |
|
602 | 685 | Input: |
|
603 | 686 | self.dataOut.data_pre : SelfSpectra |
|
604 | 687 | |
|
605 | 688 | Output: |
|
606 | 689 | |
|
607 | 690 | self.dataOut.data_output : Reflectivity factor, rainfall Rate |
|
608 | 691 | |
|
609 | 692 | |
|
610 | 693 | Parameters affected: |
|
611 | 694 | ''' |
|
612 | 695 | |
|
613 | 696 |
|
|
614 | 697 |
|
|
615 | 698 |
|
|
616 | 699 | |
|
617 | ||
|
618 | def gaus(self,xSamples,Amp,Mu,Sigma): | |
|
619 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) | |
|
620 | ||
|
621 | ||
|
622 | ||
|
623 | def Moments(self, ySamples, xSamples): | |
|
624 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 | |
|
625 | yNorm = ySamples / Pot | |
|
626 | ||
|
627 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento | |
|
628 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento | |
|
629 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral | |
|
630 | ||
|
631 | return numpy.array([Pot, Vr, Desv]) | |
|
632 | ||
|
633 | 700 |
|
|
634 |
|
|
|
635 | ||
|
701 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30): | |
|
636 | 702 | |
|
637 | Velrange = dataOut.spcparam_range[2] | |
|
638 | FrecRange = dataOut.spcparam_range[0] | |
|
639 | ||
|
640 | dV= Velrange[1]-Velrange[0] | |
|
641 | dF= FrecRange[1]-FrecRange[0] | |
|
703 | # print ('Entering PrecepitationProc ... ') | |
|
642 | 704 | |
|
643 | 705 |
|
|
644 | 706 | |
|
645 | 707 |
|
|
646 | 708 |
|
|
647 | 709 |
|
|
648 | 710 |
|
|
649 | 711 |
|
|
650 | 712 | |
|
651 | 713 |
|
|
652 | 714 | |
|
653 |
|
|
|
654 | ||
|
655 | """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX""" | |
|
715 | self.spc = dataOut.data_pre[0].copy() | |
|
656 | 716 | |
|
717 | #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX | |
|
657 | 718 |
|
|
658 | 719 | |
|
659 | """##########################################""" | |
|
660 | ||
|
661 | 720 |
|
|
662 | 721 |
|
|
663 | 722 |
|
|
664 | 723 | |
|
724 | VelRange = dataOut.spc_range[2] | |
|
725 | ||
|
665 | 726 |
|
|
666 | 727 | |
|
667 | 728 |
|
|
668 | 729 |
|
|
669 | 730 |
|
|
670 | 731 |
|
|
671 | 732 |
|
|
672 | 733 |
|
|
673 |
|
|
|
734 | self.ThetaT = ThetaT | |
|
674 | 735 |
|
|
736 | self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB | |
|
737 | self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB | |
|
738 | self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB | |
|
675 | 739 | |
|
676 | 740 |
|
|
677 | 741 |
|
|
678 | 742 |
|
|
679 | ||
|
680 | ''' ============================= ''' | |
|
681 | ||
|
682 | self.spc[0] = (self.spc[0]-dataOut.noise[0]) | |
|
683 |
self.spc[ |
|
|
684 | self.spc[2] = (self.spc[2]-dataOut.noise[2]) | |
|
685 | ||
|
686 | self.spc[ numpy.where(self.spc < 0)] = 0 | |
|
687 | ||
|
688 | SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise)) | |
|
689 | SPCmean[ numpy.where(SPCmean < 0)] = 0 | |
|
690 | ||
|
691 | ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
|
692 | ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
|
693 | ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
|
694 | ||
|
695 | Pr = SPCmean[:,:] | |
|
696 | ||
|
697 | VelMeteoro = numpy.mean(SPCmean,axis=0) | |
|
698 | ||
|
699 | D_range = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
|
700 | SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
|
701 | N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
|
702 | V_mean = numpy.zeros(self.Num_Hei) | |
|
703 | del_V = numpy.zeros(self.Num_Hei) | |
|
704 | Z = numpy.zeros(self.Num_Hei) | |
|
705 | Ze = numpy.zeros(self.Num_Hei) | |
|
706 | RR = numpy.zeros(self.Num_Hei) | |
|
707 | ||
|
708 | Range = dataOut.heightList*1000. | |
|
709 | ||
|
710 | for R in range(self.Num_Hei): | |
|
711 | ||
|
712 | h = Range[R] + Altitude #Range from ground to radar pulse altitude | |
|
713 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity | |
|
714 | ||
|
715 | D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3 | |
|
716 | ||
|
717 | '''NOTA: ETA(n) dn = ETA(f) df | |
|
718 | ||
|
719 | dn = 1 Diferencial de muestreo | |
|
720 | df = ETA(n) / ETA(f) | |
|
721 | ||
|
722 | ''' | |
|
723 | ||
|
724 | ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA) | |
|
725 | ||
|
726 | ETAv[:,R]=ETAn[:,R]/dV | |
|
727 | ||
|
728 | ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R]) | |
|
729 | ||
|
730 | SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma) | |
|
731 | ||
|
732 | N_dist[:,R] = ETAn[:,R] / SIGMA[:,R] | |
|
733 | ||
|
734 | DMoments = self.Moments(Pr[:,R], Velrange[0:self.Num_Bin]) | |
|
735 | ||
|
736 | try: | |
|
737 | popt01,pcov = curve_fit(self.gaus, Velrange[0:self.Num_Bin] , Pr[:,R] , p0=DMoments) | |
|
738 | except: | |
|
739 | popt01=numpy.zeros(3) | |
|
740 | popt01[1]= DMoments[1] | |
|
741 | ||
|
742 | if popt01[1]<0 or popt01[1]>20: | |
|
743 | popt01[1]=numpy.NaN | |
|
744 | ||
|
745 | ||
|
746 | V_mean[R]=popt01[1] | |
|
747 | ||
|
748 | Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 )#*10**-18 | |
|
749 | ||
|
750 | RR[R] = 0.0006*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate | |
|
751 | ||
|
752 | Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( 10**-18*numpy.pi**5 * Km) | |
|
753 | ||
|
754 | ||
|
755 | ||
|
756 | RR2 = (Z/200)**(1/1.6) | |
|
757 | dBRR = 10*numpy.log10(RR) | |
|
758 | dBRR2 = 10*numpy.log10(RR2) | |
|
759 | ||
|
760 | dBZe = 10*numpy.log10(Ze) | |
|
761 | dBZ = 10*numpy.log10(Z) | |
|
743 | ExpConstant = 10**(40/10) #Constante Experimental | |
|
744 | ||
|
745 | SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
|
746 | for i in range(self.Num_Chn): | |
|
747 | SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i] | |
|
748 | SignalPower[numpy.where(SignalPower < 0)] = 1e-20 | |
|
749 | ||
|
750 | SPCmean = numpy.mean(SignalPower, 0) | |
|
751 | Pr = SPCmean[:,:]/dataOut.normFactor | |
|
752 | ||
|
753 | # Declaring auxiliary variables | |
|
754 | Range = dataOut.heightList*1000. #Range in m | |
|
755 | # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei] | |
|
756 | rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin)) | |
|
757 | zMtrx = rMtrx+Altitude | |
|
758 | # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei] | |
|
759 | VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1))) | |
|
760 | ||
|
761 | # height dependence to air density Foote and Du Toit (1969) | |
|
762 | delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2 | |
|
763 | VMtrx = VelMtrx / delv_z #Normalized velocity | |
|
764 | VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN | |
|
765 | # Diameter is related to the fall speed of falling drops | |
|
766 | D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm] | |
|
767 | # Only valid for D>= 0.16 mm | |
|
768 | D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN | |
|
769 | ||
|
770 | #Calculate Radar Reflectivity ETAn | |
|
771 | ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA) | |
|
772 | ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z | |
|
773 | # Radar Cross Section | |
|
774 | sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4 | |
|
775 | # Drop Size Distribution | |
|
776 | DSD = ETAn / sigmaD | |
|
777 | # Equivalente Reflectivy | |
|
778 | Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0) | |
|
779 | Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3] | |
|
780 | # RainFall Rate | |
|
781 | RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr | |
|
782 | ||
|
783 | # Censoring the data | |
|
784 | # Removing data with SNRth < 0dB se debe considerar el SNR por canal | |
|
785 | SNRth = 10**(SNRdBlimit/10) #-30dB | |
|
786 | novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better | |
|
787 | W = numpy.nanmean(dataOut.data_dop,0) | |
|
788 | W[novalid] = numpy.NaN | |
|
789 | Ze_org[novalid] = numpy.NaN | |
|
790 | RR[novalid] = numpy.NaN | |
|
762 | 791 | |
|
763 | 792 |
|
|
764 | 793 |
|
|
765 | 794 |
|
|
766 | ||
|
767 |
|
|
|
768 |
|
|
|
795 | ||
|
796 | dataOut.data_param[0]=10*numpy.log10(Ze_org) | |
|
797 | dataOut.data_param[1]=-W | |
|
769 | 798 |
|
|
770 | 799 | |
|
800 | # print ('Leaving PrecepitationProc ... ') | |
|
771 | 801 |
|
|
772 | 802 | |
|
773 | 803 |
|
|
774 | 804 | |
|
775 | 805 |
|
|
776 | 806 |
|
|
777 | 807 | |
|
778 | 808 |
|
|
779 | 809 |
|
|
780 | 810 |
|
|
781 | 811 | |
|
782 | 812 |
|
|
783 | 813 |
|
|
784 | 814 | |
|
785 | 815 |
|
|
786 | 816 | |
|
787 |
|
|
|
817 | ETA = numpy.where(ETA != 0. , ETA, numpy.NaN) | |
|
788 | 818 | |
|
789 | 819 |
|
|
790 | 820 | |
|
791 | 821 |
|
|
792 | 822 | |
|
793 | 823 |
|
|
794 | 824 |
|
|
795 | 825 | |
|
796 | 826 |
|
|
797 | 827 | |
|
798 | 828 |
|
|
799 | 829 |
|
|
800 | 830 |
|
|
801 | 831 |
|
|
802 | 832 |
|
|
803 | 833 |
|
|
804 | 834 |
|
|
805 | 835 |
|
|
806 | 836 |
|
|
807 | 837 |
|
|
808 | 838 |
|
|
809 | 839 |
|
|
810 | 840 |
|
|
811 | 841 |
|
|
812 | 842 |
|
|
813 | 843 |
|
|
814 | 844 |
|
|
815 | 845 |
|
|
816 | 846 |
|
|
817 | 847 |
|
|
818 | 848 |
|
|
819 | 849 | |
|
820 | 850 | |
|
821 | 851 | |
|
822 | 852 |
|
|
823 | 853 | |
|
824 | 854 |
|
|
825 | 855 | Function that implements Full Spectral Analysis technique. |
|
826 | 856 | |
|
827 | 857 | Input: |
|
828 | 858 | self.dataOut.data_pre : SelfSpectra and CrossSpectra data |
|
829 | 859 | self.dataOut.groupList : Pairlist of channels |
|
830 | 860 | self.dataOut.ChanDist : Physical distance between receivers |
|
831 | 861 | |
|
832 | 862 | |
|
833 | 863 | Output: |
|
834 | 864 | |
|
835 | self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind | |
|
865 | self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind | |
|
836 | 866 | |
|
837 | 867 | |
|
838 | 868 | Parameters affected: Winds, height range, SNR |
|
839 | 869 | |
|
840 | 870 | """ |
|
841 |
|
|
|
842 | ||
|
843 | self.indice=int(numpy.random.rand()*1000) | |
|
871 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30, | |
|
872 | minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None): | |
|
844 | 873 | |
|
845 | 874 |
|
|
846 | 875 |
|
|
847 | ||
|
848 | """Erick: NOTE THE RANGE OF THE PULSE TX MUST BE REMOVED""" | |
|
849 | ||
|
850 | SNRspc = spc.copy() | |
|
851 | SNRspc[:,:,0:7]= numpy.NaN | |
|
852 | ||
|
853 | """##########################################""" | |
|
854 | ||
|
855 | ||
|
856 | nChannel = spc.shape[0] | |
|
857 | nProfiles = spc.shape[1] | |
|
858 | 876 |
|
|
859 | 877 | |
|
860 | 878 |
|
|
861 | 879 |
|
|
862 | 880 |
|
|
863 | 881 | finding height range. check this when radar parameters are changed! |
|
864 | 882 | ''' |
|
865 | 883 |
|
|
866 | 884 |
|
|
867 | 885 |
|
|
868 | 886 |
|
|
869 | 887 |
|
|
870 | 888 |
|
|
871 | 889 |
|
|
872 | 890 |
|
|
873 | 891 |
|
|
874 | 892 |
|
|
875 | 893 |
|
|
876 | 894 |
|
|
877 | 895 | |
|
878 | 896 |
|
|
879 | 897 |
|
|
880 | 898 |
|
|
881 | 899 |
|
|
882 | 900 |
|
|
883 | 901 | |
|
884 | FrecRange = dataOut.spc_range[0] | |
|
885 | ||
|
886 | data_SNR=numpy.zeros([nProfiles]) | |
|
887 | noise = dataOut.noise | |
|
888 | ||
|
889 | dataOut.data_snr = (numpy.mean(SNRspc,axis=1)- noise[0]) / noise[0] | |
|
890 | ||
|
891 | dataOut.data_snr[numpy.where( dataOut.data_snr <0 )] = 1e-20 | |
|
892 | ||
|
902 | # 4 variables: zonal, meridional, vertical, and average SNR | |
|
903 | data_param = numpy.zeros([4,nHeights]) * numpy.NaN | |
|
904 | velocityX = numpy.zeros([nHeights]) * numpy.NaN | |
|
905 | velocityY = numpy.zeros([nHeights]) * numpy.NaN | |
|
906 | velocityZ = numpy.zeros([nHeights]) * numpy.NaN | |
|
893 | 907 | |
|
894 | data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN | |
|
895 | ||
|
896 | velocityX=[] | |
|
897 | velocityY=[] | |
|
898 | velocityV=[] | |
|
899 | ||
|
900 | dbSNR = 10*numpy.log10(dataOut.data_snr) | |
|
901 | dbSNR = numpy.average(dbSNR,0) | |
|
908 | dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0)) | |
|
902 | 909 | |
|
903 | 910 |
|
|
904 | ||
|
905 | 911 |
|
|
906 | 912 | |
|
907 | 913 |
|
|
908 |
|
|
|
909 |
|
|
|
910 | else: | |
|
911 | Vzon,Vmer,Vver = 0., 0., numpy.NaN | |
|
912 | ||
|
913 | ||
|
914 | if abs(Vzon) < 100. and abs(Vzon) > 0. and abs(Vmer) < 100. and abs(Vmer) > 0.: | |
|
915 | velocityX=numpy.append(velocityX, Vzon) | |
|
916 | velocityY=numpy.append(velocityY, -Vmer) | |
|
917 | ||
|
918 | else: | |
|
919 | velocityX=numpy.append(velocityX, numpy.NaN) | |
|
920 | velocityY=numpy.append(velocityY, numpy.NaN) | |
|
921 | ||
|
922 | if dbSNR[Height] > SNRlimit: | |
|
923 | velocityV=numpy.append(velocityV, -Vver) # reason for this minus sign -> convention? (taken from Ericks version) | |
|
924 | else: | |
|
925 | velocityV=numpy.append(velocityV, numpy.NaN) | |
|
926 | ||
|
927 | ||
|
928 | '''Change the numpy.array (velocityX) sign when trying to process BLTR data (Erick)''' | |
|
929 | data_output[0] = numpy.array(velocityX) | |
|
930 | data_output[1] = numpy.array(velocityY) | |
|
931 | data_output[2] = velocityV | |
|
932 | ||
|
933 | ||
|
934 | dataOut.data_output = data_output | |
|
935 | ||
|
914 | # error_code will be useful in future analysis | |
|
915 | [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, | |
|
916 | ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency) | |
|
917 | ||
|
918 | if abs(Vzon) < 100. and abs(Vmer) < 100.: | |
|
919 | velocityX[Height] = Vzon | |
|
920 | velocityY[Height] = -Vmer | |
|
921 | velocityZ[Height] = Vver | |
|
922 | ||
|
923 | # Censoring data with SNR threshold | |
|
924 | dbSNR [dbSNR < SNRdBlimit] = numpy.NaN | |
|
925 | ||
|
926 | data_param[0] = velocityX | |
|
927 | data_param[1] = velocityY | |
|
928 | data_param[2] = velocityZ | |
|
929 | data_param[3] = dbSNR | |
|
930 | dataOut.data_param = data_param | |
|
936 | 931 |
|
|
937 | 932 | |
|
938 | ||
|
939 | 933 |
|
|
940 | 934 |
|
|
941 | 935 |
|
|
942 | 936 | |
|
943 | 937 |
|
|
944 |
|
|
|
938 | return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2) | |
|
945 | 939 | |
|
946 | 940 |
|
|
947 | '''*** | |
|
948 | Variables corresponding to moments of distribution. | |
|
949 | Also used as initial coefficients for curve_fit. | |
|
950 | Vr was corrected. Only a velocity when x is velocity, of course. | |
|
951 | ***''' | |
|
952 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 | |
|
953 | yNorm = ySamples / Pot | |
|
954 | x_range = (numpy.max(xSamples)-numpy.min(xSamples)) | |
|
955 | Vr = numpy.nansum( yNorm * xSamples )*x_range/len(xSamples) # Velocidad radial, mu, corrimiento doppler, primer momento | |
|
956 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento | |
|
957 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral | |
|
958 | ||
|
959 | return numpy.array([Pot, Vr, Desv]) | |
|
941 | Power = numpy.nanmean(ySamples) # Power, 0th Moment | |
|
942 | yNorm = ySamples / numpy.nansum(ySamples) | |
|
943 | RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment | |
|
944 | Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment | |
|
945 | StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral | |
|
946 | return numpy.array([Power,RadVel,StdDev]) | |
|
960 | 947 | |
|
961 | 948 |
|
|
962 | ''' | |
|
963 | the wind calculation and returns zeros | |
|
964 | ''' | |
|
965 | Vzon = 0 | |
|
966 | Vmer = 0 | |
|
967 | Vver = numpy.nan | |
|
949 | Vzon = numpy.NaN | |
|
950 | Vmer = numpy.NaN | |
|
951 | Vver = numpy.NaN | |
|
968 | 952 |
|
|
969 | 953 | |
|
970 | 954 |
|
|
971 | 955 |
|
|
972 | 956 | function to prevent errors from aliased values when computing phaseslope |
|
973 | 957 | """ |
|
974 |
|
|
|
958 | antialiased = numpy.zeros(len(interval)) | |
|
975 | 959 |
|
|
976 | 960 | |
|
977 | 961 |
|
|
978 | 962 | |
|
979 | 963 |
|
|
980 | ||
|
981 | 964 |
|
|
982 | ||
|
983 | 965 |
|
|
984 | 966 |
|
|
985 | 967 |
|
|
986 | ||
|
987 | 968 |
|
|
988 | 969 |
|
|
989 | 970 |
|
|
990 | ||
|
991 | 971 |
|
|
992 | 972 |
|
|
993 | 973 | |
|
994 | 974 |
|
|
995 | 975 | |
|
996 |
|
|
|
976 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq): | |
|
997 | 977 |
|
|
998 | 978 | Function that Calculates Zonal, Meridional and Vertical wind velocities. |
|
999 | 979 | Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019. |
|
1000 | 980 | |
|
1001 | 981 | Input: |
|
1002 | 982 | spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively. |
|
1003 | 983 | pairsList : Pairlist of channels |
|
1004 | 984 | ChanDist : array of xi_ij and eta_ij |
|
1005 | 985 | Height : height at which data is processed |
|
1006 | 986 | noise : noise in [channels] format for specific height |
|
1007 | 987 | Abbsisarange : range of the frequencies or velocities |
|
1008 | 988 | dbSNR, SNRlimit : signal to noise ratio in db, lower limit |
|
1009 | 989 | |
|
1010 | 990 | Output: |
|
1011 | 991 | Vzon, Vmer, Vver : wind velocities |
|
1012 | 992 | error_code : int that states where code is terminated |
|
1013 | 993 | |
|
1014 | 994 | 0 : no error detected |
|
1015 | 995 | 1 : Gaussian of mean spc exceeds widthlimit |
|
1016 | 996 | 2 : no Gaussian of mean spc found |
|
1017 | 997 | 3 : SNR to low or velocity to high -> prec. e.g. |
|
1018 | 998 | 4 : at least one Gaussian of cspc exceeds widthlimit |
|
1019 | 999 | 5 : zero out of three cspc Gaussian fits converged |
|
1020 | 1000 | 6 : phase slope fit could not be found |
|
1021 | 1001 | 7 : arrays used to fit phase have different length |
|
1022 | 1002 | 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc) |
|
1023 | 1003 | |
|
1024 | 1004 | """ |
|
1025 | 1005 | |
|
1026 | 1006 |
|
|
1027 | 1007 | |
|
1028 | ||
|
1029 | SPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]]) # for normalized spc values for one height | |
|
1030 | phase = numpy.ones([spc.shape[0],spc.shape[1]]) # phase between channels | |
|
1031 | CSPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) # for normalized cspc values | |
|
1032 | PhaseSlope = numpy.zeros(spc.shape[0]) # slope of the phases, channelwise | |
|
1033 | PhaseInter = numpy.ones(spc.shape[0]) # intercept to the slope of the phases, channelwise | |
|
1034 | xFrec = AbbsisaRange[0][0:spc.shape[1]] # frequency range | |
|
1035 | xVel = AbbsisaRange[2][0:spc.shape[1]] # velocity range | |
|
1036 | SPCav = numpy.average(spc, axis=0)-numpy.average(noise) # spc[0]-noise[0] | |
|
1037 | ||
|
1038 | SPCmoments_vel = self.Moments(SPCav, xVel ) # SPCmoments_vel[1] corresponds to vertical velocity and is used to determine if signal corresponds to wind (if .. <3) | |
|
1039 | CSPCmoments = [] | |
|
1040 | ||
|
1008 | nChan = spc.shape[0] | |
|
1009 | nProf = spc.shape[1] | |
|
1010 | nPair = cspc.shape[0] | |
|
1011 | ||
|
1012 | SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height | |
|
1013 | CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values | |
|
1014 | phase = numpy.zeros([nPair, nProf]) # phase between channels | |
|
1015 | PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise | |
|
1016 | PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise | |
|
1017 | xFrec = AbbsisaRange[0][:-1] # frequency range | |
|
1018 | xVel = AbbsisaRange[2][:-1] # velocity range | |
|
1019 | xSamples = xFrec # the frequency range is taken | |
|
1020 | delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x | |
|
1021 | ||
|
1022 | # only consider velocities with in NegativeLimit and PositiveLimit | |
|
1023 | if (NegativeLimit is None): | |
|
1024 | NegativeLimit = numpy.min(xVel) | |
|
1025 | if (PositiveLimit is None): | |
|
1026 | PositiveLimit = numpy.max(xVel) | |
|
1027 | xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit)) | |
|
1028 | xSamples_zoom = xSamples[xvalid] | |
|
1041 | 1029 | |
|
1042 | 1030 |
|
|
1043 | ||
|
1044 | 1031 |
|
|
1045 | 1032 |
|
|
1046 | 1033 | |
|
1047 | # update nov 19 | |
|
1048 | widthlimit = 7 # maximum width in Hz of the gaussian, empirically determined. Anything above 10 is unrealistic, often values between 1 and 5 correspond to proper fits. | |
|
1049 | ||
|
1034 | # spwd limit - updated by D. ScipiΓ³n 30.03.2021 | |
|
1035 | widthlimit = 10 | |
|
1050 | 1036 |
|
|
1051 | ||
|
1052 | spc_norm = spc.copy() # need copy() because untouched spc is needed for normalization of cspc below | |
|
1053 | spc_norm = numpy.where(numpy.isfinite(spc_norm), spc_norm, numpy.NAN) | |
|
1054 | ||
|
1055 | for i in range(spc.shape[0]): | |
|
1056 | ||
|
1057 | spc_sub = spc_norm[i,:] - noise[i] # spc not smoothed here or in previous version. | |
|
1058 | ||
|
1059 | Factor_Norm = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc_sub)) # usually = Freq range / nfft | |
|
1060 | normalized_spc = spc_sub / (numpy.nansum(numpy.abs(spc_sub)) * Factor_Norm) | |
|
1061 | ||
|
1062 | xSamples = xFrec # the frequency range is taken | |
|
1063 | SPC_Samples[i] = normalized_spc # Normalized SPC values are taken | |
|
1037 | spc_norm = spc.copy() | |
|
1038 | # For each channel | |
|
1039 | for i in range(nChan): | |
|
1040 | spc_sub = spc_norm[i,:] - noise[i] # only the signal power | |
|
1041 | SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x) | |
|
1064 | 1042 | |
|
1065 | 1043 |
|
|
1066 | 1044 | |
|
1067 | 1045 |
|
|
1068 | 1046 | you only fit the curve and don't need the absolute value of height for calculation, |
|
1069 | 1047 | only for estimation of width. for normalization of cross spectra, you need initial, |
|
1070 | 1048 | unnormalized self-spectra With noise. |
|
1071 | 1049 | |
|
1072 | 1050 | Technically, you don't even need to normalize the self-spectra, as you only need the |
|
1073 | 1051 | width of the peak. However, it was left this way. Note that the normalization has a flaw: |
|
1074 | 1052 | due to subtraction of the noise, some values are below zero. Raw "spc" values should be |
|
1075 | 1053 | >= 0, as it is the modulus squared of the signals (complex * it's conjugate) |
|
1076 | 1054 | """ |
|
1077 | ||
|
1078 | SPCMean = numpy.average(SPC_Samples, axis=0) | |
|
1079 | ||
|
1080 | popt = [1e-10,0,1e-10] | |
|
1081 | SPCMoments = self.Moments(SPCMean, xSamples) | |
|
1082 | ||
|
1083 | if dbSNR > SNRlimit and numpy.abs(SPCmoments_vel[1]) < 3: | |
|
1055 | # initial conditions | |
|
1056 | popt = [1e-10,0,1e-10] | |
|
1057 | # Spectra average | |
|
1058 | SPCMean = numpy.average(SPC_Samples,0) | |
|
1059 | # Moments in frequency | |
|
1060 | SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom) | |
|
1061 | ||
|
1062 | # Gauss Fit SPC in frequency domain | |
|
1063 | if dbSNR > SNRlimit: # only if SNR > SNRth | |
|
1084 | 1064 |
|
|
1085 | popt,pcov = curve_fit(self.gaus,xSamples,SPCMean,p0=SPCMoments)#, bounds=(-numpy.inf, [numpy.inf, numpy.inf, 10])). Setting bounds does not make the code faster but only keeps the fit from finding the minimum. | |
|
1086 |
|
|
|
1065 | popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments) | |
|
1066 | if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION | |
|
1087 | 1067 |
|
|
1088 | ||
|
1089 | FitGauss = self.gaus(xSamples,*popt) | |
|
1090 | ||
|
1068 | FitGauss = self.gaus(xSamples_zoom,*popt) | |
|
1091 | 1069 |
|
|
1092 | 1070 |
|
|
1093 | ||
|
1094 | 1071 |
|
|
1095 | 1072 |
|
|
1096 | 1073 | |
|
1097 | ||
|
1098 | ||
|
1099 | 1074 |
|
|
1100 | new section: | |
|
1101 | 1075 | The Spc spectra are used to normalize the crossspectra. Peaks from precipitation |
|
1102 | 1076 | influence the norm which is not desired. First, a range is identified where the |
|
1103 | 1077 | wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area |
|
1104 | 1078 | around it gets cut off and values replaced by mean determined by the boundary |
|
1105 | 1079 | data -> sum_noise (spc is not normalized here, thats why the noise is important) |
|
1106 | 1080 | |
|
1107 | 1081 | The sums are then added and multiplied by range/datapoints, because you need |
|
1108 | 1082 | an integral and not a sum for normalization. |
|
1109 | 1083 | |
|
1110 | 1084 | A norm is found according to Briggs 92. |
|
1111 | 1085 | ''' |
|
1112 | ||
|
1113 | radarWavelength = 0.6741 # meters | |
|
1114 | count_limit_freq = numpy.abs(popt[1]) + widthlimit # Hz, m/s can be also used if velocity is desired abscissa. | |
|
1115 | # count_limit_freq = numpy.max(xFrec) | |
|
1116 | ||
|
1117 | channel_integrals = numpy.zeros(3) | |
|
1118 | ||
|
1119 | for i in range(spc.shape[0]): | |
|
1120 | ''' | |
|
1121 | find the point in array corresponding to count_limit frequency. | |
|
1122 | sum over all frequencies in the range around zero Hz @ math.ceil(N_freq/2) | |
|
1123 | ''' | |
|
1124 | N_freq = numpy.count_nonzero(~numpy.isnan(spc[i,:])) | |
|
1125 | count_limit_int = int(math.ceil( count_limit_freq / numpy.max(xFrec) * (N_freq / 2) )) # gives integer point | |
|
1126 | sum_wind = numpy.nansum( spc[i, (math.ceil(N_freq/2) - count_limit_int) : (math.ceil(N_freq / 2) + count_limit_int)] ) #N_freq/2 is where frequency (velocity) is zero, i.e. middle of spectrum. | |
|
1127 | sum_noise = (numpy.mean(spc[i, :4]) + numpy.mean(spc[i, -6:-2]))/2.0 * (N_freq - 2*count_limit_int) | |
|
1128 | channel_integrals[i] = (sum_noise + sum_wind) * (2*numpy.max(xFrec) / N_freq) | |
|
1129 | ||
|
1130 | ||
|
1131 | cross_integrals_peak = numpy.zeros(3) | |
|
1132 | # cross_integrals_totalrange = numpy.zeros(3) | |
|
1133 | ||
|
1134 | for i in range(spc.shape[0]): | |
|
1135 | ||
|
1136 | cspc_norm = cspc[i,:].copy() # cspc not smoothed here or in previous version | |
|
1137 | ||
|
1086 | # for each pair | |
|
1087 | for i in range(nPair): | |
|
1088 | cspc_norm = cspc[i,:].copy() | |
|
1138 | 1089 |
|
|
1139 | 1090 |
|
|
1140 | ||
|
1141 | cross_integrals_peak[i] = channel_integrals[chan_index0]*channel_integrals[chan_index1] | |
|
1142 | normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_peak[i]) | |
|
1143 | CSPC_Samples[i] = normalized_cspc | |
|
1144 | ||
|
1145 | ''' Finding cross integrals without subtracting any peaks:''' | |
|
1146 | # FactorNorm0 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index0,:])) | |
|
1147 | # FactorNorm1 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index1,:])) | |
|
1148 | # cross_integrals_totalrange[i] = (numpy.nansum(spc[chan_index0,:])) * FactorNorm0 * (numpy.nansum(spc[chan_index1,:])) * FactorNorm1 | |
|
1149 | # normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_totalrange[i]) | |
|
1150 | # CSPC_Samples[i] = normalized_cspc | |
|
1151 | ||
|
1152 | ||
|
1091 | CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x) | |
|
1153 | 1092 |
|
|
1154 | 1093 | |
|
1094 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom), | |
|
1095 | self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom), | |
|
1096 | self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)]) | |
|
1155 | 1097 | |
|
1156 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0]), xSamples), | |
|
1157 | self.Moments(numpy.abs(CSPC_Samples[1]), xSamples), | |
|
1158 | self.Moments(numpy.abs(CSPC_Samples[2]), xSamples)]) | |
|
1159 | ||
|
1160 | ||
|
1161 | '''***Sorting out NaN entries***''' | |
|
1162 | CSPCMask01 = numpy.abs(CSPC_Samples[0]) | |
|
1163 | CSPCMask02 = numpy.abs(CSPC_Samples[1]) | |
|
1164 | CSPCMask12 = numpy.abs(CSPC_Samples[2]) | |
|
1165 | ||
|
1166 | mask01 = ~numpy.isnan(CSPCMask01) | |
|
1167 | mask02 = ~numpy.isnan(CSPCMask02) | |
|
1168 | mask12 = ~numpy.isnan(CSPCMask12) | |
|
1169 | ||
|
1170 | CSPCMask01 = CSPCMask01[mask01] | |
|
1171 | CSPCMask02 = CSPCMask02[mask02] | |
|
1172 | CSPCMask12 = CSPCMask12[mask12] | |
|
1173 | ||
|
1174 | ||
|
1175 | popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10] | |
|
1176 | FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0 | |
|
1098 | popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10] | |
|
1099 | FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)) | |
|
1177 | 1100 | |
|
1178 | 1101 |
|
|
1179 | ||
|
1180 | 1102 |
|
|
1181 |
|
|
|
1103 | popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0]) | |
|
1182 | 1104 |
|
|
1183 | 1105 |
|
|
1184 | ||
|
1185 | popt02,pcov = curve_fit(self.gaus,xSamples[mask02],numpy.abs(CSPCMask02),p0=CSPCmoments[1]) | |
|
1106 | popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1]) | |
|
1186 | 1107 |
|
|
1187 | 1108 |
|
|
1188 | ||
|
1189 | popt12,pcov = curve_fit(self.gaus,xSamples[mask12],numpy.abs(CSPCMask12),p0=CSPCmoments[2]) | |
|
1109 | popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2]) | |
|
1190 | 1110 |
|
|
1191 | 1111 |
|
|
1192 | 1112 | |
|
1193 |
|
|
|
1194 |
|
|
|
1195 |
|
|
|
1196 | ||
|
1113 | FitGauss01 = self.gaus(xSamples_zoom, *popt01) | |
|
1114 | FitGauss02 = self.gaus(xSamples_zoom, *popt02) | |
|
1115 | FitGauss12 = self.gaus(xSamples_zoom, *popt12) | |
|
1197 | 1116 |
|
|
1198 | 1117 |
|
|
1199 | 1118 | |
|
1200 | 1119 | |
|
1201 | 1120 |
|
|
1202 | ||
|
1203 | ||
|
1204 | #Punto en Eje X de la Gaussiana donde se encuentra el centro -- x-axis point of the gaussian where the center is located | |
|
1205 | # -> PointGauCenter | |
|
1121 | # x-axis point of the gaussian where the center is located from GaussFit of spectra | |
|
1206 | 1122 |
|
|
1207 |
|
|
|
1208 |
|
|
|
1123 | ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()] | |
|
1124 | PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0] | |
|
1209 | 1125 | |
|
1210 |
|
|
|
1126 | # Point where e^-1 is located in the gaussian | |
|
1211 | 1127 |
|
|
1212 |
|
|
|
1128 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss" | |
|
1213 | 1129 |
|
|
1214 | ||
|
1215 | Fij = numpy.abs(xSamples[PointFij] - xSamples[PointGauCenter]) | |
|
1130 | Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter]) | |
|
1216 | 1131 | |
|
1217 | 1132 |
|
|
1218 | ||
|
1219 | #GaussCenter = popt[1] #Primer momento 01 | |
|
1220 | GauWidth = popt[2] * 3/2 #Ancho de banda de Gau01 -- Bandwidth of Gau01 TODO why *3/2? | |
|
1133 | GauWidth = popt[2] * 3/2 # Bandwidth of Gau01 | |
|
1221 | 1134 |
|
|
1222 | 1135 |
|
|
1223 | 1136 |
|
|
1224 |
|
|
|
1225 |
|
|
|
1226 |
|
|
|
1227 | ||
|
1228 |
|
|
|
1229 | PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0] | |
|
1230 | ||
|
1137 | # Point in x-axis where the bandwidth is located (min:max) | |
|
1138 | ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()] | |
|
1139 | ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()] | |
|
1140 | PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0] | |
|
1141 | PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0] | |
|
1231 | 1142 |
|
|
1232 | ||
|
1233 | FrecRange = xFrec[ Range[0] : Range[1] ] | |
|
1234 | ||
|
1143 | FrecRange = xSamples_zoom[ Range[0] : Range[1] ] | |
|
1235 | 1144 | |
|
1236 | 1145 |
|
|
1237 | ||
|
1238 | for i in range(1,3): # Changed to only compute two | |
|
1239 | ||
|
1240 | if len(FrecRange) > 5 and len(FrecRange) < spc.shape[1] * 0.3: | |
|
1241 | # PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=1) #used before to smooth phase with N=3 | |
|
1242 | PhaseRange = phase[i,Range[0]:Range[1]].copy() | |
|
1243 | ||
|
1146 | for i in range(nPair): | |
|
1147 | if len(FrecRange) > 5: | |
|
1148 | PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy() | |
|
1244 | 1149 |
|
|
1245 | ||
|
1246 | ||
|
1247 | 1150 |
|
|
1248 | ||
|
1249 | 1151 |
|
|
1250 | 1152 |
|
|
1251 | 1153 |
|
|
1252 | 1154 |
|
|
1253 | ||
|
1254 | 1155 |
|
|
1255 | 1156 |
|
|
1256 | ||
|
1257 | 1157 |
|
|
1258 | 1158 |
|
|
1259 | ||
|
1260 | 1159 |
|
|
1261 | 1160 |
|
|
1262 | 1161 | |
|
1263 | ||
|
1264 | ||
|
1265 | 1162 |
|
|
1266 | 1163 | |
|
1267 | 1164 |
|
|
1268 | 1165 |
|
|
1269 | 1166 | |
|
1270 | 1167 |
|
|
1271 | 1168 |
|
|
1272 | MijResult0 = (-PhaseSlope[1] * cC) / (2*numpy.pi) | |
|
1273 |
|
|
|
1274 | MijResults = numpy.array([MijResult0,MijResult1]) | |
|
1169 | # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]]) | |
|
1170 | # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi) | |
|
1171 | MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi) | |
|
1172 | MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi) | |
|
1173 | # MijResults = numpy.array([MijResult0, MijResult1, MijResult2]) | |
|
1174 | MijResults = numpy.array([MijResult1, MijResult2]) | |
|
1275 | 1175 |
|
|
1276 | 1176 | |
|
1277 | 1177 |
|
|
1278 | 1178 |
|
|
1279 | 1179 |
|
|
1280 | 1180 |
|
|
1281 | 1181 | |
|
1282 |
|
|
|
1283 |
|
|
|
1284 |
|
|
|
1285 | ||
|
1286 | WijResults = numpy.array([WijResult0, WijResult1, WijResult2]) | |
|
1182 | WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) | |
|
1183 | WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC)) | |
|
1184 | WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) | |
|
1185 | WijResults = numpy.array([WijResult01, WijResult02, WijResult12]) | |
|
1287 | 1186 | |
|
1288 | 1187 |
|
|
1289 | 1188 |
|
|
1290 | 1189 | |
|
1291 | 1190 |
|
|
1292 | 1191 |
|
|
1293 |
|
|
|
1294 | ||
|
1295 | Vzon = Vy | |
|
1296 | Vmer = Vx | |
|
1297 | ||
|
1298 | # Vmag=numpy.sqrt(Vzon**2+Vmer**2) # unused | |
|
1299 | # Vang=numpy.arctan2(Vmer,Vzon) # unused | |
|
1300 | ||
|
1301 | ||
|
1302 | ''' using frequency as abscissa. Due to three channels, the offzenith angle is zero | |
|
1303 | and Vrad equal to Vver. formula taken from Briggs 92, figure 4. | |
|
1304 | ''' | |
|
1305 | if numpy.abs( popt[1] ) < 3.5 and len(FrecRange) > 4: | |
|
1306 | Vver = 0.5 * radarWavelength * popt[1] * 100 # *100 to get cm (/s) | |
|
1307 | else: | |
|
1308 | Vver = numpy.NaN | |
|
1309 | ||
|
1192 | (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults) | |
|
1193 | Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq) | |
|
1310 | 1194 |
|
|
1311 | 1195 | |
|
1312 | 1196 |
|
|
1313 | 1197 | |
|
1314 | ||
|
1315 | 1198 |
|
|
1316 | 1199 | |
|
1317 | 1200 |
|
|
1318 | 1201 | Function SpectralMoments() |
|
1319 | 1202 | |
|
1320 | 1203 | Calculates moments (power, mean, standard deviation) and SNR of the signal |
|
1321 | 1204 | |
|
1322 | 1205 | Type of dataIn: Spectra |
|
1323 | 1206 | |
|
1324 | 1207 | Configuration Parameters: |
|
1325 | 1208 | |
|
1326 | 1209 | dirCosx : Cosine director in X axis |
|
1327 | 1210 | dirCosy : Cosine director in Y axis |
|
1328 | 1211 | |
|
1329 | 1212 | elevation : |
|
1330 | 1213 | azimuth : |
|
1331 | 1214 | |
|
1332 | 1215 | Input: |
|
1333 | 1216 | channelList : simple channel list to select e.g. [2,3,7] |
|
1334 | 1217 | self.dataOut.data_pre : Spectral data |
|
1335 | 1218 | self.dataOut.abscissaList : List of frequencies |
|
1336 | 1219 | self.dataOut.noise : Noise level per channel |
|
1337 | 1220 | |
|
1338 | 1221 | Affected: |
|
1339 | 1222 | self.dataOut.moments : Parameters per channel |
|
1340 | 1223 | self.dataOut.data_snr : SNR per channel |
|
1341 | 1224 | |
|
1342 | 1225 | ''' |
|
1343 | 1226 | |
|
1344 | 1227 |
|
|
1345 | 1228 | |
|
1346 | 1229 |
|
|
1347 | 1230 |
|
|
1348 | 1231 |
|
|
1349 | 1232 |
|
|
1350 | 1233 |
|
|
1351 | 1234 | |
|
1352 | 1235 |
|
|
1353 | 1236 |
|
|
1354 | 1237 | |
|
1355 | 1238 |
|
|
1356 | 1239 |
|
|
1357 | 1240 |
|
|
1358 | 1241 |
|
|
1359 | 1242 |
|
|
1360 | 1243 | |
|
1361 | 1244 |
|
|
1362 | 1245 | |
|
1363 | 1246 |
|
|
1364 | 1247 |
|
|
1365 | 1248 | |
|
1366 | 1249 |
|
|
1367 | 1250 |
|
|
1368 | 1251 |
|
|
1369 | 1252 |
|
|
1370 | 1253 | |
|
1371 | 1254 |
|
|
1372 | 1255 |
|
|
1373 | 1256 |
|
|
1374 | 1257 |
|
|
1375 | 1258 |
|
|
1376 | 1259 |
|
|
1377 | 1260 |
|
|
1378 | 1261 | |
|
1379 | 1262 |
|
|
1380 | 1263 | |
|
1381 | 1264 |
|
|
1382 | 1265 |
|
|
1383 | 1266 |
|
|
1384 | 1267 |
|
|
1385 | 1268 |
|
|
1386 | 1269 | |
|
1387 | 1270 |
|
|
1388 | 1271 | |
|
1389 | 1272 |
|
|
1390 | 1273 | |
|
1391 | 1274 |
|
|
1392 | 1275 |
|
|
1393 | 1276 |
|
|
1394 | 1277 |
|
|
1395 | 1278 | |
|
1396 |
|
|
|
1279 | # Smooth | |
|
1397 | 1280 |
|
|
1398 | 1281 |
|
|
1399 | 1282 |
|
|
1400 | 1283 |
|
|
1401 | 1284 | |
|
1402 |
|
|
|
1285 | # Moments Estimation | |
|
1403 | 1286 |
|
|
1404 | 1287 |
|
|
1405 | 1288 |
|
|
1406 | 1289 | |
|
1407 | 1290 |
|
|
1408 | 1291 |
|
|
1409 | 1292 |
|
|
1410 | 1293 | |
|
1411 | 1294 |
|
|
1412 | 1295 |
|
|
1413 | 1296 |
|
|
1414 | 1297 |
|
|
1415 | 1298 |
|
|
1416 | 1299 |
|
|
1417 | 1300 | |
|
1418 | 1301 |
|
|
1419 | 1302 |
|
|
1420 | 1303 |
|
|
1421 | 1304 |
|
|
1422 | 1305 | |
|
1423 | 1306 |
|
|
1424 | 1307 |
|
|
1425 | 1308 | |
|
1426 | 1309 |
|
|
1427 | 1310 | |
|
1428 |
|
|
|
1311 | signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition | |
|
1312 | total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition | |
|
1313 | power = ((spec2[valid] - n0) * fwindow[valid]).sum() | |
|
1429 | 1314 |
|
|
1430 | 1315 |
|
|
1431 | 1316 |
|
|
1432 | 1317 |
|
|
1433 | 1318 |
|
|
1434 | 1319 | |
|
1435 | vec_power[ind] = power | |
|
1320 | # vec_power[ind] = power #D. ScipiΓ³n replaced with the line below | |
|
1321 | vec_power[ind] = total_power | |
|
1436 | 1322 |
|
|
1437 | 1323 |
|
|
1438 | 1324 |
|
|
1439 | 1325 | |
|
1440 | 1326 |
|
|
1441 | 1327 | |
|
1442 | 1328 |
|
|
1443 | 1329 | |
|
1444 | 1330 |
|
|
1445 | 1331 |
|
|
1446 | 1332 |
|
|
1447 | 1333 |
|
|
1448 | 1334 | |
|
1449 | 1335 |
|
|
1450 | 1336 |
|
|
1451 | 1337 |
|
|
1452 | 1338 |
|
|
1453 | 1339 | |
|
1454 | 1340 |
|
|
1455 | 1341 |
|
|
1456 | 1342 |
|
|
1457 | 1343 |
|
|
1458 | 1344 |
|
|
1459 | 1345 |
|
|
1460 | 1346 | |
|
1461 | 1347 |
|
|
1462 | 1348 |
|
|
1463 | 1349 | |
|
1464 | 1350 |
|
|
1465 | 1351 |
|
|
1466 | 1352 | |
|
1467 | 1353 |
|
|
1468 | 1354 |
|
|
1469 | 1355 | |
|
1470 | 1356 |
|
|
1471 | 1357 |
|
|
1472 | 1358 |
|
|
1473 | 1359 | |
|
1474 | 1360 |
|
|
1475 | 1361 |
|
|
1476 | 1362 | Function GetMoments() |
|
1477 | 1363 | |
|
1478 | 1364 | Input: |
|
1479 | 1365 | self.dataOut.data_pre |
|
1480 | 1366 | self.dataOut.abscissaList |
|
1481 | 1367 | self.dataOut.noise |
|
1482 | 1368 | self.dataOut.normFactor |
|
1483 | 1369 | self.dataOut.data_snr |
|
1484 | 1370 | self.dataOut.groupList |
|
1485 | 1371 | self.dataOut.nChannels |
|
1486 | 1372 | |
|
1487 | 1373 | Affected: |
|
1488 | 1374 | self.dataOut.data_param |
|
1489 | 1375 | |
|
1490 | 1376 | ''' |
|
1491 | 1377 |
|
|
1492 | 1378 |
|
|
1493 | 1379 |
|
|
1494 | 1380 |
|
|
1495 | 1381 |
|
|
1496 | 1382 |
|
|
1497 | 1383 |
|
|
1498 | 1384 | |
|
1499 | 1385 |
|
|
1500 | 1386 |
|
|
1501 | 1387 |
|
|
1502 | 1388 |
|
|
1503 | 1389 |
|
|
1504 | 1390 |
|
|
1505 | 1391 |
|
|
1506 | 1392 | |
|
1507 | 1393 |
|
|
1508 | 1394 |
|
|
1509 | 1395 | |
|
1510 | 1396 |
|
|
1511 | 1397 |
|
|
1512 | 1398 | |
|
1513 | 1399 |
|
|
1514 | 1400 |
|
|
1515 | 1401 |
|
|
1516 | 1402 |
|
|
1517 | 1403 | |
|
1518 | 1404 |
|
|
1519 | 1405 |
|
|
1520 | 1406 |
|
|
1521 | 1407 |
|
|
1522 | 1408 |
|
|
1523 | 1409 |
|
|
1524 | 1410 |
|
|
1525 | 1411 |
|
|
1526 | 1412 |
|
|
1527 | 1413 |
|
|
1528 | 1414 |
|
|
1529 | 1415 |
|
|
1530 | 1416 |
|
|
1531 | 1417 |
|
|
1532 | 1418 |
|
|
1533 | 1419 |
|
|
1534 | 1420 |
|
|
1535 | 1421 |
|
|
1536 | 1422 | |
|
1537 | 1423 |
|
|
1538 | 1424 | |
|
1539 | 1425 |
|
|
1540 | 1426 |
|
|
1541 | 1427 |
|
|
1542 | 1428 | |
|
1543 | 1429 |
|
|
1544 | 1430 |
|
|
1545 | 1431 |
|
|
1546 | 1432 |
|
|
1547 | 1433 |
|
|
1548 | 1434 | |
|
1549 | 1435 |
|
|
1550 | 1436 |
|
|
1551 | 1437 | |
|
1552 | 1438 |
|
|
1553 | 1439 |
|
|
1554 | 1440 |
|
|
1555 | 1441 | |
|
1556 | 1442 |
|
|
1557 | 1443 | |
|
1558 | 1444 |
|
|
1559 | 1445 |
|
|
1560 | 1446 |
|
|
1561 | 1447 | |
|
1562 | 1448 |
|
|
1563 | 1449 | |
|
1564 | 1450 |
|
|
1565 | 1451 |
|
|
1566 | 1452 |
|
|
1567 | 1453 | |
|
1568 | 1454 |
|
|
1569 | 1455 | |
|
1570 | 1456 |
|
|
1571 | 1457 | |
|
1572 | 1458 |
|
|
1573 | 1459 |
|
|
1574 | 1460 | Function GetMoments() |
|
1575 | 1461 | |
|
1576 | 1462 | Input: |
|
1577 | 1463 | Output: |
|
1578 | 1464 | Variables modified: |
|
1579 | 1465 | ''' |
|
1580 | 1466 | |
|
1581 | 1467 |
|
|
1582 | 1468 | |
|
1583 | 1469 | |
|
1584 | 1470 |
|
|
1585 | 1471 |
|
|
1586 | 1472 |
|
|
1587 | 1473 | |
|
1588 | 1474 |
|
|
1589 | 1475 |
|
|
1590 | 1476 |
|
|
1591 | 1477 |
|
|
1592 | 1478 | |
|
1593 | 1479 |
|
|
1594 | 1480 |
|
|
1595 | 1481 |
|
|
1596 | 1482 | |
|
1597 | 1483 |
|
|
1598 | 1484 |
|
|
1599 | 1485 | |
|
1600 | 1486 |
|
|
1601 | 1487 |
|
|
1602 | 1488 |
|
|
1603 | 1489 |
|
|
1604 | 1490 |
|
|
1605 | 1491 |
|
|
1606 | 1492 |
|
|
1607 | 1493 |
|
|
1608 | 1494 | |
|
1609 | 1495 |
|
|
1610 | 1496 |
|
|
1611 | 1497 |
|
|
1612 | 1498 | |
|
1613 | 1499 |
|
|
1614 | 1500 |
|
|
1615 | 1501 |
|
|
1616 | 1502 |
|
|
1617 | 1503 |
|
|
1618 | 1504 | |
|
1619 | 1505 |
|
|
1620 | 1506 |
|
|
1621 | 1507 | |
|
1622 | 1508 |
|
|
1623 | 1509 |
|
|
1624 | 1510 |
|
|
1625 | 1511 | |
|
1626 | 1512 |
|
|
1627 | 1513 |
|
|
1628 | 1514 |
|
|
1629 | 1515 |
|
|
1630 | 1516 |
|
|
1631 | 1517 |
|
|
1632 | 1518 |
|
|
1633 | 1519 |
|
|
1634 | 1520 | |
|
1635 | 1521 |
|
|
1636 | 1522 | |
|
1637 | 1523 |
|
|
1638 | 1524 |
|
|
1639 | 1525 | |
|
1640 | 1526 |
|
|
1641 | 1527 |
|
|
1642 | 1528 |
|
|
1643 | 1529 |
|
|
1644 | 1530 |
|
|
1645 | 1531 |
|
|
1646 | 1532 |
|
|
1647 | 1533 |
|
|
1648 | 1534 |
|
|
1649 | 1535 |
|
|
1650 | 1536 |
|
|
1651 | 1537 |
|
|
1652 | 1538 |
|
|
1653 | 1539 |
|
|
1654 | 1540 |
|
|
1655 | 1541 |
|
|
1656 | 1542 |
|
|
1657 | 1543 | |
|
1658 | 1544 |
|
|
1659 | 1545 | |
|
1660 | 1546 |
|
|
1661 | 1547 |
|
|
1662 | 1548 | |
|
1663 | 1549 |
|
|
1664 | 1550 |
|
|
1665 | 1551 |
|
|
1666 | 1552 |
|
|
1667 | 1553 | |
|
1668 | 1554 |
|
|
1669 | 1555 |
|
|
1670 | 1556 |
|
|
1671 | 1557 |
|
|
1672 | 1558 |
|
|
1673 | 1559 |
|
|
1674 | 1560 |
|
|
1675 | 1561 |
|
|
1676 | 1562 |
|
|
1677 | 1563 |
|
|
1678 | 1564 |
|
|
1679 | 1565 |
|
|
1680 | 1566 | |
|
1681 | 1567 |
|
|
1682 | 1568 |
|
|
1683 | 1569 |
|
|
1684 | 1570 |
|
|
1685 | 1571 | |
|
1686 | 1572 |
|
|
1687 | 1573 |
|
|
1688 | 1574 |
|
|
1689 | 1575 | |
|
1690 | 1576 |
|
|
1691 | 1577 | |
|
1692 | 1578 |
|
|
1693 | 1579 |
|
|
1694 | 1580 | |
|
1695 | 1581 |
|
|
1696 | 1582 | |
|
1697 | 1583 |
|
|
1698 | 1584 | |
|
1699 | 1585 |
|
|
1700 | 1586 |
|
|
1701 | 1587 |
|
|
1702 | 1588 |
|
|
1703 | 1589 | |
|
1704 | 1590 |
|
|
1705 | 1591 |
|
|
1706 | 1592 |
|
|
1707 | 1593 |
|
|
1708 | 1594 |
|
|
1709 | 1595 |
|
|
1710 | 1596 |
|
|
1711 | 1597 | |
|
1712 | 1598 |
|
|
1713 | 1599 | |
|
1714 | 1600 |
|
|
1715 | 1601 | |
|
1716 | 1602 |
|
|
1717 | 1603 |
|
|
1718 | 1604 |
|
|
1719 | 1605 | |
|
1720 | 1606 |
|
|
1721 | 1607 | |
|
1722 | 1608 |
|
|
1723 | 1609 | |
|
1724 | 1610 |
|
|
1725 | 1611 | |
|
1726 | 1612 |
|
|
1727 | 1613 | |
|
1728 | 1614 |
|
|
1729 | 1615 |
|
|
1730 | 1616 | |
|
1731 | 1617 |
|
|
1732 | 1618 |
|
|
1733 | 1619 |
|
|
1734 | 1620 |
|
|
1735 | 1621 |
|
|
1736 | 1622 | |
|
1737 | 1623 |
|
|
1738 | 1624 |
|
|
1739 | 1625 | |
|
1740 | 1626 |
|
|
1741 | 1627 |
|
|
1742 | 1628 |
|
|
1743 | 1629 | |
|
1744 | 1630 |
|
|
1745 | 1631 | |
|
1746 | 1632 |
|
|
1747 | 1633 |
|
|
1748 | 1634 |
|
|
1749 | 1635 | |
|
1750 | 1636 |
|
|
1751 | 1637 |
|
|
1752 | 1638 | |
|
1753 | 1639 |
|
|
1754 | 1640 | |
|
1755 | 1641 |
|
|
1756 | 1642 | |
|
1757 | 1643 |
|
|
1758 | 1644 |
|
|
1759 | 1645 |
|
|
1760 | 1646 |
|
|
1761 | 1647 |
|
|
1762 | 1648 |
|
|
1763 | 1649 |
|
|
1764 | 1650 | |
|
1765 | 1651 |
|
|
1766 | 1652 | |
|
1767 | 1653 |
|
|
1768 | 1654 |
|
|
1769 | 1655 |
|
|
1770 | 1656 |
|
|
1771 | 1657 | |
|
1772 | 1658 |
|
|
1773 | 1659 |
|
|
1774 | 1660 | |
|
1775 | 1661 |
|
|
1776 | 1662 |
|
|
1777 | 1663 |
|
|
1778 | 1664 |
|
|
1779 | 1665 | |
|
1780 | 1666 |
|
|
1781 | 1667 |
|
|
1782 | 1668 | |
|
1783 | 1669 |
|
|
1784 | 1670 |
|
|
1785 | 1671 |
|
|
1786 | 1672 |
|
|
1787 | 1673 | |
|
1788 | 1674 |
|
|
1789 | 1675 |
|
|
1790 | 1676 | |
|
1791 | 1677 |
|
|
1792 | 1678 |
|
|
1793 | 1679 |
|
|
1794 | 1680 | |
|
1795 | 1681 |
|
|
1796 | 1682 |
|
|
1797 | 1683 | |
|
1798 | 1684 |
|
|
1799 | 1685 | |
|
1800 | 1686 |
|
|
1801 | 1687 | |
|
1802 | 1688 |
|
|
1803 | 1689 |
|
|
1804 | 1690 |
|
|
1805 | 1691 |
|
|
1806 | 1692 |
|
|
1807 | 1693 |
|
|
1808 | 1694 |
|
|
1809 | 1695 | |
|
1810 | 1696 | |
|
1811 | 1697 |
|
|
1812 | 1698 | |
|
1813 | 1699 |
|
|
1814 | 1700 | |
|
1815 | 1701 |
|
|
1816 | 1702 |
|
|
1817 | 1703 | Function that implements Doppler Beam Swinging (DBS) technique. |
|
1818 | 1704 | |
|
1819 | 1705 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1820 | 1706 | Direction correction (if necessary), Ranges and SNR |
|
1821 | 1707 | |
|
1822 | 1708 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1823 | 1709 | |
|
1824 | 1710 | Parameters affected: Winds, height range, SNR |
|
1825 | 1711 | """ |
|
1826 | 1712 |
|
|
1827 | 1713 |
|
|
1828 | 1714 |
|
|
1829 | 1715 | |
|
1830 | 1716 |
|
|
1831 | 1717 |
|
|
1832 | 1718 |
|
|
1833 | 1719 |
|
|
1834 | 1720 |
|
|
1835 | 1721 |
|
|
1836 | 1722 |
|
|
1837 | 1723 |
|
|
1838 | 1724 |
|
|
1839 | 1725 |
|
|
1840 | 1726 |
|
|
1841 | 1727 |
|
|
1842 | 1728 |
|
|
1843 | 1729 |
|
|
1844 | 1730 |
|
|
1845 | 1731 |
|
|
1846 | 1732 |
|
|
1847 | 1733 |
|
|
1848 | 1734 |
|
|
1849 | 1735 |
|
|
1850 | 1736 |
|
|
1851 | 1737 |
|
|
1852 | 1738 | |
|
1853 | 1739 |
|
|
1854 | 1740 |
|
|
1855 | 1741 |
|
|
1856 | 1742 | |
|
1857 | 1743 |
|
|
1858 | 1744 |
|
|
1859 | 1745 | |
|
1860 | 1746 |
|
|
1861 | 1747 | |
|
1862 | 1748 |
|
|
1863 | 1749 | |
|
1864 | 1750 |
|
|
1865 | 1751 |
|
|
1866 | 1752 |
|
|
1867 | 1753 | |
|
1868 | 1754 |
|
|
1869 | 1755 |
|
|
1870 | 1756 |
|
|
1871 | 1757 |
|
|
1872 | 1758 |
|
|
1873 | 1759 |
|
|
1874 | 1760 |
|
|
1875 | 1761 |
|
|
1876 | 1762 | |
|
1877 | 1763 |
|
|
1878 | 1764 |
|
|
1879 | 1765 |
|
|
1880 | 1766 |
|
|
1881 | 1767 |
|
|
1882 | 1768 | |
|
1883 | 1769 |
|
|
1884 | 1770 |
|
|
1885 | 1771 |
|
|
1886 | 1772 |
|
|
1887 | 1773 |
|
|
1888 | 1774 | |
|
1889 | 1775 |
|
|
1890 | 1776 |
|
|
1891 | 1777 |
|
|
1892 | 1778 |
|
|
1893 | 1779 |
|
|
1894 | 1780 |
|
|
1895 | 1781 |
|
|
1896 | 1782 |
|
|
1897 | 1783 |
|
|
1898 | 1784 |
|
|
1899 | 1785 |
|
|
1900 | 1786 |
|
|
1901 | 1787 |
|
|
1902 | 1788 | |
|
1903 | 1789 | |
|
1904 | 1790 |
|
|
1905 | 1791 | |
|
1906 | 1792 |
|
|
1907 | 1793 |
|
|
1908 | 1794 | |
|
1909 | 1795 |
|
|
1910 | 1796 | |
|
1911 | 1797 |
|
|
1912 | 1798 |
|
|
1913 | 1799 |
|
|
1914 | 1800 |
|
|
1915 | 1801 |
|
|
1916 | 1802 | |
|
1917 | 1803 |
|
|
1918 | 1804 |
|
|
1919 | 1805 | |
|
1920 | 1806 |
|
|
1921 | 1807 |
|
|
1922 | 1808 |
|
|
1923 | 1809 | |
|
1924 | 1810 |
|
|
1925 | 1811 |
|
|
1926 | 1812 | |
|
1927 | 1813 |
|
|
1928 | 1814 | |
|
1929 | 1815 |
|
|
1930 | 1816 |
|
|
1931 | 1817 |
|
|
1932 | 1818 |
|
|
1933 | 1819 |
|
|
1934 | 1820 |
|
|
1935 | 1821 |
|
|
1936 | 1822 |
|
|
1937 | 1823 |
|
|
1938 | 1824 |
|
|
1939 | 1825 |
|
|
1940 | 1826 |
|
|
1941 | 1827 |
|
|
1942 | 1828 |
|
|
1943 | 1829 |
|
|
1944 | 1830 |
|
|
1945 | 1831 |
|
|
1946 | 1832 |
|
|
1947 | 1833 | |
|
1948 | 1834 |
|
|
1949 | 1835 |
|
|
1950 | 1836 | |
|
1951 | 1837 |
|
|
1952 | 1838 | Function that implements Spaced Antenna (SA) technique. |
|
1953 | 1839 | |
|
1954 | 1840 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1955 | 1841 | Direction correction (if necessary), Ranges and SNR |
|
1956 | 1842 | |
|
1957 | 1843 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1958 | 1844 | |
|
1959 | 1845 | Parameters affected: Winds |
|
1960 | 1846 | """ |
|
1961 | 1847 |
|
|
1962 | 1848 |
|
|
1963 | 1849 |
|
|
1964 | 1850 | |
|
1965 | 1851 |
|
|
1966 | 1852 |
|
|
1967 | 1853 |
|
|
1968 | 1854 |
|
|
1969 | 1855 | |
|
1970 | 1856 |
|
|
1971 | 1857 |
|
|
1972 | 1858 |
|
|
1973 | 1859 |
|
|
1974 | 1860 | |
|
1975 | 1861 |
|
|
1976 | 1862 |
|
|
1977 | 1863 |
|
|
1978 | 1864 |
|
|
1979 | 1865 |
|
|
1980 | 1866 |
|
|
1981 | 1867 |
|
|
1982 | 1868 |
|
|
1983 | 1869 |
|
|
1984 | 1870 |
|
|
1985 | 1871 |
|
|
1986 | 1872 | |
|
1987 | 1873 |
|
|
1988 | 1874 |
|
|
1989 | 1875 |
|
|
1990 | 1876 |
|
|
1991 | 1877 |
|
|
1992 | 1878 |
|
|
1993 | 1879 | |
|
1994 | 1880 |
|
|
1995 | 1881 |
|
|
1996 | 1882 |
|
|
1997 | 1883 |
|
|
1998 | 1884 |
|
|
1999 | 1885 |
|
|
2000 | 1886 |
|
|
2001 | 1887 |
|
|
2002 | 1888 |
|
|
2003 | 1889 |
|
|
2004 | 1890 |
|
|
2005 | 1891 |
|
|
2006 | 1892 | |
|
2007 | 1893 |
|
|
2008 | 1894 |
|
|
2009 | 1895 |
|
|
2010 | 1896 |
|
|
2011 | 1897 | |
|
2012 | 1898 |
|
|
2013 | 1899 | |
|
2014 | 1900 |
|
|
2015 | 1901 |
|
|
2016 | 1902 | |
|
2017 | 1903 |
|
|
2018 | 1904 |
|
|
2019 | 1905 |
|
|
2020 | 1906 | |
|
2021 | 1907 |
|
|
2022 | 1908 |
|
|
2023 | 1909 | Function that implements winds estimation technique with detected meteors. |
|
2024 | 1910 | |
|
2025 | 1911 | Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
2026 | 1912 | |
|
2027 | 1913 | Output: Winds estimation (Zonal and Meridional) |
|
2028 | 1914 | |
|
2029 | 1915 | Parameters affected: Winds |
|
2030 | 1916 | ''' |
|
2031 | 1917 |
|
|
2032 | 1918 |
|
|
2033 | 1919 |
|
|
2034 | 1920 |
|
|
2035 | 1921 | |
|
2036 | 1922 |
|
|
2037 | 1923 |
|
|
2038 | 1924 |
|
|
2039 | 1925 | |
|
2040 | 1926 |
|
|
2041 | 1927 |
|
|
2042 | 1928 |
|
|
2043 | 1929 |
|
|
2044 | 1930 |
|
|
2045 | 1931 | |
|
2046 | 1932 |
|
|
2047 | 1933 |
|
|
2048 | 1934 |
|
|
2049 | 1935 | |
|
2050 | 1936 |
|
|
2051 | 1937 |
|
|
2052 | 1938 |
|
|
2053 | 1939 | |
|
2054 | 1940 |
|
|
2055 | 1941 |
|
|
2056 | 1942 |
|
|
2057 | 1943 |
|
|
2058 | 1944 | |
|
2059 | 1945 |
|
|
2060 | 1946 | |
|
2061 | 1947 |
|
|
2062 | 1948 |
|
|
2063 | 1949 |
|
|
2064 | 1950 |
|
|
2065 | 1951 | |
|
2066 | 1952 |
|
|
2067 | 1953 |
|
|
2068 | 1954 |
|
|
2069 | 1955 |
|
|
2070 | 1956 |
|
|
2071 | 1957 | |
|
2072 | 1958 |
|
|
2073 | 1959 |
|
|
2074 | 1960 |
|
|
2075 | 1961 | |
|
2076 | 1962 |
|
|
2077 | 1963 |
|
|
2078 | 1964 | |
|
2079 | 1965 |
|
|
2080 | 1966 | |
|
2081 | 1967 |
|
|
2082 | 1968 |
|
|
2083 | 1969 |
|
|
2084 | 1970 |
|
|
2085 | 1971 | |
|
2086 | 1972 |
|
|
2087 | 1973 |
|
|
2088 | 1974 |
|
|
2089 | 1975 |
|
|
2090 | 1976 |
|
|
2091 | 1977 | |
|
2092 | 1978 |
|
|
2093 | 1979 |
|
|
2094 | 1980 |
|
|
2095 | 1981 |
|
|
2096 | 1982 | |
|
2097 | 1983 |
|
|
2098 | 1984 | |
|
2099 | 1985 |
|
|
2100 | 1986 |
|
|
2101 | 1987 | |
|
2102 | 1988 |
|
|
2103 | 1989 |
|
|
2104 | 1990 |
|
|
2105 | 1991 |
|
|
2106 | 1992 |
|
|
2107 | 1993 |
|
|
2108 | 1994 |
|
|
2109 | 1995 |
|
|
2110 | 1996 |
|
|
2111 | 1997 |
|
|
2112 | 1998 |
|
|
2113 | 1999 |
|
|
2114 | 2000 | |
|
2115 | 2001 |
|
|
2116 | 2002 |
|
|
2117 | 2003 | |
|
2118 | 2004 |
|
|
2119 | 2005 |
|
|
2120 | 2006 |
|
|
2121 | 2007 |
|
|
2122 | 2008 |
|
|
2123 | 2009 |
|
|
2124 | 2010 | |
|
2125 | 2011 |
|
|
2126 | 2012 |
|
|
2127 | 2013 |
|
|
2128 | 2014 |
|
|
2129 | 2015 |
|
|
2130 | 2016 | |
|
2131 | 2017 |
|
|
2132 | 2018 |
|
|
2133 | 2019 |
|
|
2134 | 2020 |
|
|
2135 | 2021 |
|
|
2136 | 2022 | |
|
2137 | 2023 |
|
|
2138 | 2024 |
|
|
2139 | 2025 |
|
|
2140 | 2026 | |
|
2141 | 2027 |
|
|
2142 | 2028 |
|
|
2143 | 2029 |
|
|
2144 | 2030 |
|
|
2145 | 2031 |
|
|
2146 | 2032 | |
|
2147 | 2033 |
|
|
2148 | 2034 |
|
|
2149 | 2035 |
|
|
2150 | 2036 |
|
|
2151 | 2037 | |
|
2152 | 2038 |
|
|
2153 | 2039 |
|
|
2154 | 2040 | |
|
2155 | 2041 |
|
|
2156 | 2042 |
|
|
2157 | 2043 |
|
|
2158 | 2044 | |
|
2159 | 2045 |
|
|
2160 | 2046 |
|
|
2161 | 2047 |
|
|
2162 | 2048 |
|
|
2163 | 2049 | |
|
2164 | 2050 |
|
|
2165 | 2051 | |
|
2166 | 2052 |
|
|
2167 | 2053 |
|
|
2168 | 2054 |
|
|
2169 | 2055 | |
|
2170 | 2056 |
|
|
2171 | 2057 | |
|
2172 | 2058 |
|
|
2173 | 2059 |
|
|
2174 | 2060 |
|
|
2175 | 2061 |
|
|
2176 | 2062 |
|
|
2177 | 2063 |
|
|
2178 | 2064 | |
|
2179 | 2065 |
|
|
2180 | 2066 |
|
|
2181 | 2067 |
|
|
2182 | 2068 |
|
|
2183 | 2069 |
|
|
2184 | 2070 |
|
|
2185 | 2071 |
|
|
2186 | 2072 |
|
|
2187 | 2073 |
|
|
2188 | 2074 |
|
|
2189 | 2075 |
|
|
2190 | 2076 |
|
|
2191 | 2077 |
|
|
2192 | 2078 |
|
|
2193 | 2079 |
|
|
2194 | 2080 |
|
|
2195 | 2081 |
|
|
2196 | 2082 | |
|
2197 | 2083 |
|
|
2198 | 2084 | |
|
2199 | 2085 |
|
|
2200 | 2086 | |
|
2201 | 2087 |
|
|
2202 | 2088 |
|
|
2203 | 2089 | |
|
2204 | 2090 |
|
|
2205 | 2091 |
|
|
2206 | 2092 |
|
|
2207 | 2093 | |
|
2208 | 2094 |
|
|
2209 | 2095 |
|
|
2210 | 2096 |
|
|
2211 | 2097 |
|
|
2212 | 2098 | |
|
2213 | 2099 |
|
|
2214 | 2100 |
|
|
2215 | 2101 | |
|
2216 | 2102 |
|
|
2217 | 2103 |
|
|
2218 | 2104 |
|
|
2219 | 2105 |
|
|
2220 | 2106 |
|
|
2221 | 2107 |
|
|
2222 | 2108 |
|
|
2223 | 2109 | |
|
2224 | 2110 |
|
|
2225 | 2111 |
|
|
2226 | 2112 |
|
|
2227 | 2113 |
|
|
2228 | 2114 |
|
|
2229 | 2115 |
|
|
2230 | 2116 | |
|
2231 | 2117 |
|
|
2232 | 2118 |
|
|
2233 | 2119 | |
|
2234 | 2120 |
|
|
2235 | 2121 |
|
|
2236 | 2122 |
|
|
2237 | 2123 | |
|
2238 | 2124 |
|
|
2239 | 2125 | |
|
2240 | 2126 |
|
|
2241 | 2127 |
|
|
2242 | 2128 |
|
|
2243 | 2129 | |
|
2244 | 2130 |
|
|
2245 | 2131 |
|
|
2246 | 2132 | |
|
2247 | 2133 |
|
|
2248 | 2134 | |
|
2249 | 2135 |
|
|
2250 | 2136 |
|
|
2251 | 2137 |
|
|
2252 | 2138 |
|
|
2253 | 2139 |
|
|
2254 | 2140 | |
|
2255 | 2141 |
|
|
2256 | 2142 |
|
|
2257 | 2143 |
|
|
2258 | 2144 |
|
|
2259 | 2145 | |
|
2260 | 2146 |
|
|
2261 | 2147 | |
|
2262 | 2148 |
|
|
2263 | 2149 | |
|
2264 | 2150 |
|
|
2265 | 2151 |
|
|
2266 | 2152 |
|
|
2267 | 2153 |
|
|
2268 | 2154 |
|
|
2269 | 2155 |
|
|
2270 | 2156 | |
|
2271 | 2157 |
|
|
2272 | 2158 | |
|
2273 | 2159 |
|
|
2274 | 2160 |
|
|
2275 | 2161 |
|
|
2276 | 2162 | |
|
2277 | 2163 |
|
|
2278 | 2164 |
|
|
2279 | 2165 |
|
|
2280 | 2166 | |
|
2281 | 2167 |
|
|
2282 | 2168 | |
|
2283 | 2169 |
|
|
2284 | 2170 |
|
|
2285 | 2171 |
|
|
2286 | 2172 |
|
|
2287 | 2173 |
|
|
2288 | 2174 |
|
|
2289 | 2175 |
|
|
2290 | 2176 |
|
|
2291 | 2177 |
|
|
2292 | 2178 |
|
|
2293 | 2179 |
|
|
2294 | 2180 |
|
|
2295 | 2181 |
|
|
2296 | 2182 |
|
|
2297 | 2183 | |
|
2298 | 2184 |
|
|
2299 | 2185 |
|
|
2300 | 2186 |
|
|
2301 | 2187 |
|
|
2302 | 2188 | |
|
2303 | 2189 |
|
|
2304 | 2190 |
|
|
2305 | 2191 |
|
|
2306 | 2192 |
|
|
2307 | 2193 |
|
|
2308 | 2194 |
|
|
2309 | 2195 |
|
|
2310 | 2196 | |
|
2311 | 2197 |
|
|
2312 | 2198 |
|
|
2313 | 2199 |
|
|
2314 | 2200 | |
|
2315 | 2201 |
|
|
2316 | 2202 |
|
|
2317 | 2203 |
|
|
2318 | 2204 |
|
|
2319 | 2205 | |
|
2320 | 2206 |
|
|
2321 | 2207 |
|
|
2322 | 2208 |
|
|
2323 | 2209 |
|
|
2324 | 2210 | |
|
2325 | 2211 |
|
|
2326 | 2212 |
|
|
2327 | 2213 |
|
|
2328 | 2214 |
|
|
2329 | 2215 |
|
|
2330 | 2216 |
|
|
2331 | 2217 | |
|
2332 | 2218 |
|
|
2333 | 2219 | |
|
2334 | 2220 |
|
|
2335 | 2221 |
|
|
2336 | 2222 |
|
|
2337 | 2223 |
|
|
2338 | 2224 |
|
|
2339 | 2225 | |
|
2340 | 2226 |
|
|
2341 | 2227 | |
|
2342 | 2228 |
|
|
2343 | 2229 |
|
|
2344 | 2230 |
|
|
2345 | 2231 | |
|
2346 | 2232 |
|
|
2347 | 2233 |
|
|
2348 | 2234 | |
|
2349 | 2235 |
|
|
2350 | 2236 | |
|
2351 | 2237 |
|
|
2352 | 2238 |
|
|
2353 | 2239 | |
|
2354 | 2240 |
|
|
2355 | 2241 | |
|
2356 | 2242 |
|
|
2357 | 2243 |
|
|
2358 | 2244 |
|
|
2359 | 2245 | |
|
2360 | 2246 |
|
|
2361 | 2247 |
|
|
2362 | 2248 |
|
|
2363 | 2249 | |
|
2364 | 2250 |
|
|
2365 | 2251 |
|
|
2366 | 2252 |
|
|
2367 | 2253 |
|
|
2368 | 2254 |
|
|
2369 | 2255 |
|
|
2370 | 2256 |
|
|
2371 | 2257 |
|
|
2372 | 2258 |
|
|
2373 | 2259 |
|
|
2374 | 2260 |
|
|
2375 | 2261 |
|
|
2376 | 2262 |
|
|
2377 | 2263 |
|
|
2378 | 2264 |
|
|
2379 | 2265 |
|
|
2380 | 2266 |
|
|
2381 | 2267 |
|
|
2382 | 2268 | |
|
2383 | 2269 |
|
|
2384 | 2270 |
|
|
2385 | 2271 |
|
|
2386 | 2272 |
|
|
2387 | 2273 |
|
|
2388 | 2274 |
|
|
2389 | 2275 |
|
|
2390 | 2276 |
|
|
2391 | 2277 | |
|
2392 | 2278 |
|
|
2393 | 2279 |
|
|
2394 | 2280 | |
|
2395 | 2281 |
|
|
2396 | 2282 |
|
|
2397 | 2283 |
|
|
2398 | 2284 |
|
|
2399 | 2285 |
|
|
2400 | 2286 |
|
|
2401 | 2287 |
|
|
2402 | 2288 |
|
|
2403 | 2289 | |
|
2404 | 2290 |
|
|
2405 | 2291 | |
|
2406 | 2292 |
|
|
2407 | 2293 |
|
|
2408 | 2294 |
|
|
2409 | 2295 | |
|
2410 | 2296 |
|
|
2411 | 2297 |
|
|
2412 | 2298 | |
|
2413 | 2299 |
|
|
2414 | 2300 | |
|
2415 | 2301 |
|
|
2416 | 2302 |
|
|
2417 | 2303 |
|
|
2418 | 2304 | |
|
2419 | 2305 |
|
|
2420 | 2306 |
|
|
2421 | 2307 |
|
|
2422 | 2308 |
|
|
2423 | 2309 |
|
|
2424 | 2310 |
|
|
2425 | 2311 |
|
|
2426 | 2312 |
|
|
2427 | 2313 | |
|
2428 | 2314 |
|
|
2429 | 2315 | |
|
2430 | 2316 |
|
|
2431 | 2317 | |
|
2432 | 2318 |
|
|
2433 | 2319 |
|
|
2434 | 2320 | |
|
2435 | 2321 |
|
|
2436 | 2322 |
|
|
2437 | 2323 |
|
|
2438 | 2324 |
|
|
2439 | 2325 | |
|
2440 | 2326 |
|
|
2441 | 2327 |
|
|
2442 | 2328 | |
|
2443 | 2329 |
|
|
2444 | 2330 |
|
|
2445 | 2331 |
|
|
2446 | 2332 |
|
|
2447 | 2333 | |
|
2448 | 2334 |
|
|
2449 | 2335 |
|
|
2450 | 2336 | |
|
2451 | 2337 |
|
|
2452 | 2338 |
|
|
2453 | 2339 |
|
|
2454 | 2340 |
|
|
2455 | 2341 | |
|
2456 | 2342 |
|
|
2457 | 2343 |
|
|
2458 | 2344 | |
|
2459 | 2345 |
|
|
2460 | 2346 |
|
|
2461 | 2347 |
|
|
2462 | 2348 | |
|
2463 | 2349 |
|
|
2464 | 2350 |
|
|
2465 | 2351 | |
|
2466 | 2352 |
|
|
2467 | 2353 | |
|
2468 | 2354 |
|
|
2469 | 2355 |
|
|
2470 | 2356 |
|
|
2471 | 2357 |
|
|
2472 | 2358 | |
|
2473 | 2359 |
|
|
2474 | 2360 |
|
|
2475 | 2361 |
|
|
2476 | 2362 | |
|
2477 | 2363 |
|
|
2478 | 2364 | |
|
2479 | 2365 |
|
|
2480 | 2366 |
|
|
2481 | 2367 | |
|
2482 | 2368 |
|
|
2483 | 2369 |
|
|
2484 | 2370 | |
|
2485 | 2371 |
|
|
2486 | 2372 |
|
|
2487 | 2373 | |
|
2488 | 2374 |
|
|
2489 | 2375 | |
|
2490 | 2376 |
|
|
2491 | 2377 |
|
|
2492 | 2378 |
|
|
2493 | 2379 | |
|
2494 | 2380 |
|
|
2495 | 2381 |
|
|
2496 | 2382 |
|
|
2497 | 2383 | |
|
2498 | 2384 |
|
|
2499 | 2385 | |
|
2500 | 2386 |
|
|
2501 | 2387 | |
|
2502 | 2388 |
|
|
2503 | 2389 |
|
|
2504 | 2390 |
|
|
2505 | 2391 |
|
|
2506 | 2392 | |
|
2507 | 2393 |
|
|
2508 | 2394 |
|
|
2509 | 2395 |
|
|
2510 | 2396 | |
|
2511 | 2397 |
|
|
2512 | 2398 |
|
|
2513 | 2399 |
|
|
2514 | 2400 |
|
|
2515 | 2401 |
|
|
2516 | 2402 |
|
|
2517 | 2403 |
|
|
2518 | 2404 |
|
|
2519 | 2405 |
|
|
2520 | 2406 | |
|
2521 | 2407 |
|
|
2522 | 2408 | |
|
2523 | 2409 |
|
|
2524 | 2410 |
|
|
2525 | 2411 |
|
|
2526 | 2412 |
|
|
2527 | 2413 |
|
|
2528 | 2414 |
|
|
2529 | 2415 |
|
|
2530 | 2416 |
|
|
2531 | 2417 |
|
|
2532 | 2418 | |
|
2533 | 2419 |
|
|
2534 | 2420 |
|
|
2535 | 2421 |
|
|
2536 | 2422 |
|
|
2537 | 2423 |
|
|
2538 | 2424 |
|
|
2539 | 2425 |
|
|
2540 | 2426 | |
|
2541 | 2427 |
|
|
2542 | 2428 |
|
|
2543 | 2429 |
|
|
2544 | 2430 |
|
|
2545 | 2431 |
|
|
2546 | 2432 |
|
|
2547 | 2433 |
|
|
2548 | 2434 |
|
|
2549 | 2435 |
|
|
2550 | 2436 |
|
|
2551 | 2437 |
|
|
2552 | 2438 |
|
|
2553 | 2439 |
|
|
2554 | 2440 |
|
|
2555 | 2441 | |
|
2556 | 2442 |
|
|
2557 | 2443 |
|
|
2558 | 2444 |
|
|
2559 | 2445 |
|
|
2560 | 2446 |
|
|
2561 | 2447 |
|
|
2562 | 2448 |
|
|
2563 | 2449 |
|
|
2564 | 2450 |
|
|
2565 | 2451 |
|
|
2566 | 2452 |
|
|
2567 | 2453 |
|
|
2568 | 2454 |
|
|
2569 | 2455 |
|
|
2570 | 2456 |
|
|
2571 | 2457 |
|
|
2572 | 2458 |
|
|
2573 | 2459 |
|
|
2574 | 2460 |
|
|
2575 | 2461 |
|
|
2576 | 2462 |
|
|
2577 | 2463 |
|
|
2578 | 2464 |
|
|
2579 | 2465 |
|
|
2580 | 2466 |
|
|
2581 | 2467 |
|
|
2582 | 2468 | |
|
2583 | 2469 |
|
|
2584 | 2470 |
|
|
2585 | 2471 |
|
|
2586 | 2472 |
|
|
2587 | 2473 | |
|
2588 | 2474 |
|
|
2589 | 2475 |
|
|
2590 | 2476 |
|
|
2591 | 2477 |
|
|
2592 | 2478 |
|
|
2593 | 2479 |
|
|
2594 | 2480 |
|
|
2595 | 2481 |
|
|
2596 | 2482 |
|
|
2597 | 2483 |
|
|
2598 | 2484 |
|
|
2599 | 2485 |
|
|
2600 | 2486 |
|
|
2601 | 2487 | |
|
2602 | 2488 |
|
|
2603 | 2489 |
|
|
2604 | 2490 | |
|
2605 | 2491 |
|
|
2606 | 2492 |
|
|
2607 | 2493 |
|
|
2608 | 2494 |
|
|
2609 | 2495 |
|
|
2610 | 2496 |
|
|
2611 | 2497 |
|
|
2612 | 2498 |
|
|
2613 | 2499 | |
|
2614 | 2500 |
|
|
2615 | 2501 |
|
|
2616 | 2502 | |
|
2617 | 2503 |
|
|
2618 | 2504 |
|
|
2619 | 2505 |
|
|
2620 | 2506 |
|
|
2621 | 2507 | |
|
2622 | 2508 |
|
|
2623 | 2509 |
|
|
2624 | 2510 |
|
|
2625 | 2511 |
|
|
2626 | 2512 |
|
|
2627 | 2513 | |
|
2628 | 2514 |
|
|
2629 | 2515 |
|
|
2630 | 2516 |
|
|
2631 | 2517 |
|
|
2632 | 2518 |
|
|
2633 | 2519 |
|
|
2634 | 2520 |
|
|
2635 | 2521 |
|
|
2636 | 2522 | |
|
2637 | 2523 |
|
|
2638 | 2524 |
|
|
2639 | 2525 |
|
|
2640 | 2526 | |
|
2641 | 2527 |
|
|
2642 | 2528 |
|
|
2643 | 2529 |
|
|
2644 | 2530 |
|
|
2645 | 2531 |
|
|
2646 | 2532 | |
|
2647 | 2533 |
|
|
2648 | 2534 |
|
|
2649 | 2535 | |
|
2650 | 2536 |
|
|
2651 | 2537 |
|
|
2652 | 2538 |
|
|
2653 | 2539 | |
|
2654 | 2540 |
|
|
2655 | 2541 |
|
|
2656 | 2542 |
|
|
2657 | 2543 |
|
|
2658 | 2544 |
|
|
2659 | 2545 |
|
|
2660 | 2546 |
|
|
2661 | 2547 |
|
|
2662 | 2548 | |
|
2663 | 2549 |
|
|
2664 | 2550 |
|
|
2665 | 2551 |
|
|
2666 | 2552 |
|
|
2667 | 2553 |
|
|
2668 | 2554 | |
|
2669 | 2555 |
|
|
2670 | 2556 |
|
|
2671 | 2557 |
|
|
2672 | 2558 | |
|
2673 | 2559 |
|
|
2674 | 2560 |
|
|
2675 | 2561 |
|
|
2676 | 2562 | |
|
2677 | 2563 |
|
|
2678 | 2564 |
|
|
2679 | 2565 |
|
|
2680 | 2566 | |
|
2681 | 2567 |
|
|
2682 | 2568 |
|
|
2683 | 2569 | |
|
2684 | 2570 |
|
|
2685 | 2571 |
|
|
2686 | 2572 | |
|
2687 | 2573 |
|
|
2688 | 2574 | |
|
2689 | 2575 |
|
|
2690 | 2576 | |
|
2691 | 2577 |
|
|
2692 | 2578 |
|
|
2693 | 2579 | Function DetectMeteors() |
|
2694 | 2580 | Project developed with paper: |
|
2695 | 2581 | HOLDSWORTH ET AL. 2004 |
|
2696 | 2582 | |
|
2697 | 2583 | Input: |
|
2698 | 2584 | self.dataOut.data_pre |
|
2699 | 2585 | |
|
2700 | 2586 | centerReceiverIndex: From the channels, which is the center receiver |
|
2701 | 2587 | |
|
2702 | 2588 | hei_ref: Height reference for the Beacon signal extraction |
|
2703 | 2589 | tauindex: |
|
2704 | 2590 | predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
2705 | 2591 | |
|
2706 | 2592 | cohDetection: Whether to user Coherent detection or not |
|
2707 | 2593 | cohDet_timeStep: Coherent Detection calculation time step |
|
2708 | 2594 | cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
2709 | 2595 | |
|
2710 | 2596 | noise_timeStep: Noise calculation time step |
|
2711 | 2597 | noise_multiple: Noise multiple to define signal threshold |
|
2712 | 2598 | |
|
2713 | 2599 | multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
2714 | 2600 | multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
2715 | 2601 | |
|
2716 | 2602 | phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
2717 | 2603 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
2718 | 2604 | |
|
2719 | 2605 | hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
2720 | 2606 | hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
2721 | 2607 | azimuth: Azimuth angle correction |
|
2722 | 2608 | |
|
2723 | 2609 | Affected: |
|
2724 | 2610 | self.dataOut.data_param |
|
2725 | 2611 | |
|
2726 | 2612 | Rejection Criteria (Errors): |
|
2727 | 2613 | 0: No error; analysis OK |
|
2728 | 2614 | 1: SNR < SNR threshold |
|
2729 | 2615 | 2: angle of arrival (AOA) ambiguously determined |
|
2730 | 2616 | 3: AOA estimate not feasible |
|
2731 | 2617 | 4: Large difference in AOAs obtained from different antenna baselines |
|
2732 | 2618 | 5: echo at start or end of time series |
|
2733 | 2619 | 6: echo less than 5 examples long; too short for analysis |
|
2734 | 2620 | 7: echo rise exceeds 0.3s |
|
2735 | 2621 | 8: echo decay time less than twice rise time |
|
2736 | 2622 | 9: large power level before echo |
|
2737 | 2623 | 10: large power level after echo |
|
2738 | 2624 | 11: poor fit to amplitude for estimation of decay time |
|
2739 | 2625 | 12: poor fit to CCF phase variation for estimation of radial drift velocity |
|
2740 | 2626 | 13: height unresolvable echo: not valid height within 70 to 110 km |
|
2741 | 2627 | 14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
2742 | 2628 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
2743 | 2629 | 16: oscilatory echo, indicating event most likely not an underdense echo |
|
2744 | 2630 | |
|
2745 | 2631 | 17: phase difference in meteor Reestimation |
|
2746 | 2632 | |
|
2747 | 2633 | Data Storage: |
|
2748 | 2634 | Meteors for Wind Estimation (8): |
|
2749 | 2635 | Utc Time | Range Height |
|
2750 | 2636 | Azimuth Zenith errorCosDir |
|
2751 | 2637 | VelRad errorVelRad |
|
2752 | 2638 | Phase0 Phase1 Phase2 Phase3 |
|
2753 | 2639 | TypeError |
|
2754 | 2640 | |
|
2755 | 2641 | ''' |
|
2756 | 2642 | |
|
2757 | 2643 |
|
|
2758 | 2644 |
|
|
2759 | 2645 |
|
|
2760 | 2646 |
|
|
2761 | 2647 |
|
|
2762 | 2648 |
|
|
2763 | 2649 |
|
|
2764 | 2650 |
|
|
2765 | 2651 | |
|
2766 | 2652 | |
|
2767 | 2653 |
|
|
2768 | 2654 |
|
|
2769 | 2655 |
|
|
2770 | 2656 |
|
|
2771 | 2657 |
|
|
2772 | 2658 |
|
|
2773 | 2659 |
|
|
2774 | 2660 |
|
|
2775 | 2661 |
|
|
2776 | 2662 |
|
|
2777 | 2663 |
|
|
2778 | 2664 |
|
|
2779 | 2665 |
|
|
2780 | 2666 | |
|
2781 | 2667 | |
|
2782 | 2668 |
|
|
2783 | 2669 |
|
|
2784 | 2670 |
|
|
2785 | 2671 | |
|
2786 | 2672 |
|
|
2787 | 2673 |
|
|
2788 | 2674 |
|
|
2789 | 2675 |
|
|
2790 | 2676 |
|
|
2791 | 2677 |
|
|
2792 | 2678 |
|
|
2793 | 2679 |
|
|
2794 | 2680 |
|
|
2795 | 2681 |
|
|
2796 | 2682 |
|
|
2797 | 2683 |
|
|
2798 | 2684 |
|
|
2799 | 2685 |
|
|
2800 | 2686 | |
|
2801 | 2687 |
|
|
2802 | 2688 | |
|
2803 | 2689 |
|
|
2804 | 2690 |
|
|
2805 | 2691 |
|
|
2806 | 2692 |
|
|
2807 | 2693 |
|
|
2808 | 2694 | |
|
2809 | 2695 |
|
|
2810 | 2696 |
|
|
2811 | 2697 | |
|
2812 | 2698 |
|
|
2813 | 2699 |
|
|
2814 | 2700 |
|
|
2815 | 2701 |
|
|
2816 | 2702 |
|
|
2817 | 2703 |
|
|
2818 | 2704 | |
|
2819 | 2705 |
|
|
2820 | 2706 |
|
|
2821 | 2707 |
|
|
2822 | 2708 | |
|
2823 | 2709 |
|
|
2824 | 2710 |
|
|
2825 | 2711 |
|
|
2826 | 2712 |
|
|
2827 | 2713 |
|
|
2828 | 2714 |
|
|
2829 | 2715 |
|
|
2830 | 2716 |
|
|
2831 | 2717 |
|
|
2832 | 2718 | |
|
2833 | 2719 |
|
|
2834 | 2720 |
|
|
2835 | 2721 |
|
|
2836 | 2722 |
|
|
2837 | 2723 |
|
|
2838 | 2724 |
|
|
2839 | 2725 |
|
|
2840 | 2726 |
|
|
2841 | 2727 |
|
|
2842 | 2728 | |
|
2843 | 2729 |
|
|
2844 | 2730 |
|
|
2845 | 2731 |
|
|
2846 | 2732 |
|
|
2847 | 2733 |
|
|
2848 | 2734 |
|
|
2849 | 2735 |
|
|
2850 | 2736 |
|
|
2851 | 2737 |
|
|
2852 | 2738 |
|
|
2853 | 2739 | |
|
2854 | 2740 |
|
|
2855 | 2741 |
|
|
2856 | 2742 |
|
|
2857 | 2743 |
|
|
2858 | 2744 | |
|
2859 | 2745 |
|
|
2860 | 2746 |
|
|
2861 | 2747 |
|
|
2862 | 2748 |
|
|
2863 | 2749 | |
|
2864 | 2750 |
|
|
2865 | 2751 |
|
|
2866 | 2752 |
|
|
2867 | 2753 |
|
|
2868 | 2754 | |
|
2869 | 2755 |
|
|
2870 | 2756 |
|
|
2871 | 2757 |
|
|
2872 | 2758 |
|
|
2873 | 2759 |
|
|
2874 | 2760 |
|
|
2875 | 2761 | |
|
2876 | 2762 |
|
|
2877 | 2763 |
|
|
2878 | 2764 |
|
|
2879 | 2765 | |
|
2880 | 2766 |
|
|
2881 | 2767 |
|
|
2882 | 2768 |
|
|
2883 | 2769 |
|
|
2884 | 2770 |
|
|
2885 | 2771 |
|
|
2886 | 2772 |
|
|
2887 | 2773 |
|
|
2888 | 2774 |
|
|
2889 | 2775 |
|
|
2890 | 2776 |
|
|
2891 | 2777 |
|
|
2892 | 2778 |
|
|
2893 | 2779 |
|
|
2894 | 2780 | |
|
2895 | 2781 |
|
|
2896 | 2782 |
|
|
2897 | 2783 |
|
|
2898 | 2784 | |
|
2899 | 2785 |
|
|
2900 | 2786 |
|
|
2901 | 2787 |
|
|
2902 | 2788 |
|
|
2903 | 2789 | |
|
2904 | 2790 |
|
|
2905 | 2791 | |
|
2906 | 2792 |
|
|
2907 | 2793 | |
|
2908 | 2794 |
|
|
2909 | 2795 |
|
|
2910 | 2796 | |
|
2911 | 2797 |
|
|
2912 | 2798 |
|
|
2913 | 2799 |
|
|
2914 | 2800 |
|
|
2915 | 2801 |
|
|
2916 | 2802 | |
|
2917 | 2803 |
|
|
2918 | 2804 |
|
|
2919 | 2805 |
|
|
2920 | 2806 |
|
|
2921 | 2807 |
|
|
2922 | 2808 |
|
|
2923 | 2809 |
|
|
2924 | 2810 | |
|
2925 | 2811 |
|
|
2926 | 2812 |
|
|
2927 | 2813 |
|
|
2928 | 2814 |
|
|
2929 | 2815 |
|
|
2930 | 2816 |
|
|
2931 | 2817 |
|
|
2932 | 2818 |
|
|
2933 | 2819 | |
|
2934 | 2820 |
|
|
2935 | 2821 | |
|
2936 | 2822 |
|
|
2937 | 2823 |
|
|
2938 | 2824 |
|
|
2939 | 2825 |
|
|
2940 | 2826 | |
|
2941 | 2827 |
|
|
2942 | 2828 |
|
|
2943 | 2829 |
|
|
2944 | 2830 |
|
|
2945 | 2831 |
|
|
2946 | 2832 |
|
|
2947 | 2833 | |
|
2948 | 2834 |
|
|
2949 | 2835 |
|
|
2950 | 2836 |
|
|
2951 | 2837 | |
|
2952 | 2838 |
|
|
2953 | 2839 |
|
|
2954 | 2840 |
|
|
2955 | 2841 |
|
|
2956 | 2842 | |
|
2957 | 2843 |
|
|
2958 | 2844 |
|
|
2959 | 2845 |
|
|
2960 | 2846 |
|
|
2961 | 2847 |
|
|
2962 | 2848 |
|
|
2963 | 2849 |
|
|
2964 | 2850 |
|
|
2965 | 2851 |
|
|
2966 | 2852 |
|
|
2967 | 2853 |
|
|
2968 | 2854 |
|
|
2969 | 2855 |
|
|
2970 | 2856 | |
|
2971 | 2857 |
|
|
2972 | 2858 |
|
|
2973 | 2859 |
|
|
2974 | 2860 |
|
|
2975 | 2861 |
|
|
2976 | 2862 |
|
|
2977 | 2863 | |
|
2978 | 2864 |
|
|
2979 | 2865 | |
|
2980 | 2866 |
|
|
2981 | 2867 |
|
|
2982 | 2868 |
|
|
2983 | 2869 |
|
|
2984 | 2870 |
|
|
2985 | 2871 |
|
|
2986 | 2872 |
|
|
2987 | 2873 |
|
|
2988 | 2874 |
|
|
2989 | 2875 | |
|
2990 | 2876 |
|
|
2991 | 2877 |
|
|
2992 | 2878 |
|
|
2993 | 2879 |
|
|
2994 | 2880 |
|
|
2995 | 2881 |
|
|
2996 | 2882 |
|
|
2997 | 2883 | |
|
2998 | 2884 |
|
|
2999 | 2885 |
|
|
3000 | 2886 | |
|
3001 | 2887 |
|
|
3002 | 2888 |
|
|
3003 | 2889 |
|
|
3004 | 2890 | |
|
3005 | 2891 |
|
|
3006 | 2892 |
|
|
3007 | 2893 | |
|
3008 | 2894 |
|
|
3009 | 2895 |
|
|
3010 | 2896 |
|
|
3011 | 2897 |
|
|
3012 | 2898 |
|
|
3013 | 2899 |
|
|
3014 | 2900 |
|
|
3015 | 2901 |
|
|
3016 | 2902 |
|
|
3017 | 2903 |
|
|
3018 | 2904 |
|
|
3019 | 2905 | |
|
3020 | 2906 |
|
|
3021 | 2907 | |
|
3022 | 2908 |
|
|
3023 | 2909 | |
|
3024 | 2910 |
|
|
3025 | 2911 |
|
|
3026 | 2912 |
|
|
3027 | 2913 | |
|
3028 | 2914 |
|
|
3029 | 2915 |
|
|
3030 | 2916 |
|
|
3031 | 2917 | |
|
3032 | 2918 |
|
|
3033 | 2919 |
|
|
3034 | 2920 |
|
|
3035 | 2921 |
|
|
3036 | 2922 |
|
|
3037 | 2923 |
|
|
3038 | 2924 |
|
|
3039 | 2925 |
|
|
3040 | 2926 |
|
|
3041 | 2927 | |
|
3042 | 2928 |
|
|
3043 | 2929 |
|
|
3044 | 2930 | |
|
3045 | 2931 |
|
|
3046 | 2932 |
|
|
3047 | 2933 |
|
|
3048 | 2934 |
|
|
3049 | 2935 | |
|
3050 | 2936 |
|
|
3051 | 2937 |
|
|
3052 | 2938 |
|
|
3053 | 2939 | |
|
3054 | 2940 |
|
|
3055 | 2941 |
|
|
3056 | 2942 | |
|
3057 | 2943 |
|
|
3058 | 2944 |
|
|
3059 | 2945 |
|
|
3060 | 2946 | |
|
3061 | 2947 |
|
|
3062 | 2948 |
|
|
3063 | 2949 |
|
|
3064 | 2950 |
|
|
3065 | 2951 |
|
|
3066 | 2952 | |
|
3067 | 2953 |
|
|
3068 | 2954 |
|
|
3069 | 2955 | |
|
3070 | 2956 |
|
|
3071 | 2957 | |
|
3072 | 2958 |
|
|
3073 | 2959 |
|
|
3074 | 2960 |
|
|
3075 | 2961 |
|
|
3076 | 2962 | |
|
3077 | 2963 |
|
|
3078 | 2964 |
|
|
3079 | 2965 |
|
|
3080 | 2966 | |
|
3081 | 2967 |
|
|
3082 | 2968 |
|
|
3083 | 2969 | |
|
3084 | 2970 |
|
|
3085 | 2971 | |
|
3086 | 2972 |
|
|
3087 | 2973 |
|
|
3088 | 2974 |
|
|
3089 | 2975 |
|
|
3090 | 2976 | |
|
3091 | 2977 |
|
|
3092 | 2978 |
|
|
3093 | 2979 |
|
|
3094 | 2980 | |
|
3095 | 2981 |
|
|
3096 | 2982 |
|
|
3097 | 2983 |
|
|
3098 | 2984 | |
|
3099 | 2985 |
|
|
3100 | 2986 |
|
|
3101 | 2987 |
|
|
3102 | 2988 |
|
|
3103 | 2989 | |
|
3104 | 2990 |
|
|
3105 | 2991 | |
|
3106 | 2992 |
|
|
3107 | 2993 | |
|
3108 | 2994 |
|
|
3109 | 2995 |
|
|
3110 | 2996 | |
|
3111 | 2997 |
|
|
3112 | 2998 |
|
|
3113 | 2999 |
|
|
3114 | 3000 |
|
|
3115 | 3001 | |
|
3116 | 3002 |
|
|
3117 | 3003 |
|
|
3118 | 3004 |
|
|
3119 | 3005 | |
|
3120 | 3006 |
|
|
3121 | 3007 |
|
|
3122 | 3008 |
|
|
3123 | 3009 |
|
|
3124 | 3010 |
|
|
3125 | 3011 | |
|
3126 | 3012 |
|
|
3127 | 3013 |
|
|
3128 | 3014 |
|
|
3129 | 3015 |
|
|
3130 | 3016 | |
|
3131 | 3017 |
|
|
3132 | 3018 | |
|
3133 | 3019 |
|
|
3134 | 3020 | |
|
3135 | 3021 |
|
|
3136 | 3022 |
|
|
3137 | 3023 |
|
|
3138 | 3024 | |
|
3139 | 3025 |
|
|
3140 | 3026 |
|
|
3141 | 3027 |
|
|
3142 | 3028 | |
|
3143 | 3029 |
|
|
3144 | 3030 |
|
|
3145 | 3031 |
|
|
3146 | 3032 | |
|
3147 | 3033 |
|
|
3148 | 3034 |
|
|
3149 | 3035 |
|
|
3150 | 3036 | |
|
3151 | 3037 |
|
|
3152 | 3038 |
|
|
3153 | 3039 |
|
|
3154 | 3040 |
|
|
3155 | 3041 | |
|
3156 | 3042 |
|
|
3157 | 3043 |
|
|
3158 | 3044 |
|
|
3159 | 3045 |
|
|
3160 | 3046 |
|
|
3161 | 3047 | |
|
3162 | 3048 |
|
|
3163 | 3049 | |
|
3164 | 3050 |
|
|
3165 | 3051 |
|
|
3166 | 3052 | |
|
3167 | 3053 |
|
|
3168 | 3054 |
|
|
3169 | 3055 |
|
|
3170 | 3056 |
|
|
3171 | 3057 |
|
|
3172 | 3058 | |
|
3173 | 3059 |
|
|
3174 | 3060 |
|
|
3175 | 3061 |
|
|
3176 | 3062 | |
|
3177 | 3063 |
|
|
3178 | 3064 |
|
|
3179 | 3065 | |
|
3180 | 3066 |
|
|
3181 | 3067 |
|
|
3182 | 3068 |
|
|
3183 | 3069 |
|
|
3184 | 3070 |
|
|
3185 | 3071 |
|
|
3186 | 3072 |
|
|
3187 | 3073 | |
|
3188 | 3074 |
|
|
3189 | 3075 |
|
|
3190 | 3076 |
|
|
3191 | 3077 |
|
|
3192 | 3078 | |
|
3193 | 3079 |
|
|
3194 | 3080 |
|
|
3195 | 3081 | |
|
3196 | 3082 |
|
|
3197 | 3083 |
|
|
3198 | 3084 |
|
|
3199 | 3085 |
|
|
3200 | 3086 |
|
|
3201 | 3087 |
|
|
3202 | 3088 |
|
|
3203 | 3089 | |
|
3204 | 3090 |
|
|
3205 | 3091 |
|
|
3206 | 3092 |
|
|
3207 | 3093 |
|
|
3208 | 3094 |
|
|
3209 | 3095 |
|
|
3210 | 3096 |
|
|
3211 | 3097 |
|
|
3212 | 3098 | |
|
3213 | 3099 |
|
|
3214 | 3100 |
|
|
3215 | 3101 |
|
|
3216 | 3102 |
|
|
3217 | 3103 |
|
|
3218 | 3104 |
|
|
3219 | 3105 |
|
|
3220 | 3106 |
|
|
3221 | 3107 |
|
|
3222 | 3108 | |
|
3223 | 3109 |
|
|
3224 | 3110 |
|
|
3225 | 3111 |
|
|
3226 | 3112 |
|
|
3227 | 3113 |
|
|
3228 | 3114 |
|
|
3229 | 3115 |
|
|
3230 | 3116 |
|
|
3231 | 3117 |
|
|
3232 | 3118 |
|
|
3233 | 3119 |
|
|
3234 | 3120 |
|
|
3235 | 3121 |
|
|
3236 | 3122 |
|
|
3237 | 3123 | |
|
3238 | 3124 |
|
|
3239 | 3125 |
|
|
3240 | 3126 |
|
|
3241 | 3127 |
|
|
3242 | 3128 |
|
|
3243 | 3129 | |
|
3244 | 3130 | |
|
3245 | 3131 |
|
|
3246 | 3132 |
|
|
3247 | 3133 |
|
|
3248 | 3134 |
|
|
3249 | 3135 | |
|
3250 | 3136 |
|
|
3251 | 3137 |
|
|
3252 | 3138 |
|
|
3253 | 3139 | |
|
3254 | 3140 |
|
|
3255 | 3141 | |
|
3256 | 3142 |
|
|
3257 | 3143 | |
|
3258 | 3144 |
|
|
3259 | 3145 |
|
|
3260 | 3146 |
|
|
3261 | 3147 |
|
|
3262 | 3148 |
|
|
3263 | 3149 |
|
|
3264 | 3150 |
|
|
3265 | 3151 | |
|
3266 | 3152 |
|
|
3267 | 3153 | |
|
3268 | 3154 |
|
|
3269 | 3155 |
|
|
3270 | 3156 |
|
|
3271 | 3157 | |
|
3272 | 3158 |
|
|
3273 | 3159 | |
|
3274 | 3160 |
|
|
3275 | 3161 |
|
|
3276 | 3162 |
|
|
3277 | 3163 | |
|
3278 | 3164 |
|
|
3279 | 3165 |
|
|
3280 | 3166 | |
|
3281 | 3167 |
|
|
3282 | 3168 |
|
|
3283 | 3169 |
|
|
3284 | 3170 |
|
|
3285 | 3171 |
|
|
3286 | 3172 |
|
|
3287 | 3173 |
|
|
3288 | 3174 |
|
|
3289 | 3175 | |
|
3290 | 3176 |
|
|
3291 | 3177 |
|
|
3292 | 3178 |
|
|
3293 | 3179 | |
|
3294 | 3180 |
|
|
3295 | 3181 |
|
|
3296 | 3182 |
|
|
3297 | 3183 |
|
|
3298 | 3184 |
|
|
3299 | 3185 |
|
|
3300 | 3186 |
|
|
3301 | 3187 | |
|
3302 | 3188 | |
|
3303 | 3189 |
|
|
3304 | 3190 |
|
|
3305 | 3191 | |
|
3306 | 3192 | |
|
3307 | 3193 |
|
|
3308 | 3194 | |
|
3309 | 3195 |
|
|
3310 | 3196 | |
|
3311 | 3197 |
|
|
3312 | 3198 | |
|
3313 | 3199 |
|
|
3314 | 3200 |
|
|
3315 | 3201 |
|
|
3316 | 3202 | |
|
3317 | 3203 |
|
|
3318 | 3204 | |
|
3319 | 3205 |
|
|
3320 | 3206 |
|
|
3321 | 3207 |
|
|
3322 | 3208 |
|
|
3323 | 3209 |
|
|
3324 | 3210 |
|
|
3325 | 3211 |
|
|
3326 | 3212 |
|
|
3327 | 3213 |
|
|
3328 | 3214 | |
|
3329 | 3215 |
|
|
3330 | 3216 | |
|
3331 | 3217 |
|
|
3332 | 3218 |
|
|
3333 | 3219 |
|
|
3334 | 3220 |
|
|
3335 | 3221 |
|
|
3336 | 3222 |
|
|
3337 | 3223 | |
|
3338 | 3224 |
|
|
3339 | 3225 |
|
|
3340 | 3226 |
|
|
3341 | 3227 | |
|
3342 | 3228 |
|
|
3343 | 3229 |
|
|
3344 | 3230 | |
|
3345 | 3231 |
|
|
3346 | 3232 |
|
|
3347 | 3233 |
|
|
3348 | 3234 |
|
|
3349 | 3235 | |
|
3350 | 3236 |
|
|
3351 | 3237 |
|
|
3352 | 3238 |
|
|
3353 | 3239 | |
|
3354 | 3240 |
|
|
3355 | 3241 |
|
|
3356 | 3242 |
|
|
3357 | 3243 |
|
|
3358 | 3244 | |
|
3359 | 3245 |
|
|
3360 | 3246 |
|
|
3361 | 3247 |
|
|
3362 | 3248 |
|
|
3363 | 3249 | |
|
3364 | 3250 |
|
|
3365 | 3251 |
|
|
3366 | 3252 |
|
|
3367 | 3253 |
|
|
3368 | 3254 |
|
|
3369 | 3255 | |
|
3370 | 3256 |
|
|
3371 | 3257 |
|
|
3372 | 3258 |
|
|
3373 | 3259 |
|
|
3374 | 3260 | |
|
3375 | 3261 |
|
|
3376 | 3262 |
|
|
3377 | 3263 |
|
|
3378 | 3264 |
|
|
3379 | 3265 |
|
|
3380 | 3266 |
|
|
3381 | 3267 |
|
|
3382 | 3268 | |
|
3383 | 3269 |
|
|
3384 | 3270 |
|
|
3385 | 3271 | |
|
3386 | 3272 |
|
|
3387 | 3273 | |
|
3388 | 3274 |
|
|
3389 | 3275 |
|
|
3390 | 3276 |
|
|
3391 | 3277 | |
|
3392 | 3278 |
|
|
3393 | 3279 |
|
|
3394 | 3280 |
|
|
3395 | 3281 |
|
|
3396 | 3282 |
|
|
3397 | 3283 |
|
|
3398 | 3284 |
|
|
3399 | 3285 |
|
|
3400 | 3286 |
|
|
3401 | 3287 |
|
|
3402 | 3288 |
|
|
3403 | 3289 | |
|
3404 | 3290 |
|
|
3405 | 3291 |
|
|
3406 | 3292 |
|
|
3407 | 3293 | |
|
3408 | 3294 |
|
|
3409 | 3295 |
|
|
3410 | 3296 |
|
|
3411 | 3297 |
|
|
3412 | 3298 |
|
|
3413 | 3299 |
|
|
3414 | 3300 | |
|
3415 | 3301 | |
|
3416 | 3302 |
|
|
3417 | 3303 | |
|
3418 | 3304 |
|
|
3419 | 3305 | |
|
3420 | 3306 |
|
|
3421 | 3307 | |
|
3422 | 3308 |
|
|
3423 | 3309 |
|
|
3424 | 3310 |
|
|
3425 | 3311 |
|
|
3426 | 3312 |
|
|
3427 | 3313 |
|
|
3428 | 3314 |
|
|
3429 | 3315 | |
|
3430 | 3316 |
|
|
3431 | 3317 |
|
|
3432 | 3318 |
|
|
3433 | 3319 | |
|
3434 | 3320 |
|
|
3435 | 3321 |
|
|
3436 | 3322 |
|
|
3437 | 3323 |
|
|
3438 | 3324 | |
|
3439 | 3325 |
|
|
3440 | 3326 |
|
|
3441 | 3327 | |
|
3442 | 3328 |
|
|
3443 | 3329 | |
|
3444 | 3330 |
|
|
3445 | 3331 |
|
|
3446 | 3332 | |
|
3447 | 3333 |
|
|
3448 | 3334 | |
|
3449 | 3335 |
|
|
3450 | 3336 | |
|
3451 | 3337 |
|
|
3452 | 3338 | |
|
3453 | 3339 |
|
|
3454 | 3340 | |
|
3455 | 3341 |
|
|
3456 | 3342 | |
|
3457 | 3343 |
|
|
3458 | 3344 | |
|
3459 | 3345 |
|
|
3460 | 3346 |
|
|
3461 | 3347 | |
|
3462 | 3348 |
|
|
3463 | 3349 |
|
|
3464 | 3350 | |
|
3465 | 3351 |
|
|
3466 | 3352 | |
|
3467 | 3353 |
|
|
3468 | 3354 |
|
|
3469 | 3355 | |
|
3470 | 3356 |
|
|
3471 | 3357 | |
|
3472 | 3358 |
|
|
3473 | 3359 | |
|
3474 | 3360 |
|
|
3475 | 3361 |
|
|
3476 | 3362 |
|
|
3477 | 3363 |
|
|
3478 | 3364 |
|
|
3479 | 3365 |
|
|
3480 | 3366 |
|
|
3481 | 3367 |
|
|
3482 | 3368 |
|
|
3483 | 3369 |
|
|
3484 | 3370 |
|
|
3485 | 3371 | |
|
3486 | 3372 |
|
|
3487 | 3373 |
|
|
3488 | 3374 | |
|
3489 | 3375 |
|
|
3490 | 3376 |
|
|
3491 | 3377 |
|
|
3492 | 3378 |
|
|
3493 | 3379 |
|
|
3494 | 3380 | |
|
3495 | 3381 |
|
|
3496 | 3382 |
|
|
3497 | 3383 |
|
|
3498 | 3384 |
|
|
3499 | 3385 | |
|
3500 | 3386 |
|
|
3501 | 3387 |
|
|
3502 | 3388 |
|
|
3503 | 3389 |
|
|
3504 | 3390 |
|
|
3505 | 3391 | |
|
3506 | 3392 |
|
|
3507 | 3393 |
|
|
3508 | 3394 |
|
|
3509 | 3395 |
|
|
3510 | 3396 |
|
|
3511 | 3397 |
|
|
3512 | 3398 | |
|
3513 | 3399 |
|
|
3514 | 3400 |
|
|
3515 | 3401 | |
|
3516 | 3402 |
|
|
3517 | 3403 |
|
|
3518 | 3404 | |
|
3519 | 3405 |
|
|
3520 | 3406 | |
|
3521 | 3407 |
|
|
3522 | 3408 | |
|
3523 | 3409 |
|
|
3524 | 3410 | |
|
3525 | 3411 |
|
|
3526 | 3412 | |
|
3527 | 3413 |
|
|
3528 | 3414 | |
|
3529 | 3415 |
|
|
3530 | 3416 |
|
|
3531 | 3417 |
|
|
3532 | 3418 |
|
|
3533 | 3419 |
|
|
3534 | 3420 |
|
|
3535 | 3421 |
|
|
3536 | 3422 |
|
|
3537 | 3423 |
|
|
3538 | 3424 | |
|
3539 | 3425 |
|
|
3540 | 3426 |
|
|
3541 | 3427 | |
|
3542 | 3428 |
|
|
3543 | 3429 |
|
|
3544 | 3430 |
|
|
3545 | 3431 |
|
|
3546 | 3432 |
|
|
3547 | 3433 | |
|
3548 | 3434 |
|
|
3549 | 3435 |
|
|
3550 | 3436 | |
|
3551 | 3437 |
|
|
3552 | 3438 |
|
|
3553 | 3439 |
|
|
3554 | 3440 |
|
|
3555 | 3441 |
|
|
3556 | 3442 | |
|
3557 | 3443 |
|
|
3558 | 3444 |
|
|
3559 | 3445 |
|
|
3560 | 3446 |
|
|
3561 | 3447 |
|
|
3562 | 3448 |
|
|
3563 | 3449 |
|
|
3564 | 3450 | |
|
3565 | 3451 |
|
|
3566 | 3452 |
|
|
3567 | 3453 | |
|
3568 | 3454 |
|
|
3569 | 3455 |
|
|
3570 | 3456 |
|
|
3571 | 3457 |
|
|
3572 | 3458 | |
|
3573 | 3459 |
|
|
3574 | 3460 |
|
|
3575 | 3461 |
|
|
3576 | 3462 |
|
|
3577 | 3463 |
|
|
3578 | 3464 |
|
|
3579 | 3465 |
|
|
3580 | 3466 |
|
|
3581 | 3467 |
|
|
3582 | 3468 |
|
|
3583 | 3469 |
|
|
3584 | 3470 |
|
|
3585 | 3471 |
|
|
3586 | 3472 | |
|
3587 | 3473 |
|
|
3588 | 3474 |
|
|
3589 | 3475 | |
|
3590 | 3476 |
|
|
3591 | 3477 |
|
|
3592 | 3478 | |
|
3593 | 3479 |
|
|
3594 | 3480 |
|
|
3595 | 3481 |
|
|
3596 | 3482 | |
|
3597 | 3483 | |
|
3598 | 3484 |
|
|
3599 | 3485 | |
|
3600 | 3486 |
|
|
3601 | 3487 |
|
|
3602 | 3488 |
|
|
3603 | 3489 | |
|
3604 | 3490 |
|
|
3605 | 3491 |
|
|
3606 | 3492 |
|
|
3607 | 3493 |
|
|
3608 | 3494 |
|
|
3609 | 3495 | |
|
3610 | 3496 |
|
|
3611 | 3497 | |
|
3612 | 3498 |
|
|
3613 | 3499 |
|
|
3614 | 3500 | |
|
3615 | 3501 |
|
|
3616 | 3502 |
|
|
3617 | 3503 | |
|
3618 | 3504 |
|
|
3619 | 3505 | |
|
3620 | 3506 |
|
|
3621 | 3507 |
|
|
3622 | 3508 |
|
|
3623 | 3509 | |
|
3624 | 3510 |
|
|
3625 | 3511 |
|
|
3626 | 3512 |
|
|
3627 | 3513 |
|
|
3628 | 3514 |
|
|
3629 | 3515 |
|
|
3630 | 3516 |
|
|
3631 | 3517 |
|
|
3632 | 3518 | |
|
3633 | 3519 |
|
|
3634 | 3520 |
|
|
3635 | 3521 |
|
|
3636 | 3522 |
|
|
3637 | 3523 |
|
|
3638 | 3524 | |
|
3639 | 3525 |
|
|
3640 | 3526 |
|
|
3641 | 3527 |
|
|
3642 | 3528 |
|
|
3643 | 3529 |
|
|
3644 | 3530 |
|
|
3645 | 3531 | |
|
3646 | 3532 |
|
|
3647 | 3533 |
|
|
3648 | 3534 |
|
|
3649 | 3535 |
|
|
3650 | 3536 |
|
|
3651 | 3537 | |
|
3652 | 3538 |
|
|
3653 | 3539 |
|
|
3654 | 3540 |
|
|
3655 | 3541 |
|
|
3656 | 3542 |
|
|
3657 | 3543 |
|
|
3658 | 3544 |
|
|
3659 | 3545 | |
|
3660 | 3546 |
|
|
3661 | 3547 |
|
|
3662 | 3548 |
|
|
3663 | 3549 |
|
|
3664 | 3550 |
|
|
3665 | 3551 |
|
|
3666 | 3552 |
|
|
3667 | 3553 |
|
|
3668 | 3554 |
|
|
3669 | 3555 | |
|
3670 | 3556 | |
|
3671 | 3557 |
|
|
3672 | 3558 | |
|
3673 | 3559 |
|
|
3674 | 3560 | |
|
3675 | 3561 |
|
|
3676 | 3562 | |
|
3677 | 3563 |
|
|
3678 | 3564 | |
|
3679 | 3565 |
|
|
3680 | 3566 | |
|
3681 | 3567 |
|
|
3682 | 3568 |
|
|
3683 | 3569 |
|
|
3684 | 3570 | |
|
3685 | 3571 |
|
|
3686 | 3572 |
|
|
3687 | 3573 |
|
|
3688 | 3574 |
|
|
3689 | 3575 |
|
|
3690 | 3576 |
|
|
3691 | 3577 |
|
|
3692 | 3578 | |
|
3693 | 3579 |
|
|
3694 | 3580 |
|
|
3695 | 3581 |
|
|
3696 | 3582 |
|
|
3697 | 3583 |
|
|
3698 | 3584 | |
|
3699 | 3585 |
|
|
3700 | 3586 |
|
|
3701 | 3587 |
|
|
3702 | 3588 |
|
|
3703 | 3589 | |
|
3704 | 3590 |
|
|
3705 | 3591 | |
|
3706 | 3592 |
|
|
3707 | 3593 | |
|
3708 | 3594 |
|
|
3709 | 3595 |
|
|
3710 | 3596 | |
|
3711 | 3597 |
|
|
3712 | 3598 |
|
|
3713 | 3599 |
|
|
3714 | 3600 | |
|
3715 | 3601 |
|
|
3716 | 3602 |
|
|
3717 | 3603 | |
|
3718 | 3604 |
|
|
3719 | 3605 |
|
|
3720 | 3606 |
|
|
3721 | 3607 |
|
|
3722 | 3608 |
|
|
3723 | 3609 |
|
|
3724 | 3610 |
|
|
3725 | 3611 |
|
|
3726 | 3612 |
|
|
3727 | 3613 |
|
|
3728 | 3614 | |
|
3729 | 3615 |
|
|
3730 | 3616 | |
|
3731 | 3617 |
|
|
3732 | 3618 |
|
|
3733 | 3619 |
|
|
3734 | 3620 | |
|
3735 | 3621 |
|
|
3736 | 3622 |
|
|
3737 | 3623 | |
|
3738 | 3624 | |
|
3739 | 3625 |
|
|
3740 | 3626 |
|
|
3741 | 3627 |
|
|
3742 | 3628 |
|
|
3743 | 3629 |
|
|
3744 | 3630 | |
|
3745 | 3631 |
|
|
3746 | 3632 |
|
|
3747 | 3633 |
|
|
3748 | 3634 |
|
|
3749 | 3635 |
|
|
3750 | 3636 |
|
|
3751 | 3637 | |
|
3752 | 3638 |
|
|
3753 | 3639 |
|
|
3754 | 3640 |
|
|
3755 | 3641 |
|
|
3756 | 3642 |
|
|
3757 | 3643 | |
|
3758 | 3644 |
|
|
3759 | 3645 |
|
|
3760 | 3646 |
|
|
3761 | 3647 |
|
|
3762 | 3648 |
|
|
3763 | 3649 |
|
|
3764 | 3650 |
|
|
3765 | 3651 |
|
|
3766 | 3652 | |
|
3767 | 3653 |
|
|
3768 | 3654 | |
|
3769 | 3655 |
|
|
3770 | 3656 |
|
|
3771 | 3657 |
|
|
3772 | 3658 | |
|
3773 | 3659 |
|
|
3774 | 3660 |
|
|
3775 | 3661 |
|
|
3776 | 3662 | |
|
3777 | 3663 |
|
|
3778 | 3664 | |
|
3779 | 3665 |
|
|
3780 | 3666 | |
|
3781 | 3667 |
|
|
3782 | 3668 |
|
|
3783 | 3669 |
|
|
3784 | 3670 | |
|
3785 | 3671 |
|
|
3786 | 3672 |
|
|
3787 | 3673 | |
|
3788 | 3674 |
|
|
3789 | 3675 | |
|
3790 | 3676 |
|
|
3791 | 3677 |
|
|
3792 | 3678 | |
|
3793 | 3679 |
|
|
3794 | 3680 |
|
|
3795 | 3681 |
|
|
3796 | 3682 | |
|
3797 | 3683 |
|
|
3798 | 3684 |
|
|
3799 | 3685 | |
|
3800 | 3686 |
|
|
3801 | 3687 |
|
|
3802 | 3688 | |
|
3803 | 3689 |
|
|
3804 | 3690 |
|
|
3805 | 3691 |
|
|
3806 | 3692 |
|
|
3807 | 3693 |
|
|
3808 | 3694 |
|
|
3809 | 3695 |
|
|
3810 | 3696 |
|
|
3811 | 3697 |
|
|
3812 | 3698 | |
|
3813 | 3699 |
|
|
3814 | 3700 | |
|
3815 | 3701 |
|
|
3816 | 3702 |
|
|
3817 | 3703 |
|
|
3818 | 3704 | |
|
3819 | 3705 |
|
|
3820 | 3706 |
|
|
3821 | 3707 |
|
|
3822 | 3708 |
|
|
3823 | 3709 |
|
|
3824 | 3710 |
|
|
3825 | 3711 |
|
|
3826 | 3712 | |
|
3827 | 3713 |
|
|
3828 | 3714 |
|
|
3829 | 3715 | |
|
3830 | 3716 |
|
|
3831 | 3717 |
|
|
3832 | 3718 | |
|
3833 | 3719 |
|
|
3834 | 3720 | |
|
3835 | 3721 |
|
|
3836 | 3722 |
|
|
3837 | 3723 |
|
|
3838 | 3724 |
|
|
3839 | 3725 |
|
|
3840 | 3726 |
|
|
3841 | 3727 |
|
|
3842 | 3728 |
|
|
3843 | 3729 | |
|
3844 | 3730 |
|
|
3845 | 3731 |
|
|
3846 | 3732 |
|
|
3847 | 3733 |
|
|
3848 | 3734 |
|
|
3849 | 3735 |
|
|
3850 | 3736 |
|
|
3851 | 3737 | |
|
3852 | 3738 |
|
|
3853 | 3739 |
|
|
3854 | 3740 |
|
|
3855 | 3741 |
|
|
3856 | 3742 |
|
|
3857 | 3743 |
|
|
3858 | 3744 |
|
|
3859 | 3745 |
|
|
3860 | 3746 |
|
|
3861 | 3747 |
|
|
3862 | 3748 |
|
|
3863 | 3749 |
|
|
3864 | 3750 |
|
|
3865 | 3751 |
|
|
3866 | 3752 |
|
|
3867 | 3753 |
|
|
3868 | 3754 |
|
|
3869 | 3755 | |
|
3870 | 3756 |
|
|
3871 | 3757 |
|
|
3872 | 3758 |
|
|
3873 | 3759 |
|
|
3874 | 3760 |
|
|
3875 | 3761 |
|
|
3876 | 3762 |
|
|
3877 | 3763 |
|
|
3878 | 3764 |
|
|
3879 | 3765 |
|
|
3880 | 3766 |
|
|
3881 | 3767 |
|
|
3882 | 3768 |
|
|
3883 | 3769 |
|
|
3884 | 3770 |
|
|
3885 | 3771 |
|
|
3886 | 3772 |
|
|
3887 | 3773 |
|
|
3888 | 3774 |
|
|
3889 | 3775 |
|
|
3890 | 3776 |
|
|
3891 | 3777 |
|
|
3892 | 3778 |
|
|
3893 | 3779 | |
|
3894 | 3780 |
|
|
3895 | 3781 |
|
|
3896 | 3782 | |
|
3897 | 3783 |
|
|
3898 | 3784 |
|
|
3899 | 3785 |
|
|
3900 | 3786 |
|
|
3901 | 3787 |
|
|
3902 | 3788 |
|
|
3903 | 3789 |
|
|
3904 | 3790 |
|
|
3905 | 3791 |
|
|
3906 | 3792 |
|
|
3907 | 3793 |
|
|
3908 | 3794 |
|
|
3909 | 3795 |
|
|
3910 | 3796 |
|
|
3911 | 3797 |
|
|
3912 | 3798 |
|
|
3913 | 3799 |
|
|
3914 | 3800 |
|
|
3915 | 3801 |
|
|
3916 | 3802 |
|
|
3917 | 3803 |
|
|
3918 | 3804 |
|
|
3919 | 3805 |
|
|
3920 | 3806 |
|
|
3921 | 3807 |
|
|
3922 | 3808 |
|
|
3923 | 3809 |
|
|
3924 | 3810 |
|
|
3925 | 3811 |
|
|
3926 | 3812 |
|
|
3927 | 3813 |
|
|
3928 | 3814 |
|
|
3929 | 3815 |
|
|
3930 | 3816 |
|
|
3931 | 3817 |
|
|
3932 | 3818 |
|
|
3933 | 3819 |
|
|
3934 | 3820 |
|
|
3935 | 3821 |
|
|
3936 | 3822 |
|
|
3937 | 3823 |
|
|
3938 | 3824 |
|
|
3939 | 3825 |
|
|
3940 | 3826 |
|
|
3941 | 3827 |
|
|
3942 | 3828 |
|
|
3943 | 3829 |
|
|
3944 | 3830 |
|
|
3945 | 3831 |
|
|
3946 | 3832 |
|
|
3947 | 3833 |
|
|
3948 | 3834 |
|
|
3949 | 3835 |
|
|
3950 | 3836 |
|
|
3951 | 3837 |
|
|
3952 | 3838 |
|
|
3953 | 3839 |
|
|
3954 | 3840 |
|
|
3955 | 3841 |
|
|
3956 | 3842 |
|
|
3957 | 3843 |
|
|
3958 | 3844 |
|
|
3959 | 3845 |
|
|
3960 | 3846 |
|
|
3961 | 3847 |
|
|
3962 | 3848 |
|
|
3963 | 3849 |
|
|
3964 | 3850 |
|
|
3965 | 3851 |
|
|
3966 | 3852 |
|
|
3967 | 3853 |
|
|
3968 | 3854 |
|
|
3969 | 3855 |
|
|
3970 | 3856 |
|
|
3971 | 3857 |
|
|
3972 | 3858 |
|
|
3973 | 3859 |
|
|
3974 | 3860 |
|
|
3975 | 3861 |
|
|
3976 | 3862 |
|
|
3977 | 3863 |
|
|
3978 | 3864 |
|
|
3979 | 3865 |
|
|
3980 | 3866 |
|
|
3981 | 3867 |
|
|
3982 | 3868 |
|
|
3983 | 3869 |
|
|
3984 | 3870 |
|
|
3985 | 3871 |
|
|
3986 | 3872 |
|
|
3987 | 3873 |
|
|
3988 | 3874 |
|
|
3989 | 3875 |
|
|
3990 | 3876 |
|
|
3991 | 3877 |
|
|
3992 | 3878 |
|
|
3993 | 3879 |
|
|
3994 | 3880 |
|
|
3995 | 3881 |
|
|
3996 | 3882 |
|
|
3997 | 3883 |
|
|
3998 | 3884 |
|
|
3999 | 3885 |
|
|
4000 | 3886 |
|
General Comments 0
You need to be logged in to leave comments.
Login now