@@ -68,6 +68,7 class BLTRParametersProc(ProcessingUnit): | |||||
68 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
68 | SNRavgdB = 10*numpy.log10(SNRavg) | |
69 | self.dataOut.data_snr_avg_db = SNRavgdB.reshape(1, *SNRavgdB.shape) |
|
69 | self.dataOut.data_snr_avg_db = SNRavgdB.reshape(1, *SNRavgdB.shape) | |
70 |
|
70 | |||
|
71 | # Censoring Data | |||
71 | if snr_threshold is not None: |
|
72 | if snr_threshold is not None: | |
72 | for i in range(3): |
|
73 | for i in range(3): | |
73 | self.dataOut.data_param[i][SNRavgdB <= snr_threshold] = numpy.nan |
|
74 | self.dataOut.data_param[i][SNRavgdB <= snr_threshold] = numpy.nan |
This diff has been collapsed as it changes many lines, (1164 lines changed) Show them Hide them | |||||
@@ -27,7 +27,6 import matplotlib.pyplot as plt | |||||
27 |
|
27 | |||
28 |
|
|
28 | SPEED_OF_LIGHT = 299792458 | |
29 |
|
29 | |||
30 |
|
||||
31 |
|
|
30 | '''solving pickling issue''' | |
32 |
|
31 | |||
33 |
|
|
32 | def _pickle_method(method): | |
@@ -129,7 +128,7 class ParametersProc(ProcessingUnit): | |||||
129 |
|
128 | |||
130 |
|
|
129 | if self.dataIn.type == "Spectra": | |
131 |
|
130 | |||
132 |
|
|
131 | self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc] | |
133 |
|
|
132 | self.dataOut.data_spc = self.dataIn.data_spc | |
134 |
|
|
133 | self.dataOut.data_cspc = self.dataIn.data_cspc | |
135 |
|
|
134 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
@@ -199,13 +198,11 def target(tups): | |||||
199 |
|
198 | |||
200 |
|
|
199 | return obj.FitGau(args) | |
201 |
|
200 | |||
|
201 | class RemoveWideGC(Operation): | |||
|
202 | ''' This class remove the wide clutter and replace it with a simple interpolation points | |||
|
203 | This mainly applies to CLAIRE radar | |||
202 |
|
204 | |||
203 | class SpectralFilters(Operation): |
|
205 | ClutterWidth : Width to look for the clutter peak | |
204 |
|
||||
205 | '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR |
|
|||
206 |
|
||||
207 | LimitR : It is the limit in m/s of Rainfall |
|
|||
208 | LimitW : It is the limit in m/s for Winds |
|
|||
209 |
|
206 | |||
210 | Input: |
|
207 | Input: | |
211 |
|
208 | |||
@@ -215,91 +212,111 class SpectralFilters(Operation): | |||||
215 | Affected: |
|
212 | Affected: | |
216 |
|
213 | |||
217 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind |
|
214 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |
218 | self.dataOut.spcparam_range : Used in SpcParamPlot |
|
|||
219 | self.dataOut.SPCparam : Used in PrecipitationProc |
|
|||
220 |
|
||||
221 |
|
215 | |||
|
216 | Written by D. Scipión 25.02.2021 | |||
222 | ''' |
|
217 | ''' | |
223 |
|
||||
224 |
|
|
218 | def __init__(self): | |
225 |
|
|
219 | Operation.__init__(self) | |
226 |
|
|
220 | self.i = 0 | |
227 |
|
221 | self.ich = 0 | ||
228 | def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5): |
|
222 | self.ir = 0 | |
229 |
|
223 | |||
230 |
|
224 | def run(self, dataOut, ClutterWidth=2.5): | ||
231 | #Limite de vientos |
|
225 | # print ('Entering RemoveWideGC ... ') | |
232 | LimitR = PositiveLimit |
|
|||
233 | LimitN = NegativeLimit |
|
|||
234 |
|
226 | |||
235 |
|
|
227 | self.spc = dataOut.data_pre[0].copy() | |
236 |
|
|
228 | self.spc_out = dataOut.data_pre[0].copy() | |
237 |
|
||||
238 | self.Num_Hei = self.spc.shape[2] |
|
|||
239 | self.Num_Bin = self.spc.shape[1] |
|
|||
240 |
|
|
229 | self.Num_Chn = self.spc.shape[0] | |
|
230 | self.Num_Hei = self.spc.shape[2] | |||
|
231 | VelRange = dataOut.spc_range[2][:-1] | |||
|
232 | dv = VelRange[1]-VelRange[0] | |||
|
233 | ||||
|
234 | # Find the velocities that corresponds to zero | |||
|
235 | gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth)) | |||
|
236 | ||||
|
237 | # Removing novalid data from the spectra | |||
|
238 | for ich in range(self.Num_Chn) : | |||
|
239 | for ir in range(self.Num_Hei) : | |||
|
240 | # Estimate the noise at each range | |||
|
241 | HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt) | |||
|
242 | ||||
|
243 | # Removing the noise floor at each range | |||
|
244 | novalid = numpy.where(self.spc[ich,:,ir] < HSn) | |||
|
245 | self.spc[ich,novalid,ir] = HSn | |||
|
246 | ||||
|
247 | junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn) | |||
|
248 | j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0)) | |||
|
249 | j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0)) | |||
|
250 | if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) : | |||
|
251 | continue | |||
|
252 | junk3 = numpy.squeeze(numpy.diff(j1index)) | |||
|
253 | junk4 = numpy.squeeze(numpy.diff(j2index)) | |||
|
254 | ||||
|
255 | valleyindex = j2index[numpy.where(junk4>1)] | |||
|
256 | peakindex = j1index[numpy.where(junk3>1)] | |||
|
257 | ||||
|
258 | isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv)) | |||
|
259 | if numpy.size(isvalid) == 0 : | |||
|
260 | continue | |||
|
261 | if numpy.size(isvalid) >1 : | |||
|
262 | vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir]) | |||
|
263 | isvalid = isvalid[vindex] | |||
|
264 | ||||
|
265 | # clutter peak | |||
|
266 | gcpeak = peakindex[isvalid] | |||
|
267 | vl = numpy.where(valleyindex < gcpeak) | |||
|
268 | if numpy.size(vl) == 0: | |||
|
269 | continue | |||
|
270 | gcvl = valleyindex[vl[0][-1]] | |||
|
271 | vr = numpy.where(valleyindex > gcpeak) | |||
|
272 | if numpy.size(vr) == 0: | |||
|
273 | continue | |||
|
274 | gcvr = valleyindex[vr[0][0]] | |||
|
275 | ||||
|
276 | # Removing the clutter | |||
|
277 | interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]]) | |||
|
278 | gcindex = gc_values[gcvl+1:gcvr-1] | |||
|
279 | self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir]) | |||
|
280 | ||||
|
281 | dataOut.data_pre[0] = self.spc_out | |||
|
282 | #print ('Leaving RemoveWideGC ... ') | |||
|
283 | return dataOut | |||
241 |
|
284 | |||
242 | VelRange = dataOut.spc_range[2] |
|
285 | class SpectralFilters(Operation): | |
243 | TimeRange = dataOut.spc_range[1] |
|
286 | ''' This class allows to replace the novalid values with noise for each channel | |
244 | FrecRange = dataOut.spc_range[0] |
|
287 | This applies to CLAIRE RADAR | |
245 |
|
||||
246 | Vmax= 2*numpy.max(dataOut.spc_range[2]) |
|
|||
247 | Tmax= 2*numpy.max(dataOut.spc_range[1]) |
|
|||
248 | Fmax= 2*numpy.max(dataOut.spc_range[0]) |
|
|||
249 |
|
||||
250 | Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()] |
|
|||
251 | Breaker1R=numpy.where(VelRange == Breaker1R) |
|
|||
252 |
|
||||
253 | Delta = self.Num_Bin/2 - Breaker1R[0] |
|
|||
254 |
|
||||
255 |
|
||||
256 | '''Reacomodando SPCrange''' |
|
|||
257 |
|
||||
258 | VelRange=numpy.roll(VelRange,-(int(self.Num_Bin/2)) ,axis=0) |
|
|||
259 |
|
||||
260 | VelRange[-(int(self.Num_Bin/2)):]+= Vmax |
|
|||
261 |
|
288 | |||
262 | FrecRange=numpy.roll(FrecRange,-(int(self.Num_Bin/2)),axis=0) |
|
289 | PositiveLimit : RightLimit of novalid data | |
|
290 | NegativeLimit : LeftLimit of novalid data | |||
263 |
|
291 | |||
264 | FrecRange[-(int(self.Num_Bin/2)):]+= Fmax |
|
292 | Input: | |
265 |
|
293 | |||
266 | TimeRange=numpy.roll(TimeRange,-(int(self.Num_Bin/2)),axis=0) |
|
294 | self.dataOut.data_pre : SPC and CSPC | |
|
295 | self.dataOut.spc_range : To select wind and rainfall velocities | |||
267 |
|
296 | |||
268 | TimeRange[-(int(self.Num_Bin/2)):]+= Tmax |
|
297 | Affected: | |
269 |
|
298 | |||
270 | ''' ------------------ ''' |
|
299 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |
271 |
|
300 | |||
272 | Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()] |
|
301 | Written by D. Scipión 29.01.2021 | |
273 | Breaker2R=numpy.where(VelRange == Breaker2R) |
|
302 | ''' | |
|
303 | def __init__(self): | |||
|
304 | Operation.__init__(self) | |||
|
305 | self.i = 0 | |||
|
306 | ||||
|
307 | def run(self, dataOut, ): | |||
274 |
|
308 | |||
|
309 | self.spc = dataOut.data_pre[0].copy() | |||
|
310 | self.Num_Chn = self.spc.shape[0] | |||
|
311 | VelRange = dataOut.spc_range[2] | |||
275 |
|
312 | |||
276 | SPCroll = numpy.roll(self.spc,-(int(self.Num_Bin/2)) ,axis=1) |
|
313 | # novalid corresponds to data within the Negative and PositiveLimit | |
|
314 | ||||
277 |
|
315 | |||
278 | SPCcut = SPCroll.copy() |
|
316 | # Removing novalid data from the spectra | |
279 |
|
|
317 | for i in range(self.Num_Chn): | |
280 |
|
318 | self.spc[i,novalid,:] = dataOut.noise[i] | ||
281 | SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i] |
|
319 | dataOut.data_pre[0] = self.spc | |
282 | SPCcut[i,-int(Delta):,:] = dataOut.noise[i] |
|
|||
283 |
|
||||
284 | SPCcut[i]=SPCcut[i]- dataOut.noise[i] |
|
|||
285 | SPCcut[ numpy.where( SPCcut<0 ) ] = 1e-20 |
|
|||
286 |
|
||||
287 | SPCroll[i]=SPCroll[i]-dataOut.noise[i] |
|
|||
288 | SPCroll[ numpy.where( SPCroll<0 ) ] = 1e-20 |
|
|||
289 |
|
||||
290 | SPC_ch1 = SPCroll |
|
|||
291 |
|
||||
292 | SPC_ch2 = SPCcut |
|
|||
293 |
|
||||
294 | SPCparam = (SPC_ch1, SPC_ch2, self.spc) |
|
|||
295 | dataOut.SPCparam = numpy.asarray(SPCparam) |
|
|||
296 |
|
||||
297 |
|
||||
298 | dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1]) |
|
|||
299 |
|
||||
300 | dataOut.spcparam_range[2]=VelRange |
|
|||
301 | dataOut.spcparam_range[1]=TimeRange |
|
|||
302 | dataOut.spcparam_range[0]=FrecRange |
|
|||
303 |
|
|
320 | return dataOut | |
304 |
|
321 | |||
305 |
|
|
322 | class GaussianFit(Operation): | |
@@ -321,135 +338,186 class GaussianFit(Operation): | |||||
321 |
|
|
338 | self.i=0 | |
322 |
|
339 | |||
323 |
|
340 | |||
324 |
|
|
341 | # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
|
342 | def run(self, dataOut, SNRdBlimit=-9, method='generalized'): | |||
325 |
|
|
343 | """This routine will find a couple of generalized Gaussians to a power spectrum | |
|
344 | methods: generalized, squared | |||
326 | input: spc |
|
345 | input: spc | |
327 | output: |
|
346 | output: | |
328 |
|
|
347 | noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1 | |
329 | """ |
|
348 | """ | |
330 |
|
349 | print ('Entering ',method,' double Gaussian fit') | ||
331 |
|
|
350 | self.spc = dataOut.data_pre[0].copy() | |
332 |
|
|
351 | self.Num_Hei = self.spc.shape[2] | |
333 |
|
|
352 | self.Num_Bin = self.spc.shape[1] | |
334 |
|
|
353 | self.Num_Chn = self.spc.shape[0] | |
335 | Vrange = dataOut.abscissaList |
|
|||
336 |
|
||||
337 | GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
|||
338 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
|||
339 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
|||
340 | SPC_ch1[:] = numpy.NaN |
|
|||
341 | SPC_ch2[:] = numpy.NaN |
|
|||
342 |
|
||||
343 |
|
354 | |||
344 |
|
|
355 | start_time = time.time() | |
345 |
|
356 | |||
346 | noise_ = dataOut.spc_noise[0].copy() |
|
|||
347 |
|
||||
348 |
|
||||
349 |
|
|
357 | pool = Pool(processes=self.Num_Chn) | |
350 |
|
|
358 | args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)] | |
351 |
|
|
359 | objs = [self for __ in range(self.Num_Chn)] | |
352 |
|
|
360 | attrs = list(zip(objs, args)) | |
353 |
|
|
361 | DGauFitParam = pool.map(target, attrs) | |
354 | dataOut.SPCparam = numpy.asarray(SPCparam) |
|
362 | # Parameters: | |
355 |
|
363 | # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power | ||
356 | ''' Parameters: |
|
364 | dataOut.DGauFitParams = numpy.asarray(DGauFitParam) | |
357 | 1. Amplitude |
|
365 | ||
358 | 2. Shift |
|
366 | # Double Gaussian Curves | |
359 | 3. Width |
|
367 | gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
360 | 4. Power |
|
368 | gau0[:] = numpy.NaN | |
361 | ''' |
|
369 | gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
|
370 | gau1[:] = numpy.NaN | |||
|
371 | x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1))) | |||
|
372 | for iCh in range(self.Num_Chn): | |||
|
373 | N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin)) | |||
|
374 | N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin)) | |||
|
375 | A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin)) | |||
|
376 | A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin)) | |||
|
377 | v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin)) | |||
|
378 | v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin)) | |||
|
379 | s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin)) | |||
|
380 | s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin)) | |||
|
381 | if method == 'genealized': | |||
|
382 | p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin)) | |||
|
383 | p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin)) | |||
|
384 | elif method == 'squared': | |||
|
385 | p0 = 2. | |||
|
386 | p1 = 2. | |||
|
387 | gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0 | |||
|
388 | gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1 | |||
|
389 | dataOut.GaussFit0 = gau0 | |||
|
390 | dataOut.GaussFit1 = gau1 | |||
|
391 | ||||
|
392 | print('Leaving ',method ,' double Gaussian fit') | |||
|
393 | return dataOut | |||
362 |
|
394 | |||
363 |
|
|
395 | def FitGau(self, X): | |
364 |
|
396 | # print('Entering FitGau') | ||
365 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X |
|
397 | # Assigning the variables | |
366 |
|
398 | Vrange, ch, wnoise, num_intg, SNRlimit = X | ||
367 | SPCparam = [] |
|
399 | # Noise Limits | |
368 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
400 | noisebl = wnoise * 0.9 | |
369 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
401 | noisebh = wnoise * 1.1 | |
370 | SPC_ch1[:] = 0#numpy.NaN |
|
402 | # Radar Velocity | |
371 | SPC_ch2[:] = 0#numpy.NaN |
|
403 | Va = max(Vrange) | |
372 |
|
404 | deltav = Vrange[1] - Vrange[0] | ||
373 |
|
405 | x = numpy.arange(self.Num_Bin) | ||
374 |
|
406 | |||
|
407 | # print ('stop 0') | |||
|
408 | ||||
|
409 | # 5 parameters, 2 Gaussians | |||
|
410 | DGauFitParam = numpy.zeros([5, self.Num_Hei,2]) | |||
|
411 | DGauFitParam[:] = numpy.NaN | |||
|
412 | ||||
|
413 | # SPCparam = [] | |||
|
414 | # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
415 | # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
416 | # SPC_ch1[:] = 0 #numpy.NaN | |||
|
417 | # SPC_ch2[:] = 0 #numpy.NaN | |||
|
418 | # print ('stop 1') | |||
375 |
|
|
419 | for ht in range(self.Num_Hei): | |
376 |
|
420 | # print (ht) | ||
377 |
|
421 | # print ('stop 2') | ||
|
422 | # Spectra at each range | |||
378 |
|
|
423 | spc = numpy.asarray(self.spc)[ch,:,ht] | |
|
424 | snr = ( spc.mean() - wnoise ) / wnoise | |||
|
425 | snrdB = 10.*numpy.log10(snr) | |||
379 |
|
426 | |||
|
427 | #print ('stop 3') | |||
|
428 | if snrdB < SNRlimit : | |||
|
429 | # snr = numpy.NaN | |||
|
430 | # SPC_ch1[:,ht] = 0#numpy.NaN | |||
|
431 | # SPC_ch1[:,ht] = 0#numpy.NaN | |||
|
432 | # SPCparam = (SPC_ch1,SPC_ch2) | |||
|
433 | # print ('SNR less than SNRth') | |||
|
434 | continue | |||
|
435 | # wnoise = hildebrand_sekhon(spc,num_intg) | |||
|
436 | # print ('stop 2.01') | |||
380 |
|
|
437 | ############################################# | |
381 |
|
|
438 | # normalizing spc and noise | |
382 |
|
|
439 | # This part differs from gg1 | |
383 |
|
|
440 | # spc_norm_max = max(spc) #commented by D. Scipión 19.03.2021 | |
384 |
|
|
441 | #spc = spc / spc_norm_max | |
385 |
|
|
442 | # pnoise = pnoise #/ spc_norm_max #commented by D. Scipión 19.03.2021 | |
386 |
|
|
443 | ############################################# | |
387 |
|
444 | |||
|
445 | # print ('stop 2.1') | |||
388 |
|
|
446 | fatspectra=1.0 | |
389 |
|
447 | # noise per channel.... we might want to use the noise at each range | ||
390 | wnoise = noise_ #/ spc_norm_max |
|
448 | ||
|
449 | # wnoise = noise_ #/ spc_norm_max #commented by D. Scipión 19.03.2021 | |||
391 |
|
|
450 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |
392 |
|
|
451 | #if wnoise>1.1*pnoise: # to be tested later | |
393 |
|
|
452 | # wnoise=pnoise | |
394 |
|
|
453 | # noisebl = wnoise*0.9 | |
395 |
|
|
454 | # noisebh = wnoise*1.1 | |
396 |
|
|
455 | spc = spc - wnoise # signal | |
397 |
|
456 | |||
398 | minx=numpy.argmin(spc) |
|
457 | # print ('stop 2.2') | |
|
458 | minx = numpy.argmin(spc) | |||
399 |
|
|
459 | #spcs=spc.copy() | |
400 |
|
|
460 | spcs = numpy.roll(spc,-minx) | |
401 |
|
|
461 | cum = numpy.cumsum(spcs) | |
402 |
|
|
462 | # tot_noise = wnoise * self.Num_Bin #64; | |
403 |
|
463 | |||
404 | snr = sum(spcs)/tot_noise |
|
464 | # print ('stop 2.3') | |
405 | snrdB=10.*numpy.log10(snr) |
|
465 | # snr = sum(spcs) / tot_noise | |
406 |
|
466 | # snrdB = 10.*numpy.log10(snr) | ||
407 | if snrdB < SNRlimit : |
|
467 | #print ('stop 3') | |
408 | snr = numpy.NaN |
|
468 | # if snrdB < SNRlimit : | |
409 |
|
|
469 | # snr = numpy.NaN | |
410 |
|
|
470 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
411 | SPCparam = (SPC_ch1,SPC_ch2) |
|
471 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
412 | continue |
|
472 | # SPCparam = (SPC_ch1,SPC_ch2) | |
|
473 | # print ('SNR less than SNRth') | |||
|
474 | # continue | |||
413 |
|
475 | |||
414 |
|
476 | |||
415 |
|
|
477 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |
416 |
|
|
478 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
417 |
|
479 | # print ('stop 4') | ||
418 |
|
|
480 | cummax = max(cum) | |
419 |
|
|
481 | epsi = 0.08 * fatspectra # cumsum to narrow down the energy region | |
420 |
|
|
482 | cumlo = cummax * epsi | |
421 |
|
|
483 | cumhi = cummax * (1-epsi) | |
422 |
|
|
484 | powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
423 |
|
485 | |||
424 |
|
486 | # print ('stop 5') | ||
425 |
|
|
487 | if len(powerindex) < 1:# case for powerindex 0 | |
|
488 | # print ('powerindex < 1') | |||
426 |
|
|
489 | continue | |
427 |
|
|
490 | powerlo = powerindex[0] | |
428 |
|
|
491 | powerhi = powerindex[-1] | |
429 |
|
|
492 | powerwidth = powerhi-powerlo | |
430 |
|
493 | if powerwidth <= 1: | ||
431 | firstpeak=powerlo+powerwidth/10.# first gaussian energy location |
|
494 | # print('powerwidth <= 1') | |
432 | secondpeak=powerhi-powerwidth/10.#second gaussian energy location |
|
495 | continue | |
433 | midpeak=(firstpeak+secondpeak)/2. |
|
496 | ||
434 | firstamp=spcs[int(firstpeak)] |
|
497 | # print ('stop 6') | |
435 | secondamp=spcs[int(secondpeak)] |
|
498 | firstpeak = powerlo + powerwidth/10.# first gaussian energy location | |
436 | midamp=spcs[int(midpeak)] |
|
499 | secondpeak = powerhi - powerwidth/10. #second gaussian energy location | |
|
500 | midpeak = (firstpeak + secondpeak)/2. | |||
|
501 | firstamp = spcs[int(firstpeak)] | |||
|
502 | secondamp = spcs[int(secondpeak)] | |||
|
503 | midamp = spcs[int(midpeak)] | |||
437 |
|
504 | |||
438 | x=numpy.arange( self.Num_Bin ) |
|
505 | y_data = spc + wnoise | |
439 | y_data=spc+wnoise |
|
|||
440 |
|
506 | |||
441 |
|
|
507 | ''' single Gaussian ''' | |
442 |
|
|
508 | shift0 = numpy.mod(midpeak+minx, self.Num_Bin ) | |
443 |
|
|
509 | width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
444 |
|
|
510 | power0 = 2. | |
445 |
|
|
511 | amplitude0 = midamp | |
446 |
|
|
512 | state0 = [shift0,width0,amplitude0,power0,wnoise] | |
447 |
|
|
513 | bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
448 |
|
|
514 | lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True) | |
449 |
|
515 | # print ('stop 7.1') | ||
450 | chiSq1=lsq1[1]; |
|
516 | # print (bnds) | |
451 |
|
517 | |||
452 |
|
518 | chiSq1=lsq1[1] | ||
|
519 | ||||
|
520 | # print ('stop 8') | |||
453 |
|
|
521 | if fatspectra<1.0 and powerwidth<4: | |
454 |
|
|
522 | choice=0 | |
455 |
|
|
523 | Amplitude0=lsq1[0][2] | |
@@ -463,127 +531,142 class GaussianFit(Operation): | |||||
463 |
|
|
531 | noise=lsq1[0][4] | |
464 |
|
|
532 | #return (numpy.array([shift0,width0,Amplitude0,p0]), | |
465 |
|
|
533 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |
466 |
|
534 | |||
467 | ''' two gaussians ''' |
|
535 | # print ('stop 9') | |
|
536 | ''' two Gaussians ''' | |||
468 |
|
|
537 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |
469 |
|
|
538 | shift0 = numpy.mod(firstpeak+minx, self.Num_Bin ) | |
470 |
|
|
539 | shift1 = numpy.mod(secondpeak+minx, self.Num_Bin ) | |
471 |
|
|
540 | width0 = powerwidth/6. | |
472 |
|
|
541 | width1 = width0 | |
473 |
|
|
542 | power0 = 2. | |
474 |
|
|
543 | power1 = power0 | |
475 |
|
|
544 | amplitude0 = firstamp | |
476 |
|
|
545 | amplitude1 = secondamp | |
477 |
|
|
546 | state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
478 |
|
|
547 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
479 |
|
|
548 | bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
480 |
|
|
549 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |
481 |
|
550 | |||
|
551 | # print ('stop 10') | |||
482 |
|
|
552 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) | |
483 |
|
553 | |||
|
554 | # print ('stop 11') | |||
|
555 | chiSq2 = lsq2[1] | |||
484 |
|
556 | |||
485 | chiSq2=lsq2[1]; |
|
557 | # print ('stop 12') | |
486 |
|
||||
487 |
|
||||
488 |
|
558 | |||
489 |
|
|
559 | oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
490 |
|
560 | |||
|
561 | # print ('stop 13') | |||
491 |
|
|
562 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error | |
492 |
|
|
563 | if oneG: | |
493 |
|
|
564 | choice = 0 | |
494 |
|
|
565 | else: | |
495 |
|
|
566 | w1 = lsq2[0][1]; w2 = lsq2[0][5] | |
496 |
|
|
567 | a1 = lsq2[0][2]; a2 = lsq2[0][6] | |
497 |
|
|
568 | p1 = lsq2[0][3]; p2 = lsq2[0][7] | |
498 |
|
|
569 | s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1 | |
499 |
|
|
570 | s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2 | |
500 |
|
|
571 | gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling | |
501 |
|
572 | |||
502 |
|
|
573 | if gp1>gp2: | |
503 |
|
|
574 | if a1>0.7*a2: | |
504 |
|
|
575 | choice = 1 | |
505 |
|
|
576 | else: | |
506 |
|
|
577 | choice = 2 | |
507 |
|
|
578 | elif gp2>gp1: | |
508 |
|
|
579 | if a2>0.7*a1: | |
509 |
|
|
580 | choice = 2 | |
510 |
|
|
581 | else: | |
511 |
|
|
582 | choice = 1 | |
512 |
|
|
583 | else: | |
513 |
|
|
584 | choice = numpy.argmax([a1,a2])+1 | |
514 |
|
|
585 | #else: | |
515 |
|
|
586 | #choice=argmin([std2a,std2b])+1 | |
516 |
|
587 | |||
517 |
|
|
588 | else: # with low SNR go to the most energetic peak | |
518 |
|
|
589 | choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
519 |
|
590 | |||
520 |
|
591 | # print ('stop 14') | ||
521 |
|
|
592 | shift0 = lsq2[0][0] | |
522 |
|
|
593 | vel0 = Vrange[0] + shift0 * deltav | |
523 |
|
|
594 | shift1 = lsq2[0][4] | |
524 |
|
|
595 | # vel1=Vrange[0] + shift1 * deltav | |
525 |
|
596 | |||
526 |
|
|
597 | # max_vel = 1.0 | |
527 |
|
598 | # Va = max(Vrange) | ||
|
599 | # deltav = Vrange[1]-Vrange[0] | |||
|
600 | # print ('stop 15') | |||
528 |
|
|
601 | #first peak will be 0, second peak will be 1 | |
529 |
|
|
602 | # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.Scipión 19.03.2021 | |
530 | shift0=lsq2[0][0] |
|
603 | if vel0 > -Va and vel0 < Va : #first peak is in the correct range | |
531 |
|
|
604 | shift0 = lsq2[0][0] | |
532 |
|
|
605 | width0 = lsq2[0][1] | |
533 |
|
|
606 | Amplitude0 = lsq2[0][2] | |
534 |
|
607 | p0 = lsq2[0][3] | ||
535 | shift1=lsq2[0][4] |
|
608 | ||
536 |
|
|
609 | shift1 = lsq2[0][4] | |
537 |
|
|
610 | width1 = lsq2[0][5] | |
538 |
|
|
611 | Amplitude1 = lsq2[0][6] | |
539 |
|
|
612 | p1 = lsq2[0][7] | |
|
613 | noise = lsq2[0][8] | |||
540 |
|
|
614 | else: | |
541 |
|
|
615 | shift1 = lsq2[0][0] | |
542 |
|
|
616 | width1 = lsq2[0][1] | |
543 |
|
|
617 | Amplitude1 = lsq2[0][2] | |
544 |
|
|
618 | p1 = lsq2[0][3] | |
545 |
|
619 | |||
546 |
|
|
620 | shift0 = lsq2[0][4] | |
547 |
|
|
621 | width0 = lsq2[0][5] | |
548 |
|
|
622 | Amplitude0 = lsq2[0][6] | |
549 |
|
|
623 | p0 = lsq2[0][7] | |
550 |
|
|
624 | noise = lsq2[0][8] | |
551 |
|
625 | |||
552 |
|
|
626 | if Amplitude0<0.05: # in case the peak is noise | |
553 |
|
|
627 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] | |
554 |
|
|
628 | if Amplitude1<0.05: | |
555 |
|
|
629 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] | |
556 |
|
630 | |||
557 |
|
631 | # print ('stop 16 ') | ||
558 |
|
|
632 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0) | |
559 |
|
|
633 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1) | |
560 |
|
|
634 | # SPCparam = (SPC_ch1,SPC_ch2) | |
561 |
|
635 | |||
562 |
|
636 | DGauFitParam[0,ht,0] = noise | ||
563 | return GauSPC |
|
637 | DGauFitParam[0,ht,1] = noise | |
|
638 | DGauFitParam[1,ht,0] = Amplitude0 | |||
|
639 | DGauFitParam[1,ht,1] = Amplitude1 | |||
|
640 | DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav | |||
|
641 | DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav | |||
|
642 | DGauFitParam[3,ht,0] = width0 * deltav | |||
|
643 | DGauFitParam[3,ht,1] = width1 * deltav | |||
|
644 | DGauFitParam[4,ht,0] = p0 | |||
|
645 | DGauFitParam[4,ht,1] = p1 | |||
|
646 | ||||
|
647 | # print (DGauFitParam.shape) | |||
|
648 | # print ('Leaving FitGau') | |||
|
649 | return DGauFitParam | |||
|
650 | # return SPCparam | |||
|
651 | # return GauSPC | |||
564 |
|
652 | |||
565 |
|
|
653 | def y_model1(self,x,state): | |
566 |
|
|
654 | shift0, width0, amplitude0, power0, noise = state | |
567 |
|
|
655 | model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0) | |
568 |
|
656 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | ||
569 |
|
|
657 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |
570 |
|
658 | return model0 + model0u + model0d + noise | ||
571 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) |
|
|||
572 | return model0+model0u+model0d+noise |
|
|||
573 |
|
659 | |||
574 |
|
|
660 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist | |
575 |
|
|
661 | shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state | |
576 |
|
|
662 | model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
577 |
|
663 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | ||
578 |
|
|
664 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |
579 |
|
665 | |||
580 |
|
|
666 | model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1) | |
581 |
|
|
667 | model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1) | |
582 |
|
668 | model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1) | ||
583 | model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) |
|
669 | return model0 + model0u + model0d + model1 + model1u + model1d + noise | |
584 |
|
||||
585 | model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) |
|
|||
586 | return model0+model0u+model0d+model1+model1u+model1d+noise |
|
|||
587 |
|
670 | |||
588 |
|
|
671 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. | |
589 |
|
672 | |||
@@ -614,31 +697,10 class PrecipitationProc(Operation): | |||||
614 |
|
|
697 | Operation.__init__(self) | |
615 |
|
|
698 | self.i=0 | |
616 |
|
699 | |||
617 |
|
||||
618 | def gaus(self,xSamples,Amp,Mu,Sigma): |
|
|||
619 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) |
|
|||
620 |
|
||||
621 |
|
||||
622 |
|
||||
623 | def Moments(self, ySamples, xSamples): |
|
|||
624 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 |
|
|||
625 | yNorm = ySamples / Pot |
|
|||
626 |
|
||||
627 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento |
|
|||
628 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento |
|
|||
629 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral |
|
|||
630 |
|
||||
631 | return numpy.array([Pot, Vr, Desv]) |
|
|||
632 |
|
||||
633 |
|
|
700 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, | |
634 |
|
|
701 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30): | |
635 |
|
||||
636 |
|
702 | |||
637 | Velrange = dataOut.spcparam_range[2] |
|
703 | # print ('Entering PrecepitationProc ... ') | |
638 | FrecRange = dataOut.spcparam_range[0] |
|
|||
639 |
|
||||
640 | dV= Velrange[1]-Velrange[0] |
|
|||
641 | dF= FrecRange[1]-FrecRange[0] |
|
|||
642 |
|
704 | |||
643 |
|
|
705 | if radar == "MIRA35C" : | |
644 |
|
706 | |||
@@ -650,18 +712,17 class PrecipitationProc(Operation): | |||||
650 |
|
712 | |||
651 |
|
|
713 | else: | |
652 |
|
714 | |||
653 |
|
|
715 | self.spc = dataOut.data_pre[0].copy() | |
654 |
|
||||
655 | """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX""" |
|
|||
656 |
|
716 | |||
|
717 | #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX | |||
657 |
|
|
718 | self.spc[:,:,0:7]= numpy.NaN | |
658 |
|
719 | |||
659 | """##########################################""" |
|
|||
660 |
|
||||
661 |
|
|
720 | self.Num_Hei = self.spc.shape[2] | |
662 |
|
|
721 | self.Num_Bin = self.spc.shape[1] | |
663 |
|
|
722 | self.Num_Chn = self.spc.shape[0] | |
664 |
|
723 | |||
|
724 | VelRange = dataOut.spc_range[2] | |||
|
725 | ||||
665 |
|
|
726 | ''' Se obtiene la constante del RADAR ''' | |
666 |
|
727 | |||
667 |
|
|
728 | self.Pt = Pt | |
@@ -670,104 +731,73 class PrecipitationProc(Operation): | |||||
670 |
|
|
731 | self.Lambda = Lambda | |
671 |
|
|
732 | self.aL = aL | |
672 |
|
|
733 | self.tauW = tauW | |
673 |
|
|
734 | self.ThetaT = ThetaT | |
674 |
|
|
735 | self.ThetaR = ThetaR | |
|
736 | self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB | |||
|
737 | self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB | |||
|
738 | self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB | |||
675 |
|
739 | |||
676 |
|
|
740 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
677 |
|
|
741 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) | |
678 |
|
|
742 | RadarConstant = 10e-26 * Numerator / Denominator # | |
679 |
|
743 | ExpConstant = 10**(40/10) #Constante Experimental | ||
680 | ''' ============================= ''' |
|
744 | ||
681 |
|
745 | SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | ||
682 | self.spc[0] = (self.spc[0]-dataOut.noise[0]) |
|
746 | for i in range(self.Num_Chn): | |
683 |
self.spc[ |
|
747 | SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i] | |
684 | self.spc[2] = (self.spc[2]-dataOut.noise[2]) |
|
748 | SignalPower[numpy.where(SignalPower < 0)] = 1e-20 | |
685 |
|
749 | |||
686 | self.spc[ numpy.where(self.spc < 0)] = 0 |
|
750 | SPCmean = numpy.mean(SignalPower, 0) | |
687 |
|
751 | Pr = SPCmean[:,:]/dataOut.normFactor | ||
688 | SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise)) |
|
752 | ||
689 | SPCmean[ numpy.where(SPCmean < 0)] = 0 |
|
753 | # Declaring auxiliary variables | |
690 |
|
754 | Range = dataOut.heightList*1000. #Range in m | ||
691 | ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
755 | # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei] | |
692 | ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
756 | rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin)) | |
693 | ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
757 | zMtrx = rMtrx+Altitude | |
694 |
|
758 | # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei] | ||
695 | Pr = SPCmean[:,:] |
|
759 | VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1))) | |
696 |
|
760 | |||
697 | VelMeteoro = numpy.mean(SPCmean,axis=0) |
|
761 | # height dependence to air density Foote and Du Toit (1969) | |
698 |
|
762 | delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2 | ||
699 | D_range = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
763 | VMtrx = VelMtrx / delv_z #Normalized velocity | |
700 | SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
764 | VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN | |
701 | N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
765 | # Diameter is related to the fall speed of falling drops | |
702 | V_mean = numpy.zeros(self.Num_Hei) |
|
766 | D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm] | |
703 | del_V = numpy.zeros(self.Num_Hei) |
|
767 | # Only valid for D>= 0.16 mm | |
704 | Z = numpy.zeros(self.Num_Hei) |
|
768 | D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN | |
705 | Ze = numpy.zeros(self.Num_Hei) |
|
769 | ||
706 | RR = numpy.zeros(self.Num_Hei) |
|
770 | #Calculate Radar Reflectivity ETAn | |
707 |
|
771 | ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA) | ||
708 | Range = dataOut.heightList*1000. |
|
772 | ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z | |
709 |
|
773 | # Radar Cross Section | ||
710 | for R in range(self.Num_Hei): |
|
774 | sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4 | |
711 |
|
775 | # Drop Size Distribution | ||
712 | h = Range[R] + Altitude #Range from ground to radar pulse altitude |
|
776 | DSD = ETAn / sigmaD | |
713 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity |
|
777 | # Equivalente Reflectivy | |
714 |
|
778 | Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0) | ||
715 | D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3 |
|
779 | Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3] | |
716 |
|
780 | # RainFall Rate | ||
717 | '''NOTA: ETA(n) dn = ETA(f) df |
|
781 | RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr | |
718 |
|
782 | |||
719 | dn = 1 Diferencial de muestreo |
|
783 | # Censoring the data | |
720 | df = ETA(n) / ETA(f) |
|
784 | # Removing data with SNRth < 0dB se debe considerar el SNR por canal | |
721 |
|
785 | SNRth = 10**(SNRdBlimit/10) #-30dB | ||
722 | ''' |
|
786 | novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better | |
723 |
|
787 | W = numpy.nanmean(dataOut.data_dop,0) | ||
724 | ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA) |
|
788 | W[novalid] = numpy.NaN | |
725 |
|
789 | Ze_org[novalid] = numpy.NaN | ||
726 | ETAv[:,R]=ETAn[:,R]/dV |
|
790 | RR[novalid] = numpy.NaN | |
727 |
|
||||
728 | ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R]) |
|
|||
729 |
|
||||
730 | SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma) |
|
|||
731 |
|
||||
732 | N_dist[:,R] = ETAn[:,R] / SIGMA[:,R] |
|
|||
733 |
|
||||
734 | DMoments = self.Moments(Pr[:,R], Velrange[0:self.Num_Bin]) |
|
|||
735 |
|
||||
736 | try: |
|
|||
737 | popt01,pcov = curve_fit(self.gaus, Velrange[0:self.Num_Bin] , Pr[:,R] , p0=DMoments) |
|
|||
738 | except: |
|
|||
739 | popt01=numpy.zeros(3) |
|
|||
740 | popt01[1]= DMoments[1] |
|
|||
741 |
|
||||
742 | if popt01[1]<0 or popt01[1]>20: |
|
|||
743 | popt01[1]=numpy.NaN |
|
|||
744 |
|
||||
745 |
|
||||
746 | V_mean[R]=popt01[1] |
|
|||
747 |
|
||||
748 | Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 )#*10**-18 |
|
|||
749 |
|
||||
750 | RR[R] = 0.0006*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate |
|
|||
751 |
|
||||
752 | Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( 10**-18*numpy.pi**5 * Km) |
|
|||
753 |
|
||||
754 |
|
||||
755 |
|
||||
756 | RR2 = (Z/200)**(1/1.6) |
|
|||
757 | dBRR = 10*numpy.log10(RR) |
|
|||
758 | dBRR2 = 10*numpy.log10(RR2) |
|
|||
759 |
|
||||
760 | dBZe = 10*numpy.log10(Ze) |
|
|||
761 | dBZ = 10*numpy.log10(Z) |
|
|||
762 |
|
791 | |||
763 |
|
|
792 | dataOut.data_output = RR[8] | |
764 |
|
|
793 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) | |
765 |
|
|
794 | dataOut.channelList = [0,1,2] | |
766 |
|
795 | |||
767 |
|
|
796 | dataOut.data_param[0]=10*numpy.log10(Ze_org) | |
768 |
|
|
797 | dataOut.data_param[1]=-W | |
769 |
|
|
798 | dataOut.data_param[2]=RR | |
770 |
|
799 | |||
|
800 | # print ('Leaving PrecepitationProc ... ') | |||
771 |
|
|
801 | return dataOut | |
772 |
|
802 | |||
773 |
|
|
803 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C | |
@@ -784,7 +814,7 class PrecipitationProc(Operation): | |||||
784 |
|
814 | |||
785 |
|
|
815 | ETA = numpy.sum(SNR,1) | |
786 |
|
816 | |||
787 |
|
|
817 | ETA = numpy.where(ETA != 0. , ETA, numpy.NaN) | |
788 |
|
818 | |||
789 |
|
|
819 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) | |
790 |
|
820 | |||
@@ -832,29 +862,17 class FullSpectralAnalysis(Operation): | |||||
832 |
|
862 | |||
833 | Output: |
|
863 | Output: | |
834 |
|
864 | |||
835 | self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind |
|
865 | self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind | |
836 |
|
866 | |||
837 |
|
867 | |||
838 | Parameters affected: Winds, height range, SNR |
|
868 | Parameters affected: Winds, height range, SNR | |
839 |
|
869 | |||
840 | """ |
|
870 | """ | |
841 |
|
|
871 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30, | |
842 |
|
872 | minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None): | ||
843 | self.indice=int(numpy.random.rand()*1000) |
|
|||
844 |
|
873 | |||
845 |
|
|
874 | spc = dataOut.data_pre[0].copy() | |
846 |
|
|
875 | cspc = dataOut.data_pre[1] | |
847 |
|
||||
848 | """Erick: NOTE THE RANGE OF THE PULSE TX MUST BE REMOVED""" |
|
|||
849 |
|
||||
850 | SNRspc = spc.copy() |
|
|||
851 | SNRspc[:,:,0:7]= numpy.NaN |
|
|||
852 |
|
||||
853 | """##########################################""" |
|
|||
854 |
|
||||
855 |
|
||||
856 | nChannel = spc.shape[0] |
|
|||
857 | nProfiles = spc.shape[1] |
|
|||
858 |
|
|
876 | nHeights = spc.shape[2] | |
859 |
|
877 | |||
860 |
|
|
878 | # first_height = 0.75 #km (ref: data header 20170822) | |
@@ -881,119 +899,81 class FullSpectralAnalysis(Operation): | |||||
881 |
|
|
899 | else: | |
882 |
|
|
900 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) | |
883 |
|
901 | |||
884 | FrecRange = dataOut.spc_range[0] |
|
902 | # 4 variables: zonal, meridional, vertical, and average SNR | |
885 |
|
903 | data_param = numpy.zeros([4,nHeights]) * numpy.NaN | ||
886 | data_SNR=numpy.zeros([nProfiles]) |
|
904 | velocityX = numpy.zeros([nHeights]) * numpy.NaN | |
887 | noise = dataOut.noise |
|
905 | velocityY = numpy.zeros([nHeights]) * numpy.NaN | |
888 |
|
906 | velocityZ = numpy.zeros([nHeights]) * numpy.NaN | ||
889 | dataOut.data_snr = (numpy.mean(SNRspc,axis=1)- noise[0]) / noise[0] |
|
|||
890 |
|
||||
891 | dataOut.data_snr[numpy.where( dataOut.data_snr <0 )] = 1e-20 |
|
|||
892 |
|
||||
893 |
|
907 | |||
894 | data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN |
|
908 | dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0)) | |
895 |
|
||||
896 | velocityX=[] |
|
|||
897 | velocityY=[] |
|
|||
898 | velocityV=[] |
|
|||
899 |
|
||||
900 | dbSNR = 10*numpy.log10(dataOut.data_snr) |
|
|||
901 | dbSNR = numpy.average(dbSNR,0) |
|
|||
902 |
|
909 | |||
903 |
|
|
910 | '''***********************************************WIND ESTIMATION**************************************''' | |
904 |
|
||||
905 |
|
|
911 | for Height in range(nHeights): | |
906 |
|
912 | |||
907 |
|
|
913 | if Height >= range_min and Height < range_max: | |
908 |
|
|
914 | # error_code will be useful in future analysis | |
909 |
|
|
915 | [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, | |
910 | else: |
|
916 | ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency) | |
911 | Vzon,Vmer,Vver = 0., 0., numpy.NaN |
|
917 | ||
912 |
|
918 | if abs(Vzon) < 100. and abs(Vmer) < 100.: | ||
913 |
|
919 | velocityX[Height] = Vzon | ||
914 | if abs(Vzon) < 100. and abs(Vzon) > 0. and abs(Vmer) < 100. and abs(Vmer) > 0.: |
|
920 | velocityY[Height] = -Vmer | |
915 | velocityX=numpy.append(velocityX, Vzon) |
|
921 | velocityZ[Height] = Vver | |
916 | velocityY=numpy.append(velocityY, -Vmer) |
|
922 | ||
917 |
|
923 | # Censoring data with SNR threshold | ||
918 | else: |
|
924 | dbSNR [dbSNR < SNRdBlimit] = numpy.NaN | |
919 | velocityX=numpy.append(velocityX, numpy.NaN) |
|
925 | ||
920 | velocityY=numpy.append(velocityY, numpy.NaN) |
|
926 | data_param[0] = velocityX | |
921 |
|
927 | data_param[1] = velocityY | ||
922 | if dbSNR[Height] > SNRlimit: |
|
928 | data_param[2] = velocityZ | |
923 | velocityV=numpy.append(velocityV, -Vver) # reason for this minus sign -> convention? (taken from Ericks version) |
|
929 | data_param[3] = dbSNR | |
924 | else: |
|
930 | dataOut.data_param = data_param | |
925 | velocityV=numpy.append(velocityV, numpy.NaN) |
|
|||
926 |
|
||||
927 |
|
||||
928 | '''Change the numpy.array (velocityX) sign when trying to process BLTR data (Erick)''' |
|
|||
929 | data_output[0] = numpy.array(velocityX) |
|
|||
930 | data_output[1] = numpy.array(velocityY) |
|
|||
931 | data_output[2] = velocityV |
|
|||
932 |
|
||||
933 |
|
||||
934 | dataOut.data_output = data_output |
|
|||
935 |
|
||||
936 |
|
|
931 | return dataOut | |
937 |
|
932 | |||
938 |
|
||||
939 |
|
|
933 | def moving_average(self,x, N=2): | |
940 |
|
|
934 | """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """ | |
941 |
|
|
935 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |
942 |
|
936 | |||
943 |
|
|
937 | def gaus(self,xSamples,Amp,Mu,Sigma): | |
944 |
|
|
938 | return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2) | |
945 |
|
939 | |||
946 |
|
|
940 | def Moments(self, ySamples, xSamples): | |
947 | '''*** |
|
941 | Power = numpy.nanmean(ySamples) # Power, 0th Moment | |
948 | Variables corresponding to moments of distribution. |
|
942 | yNorm = ySamples / numpy.nansum(ySamples) | |
949 | Also used as initial coefficients for curve_fit. |
|
943 | RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment | |
950 | Vr was corrected. Only a velocity when x is velocity, of course. |
|
944 | Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment | |
951 | ***''' |
|
945 | StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral | |
952 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 |
|
946 | return numpy.array([Power,RadVel,StdDev]) | |
953 | yNorm = ySamples / Pot |
|
|||
954 | x_range = (numpy.max(xSamples)-numpy.min(xSamples)) |
|
|||
955 | Vr = numpy.nansum( yNorm * xSamples )*x_range/len(xSamples) # Velocidad radial, mu, corrimiento doppler, primer momento |
|
|||
956 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento |
|
|||
957 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral |
|
|||
958 |
|
||||
959 | return numpy.array([Pot, Vr, Desv]) |
|
|||
960 |
|
947 | |||
961 |
|
|
948 | def StopWindEstimation(self, error_code): | |
962 | ''' |
|
949 | Vzon = numpy.NaN | |
963 | the wind calculation and returns zeros |
|
950 | Vmer = numpy.NaN | |
964 | ''' |
|
951 | Vver = numpy.NaN | |
965 | Vzon = 0 |
|
|||
966 | Vmer = 0 |
|
|||
967 | Vver = numpy.nan |
|
|||
968 |
|
|
952 | return Vzon, Vmer, Vver, error_code | |
969 |
|
953 | |||
970 |
|
|
954 | def AntiAliasing(self, interval, maxstep): | |
971 |
|
|
955 | """ | |
972 | function to prevent errors from aliased values when computing phaseslope |
|
956 | function to prevent errors from aliased values when computing phaseslope | |
973 | """ |
|
957 | """ | |
974 |
|
|
958 | antialiased = numpy.zeros(len(interval)) | |
975 |
|
|
959 | copyinterval = interval.copy() | |
976 |
|
960 | |||
977 |
|
|
961 | antialiased[0] = copyinterval[0] | |
978 |
|
962 | |||
979 |
|
|
963 | for i in range(1,len(antialiased)): | |
980 |
|
||||
981 |
|
|
964 | step = interval[i] - interval[i-1] | |
982 |
|
||||
983 |
|
|
965 | if step > maxstep: | |
984 |
|
|
966 | copyinterval -= 2*numpy.pi | |
985 |
|
|
967 | antialiased[i] = copyinterval[i] | |
986 |
|
||||
987 |
|
|
968 | elif step < maxstep*(-1): | |
988 |
|
|
969 | copyinterval += 2*numpy.pi | |
989 |
|
|
970 | antialiased[i] = copyinterval[i] | |
990 |
|
||||
991 |
|
|
971 | else: | |
992 |
|
|
972 | antialiased[i] = copyinterval[i].copy() | |
993 |
|
973 | |||
994 |
|
|
974 | return antialiased | |
995 |
|
975 | |||
996 |
|
|
976 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq): | |
997 |
|
|
977 | """ | |
998 | Function that Calculates Zonal, Meridional and Vertical wind velocities. |
|
978 | Function that Calculates Zonal, Meridional and Vertical wind velocities. | |
999 | Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019. |
|
979 | Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019. | |
@@ -1025,42 +1005,40 class FullSpectralAnalysis(Operation): | |||||
1025 |
|
1005 | |||
1026 |
|
|
1006 | error_code = 0 | |
1027 |
|
1007 | |||
1028 |
|
1008 | nChan = spc.shape[0] | ||
1029 | SPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]]) # for normalized spc values for one height |
|
1009 | nProf = spc.shape[1] | |
1030 | phase = numpy.ones([spc.shape[0],spc.shape[1]]) # phase between channels |
|
1010 | nPair = cspc.shape[0] | |
1031 | CSPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) # for normalized cspc values |
|
1011 | ||
1032 | PhaseSlope = numpy.zeros(spc.shape[0]) # slope of the phases, channelwise |
|
1012 | SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height | |
1033 | PhaseInter = numpy.ones(spc.shape[0]) # intercept to the slope of the phases, channelwise |
|
1013 | CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values | |
1034 | xFrec = AbbsisaRange[0][0:spc.shape[1]] # frequency range |
|
1014 | phase = numpy.zeros([nPair, nProf]) # phase between channels | |
1035 | xVel = AbbsisaRange[2][0:spc.shape[1]] # velocity range |
|
1015 | PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise | |
1036 | SPCav = numpy.average(spc, axis=0)-numpy.average(noise) # spc[0]-noise[0] |
|
1016 | PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise | |
1037 |
|
1017 | xFrec = AbbsisaRange[0][:-1] # frequency range | ||
1038 | SPCmoments_vel = self.Moments(SPCav, xVel ) # SPCmoments_vel[1] corresponds to vertical velocity and is used to determine if signal corresponds to wind (if .. <3) |
|
1018 | xVel = AbbsisaRange[2][:-1] # velocity range | |
1039 | CSPCmoments = [] |
|
1019 | xSamples = xFrec # the frequency range is taken | |
1040 |
|
1020 | delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x | ||
|
1021 | ||||
|
1022 | # only consider velocities with in NegativeLimit and PositiveLimit | |||
|
1023 | if (NegativeLimit is None): | |||
|
1024 | NegativeLimit = numpy.min(xVel) | |||
|
1025 | if (PositiveLimit is None): | |||
|
1026 | PositiveLimit = numpy.max(xVel) | |||
|
1027 | xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit)) | |||
|
1028 | xSamples_zoom = xSamples[xvalid] | |||
1041 |
|
1029 | |||
1042 |
|
|
1030 | '''Getting Eij and Nij''' | |
1043 |
|
||||
1044 |
|
|
1031 | Xi01, Xi02, Xi12 = ChanDist[:,0] | |
1045 |
|
|
1032 | Eta01, Eta02, Eta12 = ChanDist[:,1] | |
1046 |
|
1033 | |||
1047 | # update nov 19 |
|
1034 | # spwd limit - updated by D. Scipión 30.03.2021 | |
1048 | widthlimit = 7 # maximum width in Hz of the gaussian, empirically determined. Anything above 10 is unrealistic, often values between 1 and 5 correspond to proper fits. |
|
1035 | widthlimit = 10 | |
1049 |
|
||||
1050 |
|
|
1036 | '''************************* SPC is normalized ********************************''' | |
1051 |
|
1037 | spc_norm = spc.copy() | ||
1052 | spc_norm = spc.copy() # need copy() because untouched spc is needed for normalization of cspc below |
|
1038 | # For each channel | |
1053 | spc_norm = numpy.where(numpy.isfinite(spc_norm), spc_norm, numpy.NAN) |
|
1039 | for i in range(nChan): | |
1054 |
|
1040 | spc_sub = spc_norm[i,:] - noise[i] # only the signal power | ||
1055 | for i in range(spc.shape[0]): |
|
1041 | SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x) | |
1056 |
|
||||
1057 | spc_sub = spc_norm[i,:] - noise[i] # spc not smoothed here or in previous version. |
|
|||
1058 |
|
||||
1059 | Factor_Norm = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc_sub)) # usually = Freq range / nfft |
|
|||
1060 | normalized_spc = spc_sub / (numpy.nansum(numpy.abs(spc_sub)) * Factor_Norm) |
|
|||
1061 |
|
||||
1062 | xSamples = xFrec # the frequency range is taken |
|
|||
1063 | SPC_Samples[i] = normalized_spc # Normalized SPC values are taken |
|
|||
1064 |
|
1042 | |||
1065 |
|
|
1043 | '''********************** FITTING MEAN SPC GAUSSIAN **********************''' | |
1066 |
|
1044 | |||
@@ -1074,30 +1052,26 class FullSpectralAnalysis(Operation): | |||||
1074 | due to subtraction of the noise, some values are below zero. Raw "spc" values should be |
|
1052 | due to subtraction of the noise, some values are below zero. Raw "spc" values should be | |
1075 | >= 0, as it is the modulus squared of the signals (complex * it's conjugate) |
|
1053 | >= 0, as it is the modulus squared of the signals (complex * it's conjugate) | |
1076 | """ |
|
1054 | """ | |
1077 |
|
1055 | # initial conditions | ||
1078 | SPCMean = numpy.average(SPC_Samples, axis=0) |
|
1056 | popt = [1e-10,0,1e-10] | |
1079 |
|
1057 | # Spectra average | ||
1080 | popt = [1e-10,0,1e-10] |
|
1058 | SPCMean = numpy.average(SPC_Samples,0) | |
1081 | SPCMoments = self.Moments(SPCMean, xSamples) |
|
1059 | # Moments in frequency | |
1082 |
|
1060 | SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom) | ||
1083 | if dbSNR > SNRlimit and numpy.abs(SPCmoments_vel[1]) < 3: |
|
1061 | ||
|
1062 | # Gauss Fit SPC in frequency domain | |||
|
1063 | if dbSNR > SNRlimit: # only if SNR > SNRth | |||
1084 |
|
|
1064 | try: | |
1085 | popt,pcov = curve_fit(self.gaus,xSamples,SPCMean,p0=SPCMoments)#, bounds=(-numpy.inf, [numpy.inf, numpy.inf, 10])). Setting bounds does not make the code faster but only keeps the fit from finding the minimum. |
|
1065 | popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments) | |
1086 |
|
|
1066 | if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION | |
1087 |
|
|
1067 | return self.StopWindEstimation(error_code = 1) | |
1088 |
|
1068 | FitGauss = self.gaus(xSamples_zoom,*popt) | ||
1089 | FitGauss = self.gaus(xSamples,*popt) |
|
|||
1090 |
|
||||
1091 |
|
|
1069 | except :#RuntimeError: | |
1092 |
|
|
1070 | return self.StopWindEstimation(error_code = 2) | |
1093 |
|
||||
1094 |
|
|
1071 | else: | |
1095 |
|
|
1072 | return self.StopWindEstimation(error_code = 3) | |
1096 |
|
1073 | |||
1097 |
|
||||
1098 |
|
||||
1099 |
|
|
1074 | '''***************************** CSPC Normalization ************************* | |
1100 | new section: |
|
|||
1101 | The Spc spectra are used to normalize the crossspectra. Peaks from precipitation |
|
1075 | The Spc spectra are used to normalize the crossspectra. Peaks from precipitation | |
1102 | influence the norm which is not desired. First, a range is identified where the |
|
1076 | influence the norm which is not desired. First, a range is identified where the | |
1103 | wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area |
|
1077 | wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area | |
@@ -1109,159 +1083,82 class FullSpectralAnalysis(Operation): | |||||
1109 |
|
1083 | |||
1110 | A norm is found according to Briggs 92. |
|
1084 | A norm is found according to Briggs 92. | |
1111 | ''' |
|
1085 | ''' | |
1112 |
|
1086 | # for each pair | ||
1113 | radarWavelength = 0.6741 # meters |
|
1087 | for i in range(nPair): | |
1114 | count_limit_freq = numpy.abs(popt[1]) + widthlimit # Hz, m/s can be also used if velocity is desired abscissa. |
|
1088 | cspc_norm = cspc[i,:].copy() | |
1115 | # count_limit_freq = numpy.max(xFrec) |
|
|||
1116 |
|
||||
1117 | channel_integrals = numpy.zeros(3) |
|
|||
1118 |
|
||||
1119 | for i in range(spc.shape[0]): |
|
|||
1120 | ''' |
|
|||
1121 | find the point in array corresponding to count_limit frequency. |
|
|||
1122 | sum over all frequencies in the range around zero Hz @ math.ceil(N_freq/2) |
|
|||
1123 | ''' |
|
|||
1124 | N_freq = numpy.count_nonzero(~numpy.isnan(spc[i,:])) |
|
|||
1125 | count_limit_int = int(math.ceil( count_limit_freq / numpy.max(xFrec) * (N_freq / 2) )) # gives integer point |
|
|||
1126 | sum_wind = numpy.nansum( spc[i, (math.ceil(N_freq/2) - count_limit_int) : (math.ceil(N_freq / 2) + count_limit_int)] ) #N_freq/2 is where frequency (velocity) is zero, i.e. middle of spectrum. |
|
|||
1127 | sum_noise = (numpy.mean(spc[i, :4]) + numpy.mean(spc[i, -6:-2]))/2.0 * (N_freq - 2*count_limit_int) |
|
|||
1128 | channel_integrals[i] = (sum_noise + sum_wind) * (2*numpy.max(xFrec) / N_freq) |
|
|||
1129 |
|
||||
1130 |
|
||||
1131 | cross_integrals_peak = numpy.zeros(3) |
|
|||
1132 | # cross_integrals_totalrange = numpy.zeros(3) |
|
|||
1133 |
|
||||
1134 | for i in range(spc.shape[0]): |
|
|||
1135 |
|
||||
1136 | cspc_norm = cspc[i,:].copy() # cspc not smoothed here or in previous version |
|
|||
1137 |
|
||||
1138 |
|
|
1089 | chan_index0 = pairsList[i][0] | |
1139 |
|
|
1090 | chan_index1 = pairsList[i][1] | |
1140 |
|
1091 | CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x) | ||
1141 | cross_integrals_peak[i] = channel_integrals[chan_index0]*channel_integrals[chan_index1] |
|
|||
1142 | normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_peak[i]) |
|
|||
1143 | CSPC_Samples[i] = normalized_cspc |
|
|||
1144 |
|
||||
1145 | ''' Finding cross integrals without subtracting any peaks:''' |
|
|||
1146 | # FactorNorm0 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index0,:])) |
|
|||
1147 | # FactorNorm1 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index1,:])) |
|
|||
1148 | # cross_integrals_totalrange[i] = (numpy.nansum(spc[chan_index0,:])) * FactorNorm0 * (numpy.nansum(spc[chan_index1,:])) * FactorNorm1 |
|
|||
1149 | # normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_totalrange[i]) |
|
|||
1150 | # CSPC_Samples[i] = normalized_cspc |
|
|||
1151 |
|
||||
1152 |
|
||||
1153 |
|
|
1092 | phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real) | |
1154 |
|
1093 | |||
|
1094 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom), | |||
|
1095 | self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom), | |||
|
1096 | self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)]) | |||
1155 |
|
1097 | |||
1156 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0]), xSamples), |
|
1098 | popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10] | |
1157 | self.Moments(numpy.abs(CSPC_Samples[1]), xSamples), |
|
1099 | FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)) | |
1158 | self.Moments(numpy.abs(CSPC_Samples[2]), xSamples)]) |
|
|||
1159 |
|
||||
1160 |
|
||||
1161 | '''***Sorting out NaN entries***''' |
|
|||
1162 | CSPCMask01 = numpy.abs(CSPC_Samples[0]) |
|
|||
1163 | CSPCMask02 = numpy.abs(CSPC_Samples[1]) |
|
|||
1164 | CSPCMask12 = numpy.abs(CSPC_Samples[2]) |
|
|||
1165 |
|
||||
1166 | mask01 = ~numpy.isnan(CSPCMask01) |
|
|||
1167 | mask02 = ~numpy.isnan(CSPCMask02) |
|
|||
1168 | mask12 = ~numpy.isnan(CSPCMask12) |
|
|||
1169 |
|
||||
1170 | CSPCMask01 = CSPCMask01[mask01] |
|
|||
1171 | CSPCMask02 = CSPCMask02[mask02] |
|
|||
1172 | CSPCMask12 = CSPCMask12[mask12] |
|
|||
1173 |
|
||||
1174 |
|
||||
1175 | popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10] |
|
|||
1176 | FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0 |
|
|||
1177 |
|
1100 | |||
1178 |
|
|
1101 | '''*******************************FIT GAUSS CSPC************************************''' | |
1179 |
|
||||
1180 |
|
|
1102 | try: | |
1181 |
|
|
1103 | popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0]) | |
1182 |
|
|
1104 | if popt01[2] > widthlimit: # CONDITION | |
1183 |
|
|
1105 | return self.StopWindEstimation(error_code = 4) | |
1184 |
|
1106 | popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1]) | ||
1185 | popt02,pcov = curve_fit(self.gaus,xSamples[mask02],numpy.abs(CSPCMask02),p0=CSPCmoments[1]) |
|
|||
1186 |
|
|
1107 | if popt02[2] > widthlimit: # CONDITION | |
1187 |
|
|
1108 | return self.StopWindEstimation(error_code = 4) | |
1188 |
|
1109 | popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2]) | ||
1189 | popt12,pcov = curve_fit(self.gaus,xSamples[mask12],numpy.abs(CSPCMask12),p0=CSPCmoments[2]) |
|
|||
1190 |
|
|
1110 | if popt12[2] > widthlimit: # CONDITION | |
1191 |
|
|
1111 | return self.StopWindEstimation(error_code = 4) | |
1192 |
|
1112 | |||
1193 |
|
|
1113 | FitGauss01 = self.gaus(xSamples_zoom, *popt01) | |
1194 |
|
|
1114 | FitGauss02 = self.gaus(xSamples_zoom, *popt02) | |
1195 |
|
|
1115 | FitGauss12 = self.gaus(xSamples_zoom, *popt12) | |
1196 |
|
||||
1197 |
|
|
1116 | except: | |
1198 |
|
|
1117 | return self.StopWindEstimation(error_code = 5) | |
1199 |
|
1118 | |||
1200 |
|
1119 | |||
1201 |
|
|
1120 | '''************* Getting Fij ***************''' | |
1202 |
|
1121 | # x-axis point of the gaussian where the center is located from GaussFit of spectra | ||
1203 |
|
||||
1204 | #Punto en Eje X de la Gaussiana donde se encuentra el centro -- x-axis point of the gaussian where the center is located |
|
|||
1205 | # -> PointGauCenter |
|
|||
1206 |
|
|
1122 | GaussCenter = popt[1] | |
1207 |
|
|
1123 | ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()] | |
1208 |
|
|
1124 | PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0] | |
1209 |
|
1125 | |||
1210 |
|
|
1126 | # Point where e^-1 is located in the gaussian | |
1211 |
|
|
1127 | PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1) | |
1212 |
|
|
1128 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss" | |
1213 |
|
|
1129 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] | |
1214 |
|
1130 | Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter]) | ||
1215 | Fij = numpy.abs(xSamples[PointFij] - xSamples[PointGauCenter]) |
|
|||
1216 |
|
1131 | |||
1217 |
|
|
1132 | '''********** Taking frequency ranges from mean SPCs **********''' | |
1218 |
|
1133 | GauWidth = popt[2] * 3/2 # Bandwidth of Gau01 | ||
1219 | #GaussCenter = popt[1] #Primer momento 01 |
|
|||
1220 | GauWidth = popt[2] * 3/2 #Ancho de banda de Gau01 -- Bandwidth of Gau01 TODO why *3/2? |
|
|||
1221 |
|
|
1134 | Range = numpy.empty(2) | |
1222 |
|
|
1135 | Range[0] = GaussCenter - GauWidth | |
1223 |
|
|
1136 | Range[1] = GaussCenter + GauWidth | |
1224 |
|
|
1137 | # Point in x-axis where the bandwidth is located (min:max) | |
1225 |
|
|
1138 | ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()] | |
1226 |
|
|
1139 | ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()] | |
1227 |
|
1140 | PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0] | ||
1228 |
|
|
1141 | PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0] | |
1229 | PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0] |
|
|||
1230 |
|
||||
1231 |
|
|
1142 | Range = numpy.array([ PointRangeMin, PointRangeMax ]) | |
1232 |
|
1143 | FrecRange = xSamples_zoom[ Range[0] : Range[1] ] | ||
1233 | FrecRange = xFrec[ Range[0] : Range[1] ] |
|
|||
1234 |
|
||||
1235 |
|
1144 | |||
1236 |
|
|
1145 | '''************************** Getting Phase Slope ***************************''' | |
1237 |
|
1146 | for i in range(nPair): | ||
1238 | for i in range(1,3): # Changed to only compute two |
|
1147 | if len(FrecRange) > 5: | |
1239 |
|
1148 | PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy() | ||
1240 | if len(FrecRange) > 5 and len(FrecRange) < spc.shape[1] * 0.3: |
|
|||
1241 | # PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=1) #used before to smooth phase with N=3 |
|
|||
1242 | PhaseRange = phase[i,Range[0]:Range[1]].copy() |
|
|||
1243 |
|
||||
1244 |
|
|
1149 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) | |
1245 |
|
||||
1246 |
|
||||
1247 |
|
|
1150 | if len(FrecRange) == len(PhaseRange): | |
1248 |
|
||||
1249 |
|
|
1151 | try: | |
1250 |
|
|
1152 | slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5)) | |
1251 |
|
|
1153 | PhaseSlope[i] = slope | |
1252 |
|
|
1154 | PhaseInter[i] = intercept | |
1253 |
|
||||
1254 |
|
|
1155 | except: | |
1255 |
|
|
1156 | return self.StopWindEstimation(error_code = 6) | |
1256 |
|
||||
1257 |
|
|
1157 | else: | |
1258 |
|
|
1158 | return self.StopWindEstimation(error_code = 7) | |
1259 |
|
||||
1260 |
|
|
1159 | else: | |
1261 |
|
|
1160 | return self.StopWindEstimation(error_code = 8) | |
1262 |
|
1161 | |||
1263 |
|
||||
1264 |
|
||||
1265 |
|
|
1162 | '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***''' | |
1266 |
|
1163 | |||
1267 |
|
|
1164 | '''Getting constant C''' | |
@@ -1269,9 +1166,12 class FullSpectralAnalysis(Operation): | |||||
1269 |
|
1166 | |||
1270 |
|
|
1167 | '''****** Getting constants F and G ******''' | |
1271 |
|
|
1168 | MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) | |
1272 | MijResult0 = (-PhaseSlope[1] * cC) / (2*numpy.pi) |
|
1169 | # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]]) | |
1273 |
|
|
1170 | # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi) | |
1274 | MijResults = numpy.array([MijResult0,MijResult1]) |
|
1171 | MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi) | |
|
1172 | MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi) | |||
|
1173 | # MijResults = numpy.array([MijResult0, MijResult1, MijResult2]) | |||
|
1174 | MijResults = numpy.array([MijResult1, MijResult2]) | |||
1275 |
|
|
1175 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |
1276 |
|
1176 | |||
1277 |
|
|
1177 | '''****** Getting constants A, B and H ******''' | |
@@ -1279,39 +1179,22 class FullSpectralAnalysis(Operation): | |||||
1279 |
|
|
1179 | W02 = numpy.nanmax( FitGauss02 ) | |
1280 |
|
|
1180 | W12 = numpy.nanmax( FitGauss12 ) | |
1281 |
|
1181 | |||
1282 |
|
|
1182 | WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) | |
1283 |
|
|
1183 | WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC)) | |
1284 |
|
|
1184 | WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) | |
1285 |
|
1185 | WijResults = numpy.array([WijResult01, WijResult02, WijResult12]) | ||
1286 | WijResults = numpy.array([WijResult0, WijResult1, WijResult2]) |
|
|||
1287 |
|
1186 | |||
1288 |
|
|
1187 | WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) | |
1289 |
|
|
1188 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |
1290 |
|
1189 | |||
1291 |
|
|
1190 | VxVy = numpy.array([[cA,cH],[cH,cB]]) | |
1292 |
|
|
1191 | VxVyResults = numpy.array([-cF,-cG]) | |
1293 |
|
|
1192 | (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults) | |
1294 |
|
1193 | Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq) | ||
1295 | Vzon = Vy |
|
|||
1296 | Vmer = Vx |
|
|||
1297 |
|
||||
1298 | # Vmag=numpy.sqrt(Vzon**2+Vmer**2) # unused |
|
|||
1299 | # Vang=numpy.arctan2(Vmer,Vzon) # unused |
|
|||
1300 |
|
||||
1301 |
|
||||
1302 | ''' using frequency as abscissa. Due to three channels, the offzenith angle is zero |
|
|||
1303 | and Vrad equal to Vver. formula taken from Briggs 92, figure 4. |
|
|||
1304 | ''' |
|
|||
1305 | if numpy.abs( popt[1] ) < 3.5 and len(FrecRange) > 4: |
|
|||
1306 | Vver = 0.5 * radarWavelength * popt[1] * 100 # *100 to get cm (/s) |
|
|||
1307 | else: |
|
|||
1308 | Vver = numpy.NaN |
|
|||
1309 |
|
||||
1310 |
|
|
1194 | error_code = 0 | |
1311 |
|
1195 | |||
1312 |
|
|
1196 | return Vzon, Vmer, Vver, error_code | |
1313 |
|
1197 | |||
1314 |
|
||||
1315 |
|
|
1198 | class SpectralMoments(Operation): | |
1316 |
|
1199 | |||
1317 |
|
|
1200 | ''' | |
@@ -1393,13 +1276,13 class SpectralMoments(Operation): | |||||
1393 |
|
|
1276 | max_spec = aux.max() | |
1394 |
|
|
1277 | m = aux.tolist().index(max_spec) | |
1395 |
|
1278 | |||
1396 |
|
|
1279 | # Smooth | |
1397 |
|
|
1280 | if (smooth == 0): | |
1398 |
|
|
1281 | spec2 = spec | |
1399 |
|
|
1282 | else: | |
1400 |
|
|
1283 | spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
1401 |
|
1284 | |||
1402 |
|
|
1285 | # Moments Estimation | |
1403 |
|
|
1286 | bb = spec2[numpy.arange(m,spec2.size)] | |
1404 |
|
|
1287 | bb = (bb<n0).nonzero() | |
1405 |
|
|
1288 | bb = bb[0] | |
@@ -1425,14 +1308,17 class SpectralMoments(Operation): | |||||
1425 |
|
1308 | |||
1426 |
|
|
1309 | valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1 | |
1427 |
|
1310 | |||
1428 |
|
|
1311 | signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. Scipión added with correct definition | |
|
1312 | total_power = (spec2[valid] * fwindow[valid]).mean() # D. Scipión added with correct definition | |||
|
1313 | power = ((spec2[valid] - n0) * fwindow[valid]).sum() | |||
1429 |
|
|
1314 | fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power | |
1430 |
|
|
1315 | w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power) | |
1431 |
|
|
1316 | snr = (spec2.mean()-n0)/n0 | |
1432 |
|
|
1317 | if (snr < 1.e-20) : | |
1433 |
|
|
1318 | snr = 1.e-20 | |
1434 |
|
1319 | |||
1435 | vec_power[ind] = power |
|
1320 | # vec_power[ind] = power #D. Scipión replaced with the line below | |
|
1321 | vec_power[ind] = total_power | |||
1436 |
|
|
1322 | vec_fd[ind] = fd | |
1437 |
|
|
1323 | vec_w[ind] = w | |
1438 |
|
|
1324 | vec_snr[ind] = snr |
General Comments 0
You need to be logged in to leave comments.
Login now