##// END OF EJS Templates
Block360Update
rflores -
r1439:14a3ab7942a7
parent child
Show More
This diff has been collapsed as it changes many lines, (513 lines changed) Show them Hide them
@@ -1,1865 +1,2378
1 import os
1 import os
2 import datetime
2 import datetime
3 import numpy
3 import numpy
4 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
4
5
5 from schainpy.model.graphics.jroplot_base import Plot, plt
6 from schainpy.model.graphics.jroplot_base import Plot, plt
6 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
7 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
7 from schainpy.utils import log
8 from schainpy.utils import log
8 # libreria wradlib
9 # libreria wradlib
9 import wradlib as wrl
10 import wradlib as wrl
10
11
11 EARTH_RADIUS = 6.3710e3
12 EARTH_RADIUS = 6.3710e3
12
13
13
14
14 def ll2xy(lat1, lon1, lat2, lon2):
15 def ll2xy(lat1, lon1, lat2, lon2):
15
16
16 p = 0.017453292519943295
17 p = 0.017453292519943295
17 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
18 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
18 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
19 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
19 r = 12742 * numpy.arcsin(numpy.sqrt(a))
20 r = 12742 * numpy.arcsin(numpy.sqrt(a))
20 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
21 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
21 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
22 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
22 theta = -theta + numpy.pi/2
23 theta = -theta + numpy.pi/2
23 return r*numpy.cos(theta), r*numpy.sin(theta)
24 return r*numpy.cos(theta), r*numpy.sin(theta)
24
25
25
26
26 def km2deg(km):
27 def km2deg(km):
27 '''
28 '''
28 Convert distance in km to degrees
29 Convert distance in km to degrees
29 '''
30 '''
30
31
31 return numpy.rad2deg(km/EARTH_RADIUS)
32 return numpy.rad2deg(km/EARTH_RADIUS)
32
33
33
34
34
35
35 class SpectralMomentsPlot(SpectraPlot):
36 class SpectralMomentsPlot(SpectraPlot):
36 '''
37 '''
37 Plot for Spectral Moments
38 Plot for Spectral Moments
38 '''
39 '''
39 CODE = 'spc_moments'
40 CODE = 'spc_moments'
40 # colormap = 'jet'
41 # colormap = 'jet'
41 # plot_type = 'pcolor'
42 # plot_type = 'pcolor'
42
43
43 class DobleGaussianPlot(SpectraPlot):
44 class DobleGaussianPlot(SpectraPlot):
44 '''
45 '''
45 Plot for Double Gaussian Plot
46 Plot for Double Gaussian Plot
46 '''
47 '''
47 CODE = 'gaussian_fit'
48 CODE = 'gaussian_fit'
48 # colormap = 'jet'
49 # colormap = 'jet'
49 # plot_type = 'pcolor'
50 # plot_type = 'pcolor'
50
51
51 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
52 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
52 '''
53 '''
53 Plot SpectraCut with Double Gaussian Fit
54 Plot SpectraCut with Double Gaussian Fit
54 '''
55 '''
55 CODE = 'cut_gaussian_fit'
56 CODE = 'cut_gaussian_fit'
56
57
57 class SnrPlot(RTIPlot):
58 class SnrPlot(RTIPlot):
58 '''
59 '''
59 Plot for SNR Data
60 Plot for SNR Data
60 '''
61 '''
61
62
62 CODE = 'snr'
63 CODE = 'snr'
63 colormap = 'jet'
64 colormap = 'jet'
64
65
65 def update(self, dataOut):
66 def update(self, dataOut):
66
67
67 data = {
68 data = {
68 'snr': 10*numpy.log10(dataOut.data_snr)
69 'snr': 10*numpy.log10(dataOut.data_snr)
69 }
70 }
70
71
71 return data, {}
72 return data, {}
72
73
73 class DopplerPlot(RTIPlot):
74 class DopplerPlot(RTIPlot):
74 '''
75 '''
75 Plot for DOPPLER Data (1st moment)
76 Plot for DOPPLER Data (1st moment)
76 '''
77 '''
77
78
78 CODE = 'dop'
79 CODE = 'dop'
79 colormap = 'jet'
80 colormap = 'jet'
80
81
81 def update(self, dataOut):
82 def update(self, dataOut):
82
83
83 data = {
84 data = {
84 'dop': 10*numpy.log10(dataOut.data_dop)
85 'dop': 10*numpy.log10(dataOut.data_dop)
85 }
86 }
86
87
87 return data, {}
88 return data, {}
88
89
89 class PowerPlot(RTIPlot):
90 class PowerPlot(RTIPlot):
90 '''
91 '''
91 Plot for Power Data (0 moment)
92 Plot for Power Data (0 moment)
92 '''
93 '''
93
94
94 CODE = 'pow'
95 CODE = 'pow'
95 colormap = 'jet'
96 colormap = 'jet'
96
97
97 def update(self, dataOut):
98 def update(self, dataOut):
98 data = {
99 data = {
99 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
100 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
100 }
101 }
101 return data, {}
102 return data, {}
102
103
103 class SpectralWidthPlot(RTIPlot):
104 class SpectralWidthPlot(RTIPlot):
104 '''
105 '''
105 Plot for Spectral Width Data (2nd moment)
106 Plot for Spectral Width Data (2nd moment)
106 '''
107 '''
107
108
108 CODE = 'width'
109 CODE = 'width'
109 colormap = 'jet'
110 colormap = 'jet'
110
111
111 def update(self, dataOut):
112 def update(self, dataOut):
112
113
113 data = {
114 data = {
114 'width': dataOut.data_width
115 'width': dataOut.data_width
115 }
116 }
116
117
117 return data, {}
118 return data, {}
118
119
119 class SkyMapPlot(Plot):
120 class SkyMapPlot(Plot):
120 '''
121 '''
121 Plot for meteors detection data
122 Plot for meteors detection data
122 '''
123 '''
123
124
124 CODE = 'param'
125 CODE = 'param'
125
126
126 def setup(self):
127 def setup(self):
127
128
128 self.ncols = 1
129 self.ncols = 1
129 self.nrows = 1
130 self.nrows = 1
130 self.width = 7.2
131 self.width = 7.2
131 self.height = 7.2
132 self.height = 7.2
132 self.nplots = 1
133 self.nplots = 1
133 self.xlabel = 'Zonal Zenith Angle (deg)'
134 self.xlabel = 'Zonal Zenith Angle (deg)'
134 self.ylabel = 'Meridional Zenith Angle (deg)'
135 self.ylabel = 'Meridional Zenith Angle (deg)'
135 self.polar = True
136 self.polar = True
136 self.ymin = -180
137 self.ymin = -180
137 self.ymax = 180
138 self.ymax = 180
138 self.colorbar = False
139 self.colorbar = False
139
140
140 def plot(self):
141 def plot(self):
141
142
142 arrayParameters = numpy.concatenate(self.data['param'])
143 arrayParameters = numpy.concatenate(self.data['param'])
143 error = arrayParameters[:, -1]
144 error = arrayParameters[:, -1]
144 indValid = numpy.where(error == 0)[0]
145 indValid = numpy.where(error == 0)[0]
145 finalMeteor = arrayParameters[indValid, :]
146 finalMeteor = arrayParameters[indValid, :]
146 finalAzimuth = finalMeteor[:, 3]
147 finalAzimuth = finalMeteor[:, 3]
147 finalZenith = finalMeteor[:, 4]
148 finalZenith = finalMeteor[:, 4]
148
149
149 x = finalAzimuth * numpy.pi / 180
150 x = finalAzimuth * numpy.pi / 180
150 y = finalZenith
151 y = finalZenith
151
152
152 ax = self.axes[0]
153 ax = self.axes[0]
153
154
154 if ax.firsttime:
155 if ax.firsttime:
155 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
156 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
156 else:
157 else:
157 ax.plot.set_data(x, y)
158 ax.plot.set_data(x, y)
158
159
159 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
160 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
160 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
161 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
161 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
162 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
162 dt2,
163 dt2,
163 len(x))
164 len(x))
164 self.titles[0] = title
165 self.titles[0] = title
165
166
166
167
167 class GenericRTIPlot(Plot):
168 class GenericRTIPlot(Plot):
168 '''
169 '''
169 Plot for data_xxxx object
170 Plot for data_xxxx object
170 '''
171 '''
171
172
172 CODE = 'param'
173 CODE = 'param'
173 colormap = 'viridis'
174 colormap = 'viridis'
174 plot_type = 'pcolorbuffer'
175 plot_type = 'pcolorbuffer'
175
176
176 def setup(self):
177 def setup(self):
177 self.xaxis = 'time'
178 self.xaxis = 'time'
178 self.ncols = 1
179 self.ncols = 1
179 self.nrows = self.data.shape('param')[0]
180 self.nrows = self.data.shape('param')[0]
180 self.nplots = self.nrows
181 self.nplots = self.nrows
181 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
182 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
182
183
183 if not self.xlabel:
184 if not self.xlabel:
184 self.xlabel = 'Time'
185 self.xlabel = 'Time'
185
186
186 self.ylabel = 'Range [km]'
187 self.ylabel = 'Range [km]'
187 if not self.titles:
188 if not self.titles:
188 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
189 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
189
190
190 def update(self, dataOut):
191 def update(self, dataOut):
191
192
192 data = {
193 data = {
193 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
194 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
194 }
195 }
195
196
196 meta = {}
197 meta = {}
197
198
198 return data, meta
199 return data, meta
199
200
200 def plot(self):
201 def plot(self):
201 # self.data.normalize_heights()
202 # self.data.normalize_heights()
202 self.x = self.data.times
203 self.x = self.data.times
203 self.y = self.data.yrange
204 self.y = self.data.yrange
204 self.z = self.data['param']
205 self.z = self.data['param']
205 self.z = 10*numpy.log10(self.z)
206 self.z = 10*numpy.log10(self.z)
206 self.z = numpy.ma.masked_invalid(self.z)
207 self.z = numpy.ma.masked_invalid(self.z)
207
208
208 if self.decimation is None:
209 if self.decimation is None:
209 x, y, z = self.fill_gaps(self.x, self.y, self.z)
210 x, y, z = self.fill_gaps(self.x, self.y, self.z)
210 else:
211 else:
211 x, y, z = self.fill_gaps(*self.decimate())
212 x, y, z = self.fill_gaps(*self.decimate())
212
213
213 for n, ax in enumerate(self.axes):
214 for n, ax in enumerate(self.axes):
214
215
215 self.zmax = self.zmax if self.zmax is not None else numpy.max(
216 self.zmax = self.zmax if self.zmax is not None else numpy.max(
216 self.z[n])
217 self.z[n])
217 self.zmin = self.zmin if self.zmin is not None else numpy.min(
218 self.zmin = self.zmin if self.zmin is not None else numpy.min(
218 self.z[n])
219 self.z[n])
219
220
220 if ax.firsttime:
221 if ax.firsttime:
221 if self.zlimits is not None:
222 if self.zlimits is not None:
222 self.zmin, self.zmax = self.zlimits[n]
223 self.zmin, self.zmax = self.zlimits[n]
223
224
224 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
225 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
225 vmin=self.zmin,
226 vmin=self.zmin,
226 vmax=self.zmax,
227 vmax=self.zmax,
227 cmap=self.cmaps[n]
228 cmap=self.cmaps[n]
228 )
229 )
229 else:
230 else:
230 if self.zlimits is not None:
231 if self.zlimits is not None:
231 self.zmin, self.zmax = self.zlimits[n]
232 self.zmin, self.zmax = self.zlimits[n]
232 ax.collections.remove(ax.collections[0])
233 ax.collections.remove(ax.collections[0])
233 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
234 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
234 vmin=self.zmin,
235 vmin=self.zmin,
235 vmax=self.zmax,
236 vmax=self.zmax,
236 cmap=self.cmaps[n]
237 cmap=self.cmaps[n]
237 )
238 )
238
239
239
240
240 class PolarMapPlot(Plot):
241 class PolarMapPlot(Plot):
241 '''
242 '''
242 Plot for weather radar
243 Plot for weather radar
243 '''
244 '''
244
245
245 CODE = 'param'
246 CODE = 'param'
246 colormap = 'seismic'
247 colormap = 'seismic'
247
248
248 def setup(self):
249 def setup(self):
249 self.ncols = 1
250 self.ncols = 1
250 self.nrows = 1
251 self.nrows = 1
251 self.width = 9
252 self.width = 9
252 self.height = 8
253 self.height = 8
253 self.mode = self.data.meta['mode']
254 self.mode = self.data.meta['mode']
254 if self.channels is not None:
255 if self.channels is not None:
255 self.nplots = len(self.channels)
256 self.nplots = len(self.channels)
256 self.nrows = len(self.channels)
257 self.nrows = len(self.channels)
257 else:
258 else:
258 self.nplots = self.data.shape(self.CODE)[0]
259 self.nplots = self.data.shape(self.CODE)[0]
259 self.nrows = self.nplots
260 self.nrows = self.nplots
260 self.channels = list(range(self.nplots))
261 self.channels = list(range(self.nplots))
261 if self.mode == 'E':
262 if self.mode == 'E':
262 self.xlabel = 'Longitude'
263 self.xlabel = 'Longitude'
263 self.ylabel = 'Latitude'
264 self.ylabel = 'Latitude'
264 else:
265 else:
265 self.xlabel = 'Range (km)'
266 self.xlabel = 'Range (km)'
266 self.ylabel = 'Height (km)'
267 self.ylabel = 'Height (km)'
267 self.bgcolor = 'white'
268 self.bgcolor = 'white'
268 self.cb_labels = self.data.meta['units']
269 self.cb_labels = self.data.meta['units']
269 self.lat = self.data.meta['latitude']
270 self.lat = self.data.meta['latitude']
270 self.lon = self.data.meta['longitude']
271 self.lon = self.data.meta['longitude']
271 self.xmin, self.xmax = float(
272 self.xmin, self.xmax = float(
272 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
273 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
273 self.ymin, self.ymax = float(
274 self.ymin, self.ymax = float(
274 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
275 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
275 # self.polar = True
276 # self.polar = True
276
277
277 def plot(self):
278 def plot(self):
278
279
279 for n, ax in enumerate(self.axes):
280 for n, ax in enumerate(self.axes):
280 data = self.data['param'][self.channels[n]]
281 data = self.data['param'][self.channels[n]]
281
282
282 zeniths = numpy.linspace(
283 zeniths = numpy.linspace(
283 0, self.data.meta['max_range'], data.shape[1])
284 0, self.data.meta['max_range'], data.shape[1])
284 if self.mode == 'E':
285 if self.mode == 'E':
285 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
286 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
286 r, theta = numpy.meshgrid(zeniths, azimuths)
287 r, theta = numpy.meshgrid(zeniths, azimuths)
287 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
288 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
288 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
289 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
289 x = km2deg(x) + self.lon
290 x = km2deg(x) + self.lon
290 y = km2deg(y) + self.lat
291 y = km2deg(y) + self.lat
291 else:
292 else:
292 azimuths = numpy.radians(self.data.yrange)
293 azimuths = numpy.radians(self.data.yrange)
293 r, theta = numpy.meshgrid(zeniths, azimuths)
294 r, theta = numpy.meshgrid(zeniths, azimuths)
294 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
295 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
295 self.y = zeniths
296 self.y = zeniths
296
297
297 if ax.firsttime:
298 if ax.firsttime:
298 if self.zlimits is not None:
299 if self.zlimits is not None:
299 self.zmin, self.zmax = self.zlimits[n]
300 self.zmin, self.zmax = self.zlimits[n]
300 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
301 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
301 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
302 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
302 vmin=self.zmin,
303 vmin=self.zmin,
303 vmax=self.zmax,
304 vmax=self.zmax,
304 cmap=self.cmaps[n])
305 cmap=self.cmaps[n])
305 else:
306 else:
306 if self.zlimits is not None:
307 if self.zlimits is not None:
307 self.zmin, self.zmax = self.zlimits[n]
308 self.zmin, self.zmax = self.zlimits[n]
308 ax.collections.remove(ax.collections[0])
309 ax.collections.remove(ax.collections[0])
309 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
310 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
310 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
311 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
311 vmin=self.zmin,
312 vmin=self.zmin,
312 vmax=self.zmax,
313 vmax=self.zmax,
313 cmap=self.cmaps[n])
314 cmap=self.cmaps[n])
314
315
315 if self.mode == 'A':
316 if self.mode == 'A':
316 continue
317 continue
317
318
318 # plot district names
319 # plot district names
319 f = open('/data/workspace/schain_scripts/distrito.csv')
320 f = open('/data/workspace/schain_scripts/distrito.csv')
320 for line in f:
321 for line in f:
321 label, lon, lat = [s.strip() for s in line.split(',') if s]
322 label, lon, lat = [s.strip() for s in line.split(',') if s]
322 lat = float(lat)
323 lat = float(lat)
323 lon = float(lon)
324 lon = float(lon)
324 # ax.plot(lon, lat, '.b', ms=2)
325 # ax.plot(lon, lat, '.b', ms=2)
325 ax.text(lon, lat, label.decode('utf8'), ha='center',
326 ax.text(lon, lat, label.decode('utf8'), ha='center',
326 va='bottom', size='8', color='black')
327 va='bottom', size='8', color='black')
327
328
328 # plot limites
329 # plot limites
329 limites = []
330 limites = []
330 tmp = []
331 tmp = []
331 for line in open('/data/workspace/schain_scripts/lima.csv'):
332 for line in open('/data/workspace/schain_scripts/lima.csv'):
332 if '#' in line:
333 if '#' in line:
333 if tmp:
334 if tmp:
334 limites.append(tmp)
335 limites.append(tmp)
335 tmp = []
336 tmp = []
336 continue
337 continue
337 values = line.strip().split(',')
338 values = line.strip().split(',')
338 tmp.append((float(values[0]), float(values[1])))
339 tmp.append((float(values[0]), float(values[1])))
339 for points in limites:
340 for points in limites:
340 ax.add_patch(
341 ax.add_patch(
341 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
342 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
342
343
343 # plot Cuencas
344 # plot Cuencas
344 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
345 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
345 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
346 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
346 values = [line.strip().split(',') for line in f]
347 values = [line.strip().split(',') for line in f]
347 points = [(float(s[0]), float(s[1])) for s in values]
348 points = [(float(s[0]), float(s[1])) for s in values]
348 ax.add_patch(Polygon(points, ec='b', fc='none'))
349 ax.add_patch(Polygon(points, ec='b', fc='none'))
349
350
350 # plot grid
351 # plot grid
351 for r in (15, 30, 45, 60):
352 for r in (15, 30, 45, 60):
352 ax.add_artist(plt.Circle((self.lon, self.lat),
353 ax.add_artist(plt.Circle((self.lon, self.lat),
353 km2deg(r), color='0.6', fill=False, lw=0.2))
354 km2deg(r), color='0.6', fill=False, lw=0.2))
354 ax.text(
355 ax.text(
355 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
356 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
356 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
357 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
357 '{}km'.format(r),
358 '{}km'.format(r),
358 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
359 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
359
360
360 if self.mode == 'E':
361 if self.mode == 'E':
361 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
362 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
362 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
363 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
363 else:
364 else:
364 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
365 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
365 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
366 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
366
367
367 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
368 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
368 self.titles = ['{} {}'.format(
369 self.titles = ['{} {}'.format(
369 self.data.parameters[x], title) for x in self.channels]
370 self.data.parameters[x], title) for x in self.channels]
370
371
371 class WeatherPlot(Plot):
372 class WeatherPlot(Plot):
372 CODE = 'weather'
373 CODE = 'weather'
373 plot_name = 'weather'
374 plot_name = 'weather'
374 plot_type = 'ppistyle'
375 plot_type = 'ppistyle'
375 buffering = False
376 buffering = False
376
377
377 def setup(self):
378 def setup(self):
378 self.ncols = 1
379 self.ncols = 1
379 self.nrows = 1
380 self.nrows = 1
380 self.width =8
381 self.width =8
381 self.height =8
382 self.height =8
382 self.nplots= 1
383 self.nplots= 1
383 self.ylabel= 'Range [Km]'
384 self.ylabel= 'Range [Km]'
384 self.titles= ['Weather']
385 self.titles= ['Weather']
385 self.colorbar=False
386 self.colorbar=False
386 self.ini =0
387 self.ini =0
387 self.len_azi =0
388 self.len_azi =0
388 self.buffer_ini = None
389 self.buffer_ini = None
389 self.buffer_azi = None
390 self.buffer_azi = None
390 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
391 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
391 self.flag =0
392 self.flag =0
392 self.indicador= 0
393 self.indicador= 0
393 self.last_data_azi = None
394 self.last_data_azi = None
394 self.val_mean = None
395 self.val_mean = None
395
396
396 def update(self, dataOut):
397 def update(self, dataOut):
397
398
398 data = {}
399 data = {}
399 meta = {}
400 meta = {}
400 if hasattr(dataOut, 'dataPP_POWER'):
401 if hasattr(dataOut, 'dataPP_POWER'):
401 factor = 1
402 factor = 1
402 if hasattr(dataOut, 'nFFTPoints'):
403 if hasattr(dataOut, 'nFFTPoints'):
403 factor = dataOut.normFactor
404 factor = dataOut.normFactor
404 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
405 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
405 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
406 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
406 data['azi'] = dataOut.data_azi
407 data['azi'] = dataOut.data_azi
407 data['ele'] = dataOut.data_ele
408 data['ele'] = dataOut.data_ele
408 return data, meta
409 return data, meta
409
410
410 def get2List(self,angulos):
411 def get2List(self,angulos):
411 list1=[]
412 list1=[]
412 list2=[]
413 list2=[]
413 for i in reversed(range(len(angulos))):
414 for i in reversed(range(len(angulos))):
414 diff_ = angulos[i]-angulos[i-1]
415 diff_ = angulos[i]-angulos[i-1]
415 if diff_ >1.5:
416 if diff_ >1.5:
416 list1.append(i-1)
417 list1.append(i-1)
417 list2.append(diff_)
418 list2.append(diff_)
418 return list(reversed(list1)),list(reversed(list2))
419 return list(reversed(list1)),list(reversed(list2))
419
420
420 def fixData360(self,list_,ang_):
421 def fixData360(self,list_,ang_):
421 if list_[0]==-1:
422 if list_[0]==-1:
422 vec = numpy.where(ang_<ang_[0])
423 vec = numpy.where(ang_<ang_[0])
423 ang_[vec] = ang_[vec]+360
424 ang_[vec] = ang_[vec]+360
424 return ang_
425 return ang_
425 return ang_
426 return ang_
426
427
427 def fixData360HL(self,angulos):
428 def fixData360HL(self,angulos):
428 vec = numpy.where(angulos>=360)
429 vec = numpy.where(angulos>=360)
429 angulos[vec]=angulos[vec]-360
430 angulos[vec]=angulos[vec]-360
430 return angulos
431 return angulos
431
432
432 def search_pos(self,pos,list_):
433 def search_pos(self,pos,list_):
433 for i in range(len(list_)):
434 for i in range(len(list_)):
434 if pos == list_[i]:
435 if pos == list_[i]:
435 return True,i
436 return True,i
436 i=None
437 i=None
437 return False,i
438 return False,i
438
439
439 def fixDataComp(self,ang_,list1_,list2_):
440 def fixDataComp(self,ang_,list1_,list2_):
440 size = len(ang_)
441 size = len(ang_)
441 size2 = 0
442 size2 = 0
442 for i in range(len(list2_)):
443 for i in range(len(list2_)):
443 size2=size2+round(list2_[i])-1
444 size2=size2+round(list2_[i])-1
444 new_size= size+size2
445 new_size= size+size2
445 ang_new = numpy.zeros(new_size)
446 ang_new = numpy.zeros(new_size)
446 ang_new2 = numpy.zeros(new_size)
447 ang_new2 = numpy.zeros(new_size)
447
448
448 tmp = 0
449 tmp = 0
449 c = 0
450 c = 0
450 for i in range(len(ang_)):
451 for i in range(len(ang_)):
451 ang_new[tmp +c] = ang_[i]
452 ang_new[tmp +c] = ang_[i]
452 ang_new2[tmp+c] = ang_[i]
453 ang_new2[tmp+c] = ang_[i]
453 condition , value = self.search_pos(i,list1_)
454 condition , value = self.search_pos(i,list1_)
454 if condition:
455 if condition:
455 pos = tmp + c + 1
456 pos = tmp + c + 1
456 for k in range(round(list2_[value])-1):
457 for k in range(round(list2_[value])-1):
457 ang_new[pos+k] = ang_new[pos+k-1]+1
458 ang_new[pos+k] = ang_new[pos+k-1]+1
458 ang_new2[pos+k] = numpy.nan
459 ang_new2[pos+k] = numpy.nan
459 tmp = pos +k
460 tmp = pos +k
460 c = 0
461 c = 0
461 c=c+1
462 c=c+1
462 return ang_new,ang_new2
463 return ang_new,ang_new2
463
464
464 def globalCheckPED(self,angulos):
465 def globalCheckPED(self,angulos):
465 l1,l2 = self.get2List(angulos)
466 l1,l2 = self.get2List(angulos)
466 if len(l1)>0:
467 if len(l1)>0:
467 angulos2 = self.fixData360(list_=l1,ang_=angulos)
468 angulos2 = self.fixData360(list_=l1,ang_=angulos)
468 l1,l2 = self.get2List(angulos2)
469 l1,l2 = self.get2List(angulos2)
469
470
470 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
471 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
471 ang1_ = self.fixData360HL(ang1_)
472 ang1_ = self.fixData360HL(ang1_)
472 ang2_ = self.fixData360HL(ang2_)
473 ang2_ = self.fixData360HL(ang2_)
473 else:
474 else:
474 ang1_= angulos
475 ang1_= angulos
475 ang2_= angulos
476 ang2_= angulos
476 return ang1_,ang2_
477 return ang1_,ang2_
477
478
478 def analizeDATA(self,data_azi):
479 def analizeDATA(self,data_azi):
479 list1 = []
480 list1 = []
480 list2 = []
481 list2 = []
481 dat = data_azi
482 dat = data_azi
482 for i in reversed(range(1,len(dat))):
483 for i in reversed(range(1,len(dat))):
483 if dat[i]>dat[i-1]:
484 if dat[i]>dat[i-1]:
484 diff = int(dat[i])-int(dat[i-1])
485 diff = int(dat[i])-int(dat[i-1])
485 else:
486 else:
486 diff = 360+int(dat[i])-int(dat[i-1])
487 diff = 360+int(dat[i])-int(dat[i-1])
487 if diff > 1:
488 if diff > 1:
488 list1.append(i-1)
489 list1.append(i-1)
489 list2.append(diff-1)
490 list2.append(diff-1)
490 return list1,list2
491 return list1,list2
491
492
492 def fixDATANEW(self,data_azi,data_weather):
493 def fixDATANEW(self,data_azi,data_weather):
493 list1,list2 = self.analizeDATA(data_azi)
494 list1,list2 = self.analizeDATA(data_azi)
494 if len(list1)== 0:
495 if len(list1)== 0:
495 return data_azi,data_weather
496 return data_azi,data_weather
496 else:
497 else:
497 resize = 0
498 resize = 0
498 for i in range(len(list2)):
499 for i in range(len(list2)):
499 resize= resize + list2[i]
500 resize= resize + list2[i]
500 new_data_azi = numpy.resize(data_azi,resize)
501 new_data_azi = numpy.resize(data_azi,resize)
501 new_data_weather= numpy.resize(date_weather,resize)
502 new_data_weather= numpy.resize(date_weather,resize)
502
503
503 for i in range(len(list2)):
504 for i in range(len(list2)):
504 j=0
505 j=0
505 position=list1[i]+1
506 position=list1[i]+1
506 for j in range(list2[i]):
507 for j in range(list2[i]):
507 new_data_azi[position+j]=new_data_azi[position+j-1]+1
508 new_data_azi[position+j]=new_data_azi[position+j-1]+1
508 return new_data_azi
509 return new_data_azi
509
510
510 def fixDATA(self,data_azi):
511 def fixDATA(self,data_azi):
511 data=data_azi
512 data=data_azi
512 for i in range(len(data)):
513 for i in range(len(data)):
513 if numpy.isnan(data[i]):
514 if numpy.isnan(data[i]):
514 data[i]=data[i-1]+1
515 data[i]=data[i-1]+1
515 return data
516 return data
516
517
517 def replaceNAN(self,data_weather,data_azi,val):
518 def replaceNAN(self,data_weather,data_azi,val):
518 data= data_azi
519 data= data_azi
519 data_T= data_weather
520 data_T= data_weather
520 if data.shape[0]> data_T.shape[0]:
521 if data.shape[0]> data_T.shape[0]:
521 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
522 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
522 c = 0
523 c = 0
523 for i in range(len(data)):
524 for i in range(len(data)):
524 if numpy.isnan(data[i]):
525 if numpy.isnan(data[i]):
525 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
526 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
526 else:
527 else:
527 data_N[i,:]=data_T[c,:]
528 data_N[i,:]=data_T[c,:]
528 c=c+1
529 c=c+1
529 return data_N
530 return data_N
530 else:
531 else:
531 for i in range(len(data)):
532 for i in range(len(data)):
532 if numpy.isnan(data[i]):
533 if numpy.isnan(data[i]):
533 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
534 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
534 return data_T
535 return data_T
535
536
536 def const_ploteo(self,data_weather,data_azi,step,res):
537 def const_ploteo(self,data_weather,data_azi,step,res):
537 if self.ini==0:
538 if self.ini==0:
538 #-------
539 #-------
539 n = (360/res)-len(data_azi)
540 n = (360/res)-len(data_azi)
540 #--------------------- new -------------------------
541 #--------------------- new -------------------------
541 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
542 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
542 #------------------------
543 #------------------------
543 start = data_azi_new[-1] + res
544 start = data_azi_new[-1] + res
544 end = data_azi_new[0] - res
545 end = data_azi_new[0] - res
545 #------ new
546 #------ new
546 self.last_data_azi = end
547 self.last_data_azi = end
547 if start>end:
548 if start>end:
548 end = end + 360
549 end = end + 360
549 azi_vacia = numpy.linspace(start,end,int(n))
550 azi_vacia = numpy.linspace(start,end,int(n))
550 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
551 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
551 data_azi = numpy.hstack((data_azi_new,azi_vacia))
552 data_azi = numpy.hstack((data_azi_new,azi_vacia))
552 # RADAR
553 # RADAR
553 val_mean = numpy.mean(data_weather[:,-1])
554 val_mean = numpy.mean(data_weather[:,-1])
554 self.val_mean = val_mean
555 self.val_mean = val_mean
555 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
556 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
556 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
557 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
557 data_weather = numpy.vstack((data_weather,data_weather_cmp))
558 data_weather = numpy.vstack((data_weather,data_weather_cmp))
558 else:
559 else:
559 # azimuth
560 # azimuth
560 flag=0
561 flag=0
561 start_azi = self.res_azi[0]
562 start_azi = self.res_azi[0]
562 #-----------new------------
563 #-----------new------------
563 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
564 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
564 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
565 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
565 #--------------------------
566 #--------------------------
566 start = data_azi[0]
567 start = data_azi[0]
567 end = data_azi[-1]
568 end = data_azi[-1]
568 self.last_data_azi= end
569 self.last_data_azi= end
569 if start< start_azi:
570 if start< start_azi:
570 start = start +360
571 start = start +360
571 if end <start_azi:
572 if end <start_azi:
572 end = end +360
573 end = end +360
573
574
574 pos_ini = int((start-start_azi)/res)
575 pos_ini = int((start-start_azi)/res)
575 len_azi = len(data_azi)
576 len_azi = len(data_azi)
576 if (360-pos_ini)<len_azi:
577 if (360-pos_ini)<len_azi:
577 if pos_ini+1==360:
578 if pos_ini+1==360:
578 pos_ini=0
579 pos_ini=0
579 else:
580 else:
580 flag=1
581 flag=1
581 dif= 360-pos_ini
582 dif= 360-pos_ini
582 comp= len_azi-dif
583 comp= len_azi-dif
583 #-----------------
584 #-----------------
584 if flag==0:
585 if flag==0:
585 # AZIMUTH
586 # AZIMUTH
586 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
587 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
587 # RADAR
588 # RADAR
588 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
589 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
589 else:
590 else:
590 # AZIMUTH
591 # AZIMUTH
591 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
592 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
592 self.res_azi[0:comp] = data_azi[dif:]
593 self.res_azi[0:comp] = data_azi[dif:]
593 # RADAR
594 # RADAR
594 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
595 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
595 self.res_weather[0:comp,:] = data_weather[dif:,:]
596 self.res_weather[0:comp,:] = data_weather[dif:,:]
596 flag=0
597 flag=0
597 data_azi = self.res_azi
598 data_azi = self.res_azi
598 data_weather = self.res_weather
599 data_weather = self.res_weather
599
600
600 return data_weather,data_azi
601 return data_weather,data_azi
601
602
602 def plot(self):
603 def plot(self):
603 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
604 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
604 data = self.data[-1]
605 data = self.data[-1]
605 r = self.data.yrange
606 r = self.data.yrange
606 delta_height = r[1]-r[0]
607 delta_height = r[1]-r[0]
607 r_mask = numpy.where(r>=0)[0]
608 r_mask = numpy.where(r>=0)[0]
608 r = numpy.arange(len(r_mask))*delta_height
609 r = numpy.arange(len(r_mask))*delta_height
609 self.y = 2*r
610 self.y = 2*r
610 # RADAR
611 # RADAR
611 #data_weather = data['weather']
612 #data_weather = data['weather']
612 # PEDESTAL
613 # PEDESTAL
613 #data_azi = data['azi']
614 #data_azi = data['azi']
614 res = 1
615 res = 1
615 # STEP
616 # STEP
616 step = (360/(res*data['weather'].shape[0]))
617 step = (360/(res*data['weather'].shape[0]))
617
618
618 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
619 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
619 self.res_ele = numpy.mean(data['ele'])
620 self.res_ele = numpy.mean(data['ele'])
620 ################# PLOTEO ###################
621 ################# PLOTEO ###################
621 for i,ax in enumerate(self.axes):
622 for i,ax in enumerate(self.axes):
622 if ax.firsttime:
623 if ax.firsttime:
623 plt.clf()
624 plt.clf()
624 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
625 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
625 else:
626 else:
626 plt.clf()
627 plt.clf()
627 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
628 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
628 caax = cgax.parasites[0]
629 caax = cgax.parasites[0]
629 paax = cgax.parasites[1]
630 paax = cgax.parasites[1]
630 cbar = plt.gcf().colorbar(pm, pad=0.075)
631 cbar = plt.gcf().colorbar(pm, pad=0.075)
631 caax.set_xlabel('x_range [km]')
632 caax.set_xlabel('x_range [km]')
632 caax.set_ylabel('y_range [km]')
633 caax.set_ylabel('y_range [km]')
633 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right')
634 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right')
634
635
635 self.ini= self.ini+1
636 self.ini= self.ini+1
636
637
637
638
638 class WeatherRHIPlot(Plot):
639 class WeatherRHIPlot(Plot):
639 CODE = 'weather'
640 CODE = 'weather'
640 plot_name = 'weather'
641 plot_name = 'weather'
641 plot_type = 'rhistyle'
642 plot_type = 'rhistyle'
642 buffering = False
643 buffering = False
643 data_ele_tmp = None
644 data_ele_tmp = None
644
645
645 def setup(self):
646 def setup(self):
646 print("********************")
647 print("********************")
647 print("********************")
648 print("********************")
648 print("********************")
649 print("********************")
649 print("SETUP WEATHER PLOT")
650 print("SETUP WEATHER PLOT")
650 self.ncols = 1
651 self.ncols = 1
651 self.nrows = 1
652 self.nrows = 1
652 self.nplots= 1
653 self.nplots= 1
653 self.ylabel= 'Range [Km]'
654 self.ylabel= 'Range [Km]'
654 self.titles= ['Weather']
655 self.titles= ['Weather']
655 if self.channels is not None:
656 if self.channels is not None:
656 self.nplots = len(self.channels)
657 self.nplots = len(self.channels)
657 self.nrows = len(self.channels)
658 self.nrows = len(self.channels)
658 else:
659 else:
659 self.nplots = self.data.shape(self.CODE)[0]
660 self.nplots = self.data.shape(self.CODE)[0]
660 self.nrows = self.nplots
661 self.nrows = self.nplots
661 self.channels = list(range(self.nplots))
662 self.channels = list(range(self.nplots))
662 print("channels",self.channels)
663 print("channels",self.channels)
663 print("que saldra", self.data.shape(self.CODE)[0])
664 print("que saldra", self.data.shape(self.CODE)[0])
664 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
665 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
665 print("self.titles",self.titles)
666 print("self.titles",self.titles)
666 self.colorbar=False
667 self.colorbar=False
667 self.width =8
668 self.width =8
668 self.height =8
669 self.height =8
669 self.ini =0
670 self.ini =0
670 self.len_azi =0
671 self.len_azi =0
671 self.buffer_ini = None
672 self.buffer_ini = None
672 self.buffer_ele = None
673 self.buffer_ele = None
673 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
674 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
674 self.flag =0
675 self.flag =0
675 self.indicador= 0
676 self.indicador= 0
676 self.last_data_ele = None
677 self.last_data_ele = None
677 self.val_mean = None
678 self.val_mean = None
678
679
679 def update(self, dataOut):
680 def update(self, dataOut):
680
681
681 data = {}
682 data = {}
682 meta = {}
683 meta = {}
683 if hasattr(dataOut, 'dataPP_POWER'):
684 if hasattr(dataOut, 'dataPP_POWER'):
684 factor = 1
685 factor = 1
685 if hasattr(dataOut, 'nFFTPoints'):
686 if hasattr(dataOut, 'nFFTPoints'):
686 factor = dataOut.normFactor
687 factor = dataOut.normFactor
687 print("dataOut",dataOut.data_360.shape)
688 print("dataOut",dataOut.data_360.shape)
688 #
689 #
689 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
690 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
690 #
691 #
691 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
692 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
692 data['azi'] = dataOut.data_azi
693 data['azi'] = dataOut.data_azi
693 data['ele'] = dataOut.data_ele
694 data['ele'] = dataOut.data_ele
694 #print("UPDATE")
695 #print("UPDATE")
695 #print("data[weather]",data['weather'].shape)
696 #print("data[weather]",data['weather'].shape)
696 #print("data[azi]",data['azi'])
697 #print("data[azi]",data['azi'])
697 return data, meta
698 return data, meta
698
699
699 def get2List(self,angulos):
700 def get2List(self,angulos):
700 list1=[]
701 list1=[]
701 list2=[]
702 list2=[]
702 for i in reversed(range(len(angulos))):
703 for i in reversed(range(len(angulos))):
703 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
704 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
704 diff_ = angulos[i]-angulos[i-1]
705 diff_ = angulos[i]-angulos[i-1]
705 if abs(diff_) >1.5:
706 if abs(diff_) >1.5:
706 list1.append(i-1)
707 list1.append(i-1)
707 list2.append(diff_)
708 list2.append(diff_)
708 return list(reversed(list1)),list(reversed(list2))
709 return list(reversed(list1)),list(reversed(list2))
709
710
710 def fixData90(self,list_,ang_):
711 def fixData90(self,list_,ang_):
711 if list_[0]==-1:
712 if list_[0]==-1:
712 vec = numpy.where(ang_<ang_[0])
713 vec = numpy.where(ang_<ang_[0])
713 ang_[vec] = ang_[vec]+90
714 ang_[vec] = ang_[vec]+90
714 return ang_
715 return ang_
715 return ang_
716 return ang_
716
717
717 def fixData90HL(self,angulos):
718 def fixData90HL(self,angulos):
718 vec = numpy.where(angulos>=90)
719 vec = numpy.where(angulos>=90)
719 angulos[vec]=angulos[vec]-90
720 angulos[vec]=angulos[vec]-90
720 return angulos
721 return angulos
721
722
722
723
723 def search_pos(self,pos,list_):
724 def search_pos(self,pos,list_):
724 for i in range(len(list_)):
725 for i in range(len(list_)):
725 if pos == list_[i]:
726 if pos == list_[i]:
726 return True,i
727 return True,i
727 i=None
728 i=None
728 return False,i
729 return False,i
729
730
730 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
731 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
731 size = len(ang_)
732 size = len(ang_)
732 size2 = 0
733 size2 = 0
733 for i in range(len(list2_)):
734 for i in range(len(list2_)):
734 size2=size2+round(abs(list2_[i]))-1
735 size2=size2+round(abs(list2_[i]))-1
735 new_size= size+size2
736 new_size= size+size2
736 ang_new = numpy.zeros(new_size)
737 ang_new = numpy.zeros(new_size)
737 ang_new2 = numpy.zeros(new_size)
738 ang_new2 = numpy.zeros(new_size)
738
739
739 tmp = 0
740 tmp = 0
740 c = 0
741 c = 0
741 for i in range(len(ang_)):
742 for i in range(len(ang_)):
742 ang_new[tmp +c] = ang_[i]
743 ang_new[tmp +c] = ang_[i]
743 ang_new2[tmp+c] = ang_[i]
744 ang_new2[tmp+c] = ang_[i]
744 condition , value = self.search_pos(i,list1_)
745 condition , value = self.search_pos(i,list1_)
745 if condition:
746 if condition:
746 pos = tmp + c + 1
747 pos = tmp + c + 1
747 for k in range(round(abs(list2_[value]))-1):
748 for k in range(round(abs(list2_[value]))-1):
748 if tipo_case==0 or tipo_case==3:#subida
749 if tipo_case==0 or tipo_case==3:#subida
749 ang_new[pos+k] = ang_new[pos+k-1]+1
750 ang_new[pos+k] = ang_new[pos+k-1]+1
750 ang_new2[pos+k] = numpy.nan
751 ang_new2[pos+k] = numpy.nan
751 elif tipo_case==1 or tipo_case==2:#bajada
752 elif tipo_case==1 or tipo_case==2:#bajada
752 ang_new[pos+k] = ang_new[pos+k-1]-1
753 ang_new[pos+k] = ang_new[pos+k-1]-1
753 ang_new2[pos+k] = numpy.nan
754 ang_new2[pos+k] = numpy.nan
754
755
755 tmp = pos +k
756 tmp = pos +k
756 c = 0
757 c = 0
757 c=c+1
758 c=c+1
758 return ang_new,ang_new2
759 return ang_new,ang_new2
759
760
760 def globalCheckPED(self,angulos,tipo_case):
761 def globalCheckPED(self,angulos,tipo_case):
761 l1,l2 = self.get2List(angulos)
762 l1,l2 = self.get2List(angulos)
762 ##print("l1",l1)
763 ##print("l1",l1)
763 ##print("l2",l2)
764 ##print("l2",l2)
764 if len(l1)>0:
765 if len(l1)>0:
765 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
766 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
766 #l1,l2 = self.get2List(angulos2)
767 #l1,l2 = self.get2List(angulos2)
767 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
768 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
768 #ang1_ = self.fixData90HL(ang1_)
769 #ang1_ = self.fixData90HL(ang1_)
769 #ang2_ = self.fixData90HL(ang2_)
770 #ang2_ = self.fixData90HL(ang2_)
770 else:
771 else:
771 ang1_= angulos
772 ang1_= angulos
772 ang2_= angulos
773 ang2_= angulos
773 return ang1_,ang2_
774 return ang1_,ang2_
774
775
775
776
776 def replaceNAN(self,data_weather,data_ele,val):
777 def replaceNAN(self,data_weather,data_ele,val):
777 data= data_ele
778 data= data_ele
778 data_T= data_weather
779 data_T= data_weather
779 if data.shape[0]> data_T.shape[0]:
780 if data.shape[0]> data_T.shape[0]:
780 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
781 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
781 c = 0
782 c = 0
782 for i in range(len(data)):
783 for i in range(len(data)):
783 if numpy.isnan(data[i]):
784 if numpy.isnan(data[i]):
784 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
785 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
785 else:
786 else:
786 data_N[i,:]=data_T[c,:]
787 data_N[i,:]=data_T[c,:]
787 c=c+1
788 c=c+1
788 return data_N
789 return data_N
789 else:
790 else:
790 for i in range(len(data)):
791 for i in range(len(data)):
791 if numpy.isnan(data[i]):
792 if numpy.isnan(data[i]):
792 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
793 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
793 return data_T
794 return data_T
794
795
795 def check_case(self,data_ele,ang_max,ang_min):
796 def check_case(self,data_ele,ang_max,ang_min):
796 start = data_ele[0]
797 start = data_ele[0]
797 end = data_ele[-1]
798 end = data_ele[-1]
798 number = (end-start)
799 number = (end-start)
799 len_ang=len(data_ele)
800 len_ang=len(data_ele)
800 print("start",start)
801 print("start",start)
801 print("end",end)
802 print("end",end)
802 print("number",number)
803 print("number",number)
803
804
804 print("len_ang",len_ang)
805 print("len_ang",len_ang)
805
806
806 #exit(1)
807 #exit(1)
807
808
808 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
809 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
809 return 0
810 return 0
810 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
811 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
811 # return 1
812 # return 1
812 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
813 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
813 return 1
814 return 1
814 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
815 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
815 return 2
816 return 2
816 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
817 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
817 return 3
818 return 3
818
819
819
820
820 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
821 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
821 ang_max= ang_max
822 ang_max= ang_max
822 ang_min= ang_min
823 ang_min= ang_min
823 data_weather=data_weather
824 data_weather=data_weather
824 val_ch=val_ch
825 val_ch=val_ch
825 ##print("*********************DATA WEATHER**************************************")
826 ##print("*********************DATA WEATHER**************************************")
826 ##print(data_weather)
827 ##print(data_weather)
827 if self.ini==0:
828 if self.ini==0:
828 '''
829 '''
829 print("**********************************************")
830 print("**********************************************")
830 print("**********************************************")
831 print("**********************************************")
831 print("***************ini**************")
832 print("***************ini**************")
832 print("**********************************************")
833 print("**********************************************")
833 print("**********************************************")
834 print("**********************************************")
834 '''
835 '''
835 #print("data_ele",data_ele)
836 #print("data_ele",data_ele)
836 #----------------------------------------------------------
837 #----------------------------------------------------------
837 tipo_case = self.check_case(data_ele,ang_max,ang_min)
838 tipo_case = self.check_case(data_ele,ang_max,ang_min)
838 print("check_case",tipo_case)
839 print("check_case",tipo_case)
839 #exit(1)
840 #exit(1)
840 #--------------------- new -------------------------
841 #--------------------- new -------------------------
841 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
842 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
842
843
843 #-------------------------CAMBIOS RHI---------------------------------
844 #-------------------------CAMBIOS RHI---------------------------------
844 start= ang_min
845 start= ang_min
845 end = ang_max
846 end = ang_max
846 n= (ang_max-ang_min)/res
847 n= (ang_max-ang_min)/res
847 #------ new
848 #------ new
848 self.start_data_ele = data_ele_new[0]
849 self.start_data_ele = data_ele_new[0]
849 self.end_data_ele = data_ele_new[-1]
850 self.end_data_ele = data_ele_new[-1]
850 if tipo_case==0 or tipo_case==3: # SUBIDA
851 if tipo_case==0 or tipo_case==3: # SUBIDA
851 n1= round(self.start_data_ele)- start
852 n1= round(self.start_data_ele)- start
852 n2= end - round(self.end_data_ele)
853 n2= end - round(self.end_data_ele)
853 print(self.start_data_ele)
854 print(self.start_data_ele)
854 print(self.end_data_ele)
855 print(self.end_data_ele)
855 if n1>0:
856 if n1>0:
856 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
857 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
857 ele1_nan= numpy.ones(n1)*numpy.nan
858 ele1_nan= numpy.ones(n1)*numpy.nan
858 data_ele = numpy.hstack((ele1,data_ele_new))
859 data_ele = numpy.hstack((ele1,data_ele_new))
859 print("ele1_nan",ele1_nan.shape)
860 print("ele1_nan",ele1_nan.shape)
860 print("data_ele_old",data_ele_old.shape)
861 print("data_ele_old",data_ele_old.shape)
861 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
862 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
862 if n2>0:
863 if n2>0:
863 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
864 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
864 ele2_nan= numpy.ones(n2)*numpy.nan
865 ele2_nan= numpy.ones(n2)*numpy.nan
865 data_ele = numpy.hstack((data_ele,ele2))
866 data_ele = numpy.hstack((data_ele,ele2))
866 print("ele2_nan",ele2_nan.shape)
867 print("ele2_nan",ele2_nan.shape)
867 print("data_ele_old",data_ele_old.shape)
868 print("data_ele_old",data_ele_old.shape)
868 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
869 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
869
870
870 if tipo_case==1 or tipo_case==2: # BAJADA
871 if tipo_case==1 or tipo_case==2: # BAJADA
871 data_ele_new = data_ele_new[::-1] # reversa
872 data_ele_new = data_ele_new[::-1] # reversa
872 data_ele_old = data_ele_old[::-1]# reversa
873 data_ele_old = data_ele_old[::-1]# reversa
873 data_weather = data_weather[::-1,:]# reversa
874 data_weather = data_weather[::-1,:]# reversa
874 vec= numpy.where(data_ele_new<ang_max)
875 vec= numpy.where(data_ele_new<ang_max)
875 data_ele_new = data_ele_new[vec]
876 data_ele_new = data_ele_new[vec]
876 data_ele_old = data_ele_old[vec]
877 data_ele_old = data_ele_old[vec]
877 data_weather = data_weather[vec[0]]
878 data_weather = data_weather[vec[0]]
878 vec2= numpy.where(0<data_ele_new)
879 vec2= numpy.where(0<data_ele_new)
879 data_ele_new = data_ele_new[vec2]
880 data_ele_new = data_ele_new[vec2]
880 data_ele_old = data_ele_old[vec2]
881 data_ele_old = data_ele_old[vec2]
881 data_weather = data_weather[vec2[0]]
882 data_weather = data_weather[vec2[0]]
882 self.start_data_ele = data_ele_new[0]
883 self.start_data_ele = data_ele_new[0]
883 self.end_data_ele = data_ele_new[-1]
884 self.end_data_ele = data_ele_new[-1]
884
885
885 n1= round(self.start_data_ele)- start
886 n1= round(self.start_data_ele)- start
886 n2= end - round(self.end_data_ele)-1
887 n2= end - round(self.end_data_ele)-1
887 print(self.start_data_ele)
888 print(self.start_data_ele)
888 print(self.end_data_ele)
889 print(self.end_data_ele)
889 if n1>0:
890 if n1>0:
890 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
891 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
891 ele1_nan= numpy.ones(n1)*numpy.nan
892 ele1_nan= numpy.ones(n1)*numpy.nan
892 data_ele = numpy.hstack((ele1,data_ele_new))
893 data_ele = numpy.hstack((ele1,data_ele_new))
893 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
894 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
894 if n2>0:
895 if n2>0:
895 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
896 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
896 ele2_nan= numpy.ones(n2)*numpy.nan
897 ele2_nan= numpy.ones(n2)*numpy.nan
897 data_ele = numpy.hstack((data_ele,ele2))
898 data_ele = numpy.hstack((data_ele,ele2))
898 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
899 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
899 # RADAR
900 # RADAR
900 # NOTA data_ele y data_weather es la variable que retorna
901 # NOTA data_ele y data_weather es la variable que retorna
901 val_mean = numpy.mean(data_weather[:,-1])
902 val_mean = numpy.mean(data_weather[:,-1])
902 self.val_mean = val_mean
903 self.val_mean = val_mean
903 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
904 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
904 self.data_ele_tmp[val_ch]= data_ele_old
905 self.data_ele_tmp[val_ch]= data_ele_old
905 else:
906 else:
906 #print("**********************************************")
907 #print("**********************************************")
907 #print("****************VARIABLE**********************")
908 #print("****************VARIABLE**********************")
908 #-------------------------CAMBIOS RHI---------------------------------
909 #-------------------------CAMBIOS RHI---------------------------------
909 #---------------------------------------------------------------------
910 #---------------------------------------------------------------------
910 ##print("INPUT data_ele",data_ele)
911 ##print("INPUT data_ele",data_ele)
911 flag=0
912 flag=0
912 start_ele = self.res_ele[0]
913 start_ele = self.res_ele[0]
913 tipo_case = self.check_case(data_ele,ang_max,ang_min)
914 tipo_case = self.check_case(data_ele,ang_max,ang_min)
914 #print("TIPO DE DATA",tipo_case)
915 #print("TIPO DE DATA",tipo_case)
915 #-----------new------------
916 #-----------new------------
916 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
917 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
917 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
918 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
918
919
919 #-------------------------------NEW RHI ITERATIVO-------------------------
920 #-------------------------------NEW RHI ITERATIVO-------------------------
920
921
921 if tipo_case==0 : # SUBIDA
922 if tipo_case==0 : # SUBIDA
922 vec = numpy.where(data_ele<ang_max)
923 vec = numpy.where(data_ele<ang_max)
923 data_ele = data_ele[vec]
924 data_ele = data_ele[vec]
924 data_ele_old = data_ele_old[vec]
925 data_ele_old = data_ele_old[vec]
925 data_weather = data_weather[vec[0]]
926 data_weather = data_weather[vec[0]]
926
927
927 vec2 = numpy.where(0<data_ele)
928 vec2 = numpy.where(0<data_ele)
928 data_ele= data_ele[vec2]
929 data_ele= data_ele[vec2]
929 data_ele_old= data_ele_old[vec2]
930 data_ele_old= data_ele_old[vec2]
930 ##print(data_ele_new)
931 ##print(data_ele_new)
931 data_weather= data_weather[vec2[0]]
932 data_weather= data_weather[vec2[0]]
932
933
933 new_i_ele = int(round(data_ele[0]))
934 new_i_ele = int(round(data_ele[0]))
934 new_f_ele = int(round(data_ele[-1]))
935 new_f_ele = int(round(data_ele[-1]))
935 #print(new_i_ele)
936 #print(new_i_ele)
936 #print(new_f_ele)
937 #print(new_f_ele)
937 #print(data_ele,len(data_ele))
938 #print(data_ele,len(data_ele))
938 #print(data_ele_old,len(data_ele_old))
939 #print(data_ele_old,len(data_ele_old))
939 if new_i_ele< 2:
940 if new_i_ele< 2:
940 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
941 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
941 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
942 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
942 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
943 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
943 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
944 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
944 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
945 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
945 data_ele = self.res_ele
946 data_ele = self.res_ele
946 data_weather = self.res_weather[val_ch]
947 data_weather = self.res_weather[val_ch]
947
948
948 elif tipo_case==1 : #BAJADA
949 elif tipo_case==1 : #BAJADA
949 data_ele = data_ele[::-1] # reversa
950 data_ele = data_ele[::-1] # reversa
950 data_ele_old = data_ele_old[::-1]# reversa
951 data_ele_old = data_ele_old[::-1]# reversa
951 data_weather = data_weather[::-1,:]# reversa
952 data_weather = data_weather[::-1,:]# reversa
952 vec= numpy.where(data_ele<ang_max)
953 vec= numpy.where(data_ele<ang_max)
953 data_ele = data_ele[vec]
954 data_ele = data_ele[vec]
954 data_ele_old = data_ele_old[vec]
955 data_ele_old = data_ele_old[vec]
955 data_weather = data_weather[vec[0]]
956 data_weather = data_weather[vec[0]]
956 vec2= numpy.where(0<data_ele)
957 vec2= numpy.where(0<data_ele)
957 data_ele = data_ele[vec2]
958 data_ele = data_ele[vec2]
958 data_ele_old = data_ele_old[vec2]
959 data_ele_old = data_ele_old[vec2]
959 data_weather = data_weather[vec2[0]]
960 data_weather = data_weather[vec2[0]]
960
961
961
962
962 new_i_ele = int(round(data_ele[0]))
963 new_i_ele = int(round(data_ele[0]))
963 new_f_ele = int(round(data_ele[-1]))
964 new_f_ele = int(round(data_ele[-1]))
964 #print(data_ele)
965 #print(data_ele)
965 #print(ang_max)
966 #print(ang_max)
966 #print(data_ele_old)
967 #print(data_ele_old)
967 if new_i_ele <= 1:
968 if new_i_ele <= 1:
968 new_i_ele = 1
969 new_i_ele = 1
969 if round(data_ele[-1])>=ang_max-1:
970 if round(data_ele[-1])>=ang_max-1:
970 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
971 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
971 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
972 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
972 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
973 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
973 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
974 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
974 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
975 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
975 data_ele = self.res_ele
976 data_ele = self.res_ele
976 data_weather = self.res_weather[val_ch]
977 data_weather = self.res_weather[val_ch]
977
978
978 elif tipo_case==2: #bajada
979 elif tipo_case==2: #bajada
979 vec = numpy.where(data_ele<ang_max)
980 vec = numpy.where(data_ele<ang_max)
980 data_ele = data_ele[vec]
981 data_ele = data_ele[vec]
981 data_weather= data_weather[vec[0]]
982 data_weather= data_weather[vec[0]]
982
983
983 len_vec = len(vec)
984 len_vec = len(vec)
984 data_ele_new = data_ele[::-1] # reversa
985 data_ele_new = data_ele[::-1] # reversa
985 data_weather = data_weather[::-1,:]
986 data_weather = data_weather[::-1,:]
986 new_i_ele = int(data_ele_new[0])
987 new_i_ele = int(data_ele_new[0])
987 new_f_ele = int(data_ele_new[-1])
988 new_f_ele = int(data_ele_new[-1])
988
989
989 n1= new_i_ele- ang_min
990 n1= new_i_ele- ang_min
990 n2= ang_max - new_f_ele-1
991 n2= ang_max - new_f_ele-1
991 if n1>0:
992 if n1>0:
992 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
993 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
993 ele1_nan= numpy.ones(n1)*numpy.nan
994 ele1_nan= numpy.ones(n1)*numpy.nan
994 data_ele = numpy.hstack((ele1,data_ele_new))
995 data_ele = numpy.hstack((ele1,data_ele_new))
995 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
996 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
996 if n2>0:
997 if n2>0:
997 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
998 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
998 ele2_nan= numpy.ones(n2)*numpy.nan
999 ele2_nan= numpy.ones(n2)*numpy.nan
999 data_ele = numpy.hstack((data_ele,ele2))
1000 data_ele = numpy.hstack((data_ele,ele2))
1000 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1001 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1001
1002
1002 self.data_ele_tmp[val_ch] = data_ele_old
1003 self.data_ele_tmp[val_ch] = data_ele_old
1003 self.res_ele = data_ele
1004 self.res_ele = data_ele
1004 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1005 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1005 data_ele = self.res_ele
1006 data_ele = self.res_ele
1006 data_weather = self.res_weather[val_ch]
1007 data_weather = self.res_weather[val_ch]
1007
1008
1008 elif tipo_case==3:#subida
1009 elif tipo_case==3:#subida
1009 vec = numpy.where(0<data_ele)
1010 vec = numpy.where(0<data_ele)
1010 data_ele= data_ele[vec]
1011 data_ele= data_ele[vec]
1011 data_ele_new = data_ele
1012 data_ele_new = data_ele
1012 data_ele_old= data_ele_old[vec]
1013 data_ele_old= data_ele_old[vec]
1013 data_weather= data_weather[vec[0]]
1014 data_weather= data_weather[vec[0]]
1014 pos_ini = numpy.argmin(data_ele)
1015 pos_ini = numpy.argmin(data_ele)
1015 if pos_ini>0:
1016 if pos_ini>0:
1016 len_vec= len(data_ele)
1017 len_vec= len(data_ele)
1017 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1018 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1018 #print(vec3)
1019 #print(vec3)
1019 data_ele= data_ele[vec3]
1020 data_ele= data_ele[vec3]
1020 data_ele_new = data_ele
1021 data_ele_new = data_ele
1021 data_ele_old= data_ele_old[vec3]
1022 data_ele_old= data_ele_old[vec3]
1022 data_weather= data_weather[vec3]
1023 data_weather= data_weather[vec3]
1023
1024
1024 new_i_ele = int(data_ele_new[0])
1025 new_i_ele = int(data_ele_new[0])
1025 new_f_ele = int(data_ele_new[-1])
1026 new_f_ele = int(data_ele_new[-1])
1026 n1= new_i_ele- ang_min
1027 n1= new_i_ele- ang_min
1027 n2= ang_max - new_f_ele-1
1028 n2= ang_max - new_f_ele-1
1028 if n1>0:
1029 if n1>0:
1029 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1030 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1030 ele1_nan= numpy.ones(n1)*numpy.nan
1031 ele1_nan= numpy.ones(n1)*numpy.nan
1031 data_ele = numpy.hstack((ele1,data_ele_new))
1032 data_ele = numpy.hstack((ele1,data_ele_new))
1032 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1033 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1033 if n2>0:
1034 if n2>0:
1034 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1035 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1035 ele2_nan= numpy.ones(n2)*numpy.nan
1036 ele2_nan= numpy.ones(n2)*numpy.nan
1036 data_ele = numpy.hstack((data_ele,ele2))
1037 data_ele = numpy.hstack((data_ele,ele2))
1037 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1038 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1038
1039
1039 self.data_ele_tmp[val_ch] = data_ele_old
1040 self.data_ele_tmp[val_ch] = data_ele_old
1040 self.res_ele = data_ele
1041 self.res_ele = data_ele
1041 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1042 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1042 data_ele = self.res_ele
1043 data_ele = self.res_ele
1043 data_weather = self.res_weather[val_ch]
1044 data_weather = self.res_weather[val_ch]
1044 #print("self.data_ele_tmp",self.data_ele_tmp)
1045 #print("self.data_ele_tmp",self.data_ele_tmp)
1045 return data_weather,data_ele
1046 return data_weather,data_ele
1046
1047
1047
1048
1048 def plot(self):
1049 def plot(self):
1049 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1050 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1050 data = self.data[-1]
1051 data = self.data[-1]
1051 r = self.data.yrange
1052 r = self.data.yrange
1052 delta_height = r[1]-r[0]
1053 delta_height = r[1]-r[0]
1053 r_mask = numpy.where(r>=0)[0]
1054 r_mask = numpy.where(r>=0)[0]
1054 ##print("delta_height",delta_height)
1055 ##print("delta_height",delta_height)
1055 #print("r_mask",r_mask,len(r_mask))
1056 #print("r_mask",r_mask,len(r_mask))
1056 r = numpy.arange(len(r_mask))*delta_height
1057 r = numpy.arange(len(r_mask))*delta_height
1057 self.y = 2*r
1058 self.y = 2*r
1058 res = 1
1059 res = 1
1059 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1060 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1060 ang_max = self.ang_max
1061 ang_max = self.ang_max
1061 ang_min = self.ang_min
1062 ang_min = self.ang_min
1062 var_ang =ang_max - ang_min
1063 var_ang =ang_max - ang_min
1063 step = (int(var_ang)/(res*data['weather'].shape[0]))
1064 step = (int(var_ang)/(res*data['weather'].shape[0]))
1064 ###print("step",step)
1065 ###print("step",step)
1065 #--------------------------------------------------------
1066 #--------------------------------------------------------
1066 ##print('weather',data['weather'].shape)
1067 ##print('weather',data['weather'].shape)
1067 ##print('ele',data['ele'].shape)
1068 ##print('ele',data['ele'].shape)
1068
1069
1069 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1070 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1070 ###self.res_azi = numpy.mean(data['azi'])
1071 ###self.res_azi = numpy.mean(data['azi'])
1071 ###print("self.res_ele",self.res_ele)
1072 ###print("self.res_ele",self.res_ele)
1072 plt.clf()
1073 plt.clf()
1073 subplots = [121, 122]
1074 subplots = [121, 122]
1074 if self.ini==0:
1075 if self.ini==0:
1075 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1076 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1076 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1077 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1077 print("SHAPE",self.data_ele_tmp.shape)
1078 print("SHAPE",self.data_ele_tmp.shape)
1078
1079
1079 for i,ax in enumerate(self.axes):
1080 for i,ax in enumerate(self.axes):
1080 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1081 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1081 self.res_azi = numpy.mean(data['azi'])
1082 self.res_azi = numpy.mean(data['azi'])
1082 if i==0:
1083 if i==0:
1083 print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
1084 print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
1084 if ax.firsttime:
1085 if ax.firsttime:
1085 #plt.clf()
1086 #plt.clf()
1086 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1087 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1087 #fig=self.figures[0]
1088 #fig=self.figures[0]
1088 else:
1089 else:
1089 #plt.clf()
1090 #plt.clf()
1090 if i==0:
1091 if i==0:
1091 print(self.res_weather[i])
1092 print(self.res_weather[i])
1092 print(self.res_ele)
1093 print(self.res_ele)
1093 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1094 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1094 caax = cgax.parasites[0]
1095 caax = cgax.parasites[0]
1095 paax = cgax.parasites[1]
1096 paax = cgax.parasites[1]
1096 cbar = plt.gcf().colorbar(pm, pad=0.075)
1097 cbar = plt.gcf().colorbar(pm, pad=0.075)
1097 caax.set_xlabel('x_range [km]')
1098 caax.set_xlabel('x_range [km]')
1098 caax.set_ylabel('y_range [km]')
1099 caax.set_ylabel('y_range [km]')
1099 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1100 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1100 print("***************************self.ini****************************",self.ini)
1101 print("***************************self.ini****************************",self.ini)
1101 self.ini= self.ini+1
1102 self.ini= self.ini+1
1102
1103
1103 class WeatherRHI_vRF2_Plot(Plot):
1104 class WeatherRHI_vRF2_Plot(Plot):
1104 CODE = 'weather'
1105 CODE = 'weather'
1105 plot_name = 'weather'
1106 plot_name = 'weather'
1106 plot_type = 'rhistyle'
1107 plot_type = 'rhistyle'
1107 buffering = False
1108 buffering = False
1108 data_ele_tmp = None
1109 data_ele_tmp = None
1109
1110
1110 def setup(self):
1111 def setup(self):
1111 print("********************")
1112 print("********************")
1112 print("********************")
1113 print("********************")
1113 print("********************")
1114 print("********************")
1114 print("SETUP WEATHER PLOT")
1115 print("SETUP WEATHER PLOT")
1115 self.ncols = 1
1116 self.ncols = 1
1116 self.nrows = 1
1117 self.nrows = 1
1117 self.nplots= 1
1118 self.nplots= 1
1118 self.ylabel= 'Range [Km]'
1119 self.ylabel= 'Range [Km]'
1119 self.titles= ['Weather']
1120 self.titles= ['Weather']
1120 if self.channels is not None:
1121 if self.channels is not None:
1121 self.nplots = len(self.channels)
1122 self.nplots = len(self.channels)
1122 self.nrows = len(self.channels)
1123 self.nrows = len(self.channels)
1123 else:
1124 else:
1124 self.nplots = self.data.shape(self.CODE)[0]
1125 self.nplots = self.data.shape(self.CODE)[0]
1125 self.nrows = self.nplots
1126 self.nrows = self.nplots
1126 self.channels = list(range(self.nplots))
1127 self.channels = list(range(self.nplots))
1127 print("channels",self.channels)
1128 print("channels",self.channels)
1128 print("que saldra", self.data.shape(self.CODE)[0])
1129 print("que saldra", self.data.shape(self.CODE)[0])
1129 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1130 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1130 print("self.titles",self.titles)
1131 print("self.titles",self.titles)
1131 self.colorbar=False
1132 self.colorbar=False
1132 self.width =8
1133 self.width =8
1133 self.height =8
1134 self.height =8
1134 self.ini =0
1135 self.ini =0
1135 self.len_azi =0
1136 self.len_azi =0
1136 self.buffer_ini = None
1137 self.buffer_ini = None
1137 self.buffer_ele = None
1138 self.buffer_ele = None
1138 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1139 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1139 self.flag =0
1140 self.flag =0
1140 self.indicador= 0
1141 self.indicador= 0
1141 self.last_data_ele = None
1142 self.last_data_ele = None
1142 self.val_mean = None
1143 self.val_mean = None
1143
1144
1144 def update(self, dataOut):
1145 def update(self, dataOut):
1145
1146
1146 data = {}
1147 data = {}
1147 meta = {}
1148 meta = {}
1148 if hasattr(dataOut, 'dataPP_POWER'):
1149 if hasattr(dataOut, 'dataPP_POWER'):
1149 factor = 1
1150 factor = 1
1150 if hasattr(dataOut, 'nFFTPoints'):
1151 if hasattr(dataOut, 'nFFTPoints'):
1151 factor = dataOut.normFactor
1152 factor = dataOut.normFactor
1152 print("dataOut",dataOut.data_360.shape)
1153 print("dataOut",dataOut.data_360.shape)
1153 #
1154 #
1154 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1155 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1155 #
1156 #
1156 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1157 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1157 data['azi'] = dataOut.data_azi
1158 data['azi'] = dataOut.data_azi
1158 data['ele'] = dataOut.data_ele
1159 data['ele'] = dataOut.data_ele
1159 data['case_flag'] = dataOut.case_flag
1160 data['case_flag'] = dataOut.case_flag
1160 #print("UPDATE")
1161 #print("UPDATE")
1161 #print("data[weather]",data['weather'].shape)
1162 #print("data[weather]",data['weather'].shape)
1162 #print("data[azi]",data['azi'])
1163 #print("data[azi]",data['azi'])
1163 return data, meta
1164 return data, meta
1164
1165
1165 def get2List(self,angulos):
1166 def get2List(self,angulos):
1166 list1=[]
1167 list1=[]
1167 list2=[]
1168 list2=[]
1168 for i in reversed(range(len(angulos))):
1169 for i in reversed(range(len(angulos))):
1169 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1170 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1170 diff_ = angulos[i]-angulos[i-1]
1171 diff_ = angulos[i]-angulos[i-1]
1171 if abs(diff_) >1.5:
1172 if abs(diff_) >1.5:
1172 list1.append(i-1)
1173 list1.append(i-1)
1173 list2.append(diff_)
1174 list2.append(diff_)
1174 return list(reversed(list1)),list(reversed(list2))
1175 return list(reversed(list1)),list(reversed(list2))
1175
1176
1176 def fixData90(self,list_,ang_):
1177 def fixData90(self,list_,ang_):
1177 if list_[0]==-1:
1178 if list_[0]==-1:
1178 vec = numpy.where(ang_<ang_[0])
1179 vec = numpy.where(ang_<ang_[0])
1179 ang_[vec] = ang_[vec]+90
1180 ang_[vec] = ang_[vec]+90
1180 return ang_
1181 return ang_
1181 return ang_
1182 return ang_
1182
1183
1183 def fixData90HL(self,angulos):
1184 def fixData90HL(self,angulos):
1184 vec = numpy.where(angulos>=90)
1185 vec = numpy.where(angulos>=90)
1185 angulos[vec]=angulos[vec]-90
1186 angulos[vec]=angulos[vec]-90
1186 return angulos
1187 return angulos
1187
1188
1188
1189
1189 def search_pos(self,pos,list_):
1190 def search_pos(self,pos,list_):
1190 for i in range(len(list_)):
1191 for i in range(len(list_)):
1191 if pos == list_[i]:
1192 if pos == list_[i]:
1192 return True,i
1193 return True,i
1193 i=None
1194 i=None
1194 return False,i
1195 return False,i
1195
1196
1196 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1197 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1197 size = len(ang_)
1198 size = len(ang_)
1198 size2 = 0
1199 size2 = 0
1199 for i in range(len(list2_)):
1200 for i in range(len(list2_)):
1200 size2=size2+round(abs(list2_[i]))-1
1201 size2=size2+round(abs(list2_[i]))-1
1201 new_size= size+size2
1202 new_size= size+size2
1202 ang_new = numpy.zeros(new_size)
1203 ang_new = numpy.zeros(new_size)
1203 ang_new2 = numpy.zeros(new_size)
1204 ang_new2 = numpy.zeros(new_size)
1204
1205
1205 tmp = 0
1206 tmp = 0
1206 c = 0
1207 c = 0
1207 for i in range(len(ang_)):
1208 for i in range(len(ang_)):
1208 ang_new[tmp +c] = ang_[i]
1209 ang_new[tmp +c] = ang_[i]
1209 ang_new2[tmp+c] = ang_[i]
1210 ang_new2[tmp+c] = ang_[i]
1210 condition , value = self.search_pos(i,list1_)
1211 condition , value = self.search_pos(i,list1_)
1211 if condition:
1212 if condition:
1212 pos = tmp + c + 1
1213 pos = tmp + c + 1
1213 for k in range(round(abs(list2_[value]))-1):
1214 for k in range(round(abs(list2_[value]))-1):
1214 if tipo_case==0 or tipo_case==3:#subida
1215 if tipo_case==0 or tipo_case==3:#subida
1215 ang_new[pos+k] = ang_new[pos+k-1]+1
1216 ang_new[pos+k] = ang_new[pos+k-1]+1
1216 ang_new2[pos+k] = numpy.nan
1217 ang_new2[pos+k] = numpy.nan
1217 elif tipo_case==1 or tipo_case==2:#bajada
1218 elif tipo_case==1 or tipo_case==2:#bajada
1218 ang_new[pos+k] = ang_new[pos+k-1]-1
1219 ang_new[pos+k] = ang_new[pos+k-1]-1
1219 ang_new2[pos+k] = numpy.nan
1220 ang_new2[pos+k] = numpy.nan
1220
1221
1221 tmp = pos +k
1222 tmp = pos +k
1222 c = 0
1223 c = 0
1223 c=c+1
1224 c=c+1
1224 return ang_new,ang_new2
1225 return ang_new,ang_new2
1225
1226
1226 def globalCheckPED(self,angulos,tipo_case):
1227 def globalCheckPED(self,angulos,tipo_case):
1227 l1,l2 = self.get2List(angulos)
1228 l1,l2 = self.get2List(angulos)
1228 ##print("l1",l1)
1229 ##print("l1",l1)
1229 ##print("l2",l2)
1230 ##print("l2",l2)
1230 if len(l1)>0:
1231 if len(l1)>0:
1231 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1232 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1232 #l1,l2 = self.get2List(angulos2)
1233 #l1,l2 = self.get2List(angulos2)
1233 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1234 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1234 #ang1_ = self.fixData90HL(ang1_)
1235 #ang1_ = self.fixData90HL(ang1_)
1235 #ang2_ = self.fixData90HL(ang2_)
1236 #ang2_ = self.fixData90HL(ang2_)
1236 else:
1237 else:
1237 ang1_= angulos
1238 ang1_= angulos
1238 ang2_= angulos
1239 ang2_= angulos
1239 return ang1_,ang2_
1240 return ang1_,ang2_
1240
1241
1241
1242
1242 def replaceNAN(self,data_weather,data_ele,val):
1243 def replaceNAN(self,data_weather,data_ele,val):
1243 data= data_ele
1244 data= data_ele
1244 data_T= data_weather
1245 data_T= data_weather
1245 if data.shape[0]> data_T.shape[0]:
1246 if data.shape[0]> data_T.shape[0]:
1246 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1247 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1247 c = 0
1248 c = 0
1248 for i in range(len(data)):
1249 for i in range(len(data)):
1249 if numpy.isnan(data[i]):
1250 if numpy.isnan(data[i]):
1250 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1251 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1251 else:
1252 else:
1252 data_N[i,:]=data_T[c,:]
1253 data_N[i,:]=data_T[c,:]
1253 c=c+1
1254 c=c+1
1254 return data_N
1255 return data_N
1255 else:
1256 else:
1256 for i in range(len(data)):
1257 for i in range(len(data)):
1257 if numpy.isnan(data[i]):
1258 if numpy.isnan(data[i]):
1258 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1259 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1259 return data_T
1260 return data_T
1260
1261
1261 def check_case(self,data_ele,ang_max,ang_min):
1262 def check_case(self,data_ele,ang_max,ang_min):
1262 start = data_ele[0]
1263 start = data_ele[0]
1263 end = data_ele[-1]
1264 end = data_ele[-1]
1264 number = (end-start)
1265 number = (end-start)
1265 len_ang=len(data_ele)
1266 len_ang=len(data_ele)
1266 print("start",start)
1267 print("start",start)
1267 print("end",end)
1268 print("end",end)
1268 print("number",number)
1269 print("number",number)
1269
1270
1270 print("len_ang",len_ang)
1271 print("len_ang",len_ang)
1271
1272
1272 #exit(1)
1273 #exit(1)
1273
1274
1274 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
1275 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
1275 return 0
1276 return 0
1276 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
1277 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
1277 # return 1
1278 # return 1
1278 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
1279 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
1279 return 1
1280 return 1
1280 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
1281 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
1281 return 2
1282 return 2
1282 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
1283 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
1283 return 3
1284 return 3
1284
1285
1285
1286
1286 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1287 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1287 ang_max= ang_max
1288 ang_max= ang_max
1288 ang_min= ang_min
1289 ang_min= ang_min
1289 data_weather=data_weather
1290 data_weather=data_weather
1290 val_ch=val_ch
1291 val_ch=val_ch
1291 ##print("*********************DATA WEATHER**************************************")
1292 ##print("*********************DATA WEATHER**************************************")
1292 ##print(data_weather)
1293 ##print(data_weather)
1293 if self.ini==0:
1294 if self.ini==0:
1294 '''
1295 '''
1295 print("**********************************************")
1296 print("**********************************************")
1296 print("**********************************************")
1297 print("**********************************************")
1297 print("***************ini**************")
1298 print("***************ini**************")
1298 print("**********************************************")
1299 print("**********************************************")
1299 print("**********************************************")
1300 print("**********************************************")
1300 '''
1301 '''
1301 #print("data_ele",data_ele)
1302 #print("data_ele",data_ele)
1302 #----------------------------------------------------------
1303 #----------------------------------------------------------
1303 tipo_case = case_flag[-1]
1304 tipo_case = case_flag[-1]
1304 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1305 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1305 print("check_case",tipo_case)
1306 print("check_case",tipo_case)
1306 #exit(1)
1307 #exit(1)
1307 #--------------------- new -------------------------
1308 #--------------------- new -------------------------
1308 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1309 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1309
1310
1310 #-------------------------CAMBIOS RHI---------------------------------
1311 #-------------------------CAMBIOS RHI---------------------------------
1311 start= ang_min
1312 start= ang_min
1312 end = ang_max
1313 end = ang_max
1313 n= (ang_max-ang_min)/res
1314 n= (ang_max-ang_min)/res
1314 #------ new
1315 #------ new
1315 self.start_data_ele = data_ele_new[0]
1316 self.start_data_ele = data_ele_new[0]
1316 self.end_data_ele = data_ele_new[-1]
1317 self.end_data_ele = data_ele_new[-1]
1317 if tipo_case==0 or tipo_case==3: # SUBIDA
1318 if tipo_case==0 or tipo_case==3: # SUBIDA
1318 n1= round(self.start_data_ele)- start
1319 n1= round(self.start_data_ele)- start
1319 n2= end - round(self.end_data_ele)
1320 n2= end - round(self.end_data_ele)
1320 print(self.start_data_ele)
1321 print(self.start_data_ele)
1321 print(self.end_data_ele)
1322 print(self.end_data_ele)
1322 if n1>0:
1323 if n1>0:
1323 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1324 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1324 ele1_nan= numpy.ones(n1)*numpy.nan
1325 ele1_nan= numpy.ones(n1)*numpy.nan
1325 data_ele = numpy.hstack((ele1,data_ele_new))
1326 data_ele = numpy.hstack((ele1,data_ele_new))
1326 print("ele1_nan",ele1_nan.shape)
1327 print("ele1_nan",ele1_nan.shape)
1327 print("data_ele_old",data_ele_old.shape)
1328 print("data_ele_old",data_ele_old.shape)
1328 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1329 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1329 if n2>0:
1330 if n2>0:
1330 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1331 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1331 ele2_nan= numpy.ones(n2)*numpy.nan
1332 ele2_nan= numpy.ones(n2)*numpy.nan
1332 data_ele = numpy.hstack((data_ele,ele2))
1333 data_ele = numpy.hstack((data_ele,ele2))
1333 print("ele2_nan",ele2_nan.shape)
1334 print("ele2_nan",ele2_nan.shape)
1334 print("data_ele_old",data_ele_old.shape)
1335 print("data_ele_old",data_ele_old.shape)
1335 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1336 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1336
1337
1337 if tipo_case==1 or tipo_case==2: # BAJADA
1338 if tipo_case==1 or tipo_case==2: # BAJADA
1338 data_ele_new = data_ele_new[::-1] # reversa
1339 data_ele_new = data_ele_new[::-1] # reversa
1339 data_ele_old = data_ele_old[::-1]# reversa
1340 data_ele_old = data_ele_old[::-1]# reversa
1340 data_weather = data_weather[::-1,:]# reversa
1341 data_weather = data_weather[::-1,:]# reversa
1341 vec= numpy.where(data_ele_new<ang_max)
1342 vec= numpy.where(data_ele_new<ang_max)
1342 data_ele_new = data_ele_new[vec]
1343 data_ele_new = data_ele_new[vec]
1343 data_ele_old = data_ele_old[vec]
1344 data_ele_old = data_ele_old[vec]
1344 data_weather = data_weather[vec[0]]
1345 data_weather = data_weather[vec[0]]
1345 vec2= numpy.where(0<data_ele_new)
1346 vec2= numpy.where(0<data_ele_new)
1346 data_ele_new = data_ele_new[vec2]
1347 data_ele_new = data_ele_new[vec2]
1347 data_ele_old = data_ele_old[vec2]
1348 data_ele_old = data_ele_old[vec2]
1348 data_weather = data_weather[vec2[0]]
1349 data_weather = data_weather[vec2[0]]
1349 self.start_data_ele = data_ele_new[0]
1350 self.start_data_ele = data_ele_new[0]
1350 self.end_data_ele = data_ele_new[-1]
1351 self.end_data_ele = data_ele_new[-1]
1351
1352
1352 n1= round(self.start_data_ele)- start
1353 n1= round(self.start_data_ele)- start
1353 n2= end - round(self.end_data_ele)-1
1354 n2= end - round(self.end_data_ele)-1
1354 print(self.start_data_ele)
1355 print(self.start_data_ele)
1355 print(self.end_data_ele)
1356 print(self.end_data_ele)
1356 if n1>0:
1357 if n1>0:
1357 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1358 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1358 ele1_nan= numpy.ones(n1)*numpy.nan
1359 ele1_nan= numpy.ones(n1)*numpy.nan
1359 data_ele = numpy.hstack((ele1,data_ele_new))
1360 data_ele = numpy.hstack((ele1,data_ele_new))
1360 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1361 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1361 if n2>0:
1362 if n2>0:
1362 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1363 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1363 ele2_nan= numpy.ones(n2)*numpy.nan
1364 ele2_nan= numpy.ones(n2)*numpy.nan
1364 data_ele = numpy.hstack((data_ele,ele2))
1365 data_ele = numpy.hstack((data_ele,ele2))
1365 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1366 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1366 # RADAR
1367 # RADAR
1367 # NOTA data_ele y data_weather es la variable que retorna
1368 # NOTA data_ele y data_weather es la variable que retorna
1368 val_mean = numpy.mean(data_weather[:,-1])
1369 val_mean = numpy.mean(data_weather[:,-1])
1369 self.val_mean = val_mean
1370 self.val_mean = val_mean
1370 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1371 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1371 print("eleold",data_ele_old)
1372 print("eleold",data_ele_old)
1372 print(self.data_ele_tmp[val_ch])
1373 print(self.data_ele_tmp[val_ch])
1373 print(data_ele_old.shape[0])
1374 print(data_ele_old.shape[0])
1374 print(self.data_ele_tmp[val_ch].shape[0])
1375 print(self.data_ele_tmp[val_ch].shape[0])
1375 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
1376 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
1376 import sys
1377 import sys
1377 print("EXIT",self.ini)
1378 print("EXIT",self.ini)
1378
1379
1379 sys.exit(1)
1380 sys.exit(1)
1380 self.data_ele_tmp[val_ch]= data_ele_old
1381 self.data_ele_tmp[val_ch]= data_ele_old
1381 else:
1382 else:
1382 #print("**********************************************")
1383 #print("**********************************************")
1383 #print("****************VARIABLE**********************")
1384 #print("****************VARIABLE**********************")
1384 #-------------------------CAMBIOS RHI---------------------------------
1385 #-------------------------CAMBIOS RHI---------------------------------
1385 #---------------------------------------------------------------------
1386 #---------------------------------------------------------------------
1386 ##print("INPUT data_ele",data_ele)
1387 ##print("INPUT data_ele",data_ele)
1387 flag=0
1388 flag=0
1388 start_ele = self.res_ele[0]
1389 start_ele = self.res_ele[0]
1389 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1390 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1390 tipo_case = case_flag[-1]
1391 tipo_case = case_flag[-1]
1391 #print("TIPO DE DATA",tipo_case)
1392 #print("TIPO DE DATA",tipo_case)
1392 #-----------new------------
1393 #-----------new------------
1393 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
1394 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
1394 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1395 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1395
1396
1396 #-------------------------------NEW RHI ITERATIVO-------------------------
1397 #-------------------------------NEW RHI ITERATIVO-------------------------
1397
1398
1398 if tipo_case==0 : # SUBIDA
1399 if tipo_case==0 : # SUBIDA
1399 vec = numpy.where(data_ele<ang_max)
1400 vec = numpy.where(data_ele<ang_max)
1400 data_ele = data_ele[vec]
1401 data_ele = data_ele[vec]
1401 data_ele_old = data_ele_old[vec]
1402 data_ele_old = data_ele_old[vec]
1402 data_weather = data_weather[vec[0]]
1403 data_weather = data_weather[vec[0]]
1403
1404
1404 vec2 = numpy.where(0<data_ele)
1405 vec2 = numpy.where(0<data_ele)
1405 data_ele= data_ele[vec2]
1406 data_ele= data_ele[vec2]
1406 data_ele_old= data_ele_old[vec2]
1407 data_ele_old= data_ele_old[vec2]
1407 ##print(data_ele_new)
1408 ##print(data_ele_new)
1408 data_weather= data_weather[vec2[0]]
1409 data_weather= data_weather[vec2[0]]
1409
1410
1410 new_i_ele = int(round(data_ele[0]))
1411 new_i_ele = int(round(data_ele[0]))
1411 new_f_ele = int(round(data_ele[-1]))
1412 new_f_ele = int(round(data_ele[-1]))
1412 #print(new_i_ele)
1413 #print(new_i_ele)
1413 #print(new_f_ele)
1414 #print(new_f_ele)
1414 #print(data_ele,len(data_ele))
1415 #print(data_ele,len(data_ele))
1415 #print(data_ele_old,len(data_ele_old))
1416 #print(data_ele_old,len(data_ele_old))
1416 if new_i_ele< 2:
1417 if new_i_ele< 2:
1417 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1418 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1418 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1419 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1419 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
1420 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
1420 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
1421 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
1421 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
1422 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
1422 data_ele = self.res_ele
1423 data_ele = self.res_ele
1423 data_weather = self.res_weather[val_ch]
1424 data_weather = self.res_weather[val_ch]
1424
1425
1425 elif tipo_case==1 : #BAJADA
1426 elif tipo_case==1 : #BAJADA
1426 data_ele = data_ele[::-1] # reversa
1427 data_ele = data_ele[::-1] # reversa
1427 data_ele_old = data_ele_old[::-1]# reversa
1428 data_ele_old = data_ele_old[::-1]# reversa
1428 data_weather = data_weather[::-1,:]# reversa
1429 data_weather = data_weather[::-1,:]# reversa
1429 vec= numpy.where(data_ele<ang_max)
1430 vec= numpy.where(data_ele<ang_max)
1430 data_ele = data_ele[vec]
1431 data_ele = data_ele[vec]
1431 data_ele_old = data_ele_old[vec]
1432 data_ele_old = data_ele_old[vec]
1432 data_weather = data_weather[vec[0]]
1433 data_weather = data_weather[vec[0]]
1433 vec2= numpy.where(0<data_ele)
1434 vec2= numpy.where(0<data_ele)
1434 data_ele = data_ele[vec2]
1435 data_ele = data_ele[vec2]
1435 data_ele_old = data_ele_old[vec2]
1436 data_ele_old = data_ele_old[vec2]
1436 data_weather = data_weather[vec2[0]]
1437 data_weather = data_weather[vec2[0]]
1437
1438
1438
1439
1439 new_i_ele = int(round(data_ele[0]))
1440 new_i_ele = int(round(data_ele[0]))
1440 new_f_ele = int(round(data_ele[-1]))
1441 new_f_ele = int(round(data_ele[-1]))
1441 #print(data_ele)
1442 #print(data_ele)
1442 #print(ang_max)
1443 #print(ang_max)
1443 #print(data_ele_old)
1444 #print(data_ele_old)
1444 if new_i_ele <= 1:
1445 if new_i_ele <= 1:
1445 new_i_ele = 1
1446 new_i_ele = 1
1446 if round(data_ele[-1])>=ang_max-1:
1447 if round(data_ele[-1])>=ang_max-1:
1447 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1448 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1448 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1449 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1449 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
1450 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
1450 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
1451 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
1451 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
1452 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
1452 data_ele = self.res_ele
1453 data_ele = self.res_ele
1453 data_weather = self.res_weather[val_ch]
1454 data_weather = self.res_weather[val_ch]
1454
1455
1455 elif tipo_case==2: #bajada
1456 elif tipo_case==2: #bajada
1456 vec = numpy.where(data_ele<ang_max)
1457 vec = numpy.where(data_ele<ang_max)
1457 data_ele = data_ele[vec]
1458 data_ele = data_ele[vec]
1458 data_weather= data_weather[vec[0]]
1459 data_weather= data_weather[vec[0]]
1459
1460
1460 len_vec = len(vec)
1461 len_vec = len(vec)
1461 data_ele_new = data_ele[::-1] # reversa
1462 data_ele_new = data_ele[::-1] # reversa
1462 data_weather = data_weather[::-1,:]
1463 data_weather = data_weather[::-1,:]
1463 new_i_ele = int(data_ele_new[0])
1464 new_i_ele = int(data_ele_new[0])
1464 new_f_ele = int(data_ele_new[-1])
1465 new_f_ele = int(data_ele_new[-1])
1465
1466
1466 n1= new_i_ele- ang_min
1467 n1= new_i_ele- ang_min
1467 n2= ang_max - new_f_ele-1
1468 n2= ang_max - new_f_ele-1
1468 if n1>0:
1469 if n1>0:
1469 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1470 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1470 ele1_nan= numpy.ones(n1)*numpy.nan
1471 ele1_nan= numpy.ones(n1)*numpy.nan
1471 data_ele = numpy.hstack((ele1,data_ele_new))
1472 data_ele = numpy.hstack((ele1,data_ele_new))
1472 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1473 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1473 if n2>0:
1474 if n2>0:
1474 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1475 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1475 ele2_nan= numpy.ones(n2)*numpy.nan
1476 ele2_nan= numpy.ones(n2)*numpy.nan
1476 data_ele = numpy.hstack((data_ele,ele2))
1477 data_ele = numpy.hstack((data_ele,ele2))
1477 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1478 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1478
1479
1479 self.data_ele_tmp[val_ch] = data_ele_old
1480 self.data_ele_tmp[val_ch] = data_ele_old
1480 self.res_ele = data_ele
1481 self.res_ele = data_ele
1481 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1482 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1482 data_ele = self.res_ele
1483 data_ele = self.res_ele
1483 data_weather = self.res_weather[val_ch]
1484 data_weather = self.res_weather[val_ch]
1484
1485
1485 elif tipo_case==3:#subida
1486 elif tipo_case==3:#subida
1486 vec = numpy.where(0<data_ele)
1487 vec = numpy.where(0<data_ele)
1487 data_ele= data_ele[vec]
1488 data_ele= data_ele[vec]
1488 data_ele_new = data_ele
1489 data_ele_new = data_ele
1489 data_ele_old= data_ele_old[vec]
1490 data_ele_old= data_ele_old[vec]
1490 data_weather= data_weather[vec[0]]
1491 data_weather= data_weather[vec[0]]
1491 pos_ini = numpy.argmin(data_ele)
1492 pos_ini = numpy.argmin(data_ele)
1492 if pos_ini>0:
1493 if pos_ini>0:
1493 len_vec= len(data_ele)
1494 len_vec= len(data_ele)
1494 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1495 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1495 #print(vec3)
1496 #print(vec3)
1496 data_ele= data_ele[vec3]
1497 data_ele= data_ele[vec3]
1497 data_ele_new = data_ele
1498 data_ele_new = data_ele
1498 data_ele_old= data_ele_old[vec3]
1499 data_ele_old= data_ele_old[vec3]
1499 data_weather= data_weather[vec3]
1500 data_weather= data_weather[vec3]
1500
1501
1501 new_i_ele = int(data_ele_new[0])
1502 new_i_ele = int(data_ele_new[0])
1502 new_f_ele = int(data_ele_new[-1])
1503 new_f_ele = int(data_ele_new[-1])
1503 n1= new_i_ele- ang_min
1504 n1= new_i_ele- ang_min
1504 n2= ang_max - new_f_ele-1
1505 n2= ang_max - new_f_ele-1
1505 if n1>0:
1506 if n1>0:
1506 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1507 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1507 ele1_nan= numpy.ones(n1)*numpy.nan
1508 ele1_nan= numpy.ones(n1)*numpy.nan
1508 data_ele = numpy.hstack((ele1,data_ele_new))
1509 data_ele = numpy.hstack((ele1,data_ele_new))
1509 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1510 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1510 if n2>0:
1511 if n2>0:
1511 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1512 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1512 ele2_nan= numpy.ones(n2)*numpy.nan
1513 ele2_nan= numpy.ones(n2)*numpy.nan
1513 data_ele = numpy.hstack((data_ele,ele2))
1514 data_ele = numpy.hstack((data_ele,ele2))
1514 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1515 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1515
1516
1516 self.data_ele_tmp[val_ch] = data_ele_old
1517 self.data_ele_tmp[val_ch] = data_ele_old
1517 self.res_ele = data_ele
1518 self.res_ele = data_ele
1518 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1519 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1519 data_ele = self.res_ele
1520 data_ele = self.res_ele
1520 data_weather = self.res_weather[val_ch]
1521 data_weather = self.res_weather[val_ch]
1521 #print("self.data_ele_tmp",self.data_ele_tmp)
1522 #print("self.data_ele_tmp",self.data_ele_tmp)
1522 return data_weather,data_ele
1523 return data_weather,data_ele
1523
1524
1524
1525
1525 def plot(self):
1526 def plot(self):
1526 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1527 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1527 data = self.data[-1]
1528 data = self.data[-1]
1528 r = self.data.yrange
1529 r = self.data.yrange
1529 delta_height = r[1]-r[0]
1530 delta_height = r[1]-r[0]
1530 r_mask = numpy.where(r>=0)[0]
1531 r_mask = numpy.where(r>=0)[0]
1531 ##print("delta_height",delta_height)
1532 ##print("delta_height",delta_height)
1532 #print("r_mask",r_mask,len(r_mask))
1533 #print("r_mask",r_mask,len(r_mask))
1533 r = numpy.arange(len(r_mask))*delta_height
1534 r = numpy.arange(len(r_mask))*delta_height
1534 self.y = 2*r
1535 self.y = 2*r
1535 res = 1
1536 res = 1
1536 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1537 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1537 ang_max = self.ang_max
1538 ang_max = self.ang_max
1538 ang_min = self.ang_min
1539 ang_min = self.ang_min
1539 var_ang =ang_max - ang_min
1540 var_ang =ang_max - ang_min
1540 step = (int(var_ang)/(res*data['weather'].shape[0]))
1541 step = (int(var_ang)/(res*data['weather'].shape[0]))
1541 ###print("step",step)
1542 ###print("step",step)
1542 #--------------------------------------------------------
1543 #--------------------------------------------------------
1543 ##print('weather',data['weather'].shape)
1544 ##print('weather',data['weather'].shape)
1544 ##print('ele',data['ele'].shape)
1545 ##print('ele',data['ele'].shape)
1545
1546
1546 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1547 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1547 ###self.res_azi = numpy.mean(data['azi'])
1548 ###self.res_azi = numpy.mean(data['azi'])
1548 ###print("self.res_ele",self.res_ele)
1549 ###print("self.res_ele",self.res_ele)
1549 plt.clf()
1550 plt.clf()
1550 subplots = [121, 122]
1551 subplots = [121, 122]
1551 try:
1552 try:
1552 if self.data[-2]['ele'].max()<data['ele'].max():
1553 if self.data[-2]['ele'].max()<data['ele'].max():
1553 self.ini=0
1554 self.ini=0
1554 except:
1555 except:
1555 pass
1556 pass
1556 if self.ini==0:
1557 if self.ini==0:
1557 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1558 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1558 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1559 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1559 print("SHAPE",self.data_ele_tmp.shape)
1560 print("SHAPE",self.data_ele_tmp.shape)
1560
1561
1561 for i,ax in enumerate(self.axes):
1562 for i,ax in enumerate(self.axes):
1562 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1563 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1563 self.res_azi = numpy.mean(data['azi'])
1564 self.res_azi = numpy.mean(data['azi'])
1564
1565
1565 if ax.firsttime:
1566 if ax.firsttime:
1566 #plt.clf()
1567 #plt.clf()
1567 print("Frist Plot")
1568 print("Frist Plot")
1568 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1569 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1569 #fig=self.figures[0]
1570 #fig=self.figures[0]
1570 else:
1571 else:
1571 #plt.clf()
1572 #plt.clf()
1572 print("ELSE PLOT")
1573 print("ELSE PLOT")
1573 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1574 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1574 caax = cgax.parasites[0]
1575 caax = cgax.parasites[0]
1575 paax = cgax.parasites[1]
1576 paax = cgax.parasites[1]
1576 cbar = plt.gcf().colorbar(pm, pad=0.075)
1577 cbar = plt.gcf().colorbar(pm, pad=0.075)
1577 caax.set_xlabel('x_range [km]')
1578 caax.set_xlabel('x_range [km]')
1578 caax.set_ylabel('y_range [km]')
1579 caax.set_ylabel('y_range [km]')
1579 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1580 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1580 print("***************************self.ini****************************",self.ini)
1581 print("***************************self.ini****************************",self.ini)
1581 self.ini= self.ini+1
1582 self.ini= self.ini+1
1582
1583
1583 class WeatherRHI_vRF_Plot(Plot):
1584 class WeatherRHI_vRF_Plot(Plot):
1584 CODE = 'weather'
1585 CODE = 'weather'
1585 plot_name = 'weather'
1586 plot_name = 'weather'
1586 plot_type = 'rhistyle'
1587 plot_type = 'rhistyle'
1587 buffering = False
1588 buffering = False
1588 data_ele_tmp = None
1589 data_ele_tmp = None
1589
1590
1590 def setup(self):
1591 def setup(self):
1591 print("********************")
1592 print("********************")
1592 print("********************")
1593 print("********************")
1593 print("********************")
1594 print("********************")
1594 print("SETUP WEATHER PLOT")
1595 print("SETUP WEATHER PLOT")
1595 self.ncols = 1
1596 self.ncols = 1
1596 self.nrows = 1
1597 self.nrows = 1
1597 self.nplots= 1
1598 self.nplots= 1
1598 self.ylabel= 'Range [Km]'
1599 self.ylabel= 'Range [Km]'
1599 self.titles= ['Weather']
1600 self.titles= ['Weather']
1600 if self.channels is not None:
1601 if self.channels is not None:
1601 self.nplots = len(self.channels)
1602 self.nplots = len(self.channels)
1602 self.nrows = len(self.channels)
1603 self.nrows = len(self.channels)
1603 else:
1604 else:
1604 self.nplots = self.data.shape(self.CODE)[0]
1605 self.nplots = self.data.shape(self.CODE)[0]
1605 self.nrows = self.nplots
1606 self.nrows = self.nplots
1606 self.channels = list(range(self.nplots))
1607 self.channels = list(range(self.nplots))
1607 print("channels",self.channels)
1608 print("channels",self.channels)
1608 print("que saldra", self.data.shape(self.CODE)[0])
1609 print("que saldra", self.data.shape(self.CODE)[0])
1609 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1610 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1610 print("self.titles",self.titles)
1611 print("self.titles",self.titles)
1611 self.colorbar=False
1612 self.colorbar=False
1612 self.width =8
1613 self.width =8
1613 self.height =8
1614 self.height =8
1614 self.ini =0
1615 self.ini =0
1615 self.len_azi =0
1616 self.len_azi =0
1616 self.buffer_ini = None
1617 self.buffer_ini = None
1617 self.buffer_ele = None
1618 self.buffer_ele = None
1618 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1619 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1619 self.flag =0
1620 self.flag =0
1620 self.indicador= 0
1621 self.indicador= 0
1621 self.last_data_ele = None
1622 self.last_data_ele = None
1622 self.val_mean = None
1623 self.val_mean = None
1623
1624
1624 def update(self, dataOut):
1625 def update(self, dataOut):
1625
1626
1626 data = {}
1627 data = {}
1627 meta = {}
1628 meta = {}
1628 if hasattr(dataOut, 'dataPP_POWER'):
1629 if hasattr(dataOut, 'dataPP_POWER'):
1629 factor = 1
1630 factor = 1
1630 if hasattr(dataOut, 'nFFTPoints'):
1631 if hasattr(dataOut, 'nFFTPoints'):
1631 factor = dataOut.normFactor
1632 factor = dataOut.normFactor
1632 print("dataOut",dataOut.data_360.shape)
1633 print("dataOut",dataOut.data_360.shape)
1633 #
1634 #
1634 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1635 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1635 #
1636 #
1636 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1637 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1637 data['azi'] = dataOut.data_azi
1638 data['azi'] = dataOut.data_azi
1638 data['ele'] = dataOut.data_ele
1639 data['ele'] = dataOut.data_ele
1639 data['case_flag'] = dataOut.case_flag
1640 data['case_flag'] = dataOut.case_flag
1640 #print("UPDATE")
1641 #print("UPDATE")
1641 #print("data[weather]",data['weather'].shape)
1642 #print("data[weather]",data['weather'].shape)
1642 #print("data[azi]",data['azi'])
1643 #print("data[azi]",data['azi'])
1643 return data, meta
1644 return data, meta
1644
1645
1645 def get2List(self,angulos):
1646 def get2List(self,angulos):
1646 list1=[]
1647 list1=[]
1647 list2=[]
1648 list2=[]
1648 #print(angulos)
1649 #print(angulos)
1649 #exit(1)
1650 #exit(1)
1650 for i in reversed(range(len(angulos))):
1651 for i in reversed(range(len(angulos))):
1651 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1652 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1652 diff_ = angulos[i]-angulos[i-1]
1653 diff_ = angulos[i]-angulos[i-1]
1653 if abs(diff_) >1.5:
1654 if abs(diff_) >1.5:
1654 list1.append(i-1)
1655 list1.append(i-1)
1655 list2.append(diff_)
1656 list2.append(diff_)
1656 return list(reversed(list1)),list(reversed(list2))
1657 return list(reversed(list1)),list(reversed(list2))
1657
1658
1658 def fixData90(self,list_,ang_):
1659 def fixData90(self,list_,ang_):
1659 if list_[0]==-1:
1660 if list_[0]==-1:
1660 vec = numpy.where(ang_<ang_[0])
1661 vec = numpy.where(ang_<ang_[0])
1661 ang_[vec] = ang_[vec]+90
1662 ang_[vec] = ang_[vec]+90
1662 return ang_
1663 return ang_
1663 return ang_
1664 return ang_
1664
1665
1665 def fixData90HL(self,angulos):
1666 def fixData90HL(self,angulos):
1666 vec = numpy.where(angulos>=90)
1667 vec = numpy.where(angulos>=90)
1667 angulos[vec]=angulos[vec]-90
1668 angulos[vec]=angulos[vec]-90
1668 return angulos
1669 return angulos
1669
1670
1670
1671
1671 def search_pos(self,pos,list_):
1672 def search_pos(self,pos,list_):
1672 for i in range(len(list_)):
1673 for i in range(len(list_)):
1673 if pos == list_[i]:
1674 if pos == list_[i]:
1674 return True,i
1675 return True,i
1675 i=None
1676 i=None
1676 return False,i
1677 return False,i
1677
1678
1678 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1679 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1679 size = len(ang_)
1680 size = len(ang_)
1680 size2 = 0
1681 size2 = 0
1681 for i in range(len(list2_)):
1682 for i in range(len(list2_)):
1682 size2=size2+round(abs(list2_[i]))-1
1683 size2=size2+round(abs(list2_[i]))-1
1683 new_size= size+size2
1684 new_size= size+size2
1684 ang_new = numpy.zeros(new_size)
1685 ang_new = numpy.zeros(new_size)
1685 ang_new2 = numpy.zeros(new_size)
1686 ang_new2 = numpy.zeros(new_size)
1686
1687
1687 tmp = 0
1688 tmp = 0
1688 c = 0
1689 c = 0
1689 for i in range(len(ang_)):
1690 for i in range(len(ang_)):
1690 ang_new[tmp +c] = ang_[i]
1691 ang_new[tmp +c] = ang_[i]
1691 ang_new2[tmp+c] = ang_[i]
1692 ang_new2[tmp+c] = ang_[i]
1692 condition , value = self.search_pos(i,list1_)
1693 condition , value = self.search_pos(i,list1_)
1693 if condition:
1694 if condition:
1694 pos = tmp + c + 1
1695 pos = tmp + c + 1
1695 for k in range(round(abs(list2_[value]))-1):
1696 for k in range(round(abs(list2_[value]))-1):
1696 if tipo_case==0 or tipo_case==3:#subida
1697 if tipo_case==0 or tipo_case==3:#subida
1697 ang_new[pos+k] = ang_new[pos+k-1]+1
1698 ang_new[pos+k] = ang_new[pos+k-1]+1
1698 ang_new2[pos+k] = numpy.nan
1699 ang_new2[pos+k] = numpy.nan
1699 elif tipo_case==1 or tipo_case==2:#bajada
1700 elif tipo_case==1 or tipo_case==2:#bajada
1700 ang_new[pos+k] = ang_new[pos+k-1]-1
1701 ang_new[pos+k] = ang_new[pos+k-1]-1
1701 ang_new2[pos+k] = numpy.nan
1702 ang_new2[pos+k] = numpy.nan
1702
1703
1703 tmp = pos +k
1704 tmp = pos +k
1704 c = 0
1705 c = 0
1705 c=c+1
1706 c=c+1
1706 return ang_new,ang_new2
1707 return ang_new,ang_new2
1707
1708
1708 def globalCheckPED(self,angulos,tipo_case):
1709 def globalCheckPED(self,angulos,tipo_case):
1709 l1,l2 = self.get2List(angulos)
1710 l1,l2 = self.get2List(angulos)
1710 print("l1",l1)
1711 print("l1",l1)
1711 print("l2",l2)
1712 print("l2",l2)
1712 if len(l1)>0:
1713 if len(l1)>0:
1713 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1714 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1714 #l1,l2 = self.get2List(angulos2)
1715 #l1,l2 = self.get2List(angulos2)
1715 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1716 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1716 #ang1_ = self.fixData90HL(ang1_)
1717 #ang1_ = self.fixData90HL(ang1_)
1717 #ang2_ = self.fixData90HL(ang2_)
1718 #ang2_ = self.fixData90HL(ang2_)
1718 else:
1719 else:
1719 ang1_= angulos
1720 ang1_= angulos
1720 ang2_= angulos
1721 ang2_= angulos
1721 return ang1_,ang2_
1722 return ang1_,ang2_
1722
1723
1723
1724
1724 def replaceNAN(self,data_weather,data_ele,val):
1725 def replaceNAN(self,data_weather,data_ele,val):
1725 data= data_ele
1726 data= data_ele
1726 data_T= data_weather
1727 data_T= data_weather
1727 #print(data.shape[0])
1728 #print(data.shape[0])
1728 #print(data_T.shape[0])
1729 #print(data_T.shape[0])
1729 #exit(1)
1730 #exit(1)
1730 if data.shape[0]> data_T.shape[0]:
1731 if data.shape[0]> data_T.shape[0]:
1731 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1732 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1732 c = 0
1733 c = 0
1733 for i in range(len(data)):
1734 for i in range(len(data)):
1734 if numpy.isnan(data[i]):
1735 if numpy.isnan(data[i]):
1735 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1736 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1736 else:
1737 else:
1737 data_N[i,:]=data_T[c,:]
1738 data_N[i,:]=data_T[c,:]
1738 c=c+1
1739 c=c+1
1739 return data_N
1740 return data_N
1740 else:
1741 else:
1741 for i in range(len(data)):
1742 for i in range(len(data)):
1742 if numpy.isnan(data[i]):
1743 if numpy.isnan(data[i]):
1743 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1744 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1744 return data_T
1745 return data_T
1745
1746
1746
1747
1747 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1748 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1748 ang_max= ang_max
1749 ang_max= ang_max
1749 ang_min= ang_min
1750 ang_min= ang_min
1750 data_weather=data_weather
1751 data_weather=data_weather
1751 val_ch=val_ch
1752 val_ch=val_ch
1752 ##print("*********************DATA WEATHER**************************************")
1753 ##print("*********************DATA WEATHER**************************************")
1753 ##print(data_weather)
1754 ##print(data_weather)
1754
1755
1755 '''
1756 '''
1756 print("**********************************************")
1757 print("**********************************************")
1757 print("**********************************************")
1758 print("**********************************************")
1758 print("***************ini**************")
1759 print("***************ini**************")
1759 print("**********************************************")
1760 print("**********************************************")
1760 print("**********************************************")
1761 print("**********************************************")
1761 '''
1762 '''
1762 #print("data_ele",data_ele)
1763 #print("data_ele",data_ele)
1763 #----------------------------------------------------------
1764 #----------------------------------------------------------
1764
1765
1765 #exit(1)
1766 #exit(1)
1766 tipo_case = case_flag[-1]
1767 tipo_case = case_flag[-1]
1767 print("tipo_case",tipo_case)
1768 print("tipo_case",tipo_case)
1768 #--------------------- new -------------------------
1769 #--------------------- new -------------------------
1769 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1770 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1770
1771
1771 #-------------------------CAMBIOS RHI---------------------------------
1772 #-------------------------CAMBIOS RHI---------------------------------
1772
1773
1773 vec = numpy.where(data_ele<ang_max)
1774 vec = numpy.where(data_ele<ang_max)
1774 data_ele = data_ele[vec]
1775 data_ele = data_ele[vec]
1775 data_weather= data_weather[vec[0]]
1776 data_weather= data_weather[vec[0]]
1776
1777
1777 len_vec = len(vec)
1778 len_vec = len(vec)
1778 data_ele_new = data_ele[::-1] # reversa
1779 data_ele_new = data_ele[::-1] # reversa
1779 data_weather = data_weather[::-1,:]
1780 data_weather = data_weather[::-1,:]
1780 new_i_ele = int(data_ele_new[0])
1781 new_i_ele = int(data_ele_new[0])
1781 new_f_ele = int(data_ele_new[-1])
1782 new_f_ele = int(data_ele_new[-1])
1782
1783
1783 n1= new_i_ele- ang_min
1784 n1= new_i_ele- ang_min
1784 n2= ang_max - new_f_ele-1
1785 n2= ang_max - new_f_ele-1
1785 if n1>0:
1786 if n1>0:
1786 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1787 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1787 ele1_nan= numpy.ones(n1)*numpy.nan
1788 ele1_nan= numpy.ones(n1)*numpy.nan
1788 data_ele = numpy.hstack((ele1,data_ele_new))
1789 data_ele = numpy.hstack((ele1,data_ele_new))
1789 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1790 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1790 if n2>0:
1791 if n2>0:
1791 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1792 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1792 ele2_nan= numpy.ones(n2)*numpy.nan
1793 ele2_nan= numpy.ones(n2)*numpy.nan
1793 data_ele = numpy.hstack((data_ele,ele2))
1794 data_ele = numpy.hstack((data_ele,ele2))
1794 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1795 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1795
1796
1796
1797
1797 print("ele shape",data_ele.shape)
1798 print("ele shape",data_ele.shape)
1798 print(data_ele)
1799 print(data_ele)
1799
1800
1800 #print("self.data_ele_tmp",self.data_ele_tmp)
1801 #print("self.data_ele_tmp",self.data_ele_tmp)
1801 val_mean = numpy.mean(data_weather[:,-1])
1802 val_mean = numpy.mean(data_weather[:,-1])
1802 self.val_mean = val_mean
1803 self.val_mean = val_mean
1803 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1804 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1804 self.data_ele_tmp[val_ch]= data_ele_old
1805 self.data_ele_tmp[val_ch]= data_ele_old
1805
1806
1806
1807
1807 print("data_weather shape",data_weather.shape)
1808 print("data_weather shape",data_weather.shape)
1808 print(data_weather)
1809 print(data_weather)
1809 #exit(1)
1810 #exit(1)
1810 return data_weather,data_ele
1811 return data_weather,data_ele
1811
1812
1812
1813
1813 def plot(self):
1814 def plot(self):
1814 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1815 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1815 data = self.data[-1]
1816 data = self.data[-1]
1816 r = self.data.yrange
1817 r = self.data.yrange
1817 delta_height = r[1]-r[0]
1818 delta_height = r[1]-r[0]
1818 r_mask = numpy.where(r>=0)[0]
1819 r_mask = numpy.where(r>=0)[0]
1819 ##print("delta_height",delta_height)
1820 ##print("delta_height",delta_height)
1820 #print("r_mask",r_mask,len(r_mask))
1821 #print("r_mask",r_mask,len(r_mask))
1821 r = numpy.arange(len(r_mask))*delta_height
1822 r = numpy.arange(len(r_mask))*delta_height
1822 self.y = 2*r
1823 self.y = 2*r
1823 res = 1
1824 res = 1
1824 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1825 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1825 ang_max = self.ang_max
1826 ang_max = self.ang_max
1826 ang_min = self.ang_min
1827 ang_min = self.ang_min
1827 var_ang =ang_max - ang_min
1828 var_ang =ang_max - ang_min
1828 step = (int(var_ang)/(res*data['weather'].shape[0]))
1829 step = (int(var_ang)/(res*data['weather'].shape[0]))
1829 ###print("step",step)
1830 ###print("step",step)
1830 #--------------------------------------------------------
1831 #--------------------------------------------------------
1831 ##print('weather',data['weather'].shape)
1832 ##print('weather',data['weather'].shape)
1832 ##print('ele',data['ele'].shape)
1833 ##print('ele',data['ele'].shape)
1833
1834
1834 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1835 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1835 ###self.res_azi = numpy.mean(data['azi'])
1836 ###self.res_azi = numpy.mean(data['azi'])
1836 ###print("self.res_ele",self.res_ele)
1837 ###print("self.res_ele",self.res_ele)
1837 plt.clf()
1838 plt.clf()
1838 subplots = [121, 122]
1839 subplots = [121, 122]
1839 if self.ini==0:
1840 if self.ini==0:
1840 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1841 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1841 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1842 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1842 print("SHAPE",self.data_ele_tmp.shape)
1843 print("SHAPE",self.data_ele_tmp.shape)
1843
1844
1844 for i,ax in enumerate(self.axes):
1845 for i,ax in enumerate(self.axes):
1845 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1846 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1846 self.res_azi = numpy.mean(data['azi'])
1847 self.res_azi = numpy.mean(data['azi'])
1847
1848
1848 print(self.res_ele)
1849 print(self.res_ele)
1849 #exit(1)
1850 #exit(1)
1850 if ax.firsttime:
1851 if ax.firsttime:
1851 #plt.clf()
1852 #plt.clf()
1852 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1853 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1853 #fig=self.figures[0]
1854 #fig=self.figures[0]
1854 else:
1855 else:
1855
1856
1856 #plt.clf()
1857 #plt.clf()
1857 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1858 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1858 caax = cgax.parasites[0]
1859 caax = cgax.parasites[0]
1859 paax = cgax.parasites[1]
1860 paax = cgax.parasites[1]
1860 cbar = plt.gcf().colorbar(pm, pad=0.075)
1861 cbar = plt.gcf().colorbar(pm, pad=0.075)
1861 caax.set_xlabel('x_range [km]')
1862 caax.set_xlabel('x_range [km]')
1862 caax.set_ylabel('y_range [km]')
1863 caax.set_ylabel('y_range [km]')
1863 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1864 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1864 print("***************************self.ini****************************",self.ini)
1865 print("***************************self.ini****************************",self.ini)
1865 self.ini= self.ini+1
1866 self.ini= self.ini+1
1867
1868 class WeatherRHI_vRF3_Plot(Plot):
1869 CODE = 'weather'
1870 plot_name = 'weather'
1871 plot_type = 'rhistyle'
1872 buffering = False
1873 data_ele_tmp = None
1874
1875 def setup(self):
1876 print("********************")
1877 print("********************")
1878 print("********************")
1879 print("SETUP WEATHER PLOT")
1880 self.ncols = 1
1881 self.nrows = 1
1882 self.nplots= 1
1883 self.ylabel= 'Range [Km]'
1884 self.titles= ['Weather']
1885 if self.channels is not None:
1886 self.nplots = len(self.channels)
1887 self.nrows = len(self.channels)
1888 else:
1889 self.nplots = self.data.shape(self.CODE)[0]
1890 self.nrows = self.nplots
1891 self.channels = list(range(self.nplots))
1892 print("channels",self.channels)
1893 print("que saldra", self.data.shape(self.CODE)[0])
1894 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1895 print("self.titles",self.titles)
1896 self.colorbar=False
1897 self.width =8
1898 self.height =8
1899 self.ini =0
1900 self.len_azi =0
1901 self.buffer_ini = None
1902 self.buffer_ele = None
1903 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1904 self.flag =0
1905 self.indicador= 0
1906 self.last_data_ele = None
1907 self.val_mean = None
1908
1909 def update(self, dataOut):
1910
1911 data = {}
1912 meta = {}
1913 if hasattr(dataOut, 'dataPP_POWER'):
1914 factor = 1
1915 if hasattr(dataOut, 'nFFTPoints'):
1916 factor = dataOut.normFactor
1917 print("dataOut",dataOut.data_360.shape)
1918 #
1919 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1920 #
1921 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1922 data['azi'] = dataOut.data_azi
1923 data['ele'] = dataOut.data_ele
1924 #data['case_flag'] = dataOut.case_flag
1925 #print("UPDATE")
1926 #print("data[weather]",data['weather'].shape)
1927 #print("data[azi]",data['azi'])
1928 return data, meta
1929
1930 def get2List(self,angulos):
1931 list1=[]
1932 list2=[]
1933 for i in reversed(range(len(angulos))):
1934 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1935 diff_ = angulos[i]-angulos[i-1]
1936 if abs(diff_) >1.5:
1937 list1.append(i-1)
1938 list2.append(diff_)
1939 return list(reversed(list1)),list(reversed(list2))
1940
1941 def fixData90(self,list_,ang_):
1942 if list_[0]==-1:
1943 vec = numpy.where(ang_<ang_[0])
1944 ang_[vec] = ang_[vec]+90
1945 return ang_
1946 return ang_
1947
1948 def fixData90HL(self,angulos):
1949 vec = numpy.where(angulos>=90)
1950 angulos[vec]=angulos[vec]-90
1951 return angulos
1952
1953
1954 def search_pos(self,pos,list_):
1955 for i in range(len(list_)):
1956 if pos == list_[i]:
1957 return True,i
1958 i=None
1959 return False,i
1960
1961 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1962 size = len(ang_)
1963 size2 = 0
1964 for i in range(len(list2_)):
1965 size2=size2+round(abs(list2_[i]))-1
1966 new_size= size+size2
1967 ang_new = numpy.zeros(new_size)
1968 ang_new2 = numpy.zeros(new_size)
1969
1970 tmp = 0
1971 c = 0
1972 for i in range(len(ang_)):
1973 ang_new[tmp +c] = ang_[i]
1974 ang_new2[tmp+c] = ang_[i]
1975 condition , value = self.search_pos(i,list1_)
1976 if condition:
1977 pos = tmp + c + 1
1978 for k in range(round(abs(list2_[value]))-1):
1979 if tipo_case==0 or tipo_case==3:#subida
1980 ang_new[pos+k] = ang_new[pos+k-1]+1
1981 ang_new2[pos+k] = numpy.nan
1982 elif tipo_case==1 or tipo_case==2:#bajada
1983 ang_new[pos+k] = ang_new[pos+k-1]-1
1984 ang_new2[pos+k] = numpy.nan
1985
1986 tmp = pos +k
1987 c = 0
1988 c=c+1
1989 return ang_new,ang_new2
1990
1991 def globalCheckPED(self,angulos,tipo_case):
1992 l1,l2 = self.get2List(angulos)
1993 ##print("l1",l1)
1994 ##print("l2",l2)
1995 if len(l1)>0:
1996 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1997 #l1,l2 = self.get2List(angulos2)
1998 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1999 #ang1_ = self.fixData90HL(ang1_)
2000 #ang2_ = self.fixData90HL(ang2_)
2001 else:
2002 ang1_= angulos
2003 ang2_= angulos
2004 return ang1_,ang2_
2005
2006
2007 def replaceNAN(self,data_weather,data_ele,val):
2008 data= data_ele
2009 data_T= data_weather
2010
2011 if data.shape[0]> data_T.shape[0]:
2012 print("IF")
2013 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
2014 c = 0
2015 for i in range(len(data)):
2016 if numpy.isnan(data[i]):
2017 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2018 else:
2019 data_N[i,:]=data_T[c,:]
2020 c=c+1
2021 return data_N
2022 else:
2023 print("else")
2024 for i in range(len(data)):
2025 if numpy.isnan(data[i]):
2026 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2027 return data_T
2028
2029 def check_case(self,data_ele,ang_max,ang_min):
2030 start = data_ele[0]
2031 end = data_ele[-1]
2032 number = (end-start)
2033 len_ang=len(data_ele)
2034 print("start",start)
2035 print("end",end)
2036 print("number",number)
2037
2038 print("len_ang",len_ang)
2039
2040 #exit(1)
2041
2042 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
2043 return 0
2044 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
2045 # return 1
2046 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
2047 return 1
2048 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
2049 return 2
2050 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
2051 return 3
2052
2053
2054 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
2055 ang_max= ang_max
2056 ang_min= ang_min
2057 data_weather=data_weather
2058 val_ch=val_ch
2059 ##print("*********************DATA WEATHER**************************************")
2060 ##print(data_weather)
2061 if self.ini==0:
2062
2063 #--------------------- new -------------------------
2064 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
2065
2066 #-------------------------CAMBIOS RHI---------------------------------
2067 start= ang_min
2068 end = ang_max
2069 n= (ang_max-ang_min)/res
2070 #------ new
2071 self.start_data_ele = data_ele_new[0]
2072 self.end_data_ele = data_ele_new[-1]
2073 if tipo_case==0 or tipo_case==3: # SUBIDA
2074 n1= round(self.start_data_ele)- start
2075 n2= end - round(self.end_data_ele)
2076 print(self.start_data_ele)
2077 print(self.end_data_ele)
2078 if n1>0:
2079 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2080 ele1_nan= numpy.ones(n1)*numpy.nan
2081 data_ele = numpy.hstack((ele1,data_ele_new))
2082 print("ele1_nan",ele1_nan.shape)
2083 print("data_ele_old",data_ele_old.shape)
2084 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2085 if n2>0:
2086 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2087 ele2_nan= numpy.ones(n2)*numpy.nan
2088 data_ele = numpy.hstack((data_ele,ele2))
2089 print("ele2_nan",ele2_nan.shape)
2090 print("data_ele_old",data_ele_old.shape)
2091 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2092
2093 if tipo_case==1 or tipo_case==2: # BAJADA
2094 data_ele_new = data_ele_new[::-1] # reversa
2095 data_ele_old = data_ele_old[::-1]# reversa
2096 data_weather = data_weather[::-1,:]# reversa
2097 vec= numpy.where(data_ele_new<ang_max)
2098 data_ele_new = data_ele_new[vec]
2099 data_ele_old = data_ele_old[vec]
2100 data_weather = data_weather[vec[0]]
2101 vec2= numpy.where(0<data_ele_new)
2102 data_ele_new = data_ele_new[vec2]
2103 data_ele_old = data_ele_old[vec2]
2104 data_weather = data_weather[vec2[0]]
2105 self.start_data_ele = data_ele_new[0]
2106 self.end_data_ele = data_ele_new[-1]
2107
2108 n1= round(self.start_data_ele)- start
2109 n2= end - round(self.end_data_ele)-1
2110 print(self.start_data_ele)
2111 print(self.end_data_ele)
2112 if n1>0:
2113 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2114 ele1_nan= numpy.ones(n1)*numpy.nan
2115 data_ele = numpy.hstack((ele1,data_ele_new))
2116 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2117 if n2>0:
2118 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2119 ele2_nan= numpy.ones(n2)*numpy.nan
2120 data_ele = numpy.hstack((data_ele,ele2))
2121 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2122 # RADAR
2123 # NOTA data_ele y data_weather es la variable que retorna
2124 val_mean = numpy.mean(data_weather[:,-1])
2125 self.val_mean = val_mean
2126 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2127 print("eleold",data_ele_old)
2128 print(self.data_ele_tmp[val_ch])
2129 print(data_ele_old.shape[0])
2130 print(self.data_ele_tmp[val_ch].shape[0])
2131 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
2132 import sys
2133 print("EXIT",self.ini)
2134
2135 sys.exit(1)
2136 self.data_ele_tmp[val_ch]= data_ele_old
2137 else:
2138 #print("**********************************************")
2139 #print("****************VARIABLE**********************")
2140 #-------------------------CAMBIOS RHI---------------------------------
2141 #---------------------------------------------------------------------
2142 ##print("INPUT data_ele",data_ele)
2143 flag=0
2144 start_ele = self.res_ele[0]
2145 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
2146 tipo_case = case_flag[-1]
2147 #print("TIPO DE DATA",tipo_case)
2148 #-----------new------------
2149 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
2150 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2151
2152 #-------------------------------NEW RHI ITERATIVO-------------------------
2153
2154 if tipo_case==0 : # SUBIDA
2155 vec = numpy.where(data_ele<ang_max)
2156 data_ele = data_ele[vec]
2157 data_ele_old = data_ele_old[vec]
2158 data_weather = data_weather[vec[0]]
2159
2160 vec2 = numpy.where(0<data_ele)
2161 data_ele= data_ele[vec2]
2162 data_ele_old= data_ele_old[vec2]
2163 ##print(data_ele_new)
2164 data_weather= data_weather[vec2[0]]
2165
2166 new_i_ele = int(round(data_ele[0]))
2167 new_f_ele = int(round(data_ele[-1]))
2168 #print(new_i_ele)
2169 #print(new_f_ele)
2170 #print(data_ele,len(data_ele))
2171 #print(data_ele_old,len(data_ele_old))
2172 if new_i_ele< 2:
2173 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2174 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2175 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
2176 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
2177 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
2178 data_ele = self.res_ele
2179 data_weather = self.res_weather[val_ch]
2180
2181 elif tipo_case==1 : #BAJADA
2182 data_ele = data_ele[::-1] # reversa
2183 data_ele_old = data_ele_old[::-1]# reversa
2184 data_weather = data_weather[::-1,:]# reversa
2185 vec= numpy.where(data_ele<ang_max)
2186 data_ele = data_ele[vec]
2187 data_ele_old = data_ele_old[vec]
2188 data_weather = data_weather[vec[0]]
2189 vec2= numpy.where(0<data_ele)
2190 data_ele = data_ele[vec2]
2191 data_ele_old = data_ele_old[vec2]
2192 data_weather = data_weather[vec2[0]]
2193
2194
2195 new_i_ele = int(round(data_ele[0]))
2196 new_f_ele = int(round(data_ele[-1]))
2197 #print(data_ele)
2198 #print(ang_max)
2199 #print(data_ele_old)
2200 if new_i_ele <= 1:
2201 new_i_ele = 1
2202 if round(data_ele[-1])>=ang_max-1:
2203 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2204 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2205 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
2206 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
2207 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
2208 data_ele = self.res_ele
2209 data_weather = self.res_weather[val_ch]
2210
2211 elif tipo_case==2: #bajada
2212 vec = numpy.where(data_ele<ang_max)
2213 data_ele = data_ele[vec]
2214 data_weather= data_weather[vec[0]]
2215
2216 len_vec = len(vec)
2217 data_ele_new = data_ele[::-1] # reversa
2218 data_weather = data_weather[::-1,:]
2219 new_i_ele = int(data_ele_new[0])
2220 new_f_ele = int(data_ele_new[-1])
2221
2222 n1= new_i_ele- ang_min
2223 n2= ang_max - new_f_ele-1
2224 if n1>0:
2225 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2226 ele1_nan= numpy.ones(n1)*numpy.nan
2227 data_ele = numpy.hstack((ele1,data_ele_new))
2228 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2229 if n2>0:
2230 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2231 ele2_nan= numpy.ones(n2)*numpy.nan
2232 data_ele = numpy.hstack((data_ele,ele2))
2233 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2234
2235 self.data_ele_tmp[val_ch] = data_ele_old
2236 self.res_ele = data_ele
2237 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2238 data_ele = self.res_ele
2239 data_weather = self.res_weather[val_ch]
2240
2241 elif tipo_case==3:#subida
2242 vec = numpy.where(0<data_ele)
2243 data_ele= data_ele[vec]
2244 data_ele_new = data_ele
2245 data_ele_old= data_ele_old[vec]
2246 data_weather= data_weather[vec[0]]
2247 pos_ini = numpy.argmin(data_ele)
2248 if pos_ini>0:
2249 len_vec= len(data_ele)
2250 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
2251 #print(vec3)
2252 data_ele= data_ele[vec3]
2253 data_ele_new = data_ele
2254 data_ele_old= data_ele_old[vec3]
2255 data_weather= data_weather[vec3]
2256
2257 new_i_ele = int(data_ele_new[0])
2258 new_f_ele = int(data_ele_new[-1])
2259 n1= new_i_ele- ang_min
2260 n2= ang_max - new_f_ele-1
2261 if n1>0:
2262 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2263 ele1_nan= numpy.ones(n1)*numpy.nan
2264 data_ele = numpy.hstack((ele1,data_ele_new))
2265 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2266 if n2>0:
2267 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2268 ele2_nan= numpy.ones(n2)*numpy.nan
2269 data_ele = numpy.hstack((data_ele,ele2))
2270 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2271
2272 self.data_ele_tmp[val_ch] = data_ele_old
2273 self.res_ele = data_ele
2274 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2275 data_ele = self.res_ele
2276 data_weather = self.res_weather[val_ch]
2277 #print("self.data_ele_tmp",self.data_ele_tmp)
2278 return data_weather,data_ele
2279
2280 def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min):
2281
2282 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1)
2283
2284 data_ele = data_ele_old.copy()
2285
2286 diff_1 = ang_max - data_ele[0]
2287 angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan
2288
2289 diff_2 = data_ele[-1]-ang_min
2290 angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan
2291
2292 angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan))
2293
2294 print(angles_filled)
2295
2296 data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan
2297 data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan
2298
2299 data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0)
2300 #val_mean = numpy.mean(data_weather[:,-1])
2301 #self.val_mean = val_mean
2302 print(data_filled)
2303 data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan)
2304
2305 print(data_filled)
2306 print(data_filled.shape)
2307 print(angles_filled.shape)
2308
2309 return data_filled,angles_filled
2310
2311 def plot(self):
2312 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
2313 data = self.data[-1]
2314 r = self.data.yrange
2315 delta_height = r[1]-r[0]
2316 r_mask = numpy.where(r>=0)[0]
2317 self.r_mask =r_mask
2318 ##print("delta_height",delta_height)
2319 #print("r_mask",r_mask,len(r_mask))
2320 r = numpy.arange(len(r_mask))*delta_height
2321 self.y = 2*r
2322 res = 1
2323 ###print("data['weather'].shape[0]",data['weather'].shape[0])
2324 ang_max = self.ang_max
2325 ang_min = self.ang_min
2326 var_ang =ang_max - ang_min
2327 step = (int(var_ang)/(res*data['weather'].shape[0]))
2328 ###print("step",step)
2329 #--------------------------------------------------------
2330 ##print('weather',data['weather'].shape)
2331 ##print('ele',data['ele'].shape)
2332
2333 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
2334 ###self.res_azi = numpy.mean(data['azi'])
2335 ###print("self.res_ele",self.res_ele)
2336
2337 plt.clf()
2338 subplots = [121, 122]
2339 #if self.ini==0:
2340 #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
2341 #print("SHAPE",self.data_ele_tmp.shape)
2342
2343 for i,ax in enumerate(self.axes):
2344 res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min)
2345 self.res_azi = numpy.mean(data['azi'])
2346
2347 if ax.firsttime:
2348 #plt.clf()
2349 print("Frist Plot")
2350 print(data['weather'][i][:,r_mask].shape)
2351 print(data['ele'].shape)
2352 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2353 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2354 gh = cgax.get_grid_helper()
2355 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2356 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2357 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2358
2359
2360 #fig=self.figures[0]
2361 else:
2362 #plt.clf()
2363 print("ELSE PLOT")
2364 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2365 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2366 gh = cgax.get_grid_helper()
2367 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2368 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2369 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2370
2371 caax = cgax.parasites[0]
2372 paax = cgax.parasites[1]
2373 cbar = plt.gcf().colorbar(pm, pad=0.075)
2374 caax.set_xlabel('x_range [km]')
2375 caax.set_ylabel('y_range [km]')
2376 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
2377 print("***************************self.ini****************************",self.ini)
2378 self.ini= self.ini+1
@@ -1,4622 +1,4833
1 import numpy,os,h5py
1 import numpy,os,h5py
2 import math
2 import math
3 from scipy import optimize, interpolate, signal, stats, ndimage
3 from scipy import optimize, interpolate, signal, stats, ndimage
4 import scipy
4 import scipy
5 import re
5 import re
6 import datetime
6 import datetime
7 import copy
7 import copy
8 import sys
8 import sys
9 import importlib
9 import importlib
10 import itertools
10 import itertools
11 from multiprocessing import Pool, TimeoutError
11 from multiprocessing import Pool, TimeoutError
12 from multiprocessing.pool import ThreadPool
12 from multiprocessing.pool import ThreadPool
13 import time
13 import time
14
14
15 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
15 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
16 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
16 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
17 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
17 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
18 from scipy import asarray as ar,exp
18 from scipy import asarray as ar,exp
19 from scipy.optimize import curve_fit
19 from scipy.optimize import curve_fit
20 from schainpy.utils import log
20 from schainpy.utils import log
21 import warnings
21 import warnings
22 from numpy import NaN
22 from numpy import NaN
23 from scipy.optimize.optimize import OptimizeWarning
23 from scipy.optimize.optimize import OptimizeWarning
24 warnings.filterwarnings('ignore')
24 warnings.filterwarnings('ignore')
25
25
26 from time import sleep
26 from time import sleep
27
27
28 import matplotlib.pyplot as plt
28 import matplotlib.pyplot as plt
29
29
30 SPEED_OF_LIGHT = 299792458
30 SPEED_OF_LIGHT = 299792458
31
31
32 '''solving pickling issue'''
32 '''solving pickling issue'''
33
33
34 def _pickle_method(method):
34 def _pickle_method(method):
35 func_name = method.__func__.__name__
35 func_name = method.__func__.__name__
36 obj = method.__self__
36 obj = method.__self__
37 cls = method.__self__.__class__
37 cls = method.__self__.__class__
38 return _unpickle_method, (func_name, obj, cls)
38 return _unpickle_method, (func_name, obj, cls)
39
39
40 def _unpickle_method(func_name, obj, cls):
40 def _unpickle_method(func_name, obj, cls):
41 for cls in cls.mro():
41 for cls in cls.mro():
42 try:
42 try:
43 func = cls.__dict__[func_name]
43 func = cls.__dict__[func_name]
44 except KeyError:
44 except KeyError:
45 pass
45 pass
46 else:
46 else:
47 break
47 break
48 return func.__get__(obj, cls)
48 return func.__get__(obj, cls)
49
49
50 def isNumber(str):
50 def isNumber(str):
51 try:
51 try:
52 float(str)
52 float(str)
53 return True
53 return True
54 except:
54 except:
55 return False
55 return False
56
56
57 class ParametersProc(ProcessingUnit):
57 class ParametersProc(ProcessingUnit):
58
58
59 METHODS = {}
59 METHODS = {}
60 nSeconds = None
60 nSeconds = None
61
61
62 def __init__(self):
62 def __init__(self):
63 ProcessingUnit.__init__(self)
63 ProcessingUnit.__init__(self)
64
64
65 # self.objectDict = {}
65 # self.objectDict = {}
66 self.buffer = None
66 self.buffer = None
67 self.firstdatatime = None
67 self.firstdatatime = None
68 self.profIndex = 0
68 self.profIndex = 0
69 self.dataOut = Parameters()
69 self.dataOut = Parameters()
70 self.setupReq = False #Agregar a todas las unidades de proc
70 self.setupReq = False #Agregar a todas las unidades de proc
71
71
72 def __updateObjFromInput(self):
72 def __updateObjFromInput(self):
73
73
74 self.dataOut.inputUnit = self.dataIn.type
74 self.dataOut.inputUnit = self.dataIn.type
75
75
76 self.dataOut.timeZone = self.dataIn.timeZone
76 self.dataOut.timeZone = self.dataIn.timeZone
77 self.dataOut.dstFlag = self.dataIn.dstFlag
77 self.dataOut.dstFlag = self.dataIn.dstFlag
78 self.dataOut.errorCount = self.dataIn.errorCount
78 self.dataOut.errorCount = self.dataIn.errorCount
79 self.dataOut.useLocalTime = self.dataIn.useLocalTime
79 self.dataOut.useLocalTime = self.dataIn.useLocalTime
80
80
81 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
81 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
82 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
82 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
83 self.dataOut.channelList = self.dataIn.channelList
83 self.dataOut.channelList = self.dataIn.channelList
84 self.dataOut.heightList = self.dataIn.heightList
84 self.dataOut.heightList = self.dataIn.heightList
85 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
85 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
86 # self.dataOut.nHeights = self.dataIn.nHeights
86 # self.dataOut.nHeights = self.dataIn.nHeights
87 # self.dataOut.nChannels = self.dataIn.nChannels
87 # self.dataOut.nChannels = self.dataIn.nChannels
88 # self.dataOut.nBaud = self.dataIn.nBaud
88 # self.dataOut.nBaud = self.dataIn.nBaud
89 # self.dataOut.nCode = self.dataIn.nCode
89 # self.dataOut.nCode = self.dataIn.nCode
90 # self.dataOut.code = self.dataIn.code
90 # self.dataOut.code = self.dataIn.code
91 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
91 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
92 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
92 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
93 # self.dataOut.utctime = self.firstdatatime
93 # self.dataOut.utctime = self.firstdatatime
94 self.dataOut.utctime = self.dataIn.utctime
94 self.dataOut.utctime = self.dataIn.utctime
95 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
95 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
96 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
96 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
97 self.dataOut.nCohInt = self.dataIn.nCohInt
97 self.dataOut.nCohInt = self.dataIn.nCohInt
98 # self.dataOut.nIncohInt = 1
98 # self.dataOut.nIncohInt = 1
99 # self.dataOut.ippSeconds = self.dataIn.ippSeconds
99 # self.dataOut.ippSeconds = self.dataIn.ippSeconds
100 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
100 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
101 self.dataOut.timeInterval1 = self.dataIn.timeInterval
101 self.dataOut.timeInterval1 = self.dataIn.timeInterval
102 self.dataOut.heightList = self.dataIn.heightList
102 self.dataOut.heightList = self.dataIn.heightList
103 self.dataOut.frequency = self.dataIn.frequency
103 self.dataOut.frequency = self.dataIn.frequency
104 # self.dataOut.noise = self.dataIn.noise
104 # self.dataOut.noise = self.dataIn.noise
105
105
106 def run(self):
106 def run(self):
107
107
108
108
109 #print("HOLA MUNDO SOY YO")
109 #print("HOLA MUNDO SOY YO")
110 #---------------------- Voltage Data ---------------------------
110 #---------------------- Voltage Data ---------------------------
111
111
112 if self.dataIn.type == "Voltage":
112 if self.dataIn.type == "Voltage":
113
113
114 self.__updateObjFromInput()
114 self.__updateObjFromInput()
115 self.dataOut.data_pre = self.dataIn.data.copy()
115 self.dataOut.data_pre = self.dataIn.data.copy()
116 self.dataOut.flagNoData = False
116 self.dataOut.flagNoData = False
117 self.dataOut.utctimeInit = self.dataIn.utctime
117 self.dataOut.utctimeInit = self.dataIn.utctime
118 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
118 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
119
119
120 if hasattr(self.dataIn, 'flagDataAsBlock'):
120 if hasattr(self.dataIn, 'flagDataAsBlock'):
121 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
121 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
122
122
123 if hasattr(self.dataIn, 'profileIndex'):
123 if hasattr(self.dataIn, 'profileIndex'):
124 self.dataOut.profileIndex = self.dataIn.profileIndex
124 self.dataOut.profileIndex = self.dataIn.profileIndex
125
125
126 if hasattr(self.dataIn, 'dataPP_POW'):
126 if hasattr(self.dataIn, 'dataPP_POW'):
127 self.dataOut.dataPP_POW = self.dataIn.dataPP_POW
127 self.dataOut.dataPP_POW = self.dataIn.dataPP_POW
128
128
129 if hasattr(self.dataIn, 'dataPP_POWER'):
129 if hasattr(self.dataIn, 'dataPP_POWER'):
130 self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER
130 self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER
131
131
132 if hasattr(self.dataIn, 'dataPP_DOP'):
132 if hasattr(self.dataIn, 'dataPP_DOP'):
133 self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP
133 self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP
134
134
135 if hasattr(self.dataIn, 'dataPP_SNR'):
135 if hasattr(self.dataIn, 'dataPP_SNR'):
136 self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR
136 self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR
137
137
138 if hasattr(self.dataIn, 'dataPP_WIDTH'):
138 if hasattr(self.dataIn, 'dataPP_WIDTH'):
139 self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH
139 self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH
140 return
140 return
141
141
142 #---------------------- Spectra Data ---------------------------
142 #---------------------- Spectra Data ---------------------------
143
143
144 if self.dataIn.type == "Spectra":
144 if self.dataIn.type == "Spectra":
145 #print("que paso en spectra")
145 #print("que paso en spectra")
146 self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc]
146 self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc]
147 self.dataOut.data_spc = self.dataIn.data_spc
147 self.dataOut.data_spc = self.dataIn.data_spc
148 self.dataOut.data_cspc = self.dataIn.data_cspc
148 self.dataOut.data_cspc = self.dataIn.data_cspc
149 self.dataOut.nProfiles = self.dataIn.nProfiles
149 self.dataOut.nProfiles = self.dataIn.nProfiles
150 self.dataOut.nIncohInt = self.dataIn.nIncohInt
150 self.dataOut.nIncohInt = self.dataIn.nIncohInt
151 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
151 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
152 self.dataOut.ippFactor = self.dataIn.ippFactor
152 self.dataOut.ippFactor = self.dataIn.ippFactor
153 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
153 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
154 self.dataOut.spc_noise = self.dataIn.getNoise()
154 self.dataOut.spc_noise = self.dataIn.getNoise()
155 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
155 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
156 # self.dataOut.normFactor = self.dataIn.normFactor
156 # self.dataOut.normFactor = self.dataIn.normFactor
157 self.dataOut.pairsList = self.dataIn.pairsList
157 self.dataOut.pairsList = self.dataIn.pairsList
158 self.dataOut.groupList = self.dataIn.pairsList
158 self.dataOut.groupList = self.dataIn.pairsList
159 self.dataOut.flagNoData = False
159 self.dataOut.flagNoData = False
160
160
161 if hasattr(self.dataIn, 'flagDataAsBlock'):
161 if hasattr(self.dataIn, 'flagDataAsBlock'):
162 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
162 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
163
163
164 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
164 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
165 self.dataOut.ChanDist = self.dataIn.ChanDist
165 self.dataOut.ChanDist = self.dataIn.ChanDist
166 else: self.dataOut.ChanDist = None
166 else: self.dataOut.ChanDist = None
167
167
168 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
168 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
169 # self.dataOut.VelRange = self.dataIn.VelRange
169 # self.dataOut.VelRange = self.dataIn.VelRange
170 #else: self.dataOut.VelRange = None
170 #else: self.dataOut.VelRange = None
171
171
172 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
172 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
173 self.dataOut.RadarConst = self.dataIn.RadarConst
173 self.dataOut.RadarConst = self.dataIn.RadarConst
174
174
175 if hasattr(self.dataIn, 'NPW'): #NPW
175 if hasattr(self.dataIn, 'NPW'): #NPW
176 self.dataOut.NPW = self.dataIn.NPW
176 self.dataOut.NPW = self.dataIn.NPW
177
177
178 if hasattr(self.dataIn, 'COFA'): #COFA
178 if hasattr(self.dataIn, 'COFA'): #COFA
179 self.dataOut.COFA = self.dataIn.COFA
179 self.dataOut.COFA = self.dataIn.COFA
180
180
181
181
182
182
183 #---------------------- Correlation Data ---------------------------
183 #---------------------- Correlation Data ---------------------------
184
184
185 if self.dataIn.type == "Correlation":
185 if self.dataIn.type == "Correlation":
186 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
186 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
187
187
188 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
188 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
189 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
189 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
190 self.dataOut.groupList = (acf_pairs, ccf_pairs)
190 self.dataOut.groupList = (acf_pairs, ccf_pairs)
191
191
192 self.dataOut.abscissaList = self.dataIn.lagRange
192 self.dataOut.abscissaList = self.dataIn.lagRange
193 self.dataOut.noise = self.dataIn.noise
193 self.dataOut.noise = self.dataIn.noise
194 self.dataOut.data_snr = self.dataIn.SNR
194 self.dataOut.data_snr = self.dataIn.SNR
195 self.dataOut.flagNoData = False
195 self.dataOut.flagNoData = False
196 self.dataOut.nAvg = self.dataIn.nAvg
196 self.dataOut.nAvg = self.dataIn.nAvg
197
197
198 #---------------------- Parameters Data ---------------------------
198 #---------------------- Parameters Data ---------------------------
199
199
200 if self.dataIn.type == "Parameters":
200 if self.dataIn.type == "Parameters":
201 self.dataOut.copy(self.dataIn)
201 self.dataOut.copy(self.dataIn)
202 self.dataOut.flagNoData = False
202 self.dataOut.flagNoData = False
203 #print("yo si entre")
203 #print("yo si entre")
204
204
205 return True
205 return True
206
206
207 self.__updateObjFromInput()
207 self.__updateObjFromInput()
208 #print("yo si entre2")
208 #print("yo si entre2")
209
209
210 self.dataOut.utctimeInit = self.dataIn.utctime
210 self.dataOut.utctimeInit = self.dataIn.utctime
211 self.dataOut.paramInterval = self.dataIn.timeInterval
211 self.dataOut.paramInterval = self.dataIn.timeInterval
212 #print("soy spectra ",self.dataOut.utctimeInit)
212 #print("soy spectra ",self.dataOut.utctimeInit)
213 return
213 return
214
214
215
215
216 def target(tups):
216 def target(tups):
217
217
218 obj, args = tups
218 obj, args = tups
219
219
220 return obj.FitGau(args)
220 return obj.FitGau(args)
221
221
222 class RemoveWideGC(Operation):
222 class RemoveWideGC(Operation):
223 ''' This class remove the wide clutter and replace it with a simple interpolation points
223 ''' This class remove the wide clutter and replace it with a simple interpolation points
224 This mainly applies to CLAIRE radar
224 This mainly applies to CLAIRE radar
225
225
226 ClutterWidth : Width to look for the clutter peak
226 ClutterWidth : Width to look for the clutter peak
227
227
228 Input:
228 Input:
229
229
230 self.dataOut.data_pre : SPC and CSPC
230 self.dataOut.data_pre : SPC and CSPC
231 self.dataOut.spc_range : To select wind and rainfall velocities
231 self.dataOut.spc_range : To select wind and rainfall velocities
232
232
233 Affected:
233 Affected:
234
234
235 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
235 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
236
236
237 Written by D. ScipiΓ³n 25.02.2021
237 Written by D. ScipiΓ³n 25.02.2021
238 '''
238 '''
239 def __init__(self):
239 def __init__(self):
240 Operation.__init__(self)
240 Operation.__init__(self)
241 self.i = 0
241 self.i = 0
242 self.ich = 0
242 self.ich = 0
243 self.ir = 0
243 self.ir = 0
244
244
245 def run(self, dataOut, ClutterWidth=2.5):
245 def run(self, dataOut, ClutterWidth=2.5):
246 # print ('Entering RemoveWideGC ... ')
246 # print ('Entering RemoveWideGC ... ')
247
247
248 self.spc = dataOut.data_pre[0].copy()
248 self.spc = dataOut.data_pre[0].copy()
249 self.spc_out = dataOut.data_pre[0].copy()
249 self.spc_out = dataOut.data_pre[0].copy()
250 self.Num_Chn = self.spc.shape[0]
250 self.Num_Chn = self.spc.shape[0]
251 self.Num_Hei = self.spc.shape[2]
251 self.Num_Hei = self.spc.shape[2]
252 VelRange = dataOut.spc_range[2][:-1]
252 VelRange = dataOut.spc_range[2][:-1]
253 dv = VelRange[1]-VelRange[0]
253 dv = VelRange[1]-VelRange[0]
254
254
255 # Find the velocities that corresponds to zero
255 # Find the velocities that corresponds to zero
256 gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth))
256 gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth))
257
257
258 # Removing novalid data from the spectra
258 # Removing novalid data from the spectra
259 for ich in range(self.Num_Chn) :
259 for ich in range(self.Num_Chn) :
260 for ir in range(self.Num_Hei) :
260 for ir in range(self.Num_Hei) :
261 # Estimate the noise at each range
261 # Estimate the noise at each range
262 HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt)
262 HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt)
263
263
264 # Removing the noise floor at each range
264 # Removing the noise floor at each range
265 novalid = numpy.where(self.spc[ich,:,ir] < HSn)
265 novalid = numpy.where(self.spc[ich,:,ir] < HSn)
266 self.spc[ich,novalid,ir] = HSn
266 self.spc[ich,novalid,ir] = HSn
267
267
268 junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn)
268 junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn)
269 j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0))
269 j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0))
270 j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0))
270 j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0))
271 if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) :
271 if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) :
272 continue
272 continue
273 junk3 = numpy.squeeze(numpy.diff(j1index))
273 junk3 = numpy.squeeze(numpy.diff(j1index))
274 junk4 = numpy.squeeze(numpy.diff(j2index))
274 junk4 = numpy.squeeze(numpy.diff(j2index))
275
275
276 valleyindex = j2index[numpy.where(junk4>1)]
276 valleyindex = j2index[numpy.where(junk4>1)]
277 peakindex = j1index[numpy.where(junk3>1)]
277 peakindex = j1index[numpy.where(junk3>1)]
278
278
279 isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv))
279 isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv))
280 if numpy.size(isvalid) == 0 :
280 if numpy.size(isvalid) == 0 :
281 continue
281 continue
282 if numpy.size(isvalid) >1 :
282 if numpy.size(isvalid) >1 :
283 vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir])
283 vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir])
284 isvalid = isvalid[vindex]
284 isvalid = isvalid[vindex]
285
285
286 # clutter peak
286 # clutter peak
287 gcpeak = peakindex[isvalid]
287 gcpeak = peakindex[isvalid]
288 vl = numpy.where(valleyindex < gcpeak)
288 vl = numpy.where(valleyindex < gcpeak)
289 if numpy.size(vl) == 0:
289 if numpy.size(vl) == 0:
290 continue
290 continue
291 gcvl = valleyindex[vl[0][-1]]
291 gcvl = valleyindex[vl[0][-1]]
292 vr = numpy.where(valleyindex > gcpeak)
292 vr = numpy.where(valleyindex > gcpeak)
293 if numpy.size(vr) == 0:
293 if numpy.size(vr) == 0:
294 continue
294 continue
295 gcvr = valleyindex[vr[0][0]]
295 gcvr = valleyindex[vr[0][0]]
296
296
297 # Removing the clutter
297 # Removing the clutter
298 interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]])
298 interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]])
299 gcindex = gc_values[gcvl+1:gcvr-1]
299 gcindex = gc_values[gcvl+1:gcvr-1]
300 self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir])
300 self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir])
301
301
302 dataOut.data_pre[0] = self.spc_out
302 dataOut.data_pre[0] = self.spc_out
303 #print ('Leaving RemoveWideGC ... ')
303 #print ('Leaving RemoveWideGC ... ')
304 return dataOut
304 return dataOut
305
305
306 class SpectralFilters(Operation):
306 class SpectralFilters(Operation):
307 ''' This class allows to replace the novalid values with noise for each channel
307 ''' This class allows to replace the novalid values with noise for each channel
308 This applies to CLAIRE RADAR
308 This applies to CLAIRE RADAR
309
309
310 PositiveLimit : RightLimit of novalid data
310 PositiveLimit : RightLimit of novalid data
311 NegativeLimit : LeftLimit of novalid data
311 NegativeLimit : LeftLimit of novalid data
312
312
313 Input:
313 Input:
314
314
315 self.dataOut.data_pre : SPC and CSPC
315 self.dataOut.data_pre : SPC and CSPC
316 self.dataOut.spc_range : To select wind and rainfall velocities
316 self.dataOut.spc_range : To select wind and rainfall velocities
317
317
318 Affected:
318 Affected:
319
319
320 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
320 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
321
321
322 Written by D. ScipiΓ³n 29.01.2021
322 Written by D. ScipiΓ³n 29.01.2021
323 '''
323 '''
324 def __init__(self):
324 def __init__(self):
325 Operation.__init__(self)
325 Operation.__init__(self)
326 self.i = 0
326 self.i = 0
327
327
328 def run(self, dataOut, ):
328 def run(self, dataOut, ):
329
329
330 self.spc = dataOut.data_pre[0].copy()
330 self.spc = dataOut.data_pre[0].copy()
331 self.Num_Chn = self.spc.shape[0]
331 self.Num_Chn = self.spc.shape[0]
332 VelRange = dataOut.spc_range[2]
332 VelRange = dataOut.spc_range[2]
333
333
334 # novalid corresponds to data within the Negative and PositiveLimit
334 # novalid corresponds to data within the Negative and PositiveLimit
335
335
336
336
337 # Removing novalid data from the spectra
337 # Removing novalid data from the spectra
338 for i in range(self.Num_Chn):
338 for i in range(self.Num_Chn):
339 self.spc[i,novalid,:] = dataOut.noise[i]
339 self.spc[i,novalid,:] = dataOut.noise[i]
340 dataOut.data_pre[0] = self.spc
340 dataOut.data_pre[0] = self.spc
341 return dataOut
341 return dataOut
342
342
343 class GaussianFit(Operation):
343 class GaussianFit(Operation):
344
344
345 '''
345 '''
346 Function that fit of one and two generalized gaussians (gg) based
346 Function that fit of one and two generalized gaussians (gg) based
347 on the PSD shape across an "power band" identified from a cumsum of
347 on the PSD shape across an "power band" identified from a cumsum of
348 the measured spectrum - noise.
348 the measured spectrum - noise.
349
349
350 Input:
350 Input:
351 self.dataOut.data_pre : SelfSpectra
351 self.dataOut.data_pre : SelfSpectra
352
352
353 Output:
353 Output:
354 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
354 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
355
355
356 '''
356 '''
357 def __init__(self):
357 def __init__(self):
358 Operation.__init__(self)
358 Operation.__init__(self)
359 self.i=0
359 self.i=0
360
360
361
361
362 # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
362 # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
363 def run(self, dataOut, SNRdBlimit=-9, method='generalized'):
363 def run(self, dataOut, SNRdBlimit=-9, method='generalized'):
364 """This routine will find a couple of generalized Gaussians to a power spectrum
364 """This routine will find a couple of generalized Gaussians to a power spectrum
365 methods: generalized, squared
365 methods: generalized, squared
366 input: spc
366 input: spc
367 output:
367 output:
368 noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1
368 noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1
369 """
369 """
370 print ('Entering ',method,' double Gaussian fit')
370 print ('Entering ',method,' double Gaussian fit')
371 self.spc = dataOut.data_pre[0].copy()
371 self.spc = dataOut.data_pre[0].copy()
372 self.Num_Hei = self.spc.shape[2]
372 self.Num_Hei = self.spc.shape[2]
373 self.Num_Bin = self.spc.shape[1]
373 self.Num_Bin = self.spc.shape[1]
374 self.Num_Chn = self.spc.shape[0]
374 self.Num_Chn = self.spc.shape[0]
375
375
376 start_time = time.time()
376 start_time = time.time()
377
377
378 pool = Pool(processes=self.Num_Chn)
378 pool = Pool(processes=self.Num_Chn)
379 args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)]
379 args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)]
380 objs = [self for __ in range(self.Num_Chn)]
380 objs = [self for __ in range(self.Num_Chn)]
381 attrs = list(zip(objs, args))
381 attrs = list(zip(objs, args))
382 DGauFitParam = pool.map(target, attrs)
382 DGauFitParam = pool.map(target, attrs)
383 # Parameters:
383 # Parameters:
384 # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power
384 # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power
385 dataOut.DGauFitParams = numpy.asarray(DGauFitParam)
385 dataOut.DGauFitParams = numpy.asarray(DGauFitParam)
386
386
387 # Double Gaussian Curves
387 # Double Gaussian Curves
388 gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
388 gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
389 gau0[:] = numpy.NaN
389 gau0[:] = numpy.NaN
390 gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
390 gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
391 gau1[:] = numpy.NaN
391 gau1[:] = numpy.NaN
392 x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1)))
392 x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1)))
393 for iCh in range(self.Num_Chn):
393 for iCh in range(self.Num_Chn):
394 N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin))
394 N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin))
395 N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin))
395 N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin))
396 A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin))
396 A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin))
397 A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin))
397 A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin))
398 v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin))
398 v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin))
399 v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin))
399 v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin))
400 s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin))
400 s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin))
401 s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin))
401 s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin))
402 if method == 'genealized':
402 if method == 'genealized':
403 p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin))
403 p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin))
404 p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin))
404 p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin))
405 elif method == 'squared':
405 elif method == 'squared':
406 p0 = 2.
406 p0 = 2.
407 p1 = 2.
407 p1 = 2.
408 gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0
408 gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0
409 gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1
409 gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1
410 dataOut.GaussFit0 = gau0
410 dataOut.GaussFit0 = gau0
411 dataOut.GaussFit1 = gau1
411 dataOut.GaussFit1 = gau1
412
412
413 print('Leaving ',method ,' double Gaussian fit')
413 print('Leaving ',method ,' double Gaussian fit')
414 return dataOut
414 return dataOut
415
415
416 def FitGau(self, X):
416 def FitGau(self, X):
417 # print('Entering FitGau')
417 # print('Entering FitGau')
418 # Assigning the variables
418 # Assigning the variables
419 Vrange, ch, wnoise, num_intg, SNRlimit = X
419 Vrange, ch, wnoise, num_intg, SNRlimit = X
420 # Noise Limits
420 # Noise Limits
421 noisebl = wnoise * 0.9
421 noisebl = wnoise * 0.9
422 noisebh = wnoise * 1.1
422 noisebh = wnoise * 1.1
423 # Radar Velocity
423 # Radar Velocity
424 Va = max(Vrange)
424 Va = max(Vrange)
425 deltav = Vrange[1] - Vrange[0]
425 deltav = Vrange[1] - Vrange[0]
426 x = numpy.arange(self.Num_Bin)
426 x = numpy.arange(self.Num_Bin)
427
427
428 # print ('stop 0')
428 # print ('stop 0')
429
429
430 # 5 parameters, 2 Gaussians
430 # 5 parameters, 2 Gaussians
431 DGauFitParam = numpy.zeros([5, self.Num_Hei,2])
431 DGauFitParam = numpy.zeros([5, self.Num_Hei,2])
432 DGauFitParam[:] = numpy.NaN
432 DGauFitParam[:] = numpy.NaN
433
433
434 # SPCparam = []
434 # SPCparam = []
435 # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei])
435 # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei])
436 # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei])
436 # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei])
437 # SPC_ch1[:] = 0 #numpy.NaN
437 # SPC_ch1[:] = 0 #numpy.NaN
438 # SPC_ch2[:] = 0 #numpy.NaN
438 # SPC_ch2[:] = 0 #numpy.NaN
439 # print ('stop 1')
439 # print ('stop 1')
440 for ht in range(self.Num_Hei):
440 for ht in range(self.Num_Hei):
441 # print (ht)
441 # print (ht)
442 # print ('stop 2')
442 # print ('stop 2')
443 # Spectra at each range
443 # Spectra at each range
444 spc = numpy.asarray(self.spc)[ch,:,ht]
444 spc = numpy.asarray(self.spc)[ch,:,ht]
445 snr = ( spc.mean() - wnoise ) / wnoise
445 snr = ( spc.mean() - wnoise ) / wnoise
446 snrdB = 10.*numpy.log10(snr)
446 snrdB = 10.*numpy.log10(snr)
447
447
448 #print ('stop 3')
448 #print ('stop 3')
449 if snrdB < SNRlimit :
449 if snrdB < SNRlimit :
450 # snr = numpy.NaN
450 # snr = numpy.NaN
451 # SPC_ch1[:,ht] = 0#numpy.NaN
451 # SPC_ch1[:,ht] = 0#numpy.NaN
452 # SPC_ch1[:,ht] = 0#numpy.NaN
452 # SPC_ch1[:,ht] = 0#numpy.NaN
453 # SPCparam = (SPC_ch1,SPC_ch2)
453 # SPCparam = (SPC_ch1,SPC_ch2)
454 # print ('SNR less than SNRth')
454 # print ('SNR less than SNRth')
455 continue
455 continue
456 # wnoise = hildebrand_sekhon(spc,num_intg)
456 # wnoise = hildebrand_sekhon(spc,num_intg)
457 # print ('stop 2.01')
457 # print ('stop 2.01')
458 #############################################
458 #############################################
459 # normalizing spc and noise
459 # normalizing spc and noise
460 # This part differs from gg1
460 # This part differs from gg1
461 # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021
461 # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021
462 #spc = spc / spc_norm_max
462 #spc = spc / spc_norm_max
463 # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
463 # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
464 #############################################
464 #############################################
465
465
466 # print ('stop 2.1')
466 # print ('stop 2.1')
467 fatspectra=1.0
467 fatspectra=1.0
468 # noise per channel.... we might want to use the noise at each range
468 # noise per channel.... we might want to use the noise at each range
469
469
470 # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
470 # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
471 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
471 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
472 #if wnoise>1.1*pnoise: # to be tested later
472 #if wnoise>1.1*pnoise: # to be tested later
473 # wnoise=pnoise
473 # wnoise=pnoise
474 # noisebl = wnoise*0.9
474 # noisebl = wnoise*0.9
475 # noisebh = wnoise*1.1
475 # noisebh = wnoise*1.1
476 spc = spc - wnoise # signal
476 spc = spc - wnoise # signal
477
477
478 # print ('stop 2.2')
478 # print ('stop 2.2')
479 minx = numpy.argmin(spc)
479 minx = numpy.argmin(spc)
480 #spcs=spc.copy()
480 #spcs=spc.copy()
481 spcs = numpy.roll(spc,-minx)
481 spcs = numpy.roll(spc,-minx)
482 cum = numpy.cumsum(spcs)
482 cum = numpy.cumsum(spcs)
483 # tot_noise = wnoise * self.Num_Bin #64;
483 # tot_noise = wnoise * self.Num_Bin #64;
484
484
485 # print ('stop 2.3')
485 # print ('stop 2.3')
486 # snr = sum(spcs) / tot_noise
486 # snr = sum(spcs) / tot_noise
487 # snrdB = 10.*numpy.log10(snr)
487 # snrdB = 10.*numpy.log10(snr)
488 #print ('stop 3')
488 #print ('stop 3')
489 # if snrdB < SNRlimit :
489 # if snrdB < SNRlimit :
490 # snr = numpy.NaN
490 # snr = numpy.NaN
491 # SPC_ch1[:,ht] = 0#numpy.NaN
491 # SPC_ch1[:,ht] = 0#numpy.NaN
492 # SPC_ch1[:,ht] = 0#numpy.NaN
492 # SPC_ch1[:,ht] = 0#numpy.NaN
493 # SPCparam = (SPC_ch1,SPC_ch2)
493 # SPCparam = (SPC_ch1,SPC_ch2)
494 # print ('SNR less than SNRth')
494 # print ('SNR less than SNRth')
495 # continue
495 # continue
496
496
497
497
498 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
498 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
499 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
499 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
500 # print ('stop 4')
500 # print ('stop 4')
501 cummax = max(cum)
501 cummax = max(cum)
502 epsi = 0.08 * fatspectra # cumsum to narrow down the energy region
502 epsi = 0.08 * fatspectra # cumsum to narrow down the energy region
503 cumlo = cummax * epsi
503 cumlo = cummax * epsi
504 cumhi = cummax * (1-epsi)
504 cumhi = cummax * (1-epsi)
505 powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
505 powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
506
506
507 # print ('stop 5')
507 # print ('stop 5')
508 if len(powerindex) < 1:# case for powerindex 0
508 if len(powerindex) < 1:# case for powerindex 0
509 # print ('powerindex < 1')
509 # print ('powerindex < 1')
510 continue
510 continue
511 powerlo = powerindex[0]
511 powerlo = powerindex[0]
512 powerhi = powerindex[-1]
512 powerhi = powerindex[-1]
513 powerwidth = powerhi-powerlo
513 powerwidth = powerhi-powerlo
514 if powerwidth <= 1:
514 if powerwidth <= 1:
515 # print('powerwidth <= 1')
515 # print('powerwidth <= 1')
516 continue
516 continue
517
517
518 # print ('stop 6')
518 # print ('stop 6')
519 firstpeak = powerlo + powerwidth/10.# first gaussian energy location
519 firstpeak = powerlo + powerwidth/10.# first gaussian energy location
520 secondpeak = powerhi - powerwidth/10. #second gaussian energy location
520 secondpeak = powerhi - powerwidth/10. #second gaussian energy location
521 midpeak = (firstpeak + secondpeak)/2.
521 midpeak = (firstpeak + secondpeak)/2.
522 firstamp = spcs[int(firstpeak)]
522 firstamp = spcs[int(firstpeak)]
523 secondamp = spcs[int(secondpeak)]
523 secondamp = spcs[int(secondpeak)]
524 midamp = spcs[int(midpeak)]
524 midamp = spcs[int(midpeak)]
525
525
526 y_data = spc + wnoise
526 y_data = spc + wnoise
527
527
528 ''' single Gaussian '''
528 ''' single Gaussian '''
529 shift0 = numpy.mod(midpeak+minx, self.Num_Bin )
529 shift0 = numpy.mod(midpeak+minx, self.Num_Bin )
530 width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4
530 width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4
531 power0 = 2.
531 power0 = 2.
532 amplitude0 = midamp
532 amplitude0 = midamp
533 state0 = [shift0,width0,amplitude0,power0,wnoise]
533 state0 = [shift0,width0,amplitude0,power0,wnoise]
534 bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
534 bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
535 lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True)
535 lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True)
536 # print ('stop 7.1')
536 # print ('stop 7.1')
537 # print (bnds)
537 # print (bnds)
538
538
539 chiSq1=lsq1[1]
539 chiSq1=lsq1[1]
540
540
541 # print ('stop 8')
541 # print ('stop 8')
542 if fatspectra<1.0 and powerwidth<4:
542 if fatspectra<1.0 and powerwidth<4:
543 choice=0
543 choice=0
544 Amplitude0=lsq1[0][2]
544 Amplitude0=lsq1[0][2]
545 shift0=lsq1[0][0]
545 shift0=lsq1[0][0]
546 width0=lsq1[0][1]
546 width0=lsq1[0][1]
547 p0=lsq1[0][3]
547 p0=lsq1[0][3]
548 Amplitude1=0.
548 Amplitude1=0.
549 shift1=0.
549 shift1=0.
550 width1=0.
550 width1=0.
551 p1=0.
551 p1=0.
552 noise=lsq1[0][4]
552 noise=lsq1[0][4]
553 #return (numpy.array([shift0,width0,Amplitude0,p0]),
553 #return (numpy.array([shift0,width0,Amplitude0,p0]),
554 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
554 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
555
555
556 # print ('stop 9')
556 # print ('stop 9')
557 ''' two Gaussians '''
557 ''' two Gaussians '''
558 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
558 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
559 shift0 = numpy.mod(firstpeak+minx, self.Num_Bin )
559 shift0 = numpy.mod(firstpeak+minx, self.Num_Bin )
560 shift1 = numpy.mod(secondpeak+minx, self.Num_Bin )
560 shift1 = numpy.mod(secondpeak+minx, self.Num_Bin )
561 width0 = powerwidth/6.
561 width0 = powerwidth/6.
562 width1 = width0
562 width1 = width0
563 power0 = 2.
563 power0 = 2.
564 power1 = power0
564 power1 = power0
565 amplitude0 = firstamp
565 amplitude0 = firstamp
566 amplitude1 = secondamp
566 amplitude1 = secondamp
567 state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
567 state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
568 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
568 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
569 bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
569 bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
570 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
570 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
571
571
572 # print ('stop 10')
572 # print ('stop 10')
573 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
573 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
574
574
575 # print ('stop 11')
575 # print ('stop 11')
576 chiSq2 = lsq2[1]
576 chiSq2 = lsq2[1]
577
577
578 # print ('stop 12')
578 # print ('stop 12')
579
579
580 oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
580 oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
581
581
582 # print ('stop 13')
582 # print ('stop 13')
583 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
583 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
584 if oneG:
584 if oneG:
585 choice = 0
585 choice = 0
586 else:
586 else:
587 w1 = lsq2[0][1]; w2 = lsq2[0][5]
587 w1 = lsq2[0][1]; w2 = lsq2[0][5]
588 a1 = lsq2[0][2]; a2 = lsq2[0][6]
588 a1 = lsq2[0][2]; a2 = lsq2[0][6]
589 p1 = lsq2[0][3]; p2 = lsq2[0][7]
589 p1 = lsq2[0][3]; p2 = lsq2[0][7]
590 s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1
590 s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1
591 s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2
591 s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2
592 gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling
592 gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling
593
593
594 if gp1>gp2:
594 if gp1>gp2:
595 if a1>0.7*a2:
595 if a1>0.7*a2:
596 choice = 1
596 choice = 1
597 else:
597 else:
598 choice = 2
598 choice = 2
599 elif gp2>gp1:
599 elif gp2>gp1:
600 if a2>0.7*a1:
600 if a2>0.7*a1:
601 choice = 2
601 choice = 2
602 else:
602 else:
603 choice = 1
603 choice = 1
604 else:
604 else:
605 choice = numpy.argmax([a1,a2])+1
605 choice = numpy.argmax([a1,a2])+1
606 #else:
606 #else:
607 #choice=argmin([std2a,std2b])+1
607 #choice=argmin([std2a,std2b])+1
608
608
609 else: # with low SNR go to the most energetic peak
609 else: # with low SNR go to the most energetic peak
610 choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
610 choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
611
611
612 # print ('stop 14')
612 # print ('stop 14')
613 shift0 = lsq2[0][0]
613 shift0 = lsq2[0][0]
614 vel0 = Vrange[0] + shift0 * deltav
614 vel0 = Vrange[0] + shift0 * deltav
615 shift1 = lsq2[0][4]
615 shift1 = lsq2[0][4]
616 # vel1=Vrange[0] + shift1 * deltav
616 # vel1=Vrange[0] + shift1 * deltav
617
617
618 # max_vel = 1.0
618 # max_vel = 1.0
619 # Va = max(Vrange)
619 # Va = max(Vrange)
620 # deltav = Vrange[1]-Vrange[0]
620 # deltav = Vrange[1]-Vrange[0]
621 # print ('stop 15')
621 # print ('stop 15')
622 #first peak will be 0, second peak will be 1
622 #first peak will be 0, second peak will be 1
623 # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021
623 # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021
624 if vel0 > -Va and vel0 < Va : #first peak is in the correct range
624 if vel0 > -Va and vel0 < Va : #first peak is in the correct range
625 shift0 = lsq2[0][0]
625 shift0 = lsq2[0][0]
626 width0 = lsq2[0][1]
626 width0 = lsq2[0][1]
627 Amplitude0 = lsq2[0][2]
627 Amplitude0 = lsq2[0][2]
628 p0 = lsq2[0][3]
628 p0 = lsq2[0][3]
629
629
630 shift1 = lsq2[0][4]
630 shift1 = lsq2[0][4]
631 width1 = lsq2[0][5]
631 width1 = lsq2[0][5]
632 Amplitude1 = lsq2[0][6]
632 Amplitude1 = lsq2[0][6]
633 p1 = lsq2[0][7]
633 p1 = lsq2[0][7]
634 noise = lsq2[0][8]
634 noise = lsq2[0][8]
635 else:
635 else:
636 shift1 = lsq2[0][0]
636 shift1 = lsq2[0][0]
637 width1 = lsq2[0][1]
637 width1 = lsq2[0][1]
638 Amplitude1 = lsq2[0][2]
638 Amplitude1 = lsq2[0][2]
639 p1 = lsq2[0][3]
639 p1 = lsq2[0][3]
640
640
641 shift0 = lsq2[0][4]
641 shift0 = lsq2[0][4]
642 width0 = lsq2[0][5]
642 width0 = lsq2[0][5]
643 Amplitude0 = lsq2[0][6]
643 Amplitude0 = lsq2[0][6]
644 p0 = lsq2[0][7]
644 p0 = lsq2[0][7]
645 noise = lsq2[0][8]
645 noise = lsq2[0][8]
646
646
647 if Amplitude0<0.05: # in case the peak is noise
647 if Amplitude0<0.05: # in case the peak is noise
648 shift0,width0,Amplitude0,p0 = 4*[numpy.NaN]
648 shift0,width0,Amplitude0,p0 = 4*[numpy.NaN]
649 if Amplitude1<0.05:
649 if Amplitude1<0.05:
650 shift1,width1,Amplitude1,p1 = 4*[numpy.NaN]
650 shift1,width1,Amplitude1,p1 = 4*[numpy.NaN]
651
651
652 # print ('stop 16 ')
652 # print ('stop 16 ')
653 # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0)
653 # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0)
654 # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1)
654 # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1)
655 # SPCparam = (SPC_ch1,SPC_ch2)
655 # SPCparam = (SPC_ch1,SPC_ch2)
656
656
657 DGauFitParam[0,ht,0] = noise
657 DGauFitParam[0,ht,0] = noise
658 DGauFitParam[0,ht,1] = noise
658 DGauFitParam[0,ht,1] = noise
659 DGauFitParam[1,ht,0] = Amplitude0
659 DGauFitParam[1,ht,0] = Amplitude0
660 DGauFitParam[1,ht,1] = Amplitude1
660 DGauFitParam[1,ht,1] = Amplitude1
661 DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav
661 DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav
662 DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav
662 DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav
663 DGauFitParam[3,ht,0] = width0 * deltav
663 DGauFitParam[3,ht,0] = width0 * deltav
664 DGauFitParam[3,ht,1] = width1 * deltav
664 DGauFitParam[3,ht,1] = width1 * deltav
665 DGauFitParam[4,ht,0] = p0
665 DGauFitParam[4,ht,0] = p0
666 DGauFitParam[4,ht,1] = p1
666 DGauFitParam[4,ht,1] = p1
667
667
668 # print (DGauFitParam.shape)
668 # print (DGauFitParam.shape)
669 # print ('Leaving FitGau')
669 # print ('Leaving FitGau')
670 return DGauFitParam
670 return DGauFitParam
671 # return SPCparam
671 # return SPCparam
672 # return GauSPC
672 # return GauSPC
673
673
674 def y_model1(self,x,state):
674 def y_model1(self,x,state):
675 shift0, width0, amplitude0, power0, noise = state
675 shift0, width0, amplitude0, power0, noise = state
676 model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0)
676 model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0)
677 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
677 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
678 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
678 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
679 return model0 + model0u + model0d + noise
679 return model0 + model0u + model0d + noise
680
680
681 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
681 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
682 shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state
682 shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state
683 model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
683 model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
684 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
684 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
685 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
685 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
686
686
687 model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1)
687 model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1)
688 model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1)
688 model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1)
689 model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1)
689 model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1)
690 return model0 + model0u + model0d + model1 + model1u + model1d + noise
690 return model0 + model0u + model0d + model1 + model1u + model1d + noise
691
691
692 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
692 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
693
693
694 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
694 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
695
695
696 def misfit2(self,state,y_data,x,num_intg):
696 def misfit2(self,state,y_data,x,num_intg):
697 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
697 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
698
698
699
699
700
700
701 class PrecipitationProc(Operation):
701 class PrecipitationProc(Operation):
702
702
703 '''
703 '''
704 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
704 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
705
705
706 Input:
706 Input:
707 self.dataOut.data_pre : SelfSpectra
707 self.dataOut.data_pre : SelfSpectra
708
708
709 Output:
709 Output:
710
710
711 self.dataOut.data_output : Reflectivity factor, rainfall Rate
711 self.dataOut.data_output : Reflectivity factor, rainfall Rate
712
712
713
713
714 Parameters affected:
714 Parameters affected:
715 '''
715 '''
716
716
717 def __init__(self):
717 def __init__(self):
718 Operation.__init__(self)
718 Operation.__init__(self)
719 self.i=0
719 self.i=0
720
720
721 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
721 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
722 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30):
722 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30):
723
723
724 # print ('Entering PrecepitationProc ... ')
724 # print ('Entering PrecepitationProc ... ')
725
725
726 if radar == "MIRA35C" :
726 if radar == "MIRA35C" :
727
727
728 self.spc = dataOut.data_pre[0].copy()
728 self.spc = dataOut.data_pre[0].copy()
729 self.Num_Hei = self.spc.shape[2]
729 self.Num_Hei = self.spc.shape[2]
730 self.Num_Bin = self.spc.shape[1]
730 self.Num_Bin = self.spc.shape[1]
731 self.Num_Chn = self.spc.shape[0]
731 self.Num_Chn = self.spc.shape[0]
732 Ze = self.dBZeMODE2(dataOut)
732 Ze = self.dBZeMODE2(dataOut)
733
733
734 else:
734 else:
735
735
736 self.spc = dataOut.data_pre[0].copy()
736 self.spc = dataOut.data_pre[0].copy()
737
737
738 #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX
738 #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX
739 self.spc[:,:,0:7]= numpy.NaN
739 self.spc[:,:,0:7]= numpy.NaN
740
740
741 self.Num_Hei = self.spc.shape[2]
741 self.Num_Hei = self.spc.shape[2]
742 self.Num_Bin = self.spc.shape[1]
742 self.Num_Bin = self.spc.shape[1]
743 self.Num_Chn = self.spc.shape[0]
743 self.Num_Chn = self.spc.shape[0]
744
744
745 VelRange = dataOut.spc_range[2]
745 VelRange = dataOut.spc_range[2]
746
746
747 ''' Se obtiene la constante del RADAR '''
747 ''' Se obtiene la constante del RADAR '''
748
748
749 self.Pt = Pt
749 self.Pt = Pt
750 self.Gt = Gt
750 self.Gt = Gt
751 self.Gr = Gr
751 self.Gr = Gr
752 self.Lambda = Lambda
752 self.Lambda = Lambda
753 self.aL = aL
753 self.aL = aL
754 self.tauW = tauW
754 self.tauW = tauW
755 self.ThetaT = ThetaT
755 self.ThetaT = ThetaT
756 self.ThetaR = ThetaR
756 self.ThetaR = ThetaR
757 self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB
757 self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB
758 self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB
758 self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB
759 self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB
759 self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB
760
760
761 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
761 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
762 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
762 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
763 RadarConstant = 10e-26 * Numerator / Denominator #
763 RadarConstant = 10e-26 * Numerator / Denominator #
764 ExpConstant = 10**(40/10) #Constante Experimental
764 ExpConstant = 10**(40/10) #Constante Experimental
765
765
766 SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
766 SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
767 for i in range(self.Num_Chn):
767 for i in range(self.Num_Chn):
768 SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i]
768 SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i]
769 SignalPower[numpy.where(SignalPower < 0)] = 1e-20
769 SignalPower[numpy.where(SignalPower < 0)] = 1e-20
770
770
771 SPCmean = numpy.mean(SignalPower, 0)
771 SPCmean = numpy.mean(SignalPower, 0)
772 Pr = SPCmean[:,:]/dataOut.normFactor
772 Pr = SPCmean[:,:]/dataOut.normFactor
773
773
774 # Declaring auxiliary variables
774 # Declaring auxiliary variables
775 Range = dataOut.heightList*1000. #Range in m
775 Range = dataOut.heightList*1000. #Range in m
776 # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei]
776 # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei]
777 rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin))
777 rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin))
778 zMtrx = rMtrx+Altitude
778 zMtrx = rMtrx+Altitude
779 # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei]
779 # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei]
780 VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1)))
780 VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1)))
781
781
782 # height dependence to air density Foote and Du Toit (1969)
782 # height dependence to air density Foote and Du Toit (1969)
783 delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2
783 delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2
784 VMtrx = VelMtrx / delv_z #Normalized velocity
784 VMtrx = VelMtrx / delv_z #Normalized velocity
785 VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN
785 VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN
786 # Diameter is related to the fall speed of falling drops
786 # Diameter is related to the fall speed of falling drops
787 D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm]
787 D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm]
788 # Only valid for D>= 0.16 mm
788 # Only valid for D>= 0.16 mm
789 D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN
789 D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN
790
790
791 #Calculate Radar Reflectivity ETAn
791 #Calculate Radar Reflectivity ETAn
792 ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA)
792 ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA)
793 ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z
793 ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z
794 # Radar Cross Section
794 # Radar Cross Section
795 sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4
795 sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4
796 # Drop Size Distribution
796 # Drop Size Distribution
797 DSD = ETAn / sigmaD
797 DSD = ETAn / sigmaD
798 # Equivalente Reflectivy
798 # Equivalente Reflectivy
799 Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0)
799 Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0)
800 Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3]
800 Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3]
801 # RainFall Rate
801 # RainFall Rate
802 RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr
802 RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr
803
803
804 # Censoring the data
804 # Censoring the data
805 # Removing data with SNRth < 0dB se debe considerar el SNR por canal
805 # Removing data with SNRth < 0dB se debe considerar el SNR por canal
806 SNRth = 10**(SNRdBlimit/10) #-30dB
806 SNRth = 10**(SNRdBlimit/10) #-30dB
807 novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better
807 novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better
808 W = numpy.nanmean(dataOut.data_dop,0)
808 W = numpy.nanmean(dataOut.data_dop,0)
809 W[novalid] = numpy.NaN
809 W[novalid] = numpy.NaN
810 Ze_org[novalid] = numpy.NaN
810 Ze_org[novalid] = numpy.NaN
811 RR[novalid] = numpy.NaN
811 RR[novalid] = numpy.NaN
812
812
813 dataOut.data_output = RR[8]
813 dataOut.data_output = RR[8]
814 dataOut.data_param = numpy.ones([3,self.Num_Hei])
814 dataOut.data_param = numpy.ones([3,self.Num_Hei])
815 dataOut.channelList = [0,1,2]
815 dataOut.channelList = [0,1,2]
816
816
817 dataOut.data_param[0]=10*numpy.log10(Ze_org)
817 dataOut.data_param[0]=10*numpy.log10(Ze_org)
818 dataOut.data_param[1]=-W
818 dataOut.data_param[1]=-W
819 dataOut.data_param[2]=RR
819 dataOut.data_param[2]=RR
820
820
821 # print ('Leaving PrecepitationProc ... ')
821 # print ('Leaving PrecepitationProc ... ')
822 return dataOut
822 return dataOut
823
823
824 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
824 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
825
825
826 NPW = dataOut.NPW
826 NPW = dataOut.NPW
827 COFA = dataOut.COFA
827 COFA = dataOut.COFA
828
828
829 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
829 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
830 RadarConst = dataOut.RadarConst
830 RadarConst = dataOut.RadarConst
831 #frequency = 34.85*10**9
831 #frequency = 34.85*10**9
832
832
833 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
833 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
834 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
834 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
835
835
836 ETA = numpy.sum(SNR,1)
836 ETA = numpy.sum(SNR,1)
837
837
838 ETA = numpy.where(ETA != 0. , ETA, numpy.NaN)
838 ETA = numpy.where(ETA != 0. , ETA, numpy.NaN)
839
839
840 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
840 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
841
841
842 for r in range(self.Num_Hei):
842 for r in range(self.Num_Hei):
843
843
844 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
844 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
845 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
845 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
846
846
847 return Ze
847 return Ze
848
848
849 # def GetRadarConstant(self):
849 # def GetRadarConstant(self):
850 #
850 #
851 # """
851 # """
852 # Constants:
852 # Constants:
853 #
853 #
854 # Pt: Transmission Power dB 5kW 5000
854 # Pt: Transmission Power dB 5kW 5000
855 # Gt: Transmission Gain dB 24.7 dB 295.1209
855 # Gt: Transmission Gain dB 24.7 dB 295.1209
856 # Gr: Reception Gain dB 18.5 dB 70.7945
856 # Gr: Reception Gain dB 18.5 dB 70.7945
857 # Lambda: Wavelenght m 0.6741 m 0.6741
857 # Lambda: Wavelenght m 0.6741 m 0.6741
858 # aL: Attenuation loses dB 4dB 2.5118
858 # aL: Attenuation loses dB 4dB 2.5118
859 # tauW: Width of transmission pulse s 4us 4e-6
859 # tauW: Width of transmission pulse s 4us 4e-6
860 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
860 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
861 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
861 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
862 #
862 #
863 # """
863 # """
864 #
864 #
865 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
865 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
866 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
866 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
867 # RadarConstant = Numerator / Denominator
867 # RadarConstant = Numerator / Denominator
868 #
868 #
869 # return RadarConstant
869 # return RadarConstant
870
870
871
871
872
872
873 class FullSpectralAnalysis(Operation):
873 class FullSpectralAnalysis(Operation):
874
874
875 """
875 """
876 Function that implements Full Spectral Analysis technique.
876 Function that implements Full Spectral Analysis technique.
877
877
878 Input:
878 Input:
879 self.dataOut.data_pre : SelfSpectra and CrossSpectra data
879 self.dataOut.data_pre : SelfSpectra and CrossSpectra data
880 self.dataOut.groupList : Pairlist of channels
880 self.dataOut.groupList : Pairlist of channels
881 self.dataOut.ChanDist : Physical distance between receivers
881 self.dataOut.ChanDist : Physical distance between receivers
882
882
883
883
884 Output:
884 Output:
885
885
886 self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind
886 self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind
887
887
888
888
889 Parameters affected: Winds, height range, SNR
889 Parameters affected: Winds, height range, SNR
890
890
891 """
891 """
892 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30,
892 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30,
893 minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None):
893 minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None):
894
894
895 spc = dataOut.data_pre[0].copy()
895 spc = dataOut.data_pre[0].copy()
896 cspc = dataOut.data_pre[1]
896 cspc = dataOut.data_pre[1]
897 nHeights = spc.shape[2]
897 nHeights = spc.shape[2]
898
898
899 # first_height = 0.75 #km (ref: data header 20170822)
899 # first_height = 0.75 #km (ref: data header 20170822)
900 # resolution_height = 0.075 #km
900 # resolution_height = 0.075 #km
901 '''
901 '''
902 finding height range. check this when radar parameters are changed!
902 finding height range. check this when radar parameters are changed!
903 '''
903 '''
904 if maxheight is not None:
904 if maxheight is not None:
905 # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical
905 # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical
906 range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better
906 range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better
907 else:
907 else:
908 range_max = nHeights
908 range_max = nHeights
909 if minheight is not None:
909 if minheight is not None:
910 # range_min = int((minheight - first_height) / resolution_height) # theoretical
910 # range_min = int((minheight - first_height) / resolution_height) # theoretical
911 range_min = int(13.26 * minheight - 5) # empirical, works better
911 range_min = int(13.26 * minheight - 5) # empirical, works better
912 if range_min < 0:
912 if range_min < 0:
913 range_min = 0
913 range_min = 0
914 else:
914 else:
915 range_min = 0
915 range_min = 0
916
916
917 pairsList = dataOut.groupList
917 pairsList = dataOut.groupList
918 if dataOut.ChanDist is not None :
918 if dataOut.ChanDist is not None :
919 ChanDist = dataOut.ChanDist
919 ChanDist = dataOut.ChanDist
920 else:
920 else:
921 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
921 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
922
922
923 # 4 variables: zonal, meridional, vertical, and average SNR
923 # 4 variables: zonal, meridional, vertical, and average SNR
924 data_param = numpy.zeros([4,nHeights]) * numpy.NaN
924 data_param = numpy.zeros([4,nHeights]) * numpy.NaN
925 velocityX = numpy.zeros([nHeights]) * numpy.NaN
925 velocityX = numpy.zeros([nHeights]) * numpy.NaN
926 velocityY = numpy.zeros([nHeights]) * numpy.NaN
926 velocityY = numpy.zeros([nHeights]) * numpy.NaN
927 velocityZ = numpy.zeros([nHeights]) * numpy.NaN
927 velocityZ = numpy.zeros([nHeights]) * numpy.NaN
928
928
929 dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0))
929 dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0))
930
930
931 '''***********************************************WIND ESTIMATION**************************************'''
931 '''***********************************************WIND ESTIMATION**************************************'''
932 for Height in range(nHeights):
932 for Height in range(nHeights):
933
933
934 if Height >= range_min and Height < range_max:
934 if Height >= range_min and Height < range_max:
935 # error_code will be useful in future analysis
935 # error_code will be useful in future analysis
936 [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList,
936 [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList,
937 ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency)
937 ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency)
938
938
939 if abs(Vzon) < 100. and abs(Vmer) < 100.:
939 if abs(Vzon) < 100. and abs(Vmer) < 100.:
940 velocityX[Height] = Vzon
940 velocityX[Height] = Vzon
941 velocityY[Height] = -Vmer
941 velocityY[Height] = -Vmer
942 velocityZ[Height] = Vver
942 velocityZ[Height] = Vver
943
943
944 # Censoring data with SNR threshold
944 # Censoring data with SNR threshold
945 dbSNR [dbSNR < SNRdBlimit] = numpy.NaN
945 dbSNR [dbSNR < SNRdBlimit] = numpy.NaN
946
946
947 data_param[0] = velocityX
947 data_param[0] = velocityX
948 data_param[1] = velocityY
948 data_param[1] = velocityY
949 data_param[2] = velocityZ
949 data_param[2] = velocityZ
950 data_param[3] = dbSNR
950 data_param[3] = dbSNR
951 dataOut.data_param = data_param
951 dataOut.data_param = data_param
952 return dataOut
952 return dataOut
953
953
954 def moving_average(self,x, N=2):
954 def moving_average(self,x, N=2):
955 """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """
955 """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """
956 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
956 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
957
957
958 def gaus(self,xSamples,Amp,Mu,Sigma):
958 def gaus(self,xSamples,Amp,Mu,Sigma):
959 return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2)
959 return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2)
960
960
961 def Moments(self, ySamples, xSamples):
961 def Moments(self, ySamples, xSamples):
962 Power = numpy.nanmean(ySamples) # Power, 0th Moment
962 Power = numpy.nanmean(ySamples) # Power, 0th Moment
963 yNorm = ySamples / numpy.nansum(ySamples)
963 yNorm = ySamples / numpy.nansum(ySamples)
964 RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment
964 RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment
965 Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment
965 Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment
966 StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral
966 StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral
967 return numpy.array([Power,RadVel,StdDev])
967 return numpy.array([Power,RadVel,StdDev])
968
968
969 def StopWindEstimation(self, error_code):
969 def StopWindEstimation(self, error_code):
970 Vzon = numpy.NaN
970 Vzon = numpy.NaN
971 Vmer = numpy.NaN
971 Vmer = numpy.NaN
972 Vver = numpy.NaN
972 Vver = numpy.NaN
973 return Vzon, Vmer, Vver, error_code
973 return Vzon, Vmer, Vver, error_code
974
974
975 def AntiAliasing(self, interval, maxstep):
975 def AntiAliasing(self, interval, maxstep):
976 """
976 """
977 function to prevent errors from aliased values when computing phaseslope
977 function to prevent errors from aliased values when computing phaseslope
978 """
978 """
979 antialiased = numpy.zeros(len(interval))
979 antialiased = numpy.zeros(len(interval))
980 copyinterval = interval.copy()
980 copyinterval = interval.copy()
981
981
982 antialiased[0] = copyinterval[0]
982 antialiased[0] = copyinterval[0]
983
983
984 for i in range(1,len(antialiased)):
984 for i in range(1,len(antialiased)):
985 step = interval[i] - interval[i-1]
985 step = interval[i] - interval[i-1]
986 if step > maxstep:
986 if step > maxstep:
987 copyinterval -= 2*numpy.pi
987 copyinterval -= 2*numpy.pi
988 antialiased[i] = copyinterval[i]
988 antialiased[i] = copyinterval[i]
989 elif step < maxstep*(-1):
989 elif step < maxstep*(-1):
990 copyinterval += 2*numpy.pi
990 copyinterval += 2*numpy.pi
991 antialiased[i] = copyinterval[i]
991 antialiased[i] = copyinterval[i]
992 else:
992 else:
993 antialiased[i] = copyinterval[i].copy()
993 antialiased[i] = copyinterval[i].copy()
994
994
995 return antialiased
995 return antialiased
996
996
997 def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq):
997 def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq):
998 """
998 """
999 Function that Calculates Zonal, Meridional and Vertical wind velocities.
999 Function that Calculates Zonal, Meridional and Vertical wind velocities.
1000 Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019.
1000 Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019.
1001
1001
1002 Input:
1002 Input:
1003 spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively.
1003 spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively.
1004 pairsList : Pairlist of channels
1004 pairsList : Pairlist of channels
1005 ChanDist : array of xi_ij and eta_ij
1005 ChanDist : array of xi_ij and eta_ij
1006 Height : height at which data is processed
1006 Height : height at which data is processed
1007 noise : noise in [channels] format for specific height
1007 noise : noise in [channels] format for specific height
1008 Abbsisarange : range of the frequencies or velocities
1008 Abbsisarange : range of the frequencies or velocities
1009 dbSNR, SNRlimit : signal to noise ratio in db, lower limit
1009 dbSNR, SNRlimit : signal to noise ratio in db, lower limit
1010
1010
1011 Output:
1011 Output:
1012 Vzon, Vmer, Vver : wind velocities
1012 Vzon, Vmer, Vver : wind velocities
1013 error_code : int that states where code is terminated
1013 error_code : int that states where code is terminated
1014
1014
1015 0 : no error detected
1015 0 : no error detected
1016 1 : Gaussian of mean spc exceeds widthlimit
1016 1 : Gaussian of mean spc exceeds widthlimit
1017 2 : no Gaussian of mean spc found
1017 2 : no Gaussian of mean spc found
1018 3 : SNR to low or velocity to high -> prec. e.g.
1018 3 : SNR to low or velocity to high -> prec. e.g.
1019 4 : at least one Gaussian of cspc exceeds widthlimit
1019 4 : at least one Gaussian of cspc exceeds widthlimit
1020 5 : zero out of three cspc Gaussian fits converged
1020 5 : zero out of three cspc Gaussian fits converged
1021 6 : phase slope fit could not be found
1021 6 : phase slope fit could not be found
1022 7 : arrays used to fit phase have different length
1022 7 : arrays used to fit phase have different length
1023 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc)
1023 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc)
1024
1024
1025 """
1025 """
1026
1026
1027 error_code = 0
1027 error_code = 0
1028
1028
1029 nChan = spc.shape[0]
1029 nChan = spc.shape[0]
1030 nProf = spc.shape[1]
1030 nProf = spc.shape[1]
1031 nPair = cspc.shape[0]
1031 nPair = cspc.shape[0]
1032
1032
1033 SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height
1033 SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height
1034 CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values
1034 CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values
1035 phase = numpy.zeros([nPair, nProf]) # phase between channels
1035 phase = numpy.zeros([nPair, nProf]) # phase between channels
1036 PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise
1036 PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise
1037 PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise
1037 PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise
1038 xFrec = AbbsisaRange[0][:-1] # frequency range
1038 xFrec = AbbsisaRange[0][:-1] # frequency range
1039 xVel = AbbsisaRange[2][:-1] # velocity range
1039 xVel = AbbsisaRange[2][:-1] # velocity range
1040 xSamples = xFrec # the frequency range is taken
1040 xSamples = xFrec # the frequency range is taken
1041 delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x
1041 delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x
1042
1042
1043 # only consider velocities with in NegativeLimit and PositiveLimit
1043 # only consider velocities with in NegativeLimit and PositiveLimit
1044 if (NegativeLimit is None):
1044 if (NegativeLimit is None):
1045 NegativeLimit = numpy.min(xVel)
1045 NegativeLimit = numpy.min(xVel)
1046 if (PositiveLimit is None):
1046 if (PositiveLimit is None):
1047 PositiveLimit = numpy.max(xVel)
1047 PositiveLimit = numpy.max(xVel)
1048 xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit))
1048 xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit))
1049 xSamples_zoom = xSamples[xvalid]
1049 xSamples_zoom = xSamples[xvalid]
1050
1050
1051 '''Getting Eij and Nij'''
1051 '''Getting Eij and Nij'''
1052 Xi01, Xi02, Xi12 = ChanDist[:,0]
1052 Xi01, Xi02, Xi12 = ChanDist[:,0]
1053 Eta01, Eta02, Eta12 = ChanDist[:,1]
1053 Eta01, Eta02, Eta12 = ChanDist[:,1]
1054
1054
1055 # spwd limit - updated by D. ScipiΓ³n 30.03.2021
1055 # spwd limit - updated by D. ScipiΓ³n 30.03.2021
1056 widthlimit = 10
1056 widthlimit = 10
1057 '''************************* SPC is normalized ********************************'''
1057 '''************************* SPC is normalized ********************************'''
1058 spc_norm = spc.copy()
1058 spc_norm = spc.copy()
1059 # For each channel
1059 # For each channel
1060 for i in range(nChan):
1060 for i in range(nChan):
1061 spc_sub = spc_norm[i,:] - noise[i] # only the signal power
1061 spc_sub = spc_norm[i,:] - noise[i] # only the signal power
1062 SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x)
1062 SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x)
1063
1063
1064 '''********************** FITTING MEAN SPC GAUSSIAN **********************'''
1064 '''********************** FITTING MEAN SPC GAUSSIAN **********************'''
1065
1065
1066 """ the gaussian of the mean: first subtract noise, then normalize. this is legal because
1066 """ the gaussian of the mean: first subtract noise, then normalize. this is legal because
1067 you only fit the curve and don't need the absolute value of height for calculation,
1067 you only fit the curve and don't need the absolute value of height for calculation,
1068 only for estimation of width. for normalization of cross spectra, you need initial,
1068 only for estimation of width. for normalization of cross spectra, you need initial,
1069 unnormalized self-spectra With noise.
1069 unnormalized self-spectra With noise.
1070
1070
1071 Technically, you don't even need to normalize the self-spectra, as you only need the
1071 Technically, you don't even need to normalize the self-spectra, as you only need the
1072 width of the peak. However, it was left this way. Note that the normalization has a flaw:
1072 width of the peak. However, it was left this way. Note that the normalization has a flaw:
1073 due to subtraction of the noise, some values are below zero. Raw "spc" values should be
1073 due to subtraction of the noise, some values are below zero. Raw "spc" values should be
1074 >= 0, as it is the modulus squared of the signals (complex * it's conjugate)
1074 >= 0, as it is the modulus squared of the signals (complex * it's conjugate)
1075 """
1075 """
1076 # initial conditions
1076 # initial conditions
1077 popt = [1e-10,0,1e-10]
1077 popt = [1e-10,0,1e-10]
1078 # Spectra average
1078 # Spectra average
1079 SPCMean = numpy.average(SPC_Samples,0)
1079 SPCMean = numpy.average(SPC_Samples,0)
1080 # Moments in frequency
1080 # Moments in frequency
1081 SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom)
1081 SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom)
1082
1082
1083 # Gauss Fit SPC in frequency domain
1083 # Gauss Fit SPC in frequency domain
1084 if dbSNR > SNRlimit: # only if SNR > SNRth
1084 if dbSNR > SNRlimit: # only if SNR > SNRth
1085 try:
1085 try:
1086 popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments)
1086 popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments)
1087 if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION
1087 if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION
1088 return self.StopWindEstimation(error_code = 1)
1088 return self.StopWindEstimation(error_code = 1)
1089 FitGauss = self.gaus(xSamples_zoom,*popt)
1089 FitGauss = self.gaus(xSamples_zoom,*popt)
1090 except :#RuntimeError:
1090 except :#RuntimeError:
1091 return self.StopWindEstimation(error_code = 2)
1091 return self.StopWindEstimation(error_code = 2)
1092 else:
1092 else:
1093 return self.StopWindEstimation(error_code = 3)
1093 return self.StopWindEstimation(error_code = 3)
1094
1094
1095 '''***************************** CSPC Normalization *************************
1095 '''***************************** CSPC Normalization *************************
1096 The Spc spectra are used to normalize the crossspectra. Peaks from precipitation
1096 The Spc spectra are used to normalize the crossspectra. Peaks from precipitation
1097 influence the norm which is not desired. First, a range is identified where the
1097 influence the norm which is not desired. First, a range is identified where the
1098 wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area
1098 wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area
1099 around it gets cut off and values replaced by mean determined by the boundary
1099 around it gets cut off and values replaced by mean determined by the boundary
1100 data -> sum_noise (spc is not normalized here, thats why the noise is important)
1100 data -> sum_noise (spc is not normalized here, thats why the noise is important)
1101
1101
1102 The sums are then added and multiplied by range/datapoints, because you need
1102 The sums are then added and multiplied by range/datapoints, because you need
1103 an integral and not a sum for normalization.
1103 an integral and not a sum for normalization.
1104
1104
1105 A norm is found according to Briggs 92.
1105 A norm is found according to Briggs 92.
1106 '''
1106 '''
1107 # for each pair
1107 # for each pair
1108 for i in range(nPair):
1108 for i in range(nPair):
1109 cspc_norm = cspc[i,:].copy()
1109 cspc_norm = cspc[i,:].copy()
1110 chan_index0 = pairsList[i][0]
1110 chan_index0 = pairsList[i][0]
1111 chan_index1 = pairsList[i][1]
1111 chan_index1 = pairsList[i][1]
1112 CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x)
1112 CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x)
1113 phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real)
1113 phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real)
1114
1114
1115 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom),
1115 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom),
1116 self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom),
1116 self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom),
1117 self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)])
1117 self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)])
1118
1118
1119 popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10]
1119 popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10]
1120 FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples))
1120 FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples))
1121
1121
1122 '''*******************************FIT GAUSS CSPC************************************'''
1122 '''*******************************FIT GAUSS CSPC************************************'''
1123 try:
1123 try:
1124 popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0])
1124 popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0])
1125 if popt01[2] > widthlimit: # CONDITION
1125 if popt01[2] > widthlimit: # CONDITION
1126 return self.StopWindEstimation(error_code = 4)
1126 return self.StopWindEstimation(error_code = 4)
1127 popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1])
1127 popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1])
1128 if popt02[2] > widthlimit: # CONDITION
1128 if popt02[2] > widthlimit: # CONDITION
1129 return self.StopWindEstimation(error_code = 4)
1129 return self.StopWindEstimation(error_code = 4)
1130 popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2])
1130 popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2])
1131 if popt12[2] > widthlimit: # CONDITION
1131 if popt12[2] > widthlimit: # CONDITION
1132 return self.StopWindEstimation(error_code = 4)
1132 return self.StopWindEstimation(error_code = 4)
1133
1133
1134 FitGauss01 = self.gaus(xSamples_zoom, *popt01)
1134 FitGauss01 = self.gaus(xSamples_zoom, *popt01)
1135 FitGauss02 = self.gaus(xSamples_zoom, *popt02)
1135 FitGauss02 = self.gaus(xSamples_zoom, *popt02)
1136 FitGauss12 = self.gaus(xSamples_zoom, *popt12)
1136 FitGauss12 = self.gaus(xSamples_zoom, *popt12)
1137 except:
1137 except:
1138 return self.StopWindEstimation(error_code = 5)
1138 return self.StopWindEstimation(error_code = 5)
1139
1139
1140
1140
1141 '''************* Getting Fij ***************'''
1141 '''************* Getting Fij ***************'''
1142 # x-axis point of the gaussian where the center is located from GaussFit of spectra
1142 # x-axis point of the gaussian where the center is located from GaussFit of spectra
1143 GaussCenter = popt[1]
1143 GaussCenter = popt[1]
1144 ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()]
1144 ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()]
1145 PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0]
1145 PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0]
1146
1146
1147 # Point where e^-1 is located in the gaussian
1147 # Point where e^-1 is located in the gaussian
1148 PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1)
1148 PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1)
1149 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss"
1149 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss"
1150 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1150 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1151 Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter])
1151 Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter])
1152
1152
1153 '''********** Taking frequency ranges from mean SPCs **********'''
1153 '''********** Taking frequency ranges from mean SPCs **********'''
1154 GauWidth = popt[2] * 3/2 # Bandwidth of Gau01
1154 GauWidth = popt[2] * 3/2 # Bandwidth of Gau01
1155 Range = numpy.empty(2)
1155 Range = numpy.empty(2)
1156 Range[0] = GaussCenter - GauWidth
1156 Range[0] = GaussCenter - GauWidth
1157 Range[1] = GaussCenter + GauWidth
1157 Range[1] = GaussCenter + GauWidth
1158 # Point in x-axis where the bandwidth is located (min:max)
1158 # Point in x-axis where the bandwidth is located (min:max)
1159 ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()]
1159 ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()]
1160 ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()]
1160 ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()]
1161 PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0]
1161 PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0]
1162 PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0]
1162 PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0]
1163 Range = numpy.array([ PointRangeMin, PointRangeMax ])
1163 Range = numpy.array([ PointRangeMin, PointRangeMax ])
1164 FrecRange = xSamples_zoom[ Range[0] : Range[1] ]
1164 FrecRange = xSamples_zoom[ Range[0] : Range[1] ]
1165
1165
1166 '''************************** Getting Phase Slope ***************************'''
1166 '''************************** Getting Phase Slope ***************************'''
1167 for i in range(nPair):
1167 for i in range(nPair):
1168 if len(FrecRange) > 5:
1168 if len(FrecRange) > 5:
1169 PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy()
1169 PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy()
1170 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1170 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1171 if len(FrecRange) == len(PhaseRange):
1171 if len(FrecRange) == len(PhaseRange):
1172 try:
1172 try:
1173 slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5))
1173 slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5))
1174 PhaseSlope[i] = slope
1174 PhaseSlope[i] = slope
1175 PhaseInter[i] = intercept
1175 PhaseInter[i] = intercept
1176 except:
1176 except:
1177 return self.StopWindEstimation(error_code = 6)
1177 return self.StopWindEstimation(error_code = 6)
1178 else:
1178 else:
1179 return self.StopWindEstimation(error_code = 7)
1179 return self.StopWindEstimation(error_code = 7)
1180 else:
1180 else:
1181 return self.StopWindEstimation(error_code = 8)
1181 return self.StopWindEstimation(error_code = 8)
1182
1182
1183 '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***'''
1183 '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***'''
1184
1184
1185 '''Getting constant C'''
1185 '''Getting constant C'''
1186 cC=(Fij*numpy.pi)**2
1186 cC=(Fij*numpy.pi)**2
1187
1187
1188 '''****** Getting constants F and G ******'''
1188 '''****** Getting constants F and G ******'''
1189 MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1189 MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1190 # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]])
1190 # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]])
1191 # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi)
1191 # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi)
1192 MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi)
1192 MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi)
1193 MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi)
1193 MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi)
1194 # MijResults = numpy.array([MijResult0, MijResult1, MijResult2])
1194 # MijResults = numpy.array([MijResult0, MijResult1, MijResult2])
1195 MijResults = numpy.array([MijResult1, MijResult2])
1195 MijResults = numpy.array([MijResult1, MijResult2])
1196 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1196 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1197
1197
1198 '''****** Getting constants A, B and H ******'''
1198 '''****** Getting constants A, B and H ******'''
1199 W01 = numpy.nanmax( FitGauss01 )
1199 W01 = numpy.nanmax( FitGauss01 )
1200 W02 = numpy.nanmax( FitGauss02 )
1200 W02 = numpy.nanmax( FitGauss02 )
1201 W12 = numpy.nanmax( FitGauss12 )
1201 W12 = numpy.nanmax( FitGauss12 )
1202
1202
1203 WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC))
1203 WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC))
1204 WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC))
1204 WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC))
1205 WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC))
1205 WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC))
1206 WijResults = numpy.array([WijResult01, WijResult02, WijResult12])
1206 WijResults = numpy.array([WijResult01, WijResult02, WijResult12])
1207
1207
1208 WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1208 WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1209 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1209 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1210
1210
1211 VxVy = numpy.array([[cA,cH],[cH,cB]])
1211 VxVy = numpy.array([[cA,cH],[cH,cB]])
1212 VxVyResults = numpy.array([-cF,-cG])
1212 VxVyResults = numpy.array([-cF,-cG])
1213 (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults)
1213 (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults)
1214 Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq)
1214 Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq)
1215 error_code = 0
1215 error_code = 0
1216
1216
1217 return Vzon, Vmer, Vver, error_code
1217 return Vzon, Vmer, Vver, error_code
1218
1218
1219 class SpectralMoments(Operation):
1219 class SpectralMoments(Operation):
1220
1220
1221 '''
1221 '''
1222 Function SpectralMoments()
1222 Function SpectralMoments()
1223
1223
1224 Calculates moments (power, mean, standard deviation) and SNR of the signal
1224 Calculates moments (power, mean, standard deviation) and SNR of the signal
1225
1225
1226 Type of dataIn: Spectra
1226 Type of dataIn: Spectra
1227
1227
1228 Configuration Parameters:
1228 Configuration Parameters:
1229
1229
1230 dirCosx : Cosine director in X axis
1230 dirCosx : Cosine director in X axis
1231 dirCosy : Cosine director in Y axis
1231 dirCosy : Cosine director in Y axis
1232
1232
1233 elevation :
1233 elevation :
1234 azimuth :
1234 azimuth :
1235
1235
1236 Input:
1236 Input:
1237 channelList : simple channel list to select e.g. [2,3,7]
1237 channelList : simple channel list to select e.g. [2,3,7]
1238 self.dataOut.data_pre : Spectral data
1238 self.dataOut.data_pre : Spectral data
1239 self.dataOut.abscissaList : List of frequencies
1239 self.dataOut.abscissaList : List of frequencies
1240 self.dataOut.noise : Noise level per channel
1240 self.dataOut.noise : Noise level per channel
1241
1241
1242 Affected:
1242 Affected:
1243 self.dataOut.moments : Parameters per channel
1243 self.dataOut.moments : Parameters per channel
1244 self.dataOut.data_snr : SNR per channel
1244 self.dataOut.data_snr : SNR per channel
1245
1245
1246 '''
1246 '''
1247
1247
1248 def run(self, dataOut):
1248 def run(self, dataOut):
1249
1249
1250 data = dataOut.data_pre[0]
1250 data = dataOut.data_pre[0]
1251 absc = dataOut.abscissaList[:-1]
1251 absc = dataOut.abscissaList[:-1]
1252 noise = dataOut.noise
1252 noise = dataOut.noise
1253 nChannel = data.shape[0]
1253 nChannel = data.shape[0]
1254 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
1254 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
1255
1255
1256 for ind in range(nChannel):
1256 for ind in range(nChannel):
1257 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1257 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1258
1258
1259 dataOut.moments = data_param[:,1:,:]
1259 dataOut.moments = data_param[:,1:,:]
1260 dataOut.data_snr = data_param[:,0]
1260 dataOut.data_snr = data_param[:,0]
1261 dataOut.data_pow = data_param[:,1]
1261 dataOut.data_pow = data_param[:,1]
1262 dataOut.data_dop = data_param[:,2]
1262 dataOut.data_dop = data_param[:,2]
1263 dataOut.data_width = data_param[:,3]
1263 dataOut.data_width = data_param[:,3]
1264 return dataOut
1264 return dataOut
1265
1265
1266 def __calculateMoments(self, oldspec, oldfreq, n0,
1266 def __calculateMoments(self, oldspec, oldfreq, n0,
1267 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1267 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1268
1268
1269 if (nicoh is None): nicoh = 1
1269 if (nicoh is None): nicoh = 1
1270 if (graph is None): graph = 0
1270 if (graph is None): graph = 0
1271 if (smooth is None): smooth = 0
1271 if (smooth is None): smooth = 0
1272 elif (self.smooth < 3): smooth = 0
1272 elif (self.smooth < 3): smooth = 0
1273
1273
1274 if (type1 is None): type1 = 0
1274 if (type1 is None): type1 = 0
1275 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
1275 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
1276 if (snrth is None): snrth = -3
1276 if (snrth is None): snrth = -3
1277 if (dc is None): dc = 0
1277 if (dc is None): dc = 0
1278 if (aliasing is None): aliasing = 0
1278 if (aliasing is None): aliasing = 0
1279 if (oldfd is None): oldfd = 0
1279 if (oldfd is None): oldfd = 0
1280 if (wwauto is None): wwauto = 0
1280 if (wwauto is None): wwauto = 0
1281
1281
1282 if (n0 < 1.e-20): n0 = 1.e-20
1282 if (n0 < 1.e-20): n0 = 1.e-20
1283
1283
1284 freq = oldfreq
1284 freq = oldfreq
1285 vec_power = numpy.zeros(oldspec.shape[1])
1285 vec_power = numpy.zeros(oldspec.shape[1])
1286 vec_fd = numpy.zeros(oldspec.shape[1])
1286 vec_fd = numpy.zeros(oldspec.shape[1])
1287 vec_w = numpy.zeros(oldspec.shape[1])
1287 vec_w = numpy.zeros(oldspec.shape[1])
1288 vec_snr = numpy.zeros(oldspec.shape[1])
1288 vec_snr = numpy.zeros(oldspec.shape[1])
1289
1289
1290 # oldspec = numpy.ma.masked_invalid(oldspec)
1290 # oldspec = numpy.ma.masked_invalid(oldspec)
1291 for ind in range(oldspec.shape[1]):
1291 for ind in range(oldspec.shape[1]):
1292
1292
1293 spec = oldspec[:,ind]
1293 spec = oldspec[:,ind]
1294 aux = spec*fwindow
1294 aux = spec*fwindow
1295 max_spec = aux.max()
1295 max_spec = aux.max()
1296 m = aux.tolist().index(max_spec)
1296 m = aux.tolist().index(max_spec)
1297
1297
1298 # Smooth
1298 # Smooth
1299 if (smooth == 0):
1299 if (smooth == 0):
1300 spec2 = spec
1300 spec2 = spec
1301 else:
1301 else:
1302 spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1302 spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1303
1303
1304 # Moments Estimation
1304 # Moments Estimation
1305 bb = spec2[numpy.arange(m,spec2.size)]
1305 bb = spec2[numpy.arange(m,spec2.size)]
1306 bb = (bb<n0).nonzero()
1306 bb = (bb<n0).nonzero()
1307 bb = bb[0]
1307 bb = bb[0]
1308
1308
1309 ss = spec2[numpy.arange(0,m + 1)]
1309 ss = spec2[numpy.arange(0,m + 1)]
1310 ss = (ss<n0).nonzero()
1310 ss = (ss<n0).nonzero()
1311 ss = ss[0]
1311 ss = ss[0]
1312
1312
1313 if (bb.size == 0):
1313 if (bb.size == 0):
1314 bb0 = spec.size - 1 - m
1314 bb0 = spec.size - 1 - m
1315 else:
1315 else:
1316 bb0 = bb[0] - 1
1316 bb0 = bb[0] - 1
1317 if (bb0 < 0):
1317 if (bb0 < 0):
1318 bb0 = 0
1318 bb0 = 0
1319
1319
1320 if (ss.size == 0):
1320 if (ss.size == 0):
1321 ss1 = 1
1321 ss1 = 1
1322 else:
1322 else:
1323 ss1 = max(ss) + 1
1323 ss1 = max(ss) + 1
1324
1324
1325 if (ss1 > m):
1325 if (ss1 > m):
1326 ss1 = m
1326 ss1 = m
1327
1327
1328 #valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1
1328 #valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1
1329 valid = numpy.arange(1,oldspec.shape[0])# valid perfil completo igual pulsepair
1329 valid = numpy.arange(1,oldspec.shape[0])# valid perfil completo igual pulsepair
1330 signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1330 signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1331 total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1331 total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1332 power = ((spec2[valid] - n0) * fwindow[valid]).sum()
1332 power = ((spec2[valid] - n0) * fwindow[valid]).sum()
1333 fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power
1333 fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power
1334 w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power)
1334 w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power)
1335 snr = (spec2.mean()-n0)/n0
1335 snr = (spec2.mean()-n0)/n0
1336 if (snr < 1.e-20) :
1336 if (snr < 1.e-20) :
1337 snr = 1.e-20
1337 snr = 1.e-20
1338
1338
1339 # vec_power[ind] = power #D. ScipiΓ³n replaced with the line below
1339 # vec_power[ind] = power #D. ScipiΓ³n replaced with the line below
1340 vec_power[ind] = total_power
1340 vec_power[ind] = total_power
1341 vec_fd[ind] = fd
1341 vec_fd[ind] = fd
1342 vec_w[ind] = w
1342 vec_w[ind] = w
1343 vec_snr[ind] = snr
1343 vec_snr[ind] = snr
1344
1344
1345 return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1345 return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1346
1346
1347 #------------------ Get SA Parameters --------------------------
1347 #------------------ Get SA Parameters --------------------------
1348
1348
1349 def GetSAParameters(self):
1349 def GetSAParameters(self):
1350 #SA en frecuencia
1350 #SA en frecuencia
1351 pairslist = self.dataOut.groupList
1351 pairslist = self.dataOut.groupList
1352 num_pairs = len(pairslist)
1352 num_pairs = len(pairslist)
1353
1353
1354 vel = self.dataOut.abscissaList
1354 vel = self.dataOut.abscissaList
1355 spectra = self.dataOut.data_pre
1355 spectra = self.dataOut.data_pre
1356 cspectra = self.dataIn.data_cspc
1356 cspectra = self.dataIn.data_cspc
1357 delta_v = vel[1] - vel[0]
1357 delta_v = vel[1] - vel[0]
1358
1358
1359 #Calculating the power spectrum
1359 #Calculating the power spectrum
1360 spc_pow = numpy.sum(spectra, 3)*delta_v
1360 spc_pow = numpy.sum(spectra, 3)*delta_v
1361 #Normalizing Spectra
1361 #Normalizing Spectra
1362 norm_spectra = spectra/spc_pow
1362 norm_spectra = spectra/spc_pow
1363 #Calculating the norm_spectra at peak
1363 #Calculating the norm_spectra at peak
1364 max_spectra = numpy.max(norm_spectra, 3)
1364 max_spectra = numpy.max(norm_spectra, 3)
1365
1365
1366 #Normalizing Cross Spectra
1366 #Normalizing Cross Spectra
1367 norm_cspectra = numpy.zeros(cspectra.shape)
1367 norm_cspectra = numpy.zeros(cspectra.shape)
1368
1368
1369 for i in range(num_chan):
1369 for i in range(num_chan):
1370 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1370 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1371
1371
1372 max_cspectra = numpy.max(norm_cspectra,2)
1372 max_cspectra = numpy.max(norm_cspectra,2)
1373 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1373 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1374
1374
1375 for i in range(num_pairs):
1375 for i in range(num_pairs):
1376 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1376 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1377 #------------------- Get Lags ----------------------------------
1377 #------------------- Get Lags ----------------------------------
1378
1378
1379 class SALags(Operation):
1379 class SALags(Operation):
1380 '''
1380 '''
1381 Function GetMoments()
1381 Function GetMoments()
1382
1382
1383 Input:
1383 Input:
1384 self.dataOut.data_pre
1384 self.dataOut.data_pre
1385 self.dataOut.abscissaList
1385 self.dataOut.abscissaList
1386 self.dataOut.noise
1386 self.dataOut.noise
1387 self.dataOut.normFactor
1387 self.dataOut.normFactor
1388 self.dataOut.data_snr
1388 self.dataOut.data_snr
1389 self.dataOut.groupList
1389 self.dataOut.groupList
1390 self.dataOut.nChannels
1390 self.dataOut.nChannels
1391
1391
1392 Affected:
1392 Affected:
1393 self.dataOut.data_param
1393 self.dataOut.data_param
1394
1394
1395 '''
1395 '''
1396 def run(self, dataOut):
1396 def run(self, dataOut):
1397 data_acf = dataOut.data_pre[0]
1397 data_acf = dataOut.data_pre[0]
1398 data_ccf = dataOut.data_pre[1]
1398 data_ccf = dataOut.data_pre[1]
1399 normFactor_acf = dataOut.normFactor[0]
1399 normFactor_acf = dataOut.normFactor[0]
1400 normFactor_ccf = dataOut.normFactor[1]
1400 normFactor_ccf = dataOut.normFactor[1]
1401 pairs_acf = dataOut.groupList[0]
1401 pairs_acf = dataOut.groupList[0]
1402 pairs_ccf = dataOut.groupList[1]
1402 pairs_ccf = dataOut.groupList[1]
1403
1403
1404 nHeights = dataOut.nHeights
1404 nHeights = dataOut.nHeights
1405 absc = dataOut.abscissaList
1405 absc = dataOut.abscissaList
1406 noise = dataOut.noise
1406 noise = dataOut.noise
1407 SNR = dataOut.data_snr
1407 SNR = dataOut.data_snr
1408 nChannels = dataOut.nChannels
1408 nChannels = dataOut.nChannels
1409 # pairsList = dataOut.groupList
1409 # pairsList = dataOut.groupList
1410 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
1410 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
1411
1411
1412 for l in range(len(pairs_acf)):
1412 for l in range(len(pairs_acf)):
1413 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1413 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1414
1414
1415 for l in range(len(pairs_ccf)):
1415 for l in range(len(pairs_ccf)):
1416 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1416 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1417
1417
1418 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1418 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1419 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1419 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1420 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1420 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1421 return
1421 return
1422
1422
1423 # def __getPairsAutoCorr(self, pairsList, nChannels):
1423 # def __getPairsAutoCorr(self, pairsList, nChannels):
1424 #
1424 #
1425 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1425 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1426 #
1426 #
1427 # for l in range(len(pairsList)):
1427 # for l in range(len(pairsList)):
1428 # firstChannel = pairsList[l][0]
1428 # firstChannel = pairsList[l][0]
1429 # secondChannel = pairsList[l][1]
1429 # secondChannel = pairsList[l][1]
1430 #
1430 #
1431 # #Obteniendo pares de Autocorrelacion
1431 # #Obteniendo pares de Autocorrelacion
1432 # if firstChannel == secondChannel:
1432 # if firstChannel == secondChannel:
1433 # pairsAutoCorr[firstChannel] = int(l)
1433 # pairsAutoCorr[firstChannel] = int(l)
1434 #
1434 #
1435 # pairsAutoCorr = pairsAutoCorr.astype(int)
1435 # pairsAutoCorr = pairsAutoCorr.astype(int)
1436 #
1436 #
1437 # pairsCrossCorr = range(len(pairsList))
1437 # pairsCrossCorr = range(len(pairsList))
1438 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1438 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1439 #
1439 #
1440 # return pairsAutoCorr, pairsCrossCorr
1440 # return pairsAutoCorr, pairsCrossCorr
1441
1441
1442 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1442 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1443
1443
1444 lag0 = data_acf.shape[1]/2
1444 lag0 = data_acf.shape[1]/2
1445 #Funcion de Autocorrelacion
1445 #Funcion de Autocorrelacion
1446 mean_acf = stats.nanmean(data_acf, axis = 0)
1446 mean_acf = stats.nanmean(data_acf, axis = 0)
1447
1447
1448 #Obtencion Indice de TauCross
1448 #Obtencion Indice de TauCross
1449 ind_ccf = data_ccf.argmax(axis = 1)
1449 ind_ccf = data_ccf.argmax(axis = 1)
1450 #Obtencion Indice de TauAuto
1450 #Obtencion Indice de TauAuto
1451 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1451 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1452 ccf_lag0 = data_ccf[:,lag0,:]
1452 ccf_lag0 = data_ccf[:,lag0,:]
1453
1453
1454 for i in range(ccf_lag0.shape[0]):
1454 for i in range(ccf_lag0.shape[0]):
1455 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1455 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1456
1456
1457 #Obtencion de TauCross y TauAuto
1457 #Obtencion de TauCross y TauAuto
1458 tau_ccf = lagRange[ind_ccf]
1458 tau_ccf = lagRange[ind_ccf]
1459 tau_acf = lagRange[ind_acf]
1459 tau_acf = lagRange[ind_acf]
1460
1460
1461 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1461 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1462
1462
1463 tau_ccf[Nan1,Nan2] = numpy.nan
1463 tau_ccf[Nan1,Nan2] = numpy.nan
1464 tau_acf[Nan1,Nan2] = numpy.nan
1464 tau_acf[Nan1,Nan2] = numpy.nan
1465 tau = numpy.vstack((tau_ccf,tau_acf))
1465 tau = numpy.vstack((tau_ccf,tau_acf))
1466
1466
1467 return tau
1467 return tau
1468
1468
1469 def __calculateLag1Phase(self, data, lagTRange):
1469 def __calculateLag1Phase(self, data, lagTRange):
1470 data1 = stats.nanmean(data, axis = 0)
1470 data1 = stats.nanmean(data, axis = 0)
1471 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1471 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1472
1472
1473 phase = numpy.angle(data1[lag1,:])
1473 phase = numpy.angle(data1[lag1,:])
1474
1474
1475 return phase
1475 return phase
1476
1476
1477 class SpectralFitting(Operation):
1477 class SpectralFitting(Operation):
1478 '''
1478 '''
1479 Function GetMoments()
1479 Function GetMoments()
1480
1480
1481 Input:
1481 Input:
1482 Output:
1482 Output:
1483 Variables modified:
1483 Variables modified:
1484 '''
1484 '''
1485
1485
1486 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1486 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1487
1487
1488
1488
1489 if path != None:
1489 if path != None:
1490 sys.path.append(path)
1490 sys.path.append(path)
1491 self.dataOut.library = importlib.import_module(file)
1491 self.dataOut.library = importlib.import_module(file)
1492
1492
1493 #To be inserted as a parameter
1493 #To be inserted as a parameter
1494 groupArray = numpy.array(groupList)
1494 groupArray = numpy.array(groupList)
1495 # groupArray = numpy.array([[0,1],[2,3]])
1495 # groupArray = numpy.array([[0,1],[2,3]])
1496 self.dataOut.groupList = groupArray
1496 self.dataOut.groupList = groupArray
1497
1497
1498 nGroups = groupArray.shape[0]
1498 nGroups = groupArray.shape[0]
1499 nChannels = self.dataIn.nChannels
1499 nChannels = self.dataIn.nChannels
1500 nHeights=self.dataIn.heightList.size
1500 nHeights=self.dataIn.heightList.size
1501
1501
1502 #Parameters Array
1502 #Parameters Array
1503 self.dataOut.data_param = None
1503 self.dataOut.data_param = None
1504
1504
1505 #Set constants
1505 #Set constants
1506 constants = self.dataOut.library.setConstants(self.dataIn)
1506 constants = self.dataOut.library.setConstants(self.dataIn)
1507 self.dataOut.constants = constants
1507 self.dataOut.constants = constants
1508 M = self.dataIn.normFactor
1508 M = self.dataIn.normFactor
1509 N = self.dataIn.nFFTPoints
1509 N = self.dataIn.nFFTPoints
1510 ippSeconds = self.dataIn.ippSeconds
1510 ippSeconds = self.dataIn.ippSeconds
1511 K = self.dataIn.nIncohInt
1511 K = self.dataIn.nIncohInt
1512 pairsArray = numpy.array(self.dataIn.pairsList)
1512 pairsArray = numpy.array(self.dataIn.pairsList)
1513
1513
1514 #List of possible combinations
1514 #List of possible combinations
1515 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1515 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1516 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1516 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1517
1517
1518 if getSNR:
1518 if getSNR:
1519 listChannels = groupArray.reshape((groupArray.size))
1519 listChannels = groupArray.reshape((groupArray.size))
1520 listChannels.sort()
1520 listChannels.sort()
1521 noise = self.dataIn.getNoise()
1521 noise = self.dataIn.getNoise()
1522 self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1522 self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1523
1523
1524 for i in range(nGroups):
1524 for i in range(nGroups):
1525 coord = groupArray[i,:]
1525 coord = groupArray[i,:]
1526
1526
1527 #Input data array
1527 #Input data array
1528 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1528 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1529 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1529 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1530
1530
1531 #Cross Spectra data array for Covariance Matrixes
1531 #Cross Spectra data array for Covariance Matrixes
1532 ind = 0
1532 ind = 0
1533 for pairs in listComb:
1533 for pairs in listComb:
1534 pairsSel = numpy.array([coord[x],coord[y]])
1534 pairsSel = numpy.array([coord[x],coord[y]])
1535 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
1535 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
1536 ind += 1
1536 ind += 1
1537 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1537 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1538 dataCross = dataCross**2/K
1538 dataCross = dataCross**2/K
1539
1539
1540 for h in range(nHeights):
1540 for h in range(nHeights):
1541
1541
1542 #Input
1542 #Input
1543 d = data[:,h]
1543 d = data[:,h]
1544
1544
1545 #Covariance Matrix
1545 #Covariance Matrix
1546 D = numpy.diag(d**2/K)
1546 D = numpy.diag(d**2/K)
1547 ind = 0
1547 ind = 0
1548 for pairs in listComb:
1548 for pairs in listComb:
1549 #Coordinates in Covariance Matrix
1549 #Coordinates in Covariance Matrix
1550 x = pairs[0]
1550 x = pairs[0]
1551 y = pairs[1]
1551 y = pairs[1]
1552 #Channel Index
1552 #Channel Index
1553 S12 = dataCross[ind,:,h]
1553 S12 = dataCross[ind,:,h]
1554 D12 = numpy.diag(S12)
1554 D12 = numpy.diag(S12)
1555 #Completing Covariance Matrix with Cross Spectras
1555 #Completing Covariance Matrix with Cross Spectras
1556 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
1556 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
1557 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
1557 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
1558 ind += 1
1558 ind += 1
1559 Dinv=numpy.linalg.inv(D)
1559 Dinv=numpy.linalg.inv(D)
1560 L=numpy.linalg.cholesky(Dinv)
1560 L=numpy.linalg.cholesky(Dinv)
1561 LT=L.T
1561 LT=L.T
1562
1562
1563 dp = numpy.dot(LT,d)
1563 dp = numpy.dot(LT,d)
1564
1564
1565 #Initial values
1565 #Initial values
1566 data_spc = self.dataIn.data_spc[coord,:,h]
1566 data_spc = self.dataIn.data_spc[coord,:,h]
1567
1567
1568 if (h>0)and(error1[3]<5):
1568 if (h>0)and(error1[3]<5):
1569 p0 = self.dataOut.data_param[i,:,h-1]
1569 p0 = self.dataOut.data_param[i,:,h-1]
1570 else:
1570 else:
1571 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1571 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1572
1572
1573 try:
1573 try:
1574 #Least Squares
1574 #Least Squares
1575 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
1575 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
1576 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
1576 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
1577 #Chi square error
1577 #Chi square error
1578 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
1578 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
1579 #Error with Jacobian
1579 #Error with Jacobian
1580 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
1580 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
1581 except:
1581 except:
1582 minp = p0*numpy.nan
1582 minp = p0*numpy.nan
1583 error0 = numpy.nan
1583 error0 = numpy.nan
1584 error1 = p0*numpy.nan
1584 error1 = p0*numpy.nan
1585
1585
1586 #Save
1586 #Save
1587 if self.dataOut.data_param is None:
1587 if self.dataOut.data_param is None:
1588 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1588 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1589 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1589 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1590
1590
1591 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1591 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1592 self.dataOut.data_param[i,:,h] = minp
1592 self.dataOut.data_param[i,:,h] = minp
1593 return
1593 return
1594
1594
1595 def __residFunction(self, p, dp, LT, constants):
1595 def __residFunction(self, p, dp, LT, constants):
1596
1596
1597 fm = self.dataOut.library.modelFunction(p, constants)
1597 fm = self.dataOut.library.modelFunction(p, constants)
1598 fmp=numpy.dot(LT,fm)
1598 fmp=numpy.dot(LT,fm)
1599
1599
1600 return dp-fmp
1600 return dp-fmp
1601
1601
1602 def __getSNR(self, z, noise):
1602 def __getSNR(self, z, noise):
1603
1603
1604 avg = numpy.average(z, axis=1)
1604 avg = numpy.average(z, axis=1)
1605 SNR = (avg.T-noise)/noise
1605 SNR = (avg.T-noise)/noise
1606 SNR = SNR.T
1606 SNR = SNR.T
1607 return SNR
1607 return SNR
1608
1608
1609 def __chisq(p,chindex,hindex):
1609 def __chisq(p,chindex,hindex):
1610 #similar to Resid but calculates CHI**2
1610 #similar to Resid but calculates CHI**2
1611 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
1611 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
1612 dp=numpy.dot(LT,d)
1612 dp=numpy.dot(LT,d)
1613 fmp=numpy.dot(LT,fm)
1613 fmp=numpy.dot(LT,fm)
1614 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1614 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1615 return chisq
1615 return chisq
1616
1616
1617 class WindProfiler(Operation):
1617 class WindProfiler(Operation):
1618
1618
1619 __isConfig = False
1619 __isConfig = False
1620
1620
1621 __initime = None
1621 __initime = None
1622 __lastdatatime = None
1622 __lastdatatime = None
1623 __integrationtime = None
1623 __integrationtime = None
1624
1624
1625 __buffer = None
1625 __buffer = None
1626
1626
1627 __dataReady = False
1627 __dataReady = False
1628
1628
1629 __firstdata = None
1629 __firstdata = None
1630
1630
1631 n = None
1631 n = None
1632
1632
1633 def __init__(self):
1633 def __init__(self):
1634 Operation.__init__(self)
1634 Operation.__init__(self)
1635
1635
1636 def __calculateCosDir(self, elev, azim):
1636 def __calculateCosDir(self, elev, azim):
1637 zen = (90 - elev)*numpy.pi/180
1637 zen = (90 - elev)*numpy.pi/180
1638 azim = azim*numpy.pi/180
1638 azim = azim*numpy.pi/180
1639 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1639 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1640 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1640 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1641
1641
1642 signX = numpy.sign(numpy.cos(azim))
1642 signX = numpy.sign(numpy.cos(azim))
1643 signY = numpy.sign(numpy.sin(azim))
1643 signY = numpy.sign(numpy.sin(azim))
1644
1644
1645 cosDirX = numpy.copysign(cosDirX, signX)
1645 cosDirX = numpy.copysign(cosDirX, signX)
1646 cosDirY = numpy.copysign(cosDirY, signY)
1646 cosDirY = numpy.copysign(cosDirY, signY)
1647 return cosDirX, cosDirY
1647 return cosDirX, cosDirY
1648
1648
1649 def __calculateAngles(self, theta_x, theta_y, azimuth):
1649 def __calculateAngles(self, theta_x, theta_y, azimuth):
1650
1650
1651 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1651 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1652 zenith_arr = numpy.arccos(dir_cosw)
1652 zenith_arr = numpy.arccos(dir_cosw)
1653 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1653 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1654
1654
1655 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1655 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1656 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1656 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1657
1657
1658 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1658 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1659
1659
1660 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1660 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1661
1661
1662 #
1662 #
1663 if horOnly:
1663 if horOnly:
1664 A = numpy.c_[dir_cosu,dir_cosv]
1664 A = numpy.c_[dir_cosu,dir_cosv]
1665 else:
1665 else:
1666 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
1666 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
1667 A = numpy.asmatrix(A)
1667 A = numpy.asmatrix(A)
1668 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
1668 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
1669
1669
1670 return A1
1670 return A1
1671
1671
1672 def __correctValues(self, heiRang, phi, velRadial, SNR):
1672 def __correctValues(self, heiRang, phi, velRadial, SNR):
1673 listPhi = phi.tolist()
1673 listPhi = phi.tolist()
1674 maxid = listPhi.index(max(listPhi))
1674 maxid = listPhi.index(max(listPhi))
1675 minid = listPhi.index(min(listPhi))
1675 minid = listPhi.index(min(listPhi))
1676
1676
1677 rango = list(range(len(phi)))
1677 rango = list(range(len(phi)))
1678 # rango = numpy.delete(rango,maxid)
1678 # rango = numpy.delete(rango,maxid)
1679
1679
1680 heiRang1 = heiRang*math.cos(phi[maxid])
1680 heiRang1 = heiRang*math.cos(phi[maxid])
1681 heiRangAux = heiRang*math.cos(phi[minid])
1681 heiRangAux = heiRang*math.cos(phi[minid])
1682 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1682 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1683 heiRang1 = numpy.delete(heiRang1,indOut)
1683 heiRang1 = numpy.delete(heiRang1,indOut)
1684
1684
1685 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1685 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1686 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1686 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1687
1687
1688 for i in rango:
1688 for i in rango:
1689 x = heiRang*math.cos(phi[i])
1689 x = heiRang*math.cos(phi[i])
1690 y1 = velRadial[i,:]
1690 y1 = velRadial[i,:]
1691 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1691 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1692
1692
1693 x1 = heiRang1
1693 x1 = heiRang1
1694 y11 = f1(x1)
1694 y11 = f1(x1)
1695
1695
1696 y2 = SNR[i,:]
1696 y2 = SNR[i,:]
1697 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1697 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1698 y21 = f2(x1)
1698 y21 = f2(x1)
1699
1699
1700 velRadial1[i,:] = y11
1700 velRadial1[i,:] = y11
1701 SNR1[i,:] = y21
1701 SNR1[i,:] = y21
1702
1702
1703 return heiRang1, velRadial1, SNR1
1703 return heiRang1, velRadial1, SNR1
1704
1704
1705 def __calculateVelUVW(self, A, velRadial):
1705 def __calculateVelUVW(self, A, velRadial):
1706
1706
1707 #Operacion Matricial
1707 #Operacion Matricial
1708 # velUVW = numpy.zeros((velRadial.shape[1],3))
1708 # velUVW = numpy.zeros((velRadial.shape[1],3))
1709 # for ind in range(velRadial.shape[1]):
1709 # for ind in range(velRadial.shape[1]):
1710 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
1710 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
1711 # velUVW = velUVW.transpose()
1711 # velUVW = velUVW.transpose()
1712 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1712 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1713 velUVW[:,:] = numpy.dot(A,velRadial)
1713 velUVW[:,:] = numpy.dot(A,velRadial)
1714
1714
1715
1715
1716 return velUVW
1716 return velUVW
1717
1717
1718 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1718 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1719
1719
1720 def techniqueDBS(self, kwargs):
1720 def techniqueDBS(self, kwargs):
1721 """
1721 """
1722 Function that implements Doppler Beam Swinging (DBS) technique.
1722 Function that implements Doppler Beam Swinging (DBS) technique.
1723
1723
1724 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1724 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1725 Direction correction (if necessary), Ranges and SNR
1725 Direction correction (if necessary), Ranges and SNR
1726
1726
1727 Output: Winds estimation (Zonal, Meridional and Vertical)
1727 Output: Winds estimation (Zonal, Meridional and Vertical)
1728
1728
1729 Parameters affected: Winds, height range, SNR
1729 Parameters affected: Winds, height range, SNR
1730 """
1730 """
1731 velRadial0 = kwargs['velRadial']
1731 velRadial0 = kwargs['velRadial']
1732 heiRang = kwargs['heightList']
1732 heiRang = kwargs['heightList']
1733 SNR0 = kwargs['SNR']
1733 SNR0 = kwargs['SNR']
1734
1734
1735 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1735 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1736 theta_x = numpy.array(kwargs['dirCosx'])
1736 theta_x = numpy.array(kwargs['dirCosx'])
1737 theta_y = numpy.array(kwargs['dirCosy'])
1737 theta_y = numpy.array(kwargs['dirCosy'])
1738 else:
1738 else:
1739 elev = numpy.array(kwargs['elevation'])
1739 elev = numpy.array(kwargs['elevation'])
1740 azim = numpy.array(kwargs['azimuth'])
1740 azim = numpy.array(kwargs['azimuth'])
1741 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1741 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1742 azimuth = kwargs['correctAzimuth']
1742 azimuth = kwargs['correctAzimuth']
1743 if 'horizontalOnly' in kwargs:
1743 if 'horizontalOnly' in kwargs:
1744 horizontalOnly = kwargs['horizontalOnly']
1744 horizontalOnly = kwargs['horizontalOnly']
1745 else: horizontalOnly = False
1745 else: horizontalOnly = False
1746 if 'correctFactor' in kwargs:
1746 if 'correctFactor' in kwargs:
1747 correctFactor = kwargs['correctFactor']
1747 correctFactor = kwargs['correctFactor']
1748 else: correctFactor = 1
1748 else: correctFactor = 1
1749 if 'channelList' in kwargs:
1749 if 'channelList' in kwargs:
1750 channelList = kwargs['channelList']
1750 channelList = kwargs['channelList']
1751 if len(channelList) == 2:
1751 if len(channelList) == 2:
1752 horizontalOnly = True
1752 horizontalOnly = True
1753 arrayChannel = numpy.array(channelList)
1753 arrayChannel = numpy.array(channelList)
1754 param = param[arrayChannel,:,:]
1754 param = param[arrayChannel,:,:]
1755 theta_x = theta_x[arrayChannel]
1755 theta_x = theta_x[arrayChannel]
1756 theta_y = theta_y[arrayChannel]
1756 theta_y = theta_y[arrayChannel]
1757
1757
1758 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1758 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1759 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1759 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1760 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1760 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1761
1761
1762 #Calculo de Componentes de la velocidad con DBS
1762 #Calculo de Componentes de la velocidad con DBS
1763 winds = self.__calculateVelUVW(A,velRadial1)
1763 winds = self.__calculateVelUVW(A,velRadial1)
1764
1764
1765 return winds, heiRang1, SNR1
1765 return winds, heiRang1, SNR1
1766
1766
1767 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1767 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1768
1768
1769 nPairs = len(pairs_ccf)
1769 nPairs = len(pairs_ccf)
1770 posx = numpy.asarray(posx)
1770 posx = numpy.asarray(posx)
1771 posy = numpy.asarray(posy)
1771 posy = numpy.asarray(posy)
1772
1772
1773 #Rotacion Inversa para alinear con el azimuth
1773 #Rotacion Inversa para alinear con el azimuth
1774 if azimuth!= None:
1774 if azimuth!= None:
1775 azimuth = azimuth*math.pi/180
1775 azimuth = azimuth*math.pi/180
1776 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
1776 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
1777 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
1777 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
1778 else:
1778 else:
1779 posx1 = posx
1779 posx1 = posx
1780 posy1 = posy
1780 posy1 = posy
1781
1781
1782 #Calculo de Distancias
1782 #Calculo de Distancias
1783 distx = numpy.zeros(nPairs)
1783 distx = numpy.zeros(nPairs)
1784 disty = numpy.zeros(nPairs)
1784 disty = numpy.zeros(nPairs)
1785 dist = numpy.zeros(nPairs)
1785 dist = numpy.zeros(nPairs)
1786 ang = numpy.zeros(nPairs)
1786 ang = numpy.zeros(nPairs)
1787
1787
1788 for i in range(nPairs):
1788 for i in range(nPairs):
1789 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1789 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1790 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1790 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1791 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1791 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1792 ang[i] = numpy.arctan2(disty[i],distx[i])
1792 ang[i] = numpy.arctan2(disty[i],distx[i])
1793
1793
1794 return distx, disty, dist, ang
1794 return distx, disty, dist, ang
1795 #Calculo de Matrices
1795 #Calculo de Matrices
1796 # nPairs = len(pairs)
1796 # nPairs = len(pairs)
1797 # ang1 = numpy.zeros((nPairs, 2, 1))
1797 # ang1 = numpy.zeros((nPairs, 2, 1))
1798 # dist1 = numpy.zeros((nPairs, 2, 1))
1798 # dist1 = numpy.zeros((nPairs, 2, 1))
1799 #
1799 #
1800 # for j in range(nPairs):
1800 # for j in range(nPairs):
1801 # dist1[j,0,0] = dist[pairs[j][0]]
1801 # dist1[j,0,0] = dist[pairs[j][0]]
1802 # dist1[j,1,0] = dist[pairs[j][1]]
1802 # dist1[j,1,0] = dist[pairs[j][1]]
1803 # ang1[j,0,0] = ang[pairs[j][0]]
1803 # ang1[j,0,0] = ang[pairs[j][0]]
1804 # ang1[j,1,0] = ang[pairs[j][1]]
1804 # ang1[j,1,0] = ang[pairs[j][1]]
1805 #
1805 #
1806 # return distx,disty, dist1,ang1
1806 # return distx,disty, dist1,ang1
1807
1807
1808
1808
1809 def __calculateVelVer(self, phase, lagTRange, _lambda):
1809 def __calculateVelVer(self, phase, lagTRange, _lambda):
1810
1810
1811 Ts = lagTRange[1] - lagTRange[0]
1811 Ts = lagTRange[1] - lagTRange[0]
1812 velW = -_lambda*phase/(4*math.pi*Ts)
1812 velW = -_lambda*phase/(4*math.pi*Ts)
1813
1813
1814 return velW
1814 return velW
1815
1815
1816 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1816 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1817 nPairs = tau1.shape[0]
1817 nPairs = tau1.shape[0]
1818 nHeights = tau1.shape[1]
1818 nHeights = tau1.shape[1]
1819 vel = numpy.zeros((nPairs,3,nHeights))
1819 vel = numpy.zeros((nPairs,3,nHeights))
1820 dist1 = numpy.reshape(dist, (dist.size,1))
1820 dist1 = numpy.reshape(dist, (dist.size,1))
1821
1821
1822 angCos = numpy.cos(ang)
1822 angCos = numpy.cos(ang)
1823 angSin = numpy.sin(ang)
1823 angSin = numpy.sin(ang)
1824
1824
1825 vel0 = dist1*tau1/(2*tau2**2)
1825 vel0 = dist1*tau1/(2*tau2**2)
1826 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1826 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1827 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1827 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1828
1828
1829 ind = numpy.where(numpy.isinf(vel))
1829 ind = numpy.where(numpy.isinf(vel))
1830 vel[ind] = numpy.nan
1830 vel[ind] = numpy.nan
1831
1831
1832 return vel
1832 return vel
1833
1833
1834 # def __getPairsAutoCorr(self, pairsList, nChannels):
1834 # def __getPairsAutoCorr(self, pairsList, nChannels):
1835 #
1835 #
1836 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1836 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1837 #
1837 #
1838 # for l in range(len(pairsList)):
1838 # for l in range(len(pairsList)):
1839 # firstChannel = pairsList[l][0]
1839 # firstChannel = pairsList[l][0]
1840 # secondChannel = pairsList[l][1]
1840 # secondChannel = pairsList[l][1]
1841 #
1841 #
1842 # #Obteniendo pares de Autocorrelacion
1842 # #Obteniendo pares de Autocorrelacion
1843 # if firstChannel == secondChannel:
1843 # if firstChannel == secondChannel:
1844 # pairsAutoCorr[firstChannel] = int(l)
1844 # pairsAutoCorr[firstChannel] = int(l)
1845 #
1845 #
1846 # pairsAutoCorr = pairsAutoCorr.astype(int)
1846 # pairsAutoCorr = pairsAutoCorr.astype(int)
1847 #
1847 #
1848 # pairsCrossCorr = range(len(pairsList))
1848 # pairsCrossCorr = range(len(pairsList))
1849 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1849 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1850 #
1850 #
1851 # return pairsAutoCorr, pairsCrossCorr
1851 # return pairsAutoCorr, pairsCrossCorr
1852
1852
1853 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1853 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1854 def techniqueSA(self, kwargs):
1854 def techniqueSA(self, kwargs):
1855
1855
1856 """
1856 """
1857 Function that implements Spaced Antenna (SA) technique.
1857 Function that implements Spaced Antenna (SA) technique.
1858
1858
1859 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1859 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1860 Direction correction (if necessary), Ranges and SNR
1860 Direction correction (if necessary), Ranges and SNR
1861
1861
1862 Output: Winds estimation (Zonal, Meridional and Vertical)
1862 Output: Winds estimation (Zonal, Meridional and Vertical)
1863
1863
1864 Parameters affected: Winds
1864 Parameters affected: Winds
1865 """
1865 """
1866 position_x = kwargs['positionX']
1866 position_x = kwargs['positionX']
1867 position_y = kwargs['positionY']
1867 position_y = kwargs['positionY']
1868 azimuth = kwargs['azimuth']
1868 azimuth = kwargs['azimuth']
1869
1869
1870 if 'correctFactor' in kwargs:
1870 if 'correctFactor' in kwargs:
1871 correctFactor = kwargs['correctFactor']
1871 correctFactor = kwargs['correctFactor']
1872 else:
1872 else:
1873 correctFactor = 1
1873 correctFactor = 1
1874
1874
1875 groupList = kwargs['groupList']
1875 groupList = kwargs['groupList']
1876 pairs_ccf = groupList[1]
1876 pairs_ccf = groupList[1]
1877 tau = kwargs['tau']
1877 tau = kwargs['tau']
1878 _lambda = kwargs['_lambda']
1878 _lambda = kwargs['_lambda']
1879
1879
1880 #Cross Correlation pairs obtained
1880 #Cross Correlation pairs obtained
1881 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1881 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1882 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1882 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1883 # pairsSelArray = numpy.array(pairsSelected)
1883 # pairsSelArray = numpy.array(pairsSelected)
1884 # pairs = []
1884 # pairs = []
1885 #
1885 #
1886 # #Wind estimation pairs obtained
1886 # #Wind estimation pairs obtained
1887 # for i in range(pairsSelArray.shape[0]/2):
1887 # for i in range(pairsSelArray.shape[0]/2):
1888 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1888 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1889 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1889 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1890 # pairs.append((ind1,ind2))
1890 # pairs.append((ind1,ind2))
1891
1891
1892 indtau = tau.shape[0]/2
1892 indtau = tau.shape[0]/2
1893 tau1 = tau[:indtau,:]
1893 tau1 = tau[:indtau,:]
1894 tau2 = tau[indtau:-1,:]
1894 tau2 = tau[indtau:-1,:]
1895 # tau1 = tau1[pairs,:]
1895 # tau1 = tau1[pairs,:]
1896 # tau2 = tau2[pairs,:]
1896 # tau2 = tau2[pairs,:]
1897 phase1 = tau[-1,:]
1897 phase1 = tau[-1,:]
1898
1898
1899 #---------------------------------------------------------------------
1899 #---------------------------------------------------------------------
1900 #Metodo Directo
1900 #Metodo Directo
1901 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1901 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1902 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1902 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1903 winds = stats.nanmean(winds, axis=0)
1903 winds = stats.nanmean(winds, axis=0)
1904 #---------------------------------------------------------------------
1904 #---------------------------------------------------------------------
1905 #Metodo General
1905 #Metodo General
1906 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
1906 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
1907 # #Calculo Coeficientes de Funcion de Correlacion
1907 # #Calculo Coeficientes de Funcion de Correlacion
1908 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
1908 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
1909 # #Calculo de Velocidades
1909 # #Calculo de Velocidades
1910 # winds = self.calculateVelUV(F,G,A,B,H)
1910 # winds = self.calculateVelUV(F,G,A,B,H)
1911
1911
1912 #---------------------------------------------------------------------
1912 #---------------------------------------------------------------------
1913 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
1913 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
1914 winds = correctFactor*winds
1914 winds = correctFactor*winds
1915 return winds
1915 return winds
1916
1916
1917 def __checkTime(self, currentTime, paramInterval, outputInterval):
1917 def __checkTime(self, currentTime, paramInterval, outputInterval):
1918
1918
1919 dataTime = currentTime + paramInterval
1919 dataTime = currentTime + paramInterval
1920 deltaTime = dataTime - self.__initime
1920 deltaTime = dataTime - self.__initime
1921
1921
1922 if deltaTime >= outputInterval or deltaTime < 0:
1922 if deltaTime >= outputInterval or deltaTime < 0:
1923 self.__dataReady = True
1923 self.__dataReady = True
1924 return
1924 return
1925
1925
1926 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
1926 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
1927 '''
1927 '''
1928 Function that implements winds estimation technique with detected meteors.
1928 Function that implements winds estimation technique with detected meteors.
1929
1929
1930 Input: Detected meteors, Minimum meteor quantity to wind estimation
1930 Input: Detected meteors, Minimum meteor quantity to wind estimation
1931
1931
1932 Output: Winds estimation (Zonal and Meridional)
1932 Output: Winds estimation (Zonal and Meridional)
1933
1933
1934 Parameters affected: Winds
1934 Parameters affected: Winds
1935 '''
1935 '''
1936 #Settings
1936 #Settings
1937 nInt = (heightMax - heightMin)/2
1937 nInt = (heightMax - heightMin)/2
1938 nInt = int(nInt)
1938 nInt = int(nInt)
1939 winds = numpy.zeros((2,nInt))*numpy.nan
1939 winds = numpy.zeros((2,nInt))*numpy.nan
1940
1940
1941 #Filter errors
1941 #Filter errors
1942 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
1942 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
1943 finalMeteor = arrayMeteor[error,:]
1943 finalMeteor = arrayMeteor[error,:]
1944
1944
1945 #Meteor Histogram
1945 #Meteor Histogram
1946 finalHeights = finalMeteor[:,2]
1946 finalHeights = finalMeteor[:,2]
1947 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
1947 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
1948 nMeteorsPerI = hist[0]
1948 nMeteorsPerI = hist[0]
1949 heightPerI = hist[1]
1949 heightPerI = hist[1]
1950
1950
1951 #Sort of meteors
1951 #Sort of meteors
1952 indSort = finalHeights.argsort()
1952 indSort = finalHeights.argsort()
1953 finalMeteor2 = finalMeteor[indSort,:]
1953 finalMeteor2 = finalMeteor[indSort,:]
1954
1954
1955 # Calculating winds
1955 # Calculating winds
1956 ind1 = 0
1956 ind1 = 0
1957 ind2 = 0
1957 ind2 = 0
1958
1958
1959 for i in range(nInt):
1959 for i in range(nInt):
1960 nMet = nMeteorsPerI[i]
1960 nMet = nMeteorsPerI[i]
1961 ind1 = ind2
1961 ind1 = ind2
1962 ind2 = ind1 + nMet
1962 ind2 = ind1 + nMet
1963
1963
1964 meteorAux = finalMeteor2[ind1:ind2,:]
1964 meteorAux = finalMeteor2[ind1:ind2,:]
1965
1965
1966 if meteorAux.shape[0] >= meteorThresh:
1966 if meteorAux.shape[0] >= meteorThresh:
1967 vel = meteorAux[:, 6]
1967 vel = meteorAux[:, 6]
1968 zen = meteorAux[:, 4]*numpy.pi/180
1968 zen = meteorAux[:, 4]*numpy.pi/180
1969 azim = meteorAux[:, 3]*numpy.pi/180
1969 azim = meteorAux[:, 3]*numpy.pi/180
1970
1970
1971 n = numpy.cos(zen)
1971 n = numpy.cos(zen)
1972 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
1972 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
1973 # l = m*numpy.tan(azim)
1973 # l = m*numpy.tan(azim)
1974 l = numpy.sin(zen)*numpy.sin(azim)
1974 l = numpy.sin(zen)*numpy.sin(azim)
1975 m = numpy.sin(zen)*numpy.cos(azim)
1975 m = numpy.sin(zen)*numpy.cos(azim)
1976
1976
1977 A = numpy.vstack((l, m)).transpose()
1977 A = numpy.vstack((l, m)).transpose()
1978 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
1978 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
1979 windsAux = numpy.dot(A1, vel)
1979 windsAux = numpy.dot(A1, vel)
1980
1980
1981 winds[0,i] = windsAux[0]
1981 winds[0,i] = windsAux[0]
1982 winds[1,i] = windsAux[1]
1982 winds[1,i] = windsAux[1]
1983
1983
1984 return winds, heightPerI[:-1]
1984 return winds, heightPerI[:-1]
1985
1985
1986 def techniqueNSM_SA(self, **kwargs):
1986 def techniqueNSM_SA(self, **kwargs):
1987 metArray = kwargs['metArray']
1987 metArray = kwargs['metArray']
1988 heightList = kwargs['heightList']
1988 heightList = kwargs['heightList']
1989 timeList = kwargs['timeList']
1989 timeList = kwargs['timeList']
1990
1990
1991 rx_location = kwargs['rx_location']
1991 rx_location = kwargs['rx_location']
1992 groupList = kwargs['groupList']
1992 groupList = kwargs['groupList']
1993 azimuth = kwargs['azimuth']
1993 azimuth = kwargs['azimuth']
1994 dfactor = kwargs['dfactor']
1994 dfactor = kwargs['dfactor']
1995 k = kwargs['k']
1995 k = kwargs['k']
1996
1996
1997 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
1997 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
1998 d = dist*dfactor
1998 d = dist*dfactor
1999 #Phase calculation
1999 #Phase calculation
2000 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
2000 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
2001
2001
2002 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
2002 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
2003
2003
2004 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2004 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2005 azimuth1 = azimuth1*numpy.pi/180
2005 azimuth1 = azimuth1*numpy.pi/180
2006
2006
2007 for i in range(heightList.size):
2007 for i in range(heightList.size):
2008 h = heightList[i]
2008 h = heightList[i]
2009 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
2009 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
2010 metHeight = metArray1[indH,:]
2010 metHeight = metArray1[indH,:]
2011 if metHeight.shape[0] >= 2:
2011 if metHeight.shape[0] >= 2:
2012 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
2012 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
2013 iazim = metHeight[:,1].astype(int)
2013 iazim = metHeight[:,1].astype(int)
2014 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
2014 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
2015 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
2015 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
2016 A = numpy.asmatrix(A)
2016 A = numpy.asmatrix(A)
2017 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
2017 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
2018 velHor = numpy.dot(A1,velAux)
2018 velHor = numpy.dot(A1,velAux)
2019
2019
2020 velEst[i,:] = numpy.squeeze(velHor)
2020 velEst[i,:] = numpy.squeeze(velHor)
2021 return velEst
2021 return velEst
2022
2022
2023 def __getPhaseSlope(self, metArray, heightList, timeList):
2023 def __getPhaseSlope(self, metArray, heightList, timeList):
2024 meteorList = []
2024 meteorList = []
2025 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
2025 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
2026 #Putting back together the meteor matrix
2026 #Putting back together the meteor matrix
2027 utctime = metArray[:,0]
2027 utctime = metArray[:,0]
2028 uniqueTime = numpy.unique(utctime)
2028 uniqueTime = numpy.unique(utctime)
2029
2029
2030 phaseDerThresh = 0.5
2030 phaseDerThresh = 0.5
2031 ippSeconds = timeList[1] - timeList[0]
2031 ippSeconds = timeList[1] - timeList[0]
2032 sec = numpy.where(timeList>1)[0][0]
2032 sec = numpy.where(timeList>1)[0][0]
2033 nPairs = metArray.shape[1] - 6
2033 nPairs = metArray.shape[1] - 6
2034 nHeights = len(heightList)
2034 nHeights = len(heightList)
2035
2035
2036 for t in uniqueTime:
2036 for t in uniqueTime:
2037 metArray1 = metArray[utctime==t,:]
2037 metArray1 = metArray[utctime==t,:]
2038 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
2038 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
2039 tmet = metArray1[:,1].astype(int)
2039 tmet = metArray1[:,1].astype(int)
2040 hmet = metArray1[:,2].astype(int)
2040 hmet = metArray1[:,2].astype(int)
2041
2041
2042 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
2042 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
2043 metPhase[:,:] = numpy.nan
2043 metPhase[:,:] = numpy.nan
2044 metPhase[:,hmet,tmet] = metArray1[:,6:].T
2044 metPhase[:,hmet,tmet] = metArray1[:,6:].T
2045
2045
2046 #Delete short trails
2046 #Delete short trails
2047 metBool = ~numpy.isnan(metPhase[0,:,:])
2047 metBool = ~numpy.isnan(metPhase[0,:,:])
2048 heightVect = numpy.sum(metBool, axis = 1)
2048 heightVect = numpy.sum(metBool, axis = 1)
2049 metBool[heightVect<sec,:] = False
2049 metBool[heightVect<sec,:] = False
2050 metPhase[:,heightVect<sec,:] = numpy.nan
2050 metPhase[:,heightVect<sec,:] = numpy.nan
2051
2051
2052 #Derivative
2052 #Derivative
2053 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2053 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2054 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2054 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2055 metPhase[phDerAux] = numpy.nan
2055 metPhase[phDerAux] = numpy.nan
2056
2056
2057 #--------------------------METEOR DETECTION -----------------------------------------
2057 #--------------------------METEOR DETECTION -----------------------------------------
2058 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2058 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2059
2059
2060 for p in numpy.arange(nPairs):
2060 for p in numpy.arange(nPairs):
2061 phase = metPhase[p,:,:]
2061 phase = metPhase[p,:,:]
2062 phDer = metDer[p,:,:]
2062 phDer = metDer[p,:,:]
2063
2063
2064 for h in indMet:
2064 for h in indMet:
2065 height = heightList[h]
2065 height = heightList[h]
2066 phase1 = phase[h,:] #82
2066 phase1 = phase[h,:] #82
2067 phDer1 = phDer[h,:]
2067 phDer1 = phDer[h,:]
2068
2068
2069 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2069 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2070
2070
2071 indValid = numpy.where(~numpy.isnan(phase1))[0]
2071 indValid = numpy.where(~numpy.isnan(phase1))[0]
2072 initMet = indValid[0]
2072 initMet = indValid[0]
2073 endMet = 0
2073 endMet = 0
2074
2074
2075 for i in range(len(indValid)-1):
2075 for i in range(len(indValid)-1):
2076
2076
2077 #Time difference
2077 #Time difference
2078 inow = indValid[i]
2078 inow = indValid[i]
2079 inext = indValid[i+1]
2079 inext = indValid[i+1]
2080 idiff = inext - inow
2080 idiff = inext - inow
2081 #Phase difference
2081 #Phase difference
2082 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2082 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2083
2083
2084 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2084 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2085 sizeTrail = inow - initMet + 1
2085 sizeTrail = inow - initMet + 1
2086 if sizeTrail>3*sec: #Too short meteors
2086 if sizeTrail>3*sec: #Too short meteors
2087 x = numpy.arange(initMet,inow+1)*ippSeconds
2087 x = numpy.arange(initMet,inow+1)*ippSeconds
2088 y = phase1[initMet:inow+1]
2088 y = phase1[initMet:inow+1]
2089 ynnan = ~numpy.isnan(y)
2089 ynnan = ~numpy.isnan(y)
2090 x = x[ynnan]
2090 x = x[ynnan]
2091 y = y[ynnan]
2091 y = y[ynnan]
2092 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
2092 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
2093 ylin = x*slope + intercept
2093 ylin = x*slope + intercept
2094 rsq = r_value**2
2094 rsq = r_value**2
2095 if rsq > 0.5:
2095 if rsq > 0.5:
2096 vel = slope#*height*1000/(k*d)
2096 vel = slope#*height*1000/(k*d)
2097 estAux = numpy.array([utctime,p,height, vel, rsq])
2097 estAux = numpy.array([utctime,p,height, vel, rsq])
2098 meteorList.append(estAux)
2098 meteorList.append(estAux)
2099 initMet = inext
2099 initMet = inext
2100 metArray2 = numpy.array(meteorList)
2100 metArray2 = numpy.array(meteorList)
2101
2101
2102 return metArray2
2102 return metArray2
2103
2103
2104 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2104 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2105
2105
2106 azimuth1 = numpy.zeros(len(pairslist))
2106 azimuth1 = numpy.zeros(len(pairslist))
2107 dist = numpy.zeros(len(pairslist))
2107 dist = numpy.zeros(len(pairslist))
2108
2108
2109 for i in range(len(rx_location)):
2109 for i in range(len(rx_location)):
2110 ch0 = pairslist[i][0]
2110 ch0 = pairslist[i][0]
2111 ch1 = pairslist[i][1]
2111 ch1 = pairslist[i][1]
2112
2112
2113 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2113 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2114 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2114 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2115 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2115 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2116 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2116 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2117
2117
2118 azimuth1 -= azimuth0
2118 azimuth1 -= azimuth0
2119 return azimuth1, dist
2119 return azimuth1, dist
2120
2120
2121 def techniqueNSM_DBS(self, **kwargs):
2121 def techniqueNSM_DBS(self, **kwargs):
2122 metArray = kwargs['metArray']
2122 metArray = kwargs['metArray']
2123 heightList = kwargs['heightList']
2123 heightList = kwargs['heightList']
2124 timeList = kwargs['timeList']
2124 timeList = kwargs['timeList']
2125 azimuth = kwargs['azimuth']
2125 azimuth = kwargs['azimuth']
2126 theta_x = numpy.array(kwargs['theta_x'])
2126 theta_x = numpy.array(kwargs['theta_x'])
2127 theta_y = numpy.array(kwargs['theta_y'])
2127 theta_y = numpy.array(kwargs['theta_y'])
2128
2128
2129 utctime = metArray[:,0]
2129 utctime = metArray[:,0]
2130 cmet = metArray[:,1].astype(int)
2130 cmet = metArray[:,1].astype(int)
2131 hmet = metArray[:,3].astype(int)
2131 hmet = metArray[:,3].astype(int)
2132 SNRmet = metArray[:,4]
2132 SNRmet = metArray[:,4]
2133 vmet = metArray[:,5]
2133 vmet = metArray[:,5]
2134 spcmet = metArray[:,6]
2134 spcmet = metArray[:,6]
2135
2135
2136 nChan = numpy.max(cmet) + 1
2136 nChan = numpy.max(cmet) + 1
2137 nHeights = len(heightList)
2137 nHeights = len(heightList)
2138
2138
2139 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
2139 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
2140 hmet = heightList[hmet]
2140 hmet = heightList[hmet]
2141 h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights
2141 h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights
2142
2142
2143 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2143 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2144
2144
2145 for i in range(nHeights - 1):
2145 for i in range(nHeights - 1):
2146 hmin = heightList[i]
2146 hmin = heightList[i]
2147 hmax = heightList[i + 1]
2147 hmax = heightList[i + 1]
2148
2148
2149 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2149 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2150 indthisH = numpy.where(thisH)
2150 indthisH = numpy.where(thisH)
2151
2151
2152 if numpy.size(indthisH) > 3:
2152 if numpy.size(indthisH) > 3:
2153
2153
2154 vel_aux = vmet[thisH]
2154 vel_aux = vmet[thisH]
2155 chan_aux = cmet[thisH]
2155 chan_aux = cmet[thisH]
2156 cosu_aux = dir_cosu[chan_aux]
2156 cosu_aux = dir_cosu[chan_aux]
2157 cosv_aux = dir_cosv[chan_aux]
2157 cosv_aux = dir_cosv[chan_aux]
2158 cosw_aux = dir_cosw[chan_aux]
2158 cosw_aux = dir_cosw[chan_aux]
2159
2159
2160 nch = numpy.size(numpy.unique(chan_aux))
2160 nch = numpy.size(numpy.unique(chan_aux))
2161 if nch > 1:
2161 if nch > 1:
2162 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2162 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2163 velEst[i,:] = numpy.dot(A,vel_aux)
2163 velEst[i,:] = numpy.dot(A,vel_aux)
2164
2164
2165 return velEst
2165 return velEst
2166
2166
2167 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
2167 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
2168
2168
2169 param = dataOut.data_param
2169 param = dataOut.data_param
2170 if dataOut.abscissaList != None:
2170 if dataOut.abscissaList != None:
2171 absc = dataOut.abscissaList[:-1]
2171 absc = dataOut.abscissaList[:-1]
2172 # noise = dataOut.noise
2172 # noise = dataOut.noise
2173 heightList = dataOut.heightList
2173 heightList = dataOut.heightList
2174 SNR = dataOut.data_snr
2174 SNR = dataOut.data_snr
2175
2175
2176 if technique == 'DBS':
2176 if technique == 'DBS':
2177
2177
2178 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2178 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2179 kwargs['heightList'] = heightList
2179 kwargs['heightList'] = heightList
2180 kwargs['SNR'] = SNR
2180 kwargs['SNR'] = SNR
2181
2181
2182 dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function
2182 dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function
2183 dataOut.utctimeInit = dataOut.utctime
2183 dataOut.utctimeInit = dataOut.utctime
2184 dataOut.outputInterval = dataOut.paramInterval
2184 dataOut.outputInterval = dataOut.paramInterval
2185
2185
2186 elif technique == 'SA':
2186 elif technique == 'SA':
2187
2187
2188 #Parameters
2188 #Parameters
2189 # position_x = kwargs['positionX']
2189 # position_x = kwargs['positionX']
2190 # position_y = kwargs['positionY']
2190 # position_y = kwargs['positionY']
2191 # azimuth = kwargs['azimuth']
2191 # azimuth = kwargs['azimuth']
2192 #
2192 #
2193 # if kwargs.has_key('crosspairsList'):
2193 # if kwargs.has_key('crosspairsList'):
2194 # pairs = kwargs['crosspairsList']
2194 # pairs = kwargs['crosspairsList']
2195 # else:
2195 # else:
2196 # pairs = None
2196 # pairs = None
2197 #
2197 #
2198 # if kwargs.has_key('correctFactor'):
2198 # if kwargs.has_key('correctFactor'):
2199 # correctFactor = kwargs['correctFactor']
2199 # correctFactor = kwargs['correctFactor']
2200 # else:
2200 # else:
2201 # correctFactor = 1
2201 # correctFactor = 1
2202
2202
2203 # tau = dataOut.data_param
2203 # tau = dataOut.data_param
2204 # _lambda = dataOut.C/dataOut.frequency
2204 # _lambda = dataOut.C/dataOut.frequency
2205 # pairsList = dataOut.groupList
2205 # pairsList = dataOut.groupList
2206 # nChannels = dataOut.nChannels
2206 # nChannels = dataOut.nChannels
2207
2207
2208 kwargs['groupList'] = dataOut.groupList
2208 kwargs['groupList'] = dataOut.groupList
2209 kwargs['tau'] = dataOut.data_param
2209 kwargs['tau'] = dataOut.data_param
2210 kwargs['_lambda'] = dataOut.C/dataOut.frequency
2210 kwargs['_lambda'] = dataOut.C/dataOut.frequency
2211 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
2211 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
2212 dataOut.data_output = self.techniqueSA(kwargs)
2212 dataOut.data_output = self.techniqueSA(kwargs)
2213 dataOut.utctimeInit = dataOut.utctime
2213 dataOut.utctimeInit = dataOut.utctime
2214 dataOut.outputInterval = dataOut.timeInterval
2214 dataOut.outputInterval = dataOut.timeInterval
2215
2215
2216 elif technique == 'Meteors':
2216 elif technique == 'Meteors':
2217 dataOut.flagNoData = True
2217 dataOut.flagNoData = True
2218 self.__dataReady = False
2218 self.__dataReady = False
2219
2219
2220 if 'nHours' in kwargs:
2220 if 'nHours' in kwargs:
2221 nHours = kwargs['nHours']
2221 nHours = kwargs['nHours']
2222 else:
2222 else:
2223 nHours = 1
2223 nHours = 1
2224
2224
2225 if 'meteorsPerBin' in kwargs:
2225 if 'meteorsPerBin' in kwargs:
2226 meteorThresh = kwargs['meteorsPerBin']
2226 meteorThresh = kwargs['meteorsPerBin']
2227 else:
2227 else:
2228 meteorThresh = 6
2228 meteorThresh = 6
2229
2229
2230 if 'hmin' in kwargs:
2230 if 'hmin' in kwargs:
2231 hmin = kwargs['hmin']
2231 hmin = kwargs['hmin']
2232 else: hmin = 70
2232 else: hmin = 70
2233 if 'hmax' in kwargs:
2233 if 'hmax' in kwargs:
2234 hmax = kwargs['hmax']
2234 hmax = kwargs['hmax']
2235 else: hmax = 110
2235 else: hmax = 110
2236
2236
2237 dataOut.outputInterval = nHours*3600
2237 dataOut.outputInterval = nHours*3600
2238
2238
2239 if self.__isConfig == False:
2239 if self.__isConfig == False:
2240 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2240 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2241 #Get Initial LTC time
2241 #Get Initial LTC time
2242 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2242 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2243 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2243 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2244
2244
2245 self.__isConfig = True
2245 self.__isConfig = True
2246
2246
2247 if self.__buffer is None:
2247 if self.__buffer is None:
2248 self.__buffer = dataOut.data_param
2248 self.__buffer = dataOut.data_param
2249 self.__firstdata = copy.copy(dataOut)
2249 self.__firstdata = copy.copy(dataOut)
2250
2250
2251 else:
2251 else:
2252 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2252 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2253
2253
2254 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2254 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2255
2255
2256 if self.__dataReady:
2256 if self.__dataReady:
2257 dataOut.utctimeInit = self.__initime
2257 dataOut.utctimeInit = self.__initime
2258
2258
2259 self.__initime += dataOut.outputInterval #to erase time offset
2259 self.__initime += dataOut.outputInterval #to erase time offset
2260
2260
2261 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2261 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2262 dataOut.flagNoData = False
2262 dataOut.flagNoData = False
2263 self.__buffer = None
2263 self.__buffer = None
2264
2264
2265 elif technique == 'Meteors1':
2265 elif technique == 'Meteors1':
2266 dataOut.flagNoData = True
2266 dataOut.flagNoData = True
2267 self.__dataReady = False
2267 self.__dataReady = False
2268
2268
2269 if 'nMins' in kwargs:
2269 if 'nMins' in kwargs:
2270 nMins = kwargs['nMins']
2270 nMins = kwargs['nMins']
2271 else: nMins = 20
2271 else: nMins = 20
2272 if 'rx_location' in kwargs:
2272 if 'rx_location' in kwargs:
2273 rx_location = kwargs['rx_location']
2273 rx_location = kwargs['rx_location']
2274 else: rx_location = [(0,1),(1,1),(1,0)]
2274 else: rx_location = [(0,1),(1,1),(1,0)]
2275 if 'azimuth' in kwargs:
2275 if 'azimuth' in kwargs:
2276 azimuth = kwargs['azimuth']
2276 azimuth = kwargs['azimuth']
2277 else: azimuth = 51.06
2277 else: azimuth = 51.06
2278 if 'dfactor' in kwargs:
2278 if 'dfactor' in kwargs:
2279 dfactor = kwargs['dfactor']
2279 dfactor = kwargs['dfactor']
2280 if 'mode' in kwargs:
2280 if 'mode' in kwargs:
2281 mode = kwargs['mode']
2281 mode = kwargs['mode']
2282 if 'theta_x' in kwargs:
2282 if 'theta_x' in kwargs:
2283 theta_x = kwargs['theta_x']
2283 theta_x = kwargs['theta_x']
2284 if 'theta_y' in kwargs:
2284 if 'theta_y' in kwargs:
2285 theta_y = kwargs['theta_y']
2285 theta_y = kwargs['theta_y']
2286 else: mode = 'SA'
2286 else: mode = 'SA'
2287
2287
2288 #Borrar luego esto
2288 #Borrar luego esto
2289 if dataOut.groupList is None:
2289 if dataOut.groupList is None:
2290 dataOut.groupList = [(0,1),(0,2),(1,2)]
2290 dataOut.groupList = [(0,1),(0,2),(1,2)]
2291 groupList = dataOut.groupList
2291 groupList = dataOut.groupList
2292 C = 3e8
2292 C = 3e8
2293 freq = 50e6
2293 freq = 50e6
2294 lamb = C/freq
2294 lamb = C/freq
2295 k = 2*numpy.pi/lamb
2295 k = 2*numpy.pi/lamb
2296
2296
2297 timeList = dataOut.abscissaList
2297 timeList = dataOut.abscissaList
2298 heightList = dataOut.heightList
2298 heightList = dataOut.heightList
2299
2299
2300 if self.__isConfig == False:
2300 if self.__isConfig == False:
2301 dataOut.outputInterval = nMins*60
2301 dataOut.outputInterval = nMins*60
2302 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2302 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2303 #Get Initial LTC time
2303 #Get Initial LTC time
2304 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2304 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2305 minuteAux = initime.minute
2305 minuteAux = initime.minute
2306 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
2306 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
2307 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2307 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2308
2308
2309 self.__isConfig = True
2309 self.__isConfig = True
2310
2310
2311 if self.__buffer is None:
2311 if self.__buffer is None:
2312 self.__buffer = dataOut.data_param
2312 self.__buffer = dataOut.data_param
2313 self.__firstdata = copy.copy(dataOut)
2313 self.__firstdata = copy.copy(dataOut)
2314
2314
2315 else:
2315 else:
2316 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2316 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2317
2317
2318 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2318 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2319
2319
2320 if self.__dataReady:
2320 if self.__dataReady:
2321 dataOut.utctimeInit = self.__initime
2321 dataOut.utctimeInit = self.__initime
2322 self.__initime += dataOut.outputInterval #to erase time offset
2322 self.__initime += dataOut.outputInterval #to erase time offset
2323
2323
2324 metArray = self.__buffer
2324 metArray = self.__buffer
2325 if mode == 'SA':
2325 if mode == 'SA':
2326 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
2326 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
2327 elif mode == 'DBS':
2327 elif mode == 'DBS':
2328 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y)
2328 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y)
2329 dataOut.data_output = dataOut.data_output.T
2329 dataOut.data_output = dataOut.data_output.T
2330 dataOut.flagNoData = False
2330 dataOut.flagNoData = False
2331 self.__buffer = None
2331 self.__buffer = None
2332
2332
2333 return
2333 return
2334
2334
2335 class EWDriftsEstimation(Operation):
2335 class EWDriftsEstimation(Operation):
2336
2336
2337 def __init__(self):
2337 def __init__(self):
2338 Operation.__init__(self)
2338 Operation.__init__(self)
2339
2339
2340 def __correctValues(self, heiRang, phi, velRadial, SNR):
2340 def __correctValues(self, heiRang, phi, velRadial, SNR):
2341 listPhi = phi.tolist()
2341 listPhi = phi.tolist()
2342 maxid = listPhi.index(max(listPhi))
2342 maxid = listPhi.index(max(listPhi))
2343 minid = listPhi.index(min(listPhi))
2343 minid = listPhi.index(min(listPhi))
2344
2344
2345 rango = list(range(len(phi)))
2345 rango = list(range(len(phi)))
2346 # rango = numpy.delete(rango,maxid)
2346 # rango = numpy.delete(rango,maxid)
2347
2347
2348 heiRang1 = heiRang*math.cos(phi[maxid])
2348 heiRang1 = heiRang*math.cos(phi[maxid])
2349 heiRangAux = heiRang*math.cos(phi[minid])
2349 heiRangAux = heiRang*math.cos(phi[minid])
2350 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2350 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2351 heiRang1 = numpy.delete(heiRang1,indOut)
2351 heiRang1 = numpy.delete(heiRang1,indOut)
2352
2352
2353 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2353 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2354 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2354 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2355
2355
2356 for i in rango:
2356 for i in rango:
2357 x = heiRang*math.cos(phi[i])
2357 x = heiRang*math.cos(phi[i])
2358 y1 = velRadial[i,:]
2358 y1 = velRadial[i,:]
2359 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2359 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2360
2360
2361 x1 = heiRang1
2361 x1 = heiRang1
2362 y11 = f1(x1)
2362 y11 = f1(x1)
2363
2363
2364 y2 = SNR[i,:]
2364 y2 = SNR[i,:]
2365 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2365 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2366 y21 = f2(x1)
2366 y21 = f2(x1)
2367
2367
2368 velRadial1[i,:] = y11
2368 velRadial1[i,:] = y11
2369 SNR1[i,:] = y21
2369 SNR1[i,:] = y21
2370
2370
2371 return heiRang1, velRadial1, SNR1
2371 return heiRang1, velRadial1, SNR1
2372
2372
2373 def run(self, dataOut, zenith, zenithCorrection):
2373 def run(self, dataOut, zenith, zenithCorrection):
2374 heiRang = dataOut.heightList
2374 heiRang = dataOut.heightList
2375 velRadial = dataOut.data_param[:,3,:]
2375 velRadial = dataOut.data_param[:,3,:]
2376 SNR = dataOut.data_snr
2376 SNR = dataOut.data_snr
2377
2377
2378 zenith = numpy.array(zenith)
2378 zenith = numpy.array(zenith)
2379 zenith -= zenithCorrection
2379 zenith -= zenithCorrection
2380 zenith *= numpy.pi/180
2380 zenith *= numpy.pi/180
2381
2381
2382 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2382 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2383
2383
2384 alp = zenith[0]
2384 alp = zenith[0]
2385 bet = zenith[1]
2385 bet = zenith[1]
2386
2386
2387 w_w = velRadial1[0,:]
2387 w_w = velRadial1[0,:]
2388 w_e = velRadial1[1,:]
2388 w_e = velRadial1[1,:]
2389
2389
2390 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2390 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2391 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2391 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2392
2392
2393 winds = numpy.vstack((u,w))
2393 winds = numpy.vstack((u,w))
2394
2394
2395 dataOut.heightList = heiRang1
2395 dataOut.heightList = heiRang1
2396 dataOut.data_output = winds
2396 dataOut.data_output = winds
2397 dataOut.data_snr = SNR1
2397 dataOut.data_snr = SNR1
2398
2398
2399 dataOut.utctimeInit = dataOut.utctime
2399 dataOut.utctimeInit = dataOut.utctime
2400 dataOut.outputInterval = dataOut.timeInterval
2400 dataOut.outputInterval = dataOut.timeInterval
2401 return
2401 return
2402
2402
2403 #--------------- Non Specular Meteor ----------------
2403 #--------------- Non Specular Meteor ----------------
2404
2404
2405 class NonSpecularMeteorDetection(Operation):
2405 class NonSpecularMeteorDetection(Operation):
2406
2406
2407 def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
2407 def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
2408 data_acf = dataOut.data_pre[0]
2408 data_acf = dataOut.data_pre[0]
2409 data_ccf = dataOut.data_pre[1]
2409 data_ccf = dataOut.data_pre[1]
2410 pairsList = dataOut.groupList[1]
2410 pairsList = dataOut.groupList[1]
2411
2411
2412 lamb = dataOut.C/dataOut.frequency
2412 lamb = dataOut.C/dataOut.frequency
2413 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2413 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2414 paramInterval = dataOut.paramInterval
2414 paramInterval = dataOut.paramInterval
2415
2415
2416 nChannels = data_acf.shape[0]
2416 nChannels = data_acf.shape[0]
2417 nLags = data_acf.shape[1]
2417 nLags = data_acf.shape[1]
2418 nProfiles = data_acf.shape[2]
2418 nProfiles = data_acf.shape[2]
2419 nHeights = dataOut.nHeights
2419 nHeights = dataOut.nHeights
2420 nCohInt = dataOut.nCohInt
2420 nCohInt = dataOut.nCohInt
2421 sec = numpy.round(nProfiles/dataOut.paramInterval)
2421 sec = numpy.round(nProfiles/dataOut.paramInterval)
2422 heightList = dataOut.heightList
2422 heightList = dataOut.heightList
2423 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2423 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2424 utctime = dataOut.utctime
2424 utctime = dataOut.utctime
2425
2425
2426 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2426 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2427
2427
2428 #------------------------ SNR --------------------------------------
2428 #------------------------ SNR --------------------------------------
2429 power = data_acf[:,0,:,:].real
2429 power = data_acf[:,0,:,:].real
2430 noise = numpy.zeros(nChannels)
2430 noise = numpy.zeros(nChannels)
2431 SNR = numpy.zeros(power.shape)
2431 SNR = numpy.zeros(power.shape)
2432 for i in range(nChannels):
2432 for i in range(nChannels):
2433 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
2433 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
2434 SNR[i] = (power[i]-noise[i])/noise[i]
2434 SNR[i] = (power[i]-noise[i])/noise[i]
2435 SNRm = numpy.nanmean(SNR, axis = 0)
2435 SNRm = numpy.nanmean(SNR, axis = 0)
2436 SNRdB = 10*numpy.log10(SNR)
2436 SNRdB = 10*numpy.log10(SNR)
2437
2437
2438 if mode == 'SA':
2438 if mode == 'SA':
2439 dataOut.groupList = dataOut.groupList[1]
2439 dataOut.groupList = dataOut.groupList[1]
2440 nPairs = data_ccf.shape[0]
2440 nPairs = data_ccf.shape[0]
2441 #---------------------- Coherence and Phase --------------------------
2441 #---------------------- Coherence and Phase --------------------------
2442 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2442 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2443 # phase1 = numpy.copy(phase)
2443 # phase1 = numpy.copy(phase)
2444 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2444 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2445
2445
2446 for p in range(nPairs):
2446 for p in range(nPairs):
2447 ch0 = pairsList[p][0]
2447 ch0 = pairsList[p][0]
2448 ch1 = pairsList[p][1]
2448 ch1 = pairsList[p][1]
2449 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2449 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2450 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2450 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2451 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2451 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2452 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2452 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2453 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2453 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2454 coh = numpy.nanmax(coh1, axis = 0)
2454 coh = numpy.nanmax(coh1, axis = 0)
2455 # struc = numpy.ones((5,1))
2455 # struc = numpy.ones((5,1))
2456 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2456 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2457 #---------------------- Radial Velocity ----------------------------
2457 #---------------------- Radial Velocity ----------------------------
2458 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2458 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2459 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2459 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2460
2460
2461 if allData:
2461 if allData:
2462 boolMetFin = ~numpy.isnan(SNRm)
2462 boolMetFin = ~numpy.isnan(SNRm)
2463 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2463 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2464 else:
2464 else:
2465 #------------------------ Meteor mask ---------------------------------
2465 #------------------------ Meteor mask ---------------------------------
2466 # #SNR mask
2466 # #SNR mask
2467 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2467 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2468 #
2468 #
2469 # #Erase small objects
2469 # #Erase small objects
2470 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2470 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2471 #
2471 #
2472 # auxEEJ = numpy.sum(boolMet1,axis=0)
2472 # auxEEJ = numpy.sum(boolMet1,axis=0)
2473 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2473 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2474 # indEEJ = numpy.where(indOver)[0]
2474 # indEEJ = numpy.where(indOver)[0]
2475 # indNEEJ = numpy.where(~indOver)[0]
2475 # indNEEJ = numpy.where(~indOver)[0]
2476 #
2476 #
2477 # boolMetFin = boolMet1
2477 # boolMetFin = boolMet1
2478 #
2478 #
2479 # if indEEJ.size > 0:
2479 # if indEEJ.size > 0:
2480 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2480 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2481 #
2481 #
2482 # boolMet2 = coh > cohThresh
2482 # boolMet2 = coh > cohThresh
2483 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2483 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2484 #
2484 #
2485 # #Final Meteor mask
2485 # #Final Meteor mask
2486 # boolMetFin = boolMet1|boolMet2
2486 # boolMetFin = boolMet1|boolMet2
2487
2487
2488 #Coherence mask
2488 #Coherence mask
2489 boolMet1 = coh > 0.75
2489 boolMet1 = coh > 0.75
2490 struc = numpy.ones((30,1))
2490 struc = numpy.ones((30,1))
2491 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2491 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2492
2492
2493 #Derivative mask
2493 #Derivative mask
2494 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2494 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2495 boolMet2 = derPhase < 0.2
2495 boolMet2 = derPhase < 0.2
2496 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
2496 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
2497 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
2497 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
2498 boolMet2 = ndimage.median_filter(boolMet2,size=5)
2498 boolMet2 = ndimage.median_filter(boolMet2,size=5)
2499 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
2499 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
2500 # #Final mask
2500 # #Final mask
2501 # boolMetFin = boolMet2
2501 # boolMetFin = boolMet2
2502 boolMetFin = boolMet1&boolMet2
2502 boolMetFin = boolMet1&boolMet2
2503 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
2503 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
2504 #Creating data_param
2504 #Creating data_param
2505 coordMet = numpy.where(boolMetFin)
2505 coordMet = numpy.where(boolMetFin)
2506
2506
2507 tmet = coordMet[0]
2507 tmet = coordMet[0]
2508 hmet = coordMet[1]
2508 hmet = coordMet[1]
2509
2509
2510 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2510 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2511 data_param[:,0] = utctime
2511 data_param[:,0] = utctime
2512 data_param[:,1] = tmet
2512 data_param[:,1] = tmet
2513 data_param[:,2] = hmet
2513 data_param[:,2] = hmet
2514 data_param[:,3] = SNRm[tmet,hmet]
2514 data_param[:,3] = SNRm[tmet,hmet]
2515 data_param[:,4] = velRad[tmet,hmet]
2515 data_param[:,4] = velRad[tmet,hmet]
2516 data_param[:,5] = coh[tmet,hmet]
2516 data_param[:,5] = coh[tmet,hmet]
2517 data_param[:,6:] = phase[:,tmet,hmet].T
2517 data_param[:,6:] = phase[:,tmet,hmet].T
2518
2518
2519 elif mode == 'DBS':
2519 elif mode == 'DBS':
2520 dataOut.groupList = numpy.arange(nChannels)
2520 dataOut.groupList = numpy.arange(nChannels)
2521
2521
2522 #Radial Velocities
2522 #Radial Velocities
2523 phase = numpy.angle(data_acf[:,1,:,:])
2523 phase = numpy.angle(data_acf[:,1,:,:])
2524 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2524 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2525 velRad = phase*lamb/(4*numpy.pi*tSamp)
2525 velRad = phase*lamb/(4*numpy.pi*tSamp)
2526
2526
2527 #Spectral width
2527 #Spectral width
2528 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2528 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2529 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
2529 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
2530 acf1 = data_acf[:,1,:,:]
2530 acf1 = data_acf[:,1,:,:]
2531 acf2 = data_acf[:,2,:,:]
2531 acf2 = data_acf[:,2,:,:]
2532
2532
2533 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
2533 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
2534 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
2534 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
2535 if allData:
2535 if allData:
2536 boolMetFin = ~numpy.isnan(SNRdB)
2536 boolMetFin = ~numpy.isnan(SNRdB)
2537 else:
2537 else:
2538 #SNR
2538 #SNR
2539 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2539 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2540 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2540 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2541
2541
2542 #Radial velocity
2542 #Radial velocity
2543 boolMet2 = numpy.abs(velRad) < 20
2543 boolMet2 = numpy.abs(velRad) < 20
2544 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2544 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2545
2545
2546 #Spectral Width
2546 #Spectral Width
2547 boolMet3 = spcWidth < 30
2547 boolMet3 = spcWidth < 30
2548 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2548 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2549 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2549 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2550 boolMetFin = boolMet1&boolMet2&boolMet3
2550 boolMetFin = boolMet1&boolMet2&boolMet3
2551
2551
2552 #Creating data_param
2552 #Creating data_param
2553 coordMet = numpy.where(boolMetFin)
2553 coordMet = numpy.where(boolMetFin)
2554
2554
2555 cmet = coordMet[0]
2555 cmet = coordMet[0]
2556 tmet = coordMet[1]
2556 tmet = coordMet[1]
2557 hmet = coordMet[2]
2557 hmet = coordMet[2]
2558
2558
2559 data_param = numpy.zeros((tmet.size, 7))
2559 data_param = numpy.zeros((tmet.size, 7))
2560 data_param[:,0] = utctime
2560 data_param[:,0] = utctime
2561 data_param[:,1] = cmet
2561 data_param[:,1] = cmet
2562 data_param[:,2] = tmet
2562 data_param[:,2] = tmet
2563 data_param[:,3] = hmet
2563 data_param[:,3] = hmet
2564 data_param[:,4] = SNR[cmet,tmet,hmet].T
2564 data_param[:,4] = SNR[cmet,tmet,hmet].T
2565 data_param[:,5] = velRad[cmet,tmet,hmet].T
2565 data_param[:,5] = velRad[cmet,tmet,hmet].T
2566 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2566 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2567
2567
2568 # self.dataOut.data_param = data_int
2568 # self.dataOut.data_param = data_int
2569 if len(data_param) == 0:
2569 if len(data_param) == 0:
2570 dataOut.flagNoData = True
2570 dataOut.flagNoData = True
2571 else:
2571 else:
2572 dataOut.data_param = data_param
2572 dataOut.data_param = data_param
2573
2573
2574 def __erase_small(self, binArray, threshX, threshY):
2574 def __erase_small(self, binArray, threshX, threshY):
2575 labarray, numfeat = ndimage.measurements.label(binArray)
2575 labarray, numfeat = ndimage.measurements.label(binArray)
2576 binArray1 = numpy.copy(binArray)
2576 binArray1 = numpy.copy(binArray)
2577
2577
2578 for i in range(1,numfeat + 1):
2578 for i in range(1,numfeat + 1):
2579 auxBin = (labarray==i)
2579 auxBin = (labarray==i)
2580 auxSize = auxBin.sum()
2580 auxSize = auxBin.sum()
2581
2581
2582 x,y = numpy.where(auxBin)
2582 x,y = numpy.where(auxBin)
2583 widthX = x.max() - x.min()
2583 widthX = x.max() - x.min()
2584 widthY = y.max() - y.min()
2584 widthY = y.max() - y.min()
2585
2585
2586 #width X: 3 seg -> 12.5*3
2586 #width X: 3 seg -> 12.5*3
2587 #width Y:
2587 #width Y:
2588
2588
2589 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2589 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2590 binArray1[auxBin] = False
2590 binArray1[auxBin] = False
2591
2591
2592 return binArray1
2592 return binArray1
2593
2593
2594 #--------------- Specular Meteor ----------------
2594 #--------------- Specular Meteor ----------------
2595
2595
2596 class SMDetection(Operation):
2596 class SMDetection(Operation):
2597 '''
2597 '''
2598 Function DetectMeteors()
2598 Function DetectMeteors()
2599 Project developed with paper:
2599 Project developed with paper:
2600 HOLDSWORTH ET AL. 2004
2600 HOLDSWORTH ET AL. 2004
2601
2601
2602 Input:
2602 Input:
2603 self.dataOut.data_pre
2603 self.dataOut.data_pre
2604
2604
2605 centerReceiverIndex: From the channels, which is the center receiver
2605 centerReceiverIndex: From the channels, which is the center receiver
2606
2606
2607 hei_ref: Height reference for the Beacon signal extraction
2607 hei_ref: Height reference for the Beacon signal extraction
2608 tauindex:
2608 tauindex:
2609 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2609 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2610
2610
2611 cohDetection: Whether to user Coherent detection or not
2611 cohDetection: Whether to user Coherent detection or not
2612 cohDet_timeStep: Coherent Detection calculation time step
2612 cohDet_timeStep: Coherent Detection calculation time step
2613 cohDet_thresh: Coherent Detection phase threshold to correct phases
2613 cohDet_thresh: Coherent Detection phase threshold to correct phases
2614
2614
2615 noise_timeStep: Noise calculation time step
2615 noise_timeStep: Noise calculation time step
2616 noise_multiple: Noise multiple to define signal threshold
2616 noise_multiple: Noise multiple to define signal threshold
2617
2617
2618 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2618 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2619 multDet_rangeLimit: Multiple Detection Removal range limit in km
2619 multDet_rangeLimit: Multiple Detection Removal range limit in km
2620
2620
2621 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2621 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2622 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2622 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2623
2623
2624 hmin: Minimum Height of the meteor to use it in the further wind estimations
2624 hmin: Minimum Height of the meteor to use it in the further wind estimations
2625 hmax: Maximum Height of the meteor to use it in the further wind estimations
2625 hmax: Maximum Height of the meteor to use it in the further wind estimations
2626 azimuth: Azimuth angle correction
2626 azimuth: Azimuth angle correction
2627
2627
2628 Affected:
2628 Affected:
2629 self.dataOut.data_param
2629 self.dataOut.data_param
2630
2630
2631 Rejection Criteria (Errors):
2631 Rejection Criteria (Errors):
2632 0: No error; analysis OK
2632 0: No error; analysis OK
2633 1: SNR < SNR threshold
2633 1: SNR < SNR threshold
2634 2: angle of arrival (AOA) ambiguously determined
2634 2: angle of arrival (AOA) ambiguously determined
2635 3: AOA estimate not feasible
2635 3: AOA estimate not feasible
2636 4: Large difference in AOAs obtained from different antenna baselines
2636 4: Large difference in AOAs obtained from different antenna baselines
2637 5: echo at start or end of time series
2637 5: echo at start or end of time series
2638 6: echo less than 5 examples long; too short for analysis
2638 6: echo less than 5 examples long; too short for analysis
2639 7: echo rise exceeds 0.3s
2639 7: echo rise exceeds 0.3s
2640 8: echo decay time less than twice rise time
2640 8: echo decay time less than twice rise time
2641 9: large power level before echo
2641 9: large power level before echo
2642 10: large power level after echo
2642 10: large power level after echo
2643 11: poor fit to amplitude for estimation of decay time
2643 11: poor fit to amplitude for estimation of decay time
2644 12: poor fit to CCF phase variation for estimation of radial drift velocity
2644 12: poor fit to CCF phase variation for estimation of radial drift velocity
2645 13: height unresolvable echo: not valid height within 70 to 110 km
2645 13: height unresolvable echo: not valid height within 70 to 110 km
2646 14: height ambiguous echo: more then one possible height within 70 to 110 km
2646 14: height ambiguous echo: more then one possible height within 70 to 110 km
2647 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2647 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2648 16: oscilatory echo, indicating event most likely not an underdense echo
2648 16: oscilatory echo, indicating event most likely not an underdense echo
2649
2649
2650 17: phase difference in meteor Reestimation
2650 17: phase difference in meteor Reestimation
2651
2651
2652 Data Storage:
2652 Data Storage:
2653 Meteors for Wind Estimation (8):
2653 Meteors for Wind Estimation (8):
2654 Utc Time | Range Height
2654 Utc Time | Range Height
2655 Azimuth Zenith errorCosDir
2655 Azimuth Zenith errorCosDir
2656 VelRad errorVelRad
2656 VelRad errorVelRad
2657 Phase0 Phase1 Phase2 Phase3
2657 Phase0 Phase1 Phase2 Phase3
2658 TypeError
2658 TypeError
2659
2659
2660 '''
2660 '''
2661
2661
2662 def run(self, dataOut, hei_ref = None, tauindex = 0,
2662 def run(self, dataOut, hei_ref = None, tauindex = 0,
2663 phaseOffsets = None,
2663 phaseOffsets = None,
2664 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2664 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2665 noise_timeStep = 4, noise_multiple = 4,
2665 noise_timeStep = 4, noise_multiple = 4,
2666 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2666 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2667 phaseThresh = 20, SNRThresh = 5,
2667 phaseThresh = 20, SNRThresh = 5,
2668 hmin = 50, hmax=150, azimuth = 0,
2668 hmin = 50, hmax=150, azimuth = 0,
2669 channelPositions = None) :
2669 channelPositions = None) :
2670
2670
2671
2671
2672 #Getting Pairslist
2672 #Getting Pairslist
2673 if channelPositions is None:
2673 if channelPositions is None:
2674 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2674 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2675 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2675 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2676 meteorOps = SMOperations()
2676 meteorOps = SMOperations()
2677 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2677 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2678 heiRang = dataOut.heightList
2678 heiRang = dataOut.heightList
2679 #Get Beacon signal - No Beacon signal anymore
2679 #Get Beacon signal - No Beacon signal anymore
2680 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2680 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2681 #
2681 #
2682 # if hei_ref != None:
2682 # if hei_ref != None:
2683 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2683 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2684 #
2684 #
2685
2685
2686
2686
2687 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2687 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2688 # see if the user put in pre defined phase shifts
2688 # see if the user put in pre defined phase shifts
2689 voltsPShift = dataOut.data_pre.copy()
2689 voltsPShift = dataOut.data_pre.copy()
2690
2690
2691 # if predefinedPhaseShifts != None:
2691 # if predefinedPhaseShifts != None:
2692 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2692 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2693 #
2693 #
2694 # # elif beaconPhaseShifts:
2694 # # elif beaconPhaseShifts:
2695 # # #get hardware phase shifts using beacon signal
2695 # # #get hardware phase shifts using beacon signal
2696 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2696 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2697 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2697 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2698 #
2698 #
2699 # else:
2699 # else:
2700 # hardwarePhaseShifts = numpy.zeros(5)
2700 # hardwarePhaseShifts = numpy.zeros(5)
2701 #
2701 #
2702 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2702 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2703 # for i in range(self.dataOut.data_pre.shape[0]):
2703 # for i in range(self.dataOut.data_pre.shape[0]):
2704 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2704 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2705
2705
2706 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2706 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2707
2707
2708 #Remove DC
2708 #Remove DC
2709 voltsDC = numpy.mean(voltsPShift,1)
2709 voltsDC = numpy.mean(voltsPShift,1)
2710 voltsDC = numpy.mean(voltsDC,1)
2710 voltsDC = numpy.mean(voltsDC,1)
2711 for i in range(voltsDC.shape[0]):
2711 for i in range(voltsDC.shape[0]):
2712 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2712 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2713
2713
2714 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2714 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2715 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2715 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2716
2716
2717 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2717 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2718 #Coherent Detection
2718 #Coherent Detection
2719 if cohDetection:
2719 if cohDetection:
2720 #use coherent detection to get the net power
2720 #use coherent detection to get the net power
2721 cohDet_thresh = cohDet_thresh*numpy.pi/180
2721 cohDet_thresh = cohDet_thresh*numpy.pi/180
2722 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2722 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2723
2723
2724 #Non-coherent detection!
2724 #Non-coherent detection!
2725 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2725 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2726 #********** END OF COH/NON-COH POWER CALCULATION**********************
2726 #********** END OF COH/NON-COH POWER CALCULATION**********************
2727
2727
2728 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2728 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2729 #Get noise
2729 #Get noise
2730 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
2730 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
2731 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
2731 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
2732 #Get signal threshold
2732 #Get signal threshold
2733 signalThresh = noise_multiple*noise
2733 signalThresh = noise_multiple*noise
2734 #Meteor echoes detection
2734 #Meteor echoes detection
2735 listMeteors = self.__findMeteors(powerNet, signalThresh)
2735 listMeteors = self.__findMeteors(powerNet, signalThresh)
2736 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2736 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2737
2737
2738 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2738 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2739 #Parameters
2739 #Parameters
2740 heiRange = dataOut.heightList
2740 heiRange = dataOut.heightList
2741 rangeInterval = heiRange[1] - heiRange[0]
2741 rangeInterval = heiRange[1] - heiRange[0]
2742 rangeLimit = multDet_rangeLimit/rangeInterval
2742 rangeLimit = multDet_rangeLimit/rangeInterval
2743 timeLimit = multDet_timeLimit/dataOut.timeInterval
2743 timeLimit = multDet_timeLimit/dataOut.timeInterval
2744 #Multiple detection removals
2744 #Multiple detection removals
2745 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2745 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2746 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2746 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2747
2747
2748 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2748 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2749 #Parameters
2749 #Parameters
2750 phaseThresh = phaseThresh*numpy.pi/180
2750 phaseThresh = phaseThresh*numpy.pi/180
2751 thresh = [phaseThresh, noise_multiple, SNRThresh]
2751 thresh = [phaseThresh, noise_multiple, SNRThresh]
2752 #Meteor reestimation (Errors N 1, 6, 12, 17)
2752 #Meteor reestimation (Errors N 1, 6, 12, 17)
2753 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
2753 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
2754 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
2754 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
2755 #Estimation of decay times (Errors N 7, 8, 11)
2755 #Estimation of decay times (Errors N 7, 8, 11)
2756 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2756 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2757 #******************* END OF METEOR REESTIMATION *******************
2757 #******************* END OF METEOR REESTIMATION *******************
2758
2758
2759 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2759 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2760 #Calculating Radial Velocity (Error N 15)
2760 #Calculating Radial Velocity (Error N 15)
2761 radialStdThresh = 10
2761 radialStdThresh = 10
2762 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2762 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2763
2763
2764 if len(listMeteors4) > 0:
2764 if len(listMeteors4) > 0:
2765 #Setting New Array
2765 #Setting New Array
2766 date = dataOut.utctime
2766 date = dataOut.utctime
2767 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2767 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2768
2768
2769 #Correcting phase offset
2769 #Correcting phase offset
2770 if phaseOffsets != None:
2770 if phaseOffsets != None:
2771 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2771 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2772 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2772 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2773
2773
2774 #Second Pairslist
2774 #Second Pairslist
2775 pairsList = []
2775 pairsList = []
2776 pairx = (0,1)
2776 pairx = (0,1)
2777 pairy = (2,3)
2777 pairy = (2,3)
2778 pairsList.append(pairx)
2778 pairsList.append(pairx)
2779 pairsList.append(pairy)
2779 pairsList.append(pairy)
2780
2780
2781 jph = numpy.array([0,0,0,0])
2781 jph = numpy.array([0,0,0,0])
2782 h = (hmin,hmax)
2782 h = (hmin,hmax)
2783 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2783 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2784
2784
2785 # #Calculate AOA (Error N 3, 4)
2785 # #Calculate AOA (Error N 3, 4)
2786 # #JONES ET AL. 1998
2786 # #JONES ET AL. 1998
2787 # error = arrayParameters[:,-1]
2787 # error = arrayParameters[:,-1]
2788 # AOAthresh = numpy.pi/8
2788 # AOAthresh = numpy.pi/8
2789 # phases = -arrayParameters[:,9:13]
2789 # phases = -arrayParameters[:,9:13]
2790 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2790 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2791 #
2791 #
2792 # #Calculate Heights (Error N 13 and 14)
2792 # #Calculate Heights (Error N 13 and 14)
2793 # error = arrayParameters[:,-1]
2793 # error = arrayParameters[:,-1]
2794 # Ranges = arrayParameters[:,2]
2794 # Ranges = arrayParameters[:,2]
2795 # zenith = arrayParameters[:,5]
2795 # zenith = arrayParameters[:,5]
2796 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2796 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2797 # error = arrayParameters[:,-1]
2797 # error = arrayParameters[:,-1]
2798 #********************* END OF PARAMETERS CALCULATION **************************
2798 #********************* END OF PARAMETERS CALCULATION **************************
2799
2799
2800 #***************************+ PASS DATA TO NEXT STEP **********************
2800 #***************************+ PASS DATA TO NEXT STEP **********************
2801 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2801 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2802 dataOut.data_param = arrayParameters
2802 dataOut.data_param = arrayParameters
2803
2803
2804 if arrayParameters is None:
2804 if arrayParameters is None:
2805 dataOut.flagNoData = True
2805 dataOut.flagNoData = True
2806 else:
2806 else:
2807 dataOut.flagNoData = True
2807 dataOut.flagNoData = True
2808
2808
2809 return
2809 return
2810
2810
2811 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2811 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2812
2812
2813 minIndex = min(newheis[0])
2813 minIndex = min(newheis[0])
2814 maxIndex = max(newheis[0])
2814 maxIndex = max(newheis[0])
2815
2815
2816 voltage = voltage0[:,:,minIndex:maxIndex+1]
2816 voltage = voltage0[:,:,minIndex:maxIndex+1]
2817 nLength = voltage.shape[1]/n
2817 nLength = voltage.shape[1]/n
2818 nMin = 0
2818 nMin = 0
2819 nMax = 0
2819 nMax = 0
2820 phaseOffset = numpy.zeros((len(pairslist),n))
2820 phaseOffset = numpy.zeros((len(pairslist),n))
2821
2821
2822 for i in range(n):
2822 for i in range(n):
2823 nMax += nLength
2823 nMax += nLength
2824 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2824 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2825 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2825 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2826 phaseOffset[:,i] = phaseCCF.transpose()
2826 phaseOffset[:,i] = phaseCCF.transpose()
2827 nMin = nMax
2827 nMin = nMax
2828 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2828 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2829
2829
2830 #Remove Outliers
2830 #Remove Outliers
2831 factor = 2
2831 factor = 2
2832 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2832 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2833 dw = numpy.std(wt,axis = 1)
2833 dw = numpy.std(wt,axis = 1)
2834 dw = dw.reshape((dw.size,1))
2834 dw = dw.reshape((dw.size,1))
2835 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2835 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2836 phaseOffset[ind] = numpy.nan
2836 phaseOffset[ind] = numpy.nan
2837 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2837 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2838
2838
2839 return phaseOffset
2839 return phaseOffset
2840
2840
2841 def __shiftPhase(self, data, phaseShift):
2841 def __shiftPhase(self, data, phaseShift):
2842 #this will shift the phase of a complex number
2842 #this will shift the phase of a complex number
2843 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2843 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2844 return dataShifted
2844 return dataShifted
2845
2845
2846 def __estimatePhaseDifference(self, array, pairslist):
2846 def __estimatePhaseDifference(self, array, pairslist):
2847 nChannel = array.shape[0]
2847 nChannel = array.shape[0]
2848 nHeights = array.shape[2]
2848 nHeights = array.shape[2]
2849 numPairs = len(pairslist)
2849 numPairs = len(pairslist)
2850 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2850 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2851 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2851 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2852
2852
2853 #Correct phases
2853 #Correct phases
2854 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2854 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2855 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2855 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2856
2856
2857 if indDer[0].shape[0] > 0:
2857 if indDer[0].shape[0] > 0:
2858 for i in range(indDer[0].shape[0]):
2858 for i in range(indDer[0].shape[0]):
2859 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2859 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2860 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2860 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2861
2861
2862 # for j in range(numSides):
2862 # for j in range(numSides):
2863 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2863 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2864 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2864 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2865 #
2865 #
2866 #Linear
2866 #Linear
2867 phaseInt = numpy.zeros((numPairs,1))
2867 phaseInt = numpy.zeros((numPairs,1))
2868 angAllCCF = phaseCCF[:,[0,1,3,4],0]
2868 angAllCCF = phaseCCF[:,[0,1,3,4],0]
2869 for j in range(numPairs):
2869 for j in range(numPairs):
2870 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
2870 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
2871 phaseInt[j] = fit[1]
2871 phaseInt[j] = fit[1]
2872 #Phase Differences
2872 #Phase Differences
2873 phaseDiff = phaseInt - phaseCCF[:,2,:]
2873 phaseDiff = phaseInt - phaseCCF[:,2,:]
2874 phaseArrival = phaseInt.reshape(phaseInt.size)
2874 phaseArrival = phaseInt.reshape(phaseInt.size)
2875
2875
2876 #Dealias
2876 #Dealias
2877 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2877 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2878 # indAlias = numpy.where(phaseArrival > numpy.pi)
2878 # indAlias = numpy.where(phaseArrival > numpy.pi)
2879 # phaseArrival[indAlias] -= 2*numpy.pi
2879 # phaseArrival[indAlias] -= 2*numpy.pi
2880 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2880 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2881 # phaseArrival[indAlias] += 2*numpy.pi
2881 # phaseArrival[indAlias] += 2*numpy.pi
2882
2882
2883 return phaseDiff, phaseArrival
2883 return phaseDiff, phaseArrival
2884
2884
2885 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2885 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2886 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2886 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2887 #find the phase shifts of each channel over 1 second intervals
2887 #find the phase shifts of each channel over 1 second intervals
2888 #only look at ranges below the beacon signal
2888 #only look at ranges below the beacon signal
2889 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2889 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2890 numBlocks = int(volts.shape[1]/numProfPerBlock)
2890 numBlocks = int(volts.shape[1]/numProfPerBlock)
2891 numHeights = volts.shape[2]
2891 numHeights = volts.shape[2]
2892 nChannel = volts.shape[0]
2892 nChannel = volts.shape[0]
2893 voltsCohDet = volts.copy()
2893 voltsCohDet = volts.copy()
2894
2894
2895 pairsarray = numpy.array(pairslist)
2895 pairsarray = numpy.array(pairslist)
2896 indSides = pairsarray[:,1]
2896 indSides = pairsarray[:,1]
2897 # indSides = numpy.array(range(nChannel))
2897 # indSides = numpy.array(range(nChannel))
2898 # indSides = numpy.delete(indSides, indCenter)
2898 # indSides = numpy.delete(indSides, indCenter)
2899 #
2899 #
2900 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2900 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2901 listBlocks = numpy.array_split(volts, numBlocks, 1)
2901 listBlocks = numpy.array_split(volts, numBlocks, 1)
2902
2902
2903 startInd = 0
2903 startInd = 0
2904 endInd = 0
2904 endInd = 0
2905
2905
2906 for i in range(numBlocks):
2906 for i in range(numBlocks):
2907 startInd = endInd
2907 startInd = endInd
2908 endInd = endInd + listBlocks[i].shape[1]
2908 endInd = endInd + listBlocks[i].shape[1]
2909
2909
2910 arrayBlock = listBlocks[i]
2910 arrayBlock = listBlocks[i]
2911 # arrayBlockCenter = listCenter[i]
2911 # arrayBlockCenter = listCenter[i]
2912
2912
2913 #Estimate the Phase Difference
2913 #Estimate the Phase Difference
2914 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
2914 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
2915 #Phase Difference RMS
2915 #Phase Difference RMS
2916 arrayPhaseRMS = numpy.abs(phaseDiff)
2916 arrayPhaseRMS = numpy.abs(phaseDiff)
2917 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
2917 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
2918 indPhase = numpy.where(phaseRMSaux==4)
2918 indPhase = numpy.where(phaseRMSaux==4)
2919 #Shifting
2919 #Shifting
2920 if indPhase[0].shape[0] > 0:
2920 if indPhase[0].shape[0] > 0:
2921 for j in range(indSides.size):
2921 for j in range(indSides.size):
2922 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
2922 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
2923 voltsCohDet[:,startInd:endInd,:] = arrayBlock
2923 voltsCohDet[:,startInd:endInd,:] = arrayBlock
2924
2924
2925 return voltsCohDet
2925 return voltsCohDet
2926
2926
2927 def __calculateCCF(self, volts, pairslist ,laglist):
2927 def __calculateCCF(self, volts, pairslist ,laglist):
2928
2928
2929 nHeights = volts.shape[2]
2929 nHeights = volts.shape[2]
2930 nPoints = volts.shape[1]
2930 nPoints = volts.shape[1]
2931 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
2931 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
2932
2932
2933 for i in range(len(pairslist)):
2933 for i in range(len(pairslist)):
2934 volts1 = volts[pairslist[i][0]]
2934 volts1 = volts[pairslist[i][0]]
2935 volts2 = volts[pairslist[i][1]]
2935 volts2 = volts[pairslist[i][1]]
2936
2936
2937 for t in range(len(laglist)):
2937 for t in range(len(laglist)):
2938 idxT = laglist[t]
2938 idxT = laglist[t]
2939 if idxT >= 0:
2939 if idxT >= 0:
2940 vStacked = numpy.vstack((volts2[idxT:,:],
2940 vStacked = numpy.vstack((volts2[idxT:,:],
2941 numpy.zeros((idxT, nHeights),dtype='complex')))
2941 numpy.zeros((idxT, nHeights),dtype='complex')))
2942 else:
2942 else:
2943 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
2943 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
2944 volts2[:(nPoints + idxT),:]))
2944 volts2[:(nPoints + idxT),:]))
2945 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
2945 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
2946
2946
2947 vStacked = None
2947 vStacked = None
2948 return voltsCCF
2948 return voltsCCF
2949
2949
2950 def __getNoise(self, power, timeSegment, timeInterval):
2950 def __getNoise(self, power, timeSegment, timeInterval):
2951 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2951 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2952 numBlocks = int(power.shape[0]/numProfPerBlock)
2952 numBlocks = int(power.shape[0]/numProfPerBlock)
2953 numHeights = power.shape[1]
2953 numHeights = power.shape[1]
2954
2954
2955 listPower = numpy.array_split(power, numBlocks, 0)
2955 listPower = numpy.array_split(power, numBlocks, 0)
2956 noise = numpy.zeros((power.shape[0], power.shape[1]))
2956 noise = numpy.zeros((power.shape[0], power.shape[1]))
2957 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
2957 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
2958
2958
2959 startInd = 0
2959 startInd = 0
2960 endInd = 0
2960 endInd = 0
2961
2961
2962 for i in range(numBlocks): #split por canal
2962 for i in range(numBlocks): #split por canal
2963 startInd = endInd
2963 startInd = endInd
2964 endInd = endInd + listPower[i].shape[0]
2964 endInd = endInd + listPower[i].shape[0]
2965
2965
2966 arrayBlock = listPower[i]
2966 arrayBlock = listPower[i]
2967 noiseAux = numpy.mean(arrayBlock, 0)
2967 noiseAux = numpy.mean(arrayBlock, 0)
2968 # noiseAux = numpy.median(noiseAux)
2968 # noiseAux = numpy.median(noiseAux)
2969 # noiseAux = numpy.mean(arrayBlock)
2969 # noiseAux = numpy.mean(arrayBlock)
2970 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
2970 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
2971
2971
2972 noiseAux1 = numpy.mean(arrayBlock)
2972 noiseAux1 = numpy.mean(arrayBlock)
2973 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
2973 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
2974
2974
2975 return noise, noise1
2975 return noise, noise1
2976
2976
2977 def __findMeteors(self, power, thresh):
2977 def __findMeteors(self, power, thresh):
2978 nProf = power.shape[0]
2978 nProf = power.shape[0]
2979 nHeights = power.shape[1]
2979 nHeights = power.shape[1]
2980 listMeteors = []
2980 listMeteors = []
2981
2981
2982 for i in range(nHeights):
2982 for i in range(nHeights):
2983 powerAux = power[:,i]
2983 powerAux = power[:,i]
2984 threshAux = thresh[:,i]
2984 threshAux = thresh[:,i]
2985
2985
2986 indUPthresh = numpy.where(powerAux > threshAux)[0]
2986 indUPthresh = numpy.where(powerAux > threshAux)[0]
2987 indDNthresh = numpy.where(powerAux <= threshAux)[0]
2987 indDNthresh = numpy.where(powerAux <= threshAux)[0]
2988
2988
2989 j = 0
2989 j = 0
2990
2990
2991 while (j < indUPthresh.size - 2):
2991 while (j < indUPthresh.size - 2):
2992 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
2992 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
2993 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
2993 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
2994 indDNthresh = indDNthresh[indDNAux]
2994 indDNthresh = indDNthresh[indDNAux]
2995
2995
2996 if (indDNthresh.size > 0):
2996 if (indDNthresh.size > 0):
2997 indEnd = indDNthresh[0] - 1
2997 indEnd = indDNthresh[0] - 1
2998 indInit = indUPthresh[j]
2998 indInit = indUPthresh[j]
2999
2999
3000 meteor = powerAux[indInit:indEnd + 1]
3000 meteor = powerAux[indInit:indEnd + 1]
3001 indPeak = meteor.argmax() + indInit
3001 indPeak = meteor.argmax() + indInit
3002 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
3002 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
3003
3003
3004 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
3004 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
3005 j = numpy.where(indUPthresh == indEnd)[0] + 1
3005 j = numpy.where(indUPthresh == indEnd)[0] + 1
3006 else: j+=1
3006 else: j+=1
3007 else: j+=1
3007 else: j+=1
3008
3008
3009 return listMeteors
3009 return listMeteors
3010
3010
3011 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
3011 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
3012
3012
3013 arrayMeteors = numpy.asarray(listMeteors)
3013 arrayMeteors = numpy.asarray(listMeteors)
3014 listMeteors1 = []
3014 listMeteors1 = []
3015
3015
3016 while arrayMeteors.shape[0] > 0:
3016 while arrayMeteors.shape[0] > 0:
3017 FLAs = arrayMeteors[:,4]
3017 FLAs = arrayMeteors[:,4]
3018 maxFLA = FLAs.argmax()
3018 maxFLA = FLAs.argmax()
3019 listMeteors1.append(arrayMeteors[maxFLA,:])
3019 listMeteors1.append(arrayMeteors[maxFLA,:])
3020
3020
3021 MeteorInitTime = arrayMeteors[maxFLA,1]
3021 MeteorInitTime = arrayMeteors[maxFLA,1]
3022 MeteorEndTime = arrayMeteors[maxFLA,3]
3022 MeteorEndTime = arrayMeteors[maxFLA,3]
3023 MeteorHeight = arrayMeteors[maxFLA,0]
3023 MeteorHeight = arrayMeteors[maxFLA,0]
3024
3024
3025 #Check neighborhood
3025 #Check neighborhood
3026 maxHeightIndex = MeteorHeight + rangeLimit
3026 maxHeightIndex = MeteorHeight + rangeLimit
3027 minHeightIndex = MeteorHeight - rangeLimit
3027 minHeightIndex = MeteorHeight - rangeLimit
3028 minTimeIndex = MeteorInitTime - timeLimit
3028 minTimeIndex = MeteorInitTime - timeLimit
3029 maxTimeIndex = MeteorEndTime + timeLimit
3029 maxTimeIndex = MeteorEndTime + timeLimit
3030
3030
3031 #Check Heights
3031 #Check Heights
3032 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
3032 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
3033 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
3033 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
3034 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
3034 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
3035
3035
3036 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
3036 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
3037
3037
3038 return listMeteors1
3038 return listMeteors1
3039
3039
3040 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
3040 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
3041 numHeights = volts.shape[2]
3041 numHeights = volts.shape[2]
3042 nChannel = volts.shape[0]
3042 nChannel = volts.shape[0]
3043
3043
3044 thresholdPhase = thresh[0]
3044 thresholdPhase = thresh[0]
3045 thresholdNoise = thresh[1]
3045 thresholdNoise = thresh[1]
3046 thresholdDB = float(thresh[2])
3046 thresholdDB = float(thresh[2])
3047
3047
3048 thresholdDB1 = 10**(thresholdDB/10)
3048 thresholdDB1 = 10**(thresholdDB/10)
3049 pairsarray = numpy.array(pairslist)
3049 pairsarray = numpy.array(pairslist)
3050 indSides = pairsarray[:,1]
3050 indSides = pairsarray[:,1]
3051
3051
3052 pairslist1 = list(pairslist)
3052 pairslist1 = list(pairslist)
3053 pairslist1.append((0,1))
3053 pairslist1.append((0,1))
3054 pairslist1.append((3,4))
3054 pairslist1.append((3,4))
3055
3055
3056 listMeteors1 = []
3056 listMeteors1 = []
3057 listPowerSeries = []
3057 listPowerSeries = []
3058 listVoltageSeries = []
3058 listVoltageSeries = []
3059 #volts has the war data
3059 #volts has the war data
3060
3060
3061 if frequency == 30e6:
3061 if frequency == 30e6:
3062 timeLag = 45*10**-3
3062 timeLag = 45*10**-3
3063 else:
3063 else:
3064 timeLag = 15*10**-3
3064 timeLag = 15*10**-3
3065 lag = numpy.ceil(timeLag/timeInterval)
3065 lag = numpy.ceil(timeLag/timeInterval)
3066
3066
3067 for i in range(len(listMeteors)):
3067 for i in range(len(listMeteors)):
3068
3068
3069 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3069 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3070 meteorAux = numpy.zeros(16)
3070 meteorAux = numpy.zeros(16)
3071
3071
3072 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3072 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3073 mHeight = listMeteors[i][0]
3073 mHeight = listMeteors[i][0]
3074 mStart = listMeteors[i][1]
3074 mStart = listMeteors[i][1]
3075 mPeak = listMeteors[i][2]
3075 mPeak = listMeteors[i][2]
3076 mEnd = listMeteors[i][3]
3076 mEnd = listMeteors[i][3]
3077
3077
3078 #get the volt data between the start and end times of the meteor
3078 #get the volt data between the start and end times of the meteor
3079 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3079 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3080 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3080 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3081
3081
3082 #3.6. Phase Difference estimation
3082 #3.6. Phase Difference estimation
3083 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3083 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3084
3084
3085 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3085 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3086 #meteorVolts0.- all Channels, all Profiles
3086 #meteorVolts0.- all Channels, all Profiles
3087 meteorVolts0 = volts[:,:,mHeight]
3087 meteorVolts0 = volts[:,:,mHeight]
3088 meteorThresh = noise[:,mHeight]*thresholdNoise
3088 meteorThresh = noise[:,mHeight]*thresholdNoise
3089 meteorNoise = noise[:,mHeight]
3089 meteorNoise = noise[:,mHeight]
3090 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3090 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3091 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3091 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3092
3092
3093 #Times reestimation
3093 #Times reestimation
3094 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3094 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3095 if mStart1.size > 0:
3095 if mStart1.size > 0:
3096 mStart1 = mStart1[-1] + 1
3096 mStart1 = mStart1[-1] + 1
3097
3097
3098 else:
3098 else:
3099 mStart1 = mPeak
3099 mStart1 = mPeak
3100
3100
3101 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3101 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3102 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3102 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3103 if mEndDecayTime1.size == 0:
3103 if mEndDecayTime1.size == 0:
3104 mEndDecayTime1 = powerNet0.size
3104 mEndDecayTime1 = powerNet0.size
3105 else:
3105 else:
3106 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3106 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3107 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3107 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3108
3108
3109 #meteorVolts1.- all Channels, from start to end
3109 #meteorVolts1.- all Channels, from start to end
3110 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3110 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3111 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
3111 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
3112 if meteorVolts2.shape[1] == 0:
3112 if meteorVolts2.shape[1] == 0:
3113 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
3113 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
3114 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3114 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3115 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3115 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3116 ##################### END PARAMETERS REESTIMATION #########################
3116 ##################### END PARAMETERS REESTIMATION #########################
3117
3117
3118 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3118 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3119 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3119 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3120 if meteorVolts2.shape[1] > 0:
3120 if meteorVolts2.shape[1] > 0:
3121 #Phase Difference re-estimation
3121 #Phase Difference re-estimation
3122 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3122 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3123 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3123 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3124 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3124 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3125 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3125 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3126 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3126 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3127
3127
3128 #Phase Difference RMS
3128 #Phase Difference RMS
3129 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3129 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3130 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
3130 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
3131 #Data from Meteor
3131 #Data from Meteor
3132 mPeak1 = powerNet1.argmax() + mStart1
3132 mPeak1 = powerNet1.argmax() + mStart1
3133 mPeakPower1 = powerNet1.max()
3133 mPeakPower1 = powerNet1.max()
3134 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
3134 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
3135 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
3135 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
3136 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
3136 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
3137 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
3137 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
3138 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
3138 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
3139 #Vectorize
3139 #Vectorize
3140 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3140 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3141 meteorAux[7:11] = phaseDiffint[0:4]
3141 meteorAux[7:11] = phaseDiffint[0:4]
3142
3142
3143 #Rejection Criterions
3143 #Rejection Criterions
3144 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3144 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3145 meteorAux[-1] = 17
3145 meteorAux[-1] = 17
3146 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3146 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3147 meteorAux[-1] = 1
3147 meteorAux[-1] = 1
3148
3148
3149
3149
3150 else:
3150 else:
3151 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3151 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3152 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3152 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3153 PowerSeries = 0
3153 PowerSeries = 0
3154
3154
3155 listMeteors1.append(meteorAux)
3155 listMeteors1.append(meteorAux)
3156 listPowerSeries.append(PowerSeries)
3156 listPowerSeries.append(PowerSeries)
3157 listVoltageSeries.append(meteorVolts1)
3157 listVoltageSeries.append(meteorVolts1)
3158
3158
3159 return listMeteors1, listPowerSeries, listVoltageSeries
3159 return listMeteors1, listPowerSeries, listVoltageSeries
3160
3160
3161 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3161 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3162
3162
3163 threshError = 10
3163 threshError = 10
3164 #Depending if it is 30 or 50 MHz
3164 #Depending if it is 30 or 50 MHz
3165 if frequency == 30e6:
3165 if frequency == 30e6:
3166 timeLag = 45*10**-3
3166 timeLag = 45*10**-3
3167 else:
3167 else:
3168 timeLag = 15*10**-3
3168 timeLag = 15*10**-3
3169 lag = numpy.ceil(timeLag/timeInterval)
3169 lag = numpy.ceil(timeLag/timeInterval)
3170
3170
3171 listMeteors1 = []
3171 listMeteors1 = []
3172
3172
3173 for i in range(len(listMeteors)):
3173 for i in range(len(listMeteors)):
3174 meteorPower = listPower[i]
3174 meteorPower = listPower[i]
3175 meteorAux = listMeteors[i]
3175 meteorAux = listMeteors[i]
3176
3176
3177 if meteorAux[-1] == 0:
3177 if meteorAux[-1] == 0:
3178
3178
3179 try:
3179 try:
3180 indmax = meteorPower.argmax()
3180 indmax = meteorPower.argmax()
3181 indlag = indmax + lag
3181 indlag = indmax + lag
3182
3182
3183 y = meteorPower[indlag:]
3183 y = meteorPower[indlag:]
3184 x = numpy.arange(0, y.size)*timeLag
3184 x = numpy.arange(0, y.size)*timeLag
3185
3185
3186 #first guess
3186 #first guess
3187 a = y[0]
3187 a = y[0]
3188 tau = timeLag
3188 tau = timeLag
3189 #exponential fit
3189 #exponential fit
3190 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
3190 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
3191 y1 = self.__exponential_function(x, *popt)
3191 y1 = self.__exponential_function(x, *popt)
3192 #error estimation
3192 #error estimation
3193 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3193 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3194
3194
3195 decayTime = popt[1]
3195 decayTime = popt[1]
3196 riseTime = indmax*timeInterval
3196 riseTime = indmax*timeInterval
3197 meteorAux[11:13] = [decayTime, error]
3197 meteorAux[11:13] = [decayTime, error]
3198
3198
3199 #Table items 7, 8 and 11
3199 #Table items 7, 8 and 11
3200 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3200 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3201 meteorAux[-1] = 7
3201 meteorAux[-1] = 7
3202 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3202 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3203 meteorAux[-1] = 8
3203 meteorAux[-1] = 8
3204 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3204 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3205 meteorAux[-1] = 11
3205 meteorAux[-1] = 11
3206
3206
3207
3207
3208 except:
3208 except:
3209 meteorAux[-1] = 11
3209 meteorAux[-1] = 11
3210
3210
3211
3211
3212 listMeteors1.append(meteorAux)
3212 listMeteors1.append(meteorAux)
3213
3213
3214 return listMeteors1
3214 return listMeteors1
3215
3215
3216 #Exponential Function
3216 #Exponential Function
3217
3217
3218 def __exponential_function(self, x, a, tau):
3218 def __exponential_function(self, x, a, tau):
3219 y = a*numpy.exp(-x/tau)
3219 y = a*numpy.exp(-x/tau)
3220 return y
3220 return y
3221
3221
3222 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3222 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3223
3223
3224 pairslist1 = list(pairslist)
3224 pairslist1 = list(pairslist)
3225 pairslist1.append((0,1))
3225 pairslist1.append((0,1))
3226 pairslist1.append((3,4))
3226 pairslist1.append((3,4))
3227 numPairs = len(pairslist1)
3227 numPairs = len(pairslist1)
3228 #Time Lag
3228 #Time Lag
3229 timeLag = 45*10**-3
3229 timeLag = 45*10**-3
3230 c = 3e8
3230 c = 3e8
3231 lag = numpy.ceil(timeLag/timeInterval)
3231 lag = numpy.ceil(timeLag/timeInterval)
3232 freq = 30e6
3232 freq = 30e6
3233
3233
3234 listMeteors1 = []
3234 listMeteors1 = []
3235
3235
3236 for i in range(len(listMeteors)):
3236 for i in range(len(listMeteors)):
3237 meteorAux = listMeteors[i]
3237 meteorAux = listMeteors[i]
3238 if meteorAux[-1] == 0:
3238 if meteorAux[-1] == 0:
3239 mStart = listMeteors[i][1]
3239 mStart = listMeteors[i][1]
3240 mPeak = listMeteors[i][2]
3240 mPeak = listMeteors[i][2]
3241 mLag = mPeak - mStart + lag
3241 mLag = mPeak - mStart + lag
3242
3242
3243 #get the volt data between the start and end times of the meteor
3243 #get the volt data between the start and end times of the meteor
3244 meteorVolts = listVolts[i]
3244 meteorVolts = listVolts[i]
3245 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3245 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3246
3246
3247 #Get CCF
3247 #Get CCF
3248 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3248 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3249
3249
3250 #Method 2
3250 #Method 2
3251 slopes = numpy.zeros(numPairs)
3251 slopes = numpy.zeros(numPairs)
3252 time = numpy.array([-2,-1,1,2])*timeInterval
3252 time = numpy.array([-2,-1,1,2])*timeInterval
3253 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3253 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3254
3254
3255 #Correct phases
3255 #Correct phases
3256 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3256 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3257 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3257 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3258
3258
3259 if indDer[0].shape[0] > 0:
3259 if indDer[0].shape[0] > 0:
3260 for i in range(indDer[0].shape[0]):
3260 for i in range(indDer[0].shape[0]):
3261 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3261 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3262 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
3262 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
3263
3263
3264 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
3264 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
3265 for j in range(numPairs):
3265 for j in range(numPairs):
3266 fit = stats.linregress(time, angAllCCF[j,:])
3266 fit = stats.linregress(time, angAllCCF[j,:])
3267 slopes[j] = fit[0]
3267 slopes[j] = fit[0]
3268
3268
3269 #Remove Outlier
3269 #Remove Outlier
3270 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3270 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3271 # slopes = numpy.delete(slopes,indOut)
3271 # slopes = numpy.delete(slopes,indOut)
3272 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3272 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3273 # slopes = numpy.delete(slopes,indOut)
3273 # slopes = numpy.delete(slopes,indOut)
3274
3274
3275 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3275 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3276 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3276 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3277 meteorAux[-2] = radialError
3277 meteorAux[-2] = radialError
3278 meteorAux[-3] = radialVelocity
3278 meteorAux[-3] = radialVelocity
3279
3279
3280 #Setting Error
3280 #Setting Error
3281 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3281 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3282 if numpy.abs(radialVelocity) > 200:
3282 if numpy.abs(radialVelocity) > 200:
3283 meteorAux[-1] = 15
3283 meteorAux[-1] = 15
3284 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3284 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3285 elif radialError > radialStdThresh:
3285 elif radialError > radialStdThresh:
3286 meteorAux[-1] = 12
3286 meteorAux[-1] = 12
3287
3287
3288 listMeteors1.append(meteorAux)
3288 listMeteors1.append(meteorAux)
3289 return listMeteors1
3289 return listMeteors1
3290
3290
3291 def __setNewArrays(self, listMeteors, date, heiRang):
3291 def __setNewArrays(self, listMeteors, date, heiRang):
3292
3292
3293 #New arrays
3293 #New arrays
3294 arrayMeteors = numpy.array(listMeteors)
3294 arrayMeteors = numpy.array(listMeteors)
3295 arrayParameters = numpy.zeros((len(listMeteors), 13))
3295 arrayParameters = numpy.zeros((len(listMeteors), 13))
3296
3296
3297 #Date inclusion
3297 #Date inclusion
3298 # date = re.findall(r'\((.*?)\)', date)
3298 # date = re.findall(r'\((.*?)\)', date)
3299 # date = date[0].split(',')
3299 # date = date[0].split(',')
3300 # date = map(int, date)
3300 # date = map(int, date)
3301 #
3301 #
3302 # if len(date)<6:
3302 # if len(date)<6:
3303 # date.append(0)
3303 # date.append(0)
3304 #
3304 #
3305 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3305 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3306 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3306 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3307 arrayDate = numpy.tile(date, (len(listMeteors)))
3307 arrayDate = numpy.tile(date, (len(listMeteors)))
3308
3308
3309 #Meteor array
3309 #Meteor array
3310 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3310 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3311 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3311 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3312
3312
3313 #Parameters Array
3313 #Parameters Array
3314 arrayParameters[:,0] = arrayDate #Date
3314 arrayParameters[:,0] = arrayDate #Date
3315 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
3315 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
3316 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
3316 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
3317 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3317 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3318 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3318 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3319
3319
3320
3320
3321 return arrayParameters
3321 return arrayParameters
3322
3322
3323 class CorrectSMPhases(Operation):
3323 class CorrectSMPhases(Operation):
3324
3324
3325 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3325 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3326
3326
3327 arrayParameters = dataOut.data_param
3327 arrayParameters = dataOut.data_param
3328 pairsList = []
3328 pairsList = []
3329 pairx = (0,1)
3329 pairx = (0,1)
3330 pairy = (2,3)
3330 pairy = (2,3)
3331 pairsList.append(pairx)
3331 pairsList.append(pairx)
3332 pairsList.append(pairy)
3332 pairsList.append(pairy)
3333 jph = numpy.zeros(4)
3333 jph = numpy.zeros(4)
3334
3334
3335 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3335 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3336 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3336 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3337 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3337 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3338
3338
3339 meteorOps = SMOperations()
3339 meteorOps = SMOperations()
3340 if channelPositions is None:
3340 if channelPositions is None:
3341 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3341 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3342 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3342 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3343
3343
3344 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3344 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3345 h = (hmin,hmax)
3345 h = (hmin,hmax)
3346
3346
3347 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3347 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3348
3348
3349 dataOut.data_param = arrayParameters
3349 dataOut.data_param = arrayParameters
3350 return
3350 return
3351
3351
3352 class SMPhaseCalibration(Operation):
3352 class SMPhaseCalibration(Operation):
3353
3353
3354 __buffer = None
3354 __buffer = None
3355
3355
3356 __initime = None
3356 __initime = None
3357
3357
3358 __dataReady = False
3358 __dataReady = False
3359
3359
3360 __isConfig = False
3360 __isConfig = False
3361
3361
3362 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3362 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3363
3363
3364 dataTime = currentTime + paramInterval
3364 dataTime = currentTime + paramInterval
3365 deltaTime = dataTime - initTime
3365 deltaTime = dataTime - initTime
3366
3366
3367 if deltaTime >= outputInterval or deltaTime < 0:
3367 if deltaTime >= outputInterval or deltaTime < 0:
3368 return True
3368 return True
3369
3369
3370 return False
3370 return False
3371
3371
3372 def __getGammas(self, pairs, d, phases):
3372 def __getGammas(self, pairs, d, phases):
3373 gammas = numpy.zeros(2)
3373 gammas = numpy.zeros(2)
3374
3374
3375 for i in range(len(pairs)):
3375 for i in range(len(pairs)):
3376
3376
3377 pairi = pairs[i]
3377 pairi = pairs[i]
3378
3378
3379 phip3 = phases[:,pairi[0]]
3379 phip3 = phases[:,pairi[0]]
3380 d3 = d[pairi[0]]
3380 d3 = d[pairi[0]]
3381 phip2 = phases[:,pairi[1]]
3381 phip2 = phases[:,pairi[1]]
3382 d2 = d[pairi[1]]
3382 d2 = d[pairi[1]]
3383 #Calculating gamma
3383 #Calculating gamma
3384 # jdcos = alp1/(k*d1)
3384 # jdcos = alp1/(k*d1)
3385 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
3385 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
3386 jgamma = -phip2*d3/d2 - phip3
3386 jgamma = -phip2*d3/d2 - phip3
3387 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3387 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3388 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3388 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3389 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3389 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3390
3390
3391 #Revised distribution
3391 #Revised distribution
3392 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3392 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3393
3393
3394 #Histogram
3394 #Histogram
3395 nBins = 64
3395 nBins = 64
3396 rmin = -0.5*numpy.pi
3396 rmin = -0.5*numpy.pi
3397 rmax = 0.5*numpy.pi
3397 rmax = 0.5*numpy.pi
3398 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3398 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3399
3399
3400 meteorsY = phaseHisto[0]
3400 meteorsY = phaseHisto[0]
3401 phasesX = phaseHisto[1][:-1]
3401 phasesX = phaseHisto[1][:-1]
3402 width = phasesX[1] - phasesX[0]
3402 width = phasesX[1] - phasesX[0]
3403 phasesX += width/2
3403 phasesX += width/2
3404
3404
3405 #Gaussian aproximation
3405 #Gaussian aproximation
3406 bpeak = meteorsY.argmax()
3406 bpeak = meteorsY.argmax()
3407 peak = meteorsY.max()
3407 peak = meteorsY.max()
3408 jmin = bpeak - 5
3408 jmin = bpeak - 5
3409 jmax = bpeak + 5 + 1
3409 jmax = bpeak + 5 + 1
3410
3410
3411 if jmin<0:
3411 if jmin<0:
3412 jmin = 0
3412 jmin = 0
3413 jmax = 6
3413 jmax = 6
3414 elif jmax > meteorsY.size:
3414 elif jmax > meteorsY.size:
3415 jmin = meteorsY.size - 6
3415 jmin = meteorsY.size - 6
3416 jmax = meteorsY.size
3416 jmax = meteorsY.size
3417
3417
3418 x0 = numpy.array([peak,bpeak,50])
3418 x0 = numpy.array([peak,bpeak,50])
3419 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3419 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3420
3420
3421 #Gammas
3421 #Gammas
3422 gammas[i] = coeff[0][1]
3422 gammas[i] = coeff[0][1]
3423
3423
3424 return gammas
3424 return gammas
3425
3425
3426 def __residualFunction(self, coeffs, y, t):
3426 def __residualFunction(self, coeffs, y, t):
3427
3427
3428 return y - self.__gauss_function(t, coeffs)
3428 return y - self.__gauss_function(t, coeffs)
3429
3429
3430 def __gauss_function(self, t, coeffs):
3430 def __gauss_function(self, t, coeffs):
3431
3431
3432 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3432 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3433
3433
3434 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
3434 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
3435 meteorOps = SMOperations()
3435 meteorOps = SMOperations()
3436 nchan = 4
3436 nchan = 4
3437 pairx = pairsList[0] #x es 0
3437 pairx = pairsList[0] #x es 0
3438 pairy = pairsList[1] #y es 1
3438 pairy = pairsList[1] #y es 1
3439 center_xangle = 0
3439 center_xangle = 0
3440 center_yangle = 0
3440 center_yangle = 0
3441 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
3441 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
3442 ntimes = len(range_angle)
3442 ntimes = len(range_angle)
3443
3443
3444 nstepsx = 20
3444 nstepsx = 20
3445 nstepsy = 20
3445 nstepsy = 20
3446
3446
3447 for iz in range(ntimes):
3447 for iz in range(ntimes):
3448 min_xangle = -range_angle[iz]/2 + center_xangle
3448 min_xangle = -range_angle[iz]/2 + center_xangle
3449 max_xangle = range_angle[iz]/2 + center_xangle
3449 max_xangle = range_angle[iz]/2 + center_xangle
3450 min_yangle = -range_angle[iz]/2 + center_yangle
3450 min_yangle = -range_angle[iz]/2 + center_yangle
3451 max_yangle = range_angle[iz]/2 + center_yangle
3451 max_yangle = range_angle[iz]/2 + center_yangle
3452
3452
3453 inc_x = (max_xangle-min_xangle)/nstepsx
3453 inc_x = (max_xangle-min_xangle)/nstepsx
3454 inc_y = (max_yangle-min_yangle)/nstepsy
3454 inc_y = (max_yangle-min_yangle)/nstepsy
3455
3455
3456 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3456 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3457 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3457 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3458 penalty = numpy.zeros((nstepsx,nstepsy))
3458 penalty = numpy.zeros((nstepsx,nstepsy))
3459 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3459 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3460 jph = numpy.zeros(nchan)
3460 jph = numpy.zeros(nchan)
3461
3461
3462 # Iterations looking for the offset
3462 # Iterations looking for the offset
3463 for iy in range(int(nstepsy)):
3463 for iy in range(int(nstepsy)):
3464 for ix in range(int(nstepsx)):
3464 for ix in range(int(nstepsx)):
3465 d3 = d[pairsList[1][0]]
3465 d3 = d[pairsList[1][0]]
3466 d2 = d[pairsList[1][1]]
3466 d2 = d[pairsList[1][1]]
3467 d5 = d[pairsList[0][0]]
3467 d5 = d[pairsList[0][0]]
3468 d4 = d[pairsList[0][1]]
3468 d4 = d[pairsList[0][1]]
3469
3469
3470 alp2 = alpha_y[iy] #gamma 1
3470 alp2 = alpha_y[iy] #gamma 1
3471 alp4 = alpha_x[ix] #gamma 0
3471 alp4 = alpha_x[ix] #gamma 0
3472
3472
3473 alp3 = -alp2*d3/d2 - gammas[1]
3473 alp3 = -alp2*d3/d2 - gammas[1]
3474 alp5 = -alp4*d5/d4 - gammas[0]
3474 alp5 = -alp4*d5/d4 - gammas[0]
3475 # jph[pairy[1]] = alpha_y[iy]
3475 # jph[pairy[1]] = alpha_y[iy]
3476 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3476 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3477
3477
3478 # jph[pairx[1]] = alpha_x[ix]
3478 # jph[pairx[1]] = alpha_x[ix]
3479 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3479 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3480 jph[pairsList[0][1]] = alp4
3480 jph[pairsList[0][1]] = alp4
3481 jph[pairsList[0][0]] = alp5
3481 jph[pairsList[0][0]] = alp5
3482 jph[pairsList[1][0]] = alp3
3482 jph[pairsList[1][0]] = alp3
3483 jph[pairsList[1][1]] = alp2
3483 jph[pairsList[1][1]] = alp2
3484 jph_array[:,ix,iy] = jph
3484 jph_array[:,ix,iy] = jph
3485 # d = [2.0,2.5,2.5,2.0]
3485 # d = [2.0,2.5,2.5,2.0]
3486 #falta chequear si va a leer bien los meteoros
3486 #falta chequear si va a leer bien los meteoros
3487 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3487 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3488 error = meteorsArray1[:,-1]
3488 error = meteorsArray1[:,-1]
3489 ind1 = numpy.where(error==0)[0]
3489 ind1 = numpy.where(error==0)[0]
3490 penalty[ix,iy] = ind1.size
3490 penalty[ix,iy] = ind1.size
3491
3491
3492 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3492 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3493 phOffset = jph_array[:,i,j]
3493 phOffset = jph_array[:,i,j]
3494
3494
3495 center_xangle = phOffset[pairx[1]]
3495 center_xangle = phOffset[pairx[1]]
3496 center_yangle = phOffset[pairy[1]]
3496 center_yangle = phOffset[pairy[1]]
3497
3497
3498 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3498 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3499 phOffset = phOffset*180/numpy.pi
3499 phOffset = phOffset*180/numpy.pi
3500 return phOffset
3500 return phOffset
3501
3501
3502
3502
3503 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3503 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3504
3504
3505 dataOut.flagNoData = True
3505 dataOut.flagNoData = True
3506 self.__dataReady = False
3506 self.__dataReady = False
3507 dataOut.outputInterval = nHours*3600
3507 dataOut.outputInterval = nHours*3600
3508
3508
3509 if self.__isConfig == False:
3509 if self.__isConfig == False:
3510 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3510 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3511 #Get Initial LTC time
3511 #Get Initial LTC time
3512 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
3512 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
3513 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3513 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3514
3514
3515 self.__isConfig = True
3515 self.__isConfig = True
3516
3516
3517 if self.__buffer is None:
3517 if self.__buffer is None:
3518 self.__buffer = dataOut.data_param.copy()
3518 self.__buffer = dataOut.data_param.copy()
3519
3519
3520 else:
3520 else:
3521 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3521 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3522
3522
3523 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3523 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3524
3524
3525 if self.__dataReady:
3525 if self.__dataReady:
3526 dataOut.utctimeInit = self.__initime
3526 dataOut.utctimeInit = self.__initime
3527 self.__initime += dataOut.outputInterval #to erase time offset
3527 self.__initime += dataOut.outputInterval #to erase time offset
3528
3528
3529 freq = dataOut.frequency
3529 freq = dataOut.frequency
3530 c = dataOut.C #m/s
3530 c = dataOut.C #m/s
3531 lamb = c/freq
3531 lamb = c/freq
3532 k = 2*numpy.pi/lamb
3532 k = 2*numpy.pi/lamb
3533 azimuth = 0
3533 azimuth = 0
3534 h = (hmin, hmax)
3534 h = (hmin, hmax)
3535 # pairs = ((0,1),(2,3)) #Estrella
3535 # pairs = ((0,1),(2,3)) #Estrella
3536 # pairs = ((1,0),(2,3)) #T
3536 # pairs = ((1,0),(2,3)) #T
3537
3537
3538 if channelPositions is None:
3538 if channelPositions is None:
3539 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3539 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3540 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3540 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3541 meteorOps = SMOperations()
3541 meteorOps = SMOperations()
3542 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3542 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3543
3543
3544 #Checking correct order of pairs
3544 #Checking correct order of pairs
3545 pairs = []
3545 pairs = []
3546 if distances[1] > distances[0]:
3546 if distances[1] > distances[0]:
3547 pairs.append((1,0))
3547 pairs.append((1,0))
3548 else:
3548 else:
3549 pairs.append((0,1))
3549 pairs.append((0,1))
3550
3550
3551 if distances[3] > distances[2]:
3551 if distances[3] > distances[2]:
3552 pairs.append((3,2))
3552 pairs.append((3,2))
3553 else:
3553 else:
3554 pairs.append((2,3))
3554 pairs.append((2,3))
3555 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3555 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3556
3556
3557 meteorsArray = self.__buffer
3557 meteorsArray = self.__buffer
3558 error = meteorsArray[:,-1]
3558 error = meteorsArray[:,-1]
3559 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
3559 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
3560 ind1 = numpy.where(boolError)[0]
3560 ind1 = numpy.where(boolError)[0]
3561 meteorsArray = meteorsArray[ind1,:]
3561 meteorsArray = meteorsArray[ind1,:]
3562 meteorsArray[:,-1] = 0
3562 meteorsArray[:,-1] = 0
3563 phases = meteorsArray[:,8:12]
3563 phases = meteorsArray[:,8:12]
3564
3564
3565 #Calculate Gammas
3565 #Calculate Gammas
3566 gammas = self.__getGammas(pairs, distances, phases)
3566 gammas = self.__getGammas(pairs, distances, phases)
3567 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
3567 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
3568 #Calculate Phases
3568 #Calculate Phases
3569 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
3569 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
3570 phasesOff = phasesOff.reshape((1,phasesOff.size))
3570 phasesOff = phasesOff.reshape((1,phasesOff.size))
3571 dataOut.data_output = -phasesOff
3571 dataOut.data_output = -phasesOff
3572 dataOut.flagNoData = False
3572 dataOut.flagNoData = False
3573 self.__buffer = None
3573 self.__buffer = None
3574
3574
3575
3575
3576 return
3576 return
3577
3577
3578 class SMOperations():
3578 class SMOperations():
3579
3579
3580 def __init__(self):
3580 def __init__(self):
3581
3581
3582 return
3582 return
3583
3583
3584 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3584 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3585
3585
3586 arrayParameters = arrayParameters0.copy()
3586 arrayParameters = arrayParameters0.copy()
3587 hmin = h[0]
3587 hmin = h[0]
3588 hmax = h[1]
3588 hmax = h[1]
3589
3589
3590 #Calculate AOA (Error N 3, 4)
3590 #Calculate AOA (Error N 3, 4)
3591 #JONES ET AL. 1998
3591 #JONES ET AL. 1998
3592 AOAthresh = numpy.pi/8
3592 AOAthresh = numpy.pi/8
3593 error = arrayParameters[:,-1]
3593 error = arrayParameters[:,-1]
3594 phases = -arrayParameters[:,8:12] + jph
3594 phases = -arrayParameters[:,8:12] + jph
3595 # phases = numpy.unwrap(phases)
3595 # phases = numpy.unwrap(phases)
3596 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3596 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3597
3597
3598 #Calculate Heights (Error N 13 and 14)
3598 #Calculate Heights (Error N 13 and 14)
3599 error = arrayParameters[:,-1]
3599 error = arrayParameters[:,-1]
3600 Ranges = arrayParameters[:,1]
3600 Ranges = arrayParameters[:,1]
3601 zenith = arrayParameters[:,4]
3601 zenith = arrayParameters[:,4]
3602 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3602 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3603
3603
3604 #----------------------- Get Final data ------------------------------------
3604 #----------------------- Get Final data ------------------------------------
3605 # error = arrayParameters[:,-1]
3605 # error = arrayParameters[:,-1]
3606 # ind1 = numpy.where(error==0)[0]
3606 # ind1 = numpy.where(error==0)[0]
3607 # arrayParameters = arrayParameters[ind1,:]
3607 # arrayParameters = arrayParameters[ind1,:]
3608
3608
3609 return arrayParameters
3609 return arrayParameters
3610
3610
3611 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3611 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3612
3612
3613 arrayAOA = numpy.zeros((phases.shape[0],3))
3613 arrayAOA = numpy.zeros((phases.shape[0],3))
3614 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3614 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3615
3615
3616 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3616 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3617 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3617 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3618 arrayAOA[:,2] = cosDirError
3618 arrayAOA[:,2] = cosDirError
3619
3619
3620 azimuthAngle = arrayAOA[:,0]
3620 azimuthAngle = arrayAOA[:,0]
3621 zenithAngle = arrayAOA[:,1]
3621 zenithAngle = arrayAOA[:,1]
3622
3622
3623 #Setting Error
3623 #Setting Error
3624 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3624 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3625 error[indError] = 0
3625 error[indError] = 0
3626 #Number 3: AOA not fesible
3626 #Number 3: AOA not fesible
3627 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3627 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3628 error[indInvalid] = 3
3628 error[indInvalid] = 3
3629 #Number 4: Large difference in AOAs obtained from different antenna baselines
3629 #Number 4: Large difference in AOAs obtained from different antenna baselines
3630 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3630 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3631 error[indInvalid] = 4
3631 error[indInvalid] = 4
3632 return arrayAOA, error
3632 return arrayAOA, error
3633
3633
3634 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3634 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3635
3635
3636 #Initializing some variables
3636 #Initializing some variables
3637 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3637 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3638 ang_aux = ang_aux.reshape(1,ang_aux.size)
3638 ang_aux = ang_aux.reshape(1,ang_aux.size)
3639
3639
3640 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3640 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3641 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3641 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3642
3642
3643
3643
3644 for i in range(2):
3644 for i in range(2):
3645 ph0 = arrayPhase[:,pairsList[i][0]]
3645 ph0 = arrayPhase[:,pairsList[i][0]]
3646 ph1 = arrayPhase[:,pairsList[i][1]]
3646 ph1 = arrayPhase[:,pairsList[i][1]]
3647 d0 = distances[pairsList[i][0]]
3647 d0 = distances[pairsList[i][0]]
3648 d1 = distances[pairsList[i][1]]
3648 d1 = distances[pairsList[i][1]]
3649
3649
3650 ph0_aux = ph0 + ph1
3650 ph0_aux = ph0 + ph1
3651 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3651 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3652 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3652 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3653 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3653 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3654 #First Estimation
3654 #First Estimation
3655 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3655 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3656
3656
3657 #Most-Accurate Second Estimation
3657 #Most-Accurate Second Estimation
3658 phi1_aux = ph0 - ph1
3658 phi1_aux = ph0 - ph1
3659 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3659 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3660 #Direction Cosine 1
3660 #Direction Cosine 1
3661 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3661 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3662
3662
3663 #Searching the correct Direction Cosine
3663 #Searching the correct Direction Cosine
3664 cosdir0_aux = cosdir0[:,i]
3664 cosdir0_aux = cosdir0[:,i]
3665 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3665 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3666 #Minimum Distance
3666 #Minimum Distance
3667 cosDiff = (cosdir1 - cosdir0_aux)**2
3667 cosDiff = (cosdir1 - cosdir0_aux)**2
3668 indcos = cosDiff.argmin(axis = 1)
3668 indcos = cosDiff.argmin(axis = 1)
3669 #Saving Value obtained
3669 #Saving Value obtained
3670 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3670 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3671
3671
3672 return cosdir0, cosdir
3672 return cosdir0, cosdir
3673
3673
3674 def __calculateAOA(self, cosdir, azimuth):
3674 def __calculateAOA(self, cosdir, azimuth):
3675 cosdirX = cosdir[:,0]
3675 cosdirX = cosdir[:,0]
3676 cosdirY = cosdir[:,1]
3676 cosdirY = cosdir[:,1]
3677
3677
3678 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3678 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3679 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3679 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3680 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3680 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3681
3681
3682 return angles
3682 return angles
3683
3683
3684 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3684 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3685
3685
3686 Ramb = 375 #Ramb = c/(2*PRF)
3686 Ramb = 375 #Ramb = c/(2*PRF)
3687 Re = 6371 #Earth Radius
3687 Re = 6371 #Earth Radius
3688 heights = numpy.zeros(Ranges.shape)
3688 heights = numpy.zeros(Ranges.shape)
3689
3689
3690 R_aux = numpy.array([0,1,2])*Ramb
3690 R_aux = numpy.array([0,1,2])*Ramb
3691 R_aux = R_aux.reshape(1,R_aux.size)
3691 R_aux = R_aux.reshape(1,R_aux.size)
3692
3692
3693 Ranges = Ranges.reshape(Ranges.size,1)
3693 Ranges = Ranges.reshape(Ranges.size,1)
3694
3694
3695 Ri = Ranges + R_aux
3695 Ri = Ranges + R_aux
3696 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3696 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3697
3697
3698 #Check if there is a height between 70 and 110 km
3698 #Check if there is a height between 70 and 110 km
3699 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3699 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3700 ind_h = numpy.where(h_bool == 1)[0]
3700 ind_h = numpy.where(h_bool == 1)[0]
3701
3701
3702 hCorr = hi[ind_h, :]
3702 hCorr = hi[ind_h, :]
3703 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3703 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3704
3704
3705 hCorr = hi[ind_hCorr][:len(ind_h)]
3705 hCorr = hi[ind_hCorr][:len(ind_h)]
3706 heights[ind_h] = hCorr
3706 heights[ind_h] = hCorr
3707
3707
3708 #Setting Error
3708 #Setting Error
3709 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3709 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3710 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3710 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3711 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3711 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3712 error[indError] = 0
3712 error[indError] = 0
3713 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3713 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3714 error[indInvalid2] = 14
3714 error[indInvalid2] = 14
3715 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3715 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3716 error[indInvalid1] = 13
3716 error[indInvalid1] = 13
3717
3717
3718 return heights, error
3718 return heights, error
3719
3719
3720 def getPhasePairs(self, channelPositions):
3720 def getPhasePairs(self, channelPositions):
3721 chanPos = numpy.array(channelPositions)
3721 chanPos = numpy.array(channelPositions)
3722 listOper = list(itertools.combinations(list(range(5)),2))
3722 listOper = list(itertools.combinations(list(range(5)),2))
3723
3723
3724 distances = numpy.zeros(4)
3724 distances = numpy.zeros(4)
3725 axisX = []
3725 axisX = []
3726 axisY = []
3726 axisY = []
3727 distX = numpy.zeros(3)
3727 distX = numpy.zeros(3)
3728 distY = numpy.zeros(3)
3728 distY = numpy.zeros(3)
3729 ix = 0
3729 ix = 0
3730 iy = 0
3730 iy = 0
3731
3731
3732 pairX = numpy.zeros((2,2))
3732 pairX = numpy.zeros((2,2))
3733 pairY = numpy.zeros((2,2))
3733 pairY = numpy.zeros((2,2))
3734
3734
3735 for i in range(len(listOper)):
3735 for i in range(len(listOper)):
3736 pairi = listOper[i]
3736 pairi = listOper[i]
3737
3737
3738 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3738 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3739
3739
3740 if posDif[0] == 0:
3740 if posDif[0] == 0:
3741 axisY.append(pairi)
3741 axisY.append(pairi)
3742 distY[iy] = posDif[1]
3742 distY[iy] = posDif[1]
3743 iy += 1
3743 iy += 1
3744 elif posDif[1] == 0:
3744 elif posDif[1] == 0:
3745 axisX.append(pairi)
3745 axisX.append(pairi)
3746 distX[ix] = posDif[0]
3746 distX[ix] = posDif[0]
3747 ix += 1
3747 ix += 1
3748
3748
3749 for i in range(2):
3749 for i in range(2):
3750 if i==0:
3750 if i==0:
3751 dist0 = distX
3751 dist0 = distX
3752 axis0 = axisX
3752 axis0 = axisX
3753 else:
3753 else:
3754 dist0 = distY
3754 dist0 = distY
3755 axis0 = axisY
3755 axis0 = axisY
3756
3756
3757 side = numpy.argsort(dist0)[:-1]
3757 side = numpy.argsort(dist0)[:-1]
3758 axis0 = numpy.array(axis0)[side,:]
3758 axis0 = numpy.array(axis0)[side,:]
3759 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
3759 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
3760 axis1 = numpy.unique(numpy.reshape(axis0,4))
3760 axis1 = numpy.unique(numpy.reshape(axis0,4))
3761 side = axis1[axis1 != chanC]
3761 side = axis1[axis1 != chanC]
3762 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3762 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3763 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3763 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3764 if diff1<0:
3764 if diff1<0:
3765 chan2 = side[0]
3765 chan2 = side[0]
3766 d2 = numpy.abs(diff1)
3766 d2 = numpy.abs(diff1)
3767 chan1 = side[1]
3767 chan1 = side[1]
3768 d1 = numpy.abs(diff2)
3768 d1 = numpy.abs(diff2)
3769 else:
3769 else:
3770 chan2 = side[1]
3770 chan2 = side[1]
3771 d2 = numpy.abs(diff2)
3771 d2 = numpy.abs(diff2)
3772 chan1 = side[0]
3772 chan1 = side[0]
3773 d1 = numpy.abs(diff1)
3773 d1 = numpy.abs(diff1)
3774
3774
3775 if i==0:
3775 if i==0:
3776 chanCX = chanC
3776 chanCX = chanC
3777 chan1X = chan1
3777 chan1X = chan1
3778 chan2X = chan2
3778 chan2X = chan2
3779 distances[0:2] = numpy.array([d1,d2])
3779 distances[0:2] = numpy.array([d1,d2])
3780 else:
3780 else:
3781 chanCY = chanC
3781 chanCY = chanC
3782 chan1Y = chan1
3782 chan1Y = chan1
3783 chan2Y = chan2
3783 chan2Y = chan2
3784 distances[2:4] = numpy.array([d1,d2])
3784 distances[2:4] = numpy.array([d1,d2])
3785 # axisXsides = numpy.reshape(axisX[ix,:],4)
3785 # axisXsides = numpy.reshape(axisX[ix,:],4)
3786 #
3786 #
3787 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3787 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3788 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3788 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3789 #
3789 #
3790 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3790 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3791 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3791 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3792 # channel25X = int(pairX[0,ind25X])
3792 # channel25X = int(pairX[0,ind25X])
3793 # channel20X = int(pairX[1,ind20X])
3793 # channel20X = int(pairX[1,ind20X])
3794 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
3794 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
3795 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3795 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3796 # channel25Y = int(pairY[0,ind25Y])
3796 # channel25Y = int(pairY[0,ind25Y])
3797 # channel20Y = int(pairY[1,ind20Y])
3797 # channel20Y = int(pairY[1,ind20Y])
3798
3798
3799 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3799 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3800 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3800 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3801
3801
3802 return pairslist, distances
3802 return pairslist, distances
3803 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3803 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3804 #
3804 #
3805 # arrayAOA = numpy.zeros((phases.shape[0],3))
3805 # arrayAOA = numpy.zeros((phases.shape[0],3))
3806 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3806 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3807 #
3807 #
3808 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3808 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3809 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3809 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3810 # arrayAOA[:,2] = cosDirError
3810 # arrayAOA[:,2] = cosDirError
3811 #
3811 #
3812 # azimuthAngle = arrayAOA[:,0]
3812 # azimuthAngle = arrayAOA[:,0]
3813 # zenithAngle = arrayAOA[:,1]
3813 # zenithAngle = arrayAOA[:,1]
3814 #
3814 #
3815 # #Setting Error
3815 # #Setting Error
3816 # #Number 3: AOA not fesible
3816 # #Number 3: AOA not fesible
3817 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3817 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3818 # error[indInvalid] = 3
3818 # error[indInvalid] = 3
3819 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3819 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3820 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3820 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3821 # error[indInvalid] = 4
3821 # error[indInvalid] = 4
3822 # return arrayAOA, error
3822 # return arrayAOA, error
3823 #
3823 #
3824 # def __getDirectionCosines(self, arrayPhase, pairsList):
3824 # def __getDirectionCosines(self, arrayPhase, pairsList):
3825 #
3825 #
3826 # #Initializing some variables
3826 # #Initializing some variables
3827 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3827 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3828 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3828 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3829 #
3829 #
3830 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3830 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3831 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3831 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3832 #
3832 #
3833 #
3833 #
3834 # for i in range(2):
3834 # for i in range(2):
3835 # #First Estimation
3835 # #First Estimation
3836 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3836 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3837 # #Dealias
3837 # #Dealias
3838 # indcsi = numpy.where(phi0_aux > numpy.pi)
3838 # indcsi = numpy.where(phi0_aux > numpy.pi)
3839 # phi0_aux[indcsi] -= 2*numpy.pi
3839 # phi0_aux[indcsi] -= 2*numpy.pi
3840 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3840 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3841 # phi0_aux[indcsi] += 2*numpy.pi
3841 # phi0_aux[indcsi] += 2*numpy.pi
3842 # #Direction Cosine 0
3842 # #Direction Cosine 0
3843 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3843 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3844 #
3844 #
3845 # #Most-Accurate Second Estimation
3845 # #Most-Accurate Second Estimation
3846 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3846 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3847 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3847 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3848 # #Direction Cosine 1
3848 # #Direction Cosine 1
3849 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3849 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3850 #
3850 #
3851 # #Searching the correct Direction Cosine
3851 # #Searching the correct Direction Cosine
3852 # cosdir0_aux = cosdir0[:,i]
3852 # cosdir0_aux = cosdir0[:,i]
3853 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3853 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3854 # #Minimum Distance
3854 # #Minimum Distance
3855 # cosDiff = (cosdir1 - cosdir0_aux)**2
3855 # cosDiff = (cosdir1 - cosdir0_aux)**2
3856 # indcos = cosDiff.argmin(axis = 1)
3856 # indcos = cosDiff.argmin(axis = 1)
3857 # #Saving Value obtained
3857 # #Saving Value obtained
3858 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3858 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3859 #
3859 #
3860 # return cosdir0, cosdir
3860 # return cosdir0, cosdir
3861 #
3861 #
3862 # def __calculateAOA(self, cosdir, azimuth):
3862 # def __calculateAOA(self, cosdir, azimuth):
3863 # cosdirX = cosdir[:,0]
3863 # cosdirX = cosdir[:,0]
3864 # cosdirY = cosdir[:,1]
3864 # cosdirY = cosdir[:,1]
3865 #
3865 #
3866 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3866 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3867 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3867 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3868 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3868 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3869 #
3869 #
3870 # return angles
3870 # return angles
3871 #
3871 #
3872 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3872 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3873 #
3873 #
3874 # Ramb = 375 #Ramb = c/(2*PRF)
3874 # Ramb = 375 #Ramb = c/(2*PRF)
3875 # Re = 6371 #Earth Radius
3875 # Re = 6371 #Earth Radius
3876 # heights = numpy.zeros(Ranges.shape)
3876 # heights = numpy.zeros(Ranges.shape)
3877 #
3877 #
3878 # R_aux = numpy.array([0,1,2])*Ramb
3878 # R_aux = numpy.array([0,1,2])*Ramb
3879 # R_aux = R_aux.reshape(1,R_aux.size)
3879 # R_aux = R_aux.reshape(1,R_aux.size)
3880 #
3880 #
3881 # Ranges = Ranges.reshape(Ranges.size,1)
3881 # Ranges = Ranges.reshape(Ranges.size,1)
3882 #
3882 #
3883 # Ri = Ranges + R_aux
3883 # Ri = Ranges + R_aux
3884 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3884 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3885 #
3885 #
3886 # #Check if there is a height between 70 and 110 km
3886 # #Check if there is a height between 70 and 110 km
3887 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3887 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3888 # ind_h = numpy.where(h_bool == 1)[0]
3888 # ind_h = numpy.where(h_bool == 1)[0]
3889 #
3889 #
3890 # hCorr = hi[ind_h, :]
3890 # hCorr = hi[ind_h, :]
3891 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3891 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3892 #
3892 #
3893 # hCorr = hi[ind_hCorr]
3893 # hCorr = hi[ind_hCorr]
3894 # heights[ind_h] = hCorr
3894 # heights[ind_h] = hCorr
3895 #
3895 #
3896 # #Setting Error
3896 # #Setting Error
3897 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3897 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3898 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3898 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3899 #
3899 #
3900 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3900 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3901 # error[indInvalid2] = 14
3901 # error[indInvalid2] = 14
3902 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3902 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3903 # error[indInvalid1] = 13
3903 # error[indInvalid1] = 13
3904 #
3904 #
3905 # return heights, error
3905 # return heights, error
3906
3906
3907
3907
3908 class WeatherRadar(Operation):
3908 class WeatherRadar(Operation):
3909 '''
3909 '''
3910 Function tat implements Weather Radar operations-
3910 Function tat implements Weather Radar operations-
3911 Input:
3911 Input:
3912 Output:
3912 Output:
3913 Parameters affected:
3913 Parameters affected:
3914 '''
3914 '''
3915 isConfig = False
3915 isConfig = False
3916 variableList = None
3916 variableList = None
3917
3917
3918 def __init__(self):
3918 def __init__(self):
3919 Operation.__init__(self)
3919 Operation.__init__(self)
3920
3920
3921 def setup(self,dataOut,variableList= None,Pt=0,Gt=0,Gr=0,lambda_=0, aL=0,
3921 def setup(self,dataOut,variableList= None,Pt=0,Gt=0,Gr=0,lambda_=0, aL=0,
3922 tauW= 0,thetaT=0,thetaR=0,Km =0):
3922 tauW= 0,thetaT=0,thetaR=0,Km =0):
3923 self.nCh = dataOut.nChannels
3923 self.nCh = dataOut.nChannels
3924 self.nHeis = dataOut.nHeights
3924 self.nHeis = dataOut.nHeights
3925 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
3925 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
3926 self.Range = numpy.arange(dataOut.nHeights)*deltaHeight + dataOut.heightList[0]
3926 self.Range = numpy.arange(dataOut.nHeights)*deltaHeight + dataOut.heightList[0]
3927 self.Range = self.Range.reshape(1,self.nHeis)
3927 self.Range = self.Range.reshape(1,self.nHeis)
3928 self.Range = numpy.tile(self.Range,[self.nCh,1])
3928 self.Range = numpy.tile(self.Range,[self.nCh,1])
3929 '''-----------1 Constante del Radar----------'''
3929 '''-----------1 Constante del Radar----------'''
3930 self.Pt = Pt
3930 self.Pt = Pt
3931 self.Gt = Gt
3931 self.Gt = Gt
3932 self.Gr = Gr
3932 self.Gr = Gr
3933 self.lambda_ = lambda_
3933 self.lambda_ = lambda_
3934 self.aL = aL
3934 self.aL = aL
3935 self.tauW = tauW
3935 self.tauW = tauW
3936 self.thetaT = thetaT
3936 self.thetaT = thetaT
3937 self.thetaR = thetaR
3937 self.thetaR = thetaR
3938 self.Km = Km
3938 self.Km = Km
3939 Numerator = ((4*numpy.pi)**3 * aL**2 * 16 *numpy.log(2))
3939 Numerator = ((4*numpy.pi)**3 * aL**2 * 16 *numpy.log(2))
3940 Denominator = (Pt * Gt * Gr * lambda_**2 * SPEED_OF_LIGHT * tauW * numpy.pi*thetaT*thetaR)
3940 Denominator = (Pt * Gt * Gr * lambda_**2 * SPEED_OF_LIGHT * tauW * numpy.pi*thetaT*thetaR)
3941 self.RadarConstant = Numerator/Denominator
3941 self.RadarConstant = Numerator/Denominator
3942 self.variableList= variableList
3942 self.variableList= variableList
3943
3943
3944 def setMoments(self,dataOut,i):
3944 def setMoments(self,dataOut,i):
3945
3945
3946 type = dataOut.inputUnit
3946 type = dataOut.inputUnit
3947 nCh = dataOut.nChannels
3947 nCh = dataOut.nChannels
3948 nHeis = dataOut.nHeights
3948 nHeis = dataOut.nHeights
3949 data_param = numpy.zeros((nCh,4,nHeis))
3949 data_param = numpy.zeros((nCh,4,nHeis))
3950 if type == "Voltage":
3950 if type == "Voltage":
3951 factor = dataOut.normFactor
3951 factor = dataOut.normFactor
3952 data_param[:,0,:] = dataOut.dataPP_POW/(factor)
3952 data_param[:,0,:] = dataOut.dataPP_POW/(factor)
3953 data_param[:,1,:] = dataOut.dataPP_DOP
3953 data_param[:,1,:] = dataOut.dataPP_DOP
3954 data_param[:,2,:] = dataOut.dataPP_WIDTH
3954 data_param[:,2,:] = dataOut.dataPP_WIDTH
3955 data_param[:,3,:] = dataOut.dataPP_SNR
3955 data_param[:,3,:] = dataOut.dataPP_SNR
3956 if type == "Spectra":
3956 if type == "Spectra":
3957 data_param[:,0,:] = dataOut.data_POW
3957 data_param[:,0,:] = dataOut.data_POW
3958 data_param[:,1,:] = dataOut.data_DOP
3958 data_param[:,1,:] = dataOut.data_DOP
3959 data_param[:,2,:] = dataOut.data_WIDTH
3959 data_param[:,2,:] = dataOut.data_WIDTH
3960 data_param[:,3,:] = dataOut.data_SNR
3960 data_param[:,3,:] = dataOut.data_SNR
3961
3961
3962 return data_param[:,i,:]
3962 return data_param[:,i,:]
3963
3963
3964 def getCoeficienteCorrelacionROhv_R(self,dataOut):
3964 def getCoeficienteCorrelacionROhv_R(self,dataOut):
3965 type = dataOut.inputUnit
3965 type = dataOut.inputUnit
3966 nHeis = dataOut.nHeights
3966 nHeis = dataOut.nHeights
3967 data_RhoHV_R = numpy.zeros((nHeis))
3967 data_RhoHV_R = numpy.zeros((nHeis))
3968 if type == "Voltage":
3968 if type == "Voltage":
3969 powa = dataOut.dataPP_POWER[0]
3969 powa = dataOut.dataPP_POWER[0]
3970 powb = dataOut.dataPP_POWER[1]
3970 powb = dataOut.dataPP_POWER[1]
3971 ccf = dataOut.dataPP_CCF
3971 ccf = dataOut.dataPP_CCF
3972 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3972 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3973 data_RhoHV_R = numpy.abs(avgcoherenceComplex)
3973 data_RhoHV_R = numpy.abs(avgcoherenceComplex)
3974 if type == "Spectra":
3974 if type == "Spectra":
3975 data_RhoHV_R = dataOut.getCoherence()
3975 data_RhoHV_R = dataOut.getCoherence()
3976
3976
3977 return data_RhoHV_R
3977 return data_RhoHV_R
3978
3978
3979 def getFasediferencialPhiD_P(self,dataOut,phase= True):
3979 def getFasediferencialPhiD_P(self,dataOut,phase= True):
3980 type = dataOut.inputUnit
3980 type = dataOut.inputUnit
3981 nHeis = dataOut.nHeights
3981 nHeis = dataOut.nHeights
3982 data_PhiD_P = numpy.zeros((nHeis))
3982 data_PhiD_P = numpy.zeros((nHeis))
3983 if type == "Voltage":
3983 if type == "Voltage":
3984 powa = dataOut.dataPP_POWER[0]
3984 powa = dataOut.dataPP_POWER[0]
3985 powb = dataOut.dataPP_POWER[1]
3985 powb = dataOut.dataPP_POWER[1]
3986 ccf = dataOut.dataPP_CCF
3986 ccf = dataOut.dataPP_CCF
3987 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3987 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3988 if phase:
3988 if phase:
3989 data_PhiD_P = numpy.arctan2(avgcoherenceComplex.imag,
3989 data_PhiD_P = numpy.arctan2(avgcoherenceComplex.imag,
3990 avgcoherenceComplex.real) * 180 / numpy.pi
3990 avgcoherenceComplex.real) * 180 / numpy.pi
3991 if type == "Spectra":
3991 if type == "Spectra":
3992 data_PhiD_P = dataOut.getCoherence(phase = phase)
3992 data_PhiD_P = dataOut.getCoherence(phase = phase)
3993
3993
3994 return data_PhiD_P
3994 return data_PhiD_P
3995
3995
3996 def getReflectividad_D(self,dataOut):
3996 def getReflectividad_D(self,dataOut):
3997 '''-----------------------------Potencia de Radar -Signal S-----------------------------'''
3997 '''-----------------------------Potencia de Radar -Signal S-----------------------------'''
3998
3998
3999 Pr = self.setMoments(dataOut,0)
3999 Pr = self.setMoments(dataOut,0)
4000
4000
4001 '''-----------2 Reflectividad del Radar y Factor de Reflectividad------'''
4001 '''-----------2 Reflectividad del Radar y Factor de Reflectividad------'''
4002 self.n_radar = numpy.zeros((self.nCh,self.nHeis))
4002 self.n_radar = numpy.zeros((self.nCh,self.nHeis))
4003 self.Z_radar = numpy.zeros((self.nCh,self.nHeis))
4003 self.Z_radar = numpy.zeros((self.nCh,self.nHeis))
4004 for R in range(self.nHeis):
4004 for R in range(self.nHeis):
4005 self.n_radar[:,R] = self.RadarConstant*Pr[:,R]* (self.Range[:,R])**2
4005 self.n_radar[:,R] = self.RadarConstant*Pr[:,R]* (self.Range[:,R])**2
4006
4006
4007 self.Z_radar[:,R] = self.n_radar[:,R]* self.lambda_**4/( numpy.pi**5 * self.Km**2)
4007 self.Z_radar[:,R] = self.n_radar[:,R]* self.lambda_**4/( numpy.pi**5 * self.Km**2)
4008
4008
4009 '''----------- Factor de Reflectividad Equivalente lamda_ < 10 cm , lamda_= 3.2cm-------'''
4009 '''----------- Factor de Reflectividad Equivalente lamda_ < 10 cm , lamda_= 3.2cm-------'''
4010 Zeh = self.Z_radar
4010 Zeh = self.Z_radar
4011 dBZeh = 10*numpy.log10(Zeh)
4011 dBZeh = 10*numpy.log10(Zeh)
4012 Zdb_D = dBZeh[0] - dBZeh[1]
4012 Zdb_D = dBZeh[0] - dBZeh[1]
4013 return Zdb_D
4013 return Zdb_D
4014
4014
4015 def getRadialVelocity_V(self,dataOut):
4015 def getRadialVelocity_V(self,dataOut):
4016 velRadial_V = self.setMoments(dataOut,1)
4016 velRadial_V = self.setMoments(dataOut,1)
4017 return velRadial_V
4017 return velRadial_V
4018
4018
4019 def getAnchoEspectral_W(self,dataOut):
4019 def getAnchoEspectral_W(self,dataOut):
4020 Sigmav_W = self.setMoments(dataOut,2)
4020 Sigmav_W = self.setMoments(dataOut,2)
4021 return Sigmav_W
4021 return Sigmav_W
4022
4022
4023
4023
4024 def run(self,dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4024 def run(self,dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4025 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93):
4025 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93):
4026
4026
4027 if not self.isConfig:
4027 if not self.isConfig:
4028 self.setup(dataOut= dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4028 self.setup(dataOut= dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4029 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93)
4029 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93)
4030 self.isConfig = True
4030 self.isConfig = True
4031
4031
4032 for i in range(len(self.variableList)):
4032 for i in range(len(self.variableList)):
4033 if self.variableList[i]=='ReflectividadDiferencial':
4033 if self.variableList[i]=='ReflectividadDiferencial':
4034 dataOut.Zdb_D =self.getReflectividad_D(dataOut=dataOut)
4034 dataOut.Zdb_D =self.getReflectividad_D(dataOut=dataOut)
4035 if self.variableList[i]=='FaseDiferencial':
4035 if self.variableList[i]=='FaseDiferencial':
4036 dataOut.PhiD_P =self.getFasediferencialPhiD_P(dataOut=dataOut, phase=True)
4036 dataOut.PhiD_P =self.getFasediferencialPhiD_P(dataOut=dataOut, phase=True)
4037 if self.variableList[i] == "CoeficienteCorrelacion":
4037 if self.variableList[i] == "CoeficienteCorrelacion":
4038 dataOut.RhoHV_R = self.getCoeficienteCorrelacionROhv_R(dataOut)
4038 dataOut.RhoHV_R = self.getCoeficienteCorrelacionROhv_R(dataOut)
4039 if self.variableList[i] =="VelocidadRadial":
4039 if self.variableList[i] =="VelocidadRadial":
4040 dataOut.velRadial_V = self.getRadialVelocity_V(dataOut)
4040 dataOut.velRadial_V = self.getRadialVelocity_V(dataOut)
4041 if self.variableList[i] =="AnchoEspectral":
4041 if self.variableList[i] =="AnchoEspectral":
4042 dataOut.Sigmav_W = self.getAnchoEspectral_W(dataOut)
4042 dataOut.Sigmav_W = self.getAnchoEspectral_W(dataOut)
4043 return dataOut
4043 return dataOut
4044
4044
4045 class PedestalInformation(Operation):
4045 class PedestalInformation(Operation):
4046 path_ped = None
4046 path_ped = None
4047 path_adq = None
4047 path_adq = None
4048 samp_rate_ped= None
4048 samp_rate_ped= None
4049 t_Interval_p = None
4049 t_Interval_p = None
4050 n_Muestras_p = None
4050 n_Muestras_p = None
4051 isConfig = False
4051 isConfig = False
4052 blocksPerfile= None
4052 blocksPerfile= None
4053 f_a_p = None
4053 f_a_p = None
4054 online = None
4054 online = None
4055 angulo_adq = None
4055 angulo_adq = None
4056 nro_file = None
4056 nro_file = None
4057 nro_key_p = None
4057 nro_key_p = None
4058 tmp = None
4058 tmp = None
4059
4059
4060
4060
4061 def __init__(self):
4061 def __init__(self):
4062 Operation.__init__(self)
4062 Operation.__init__(self)
4063
4063
4064
4064
4065 def getAnguloProfile(self,utc_adq,utc_ped_list):
4065 def getAnguloProfile(self,utc_adq,utc_ped_list):
4066 utc_adq = utc_adq
4066 utc_adq = utc_adq
4067 ##list_pedestal = list_pedestal
4067 ##list_pedestal = list_pedestal
4068 utc_ped_list = utc_ped_list
4068 utc_ped_list = utc_ped_list
4069 #for i in range(len(list_pedestal)):
4069 #for i in range(len(list_pedestal)):
4070 # #print(i)# OJO IDENTIFICADOR DE SINCRONISMO
4070 # #print(i)# OJO IDENTIFICADOR DE SINCRONISMO
4071 # utc_ped_list.append(self.gettimeutcfromDirFilename(path=self.path_ped,file=list_pedestal[i]))
4071 # utc_ped_list.append(self.gettimeutcfromDirFilename(path=self.path_ped,file=list_pedestal[i]))
4072 nro_file,utc_ped,utc_ped_1 =self.getNROFile(utc_adq,utc_ped_list)
4072 nro_file,utc_ped,utc_ped_1 =self.getNROFile(utc_adq,utc_ped_list)
4073 #print("NROFILE************************************", nro_file,utc_ped)
4073 #print("NROFILE************************************", nro_file,utc_ped)
4074 #print(nro_file)
4074 #print(nro_file)
4075 if nro_file < 0:
4075 if nro_file < 0:
4076 return numpy.NaN,numpy.NaN
4076 return numpy.NaN,numpy.NaN
4077 else:
4077 else:
4078 nro_key_p = int((utc_adq-utc_ped)/self.t_Interval_p)-1 # ojito al -1 estimado alex
4078 nro_key_p = int((utc_adq-utc_ped)/self.t_Interval_p)-1 # ojito al -1 estimado alex
4079 #print("nro_key_p",nro_key_p)
4079 #print("nro_key_p",nro_key_p)
4080 ff_pedestal = self.list_pedestal[nro_file]
4080 ff_pedestal = self.list_pedestal[nro_file]
4081 #angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azimuth")
4081 #angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azimuth")
4082 angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azi_pos")
4082 angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azi_pos")
4083 angulo_ele = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="ele_pos")
4083 angulo_ele = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="ele_pos")
4084 #-----Adicion de filtro........................
4084 #-----Adicion de filtro........................
4085 vel_ele = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="ele_speed")## ele_speed
4085 vel_ele = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="ele_speed")## ele_speed
4086 '''
4086 '''
4087 vel_mean = numpy.mean(vel_ele)
4087 vel_mean = numpy.mean(vel_ele)
4088 print("#############################################################")
4088 print("#############################################################")
4089 print("VEL MEAN----------------:",vel_mean)
4089 print("VEL MEAN----------------:",vel_mean)
4090 f vel_mean<7.7 or vel_mean>8.3:
4090 f vel_mean<7.7 or vel_mean>8.3:
4091 return numpy.NaN,numpy.NaN
4091 return numpy.NaN,numpy.NaN
4092 #------------------------------------------------------------------------------------------------------
4092 #------------------------------------------------------------------------------------------------------
4093 '''
4093 '''
4094 #print(int(self.samp_rate_ped))
4094 #print(int(self.samp_rate_ped))
4095 #print(nro_key_p)
4095 #print(nro_key_p)
4096 if int(self.samp_rate_ped)-1>=nro_key_p>0:
4096 if int(self.samp_rate_ped)-1>=nro_key_p>0:
4097 #print("angulo_array :",angulo[nro_key_p])
4097 #print("angulo_array :",angulo[nro_key_p])
4098 return angulo[nro_key_p],angulo_ele[nro_key_p]
4098 return angulo[nro_key_p],angulo_ele[nro_key_p]
4099 else:
4099 else:
4100 #print("-----------------------------------------------------------------")
4100 #print("-----------------------------------------------------------------")
4101 return numpy.NaN,numpy.NaN
4101 return numpy.NaN,numpy.NaN
4102
4102
4103
4103
4104 def getfirstFilefromPath(self,path,meta,ext):
4104 def getfirstFilefromPath(self,path,meta,ext):
4105 validFilelist = []
4105 validFilelist = []
4106 #("SEARH",path)
4106 #("SEARH",path)
4107 try:
4107 try:
4108 fileList = os.listdir(path)
4108 fileList = os.listdir(path)
4109 except:
4109 except:
4110 print("check path - fileList")
4110 print("check path - fileList")
4111 if len(fileList)<1:
4111 if len(fileList)<1:
4112 return None
4112 return None
4113 # meta 1234 567 8-18 BCDE
4113 # meta 1234 567 8-18 BCDE
4114 # H,D,PE YYYY DDD EPOC .ext
4114 # H,D,PE YYYY DDD EPOC .ext
4115
4115
4116 for thisFile in fileList:
4116 for thisFile in fileList:
4117 #print("HI",thisFile)
4117 #print("HI",thisFile)
4118 if meta =="PE":
4118 if meta =="PE":
4119 try:
4119 try:
4120 number= int(thisFile[len(meta)+7:len(meta)+17])
4120 number= int(thisFile[len(meta)+7:len(meta)+17])
4121 except:
4121 except:
4122 print("There is a file or folder with different format")
4122 print("There is a file or folder with different format")
4123 if meta =="pos@":
4123 if meta =="pos@":
4124 try:
4124 try:
4125 number= int(thisFile[len(meta):len(meta)+10])
4125 number= int(thisFile[len(meta):len(meta)+10])
4126 except:
4126 except:
4127 print("There is a file or folder with different format")
4127 print("There is a file or folder with different format")
4128 if meta == "D":
4128 if meta == "D":
4129 try:
4129 try:
4130 number= int(thisFile[8:11])
4130 number= int(thisFile[8:11])
4131 except:
4131 except:
4132 print("There is a file or folder with different format")
4132 print("There is a file or folder with different format")
4133
4133
4134 if not isNumber(str=number):
4134 if not isNumber(str=number):
4135 continue
4135 continue
4136 if (os.path.splitext(thisFile)[-1].lower() != ext.lower()):
4136 if (os.path.splitext(thisFile)[-1].lower() != ext.lower()):
4137 continue
4137 continue
4138 validFilelist.sort()
4138 validFilelist.sort()
4139 validFilelist.append(thisFile)
4139 validFilelist.append(thisFile)
4140
4140
4141 if len(validFilelist)>0:
4141 if len(validFilelist)>0:
4142 validFilelist = sorted(validFilelist,key=str.lower)
4142 validFilelist = sorted(validFilelist,key=str.lower)
4143 #print(validFilelist)
4143 #print(validFilelist)
4144 return validFilelist
4144 return validFilelist
4145 return None
4145 return None
4146
4146
4147 def gettimeutcfromDirFilename(self,path,file):
4147 def gettimeutcfromDirFilename(self,path,file):
4148 dir_file= path+"/"+file
4148 dir_file= path+"/"+file
4149 fp = h5py.File(dir_file,'r')
4149 fp = h5py.File(dir_file,'r')
4150 #epoc = fp['Metadata'].get('utctimeInit')[()]
4150 #epoc = fp['Metadata'].get('utctimeInit')[()]
4151 epoc = fp['Data'].get('utc')[()]
4151 epoc = fp['Data'].get('utc')[()]
4152 epoc = epoc[0]
4152 epoc = epoc[0]
4153 #print("hola",epoc)
4153 #print("hola",epoc)
4154 fp.close()
4154 fp.close()
4155 return epoc
4155 return epoc
4156
4156
4157 def gettimeutcadqfromDirFilename(self,path,file):
4157 def gettimeutcadqfromDirFilename(self,path,file):
4158 pass
4158 pass
4159
4159
4160 def getDatavaluefromDirFilename(self,path,file,value):
4160 def getDatavaluefromDirFilename(self,path,file,value):
4161 dir_file= path+"/"+file
4161 dir_file= path+"/"+file
4162 fp = h5py.File(dir_file,'r')
4162 fp = h5py.File(dir_file,'r')
4163 array = fp['Data'].get(value)[()]
4163 array = fp['Data'].get(value)[()]
4164 fp.close()
4164 fp.close()
4165 return array
4165 return array
4166
4166
4167
4167
4168 def getNROFile(self,utc_adq,utc_ped_list):
4168 def getNROFile(self,utc_adq,utc_ped_list):
4169 c=0
4169 c=0
4170 #print(utc_adq)
4170 #print(utc_adq)
4171 #print(len(utc_ped_list))
4171 #print(len(utc_ped_list))
4172 ###print(utc_ped_list)
4172 ###print(utc_ped_list)
4173 if utc_adq<utc_ped_list[0]:
4173 if utc_adq<utc_ped_list[0]:
4174 pass
4174 pass
4175 else:
4175 else:
4176 for i in range(len(utc_ped_list)):
4176 for i in range(len(utc_ped_list)):
4177 if utc_adq>utc_ped_list[i]:
4177 if utc_adq>utc_ped_list[i]:
4178 #print("mayor")
4178 #print("mayor")
4179 #print("utc_ped_list",utc_ped_list[i])
4179 #print("utc_ped_list",utc_ped_list[i])
4180 c +=1
4180 c +=1
4181
4181
4182 return c-1,utc_ped_list[c-1],utc_ped_list[c]
4182 return c-1,utc_ped_list[c-1],utc_ped_list[c]
4183
4183
4184 def verificarNROFILE(self,dataOut,utc_ped,f_a_p,n_Muestras_p):
4184 def verificarNROFILE(self,dataOut,utc_ped,f_a_p,n_Muestras_p):
4185 pass
4185 pass
4186
4186
4187 def setup_offline(self,dataOut,list_pedestal):
4187 def setup_offline(self,dataOut,list_pedestal):
4188 pass
4188 pass
4189
4189
4190 def setup_online(self,dataOut):
4190 def setup_online(self,dataOut):
4191 pass
4191 pass
4192
4192
4193 #def setup(self,dataOut,path_ped,path_adq,t_Interval_p,n_Muestras_p,blocksPerfile,f_a_p,online):
4193 #def setup(self,dataOut,path_ped,path_adq,t_Interval_p,n_Muestras_p,blocksPerfile,f_a_p,online):
4194 def setup(self,dataOut,path_ped,samp_rate_ped,t_Interval_p,wr_exp):
4194 def setup(self,dataOut,path_ped,samp_rate_ped,t_Interval_p,wr_exp):
4195 #print("**************SETUP******************")
4195 #print("**************SETUP******************")
4196 self.__dataReady = False
4196 self.__dataReady = False
4197 self.path_ped = path_ped
4197 self.path_ped = path_ped
4198 self.samp_rate_ped= samp_rate_ped
4198 self.samp_rate_ped= samp_rate_ped
4199 self.t_Interval_p = t_Interval_p
4199 self.t_Interval_p = t_Interval_p
4200 self.list_pedestal = self.getfirstFilefromPath(path=self.path_ped,meta="pos@",ext=".h5")
4200 self.list_pedestal = self.getfirstFilefromPath(path=self.path_ped,meta="pos@",ext=".h5")
4201
4201
4202 self.utc_ped_list= []
4202 self.utc_ped_list= []
4203 for i in range(len(self.list_pedestal)):
4203 for i in range(len(self.list_pedestal)):
4204 #print(i,self.gettimeutcfromDirFilename(path=self.path_ped,file=self.list_pedestal[i]))# OJO IDENTIFICADOR DE SINCRONISMO
4204 #print(i,self.gettimeutcfromDirFilename(path=self.path_ped,file=self.list_pedestal[i]))# OJO IDENTIFICADOR DE SINCRONISMO
4205 self.utc_ped_list.append(self.gettimeutcfromDirFilename(path=self.path_ped,file=self.list_pedestal[i]))
4205 self.utc_ped_list.append(self.gettimeutcfromDirFilename(path=self.path_ped,file=self.list_pedestal[i]))
4206 #print(self.utc_ped_list)
4206 #print(self.utc_ped_list)
4207 #exit(1)
4207 #exit(1)
4208 #print("que paso")
4208 #print("que paso")
4209 dataOut.wr_exp = wr_exp
4209 dataOut.wr_exp = wr_exp
4210 #print("SETUP READY")
4210 #print("SETUP READY")
4211
4211
4212
4212
4213 def setNextFileP(self,dataOut):
4213 def setNextFileP(self,dataOut):
4214 pass
4214 pass
4215
4215
4216 def checkPedFile(self,path,nro_file):
4216 def checkPedFile(self,path,nro_file):
4217 pass
4217 pass
4218
4218
4219 def setNextFileoffline(self,dataOut):
4219 def setNextFileoffline(self,dataOut):
4220 pass
4220 pass
4221
4221
4222 def setNextFileonline(self):
4222 def setNextFileonline(self):
4223 pass
4223 pass
4224
4224
4225 def run(self, dataOut,path_ped,samp_rate_ped,t_Interval_p,wr_exp):
4225 def run(self, dataOut,path_ped,samp_rate_ped,t_Interval_p,wr_exp):
4226 #print("INTEGRATION -----")
4226 #print("INTEGRATION -----")
4227 #print("PEDESTAL")
4227 #print("PEDESTAL")
4228
4228
4229 if not self.isConfig:
4229 if not self.isConfig:
4230 self.setup(dataOut, path_ped,samp_rate_ped,t_Interval_p,wr_exp)
4230 self.setup(dataOut, path_ped,samp_rate_ped,t_Interval_p,wr_exp)
4231 self.__dataReady = True
4231 self.__dataReady = True
4232 self.isConfig = True
4232 self.isConfig = True
4233 #print("config TRUE")
4233 #print("config TRUE")
4234 utc_adq = dataOut.utctime
4234 utc_adq = dataOut.utctime
4235 #print("utc_adq---------------",utc_adq)
4235 #print("utc_adq---------------",utc_adq)
4236
4236
4237 list_pedestal = self.list_pedestal
4237 list_pedestal = self.list_pedestal
4238 #print("list_pedestal",list_pedestal[:20])
4238 #print("list_pedestal",list_pedestal[:20])
4239 angulo,angulo_ele = self.getAnguloProfile(utc_adq=utc_adq,utc_ped_list=self.utc_ped_list)
4239 angulo,angulo_ele = self.getAnguloProfile(utc_adq=utc_adq,utc_ped_list=self.utc_ped_list)
4240 #print("angulo**********",angulo)
4240 #print("angulo**********",angulo)
4241 dataOut.flagNoData = False
4241 dataOut.flagNoData = False
4242
4242
4243 if numpy.isnan(angulo) or numpy.isnan(angulo_ele) :
4243 if numpy.isnan(angulo) or numpy.isnan(angulo_ele) :
4244 #print("PEDESTAL 3")
4244 #print("PEDESTAL 3")
4245 #exit(1)
4245 #exit(1)
4246 dataOut.flagNoData = True
4246 dataOut.flagNoData = True
4247 return dataOut
4247 return dataOut
4248 dataOut.azimuth = angulo
4248 dataOut.azimuth = angulo
4249 dataOut.elevation = angulo_ele
4249 dataOut.elevation = angulo_ele
4250 #print("PEDESTAL END")
4250 #print("PEDESTAL END")
4251 #print(dataOut.azimuth)
4251 #print(dataOut.azimuth)
4252 #print(dataOut.elevation)
4252 #print(dataOut.elevation)
4253 #exit(1)
4253 #exit(1)
4254 return dataOut
4254 return dataOut
4255
4255
4256 class Block360(Operation):
4256 class Block360(Operation):
4257 '''
4257 '''
4258 '''
4258 '''
4259 isConfig = False
4259 isConfig = False
4260 __profIndex = 0
4260 __profIndex = 0
4261 __initime = None
4261 __initime = None
4262 __lastdatatime = None
4262 __lastdatatime = None
4263 __buffer = None
4263 __buffer = None
4264 __dataReady = False
4264 __dataReady = False
4265 n = None
4265 n = None
4266 __nch = 0
4266 __nch = 0
4267 __nHeis = 0
4267 __nHeis = 0
4268 index = 0
4268 index = 0
4269 mode = 0
4269 mode = 0
4270
4270
4271 def __init__(self,**kwargs):
4271 def __init__(self,**kwargs):
4272 Operation.__init__(self,**kwargs)
4272 Operation.__init__(self,**kwargs)
4273
4273
4274 def setup(self, dataOut, n = None, mode = None):
4274 def setup(self, dataOut, n = None, mode = None):
4275 '''
4275 '''
4276 n= Numero de PRF's de entrada
4276 n= Numero de PRF's de entrada
4277 '''
4277 '''
4278 self.__initime = None
4278 self.__initime = None
4279 self.__lastdatatime = 0
4279 self.__lastdatatime = 0
4280 self.__dataReady = False
4280 self.__dataReady = False
4281 self.__buffer = 0
4281 self.__buffer = 0
4282 self.__buffer_1D = 0
4282 self.__buffer_1D = 0
4283 self.__profIndex = 0
4283 self.__profIndex = 0
4284 self.index = 0
4284 self.index = 0
4285 self.__nch = dataOut.nChannels
4285 self.__nch = dataOut.nChannels
4286 self.__nHeis = dataOut.nHeights
4286 self.__nHeis = dataOut.nHeights
4287 ##print("ELVALOR DE n es:", n)
4287 ##print("ELVALOR DE n es:", n)
4288 if n == None:
4288 if n == None:
4289 raise ValueError("n should be specified.")
4289 raise ValueError("n should be specified.")
4290
4290
4291 if mode == None:
4291 if mode == None:
4292 raise ValueError("mode should be specified.")
4292 raise ValueError("mode should be specified.")
4293
4293
4294 if n != None:
4294 if n != None:
4295 if n<1:
4295 if n<1:
4296 print("n should be greater than 2")
4296 print("n should be greater than 2")
4297 raise ValueError("n should be greater than 2")
4297 raise ValueError("n should be greater than 2")
4298
4298
4299 self.n = n
4299 self.n = n
4300 self.mode = mode
4300 self.mode = mode
4301 #print("self.mode",self.mode)
4301 #print("self.mode",self.mode)
4302 #print("nHeights")
4302 #print("nHeights")
4303 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4303 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4304 self.__buffer2 = numpy.zeros(n)
4304 self.__buffer2 = numpy.zeros(n)
4305 self.__buffer3 = numpy.zeros(n)
4305 self.__buffer3 = numpy.zeros(n)
4306
4306
4307
4307
4308
4308
4309
4309
4310 def putData(self,data,mode):
4310 def putData(self,data,mode):
4311 '''
4311 '''
4312 Add a profile to he __buffer and increase in one the __profiel Index
4312 Add a profile to he __buffer and increase in one the __profiel Index
4313 '''
4313 '''
4314 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4314 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4315 #print("line 4049",data.azimuth.shape,data.azimuth)
4315 #print("line 4049",data.azimuth.shape,data.azimuth)
4316 if self.mode==0:
4316 if self.mode==0:
4317 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4317 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4318 if self.mode==1:
4318 if self.mode==1:
4319 self.__buffer[:,self.__profIndex,:]= data.data_pow
4319 self.__buffer[:,self.__profIndex,:]= data.data_pow
4320 #print("me casi",self.index,data.azimuth[self.index])
4320 #print("me casi",self.index,data.azimuth[self.index])
4321 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4321 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4322 #print("magic",data.profileIndex)
4322 #print("magic",data.profileIndex)
4323 #print(data.azimuth[self.index])
4323 #print(data.azimuth[self.index])
4324 #print("index",self.index)
4324 #print("index",self.index)
4325
4325
4326 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4326 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4327 self.__buffer2[self.__profIndex] = data.azimuth
4327 self.__buffer2[self.__profIndex] = data.azimuth
4328 self.__buffer3[self.__profIndex] = data.elevation
4328 self.__buffer3[self.__profIndex] = data.elevation
4329 #print("q pasa")
4329 #print("q pasa")
4330 #####self.index+=1
4330 #####self.index+=1
4331 #print("index",self.index,data.azimuth[:10])
4331 #print("index",self.index,data.azimuth[:10])
4332 self.__profIndex += 1
4332 self.__profIndex += 1
4333 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4333 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4334
4334
4335 def pushData(self,data):
4335 def pushData(self,data):
4336 '''
4336 '''
4337 Return the PULSEPAIR and the profiles used in the operation
4337 Return the PULSEPAIR and the profiles used in the operation
4338 Affected : self.__profileIndex
4338 Affected : self.__profileIndex
4339 '''
4339 '''
4340 #print("pushData")
4340 #print("pushData")
4341
4341
4342 data_360 = self.__buffer
4342 data_360 = self.__buffer
4343 data_p = self.__buffer2
4343 data_p = self.__buffer2
4344 data_e = self.__buffer3
4344 data_e = self.__buffer3
4345 n = self.__profIndex
4345 n = self.__profIndex
4346
4346
4347 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4347 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4348 self.__buffer2 = numpy.zeros(self.n)
4348 self.__buffer2 = numpy.zeros(self.n)
4349 self.__buffer3 = numpy.zeros(self.n)
4349 self.__buffer3 = numpy.zeros(self.n)
4350 self.__profIndex = 0
4350 self.__profIndex = 0
4351 #print("pushData")
4351 #print("pushData")
4352 return data_360,n,data_p,data_e
4352 return data_360,n,data_p,data_e
4353
4353
4354
4354
4355 def byProfiles(self,dataOut):
4355 def byProfiles(self,dataOut):
4356
4356
4357 self.__dataReady = False
4357 self.__dataReady = False
4358 data_360 = None
4358 data_360 = None
4359 data_p = None
4359 data_p = None
4360 data_e = None
4360 data_e = None
4361 #print("dataOu",dataOut.dataPP_POW)
4361 #print("dataOu",dataOut.dataPP_POW)
4362 self.putData(data=dataOut,mode = self.mode)
4362 self.putData(data=dataOut,mode = self.mode)
4363 ##### print("profIndex",self.__profIndex)
4363 ##### print("profIndex",self.__profIndex)
4364 if self.__profIndex == self.n:
4364 if self.__profIndex == self.n:
4365 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4365 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4366 self.__dataReady = True
4366 self.__dataReady = True
4367
4367
4368 return data_360,data_p,data_e
4368 return data_360,data_p,data_e
4369
4369
4370
4370
4371 def blockOp(self, dataOut, datatime= None):
4371 def blockOp(self, dataOut, datatime= None):
4372 if self.__initime == None:
4372 if self.__initime == None:
4373 self.__initime = datatime
4373 self.__initime = datatime
4374 data_360,data_p,data_e = self.byProfiles(dataOut)
4374 data_360,data_p,data_e = self.byProfiles(dataOut)
4375 self.__lastdatatime = datatime
4375 self.__lastdatatime = datatime
4376
4376
4377 if data_360 is None:
4377 if data_360 is None:
4378 return None, None,None,None
4378 return None, None,None,None
4379
4379
4380
4380
4381 avgdatatime = self.__initime
4381 avgdatatime = self.__initime
4382 if self.n==1:
4382 if self.n==1:
4383 avgdatatime = datatime
4383 avgdatatime = datatime
4384 deltatime = datatime - self.__lastdatatime
4384 deltatime = datatime - self.__lastdatatime
4385 self.__initime = datatime
4385 self.__initime = datatime
4386 #print(data_360.shape,avgdatatime,data_p.shape)
4386 #print(data_360.shape,avgdatatime,data_p.shape)
4387 return data_360,avgdatatime,data_p,data_e
4387 return data_360,avgdatatime,data_p,data_e
4388
4388
4389 def run(self, dataOut,n = None,mode=None,**kwargs):
4389 def run(self, dataOut,n = None,mode=None,**kwargs):
4390 #print("BLOCK 360 HERE WE GO MOMENTOS")
4390 #print("BLOCK 360 HERE WE GO MOMENTOS")
4391 print("Block 360")
4391 print("Block 360")
4392 #exit(1)
4392 #exit(1)
4393 if not self.isConfig:
4393 if not self.isConfig:
4394 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4394 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4395 ####self.index = 0
4395 ####self.index = 0
4396 #print("comova",self.isConfig)
4396 #print("comova",self.isConfig)
4397 self.isConfig = True
4397 self.isConfig = True
4398 ####if self.index==dataOut.azimuth.shape[0]:
4398 ####if self.index==dataOut.azimuth.shape[0]:
4399 #### self.index=0
4399 #### self.index=0
4400 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4400 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4401 dataOut.flagNoData = True
4401 dataOut.flagNoData = True
4402
4402
4403 if self.__dataReady:
4403 if self.__dataReady:
4404 dataOut.data_360 = data_360 # S
4404 dataOut.data_360 = data_360 # S
4405 #print("DATA 360")
4405 #print("DATA 360")
4406 #print(dataOut.data_360)
4406 #print(dataOut.data_360)
4407 #print("---------------------------------------------------------------------------------")
4407 #print("---------------------------------------------------------------------------------")
4408 print("---------------------------DATAREADY---------------------------------------------")
4408 print("---------------------------DATAREADY---------------------------------------------")
4409 #print("---------------------------------------------------------------------------------")
4409 #print("---------------------------------------------------------------------------------")
4410 #print("data_360",dataOut.data_360.shape)
4410 #print("data_360",dataOut.data_360.shape)
4411 dataOut.data_azi = data_p
4411 dataOut.data_azi = data_p
4412 dataOut.data_ele = data_e
4412 dataOut.data_ele = data_e
4413 ###print("azi: ",dataOut.data_azi)
4413 ###print("azi: ",dataOut.data_azi)
4414 #print("ele: ",dataOut.data_ele)
4414 #print("ele: ",dataOut.data_ele)
4415 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4415 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4416 dataOut.utctime = avgdatatime
4416 dataOut.utctime = avgdatatime
4417 dataOut.flagNoData = False
4417 dataOut.flagNoData = False
4418 return dataOut
4418 return dataOut
4419
4419
4420 class Block360_vRF(Operation):
4420 class Block360_vRF(Operation):
4421 '''
4421 '''
4422 '''
4422 '''
4423 isConfig = False
4423 isConfig = False
4424 __profIndex = 0
4424 __profIndex = 0
4425 __initime = None
4425 __initime = None
4426 __lastdatatime = None
4426 __lastdatatime = None
4427 __buffer = None
4427 __buffer = None
4428 __dataReady = False
4428 __dataReady = False
4429 n = None
4429 n = None
4430 __nch = 0
4430 __nch = 0
4431 __nHeis = 0
4431 __nHeis = 0
4432 index = 0
4432 index = 0
4433 mode = 0
4433 mode = 0
4434
4434
4435 def __init__(self,**kwargs):
4435 def __init__(self,**kwargs):
4436 Operation.__init__(self,**kwargs)
4436 Operation.__init__(self,**kwargs)
4437
4437
4438 def setup(self, dataOut, n = None, mode = None):
4438 def setup(self, dataOut, n = None, mode = None):
4439 '''
4439 '''
4440 n= Numero de PRF's de entrada
4440 n= Numero de PRF's de entrada
4441 '''
4441 '''
4442 self.__initime = None
4442 self.__initime = None
4443 self.__lastdatatime = 0
4443 self.__lastdatatime = 0
4444 self.__dataReady = False
4444 self.__dataReady = False
4445 self.__buffer = 0
4445 self.__buffer = 0
4446 self.__buffer_1D = 0
4446 self.__buffer_1D = 0
4447 self.__profIndex = 0
4447 self.__profIndex = 0
4448 self.index = 0
4448 self.index = 0
4449 self.__nch = dataOut.nChannels
4449 self.__nch = dataOut.nChannels
4450 self.__nHeis = dataOut.nHeights
4450 self.__nHeis = dataOut.nHeights
4451 ##print("ELVALOR DE n es:", n)
4451 ##print("ELVALOR DE n es:", n)
4452 if n == None:
4452 if n == None:
4453 raise ValueError("n should be specified.")
4453 raise ValueError("n should be specified.")
4454
4454
4455 if mode == None:
4455 if mode == None:
4456 raise ValueError("mode should be specified.")
4456 raise ValueError("mode should be specified.")
4457
4457
4458 if n != None:
4458 if n != None:
4459 if n<1:
4459 if n<1:
4460 print("n should be greater than 2")
4460 print("n should be greater than 2")
4461 raise ValueError("n should be greater than 2")
4461 raise ValueError("n should be greater than 2")
4462
4462
4463 self.n = n
4463 self.n = n
4464 self.mode = mode
4464 self.mode = mode
4465 #print("self.mode",self.mode)
4465 #print("self.mode",self.mode)
4466 #print("nHeights")
4466 #print("nHeights")
4467 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4467 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4468 self.__buffer2 = numpy.zeros(n)
4468 self.__buffer2 = numpy.zeros(n)
4469 self.__buffer3 = numpy.zeros(n)
4469 self.__buffer3 = numpy.zeros(n)
4470
4470
4471
4471
4472
4472
4473
4473
4474 def putData(self,data,mode):
4474 def putData(self,data,mode):
4475 '''
4475 '''
4476 Add a profile to he __buffer and increase in one the __profiel Index
4476 Add a profile to he __buffer and increase in one the __profiel Index
4477 '''
4477 '''
4478 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4478 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4479 #print("line 4049",data.azimuth.shape,data.azimuth)
4479 #print("line 4049",data.azimuth.shape,data.azimuth)
4480 if self.mode==0:
4480 if self.mode==0:
4481 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4481 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4482 if self.mode==1:
4482 if self.mode==1:
4483 self.__buffer[:,self.__profIndex,:]= data.data_pow
4483 self.__buffer[:,self.__profIndex,:]= data.data_pow
4484 #print("me casi",self.index,data.azimuth[self.index])
4484 #print("me casi",self.index,data.azimuth[self.index])
4485 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4485 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4486 #print("magic",data.profileIndex)
4486 #print("magic",data.profileIndex)
4487 #print(data.azimuth[self.index])
4487 #print(data.azimuth[self.index])
4488 #print("index",self.index)
4488 #print("index",self.index)
4489
4489
4490 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4490 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4491 self.__buffer2[self.__profIndex] = data.azimuth
4491 self.__buffer2[self.__profIndex] = data.azimuth
4492 self.__buffer3[self.__profIndex] = data.elevation
4492 self.__buffer3[self.__profIndex] = data.elevation
4493 #print("q pasa")
4493 #print("q pasa")
4494 #####self.index+=1
4494 #####self.index+=1
4495 #print("index",self.index,data.azimuth[:10])
4495 #print("index",self.index,data.azimuth[:10])
4496 self.__profIndex += 1
4496 self.__profIndex += 1
4497 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4497 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4498
4498
4499 def pushData(self,data):
4499 def pushData(self,data):
4500 '''
4500 '''
4501 Return the PULSEPAIR and the profiles used in the operation
4501 Return the PULSEPAIR and the profiles used in the operation
4502 Affected : self.__profileIndex
4502 Affected : self.__profileIndex
4503 '''
4503 '''
4504 #print("pushData")
4504 #print("pushData")
4505
4505
4506 data_360 = self.__buffer
4506 data_360 = self.__buffer
4507 data_p = self.__buffer2
4507 data_p = self.__buffer2
4508 data_e = self.__buffer3
4508 data_e = self.__buffer3
4509 n = self.__profIndex
4509 n = self.__profIndex
4510
4510
4511 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4511 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4512 self.__buffer2 = numpy.zeros(self.n)
4512 self.__buffer2 = numpy.zeros(self.n)
4513 self.__buffer3 = numpy.zeros(self.n)
4513 self.__buffer3 = numpy.zeros(self.n)
4514 self.__profIndex = 0
4514 self.__profIndex = 0
4515 #print("pushData")
4515 #print("pushData")
4516 return data_360,n,data_p,data_e
4516 return data_360,n,data_p,data_e
4517
4517
4518
4518
4519 def byProfiles(self,dataOut):
4519 def byProfiles(self,dataOut):
4520
4520
4521 self.__dataReady = False
4521 self.__dataReady = False
4522 data_360 = None
4522 data_360 = None
4523 data_p = None
4523 data_p = None
4524 data_e = None
4524 data_e = None
4525 #print("dataOu",dataOut.dataPP_POW)
4525 #print("dataOu",dataOut.dataPP_POW)
4526 self.putData(data=dataOut,mode = self.mode)
4526 self.putData(data=dataOut,mode = self.mode)
4527 ##### print("profIndex",self.__profIndex)
4527 ##### print("profIndex",self.__profIndex)
4528 if self.__profIndex == self.n:
4528 if self.__profIndex == self.n:
4529 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4529 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4530 self.__dataReady = True
4530 self.__dataReady = True
4531
4531
4532 return data_360,data_p,data_e
4532 return data_360,data_p,data_e
4533
4533
4534
4534
4535 def blockOp(self, dataOut, datatime= None):
4535 def blockOp(self, dataOut, datatime= None):
4536 if self.__initime == None:
4536 if self.__initime == None:
4537 self.__initime = datatime
4537 self.__initime = datatime
4538 data_360,data_p,data_e = self.byProfiles(dataOut)
4538 data_360,data_p,data_e = self.byProfiles(dataOut)
4539 self.__lastdatatime = datatime
4539 self.__lastdatatime = datatime
4540
4540
4541 if data_360 is None:
4541 if data_360 is None:
4542 return None, None,None,None
4542 return None, None,None,None
4543
4543
4544
4544
4545 avgdatatime = self.__initime
4545 avgdatatime = self.__initime
4546 if self.n==1:
4546 if self.n==1:
4547 avgdatatime = datatime
4547 avgdatatime = datatime
4548 deltatime = datatime - self.__lastdatatime
4548 deltatime = datatime - self.__lastdatatime
4549 self.__initime = datatime
4549 self.__initime = datatime
4550 #print(data_360.shape,avgdatatime,data_p.shape)
4550 #print(data_360.shape,avgdatatime,data_p.shape)
4551 return data_360,avgdatatime,data_p,data_e
4551 return data_360,avgdatatime,data_p,data_e
4552
4552
4553 def checkcase(self,data_ele):
4553 def checkcase(self,data_ele):
4554 start = data_ele[0]
4554 start = data_ele[0]
4555 end = data_ele[-1]
4555 end = data_ele[-1]
4556 diff_angle = (end-start)
4556 diff_angle = (end-start)
4557 len_ang=len(data_ele)
4557 len_ang=len(data_ele)
4558 print("start",start)
4558 print("start",start)
4559 print("end",end)
4559 print("end",end)
4560 print("number",diff_angle)
4560 print("number",diff_angle)
4561
4561
4562 print("len_ang",len_ang)
4562 print("len_ang",len_ang)
4563
4563
4564 aux = (data_ele<0).any(axis=0)
4564 aux = (data_ele<0).any(axis=0)
4565
4565
4566 #exit(1)
4566 #exit(1)
4567 if diff_angle<0 and aux!=1: #Bajada
4567 if diff_angle<0 and aux!=1: #Bajada
4568 return 1
4568 return 1
4569 elif diff_angle<0 and aux==1: #Bajada con angulos negativos
4569 elif diff_angle<0 and aux==1: #Bajada con angulos negativos
4570 return 0
4570 return 0
4571 elif diff_angle == 0: # This case happens when the angle reaches the max_angle if n = 2
4571 elif diff_angle == 0: # This case happens when the angle reaches the max_angle if n = 2
4572 self.flagEraseFirstData = 1
4572 self.flagEraseFirstData = 1
4573 print("ToDO this case")
4573 print("ToDO this case")
4574 exit(1)
4574 exit(1)
4575 elif diff_angle>0: #Subida
4575 elif diff_angle>0: #Subida
4576 return 0
4576 return 0
4577
4577
4578 def run(self, dataOut,n = None,mode=None,**kwargs):
4578 def run(self, dataOut,n = None,mode=None,**kwargs):
4579 #print("BLOCK 360 HERE WE GO MOMENTOS")
4579 #print("BLOCK 360 HERE WE GO MOMENTOS")
4580 print("Block 360")
4580 print("Block 360")
4581
4581
4582 #exit(1)
4582 #exit(1)
4583 if not self.isConfig:
4583 if not self.isConfig:
4584 if n == 1:
4584 if n == 1:
4585 print("*******************Min Value is 2. Setting n = 2*******************")
4585 print("*******************Min Value is 2. Setting n = 2*******************")
4586 n = 2
4586 n = 2
4587 #exit(1)
4587 #exit(1)
4588 print(n)
4588 print(n)
4589 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4589 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4590 ####self.index = 0
4590 ####self.index = 0
4591 #print("comova",self.isConfig)
4591 #print("comova",self.isConfig)
4592 self.isConfig = True
4592 self.isConfig = True
4593 ####if self.index==dataOut.azimuth.shape[0]:
4593 ####if self.index==dataOut.azimuth.shape[0]:
4594 #### self.index=0
4594 #### self.index=0
4595 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4595 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4596 dataOut.flagNoData = True
4596 dataOut.flagNoData = True
4597
4597
4598 if self.__dataReady:
4598 if self.__dataReady:
4599 dataOut.data_360 = data_360 # S
4599 dataOut.data_360 = data_360 # S
4600 #print("DATA 360")
4600 #print("DATA 360")
4601 #print(dataOut.data_360)
4601 #print(dataOut.data_360)
4602 #print("---------------------------------------------------------------------------------")
4602 #print("---------------------------------------------------------------------------------")
4603 print("---------------------------DATAREADY---------------------------------------------")
4603 print("---------------------------DATAREADY---------------------------------------------")
4604 #print("---------------------------------------------------------------------------------")
4604 #print("---------------------------------------------------------------------------------")
4605 #print("data_360",dataOut.data_360.shape)
4605 #print("data_360",dataOut.data_360.shape)
4606 dataOut.data_azi = data_p
4606 dataOut.data_azi = data_p
4607 dataOut.data_ele = data_e
4607 dataOut.data_ele = data_e
4608 ###print("azi: ",dataOut.data_azi)
4608 ###print("azi: ",dataOut.data_azi)
4609 #print("ele: ",dataOut.data_ele)
4609 #print("ele: ",dataOut.data_ele)
4610 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4610 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4611 dataOut.utctime = avgdatatime
4611 dataOut.utctime = avgdatatime
4612
4612
4613 dataOut.case_flag = self.checkcase(dataOut.data_ele)
4613 dataOut.case_flag = self.checkcase(dataOut.data_ele)
4614 if dataOut.case_flag: #Si estΓ‘ de bajada empieza a plotear
4614 if dataOut.case_flag: #Si estΓ‘ de bajada empieza a plotear
4615 print("INSIDE CASE FLAG BAJADA")
4615 print("INSIDE CASE FLAG BAJADA")
4616 dataOut.flagNoData = False
4616 dataOut.flagNoData = False
4617 else:
4617 else:
4618 print("CASE SUBIDA")
4618 print("CASE SUBIDA")
4619 dataOut.flagNoData = True
4619 dataOut.flagNoData = True
4620
4620
4621 #dataOut.flagNoData = False
4621 #dataOut.flagNoData = False
4622 return dataOut
4622 return dataOut
4623
4624 class Block360_vRF2(Operation):
4625 '''
4626 '''
4627 isConfig = False
4628 __profIndex = 0
4629 __initime = None
4630 __lastdatatime = None
4631 __buffer = None
4632 __dataReady = False
4633 n = None
4634 __nch = 0
4635 __nHeis = 0
4636 index = 0
4637 mode = 0
4638
4639 def __init__(self,**kwargs):
4640 Operation.__init__(self,**kwargs)
4641
4642 def setup(self, dataOut, n = None, mode = None):
4643 '''
4644 n= Numero de PRF's de entrada
4645 '''
4646 self.__initime = None
4647 self.__lastdatatime = 0
4648 self.__dataReady = False
4649 self.__buffer = 0
4650 self.__buffer_1D = 0
4651 #self.__profIndex = 0
4652 self.index = 0
4653 self.__nch = dataOut.nChannels
4654 self.__nHeis = dataOut.nHeights
4655
4656 self.mode = mode
4657 #print("self.mode",self.mode)
4658 #print("nHeights")
4659 self.__buffer = []
4660 self.__buffer2 = []
4661 self.__buffer3 = []
4662
4663 def putData(self,data,mode):
4664 '''
4665 Add a profile to he __buffer and increase in one the __profiel Index
4666 '''
4667 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4668 #print("line 4049",data.azimuth.shape,data.azimuth)
4669 if self.mode==0:
4670 self.__buffer.append(data.dataPP_POWER)# PRIMER MOMENTO
4671 if self.mode==1:
4672 self.__buffer.append(data.data_pow)
4673 #print("me casi",self.index,data.azimuth[self.index])
4674 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4675 #print("magic",data.profileIndex)
4676 #print(data.azimuth[self.index])
4677 #print("index",self.index)
4678
4679 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4680 self.__buffer2.append(data.azimuth)
4681 self.__buffer3.append(data.elevation)
4682 self.__profIndex += 1
4683 #print("q pasa")
4684 return numpy.array(self.__buffer3) #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4685
4686 def pushData(self,data):
4687 '''
4688 Return the PULSEPAIR and the profiles used in the operation
4689 Affected : self.__profileIndex
4690 '''
4691 #print("pushData")
4692
4693 data_360 = numpy.array(self.__buffer).transpose(1,0,2)
4694 data_p = numpy.array(self.__buffer2)
4695 data_e = numpy.array(self.__buffer3)
4696 n = self.__profIndex
4697
4698 self.__buffer = []
4699 self.__buffer2 = []
4700 self.__buffer3 = []
4701 self.__profIndex = 0
4702 #print("pushData")
4703 return data_360,n,data_p,data_e
4704
4705
4706 def byProfiles(self,dataOut):
4707
4708 self.__dataReady = False
4709 data_360 = None
4710 data_p = None
4711 data_e = None
4712 #print("dataOu",dataOut.dataPP_POW)
4713
4714 elevations = self.putData(data=dataOut,mode = self.mode)
4715 ##### print("profIndex",self.__profIndex)
4716
4717
4718 if self.__profIndex > 1:
4719 case_flag = self.checkcase(elevations)
4720
4721 if case_flag == 0: #Subida
4722 #Se borra el dato anterior para liberar buffer y comparar el dato actual con el siguiente
4723 if len(self.__buffer) == 2: #Cuando estΓ‘ de subida
4724 self.__buffer.pop(0) #Erase first data
4725 self.__buffer2.pop(0)
4726 self.__buffer3.pop(0)
4727 self.__profIndex -= 1
4728 else: #Cuando ha estado de bajada y ha vuelto a subir
4729 #print("else",self.__buffer3)
4730 self.__buffer.pop() #Erase last data
4731 self.__buffer2.pop()
4732 self.__buffer3.pop()
4733 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4734 #print(data_360.shape)
4735 #print(data_e.shape)
4736 #exit(1)
4737 self.__dataReady = True
4738 '''
4739 elif elevations[-1]<0.:
4740 if len(self.__buffer) == 2:
4741 self.__buffer.pop(0) #Erase first data
4742 self.__buffer2.pop(0)
4743 self.__buffer3.pop(0)
4744 self.__profIndex -= 1
4745 else:
4746 self.__buffer.pop() #Erase last data
4747 self.__buffer2.pop()
4748 self.__buffer3.pop()
4749 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4750 self.__dataReady = True
4751 '''
4752
4753
4754 '''
4755 if self.__profIndex == self.n:
4756 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4757 self.__dataReady = True
4758 '''
4759
4760 return data_360,data_p,data_e
4761
4762
4763 def blockOp(self, dataOut, datatime= None):
4764 if self.__initime == None:
4765 self.__initime = datatime
4766 data_360,data_p,data_e = self.byProfiles(dataOut)
4767 self.__lastdatatime = datatime
4768
4769 if data_360 is None:
4770 return None, None,None,None
4771
4772
4773 avgdatatime = self.__initime
4774 if self.n==1:
4775 avgdatatime = datatime
4776 deltatime = datatime - self.__lastdatatime
4777 self.__initime = datatime
4778 #print(data_360.shape,avgdatatime,data_p.shape)
4779 return data_360,avgdatatime,data_p,data_e
4780
4781 def checkcase(self,data_ele):
4782 print(data_ele)
4783 start = data_ele[-2]
4784 end = data_ele[-1]
4785 diff_angle = (end-start)
4786 len_ang=len(data_ele)
4787
4788 if diff_angle > 0: #Subida
4789 return 0
4790
4791 def run(self, dataOut,n = None,mode=None,**kwargs):
4792 #print("BLOCK 360 HERE WE GO MOMENTOS")
4793 print("Block 360")
4794
4795 #exit(1)
4796 if not self.isConfig:
4797
4798 print(n)
4799 self.setup(dataOut = dataOut ,mode= mode ,**kwargs)
4800 ####self.index = 0
4801 #print("comova",self.isConfig)
4802 self.isConfig = True
4803 ####if self.index==dataOut.azimuth.shape[0]:
4804 #### self.index=0
4805
4806 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4807
4808
4809
4810
4811 dataOut.flagNoData = True
4812
4813 if self.__dataReady:
4814 dataOut.data_360 = data_360 # S
4815 #print("DATA 360")
4816 #print(dataOut.data_360)
4817 #print("---------------------------------------------------------------------------------")
4818 print("---------------------------DATAREADY---------------------------------------------")
4819 #print("---------------------------------------------------------------------------------")
4820 #print("data_360",dataOut.data_360.shape)
4821 print(data_e)
4822 #exit(1)
4823 dataOut.data_azi = data_p
4824 dataOut.data_ele = data_e
4825 ###print("azi: ",dataOut.data_azi)
4826 #print("ele: ",dataOut.data_ele)
4827 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4828 dataOut.utctime = avgdatatime
4829
4830
4831
4832 dataOut.flagNoData = False
4833 return dataOut
General Comments 0
You need to be logged in to leave comments. Login now