The requested changes are too big and content was truncated. Show full diff
@@ -1,399 +1,400 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Oct 24, 2016 |
|
3 | 3 | |
|
4 | 4 | @author: roj- LouVD |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import numpy |
|
8 | 8 | import datetime |
|
9 | 9 | import time |
|
10 | 10 | |
|
11 | 11 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation |
|
12 | 12 | from schainpy.model.data.jrodata import Parameters |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class BLTRParametersProc(ProcessingUnit): |
|
16 | 16 | ''' |
|
17 | 17 | Processing unit for BLTR parameters data (winds) |
|
18 | 18 | |
|
19 | 19 | Inputs: |
|
20 | 20 | self.dataOut.nmodes - Number of operation modes |
|
21 | 21 | self.dataOut.nchannels - Number of channels |
|
22 | 22 | self.dataOut.nranges - Number of ranges |
|
23 | 23 | |
|
24 | 24 | self.dataOut.data_snr - SNR array |
|
25 | 25 | self.dataOut.data_output - Zonal, Vertical and Meridional velocity array |
|
26 | 26 | self.dataOut.height - Height array (km) |
|
27 | 27 | self.dataOut.time - Time array (seconds) |
|
28 | 28 | |
|
29 | 29 | self.dataOut.fileIndex -Index of the file currently read |
|
30 | 30 | self.dataOut.lat - Latitude coordinate of BLTR location |
|
31 | 31 | |
|
32 | 32 | self.dataOut.doy - Experiment doy (number of the day in the current year) |
|
33 | 33 | self.dataOut.month - Experiment month |
|
34 | 34 | self.dataOut.day - Experiment day |
|
35 | 35 | self.dataOut.year - Experiment year |
|
36 | 36 | ''' |
|
37 | 37 | |
|
38 | 38 | def __init__(self): |
|
39 | 39 | ''' |
|
40 | 40 | Inputs: None |
|
41 | 41 | ''' |
|
42 | 42 | ProcessingUnit.__init__(self) |
|
43 | 43 | self.dataOut = Parameters() |
|
44 | 44 | |
|
45 | 45 | def setup(self, mode): |
|
46 | 46 | ''' |
|
47 | 47 | ''' |
|
48 | 48 | self.dataOut.mode = mode |
|
49 | 49 | |
|
50 | 50 | def run(self, mode, snr_threshold=None): |
|
51 | 51 | ''' |
|
52 | 52 | Inputs: |
|
53 | 53 | mode = High resolution (0) or Low resolution (1) data |
|
54 | 54 | snr_threshold = snr filter value |
|
55 | 55 | ''' |
|
56 | 56 | |
|
57 | 57 | if not self.isConfig: |
|
58 | 58 | self.setup(mode) |
|
59 | 59 | self.isConfig = True |
|
60 | 60 | |
|
61 | 61 | if self.dataIn.type == 'Parameters': |
|
62 | 62 | self.dataOut.copy(self.dataIn) |
|
63 | 63 | |
|
64 | 64 | self.dataOut.data_param = self.dataOut.data[mode] |
|
65 | 65 | self.dataOut.heightList = self.dataOut.height[0] |
|
66 | 66 | self.dataOut.data_snr = self.dataOut.data_snr[mode] |
|
67 | 67 | SNRavg = numpy.average(self.dataOut.data_snr, axis=0) |
|
68 | 68 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
69 | 69 | self.dataOut.data_snr_avg_db = SNRavgdB.reshape(1, *SNRavgdB.shape) |
|
70 | 70 | |
|
71 | # Censoring Data | |
|
71 | 72 | if snr_threshold is not None: |
|
72 | 73 | for i in range(3): |
|
73 | 74 | self.dataOut.data_param[i][SNRavgdB <= snr_threshold] = numpy.nan |
|
74 | 75 | |
|
75 | 76 | # TODO |
|
76 | 77 | |
|
77 | 78 | class OutliersFilter(Operation): |
|
78 | 79 | |
|
79 | 80 | def __init__(self): |
|
80 | 81 | ''' |
|
81 | 82 | ''' |
|
82 | 83 | Operation.__init__(self) |
|
83 | 84 | |
|
84 | 85 | def run(self, svalue2, method, factor, filter, npoints=9): |
|
85 | 86 | ''' |
|
86 | 87 | Inputs: |
|
87 | 88 | svalue - string to select array velocity |
|
88 | 89 | svalue2 - string to choose axis filtering |
|
89 | 90 | method - 0 for SMOOTH or 1 for MEDIAN |
|
90 | 91 | factor - number used to set threshold |
|
91 | 92 | filter - 1 for data filtering using the standard deviation criteria else 0 |
|
92 | 93 | npoints - number of points for mask filter |
|
93 | 94 | ''' |
|
94 | 95 | |
|
95 | 96 | print(' Outliers Filter {} {} / threshold = {}'.format(svalue, svalue, factor)) |
|
96 | 97 | |
|
97 | 98 | |
|
98 | 99 | yaxis = self.dataOut.heightList |
|
99 | 100 | xaxis = numpy.array([[self.dataOut.utctime]]) |
|
100 | 101 | |
|
101 | 102 | # Zonal |
|
102 | 103 | value_temp = self.dataOut.data_output[0] |
|
103 | 104 | |
|
104 | 105 | # Zonal |
|
105 | 106 | value_temp = self.dataOut.data_output[1] |
|
106 | 107 | |
|
107 | 108 | # Vertical |
|
108 | 109 | value_temp = numpy.transpose(self.dataOut.data_output[2]) |
|
109 | 110 | |
|
110 | 111 | htemp = yaxis |
|
111 | 112 | std = value_temp |
|
112 | 113 | for h in range(len(htemp)): |
|
113 | 114 | nvalues_valid = len(numpy.where(numpy.isfinite(value_temp[h]))[0]) |
|
114 | 115 | minvalid = npoints |
|
115 | 116 | |
|
116 | 117 | #only if valid values greater than the minimum required (10%) |
|
117 | 118 | if nvalues_valid > minvalid: |
|
118 | 119 | |
|
119 | 120 | if method == 0: |
|
120 | 121 | #SMOOTH |
|
121 | 122 | w = value_temp[h] - self.Smooth(input=value_temp[h], width=npoints, edge_truncate=1) |
|
122 | 123 | |
|
123 | 124 | |
|
124 | 125 | if method == 1: |
|
125 | 126 | #MEDIAN |
|
126 | 127 | w = value_temp[h] - self.Median(input=value_temp[h], width = npoints) |
|
127 | 128 | |
|
128 | 129 | dw = numpy.std(w[numpy.where(numpy.isfinite(w))],ddof = 1) |
|
129 | 130 | |
|
130 | 131 | threshold = dw*factor |
|
131 | 132 | value_temp[numpy.where(w > threshold),h] = numpy.nan |
|
132 | 133 | value_temp[numpy.where(w < -1*threshold),h] = numpy.nan |
|
133 | 134 | |
|
134 | 135 | |
|
135 | 136 | #At the end |
|
136 | 137 | if svalue2 == 'inHeight': |
|
137 | 138 | value_temp = numpy.transpose(value_temp) |
|
138 | 139 | output_array[:,m] = value_temp |
|
139 | 140 | |
|
140 | 141 | if svalue == 'zonal': |
|
141 | 142 | self.dataOut.data_output[0] = output_array |
|
142 | 143 | |
|
143 | 144 | elif svalue == 'meridional': |
|
144 | 145 | self.dataOut.data_output[1] = output_array |
|
145 | 146 | |
|
146 | 147 | elif svalue == 'vertical': |
|
147 | 148 | self.dataOut.data_output[2] = output_array |
|
148 | 149 | |
|
149 | 150 | return self.dataOut.data_output |
|
150 | 151 | |
|
151 | 152 | |
|
152 | 153 | def Median(self,input,width): |
|
153 | 154 | ''' |
|
154 | 155 | Inputs: |
|
155 | 156 | input - Velocity array |
|
156 | 157 | width - Number of points for mask filter |
|
157 | 158 | |
|
158 | 159 | ''' |
|
159 | 160 | |
|
160 | 161 | if numpy.mod(width,2) == 1: |
|
161 | 162 | pc = int((width - 1) / 2) |
|
162 | 163 | cont = 0 |
|
163 | 164 | output = [] |
|
164 | 165 | |
|
165 | 166 | for i in range(len(input)): |
|
166 | 167 | if i >= pc and i < len(input) - pc: |
|
167 | 168 | new2 = input[i-pc:i+pc+1] |
|
168 | 169 | temp = numpy.where(numpy.isfinite(new2)) |
|
169 | 170 | new = new2[temp] |
|
170 | 171 | value = numpy.median(new) |
|
171 | 172 | output.append(value) |
|
172 | 173 | |
|
173 | 174 | output = numpy.array(output) |
|
174 | 175 | output = numpy.hstack((input[0:pc],output)) |
|
175 | 176 | output = numpy.hstack((output,input[-pc:len(input)])) |
|
176 | 177 | |
|
177 | 178 | return output |
|
178 | 179 | |
|
179 | 180 | def Smooth(self,input,width,edge_truncate = None): |
|
180 | 181 | ''' |
|
181 | 182 | Inputs: |
|
182 | 183 | input - Velocity array |
|
183 | 184 | width - Number of points for mask filter |
|
184 | 185 | edge_truncate - 1 for truncate the convolution product else |
|
185 | 186 | |
|
186 | 187 | ''' |
|
187 | 188 | |
|
188 | 189 | if numpy.mod(width,2) == 0: |
|
189 | 190 | real_width = width + 1 |
|
190 | 191 | nzeros = width / 2 |
|
191 | 192 | else: |
|
192 | 193 | real_width = width |
|
193 | 194 | nzeros = (width - 1) / 2 |
|
194 | 195 | |
|
195 | 196 | half_width = int(real_width)/2 |
|
196 | 197 | length = len(input) |
|
197 | 198 | |
|
198 | 199 | gate = numpy.ones(real_width,dtype='float') |
|
199 | 200 | norm_of_gate = numpy.sum(gate) |
|
200 | 201 | |
|
201 | 202 | nan_process = 0 |
|
202 | 203 | nan_id = numpy.where(numpy.isnan(input)) |
|
203 | 204 | if len(nan_id[0]) > 0: |
|
204 | 205 | nan_process = 1 |
|
205 | 206 | pb = numpy.zeros(len(input)) |
|
206 | 207 | pb[nan_id] = 1. |
|
207 | 208 | input[nan_id] = 0. |
|
208 | 209 | |
|
209 | 210 | if edge_truncate == True: |
|
210 | 211 | output = numpy.convolve(input/norm_of_gate,gate,mode='same') |
|
211 | 212 | elif edge_truncate == False or edge_truncate == None: |
|
212 | 213 | output = numpy.convolve(input/norm_of_gate,gate,mode='valid') |
|
213 | 214 | output = numpy.hstack((input[0:half_width],output)) |
|
214 | 215 | output = numpy.hstack((output,input[len(input)-half_width:len(input)])) |
|
215 | 216 | |
|
216 | 217 | if nan_process: |
|
217 | 218 | pb = numpy.convolve(pb/norm_of_gate,gate,mode='valid') |
|
218 | 219 | pb = numpy.hstack((numpy.zeros(half_width),pb)) |
|
219 | 220 | pb = numpy.hstack((pb,numpy.zeros(half_width))) |
|
220 | 221 | output[numpy.where(pb > 0.9999)] = numpy.nan |
|
221 | 222 | input[nan_id] = numpy.nan |
|
222 | 223 | return output |
|
223 | 224 | |
|
224 | 225 | def Average(self,aver=0,nhaver=1): |
|
225 | 226 | ''' |
|
226 | 227 | Inputs: |
|
227 | 228 | aver - Indicates the time period over which is averaged or consensus data |
|
228 | 229 | nhaver - Indicates the decimation factor in heights |
|
229 | 230 | |
|
230 | 231 | ''' |
|
231 | 232 | nhpoints = 48 |
|
232 | 233 | |
|
233 | 234 | lat_piura = -5.17 |
|
234 | 235 | lat_huancayo = -12.04 |
|
235 | 236 | lat_porcuya = -5.8 |
|
236 | 237 | |
|
237 | 238 | if '%2.2f'%self.dataOut.lat == '%2.2f'%lat_piura: |
|
238 | 239 | hcm = 3. |
|
239 | 240 | if self.dataOut.year == 2003 : |
|
240 | 241 | if self.dataOut.doy >= 25 and self.dataOut.doy < 64: |
|
241 | 242 | nhpoints = 12 |
|
242 | 243 | |
|
243 | 244 | elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_huancayo: |
|
244 | 245 | hcm = 3. |
|
245 | 246 | if self.dataOut.year == 2003 : |
|
246 | 247 | if self.dataOut.doy >= 25 and self.dataOut.doy < 64: |
|
247 | 248 | nhpoints = 12 |
|
248 | 249 | |
|
249 | 250 | |
|
250 | 251 | elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_porcuya: |
|
251 | 252 | hcm = 5.#2 |
|
252 | 253 | |
|
253 | 254 | pdata = 0.2 |
|
254 | 255 | taver = [1,2,3,4,6,8,12,24] |
|
255 | 256 | t0 = 0 |
|
256 | 257 | tf = 24 |
|
257 | 258 | ntime =(tf-t0)/taver[aver] |
|
258 | 259 | ti = numpy.arange(ntime) |
|
259 | 260 | tf = numpy.arange(ntime) + taver[aver] |
|
260 | 261 | |
|
261 | 262 | |
|
262 | 263 | old_height = self.dataOut.heightList |
|
263 | 264 | |
|
264 | 265 | if nhaver > 1: |
|
265 | 266 | num_hei = len(self.dataOut.heightList)/nhaver/self.dataOut.nmodes |
|
266 | 267 | deltha = 0.05*nhaver |
|
267 | 268 | minhvalid = pdata*nhaver |
|
268 | 269 | for im in range(self.dataOut.nmodes): |
|
269 | 270 | new_height = numpy.arange(num_hei)*deltha + self.dataOut.height[im,0] + deltha/2. |
|
270 | 271 | |
|
271 | 272 | |
|
272 | 273 | data_fHeigths_List = [] |
|
273 | 274 | data_fZonal_List = [] |
|
274 | 275 | data_fMeridional_List = [] |
|
275 | 276 | data_fVertical_List = [] |
|
276 | 277 | startDTList = [] |
|
277 | 278 | |
|
278 | 279 | |
|
279 | 280 | for i in range(ntime): |
|
280 | 281 | height = old_height |
|
281 | 282 | |
|
282 | 283 | start = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(ti[i])) - datetime.timedelta(hours = 5) |
|
283 | 284 | stop = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(tf[i])) - datetime.timedelta(hours = 5) |
|
284 | 285 | |
|
285 | 286 | |
|
286 | 287 | limit_sec1 = time.mktime(start.timetuple()) |
|
287 | 288 | limit_sec2 = time.mktime(stop.timetuple()) |
|
288 | 289 | |
|
289 | 290 | t1 = numpy.where(self.f_timesec >= limit_sec1) |
|
290 | 291 | t2 = numpy.where(self.f_timesec < limit_sec2) |
|
291 | 292 | time_select = [] |
|
292 | 293 | for val_sec in t1[0]: |
|
293 | 294 | if val_sec in t2[0]: |
|
294 | 295 | time_select.append(val_sec) |
|
295 | 296 | |
|
296 | 297 | |
|
297 | 298 | time_select = numpy.array(time_select,dtype = 'int') |
|
298 | 299 | minvalid = numpy.ceil(pdata*nhpoints) |
|
299 | 300 | |
|
300 | 301 | zon_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
301 | 302 | mer_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
302 | 303 | ver_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
303 | 304 | |
|
304 | 305 | if nhaver > 1: |
|
305 | 306 | new_zon_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
306 | 307 | new_mer_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
307 | 308 | new_ver_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
308 | 309 | |
|
309 | 310 | if len(time_select) > minvalid: |
|
310 | 311 | time_average = self.f_timesec[time_select] |
|
311 | 312 | |
|
312 | 313 | for im in range(self.dataOut.nmodes): |
|
313 | 314 | |
|
314 | 315 | for ih in range(self.dataOut.nranges): |
|
315 | 316 | if numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) >= minvalid: |
|
316 | 317 | zon_aver[ih,im] = numpy.nansum(self.f_zon[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) |
|
317 | 318 | |
|
318 | 319 | if numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) >= minvalid: |
|
319 | 320 | mer_aver[ih,im] = numpy.nansum(self.f_mer[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) |
|
320 | 321 | |
|
321 | 322 | if numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) >= minvalid: |
|
322 | 323 | ver_aver[ih,im] = numpy.nansum(self.f_ver[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) |
|
323 | 324 | |
|
324 | 325 | if nhaver > 1: |
|
325 | 326 | for ih in range(num_hei): |
|
326 | 327 | hvalid = numpy.arange(nhaver) + nhaver*ih |
|
327 | 328 | |
|
328 | 329 | if numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) >= minvalid: |
|
329 | 330 | new_zon_aver[ih,im] = numpy.nansum(zon_aver[hvalid,im]) / numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) |
|
330 | 331 | |
|
331 | 332 | if numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) >= minvalid: |
|
332 | 333 | new_mer_aver[ih,im] = numpy.nansum(mer_aver[hvalid,im]) / numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) |
|
333 | 334 | |
|
334 | 335 | if numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) >= minvalid: |
|
335 | 336 | new_ver_aver[ih,im] = numpy.nansum(ver_aver[hvalid,im]) / numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) |
|
336 | 337 | if nhaver > 1: |
|
337 | 338 | zon_aver = new_zon_aver |
|
338 | 339 | mer_aver = new_mer_aver |
|
339 | 340 | ver_aver = new_ver_aver |
|
340 | 341 | height = new_height |
|
341 | 342 | |
|
342 | 343 | |
|
343 | 344 | tstart = time_average[0] |
|
344 | 345 | tend = time_average[-1] |
|
345 | 346 | startTime = time.gmtime(tstart) |
|
346 | 347 | |
|
347 | 348 | year = startTime.tm_year |
|
348 | 349 | month = startTime.tm_mon |
|
349 | 350 | day = startTime.tm_mday |
|
350 | 351 | hour = startTime.tm_hour |
|
351 | 352 | minute = startTime.tm_min |
|
352 | 353 | second = startTime.tm_sec |
|
353 | 354 | |
|
354 | 355 | startDTList.append(datetime.datetime(year,month,day,hour,minute,second)) |
|
355 | 356 | |
|
356 | 357 | |
|
357 | 358 | o_height = numpy.array([]) |
|
358 | 359 | o_zon_aver = numpy.array([]) |
|
359 | 360 | o_mer_aver = numpy.array([]) |
|
360 | 361 | o_ver_aver = numpy.array([]) |
|
361 | 362 | if self.dataOut.nmodes > 1: |
|
362 | 363 | for im in range(self.dataOut.nmodes): |
|
363 | 364 | |
|
364 | 365 | if im == 0: |
|
365 | 366 | h_select = numpy.where(numpy.bitwise_and(height[0,:] >=0,height[0,:] <= hcm,numpy.isfinite(height[0,:]))) |
|
366 | 367 | else: |
|
367 | 368 | h_select = numpy.where(numpy.bitwise_and(height[1,:] > hcm,height[1,:] < 20,numpy.isfinite(height[1,:]))) |
|
368 | 369 | |
|
369 | 370 | |
|
370 | 371 | ht = h_select[0] |
|
371 | 372 | |
|
372 | 373 | o_height = numpy.hstack((o_height,height[im,ht])) |
|
373 | 374 | o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im])) |
|
374 | 375 | o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im])) |
|
375 | 376 | o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im])) |
|
376 | 377 | |
|
377 | 378 | data_fHeigths_List.append(o_height) |
|
378 | 379 | data_fZonal_List.append(o_zon_aver) |
|
379 | 380 | data_fMeridional_List.append(o_mer_aver) |
|
380 | 381 | data_fVertical_List.append(o_ver_aver) |
|
381 | 382 | |
|
382 | 383 | |
|
383 | 384 | else: |
|
384 | 385 | h_select = numpy.where(numpy.bitwise_and(height[0,:] <= hcm,numpy.isfinite(height[0,:]))) |
|
385 | 386 | ht = h_select[0] |
|
386 | 387 | o_height = numpy.hstack((o_height,height[im,ht])) |
|
387 | 388 | o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im])) |
|
388 | 389 | o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im])) |
|
389 | 390 | o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im])) |
|
390 | 391 | |
|
391 | 392 | data_fHeigths_List.append(o_height) |
|
392 | 393 | data_fZonal_List.append(o_zon_aver) |
|
393 | 394 | data_fMeridional_List.append(o_mer_aver) |
|
394 | 395 | data_fVertical_List.append(o_ver_aver) |
|
395 | 396 | |
|
396 | 397 | |
|
397 | 398 | return startDTList, data_fHeigths_List, data_fZonal_List, data_fMeridional_List, data_fVertical_List |
|
398 | 399 | |
|
399 | 400 |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now