The requested changes are too big and content was truncated. Show full diff
This diff has been collapsed as it changes many lines, (513 lines changed) Show them Hide them | |||
@@ -1,1865 +1,2378 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter | |
|
4 | 5 | |
|
5 | 6 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | 7 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
7 | 8 | from schainpy.utils import log |
|
8 | 9 | # libreria wradlib |
|
9 | 10 | import wradlib as wrl |
|
10 | 11 | |
|
11 | 12 | EARTH_RADIUS = 6.3710e3 |
|
12 | 13 | |
|
13 | 14 | |
|
14 | 15 | def ll2xy(lat1, lon1, lat2, lon2): |
|
15 | 16 | |
|
16 | 17 | p = 0.017453292519943295 |
|
17 | 18 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
18 | 19 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
19 | 20 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
20 | 21 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
21 | 22 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
22 | 23 | theta = -theta + numpy.pi/2 |
|
23 | 24 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
24 | 25 | |
|
25 | 26 | |
|
26 | 27 | def km2deg(km): |
|
27 | 28 | ''' |
|
28 | 29 | Convert distance in km to degrees |
|
29 | 30 | ''' |
|
30 | 31 | |
|
31 | 32 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
32 | 33 | |
|
33 | 34 | |
|
34 | 35 | |
|
35 | 36 | class SpectralMomentsPlot(SpectraPlot): |
|
36 | 37 | ''' |
|
37 | 38 | Plot for Spectral Moments |
|
38 | 39 | ''' |
|
39 | 40 | CODE = 'spc_moments' |
|
40 | 41 | # colormap = 'jet' |
|
41 | 42 | # plot_type = 'pcolor' |
|
42 | 43 | |
|
43 | 44 | class DobleGaussianPlot(SpectraPlot): |
|
44 | 45 | ''' |
|
45 | 46 | Plot for Double Gaussian Plot |
|
46 | 47 | ''' |
|
47 | 48 | CODE = 'gaussian_fit' |
|
48 | 49 | # colormap = 'jet' |
|
49 | 50 | # plot_type = 'pcolor' |
|
50 | 51 | |
|
51 | 52 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
52 | 53 | ''' |
|
53 | 54 | Plot SpectraCut with Double Gaussian Fit |
|
54 | 55 | ''' |
|
55 | 56 | CODE = 'cut_gaussian_fit' |
|
56 | 57 | |
|
57 | 58 | class SnrPlot(RTIPlot): |
|
58 | 59 | ''' |
|
59 | 60 | Plot for SNR Data |
|
60 | 61 | ''' |
|
61 | 62 | |
|
62 | 63 | CODE = 'snr' |
|
63 | 64 | colormap = 'jet' |
|
64 | 65 | |
|
65 | 66 | def update(self, dataOut): |
|
66 | 67 | |
|
67 | 68 | data = { |
|
68 | 69 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
69 | 70 | } |
|
70 | 71 | |
|
71 | 72 | return data, {} |
|
72 | 73 | |
|
73 | 74 | class DopplerPlot(RTIPlot): |
|
74 | 75 | ''' |
|
75 | 76 | Plot for DOPPLER Data (1st moment) |
|
76 | 77 | ''' |
|
77 | 78 | |
|
78 | 79 | CODE = 'dop' |
|
79 | 80 | colormap = 'jet' |
|
80 | 81 | |
|
81 | 82 | def update(self, dataOut): |
|
82 | 83 | |
|
83 | 84 | data = { |
|
84 | 85 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
85 | 86 | } |
|
86 | 87 | |
|
87 | 88 | return data, {} |
|
88 | 89 | |
|
89 | 90 | class PowerPlot(RTIPlot): |
|
90 | 91 | ''' |
|
91 | 92 | Plot for Power Data (0 moment) |
|
92 | 93 | ''' |
|
93 | 94 | |
|
94 | 95 | CODE = 'pow' |
|
95 | 96 | colormap = 'jet' |
|
96 | 97 | |
|
97 | 98 | def update(self, dataOut): |
|
98 | 99 | data = { |
|
99 | 100 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
100 | 101 | } |
|
101 | 102 | return data, {} |
|
102 | 103 | |
|
103 | 104 | class SpectralWidthPlot(RTIPlot): |
|
104 | 105 | ''' |
|
105 | 106 | Plot for Spectral Width Data (2nd moment) |
|
106 | 107 | ''' |
|
107 | 108 | |
|
108 | 109 | CODE = 'width' |
|
109 | 110 | colormap = 'jet' |
|
110 | 111 | |
|
111 | 112 | def update(self, dataOut): |
|
112 | 113 | |
|
113 | 114 | data = { |
|
114 | 115 | 'width': dataOut.data_width |
|
115 | 116 | } |
|
116 | 117 | |
|
117 | 118 | return data, {} |
|
118 | 119 | |
|
119 | 120 | class SkyMapPlot(Plot): |
|
120 | 121 | ''' |
|
121 | 122 | Plot for meteors detection data |
|
122 | 123 | ''' |
|
123 | 124 | |
|
124 | 125 | CODE = 'param' |
|
125 | 126 | |
|
126 | 127 | def setup(self): |
|
127 | 128 | |
|
128 | 129 | self.ncols = 1 |
|
129 | 130 | self.nrows = 1 |
|
130 | 131 | self.width = 7.2 |
|
131 | 132 | self.height = 7.2 |
|
132 | 133 | self.nplots = 1 |
|
133 | 134 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
134 | 135 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
135 | 136 | self.polar = True |
|
136 | 137 | self.ymin = -180 |
|
137 | 138 | self.ymax = 180 |
|
138 | 139 | self.colorbar = False |
|
139 | 140 | |
|
140 | 141 | def plot(self): |
|
141 | 142 | |
|
142 | 143 | arrayParameters = numpy.concatenate(self.data['param']) |
|
143 | 144 | error = arrayParameters[:, -1] |
|
144 | 145 | indValid = numpy.where(error == 0)[0] |
|
145 | 146 | finalMeteor = arrayParameters[indValid, :] |
|
146 | 147 | finalAzimuth = finalMeteor[:, 3] |
|
147 | 148 | finalZenith = finalMeteor[:, 4] |
|
148 | 149 | |
|
149 | 150 | x = finalAzimuth * numpy.pi / 180 |
|
150 | 151 | y = finalZenith |
|
151 | 152 | |
|
152 | 153 | ax = self.axes[0] |
|
153 | 154 | |
|
154 | 155 | if ax.firsttime: |
|
155 | 156 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
156 | 157 | else: |
|
157 | 158 | ax.plot.set_data(x, y) |
|
158 | 159 | |
|
159 | 160 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
160 | 161 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
161 | 162 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
162 | 163 | dt2, |
|
163 | 164 | len(x)) |
|
164 | 165 | self.titles[0] = title |
|
165 | 166 | |
|
166 | 167 | |
|
167 | 168 | class GenericRTIPlot(Plot): |
|
168 | 169 | ''' |
|
169 | 170 | Plot for data_xxxx object |
|
170 | 171 | ''' |
|
171 | 172 | |
|
172 | 173 | CODE = 'param' |
|
173 | 174 | colormap = 'viridis' |
|
174 | 175 | plot_type = 'pcolorbuffer' |
|
175 | 176 | |
|
176 | 177 | def setup(self): |
|
177 | 178 | self.xaxis = 'time' |
|
178 | 179 | self.ncols = 1 |
|
179 | 180 | self.nrows = self.data.shape('param')[0] |
|
180 | 181 | self.nplots = self.nrows |
|
181 | 182 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
182 | 183 | |
|
183 | 184 | if not self.xlabel: |
|
184 | 185 | self.xlabel = 'Time' |
|
185 | 186 | |
|
186 | 187 | self.ylabel = 'Range [km]' |
|
187 | 188 | if not self.titles: |
|
188 | 189 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
189 | 190 | |
|
190 | 191 | def update(self, dataOut): |
|
191 | 192 | |
|
192 | 193 | data = { |
|
193 | 194 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
194 | 195 | } |
|
195 | 196 | |
|
196 | 197 | meta = {} |
|
197 | 198 | |
|
198 | 199 | return data, meta |
|
199 | 200 | |
|
200 | 201 | def plot(self): |
|
201 | 202 | # self.data.normalize_heights() |
|
202 | 203 | self.x = self.data.times |
|
203 | 204 | self.y = self.data.yrange |
|
204 | 205 | self.z = self.data['param'] |
|
205 | 206 | self.z = 10*numpy.log10(self.z) |
|
206 | 207 | self.z = numpy.ma.masked_invalid(self.z) |
|
207 | 208 | |
|
208 | 209 | if self.decimation is None: |
|
209 | 210 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
210 | 211 | else: |
|
211 | 212 | x, y, z = self.fill_gaps(*self.decimate()) |
|
212 | 213 | |
|
213 | 214 | for n, ax in enumerate(self.axes): |
|
214 | 215 | |
|
215 | 216 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
216 | 217 | self.z[n]) |
|
217 | 218 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
218 | 219 | self.z[n]) |
|
219 | 220 | |
|
220 | 221 | if ax.firsttime: |
|
221 | 222 | if self.zlimits is not None: |
|
222 | 223 | self.zmin, self.zmax = self.zlimits[n] |
|
223 | 224 | |
|
224 | 225 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
225 | 226 | vmin=self.zmin, |
|
226 | 227 | vmax=self.zmax, |
|
227 | 228 | cmap=self.cmaps[n] |
|
228 | 229 | ) |
|
229 | 230 | else: |
|
230 | 231 | if self.zlimits is not None: |
|
231 | 232 | self.zmin, self.zmax = self.zlimits[n] |
|
232 | 233 | ax.collections.remove(ax.collections[0]) |
|
233 | 234 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
234 | 235 | vmin=self.zmin, |
|
235 | 236 | vmax=self.zmax, |
|
236 | 237 | cmap=self.cmaps[n] |
|
237 | 238 | ) |
|
238 | 239 | |
|
239 | 240 | |
|
240 | 241 | class PolarMapPlot(Plot): |
|
241 | 242 | ''' |
|
242 | 243 | Plot for weather radar |
|
243 | 244 | ''' |
|
244 | 245 | |
|
245 | 246 | CODE = 'param' |
|
246 | 247 | colormap = 'seismic' |
|
247 | 248 | |
|
248 | 249 | def setup(self): |
|
249 | 250 | self.ncols = 1 |
|
250 | 251 | self.nrows = 1 |
|
251 | 252 | self.width = 9 |
|
252 | 253 | self.height = 8 |
|
253 | 254 | self.mode = self.data.meta['mode'] |
|
254 | 255 | if self.channels is not None: |
|
255 | 256 | self.nplots = len(self.channels) |
|
256 | 257 | self.nrows = len(self.channels) |
|
257 | 258 | else: |
|
258 | 259 | self.nplots = self.data.shape(self.CODE)[0] |
|
259 | 260 | self.nrows = self.nplots |
|
260 | 261 | self.channels = list(range(self.nplots)) |
|
261 | 262 | if self.mode == 'E': |
|
262 | 263 | self.xlabel = 'Longitude' |
|
263 | 264 | self.ylabel = 'Latitude' |
|
264 | 265 | else: |
|
265 | 266 | self.xlabel = 'Range (km)' |
|
266 | 267 | self.ylabel = 'Height (km)' |
|
267 | 268 | self.bgcolor = 'white' |
|
268 | 269 | self.cb_labels = self.data.meta['units'] |
|
269 | 270 | self.lat = self.data.meta['latitude'] |
|
270 | 271 | self.lon = self.data.meta['longitude'] |
|
271 | 272 | self.xmin, self.xmax = float( |
|
272 | 273 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
273 | 274 | self.ymin, self.ymax = float( |
|
274 | 275 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
275 | 276 | # self.polar = True |
|
276 | 277 | |
|
277 | 278 | def plot(self): |
|
278 | 279 | |
|
279 | 280 | for n, ax in enumerate(self.axes): |
|
280 | 281 | data = self.data['param'][self.channels[n]] |
|
281 | 282 | |
|
282 | 283 | zeniths = numpy.linspace( |
|
283 | 284 | 0, self.data.meta['max_range'], data.shape[1]) |
|
284 | 285 | if self.mode == 'E': |
|
285 | 286 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
286 | 287 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
287 | 288 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
288 | 289 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
289 | 290 | x = km2deg(x) + self.lon |
|
290 | 291 | y = km2deg(y) + self.lat |
|
291 | 292 | else: |
|
292 | 293 | azimuths = numpy.radians(self.data.yrange) |
|
293 | 294 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
294 | 295 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
295 | 296 | self.y = zeniths |
|
296 | 297 | |
|
297 | 298 | if ax.firsttime: |
|
298 | 299 | if self.zlimits is not None: |
|
299 | 300 | self.zmin, self.zmax = self.zlimits[n] |
|
300 | 301 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
301 | 302 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
302 | 303 | vmin=self.zmin, |
|
303 | 304 | vmax=self.zmax, |
|
304 | 305 | cmap=self.cmaps[n]) |
|
305 | 306 | else: |
|
306 | 307 | if self.zlimits is not None: |
|
307 | 308 | self.zmin, self.zmax = self.zlimits[n] |
|
308 | 309 | ax.collections.remove(ax.collections[0]) |
|
309 | 310 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
310 | 311 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
311 | 312 | vmin=self.zmin, |
|
312 | 313 | vmax=self.zmax, |
|
313 | 314 | cmap=self.cmaps[n]) |
|
314 | 315 | |
|
315 | 316 | if self.mode == 'A': |
|
316 | 317 | continue |
|
317 | 318 | |
|
318 | 319 | # plot district names |
|
319 | 320 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
320 | 321 | for line in f: |
|
321 | 322 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
322 | 323 | lat = float(lat) |
|
323 | 324 | lon = float(lon) |
|
324 | 325 | # ax.plot(lon, lat, '.b', ms=2) |
|
325 | 326 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
326 | 327 | va='bottom', size='8', color='black') |
|
327 | 328 | |
|
328 | 329 | # plot limites |
|
329 | 330 | limites = [] |
|
330 | 331 | tmp = [] |
|
331 | 332 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
332 | 333 | if '#' in line: |
|
333 | 334 | if tmp: |
|
334 | 335 | limites.append(tmp) |
|
335 | 336 | tmp = [] |
|
336 | 337 | continue |
|
337 | 338 | values = line.strip().split(',') |
|
338 | 339 | tmp.append((float(values[0]), float(values[1]))) |
|
339 | 340 | for points in limites: |
|
340 | 341 | ax.add_patch( |
|
341 | 342 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
342 | 343 | |
|
343 | 344 | # plot Cuencas |
|
344 | 345 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
345 | 346 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
346 | 347 | values = [line.strip().split(',') for line in f] |
|
347 | 348 | points = [(float(s[0]), float(s[1])) for s in values] |
|
348 | 349 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
349 | 350 | |
|
350 | 351 | # plot grid |
|
351 | 352 | for r in (15, 30, 45, 60): |
|
352 | 353 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
353 | 354 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
354 | 355 | ax.text( |
|
355 | 356 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
356 | 357 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
357 | 358 | '{}km'.format(r), |
|
358 | 359 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
359 | 360 | |
|
360 | 361 | if self.mode == 'E': |
|
361 | 362 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
362 | 363 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
363 | 364 | else: |
|
364 | 365 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
365 | 366 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
366 | 367 | |
|
367 | 368 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
368 | 369 | self.titles = ['{} {}'.format( |
|
369 | 370 | self.data.parameters[x], title) for x in self.channels] |
|
370 | 371 | |
|
371 | 372 | class WeatherPlot(Plot): |
|
372 | 373 | CODE = 'weather' |
|
373 | 374 | plot_name = 'weather' |
|
374 | 375 | plot_type = 'ppistyle' |
|
375 | 376 | buffering = False |
|
376 | 377 | |
|
377 | 378 | def setup(self): |
|
378 | 379 | self.ncols = 1 |
|
379 | 380 | self.nrows = 1 |
|
380 | 381 | self.width =8 |
|
381 | 382 | self.height =8 |
|
382 | 383 | self.nplots= 1 |
|
383 | 384 | self.ylabel= 'Range [Km]' |
|
384 | 385 | self.titles= ['Weather'] |
|
385 | 386 | self.colorbar=False |
|
386 | 387 | self.ini =0 |
|
387 | 388 | self.len_azi =0 |
|
388 | 389 | self.buffer_ini = None |
|
389 | 390 | self.buffer_azi = None |
|
390 | 391 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
391 | 392 | self.flag =0 |
|
392 | 393 | self.indicador= 0 |
|
393 | 394 | self.last_data_azi = None |
|
394 | 395 | self.val_mean = None |
|
395 | 396 | |
|
396 | 397 | def update(self, dataOut): |
|
397 | 398 | |
|
398 | 399 | data = {} |
|
399 | 400 | meta = {} |
|
400 | 401 | if hasattr(dataOut, 'dataPP_POWER'): |
|
401 | 402 | factor = 1 |
|
402 | 403 | if hasattr(dataOut, 'nFFTPoints'): |
|
403 | 404 | factor = dataOut.normFactor |
|
404 | 405 | #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape) |
|
405 | 406 | data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
406 | 407 | data['azi'] = dataOut.data_azi |
|
407 | 408 | data['ele'] = dataOut.data_ele |
|
408 | 409 | return data, meta |
|
409 | 410 | |
|
410 | 411 | def get2List(self,angulos): |
|
411 | 412 | list1=[] |
|
412 | 413 | list2=[] |
|
413 | 414 | for i in reversed(range(len(angulos))): |
|
414 | 415 | diff_ = angulos[i]-angulos[i-1] |
|
415 | 416 | if diff_ >1.5: |
|
416 | 417 | list1.append(i-1) |
|
417 | 418 | list2.append(diff_) |
|
418 | 419 | return list(reversed(list1)),list(reversed(list2)) |
|
419 | 420 | |
|
420 | 421 | def fixData360(self,list_,ang_): |
|
421 | 422 | if list_[0]==-1: |
|
422 | 423 | vec = numpy.where(ang_<ang_[0]) |
|
423 | 424 | ang_[vec] = ang_[vec]+360 |
|
424 | 425 | return ang_ |
|
425 | 426 | return ang_ |
|
426 | 427 | |
|
427 | 428 | def fixData360HL(self,angulos): |
|
428 | 429 | vec = numpy.where(angulos>=360) |
|
429 | 430 | angulos[vec]=angulos[vec]-360 |
|
430 | 431 | return angulos |
|
431 | 432 | |
|
432 | 433 | def search_pos(self,pos,list_): |
|
433 | 434 | for i in range(len(list_)): |
|
434 | 435 | if pos == list_[i]: |
|
435 | 436 | return True,i |
|
436 | 437 | i=None |
|
437 | 438 | return False,i |
|
438 | 439 | |
|
439 | 440 | def fixDataComp(self,ang_,list1_,list2_): |
|
440 | 441 | size = len(ang_) |
|
441 | 442 | size2 = 0 |
|
442 | 443 | for i in range(len(list2_)): |
|
443 | 444 | size2=size2+round(list2_[i])-1 |
|
444 | 445 | new_size= size+size2 |
|
445 | 446 | ang_new = numpy.zeros(new_size) |
|
446 | 447 | ang_new2 = numpy.zeros(new_size) |
|
447 | 448 | |
|
448 | 449 | tmp = 0 |
|
449 | 450 | c = 0 |
|
450 | 451 | for i in range(len(ang_)): |
|
451 | 452 | ang_new[tmp +c] = ang_[i] |
|
452 | 453 | ang_new2[tmp+c] = ang_[i] |
|
453 | 454 | condition , value = self.search_pos(i,list1_) |
|
454 | 455 | if condition: |
|
455 | 456 | pos = tmp + c + 1 |
|
456 | 457 | for k in range(round(list2_[value])-1): |
|
457 | 458 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
458 | 459 | ang_new2[pos+k] = numpy.nan |
|
459 | 460 | tmp = pos +k |
|
460 | 461 | c = 0 |
|
461 | 462 | c=c+1 |
|
462 | 463 | return ang_new,ang_new2 |
|
463 | 464 | |
|
464 | 465 | def globalCheckPED(self,angulos): |
|
465 | 466 | l1,l2 = self.get2List(angulos) |
|
466 | 467 | if len(l1)>0: |
|
467 | 468 | angulos2 = self.fixData360(list_=l1,ang_=angulos) |
|
468 | 469 | l1,l2 = self.get2List(angulos2) |
|
469 | 470 | |
|
470 | 471 | ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2) |
|
471 | 472 | ang1_ = self.fixData360HL(ang1_) |
|
472 | 473 | ang2_ = self.fixData360HL(ang2_) |
|
473 | 474 | else: |
|
474 | 475 | ang1_= angulos |
|
475 | 476 | ang2_= angulos |
|
476 | 477 | return ang1_,ang2_ |
|
477 | 478 | |
|
478 | 479 | def analizeDATA(self,data_azi): |
|
479 | 480 | list1 = [] |
|
480 | 481 | list2 = [] |
|
481 | 482 | dat = data_azi |
|
482 | 483 | for i in reversed(range(1,len(dat))): |
|
483 | 484 | if dat[i]>dat[i-1]: |
|
484 | 485 | diff = int(dat[i])-int(dat[i-1]) |
|
485 | 486 | else: |
|
486 | 487 | diff = 360+int(dat[i])-int(dat[i-1]) |
|
487 | 488 | if diff > 1: |
|
488 | 489 | list1.append(i-1) |
|
489 | 490 | list2.append(diff-1) |
|
490 | 491 | return list1,list2 |
|
491 | 492 | |
|
492 | 493 | def fixDATANEW(self,data_azi,data_weather): |
|
493 | 494 | list1,list2 = self.analizeDATA(data_azi) |
|
494 | 495 | if len(list1)== 0: |
|
495 | 496 | return data_azi,data_weather |
|
496 | 497 | else: |
|
497 | 498 | resize = 0 |
|
498 | 499 | for i in range(len(list2)): |
|
499 | 500 | resize= resize + list2[i] |
|
500 | 501 | new_data_azi = numpy.resize(data_azi,resize) |
|
501 | 502 | new_data_weather= numpy.resize(date_weather,resize) |
|
502 | 503 | |
|
503 | 504 | for i in range(len(list2)): |
|
504 | 505 | j=0 |
|
505 | 506 | position=list1[i]+1 |
|
506 | 507 | for j in range(list2[i]): |
|
507 | 508 | new_data_azi[position+j]=new_data_azi[position+j-1]+1 |
|
508 | 509 | return new_data_azi |
|
509 | 510 | |
|
510 | 511 | def fixDATA(self,data_azi): |
|
511 | 512 | data=data_azi |
|
512 | 513 | for i in range(len(data)): |
|
513 | 514 | if numpy.isnan(data[i]): |
|
514 | 515 | data[i]=data[i-1]+1 |
|
515 | 516 | return data |
|
516 | 517 | |
|
517 | 518 | def replaceNAN(self,data_weather,data_azi,val): |
|
518 | 519 | data= data_azi |
|
519 | 520 | data_T= data_weather |
|
520 | 521 | if data.shape[0]> data_T.shape[0]: |
|
521 | 522 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
522 | 523 | c = 0 |
|
523 | 524 | for i in range(len(data)): |
|
524 | 525 | if numpy.isnan(data[i]): |
|
525 | 526 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
526 | 527 | else: |
|
527 | 528 | data_N[i,:]=data_T[c,:] |
|
528 | 529 | c=c+1 |
|
529 | 530 | return data_N |
|
530 | 531 | else: |
|
531 | 532 | for i in range(len(data)): |
|
532 | 533 | if numpy.isnan(data[i]): |
|
533 | 534 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
534 | 535 | return data_T |
|
535 | 536 | |
|
536 | 537 | def const_ploteo(self,data_weather,data_azi,step,res): |
|
537 | 538 | if self.ini==0: |
|
538 | 539 | #------- |
|
539 | 540 | n = (360/res)-len(data_azi) |
|
540 | 541 | #--------------------- new ------------------------- |
|
541 | 542 | data_azi_new ,data_azi_old= self.globalCheckPED(data_azi) |
|
542 | 543 | #------------------------ |
|
543 | 544 | start = data_azi_new[-1] + res |
|
544 | 545 | end = data_azi_new[0] - res |
|
545 | 546 | #------ new |
|
546 | 547 | self.last_data_azi = end |
|
547 | 548 | if start>end: |
|
548 | 549 | end = end + 360 |
|
549 | 550 | azi_vacia = numpy.linspace(start,end,int(n)) |
|
550 | 551 | azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) |
|
551 | 552 | data_azi = numpy.hstack((data_azi_new,azi_vacia)) |
|
552 | 553 | # RADAR |
|
553 | 554 | val_mean = numpy.mean(data_weather[:,-1]) |
|
554 | 555 | self.val_mean = val_mean |
|
555 | 556 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean |
|
556 | 557 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) |
|
557 | 558 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) |
|
558 | 559 | else: |
|
559 | 560 | # azimuth |
|
560 | 561 | flag=0 |
|
561 | 562 | start_azi = self.res_azi[0] |
|
562 | 563 | #-----------new------------ |
|
563 | 564 | data_azi ,data_azi_old= self.globalCheckPED(data_azi) |
|
564 | 565 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) |
|
565 | 566 | #-------------------------- |
|
566 | 567 | start = data_azi[0] |
|
567 | 568 | end = data_azi[-1] |
|
568 | 569 | self.last_data_azi= end |
|
569 | 570 | if start< start_azi: |
|
570 | 571 | start = start +360 |
|
571 | 572 | if end <start_azi: |
|
572 | 573 | end = end +360 |
|
573 | 574 | |
|
574 | 575 | pos_ini = int((start-start_azi)/res) |
|
575 | 576 | len_azi = len(data_azi) |
|
576 | 577 | if (360-pos_ini)<len_azi: |
|
577 | 578 | if pos_ini+1==360: |
|
578 | 579 | pos_ini=0 |
|
579 | 580 | else: |
|
580 | 581 | flag=1 |
|
581 | 582 | dif= 360-pos_ini |
|
582 | 583 | comp= len_azi-dif |
|
583 | 584 | #----------------- |
|
584 | 585 | if flag==0: |
|
585 | 586 | # AZIMUTH |
|
586 | 587 | self.res_azi[pos_ini:pos_ini+len_azi] = data_azi |
|
587 | 588 | # RADAR |
|
588 | 589 | self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather |
|
589 | 590 | else: |
|
590 | 591 | # AZIMUTH |
|
591 | 592 | self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] |
|
592 | 593 | self.res_azi[0:comp] = data_azi[dif:] |
|
593 | 594 | # RADAR |
|
594 | 595 | self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] |
|
595 | 596 | self.res_weather[0:comp,:] = data_weather[dif:,:] |
|
596 | 597 | flag=0 |
|
597 | 598 | data_azi = self.res_azi |
|
598 | 599 | data_weather = self.res_weather |
|
599 | 600 | |
|
600 | 601 | return data_weather,data_azi |
|
601 | 602 | |
|
602 | 603 | def plot(self): |
|
603 | 604 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
604 | 605 | data = self.data[-1] |
|
605 | 606 | r = self.data.yrange |
|
606 | 607 | delta_height = r[1]-r[0] |
|
607 | 608 | r_mask = numpy.where(r>=0)[0] |
|
608 | 609 | r = numpy.arange(len(r_mask))*delta_height |
|
609 | 610 | self.y = 2*r |
|
610 | 611 | # RADAR |
|
611 | 612 | #data_weather = data['weather'] |
|
612 | 613 | # PEDESTAL |
|
613 | 614 | #data_azi = data['azi'] |
|
614 | 615 | res = 1 |
|
615 | 616 | # STEP |
|
616 | 617 | step = (360/(res*data['weather'].shape[0])) |
|
617 | 618 | |
|
618 | 619 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res) |
|
619 | 620 | self.res_ele = numpy.mean(data['ele']) |
|
620 | 621 | ################# PLOTEO ################### |
|
621 | 622 | for i,ax in enumerate(self.axes): |
|
622 | 623 | if ax.firsttime: |
|
623 | 624 | plt.clf() |
|
624 | 625 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) |
|
625 | 626 | else: |
|
626 | 627 | plt.clf() |
|
627 | 628 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) |
|
628 | 629 | caax = cgax.parasites[0] |
|
629 | 630 | paax = cgax.parasites[1] |
|
630 | 631 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
631 | 632 | caax.set_xlabel('x_range [km]') |
|
632 | 633 | caax.set_ylabel('y_range [km]') |
|
633 | 634 | plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
634 | 635 | |
|
635 | 636 | self.ini= self.ini+1 |
|
636 | 637 | |
|
637 | 638 | |
|
638 | 639 | class WeatherRHIPlot(Plot): |
|
639 | 640 | CODE = 'weather' |
|
640 | 641 | plot_name = 'weather' |
|
641 | 642 | plot_type = 'rhistyle' |
|
642 | 643 | buffering = False |
|
643 | 644 | data_ele_tmp = None |
|
644 | 645 | |
|
645 | 646 | def setup(self): |
|
646 | 647 | print("********************") |
|
647 | 648 | print("********************") |
|
648 | 649 | print("********************") |
|
649 | 650 | print("SETUP WEATHER PLOT") |
|
650 | 651 | self.ncols = 1 |
|
651 | 652 | self.nrows = 1 |
|
652 | 653 | self.nplots= 1 |
|
653 | 654 | self.ylabel= 'Range [Km]' |
|
654 | 655 | self.titles= ['Weather'] |
|
655 | 656 | if self.channels is not None: |
|
656 | 657 | self.nplots = len(self.channels) |
|
657 | 658 | self.nrows = len(self.channels) |
|
658 | 659 | else: |
|
659 | 660 | self.nplots = self.data.shape(self.CODE)[0] |
|
660 | 661 | self.nrows = self.nplots |
|
661 | 662 | self.channels = list(range(self.nplots)) |
|
662 | 663 | print("channels",self.channels) |
|
663 | 664 | print("que saldra", self.data.shape(self.CODE)[0]) |
|
664 | 665 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
665 | 666 | print("self.titles",self.titles) |
|
666 | 667 | self.colorbar=False |
|
667 | 668 | self.width =8 |
|
668 | 669 | self.height =8 |
|
669 | 670 | self.ini =0 |
|
670 | 671 | self.len_azi =0 |
|
671 | 672 | self.buffer_ini = None |
|
672 | 673 | self.buffer_ele = None |
|
673 | 674 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
674 | 675 | self.flag =0 |
|
675 | 676 | self.indicador= 0 |
|
676 | 677 | self.last_data_ele = None |
|
677 | 678 | self.val_mean = None |
|
678 | 679 | |
|
679 | 680 | def update(self, dataOut): |
|
680 | 681 | |
|
681 | 682 | data = {} |
|
682 | 683 | meta = {} |
|
683 | 684 | if hasattr(dataOut, 'dataPP_POWER'): |
|
684 | 685 | factor = 1 |
|
685 | 686 | if hasattr(dataOut, 'nFFTPoints'): |
|
686 | 687 | factor = dataOut.normFactor |
|
687 | 688 | print("dataOut",dataOut.data_360.shape) |
|
688 | 689 | # |
|
689 | 690 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) |
|
690 | 691 | # |
|
691 | 692 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
692 | 693 | data['azi'] = dataOut.data_azi |
|
693 | 694 | data['ele'] = dataOut.data_ele |
|
694 | 695 | #print("UPDATE") |
|
695 | 696 | #print("data[weather]",data['weather'].shape) |
|
696 | 697 | #print("data[azi]",data['azi']) |
|
697 | 698 | return data, meta |
|
698 | 699 | |
|
699 | 700 | def get2List(self,angulos): |
|
700 | 701 | list1=[] |
|
701 | 702 | list2=[] |
|
702 | 703 | for i in reversed(range(len(angulos))): |
|
703 | 704 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
704 | 705 | diff_ = angulos[i]-angulos[i-1] |
|
705 | 706 | if abs(diff_) >1.5: |
|
706 | 707 | list1.append(i-1) |
|
707 | 708 | list2.append(diff_) |
|
708 | 709 | return list(reversed(list1)),list(reversed(list2)) |
|
709 | 710 | |
|
710 | 711 | def fixData90(self,list_,ang_): |
|
711 | 712 | if list_[0]==-1: |
|
712 | 713 | vec = numpy.where(ang_<ang_[0]) |
|
713 | 714 | ang_[vec] = ang_[vec]+90 |
|
714 | 715 | return ang_ |
|
715 | 716 | return ang_ |
|
716 | 717 | |
|
717 | 718 | def fixData90HL(self,angulos): |
|
718 | 719 | vec = numpy.where(angulos>=90) |
|
719 | 720 | angulos[vec]=angulos[vec]-90 |
|
720 | 721 | return angulos |
|
721 | 722 | |
|
722 | 723 | |
|
723 | 724 | def search_pos(self,pos,list_): |
|
724 | 725 | for i in range(len(list_)): |
|
725 | 726 | if pos == list_[i]: |
|
726 | 727 | return True,i |
|
727 | 728 | i=None |
|
728 | 729 | return False,i |
|
729 | 730 | |
|
730 | 731 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
731 | 732 | size = len(ang_) |
|
732 | 733 | size2 = 0 |
|
733 | 734 | for i in range(len(list2_)): |
|
734 | 735 | size2=size2+round(abs(list2_[i]))-1 |
|
735 | 736 | new_size= size+size2 |
|
736 | 737 | ang_new = numpy.zeros(new_size) |
|
737 | 738 | ang_new2 = numpy.zeros(new_size) |
|
738 | 739 | |
|
739 | 740 | tmp = 0 |
|
740 | 741 | c = 0 |
|
741 | 742 | for i in range(len(ang_)): |
|
742 | 743 | ang_new[tmp +c] = ang_[i] |
|
743 | 744 | ang_new2[tmp+c] = ang_[i] |
|
744 | 745 | condition , value = self.search_pos(i,list1_) |
|
745 | 746 | if condition: |
|
746 | 747 | pos = tmp + c + 1 |
|
747 | 748 | for k in range(round(abs(list2_[value]))-1): |
|
748 | 749 | if tipo_case==0 or tipo_case==3:#subida |
|
749 | 750 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
750 | 751 | ang_new2[pos+k] = numpy.nan |
|
751 | 752 | elif tipo_case==1 or tipo_case==2:#bajada |
|
752 | 753 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
753 | 754 | ang_new2[pos+k] = numpy.nan |
|
754 | 755 | |
|
755 | 756 | tmp = pos +k |
|
756 | 757 | c = 0 |
|
757 | 758 | c=c+1 |
|
758 | 759 | return ang_new,ang_new2 |
|
759 | 760 | |
|
760 | 761 | def globalCheckPED(self,angulos,tipo_case): |
|
761 | 762 | l1,l2 = self.get2List(angulos) |
|
762 | 763 | ##print("l1",l1) |
|
763 | 764 | ##print("l2",l2) |
|
764 | 765 | if len(l1)>0: |
|
765 | 766 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
766 | 767 | #l1,l2 = self.get2List(angulos2) |
|
767 | 768 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
768 | 769 | #ang1_ = self.fixData90HL(ang1_) |
|
769 | 770 | #ang2_ = self.fixData90HL(ang2_) |
|
770 | 771 | else: |
|
771 | 772 | ang1_= angulos |
|
772 | 773 | ang2_= angulos |
|
773 | 774 | return ang1_,ang2_ |
|
774 | 775 | |
|
775 | 776 | |
|
776 | 777 | def replaceNAN(self,data_weather,data_ele,val): |
|
777 | 778 | data= data_ele |
|
778 | 779 | data_T= data_weather |
|
779 | 780 | if data.shape[0]> data_T.shape[0]: |
|
780 | 781 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
781 | 782 | c = 0 |
|
782 | 783 | for i in range(len(data)): |
|
783 | 784 | if numpy.isnan(data[i]): |
|
784 | 785 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
785 | 786 | else: |
|
786 | 787 | data_N[i,:]=data_T[c,:] |
|
787 | 788 | c=c+1 |
|
788 | 789 | return data_N |
|
789 | 790 | else: |
|
790 | 791 | for i in range(len(data)): |
|
791 | 792 | if numpy.isnan(data[i]): |
|
792 | 793 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
793 | 794 | return data_T |
|
794 | 795 | |
|
795 | 796 | def check_case(self,data_ele,ang_max,ang_min): |
|
796 | 797 | start = data_ele[0] |
|
797 | 798 | end = data_ele[-1] |
|
798 | 799 | number = (end-start) |
|
799 | 800 | len_ang=len(data_ele) |
|
800 | 801 | print("start",start) |
|
801 | 802 | print("end",end) |
|
802 | 803 | print("number",number) |
|
803 | 804 | |
|
804 | 805 | print("len_ang",len_ang) |
|
805 | 806 | |
|
806 | 807 | #exit(1) |
|
807 | 808 | |
|
808 | 809 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida |
|
809 | 810 | return 0 |
|
810 | 811 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada |
|
811 | 812 | # return 1 |
|
812 | 813 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada |
|
813 | 814 | return 1 |
|
814 | 815 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX |
|
815 | 816 | return 2 |
|
816 | 817 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN |
|
817 | 818 | return 3 |
|
818 | 819 | |
|
819 | 820 | |
|
820 | 821 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min): |
|
821 | 822 | ang_max= ang_max |
|
822 | 823 | ang_min= ang_min |
|
823 | 824 | data_weather=data_weather |
|
824 | 825 | val_ch=val_ch |
|
825 | 826 | ##print("*********************DATA WEATHER**************************************") |
|
826 | 827 | ##print(data_weather) |
|
827 | 828 | if self.ini==0: |
|
828 | 829 | ''' |
|
829 | 830 | print("**********************************************") |
|
830 | 831 | print("**********************************************") |
|
831 | 832 | print("***************ini**************") |
|
832 | 833 | print("**********************************************") |
|
833 | 834 | print("**********************************************") |
|
834 | 835 | ''' |
|
835 | 836 | #print("data_ele",data_ele) |
|
836 | 837 | #---------------------------------------------------------- |
|
837 | 838 | tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
838 | 839 | print("check_case",tipo_case) |
|
839 | 840 | #exit(1) |
|
840 | 841 | #--------------------- new ------------------------- |
|
841 | 842 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
842 | 843 | |
|
843 | 844 | #-------------------------CAMBIOS RHI--------------------------------- |
|
844 | 845 | start= ang_min |
|
845 | 846 | end = ang_max |
|
846 | 847 | n= (ang_max-ang_min)/res |
|
847 | 848 | #------ new |
|
848 | 849 | self.start_data_ele = data_ele_new[0] |
|
849 | 850 | self.end_data_ele = data_ele_new[-1] |
|
850 | 851 | if tipo_case==0 or tipo_case==3: # SUBIDA |
|
851 | 852 | n1= round(self.start_data_ele)- start |
|
852 | 853 | n2= end - round(self.end_data_ele) |
|
853 | 854 | print(self.start_data_ele) |
|
854 | 855 | print(self.end_data_ele) |
|
855 | 856 | if n1>0: |
|
856 | 857 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
857 | 858 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
858 | 859 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
859 | 860 | print("ele1_nan",ele1_nan.shape) |
|
860 | 861 | print("data_ele_old",data_ele_old.shape) |
|
861 | 862 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
862 | 863 | if n2>0: |
|
863 | 864 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
864 | 865 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
865 | 866 | data_ele = numpy.hstack((data_ele,ele2)) |
|
866 | 867 | print("ele2_nan",ele2_nan.shape) |
|
867 | 868 | print("data_ele_old",data_ele_old.shape) |
|
868 | 869 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
869 | 870 | |
|
870 | 871 | if tipo_case==1 or tipo_case==2: # BAJADA |
|
871 | 872 | data_ele_new = data_ele_new[::-1] # reversa |
|
872 | 873 | data_ele_old = data_ele_old[::-1]# reversa |
|
873 | 874 | data_weather = data_weather[::-1,:]# reversa |
|
874 | 875 | vec= numpy.where(data_ele_new<ang_max) |
|
875 | 876 | data_ele_new = data_ele_new[vec] |
|
876 | 877 | data_ele_old = data_ele_old[vec] |
|
877 | 878 | data_weather = data_weather[vec[0]] |
|
878 | 879 | vec2= numpy.where(0<data_ele_new) |
|
879 | 880 | data_ele_new = data_ele_new[vec2] |
|
880 | 881 | data_ele_old = data_ele_old[vec2] |
|
881 | 882 | data_weather = data_weather[vec2[0]] |
|
882 | 883 | self.start_data_ele = data_ele_new[0] |
|
883 | 884 | self.end_data_ele = data_ele_new[-1] |
|
884 | 885 | |
|
885 | 886 | n1= round(self.start_data_ele)- start |
|
886 | 887 | n2= end - round(self.end_data_ele)-1 |
|
887 | 888 | print(self.start_data_ele) |
|
888 | 889 | print(self.end_data_ele) |
|
889 | 890 | if n1>0: |
|
890 | 891 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
891 | 892 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
892 | 893 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
893 | 894 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
894 | 895 | if n2>0: |
|
895 | 896 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
896 | 897 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
897 | 898 | data_ele = numpy.hstack((data_ele,ele2)) |
|
898 | 899 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
899 | 900 | # RADAR |
|
900 | 901 | # NOTA data_ele y data_weather es la variable que retorna |
|
901 | 902 | val_mean = numpy.mean(data_weather[:,-1]) |
|
902 | 903 | self.val_mean = val_mean |
|
903 | 904 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
904 | 905 | self.data_ele_tmp[val_ch]= data_ele_old |
|
905 | 906 | else: |
|
906 | 907 | #print("**********************************************") |
|
907 | 908 | #print("****************VARIABLE**********************") |
|
908 | 909 | #-------------------------CAMBIOS RHI--------------------------------- |
|
909 | 910 | #--------------------------------------------------------------------- |
|
910 | 911 | ##print("INPUT data_ele",data_ele) |
|
911 | 912 | flag=0 |
|
912 | 913 | start_ele = self.res_ele[0] |
|
913 | 914 | tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
914 | 915 | #print("TIPO DE DATA",tipo_case) |
|
915 | 916 | #-----------new------------ |
|
916 | 917 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) |
|
917 | 918 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
918 | 919 | |
|
919 | 920 | #-------------------------------NEW RHI ITERATIVO------------------------- |
|
920 | 921 | |
|
921 | 922 | if tipo_case==0 : # SUBIDA |
|
922 | 923 | vec = numpy.where(data_ele<ang_max) |
|
923 | 924 | data_ele = data_ele[vec] |
|
924 | 925 | data_ele_old = data_ele_old[vec] |
|
925 | 926 | data_weather = data_weather[vec[0]] |
|
926 | 927 | |
|
927 | 928 | vec2 = numpy.where(0<data_ele) |
|
928 | 929 | data_ele= data_ele[vec2] |
|
929 | 930 | data_ele_old= data_ele_old[vec2] |
|
930 | 931 | ##print(data_ele_new) |
|
931 | 932 | data_weather= data_weather[vec2[0]] |
|
932 | 933 | |
|
933 | 934 | new_i_ele = int(round(data_ele[0])) |
|
934 | 935 | new_f_ele = int(round(data_ele[-1])) |
|
935 | 936 | #print(new_i_ele) |
|
936 | 937 | #print(new_f_ele) |
|
937 | 938 | #print(data_ele,len(data_ele)) |
|
938 | 939 | #print(data_ele_old,len(data_ele_old)) |
|
939 | 940 | if new_i_ele< 2: |
|
940 | 941 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
941 | 942 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
942 | 943 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old |
|
943 | 944 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele |
|
944 | 945 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather |
|
945 | 946 | data_ele = self.res_ele |
|
946 | 947 | data_weather = self.res_weather[val_ch] |
|
947 | 948 | |
|
948 | 949 | elif tipo_case==1 : #BAJADA |
|
949 | 950 | data_ele = data_ele[::-1] # reversa |
|
950 | 951 | data_ele_old = data_ele_old[::-1]# reversa |
|
951 | 952 | data_weather = data_weather[::-1,:]# reversa |
|
952 | 953 | vec= numpy.where(data_ele<ang_max) |
|
953 | 954 | data_ele = data_ele[vec] |
|
954 | 955 | data_ele_old = data_ele_old[vec] |
|
955 | 956 | data_weather = data_weather[vec[0]] |
|
956 | 957 | vec2= numpy.where(0<data_ele) |
|
957 | 958 | data_ele = data_ele[vec2] |
|
958 | 959 | data_ele_old = data_ele_old[vec2] |
|
959 | 960 | data_weather = data_weather[vec2[0]] |
|
960 | 961 | |
|
961 | 962 | |
|
962 | 963 | new_i_ele = int(round(data_ele[0])) |
|
963 | 964 | new_f_ele = int(round(data_ele[-1])) |
|
964 | 965 | #print(data_ele) |
|
965 | 966 | #print(ang_max) |
|
966 | 967 | #print(data_ele_old) |
|
967 | 968 | if new_i_ele <= 1: |
|
968 | 969 | new_i_ele = 1 |
|
969 | 970 | if round(data_ele[-1])>=ang_max-1: |
|
970 | 971 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
971 | 972 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
972 | 973 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old |
|
973 | 974 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele |
|
974 | 975 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather |
|
975 | 976 | data_ele = self.res_ele |
|
976 | 977 | data_weather = self.res_weather[val_ch] |
|
977 | 978 | |
|
978 | 979 | elif tipo_case==2: #bajada |
|
979 | 980 | vec = numpy.where(data_ele<ang_max) |
|
980 | 981 | data_ele = data_ele[vec] |
|
981 | 982 | data_weather= data_weather[vec[0]] |
|
982 | 983 | |
|
983 | 984 | len_vec = len(vec) |
|
984 | 985 | data_ele_new = data_ele[::-1] # reversa |
|
985 | 986 | data_weather = data_weather[::-1,:] |
|
986 | 987 | new_i_ele = int(data_ele_new[0]) |
|
987 | 988 | new_f_ele = int(data_ele_new[-1]) |
|
988 | 989 | |
|
989 | 990 | n1= new_i_ele- ang_min |
|
990 | 991 | n2= ang_max - new_f_ele-1 |
|
991 | 992 | if n1>0: |
|
992 | 993 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
993 | 994 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
994 | 995 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
995 | 996 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
996 | 997 | if n2>0: |
|
997 | 998 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
998 | 999 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
999 | 1000 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1000 | 1001 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1001 | 1002 | |
|
1002 | 1003 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1003 | 1004 | self.res_ele = data_ele |
|
1004 | 1005 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1005 | 1006 | data_ele = self.res_ele |
|
1006 | 1007 | data_weather = self.res_weather[val_ch] |
|
1007 | 1008 | |
|
1008 | 1009 | elif tipo_case==3:#subida |
|
1009 | 1010 | vec = numpy.where(0<data_ele) |
|
1010 | 1011 | data_ele= data_ele[vec] |
|
1011 | 1012 | data_ele_new = data_ele |
|
1012 | 1013 | data_ele_old= data_ele_old[vec] |
|
1013 | 1014 | data_weather= data_weather[vec[0]] |
|
1014 | 1015 | pos_ini = numpy.argmin(data_ele) |
|
1015 | 1016 | if pos_ini>0: |
|
1016 | 1017 | len_vec= len(data_ele) |
|
1017 | 1018 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) |
|
1018 | 1019 | #print(vec3) |
|
1019 | 1020 | data_ele= data_ele[vec3] |
|
1020 | 1021 | data_ele_new = data_ele |
|
1021 | 1022 | data_ele_old= data_ele_old[vec3] |
|
1022 | 1023 | data_weather= data_weather[vec3] |
|
1023 | 1024 | |
|
1024 | 1025 | new_i_ele = int(data_ele_new[0]) |
|
1025 | 1026 | new_f_ele = int(data_ele_new[-1]) |
|
1026 | 1027 | n1= new_i_ele- ang_min |
|
1027 | 1028 | n2= ang_max - new_f_ele-1 |
|
1028 | 1029 | if n1>0: |
|
1029 | 1030 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1030 | 1031 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1031 | 1032 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1032 | 1033 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1033 | 1034 | if n2>0: |
|
1034 | 1035 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1035 | 1036 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1036 | 1037 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1037 | 1038 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1038 | 1039 | |
|
1039 | 1040 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1040 | 1041 | self.res_ele = data_ele |
|
1041 | 1042 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1042 | 1043 | data_ele = self.res_ele |
|
1043 | 1044 | data_weather = self.res_weather[val_ch] |
|
1044 | 1045 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
1045 | 1046 | return data_weather,data_ele |
|
1046 | 1047 | |
|
1047 | 1048 | |
|
1048 | 1049 | def plot(self): |
|
1049 | 1050 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
1050 | 1051 | data = self.data[-1] |
|
1051 | 1052 | r = self.data.yrange |
|
1052 | 1053 | delta_height = r[1]-r[0] |
|
1053 | 1054 | r_mask = numpy.where(r>=0)[0] |
|
1054 | 1055 | ##print("delta_height",delta_height) |
|
1055 | 1056 | #print("r_mask",r_mask,len(r_mask)) |
|
1056 | 1057 | r = numpy.arange(len(r_mask))*delta_height |
|
1057 | 1058 | self.y = 2*r |
|
1058 | 1059 | res = 1 |
|
1059 | 1060 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
1060 | 1061 | ang_max = self.ang_max |
|
1061 | 1062 | ang_min = self.ang_min |
|
1062 | 1063 | var_ang =ang_max - ang_min |
|
1063 | 1064 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
1064 | 1065 | ###print("step",step) |
|
1065 | 1066 | #-------------------------------------------------------- |
|
1066 | 1067 | ##print('weather',data['weather'].shape) |
|
1067 | 1068 | ##print('ele',data['ele'].shape) |
|
1068 | 1069 | |
|
1069 | 1070 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1070 | 1071 | ###self.res_azi = numpy.mean(data['azi']) |
|
1071 | 1072 | ###print("self.res_ele",self.res_ele) |
|
1072 | 1073 | plt.clf() |
|
1073 | 1074 | subplots = [121, 122] |
|
1074 | 1075 | if self.ini==0: |
|
1075 | 1076 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan |
|
1076 | 1077 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan |
|
1077 | 1078 | print("SHAPE",self.data_ele_tmp.shape) |
|
1078 | 1079 | |
|
1079 | 1080 | for i,ax in enumerate(self.axes): |
|
1080 | 1081 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1081 | 1082 | self.res_azi = numpy.mean(data['azi']) |
|
1082 | 1083 | if i==0: |
|
1083 | 1084 | print("*****************************************************************************to plot**************************",self.res_weather[i].shape) |
|
1084 | 1085 | if ax.firsttime: |
|
1085 | 1086 | #plt.clf() |
|
1086 | 1087 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1087 | 1088 | #fig=self.figures[0] |
|
1088 | 1089 | else: |
|
1089 | 1090 | #plt.clf() |
|
1090 | 1091 | if i==0: |
|
1091 | 1092 | print(self.res_weather[i]) |
|
1092 | 1093 | print(self.res_ele) |
|
1093 | 1094 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1094 | 1095 | caax = cgax.parasites[0] |
|
1095 | 1096 | paax = cgax.parasites[1] |
|
1096 | 1097 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
1097 | 1098 | caax.set_xlabel('x_range [km]') |
|
1098 | 1099 | caax.set_ylabel('y_range [km]') |
|
1099 | 1100 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
1100 | 1101 | print("***************************self.ini****************************",self.ini) |
|
1101 | 1102 | self.ini= self.ini+1 |
|
1102 | 1103 | |
|
1103 | 1104 | class WeatherRHI_vRF2_Plot(Plot): |
|
1104 | 1105 | CODE = 'weather' |
|
1105 | 1106 | plot_name = 'weather' |
|
1106 | 1107 | plot_type = 'rhistyle' |
|
1107 | 1108 | buffering = False |
|
1108 | 1109 | data_ele_tmp = None |
|
1109 | 1110 | |
|
1110 | 1111 | def setup(self): |
|
1111 | 1112 | print("********************") |
|
1112 | 1113 | print("********************") |
|
1113 | 1114 | print("********************") |
|
1114 | 1115 | print("SETUP WEATHER PLOT") |
|
1115 | 1116 | self.ncols = 1 |
|
1116 | 1117 | self.nrows = 1 |
|
1117 | 1118 | self.nplots= 1 |
|
1118 | 1119 | self.ylabel= 'Range [Km]' |
|
1119 | 1120 | self.titles= ['Weather'] |
|
1120 | 1121 | if self.channels is not None: |
|
1121 | 1122 | self.nplots = len(self.channels) |
|
1122 | 1123 | self.nrows = len(self.channels) |
|
1123 | 1124 | else: |
|
1124 | 1125 | self.nplots = self.data.shape(self.CODE)[0] |
|
1125 | 1126 | self.nrows = self.nplots |
|
1126 | 1127 | self.channels = list(range(self.nplots)) |
|
1127 | 1128 | print("channels",self.channels) |
|
1128 | 1129 | print("que saldra", self.data.shape(self.CODE)[0]) |
|
1129 | 1130 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
1130 | 1131 | print("self.titles",self.titles) |
|
1131 | 1132 | self.colorbar=False |
|
1132 | 1133 | self.width =8 |
|
1133 | 1134 | self.height =8 |
|
1134 | 1135 | self.ini =0 |
|
1135 | 1136 | self.len_azi =0 |
|
1136 | 1137 | self.buffer_ini = None |
|
1137 | 1138 | self.buffer_ele = None |
|
1138 | 1139 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
1139 | 1140 | self.flag =0 |
|
1140 | 1141 | self.indicador= 0 |
|
1141 | 1142 | self.last_data_ele = None |
|
1142 | 1143 | self.val_mean = None |
|
1143 | 1144 | |
|
1144 | 1145 | def update(self, dataOut): |
|
1145 | 1146 | |
|
1146 | 1147 | data = {} |
|
1147 | 1148 | meta = {} |
|
1148 | 1149 | if hasattr(dataOut, 'dataPP_POWER'): |
|
1149 | 1150 | factor = 1 |
|
1150 | 1151 | if hasattr(dataOut, 'nFFTPoints'): |
|
1151 | 1152 | factor = dataOut.normFactor |
|
1152 | 1153 | print("dataOut",dataOut.data_360.shape) |
|
1153 | 1154 | # |
|
1154 | 1155 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) |
|
1155 | 1156 | # |
|
1156 | 1157 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
1157 | 1158 | data['azi'] = dataOut.data_azi |
|
1158 | 1159 | data['ele'] = dataOut.data_ele |
|
1159 | 1160 | data['case_flag'] = dataOut.case_flag |
|
1160 | 1161 | #print("UPDATE") |
|
1161 | 1162 | #print("data[weather]",data['weather'].shape) |
|
1162 | 1163 | #print("data[azi]",data['azi']) |
|
1163 | 1164 | return data, meta |
|
1164 | 1165 | |
|
1165 | 1166 | def get2List(self,angulos): |
|
1166 | 1167 | list1=[] |
|
1167 | 1168 | list2=[] |
|
1168 | 1169 | for i in reversed(range(len(angulos))): |
|
1169 | 1170 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
1170 | 1171 | diff_ = angulos[i]-angulos[i-1] |
|
1171 | 1172 | if abs(diff_) >1.5: |
|
1172 | 1173 | list1.append(i-1) |
|
1173 | 1174 | list2.append(diff_) |
|
1174 | 1175 | return list(reversed(list1)),list(reversed(list2)) |
|
1175 | 1176 | |
|
1176 | 1177 | def fixData90(self,list_,ang_): |
|
1177 | 1178 | if list_[0]==-1: |
|
1178 | 1179 | vec = numpy.where(ang_<ang_[0]) |
|
1179 | 1180 | ang_[vec] = ang_[vec]+90 |
|
1180 | 1181 | return ang_ |
|
1181 | 1182 | return ang_ |
|
1182 | 1183 | |
|
1183 | 1184 | def fixData90HL(self,angulos): |
|
1184 | 1185 | vec = numpy.where(angulos>=90) |
|
1185 | 1186 | angulos[vec]=angulos[vec]-90 |
|
1186 | 1187 | return angulos |
|
1187 | 1188 | |
|
1188 | 1189 | |
|
1189 | 1190 | def search_pos(self,pos,list_): |
|
1190 | 1191 | for i in range(len(list_)): |
|
1191 | 1192 | if pos == list_[i]: |
|
1192 | 1193 | return True,i |
|
1193 | 1194 | i=None |
|
1194 | 1195 | return False,i |
|
1195 | 1196 | |
|
1196 | 1197 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
1197 | 1198 | size = len(ang_) |
|
1198 | 1199 | size2 = 0 |
|
1199 | 1200 | for i in range(len(list2_)): |
|
1200 | 1201 | size2=size2+round(abs(list2_[i]))-1 |
|
1201 | 1202 | new_size= size+size2 |
|
1202 | 1203 | ang_new = numpy.zeros(new_size) |
|
1203 | 1204 | ang_new2 = numpy.zeros(new_size) |
|
1204 | 1205 | |
|
1205 | 1206 | tmp = 0 |
|
1206 | 1207 | c = 0 |
|
1207 | 1208 | for i in range(len(ang_)): |
|
1208 | 1209 | ang_new[tmp +c] = ang_[i] |
|
1209 | 1210 | ang_new2[tmp+c] = ang_[i] |
|
1210 | 1211 | condition , value = self.search_pos(i,list1_) |
|
1211 | 1212 | if condition: |
|
1212 | 1213 | pos = tmp + c + 1 |
|
1213 | 1214 | for k in range(round(abs(list2_[value]))-1): |
|
1214 | 1215 | if tipo_case==0 or tipo_case==3:#subida |
|
1215 | 1216 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
1216 | 1217 | ang_new2[pos+k] = numpy.nan |
|
1217 | 1218 | elif tipo_case==1 or tipo_case==2:#bajada |
|
1218 | 1219 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
1219 | 1220 | ang_new2[pos+k] = numpy.nan |
|
1220 | 1221 | |
|
1221 | 1222 | tmp = pos +k |
|
1222 | 1223 | c = 0 |
|
1223 | 1224 | c=c+1 |
|
1224 | 1225 | return ang_new,ang_new2 |
|
1225 | 1226 | |
|
1226 | 1227 | def globalCheckPED(self,angulos,tipo_case): |
|
1227 | 1228 | l1,l2 = self.get2List(angulos) |
|
1228 | 1229 | ##print("l1",l1) |
|
1229 | 1230 | ##print("l2",l2) |
|
1230 | 1231 | if len(l1)>0: |
|
1231 | 1232 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
1232 | 1233 | #l1,l2 = self.get2List(angulos2) |
|
1233 | 1234 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
1234 | 1235 | #ang1_ = self.fixData90HL(ang1_) |
|
1235 | 1236 | #ang2_ = self.fixData90HL(ang2_) |
|
1236 | 1237 | else: |
|
1237 | 1238 | ang1_= angulos |
|
1238 | 1239 | ang2_= angulos |
|
1239 | 1240 | return ang1_,ang2_ |
|
1240 | 1241 | |
|
1241 | 1242 | |
|
1242 | 1243 | def replaceNAN(self,data_weather,data_ele,val): |
|
1243 | 1244 | data= data_ele |
|
1244 | 1245 | data_T= data_weather |
|
1245 | 1246 | if data.shape[0]> data_T.shape[0]: |
|
1246 | 1247 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
1247 | 1248 | c = 0 |
|
1248 | 1249 | for i in range(len(data)): |
|
1249 | 1250 | if numpy.isnan(data[i]): |
|
1250 | 1251 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1251 | 1252 | else: |
|
1252 | 1253 | data_N[i,:]=data_T[c,:] |
|
1253 | 1254 | c=c+1 |
|
1254 | 1255 | return data_N |
|
1255 | 1256 | else: |
|
1256 | 1257 | for i in range(len(data)): |
|
1257 | 1258 | if numpy.isnan(data[i]): |
|
1258 | 1259 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1259 | 1260 | return data_T |
|
1260 | 1261 | |
|
1261 | 1262 | def check_case(self,data_ele,ang_max,ang_min): |
|
1262 | 1263 | start = data_ele[0] |
|
1263 | 1264 | end = data_ele[-1] |
|
1264 | 1265 | number = (end-start) |
|
1265 | 1266 | len_ang=len(data_ele) |
|
1266 | 1267 | print("start",start) |
|
1267 | 1268 | print("end",end) |
|
1268 | 1269 | print("number",number) |
|
1269 | 1270 | |
|
1270 | 1271 | print("len_ang",len_ang) |
|
1271 | 1272 | |
|
1272 | 1273 | #exit(1) |
|
1273 | 1274 | |
|
1274 | 1275 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida |
|
1275 | 1276 | return 0 |
|
1276 | 1277 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada |
|
1277 | 1278 | # return 1 |
|
1278 | 1279 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada |
|
1279 | 1280 | return 1 |
|
1280 | 1281 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX |
|
1281 | 1282 | return 2 |
|
1282 | 1283 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN |
|
1283 | 1284 | return 3 |
|
1284 | 1285 | |
|
1285 | 1286 | |
|
1286 | 1287 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): |
|
1287 | 1288 | ang_max= ang_max |
|
1288 | 1289 | ang_min= ang_min |
|
1289 | 1290 | data_weather=data_weather |
|
1290 | 1291 | val_ch=val_ch |
|
1291 | 1292 | ##print("*********************DATA WEATHER**************************************") |
|
1292 | 1293 | ##print(data_weather) |
|
1293 | 1294 | if self.ini==0: |
|
1294 | 1295 | ''' |
|
1295 | 1296 | print("**********************************************") |
|
1296 | 1297 | print("**********************************************") |
|
1297 | 1298 | print("***************ini**************") |
|
1298 | 1299 | print("**********************************************") |
|
1299 | 1300 | print("**********************************************") |
|
1300 | 1301 | ''' |
|
1301 | 1302 | #print("data_ele",data_ele) |
|
1302 | 1303 | #---------------------------------------------------------- |
|
1303 | 1304 | tipo_case = case_flag[-1] |
|
1304 | 1305 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
1305 | 1306 | print("check_case",tipo_case) |
|
1306 | 1307 | #exit(1) |
|
1307 | 1308 | #--------------------- new ------------------------- |
|
1308 | 1309 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
1309 | 1310 | |
|
1310 | 1311 | #-------------------------CAMBIOS RHI--------------------------------- |
|
1311 | 1312 | start= ang_min |
|
1312 | 1313 | end = ang_max |
|
1313 | 1314 | n= (ang_max-ang_min)/res |
|
1314 | 1315 | #------ new |
|
1315 | 1316 | self.start_data_ele = data_ele_new[0] |
|
1316 | 1317 | self.end_data_ele = data_ele_new[-1] |
|
1317 | 1318 | if tipo_case==0 or tipo_case==3: # SUBIDA |
|
1318 | 1319 | n1= round(self.start_data_ele)- start |
|
1319 | 1320 | n2= end - round(self.end_data_ele) |
|
1320 | 1321 | print(self.start_data_ele) |
|
1321 | 1322 | print(self.end_data_ele) |
|
1322 | 1323 | if n1>0: |
|
1323 | 1324 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
1324 | 1325 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1325 | 1326 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1326 | 1327 | print("ele1_nan",ele1_nan.shape) |
|
1327 | 1328 | print("data_ele_old",data_ele_old.shape) |
|
1328 | 1329 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
1329 | 1330 | if n2>0: |
|
1330 | 1331 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
1331 | 1332 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1332 | 1333 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1333 | 1334 | print("ele2_nan",ele2_nan.shape) |
|
1334 | 1335 | print("data_ele_old",data_ele_old.shape) |
|
1335 | 1336 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1336 | 1337 | |
|
1337 | 1338 | if tipo_case==1 or tipo_case==2: # BAJADA |
|
1338 | 1339 | data_ele_new = data_ele_new[::-1] # reversa |
|
1339 | 1340 | data_ele_old = data_ele_old[::-1]# reversa |
|
1340 | 1341 | data_weather = data_weather[::-1,:]# reversa |
|
1341 | 1342 | vec= numpy.where(data_ele_new<ang_max) |
|
1342 | 1343 | data_ele_new = data_ele_new[vec] |
|
1343 | 1344 | data_ele_old = data_ele_old[vec] |
|
1344 | 1345 | data_weather = data_weather[vec[0]] |
|
1345 | 1346 | vec2= numpy.where(0<data_ele_new) |
|
1346 | 1347 | data_ele_new = data_ele_new[vec2] |
|
1347 | 1348 | data_ele_old = data_ele_old[vec2] |
|
1348 | 1349 | data_weather = data_weather[vec2[0]] |
|
1349 | 1350 | self.start_data_ele = data_ele_new[0] |
|
1350 | 1351 | self.end_data_ele = data_ele_new[-1] |
|
1351 | 1352 | |
|
1352 | 1353 | n1= round(self.start_data_ele)- start |
|
1353 | 1354 | n2= end - round(self.end_data_ele)-1 |
|
1354 | 1355 | print(self.start_data_ele) |
|
1355 | 1356 | print(self.end_data_ele) |
|
1356 | 1357 | if n1>0: |
|
1357 | 1358 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
1358 | 1359 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1359 | 1360 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1360 | 1361 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
1361 | 1362 | if n2>0: |
|
1362 | 1363 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
1363 | 1364 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1364 | 1365 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1365 | 1366 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1366 | 1367 | # RADAR |
|
1367 | 1368 | # NOTA data_ele y data_weather es la variable que retorna |
|
1368 | 1369 | val_mean = numpy.mean(data_weather[:,-1]) |
|
1369 | 1370 | self.val_mean = val_mean |
|
1370 | 1371 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1371 | 1372 | print("eleold",data_ele_old) |
|
1372 | 1373 | print(self.data_ele_tmp[val_ch]) |
|
1373 | 1374 | print(data_ele_old.shape[0]) |
|
1374 | 1375 | print(self.data_ele_tmp[val_ch].shape[0]) |
|
1375 | 1376 | if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91): |
|
1376 | 1377 | import sys |
|
1377 | 1378 | print("EXIT",self.ini) |
|
1378 | 1379 | |
|
1379 | 1380 | sys.exit(1) |
|
1380 | 1381 | self.data_ele_tmp[val_ch]= data_ele_old |
|
1381 | 1382 | else: |
|
1382 | 1383 | #print("**********************************************") |
|
1383 | 1384 | #print("****************VARIABLE**********************") |
|
1384 | 1385 | #-------------------------CAMBIOS RHI--------------------------------- |
|
1385 | 1386 | #--------------------------------------------------------------------- |
|
1386 | 1387 | ##print("INPUT data_ele",data_ele) |
|
1387 | 1388 | flag=0 |
|
1388 | 1389 | start_ele = self.res_ele[0] |
|
1389 | 1390 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
1390 | 1391 | tipo_case = case_flag[-1] |
|
1391 | 1392 | #print("TIPO DE DATA",tipo_case) |
|
1392 | 1393 | #-----------new------------ |
|
1393 | 1394 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) |
|
1394 | 1395 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1395 | 1396 | |
|
1396 | 1397 | #-------------------------------NEW RHI ITERATIVO------------------------- |
|
1397 | 1398 | |
|
1398 | 1399 | if tipo_case==0 : # SUBIDA |
|
1399 | 1400 | vec = numpy.where(data_ele<ang_max) |
|
1400 | 1401 | data_ele = data_ele[vec] |
|
1401 | 1402 | data_ele_old = data_ele_old[vec] |
|
1402 | 1403 | data_weather = data_weather[vec[0]] |
|
1403 | 1404 | |
|
1404 | 1405 | vec2 = numpy.where(0<data_ele) |
|
1405 | 1406 | data_ele= data_ele[vec2] |
|
1406 | 1407 | data_ele_old= data_ele_old[vec2] |
|
1407 | 1408 | ##print(data_ele_new) |
|
1408 | 1409 | data_weather= data_weather[vec2[0]] |
|
1409 | 1410 | |
|
1410 | 1411 | new_i_ele = int(round(data_ele[0])) |
|
1411 | 1412 | new_f_ele = int(round(data_ele[-1])) |
|
1412 | 1413 | #print(new_i_ele) |
|
1413 | 1414 | #print(new_f_ele) |
|
1414 | 1415 | #print(data_ele,len(data_ele)) |
|
1415 | 1416 | #print(data_ele_old,len(data_ele_old)) |
|
1416 | 1417 | if new_i_ele< 2: |
|
1417 | 1418 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
1418 | 1419 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
1419 | 1420 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old |
|
1420 | 1421 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele |
|
1421 | 1422 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather |
|
1422 | 1423 | data_ele = self.res_ele |
|
1423 | 1424 | data_weather = self.res_weather[val_ch] |
|
1424 | 1425 | |
|
1425 | 1426 | elif tipo_case==1 : #BAJADA |
|
1426 | 1427 | data_ele = data_ele[::-1] # reversa |
|
1427 | 1428 | data_ele_old = data_ele_old[::-1]# reversa |
|
1428 | 1429 | data_weather = data_weather[::-1,:]# reversa |
|
1429 | 1430 | vec= numpy.where(data_ele<ang_max) |
|
1430 | 1431 | data_ele = data_ele[vec] |
|
1431 | 1432 | data_ele_old = data_ele_old[vec] |
|
1432 | 1433 | data_weather = data_weather[vec[0]] |
|
1433 | 1434 | vec2= numpy.where(0<data_ele) |
|
1434 | 1435 | data_ele = data_ele[vec2] |
|
1435 | 1436 | data_ele_old = data_ele_old[vec2] |
|
1436 | 1437 | data_weather = data_weather[vec2[0]] |
|
1437 | 1438 | |
|
1438 | 1439 | |
|
1439 | 1440 | new_i_ele = int(round(data_ele[0])) |
|
1440 | 1441 | new_f_ele = int(round(data_ele[-1])) |
|
1441 | 1442 | #print(data_ele) |
|
1442 | 1443 | #print(ang_max) |
|
1443 | 1444 | #print(data_ele_old) |
|
1444 | 1445 | if new_i_ele <= 1: |
|
1445 | 1446 | new_i_ele = 1 |
|
1446 | 1447 | if round(data_ele[-1])>=ang_max-1: |
|
1447 | 1448 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
1448 | 1449 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
1449 | 1450 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old |
|
1450 | 1451 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele |
|
1451 | 1452 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather |
|
1452 | 1453 | data_ele = self.res_ele |
|
1453 | 1454 | data_weather = self.res_weather[val_ch] |
|
1454 | 1455 | |
|
1455 | 1456 | elif tipo_case==2: #bajada |
|
1456 | 1457 | vec = numpy.where(data_ele<ang_max) |
|
1457 | 1458 | data_ele = data_ele[vec] |
|
1458 | 1459 | data_weather= data_weather[vec[0]] |
|
1459 | 1460 | |
|
1460 | 1461 | len_vec = len(vec) |
|
1461 | 1462 | data_ele_new = data_ele[::-1] # reversa |
|
1462 | 1463 | data_weather = data_weather[::-1,:] |
|
1463 | 1464 | new_i_ele = int(data_ele_new[0]) |
|
1464 | 1465 | new_f_ele = int(data_ele_new[-1]) |
|
1465 | 1466 | |
|
1466 | 1467 | n1= new_i_ele- ang_min |
|
1467 | 1468 | n2= ang_max - new_f_ele-1 |
|
1468 | 1469 | if n1>0: |
|
1469 | 1470 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1470 | 1471 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1471 | 1472 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1472 | 1473 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1473 | 1474 | if n2>0: |
|
1474 | 1475 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1475 | 1476 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1476 | 1477 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1477 | 1478 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1478 | 1479 | |
|
1479 | 1480 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1480 | 1481 | self.res_ele = data_ele |
|
1481 | 1482 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1482 | 1483 | data_ele = self.res_ele |
|
1483 | 1484 | data_weather = self.res_weather[val_ch] |
|
1484 | 1485 | |
|
1485 | 1486 | elif tipo_case==3:#subida |
|
1486 | 1487 | vec = numpy.where(0<data_ele) |
|
1487 | 1488 | data_ele= data_ele[vec] |
|
1488 | 1489 | data_ele_new = data_ele |
|
1489 | 1490 | data_ele_old= data_ele_old[vec] |
|
1490 | 1491 | data_weather= data_weather[vec[0]] |
|
1491 | 1492 | pos_ini = numpy.argmin(data_ele) |
|
1492 | 1493 | if pos_ini>0: |
|
1493 | 1494 | len_vec= len(data_ele) |
|
1494 | 1495 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) |
|
1495 | 1496 | #print(vec3) |
|
1496 | 1497 | data_ele= data_ele[vec3] |
|
1497 | 1498 | data_ele_new = data_ele |
|
1498 | 1499 | data_ele_old= data_ele_old[vec3] |
|
1499 | 1500 | data_weather= data_weather[vec3] |
|
1500 | 1501 | |
|
1501 | 1502 | new_i_ele = int(data_ele_new[0]) |
|
1502 | 1503 | new_f_ele = int(data_ele_new[-1]) |
|
1503 | 1504 | n1= new_i_ele- ang_min |
|
1504 | 1505 | n2= ang_max - new_f_ele-1 |
|
1505 | 1506 | if n1>0: |
|
1506 | 1507 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1507 | 1508 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1508 | 1509 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1509 | 1510 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1510 | 1511 | if n2>0: |
|
1511 | 1512 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1512 | 1513 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1513 | 1514 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1514 | 1515 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1515 | 1516 | |
|
1516 | 1517 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1517 | 1518 | self.res_ele = data_ele |
|
1518 | 1519 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1519 | 1520 | data_ele = self.res_ele |
|
1520 | 1521 | data_weather = self.res_weather[val_ch] |
|
1521 | 1522 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
1522 | 1523 | return data_weather,data_ele |
|
1523 | 1524 | |
|
1524 | 1525 | |
|
1525 | 1526 | def plot(self): |
|
1526 | 1527 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
1527 | 1528 | data = self.data[-1] |
|
1528 | 1529 | r = self.data.yrange |
|
1529 | 1530 | delta_height = r[1]-r[0] |
|
1530 | 1531 | r_mask = numpy.where(r>=0)[0] |
|
1531 | 1532 | ##print("delta_height",delta_height) |
|
1532 | 1533 | #print("r_mask",r_mask,len(r_mask)) |
|
1533 | 1534 | r = numpy.arange(len(r_mask))*delta_height |
|
1534 | 1535 | self.y = 2*r |
|
1535 | 1536 | res = 1 |
|
1536 | 1537 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
1537 | 1538 | ang_max = self.ang_max |
|
1538 | 1539 | ang_min = self.ang_min |
|
1539 | 1540 | var_ang =ang_max - ang_min |
|
1540 | 1541 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
1541 | 1542 | ###print("step",step) |
|
1542 | 1543 | #-------------------------------------------------------- |
|
1543 | 1544 | ##print('weather',data['weather'].shape) |
|
1544 | 1545 | ##print('ele',data['ele'].shape) |
|
1545 | 1546 | |
|
1546 | 1547 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1547 | 1548 | ###self.res_azi = numpy.mean(data['azi']) |
|
1548 | 1549 | ###print("self.res_ele",self.res_ele) |
|
1549 | 1550 | plt.clf() |
|
1550 | 1551 | subplots = [121, 122] |
|
1551 | 1552 | try: |
|
1552 | 1553 | if self.data[-2]['ele'].max()<data['ele'].max(): |
|
1553 | 1554 | self.ini=0 |
|
1554 | 1555 | except: |
|
1555 | 1556 | pass |
|
1556 | 1557 | if self.ini==0: |
|
1557 | 1558 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan |
|
1558 | 1559 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan |
|
1559 | 1560 | print("SHAPE",self.data_ele_tmp.shape) |
|
1560 | 1561 | |
|
1561 | 1562 | for i,ax in enumerate(self.axes): |
|
1562 | 1563 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag']) |
|
1563 | 1564 | self.res_azi = numpy.mean(data['azi']) |
|
1564 | 1565 | |
|
1565 | 1566 | if ax.firsttime: |
|
1566 | 1567 | #plt.clf() |
|
1567 | 1568 | print("Frist Plot") |
|
1568 | 1569 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1569 | 1570 | #fig=self.figures[0] |
|
1570 | 1571 | else: |
|
1571 | 1572 | #plt.clf() |
|
1572 | 1573 | print("ELSE PLOT") |
|
1573 | 1574 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1574 | 1575 | caax = cgax.parasites[0] |
|
1575 | 1576 | paax = cgax.parasites[1] |
|
1576 | 1577 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
1577 | 1578 | caax.set_xlabel('x_range [km]') |
|
1578 | 1579 | caax.set_ylabel('y_range [km]') |
|
1579 | 1580 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
1580 | 1581 | print("***************************self.ini****************************",self.ini) |
|
1581 | 1582 | self.ini= self.ini+1 |
|
1582 | 1583 | |
|
1583 | 1584 | class WeatherRHI_vRF_Plot(Plot): |
|
1584 | 1585 | CODE = 'weather' |
|
1585 | 1586 | plot_name = 'weather' |
|
1586 | 1587 | plot_type = 'rhistyle' |
|
1587 | 1588 | buffering = False |
|
1588 | 1589 | data_ele_tmp = None |
|
1589 | 1590 | |
|
1590 | 1591 | def setup(self): |
|
1591 | 1592 | print("********************") |
|
1592 | 1593 | print("********************") |
|
1593 | 1594 | print("********************") |
|
1594 | 1595 | print("SETUP WEATHER PLOT") |
|
1595 | 1596 | self.ncols = 1 |
|
1596 | 1597 | self.nrows = 1 |
|
1597 | 1598 | self.nplots= 1 |
|
1598 | 1599 | self.ylabel= 'Range [Km]' |
|
1599 | 1600 | self.titles= ['Weather'] |
|
1600 | 1601 | if self.channels is not None: |
|
1601 | 1602 | self.nplots = len(self.channels) |
|
1602 | 1603 | self.nrows = len(self.channels) |
|
1603 | 1604 | else: |
|
1604 | 1605 | self.nplots = self.data.shape(self.CODE)[0] |
|
1605 | 1606 | self.nrows = self.nplots |
|
1606 | 1607 | self.channels = list(range(self.nplots)) |
|
1607 | 1608 | print("channels",self.channels) |
|
1608 | 1609 | print("que saldra", self.data.shape(self.CODE)[0]) |
|
1609 | 1610 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
1610 | 1611 | print("self.titles",self.titles) |
|
1611 | 1612 | self.colorbar=False |
|
1612 | 1613 | self.width =8 |
|
1613 | 1614 | self.height =8 |
|
1614 | 1615 | self.ini =0 |
|
1615 | 1616 | self.len_azi =0 |
|
1616 | 1617 | self.buffer_ini = None |
|
1617 | 1618 | self.buffer_ele = None |
|
1618 | 1619 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
1619 | 1620 | self.flag =0 |
|
1620 | 1621 | self.indicador= 0 |
|
1621 | 1622 | self.last_data_ele = None |
|
1622 | 1623 | self.val_mean = None |
|
1623 | 1624 | |
|
1624 | 1625 | def update(self, dataOut): |
|
1625 | 1626 | |
|
1626 | 1627 | data = {} |
|
1627 | 1628 | meta = {} |
|
1628 | 1629 | if hasattr(dataOut, 'dataPP_POWER'): |
|
1629 | 1630 | factor = 1 |
|
1630 | 1631 | if hasattr(dataOut, 'nFFTPoints'): |
|
1631 | 1632 | factor = dataOut.normFactor |
|
1632 | 1633 | print("dataOut",dataOut.data_360.shape) |
|
1633 | 1634 | # |
|
1634 | 1635 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) |
|
1635 | 1636 | # |
|
1636 | 1637 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
1637 | 1638 | data['azi'] = dataOut.data_azi |
|
1638 | 1639 | data['ele'] = dataOut.data_ele |
|
1639 | 1640 | data['case_flag'] = dataOut.case_flag |
|
1640 | 1641 | #print("UPDATE") |
|
1641 | 1642 | #print("data[weather]",data['weather'].shape) |
|
1642 | 1643 | #print("data[azi]",data['azi']) |
|
1643 | 1644 | return data, meta |
|
1644 | 1645 | |
|
1645 | 1646 | def get2List(self,angulos): |
|
1646 | 1647 | list1=[] |
|
1647 | 1648 | list2=[] |
|
1648 | 1649 | #print(angulos) |
|
1649 | 1650 | #exit(1) |
|
1650 | 1651 | for i in reversed(range(len(angulos))): |
|
1651 | 1652 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
1652 | 1653 | diff_ = angulos[i]-angulos[i-1] |
|
1653 | 1654 | if abs(diff_) >1.5: |
|
1654 | 1655 | list1.append(i-1) |
|
1655 | 1656 | list2.append(diff_) |
|
1656 | 1657 | return list(reversed(list1)),list(reversed(list2)) |
|
1657 | 1658 | |
|
1658 | 1659 | def fixData90(self,list_,ang_): |
|
1659 | 1660 | if list_[0]==-1: |
|
1660 | 1661 | vec = numpy.where(ang_<ang_[0]) |
|
1661 | 1662 | ang_[vec] = ang_[vec]+90 |
|
1662 | 1663 | return ang_ |
|
1663 | 1664 | return ang_ |
|
1664 | 1665 | |
|
1665 | 1666 | def fixData90HL(self,angulos): |
|
1666 | 1667 | vec = numpy.where(angulos>=90) |
|
1667 | 1668 | angulos[vec]=angulos[vec]-90 |
|
1668 | 1669 | return angulos |
|
1669 | 1670 | |
|
1670 | 1671 | |
|
1671 | 1672 | def search_pos(self,pos,list_): |
|
1672 | 1673 | for i in range(len(list_)): |
|
1673 | 1674 | if pos == list_[i]: |
|
1674 | 1675 | return True,i |
|
1675 | 1676 | i=None |
|
1676 | 1677 | return False,i |
|
1677 | 1678 | |
|
1678 | 1679 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
1679 | 1680 | size = len(ang_) |
|
1680 | 1681 | size2 = 0 |
|
1681 | 1682 | for i in range(len(list2_)): |
|
1682 | 1683 | size2=size2+round(abs(list2_[i]))-1 |
|
1683 | 1684 | new_size= size+size2 |
|
1684 | 1685 | ang_new = numpy.zeros(new_size) |
|
1685 | 1686 | ang_new2 = numpy.zeros(new_size) |
|
1686 | 1687 | |
|
1687 | 1688 | tmp = 0 |
|
1688 | 1689 | c = 0 |
|
1689 | 1690 | for i in range(len(ang_)): |
|
1690 | 1691 | ang_new[tmp +c] = ang_[i] |
|
1691 | 1692 | ang_new2[tmp+c] = ang_[i] |
|
1692 | 1693 | condition , value = self.search_pos(i,list1_) |
|
1693 | 1694 | if condition: |
|
1694 | 1695 | pos = tmp + c + 1 |
|
1695 | 1696 | for k in range(round(abs(list2_[value]))-1): |
|
1696 | 1697 | if tipo_case==0 or tipo_case==3:#subida |
|
1697 | 1698 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
1698 | 1699 | ang_new2[pos+k] = numpy.nan |
|
1699 | 1700 | elif tipo_case==1 or tipo_case==2:#bajada |
|
1700 | 1701 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
1701 | 1702 | ang_new2[pos+k] = numpy.nan |
|
1702 | 1703 | |
|
1703 | 1704 | tmp = pos +k |
|
1704 | 1705 | c = 0 |
|
1705 | 1706 | c=c+1 |
|
1706 | 1707 | return ang_new,ang_new2 |
|
1707 | 1708 | |
|
1708 | 1709 | def globalCheckPED(self,angulos,tipo_case): |
|
1709 | 1710 | l1,l2 = self.get2List(angulos) |
|
1710 | 1711 | print("l1",l1) |
|
1711 | 1712 | print("l2",l2) |
|
1712 | 1713 | if len(l1)>0: |
|
1713 | 1714 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
1714 | 1715 | #l1,l2 = self.get2List(angulos2) |
|
1715 | 1716 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
1716 | 1717 | #ang1_ = self.fixData90HL(ang1_) |
|
1717 | 1718 | #ang2_ = self.fixData90HL(ang2_) |
|
1718 | 1719 | else: |
|
1719 | 1720 | ang1_= angulos |
|
1720 | 1721 | ang2_= angulos |
|
1721 | 1722 | return ang1_,ang2_ |
|
1722 | 1723 | |
|
1723 | 1724 | |
|
1724 | 1725 | def replaceNAN(self,data_weather,data_ele,val): |
|
1725 | 1726 | data= data_ele |
|
1726 | 1727 | data_T= data_weather |
|
1727 | 1728 | #print(data.shape[0]) |
|
1728 | 1729 | #print(data_T.shape[0]) |
|
1729 | 1730 | #exit(1) |
|
1730 | 1731 | if data.shape[0]> data_T.shape[0]: |
|
1731 | 1732 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
1732 | 1733 | c = 0 |
|
1733 | 1734 | for i in range(len(data)): |
|
1734 | 1735 | if numpy.isnan(data[i]): |
|
1735 | 1736 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1736 | 1737 | else: |
|
1737 | 1738 | data_N[i,:]=data_T[c,:] |
|
1738 | 1739 | c=c+1 |
|
1739 | 1740 | return data_N |
|
1740 | 1741 | else: |
|
1741 | 1742 | for i in range(len(data)): |
|
1742 | 1743 | if numpy.isnan(data[i]): |
|
1743 | 1744 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1744 | 1745 | return data_T |
|
1745 | 1746 | |
|
1746 | 1747 | |
|
1747 | 1748 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): |
|
1748 | 1749 | ang_max= ang_max |
|
1749 | 1750 | ang_min= ang_min |
|
1750 | 1751 | data_weather=data_weather |
|
1751 | 1752 | val_ch=val_ch |
|
1752 | 1753 | ##print("*********************DATA WEATHER**************************************") |
|
1753 | 1754 | ##print(data_weather) |
|
1754 | 1755 | |
|
1755 | 1756 | ''' |
|
1756 | 1757 | print("**********************************************") |
|
1757 | 1758 | print("**********************************************") |
|
1758 | 1759 | print("***************ini**************") |
|
1759 | 1760 | print("**********************************************") |
|
1760 | 1761 | print("**********************************************") |
|
1761 | 1762 | ''' |
|
1762 | 1763 | #print("data_ele",data_ele) |
|
1763 | 1764 | #---------------------------------------------------------- |
|
1764 | 1765 | |
|
1765 | 1766 | #exit(1) |
|
1766 | 1767 | tipo_case = case_flag[-1] |
|
1767 | 1768 | print("tipo_case",tipo_case) |
|
1768 | 1769 | #--------------------- new ------------------------- |
|
1769 | 1770 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
1770 | 1771 | |
|
1771 | 1772 | #-------------------------CAMBIOS RHI--------------------------------- |
|
1772 | 1773 | |
|
1773 | 1774 | vec = numpy.where(data_ele<ang_max) |
|
1774 | 1775 | data_ele = data_ele[vec] |
|
1775 | 1776 | data_weather= data_weather[vec[0]] |
|
1776 | 1777 | |
|
1777 | 1778 | len_vec = len(vec) |
|
1778 | 1779 | data_ele_new = data_ele[::-1] # reversa |
|
1779 | 1780 | data_weather = data_weather[::-1,:] |
|
1780 | 1781 | new_i_ele = int(data_ele_new[0]) |
|
1781 | 1782 | new_f_ele = int(data_ele_new[-1]) |
|
1782 | 1783 | |
|
1783 | 1784 | n1= new_i_ele- ang_min |
|
1784 | 1785 | n2= ang_max - new_f_ele-1 |
|
1785 | 1786 | if n1>0: |
|
1786 | 1787 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1787 | 1788 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1788 | 1789 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1789 | 1790 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1790 | 1791 | if n2>0: |
|
1791 | 1792 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1792 | 1793 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1793 | 1794 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1794 | 1795 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1795 | 1796 | |
|
1796 | 1797 | |
|
1797 | 1798 | print("ele shape",data_ele.shape) |
|
1798 | 1799 | print(data_ele) |
|
1799 | 1800 | |
|
1800 | 1801 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
1801 | 1802 | val_mean = numpy.mean(data_weather[:,-1]) |
|
1802 | 1803 | self.val_mean = val_mean |
|
1803 | 1804 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1804 | 1805 | self.data_ele_tmp[val_ch]= data_ele_old |
|
1805 | 1806 | |
|
1806 | 1807 | |
|
1807 | 1808 | print("data_weather shape",data_weather.shape) |
|
1808 | 1809 | print(data_weather) |
|
1809 | 1810 | #exit(1) |
|
1810 | 1811 | return data_weather,data_ele |
|
1811 | 1812 | |
|
1812 | 1813 | |
|
1813 | 1814 | def plot(self): |
|
1814 | 1815 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
1815 | 1816 | data = self.data[-1] |
|
1816 | 1817 | r = self.data.yrange |
|
1817 | 1818 | delta_height = r[1]-r[0] |
|
1818 | 1819 | r_mask = numpy.where(r>=0)[0] |
|
1819 | 1820 | ##print("delta_height",delta_height) |
|
1820 | 1821 | #print("r_mask",r_mask,len(r_mask)) |
|
1821 | 1822 | r = numpy.arange(len(r_mask))*delta_height |
|
1822 | 1823 | self.y = 2*r |
|
1823 | 1824 | res = 1 |
|
1824 | 1825 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
1825 | 1826 | ang_max = self.ang_max |
|
1826 | 1827 | ang_min = self.ang_min |
|
1827 | 1828 | var_ang =ang_max - ang_min |
|
1828 | 1829 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
1829 | 1830 | ###print("step",step) |
|
1830 | 1831 | #-------------------------------------------------------- |
|
1831 | 1832 | ##print('weather',data['weather'].shape) |
|
1832 | 1833 | ##print('ele',data['ele'].shape) |
|
1833 | 1834 | |
|
1834 | 1835 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1835 | 1836 | ###self.res_azi = numpy.mean(data['azi']) |
|
1836 | 1837 | ###print("self.res_ele",self.res_ele) |
|
1837 | 1838 | plt.clf() |
|
1838 | 1839 | subplots = [121, 122] |
|
1839 | 1840 | if self.ini==0: |
|
1840 | 1841 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan |
|
1841 | 1842 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan |
|
1842 | 1843 | print("SHAPE",self.data_ele_tmp.shape) |
|
1843 | 1844 | |
|
1844 | 1845 | for i,ax in enumerate(self.axes): |
|
1845 | 1846 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag']) |
|
1846 | 1847 | self.res_azi = numpy.mean(data['azi']) |
|
1847 | 1848 | |
|
1848 | 1849 | print(self.res_ele) |
|
1849 | 1850 | #exit(1) |
|
1850 | 1851 | if ax.firsttime: |
|
1851 | 1852 | #plt.clf() |
|
1852 | 1853 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1853 | 1854 | #fig=self.figures[0] |
|
1854 | 1855 | else: |
|
1855 | 1856 | |
|
1856 | 1857 | #plt.clf() |
|
1857 | 1858 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1858 | 1859 | caax = cgax.parasites[0] |
|
1859 | 1860 | paax = cgax.parasites[1] |
|
1860 | 1861 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
1861 | 1862 | caax.set_xlabel('x_range [km]') |
|
1862 | 1863 | caax.set_ylabel('y_range [km]') |
|
1863 | 1864 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
1864 | 1865 | print("***************************self.ini****************************",self.ini) |
|
1865 | 1866 | self.ini= self.ini+1 |
|
1867 | ||
|
1868 | class WeatherRHI_vRF3_Plot(Plot): | |
|
1869 | CODE = 'weather' | |
|
1870 | plot_name = 'weather' | |
|
1871 | plot_type = 'rhistyle' | |
|
1872 | buffering = False | |
|
1873 | data_ele_tmp = None | |
|
1874 | ||
|
1875 | def setup(self): | |
|
1876 | print("********************") | |
|
1877 | print("********************") | |
|
1878 | print("********************") | |
|
1879 | print("SETUP WEATHER PLOT") | |
|
1880 | self.ncols = 1 | |
|
1881 | self.nrows = 1 | |
|
1882 | self.nplots= 1 | |
|
1883 | self.ylabel= 'Range [Km]' | |
|
1884 | self.titles= ['Weather'] | |
|
1885 | if self.channels is not None: | |
|
1886 | self.nplots = len(self.channels) | |
|
1887 | self.nrows = len(self.channels) | |
|
1888 | else: | |
|
1889 | self.nplots = self.data.shape(self.CODE)[0] | |
|
1890 | self.nrows = self.nplots | |
|
1891 | self.channels = list(range(self.nplots)) | |
|
1892 | print("channels",self.channels) | |
|
1893 | print("que saldra", self.data.shape(self.CODE)[0]) | |
|
1894 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | |
|
1895 | print("self.titles",self.titles) | |
|
1896 | self.colorbar=False | |
|
1897 | self.width =8 | |
|
1898 | self.height =8 | |
|
1899 | self.ini =0 | |
|
1900 | self.len_azi =0 | |
|
1901 | self.buffer_ini = None | |
|
1902 | self.buffer_ele = None | |
|
1903 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
|
1904 | self.flag =0 | |
|
1905 | self.indicador= 0 | |
|
1906 | self.last_data_ele = None | |
|
1907 | self.val_mean = None | |
|
1908 | ||
|
1909 | def update(self, dataOut): | |
|
1910 | ||
|
1911 | data = {} | |
|
1912 | meta = {} | |
|
1913 | if hasattr(dataOut, 'dataPP_POWER'): | |
|
1914 | factor = 1 | |
|
1915 | if hasattr(dataOut, 'nFFTPoints'): | |
|
1916 | factor = dataOut.normFactor | |
|
1917 | print("dataOut",dataOut.data_360.shape) | |
|
1918 | # | |
|
1919 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) | |
|
1920 | # | |
|
1921 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | |
|
1922 | data['azi'] = dataOut.data_azi | |
|
1923 | data['ele'] = dataOut.data_ele | |
|
1924 | #data['case_flag'] = dataOut.case_flag | |
|
1925 | #print("UPDATE") | |
|
1926 | #print("data[weather]",data['weather'].shape) | |
|
1927 | #print("data[azi]",data['azi']) | |
|
1928 | return data, meta | |
|
1929 | ||
|
1930 | def get2List(self,angulos): | |
|
1931 | list1=[] | |
|
1932 | list2=[] | |
|
1933 | for i in reversed(range(len(angulos))): | |
|
1934 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante | |
|
1935 | diff_ = angulos[i]-angulos[i-1] | |
|
1936 | if abs(diff_) >1.5: | |
|
1937 | list1.append(i-1) | |
|
1938 | list2.append(diff_) | |
|
1939 | return list(reversed(list1)),list(reversed(list2)) | |
|
1940 | ||
|
1941 | def fixData90(self,list_,ang_): | |
|
1942 | if list_[0]==-1: | |
|
1943 | vec = numpy.where(ang_<ang_[0]) | |
|
1944 | ang_[vec] = ang_[vec]+90 | |
|
1945 | return ang_ | |
|
1946 | return ang_ | |
|
1947 | ||
|
1948 | def fixData90HL(self,angulos): | |
|
1949 | vec = numpy.where(angulos>=90) | |
|
1950 | angulos[vec]=angulos[vec]-90 | |
|
1951 | return angulos | |
|
1952 | ||
|
1953 | ||
|
1954 | def search_pos(self,pos,list_): | |
|
1955 | for i in range(len(list_)): | |
|
1956 | if pos == list_[i]: | |
|
1957 | return True,i | |
|
1958 | i=None | |
|
1959 | return False,i | |
|
1960 | ||
|
1961 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): | |
|
1962 | size = len(ang_) | |
|
1963 | size2 = 0 | |
|
1964 | for i in range(len(list2_)): | |
|
1965 | size2=size2+round(abs(list2_[i]))-1 | |
|
1966 | new_size= size+size2 | |
|
1967 | ang_new = numpy.zeros(new_size) | |
|
1968 | ang_new2 = numpy.zeros(new_size) | |
|
1969 | ||
|
1970 | tmp = 0 | |
|
1971 | c = 0 | |
|
1972 | for i in range(len(ang_)): | |
|
1973 | ang_new[tmp +c] = ang_[i] | |
|
1974 | ang_new2[tmp+c] = ang_[i] | |
|
1975 | condition , value = self.search_pos(i,list1_) | |
|
1976 | if condition: | |
|
1977 | pos = tmp + c + 1 | |
|
1978 | for k in range(round(abs(list2_[value]))-1): | |
|
1979 | if tipo_case==0 or tipo_case==3:#subida | |
|
1980 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |
|
1981 | ang_new2[pos+k] = numpy.nan | |
|
1982 | elif tipo_case==1 or tipo_case==2:#bajada | |
|
1983 | ang_new[pos+k] = ang_new[pos+k-1]-1 | |
|
1984 | ang_new2[pos+k] = numpy.nan | |
|
1985 | ||
|
1986 | tmp = pos +k | |
|
1987 | c = 0 | |
|
1988 | c=c+1 | |
|
1989 | return ang_new,ang_new2 | |
|
1990 | ||
|
1991 | def globalCheckPED(self,angulos,tipo_case): | |
|
1992 | l1,l2 = self.get2List(angulos) | |
|
1993 | ##print("l1",l1) | |
|
1994 | ##print("l2",l2) | |
|
1995 | if len(l1)>0: | |
|
1996 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) | |
|
1997 | #l1,l2 = self.get2List(angulos2) | |
|
1998 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) | |
|
1999 | #ang1_ = self.fixData90HL(ang1_) | |
|
2000 | #ang2_ = self.fixData90HL(ang2_) | |
|
2001 | else: | |
|
2002 | ang1_= angulos | |
|
2003 | ang2_= angulos | |
|
2004 | return ang1_,ang2_ | |
|
2005 | ||
|
2006 | ||
|
2007 | def replaceNAN(self,data_weather,data_ele,val): | |
|
2008 | data= data_ele | |
|
2009 | data_T= data_weather | |
|
2010 | ||
|
2011 | if data.shape[0]> data_T.shape[0]: | |
|
2012 | print("IF") | |
|
2013 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | |
|
2014 | c = 0 | |
|
2015 | for i in range(len(data)): | |
|
2016 | if numpy.isnan(data[i]): | |
|
2017 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
|
2018 | else: | |
|
2019 | data_N[i,:]=data_T[c,:] | |
|
2020 | c=c+1 | |
|
2021 | return data_N | |
|
2022 | else: | |
|
2023 | print("else") | |
|
2024 | for i in range(len(data)): | |
|
2025 | if numpy.isnan(data[i]): | |
|
2026 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
|
2027 | return data_T | |
|
2028 | ||
|
2029 | def check_case(self,data_ele,ang_max,ang_min): | |
|
2030 | start = data_ele[0] | |
|
2031 | end = data_ele[-1] | |
|
2032 | number = (end-start) | |
|
2033 | len_ang=len(data_ele) | |
|
2034 | print("start",start) | |
|
2035 | print("end",end) | |
|
2036 | print("number",number) | |
|
2037 | ||
|
2038 | print("len_ang",len_ang) | |
|
2039 | ||
|
2040 | #exit(1) | |
|
2041 | ||
|
2042 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida | |
|
2043 | return 0 | |
|
2044 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada | |
|
2045 | # return 1 | |
|
2046 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada | |
|
2047 | return 1 | |
|
2048 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX | |
|
2049 | return 2 | |
|
2050 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN | |
|
2051 | return 3 | |
|
2052 | ||
|
2053 | ||
|
2054 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): | |
|
2055 | ang_max= ang_max | |
|
2056 | ang_min= ang_min | |
|
2057 | data_weather=data_weather | |
|
2058 | val_ch=val_ch | |
|
2059 | ##print("*********************DATA WEATHER**************************************") | |
|
2060 | ##print(data_weather) | |
|
2061 | if self.ini==0: | |
|
2062 | ||
|
2063 | #--------------------- new ------------------------- | |
|
2064 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) | |
|
2065 | ||
|
2066 | #-------------------------CAMBIOS RHI--------------------------------- | |
|
2067 | start= ang_min | |
|
2068 | end = ang_max | |
|
2069 | n= (ang_max-ang_min)/res | |
|
2070 | #------ new | |
|
2071 | self.start_data_ele = data_ele_new[0] | |
|
2072 | self.end_data_ele = data_ele_new[-1] | |
|
2073 | if tipo_case==0 or tipo_case==3: # SUBIDA | |
|
2074 | n1= round(self.start_data_ele)- start | |
|
2075 | n2= end - round(self.end_data_ele) | |
|
2076 | print(self.start_data_ele) | |
|
2077 | print(self.end_data_ele) | |
|
2078 | if n1>0: | |
|
2079 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
|
2080 | ele1_nan= numpy.ones(n1)*numpy.nan | |
|
2081 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
|
2082 | print("ele1_nan",ele1_nan.shape) | |
|
2083 | print("data_ele_old",data_ele_old.shape) | |
|
2084 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
|
2085 | if n2>0: | |
|
2086 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
|
2087 | ele2_nan= numpy.ones(n2)*numpy.nan | |
|
2088 | data_ele = numpy.hstack((data_ele,ele2)) | |
|
2089 | print("ele2_nan",ele2_nan.shape) | |
|
2090 | print("data_ele_old",data_ele_old.shape) | |
|
2091 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
|
2092 | ||
|
2093 | if tipo_case==1 or tipo_case==2: # BAJADA | |
|
2094 | data_ele_new = data_ele_new[::-1] # reversa | |
|
2095 | data_ele_old = data_ele_old[::-1]# reversa | |
|
2096 | data_weather = data_weather[::-1,:]# reversa | |
|
2097 | vec= numpy.where(data_ele_new<ang_max) | |
|
2098 | data_ele_new = data_ele_new[vec] | |
|
2099 | data_ele_old = data_ele_old[vec] | |
|
2100 | data_weather = data_weather[vec[0]] | |
|
2101 | vec2= numpy.where(0<data_ele_new) | |
|
2102 | data_ele_new = data_ele_new[vec2] | |
|
2103 | data_ele_old = data_ele_old[vec2] | |
|
2104 | data_weather = data_weather[vec2[0]] | |
|
2105 | self.start_data_ele = data_ele_new[0] | |
|
2106 | self.end_data_ele = data_ele_new[-1] | |
|
2107 | ||
|
2108 | n1= round(self.start_data_ele)- start | |
|
2109 | n2= end - round(self.end_data_ele)-1 | |
|
2110 | print(self.start_data_ele) | |
|
2111 | print(self.end_data_ele) | |
|
2112 | if n1>0: | |
|
2113 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
|
2114 | ele1_nan= numpy.ones(n1)*numpy.nan | |
|
2115 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
|
2116 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
|
2117 | if n2>0: | |
|
2118 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
|
2119 | ele2_nan= numpy.ones(n2)*numpy.nan | |
|
2120 | data_ele = numpy.hstack((data_ele,ele2)) | |
|
2121 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
|
2122 | # RADAR | |
|
2123 | # NOTA data_ele y data_weather es la variable que retorna | |
|
2124 | val_mean = numpy.mean(data_weather[:,-1]) | |
|
2125 | self.val_mean = val_mean | |
|
2126 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
|
2127 | print("eleold",data_ele_old) | |
|
2128 | print(self.data_ele_tmp[val_ch]) | |
|
2129 | print(data_ele_old.shape[0]) | |
|
2130 | print(self.data_ele_tmp[val_ch].shape[0]) | |
|
2131 | if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91): | |
|
2132 | import sys | |
|
2133 | print("EXIT",self.ini) | |
|
2134 | ||
|
2135 | sys.exit(1) | |
|
2136 | self.data_ele_tmp[val_ch]= data_ele_old | |
|
2137 | else: | |
|
2138 | #print("**********************************************") | |
|
2139 | #print("****************VARIABLE**********************") | |
|
2140 | #-------------------------CAMBIOS RHI--------------------------------- | |
|
2141 | #--------------------------------------------------------------------- | |
|
2142 | ##print("INPUT data_ele",data_ele) | |
|
2143 | flag=0 | |
|
2144 | start_ele = self.res_ele[0] | |
|
2145 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) | |
|
2146 | tipo_case = case_flag[-1] | |
|
2147 | #print("TIPO DE DATA",tipo_case) | |
|
2148 | #-----------new------------ | |
|
2149 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) | |
|
2150 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
|
2151 | ||
|
2152 | #-------------------------------NEW RHI ITERATIVO------------------------- | |
|
2153 | ||
|
2154 | if tipo_case==0 : # SUBIDA | |
|
2155 | vec = numpy.where(data_ele<ang_max) | |
|
2156 | data_ele = data_ele[vec] | |
|
2157 | data_ele_old = data_ele_old[vec] | |
|
2158 | data_weather = data_weather[vec[0]] | |
|
2159 | ||
|
2160 | vec2 = numpy.where(0<data_ele) | |
|
2161 | data_ele= data_ele[vec2] | |
|
2162 | data_ele_old= data_ele_old[vec2] | |
|
2163 | ##print(data_ele_new) | |
|
2164 | data_weather= data_weather[vec2[0]] | |
|
2165 | ||
|
2166 | new_i_ele = int(round(data_ele[0])) | |
|
2167 | new_f_ele = int(round(data_ele[-1])) | |
|
2168 | #print(new_i_ele) | |
|
2169 | #print(new_f_ele) | |
|
2170 | #print(data_ele,len(data_ele)) | |
|
2171 | #print(data_ele_old,len(data_ele_old)) | |
|
2172 | if new_i_ele< 2: | |
|
2173 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
|
2174 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
|
2175 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old | |
|
2176 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele | |
|
2177 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather | |
|
2178 | data_ele = self.res_ele | |
|
2179 | data_weather = self.res_weather[val_ch] | |
|
2180 | ||
|
2181 | elif tipo_case==1 : #BAJADA | |
|
2182 | data_ele = data_ele[::-1] # reversa | |
|
2183 | data_ele_old = data_ele_old[::-1]# reversa | |
|
2184 | data_weather = data_weather[::-1,:]# reversa | |
|
2185 | vec= numpy.where(data_ele<ang_max) | |
|
2186 | data_ele = data_ele[vec] | |
|
2187 | data_ele_old = data_ele_old[vec] | |
|
2188 | data_weather = data_weather[vec[0]] | |
|
2189 | vec2= numpy.where(0<data_ele) | |
|
2190 | data_ele = data_ele[vec2] | |
|
2191 | data_ele_old = data_ele_old[vec2] | |
|
2192 | data_weather = data_weather[vec2[0]] | |
|
2193 | ||
|
2194 | ||
|
2195 | new_i_ele = int(round(data_ele[0])) | |
|
2196 | new_f_ele = int(round(data_ele[-1])) | |
|
2197 | #print(data_ele) | |
|
2198 | #print(ang_max) | |
|
2199 | #print(data_ele_old) | |
|
2200 | if new_i_ele <= 1: | |
|
2201 | new_i_ele = 1 | |
|
2202 | if round(data_ele[-1])>=ang_max-1: | |
|
2203 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
|
2204 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
|
2205 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old | |
|
2206 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele | |
|
2207 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather | |
|
2208 | data_ele = self.res_ele | |
|
2209 | data_weather = self.res_weather[val_ch] | |
|
2210 | ||
|
2211 | elif tipo_case==2: #bajada | |
|
2212 | vec = numpy.where(data_ele<ang_max) | |
|
2213 | data_ele = data_ele[vec] | |
|
2214 | data_weather= data_weather[vec[0]] | |
|
2215 | ||
|
2216 | len_vec = len(vec) | |
|
2217 | data_ele_new = data_ele[::-1] # reversa | |
|
2218 | data_weather = data_weather[::-1,:] | |
|
2219 | new_i_ele = int(data_ele_new[0]) | |
|
2220 | new_f_ele = int(data_ele_new[-1]) | |
|
2221 | ||
|
2222 | n1= new_i_ele- ang_min | |
|
2223 | n2= ang_max - new_f_ele-1 | |
|
2224 | if n1>0: | |
|
2225 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
|
2226 | ele1_nan= numpy.ones(n1)*numpy.nan | |
|
2227 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
|
2228 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
|
2229 | if n2>0: | |
|
2230 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
|
2231 | ele2_nan= numpy.ones(n2)*numpy.nan | |
|
2232 | data_ele = numpy.hstack((data_ele,ele2)) | |
|
2233 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
|
2234 | ||
|
2235 | self.data_ele_tmp[val_ch] = data_ele_old | |
|
2236 | self.res_ele = data_ele | |
|
2237 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
|
2238 | data_ele = self.res_ele | |
|
2239 | data_weather = self.res_weather[val_ch] | |
|
2240 | ||
|
2241 | elif tipo_case==3:#subida | |
|
2242 | vec = numpy.where(0<data_ele) | |
|
2243 | data_ele= data_ele[vec] | |
|
2244 | data_ele_new = data_ele | |
|
2245 | data_ele_old= data_ele_old[vec] | |
|
2246 | data_weather= data_weather[vec[0]] | |
|
2247 | pos_ini = numpy.argmin(data_ele) | |
|
2248 | if pos_ini>0: | |
|
2249 | len_vec= len(data_ele) | |
|
2250 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) | |
|
2251 | #print(vec3) | |
|
2252 | data_ele= data_ele[vec3] | |
|
2253 | data_ele_new = data_ele | |
|
2254 | data_ele_old= data_ele_old[vec3] | |
|
2255 | data_weather= data_weather[vec3] | |
|
2256 | ||
|
2257 | new_i_ele = int(data_ele_new[0]) | |
|
2258 | new_f_ele = int(data_ele_new[-1]) | |
|
2259 | n1= new_i_ele- ang_min | |
|
2260 | n2= ang_max - new_f_ele-1 | |
|
2261 | if n1>0: | |
|
2262 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
|
2263 | ele1_nan= numpy.ones(n1)*numpy.nan | |
|
2264 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
|
2265 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
|
2266 | if n2>0: | |
|
2267 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
|
2268 | ele2_nan= numpy.ones(n2)*numpy.nan | |
|
2269 | data_ele = numpy.hstack((data_ele,ele2)) | |
|
2270 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
|
2271 | ||
|
2272 | self.data_ele_tmp[val_ch] = data_ele_old | |
|
2273 | self.res_ele = data_ele | |
|
2274 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
|
2275 | data_ele = self.res_ele | |
|
2276 | data_weather = self.res_weather[val_ch] | |
|
2277 | #print("self.data_ele_tmp",self.data_ele_tmp) | |
|
2278 | return data_weather,data_ele | |
|
2279 | ||
|
2280 | def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min): | |
|
2281 | ||
|
2282 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1) | |
|
2283 | ||
|
2284 | data_ele = data_ele_old.copy() | |
|
2285 | ||
|
2286 | diff_1 = ang_max - data_ele[0] | |
|
2287 | angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan | |
|
2288 | ||
|
2289 | diff_2 = data_ele[-1]-ang_min | |
|
2290 | angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan | |
|
2291 | ||
|
2292 | angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan)) | |
|
2293 | ||
|
2294 | print(angles_filled) | |
|
2295 | ||
|
2296 | data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan | |
|
2297 | data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan | |
|
2298 | ||
|
2299 | data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0) | |
|
2300 | #val_mean = numpy.mean(data_weather[:,-1]) | |
|
2301 | #self.val_mean = val_mean | |
|
2302 | print(data_filled) | |
|
2303 | data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan) | |
|
2304 | ||
|
2305 | print(data_filled) | |
|
2306 | print(data_filled.shape) | |
|
2307 | print(angles_filled.shape) | |
|
2308 | ||
|
2309 | return data_filled,angles_filled | |
|
2310 | ||
|
2311 | def plot(self): | |
|
2312 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |
|
2313 | data = self.data[-1] | |
|
2314 | r = self.data.yrange | |
|
2315 | delta_height = r[1]-r[0] | |
|
2316 | r_mask = numpy.where(r>=0)[0] | |
|
2317 | self.r_mask =r_mask | |
|
2318 | ##print("delta_height",delta_height) | |
|
2319 | #print("r_mask",r_mask,len(r_mask)) | |
|
2320 | r = numpy.arange(len(r_mask))*delta_height | |
|
2321 | self.y = 2*r | |
|
2322 | res = 1 | |
|
2323 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) | |
|
2324 | ang_max = self.ang_max | |
|
2325 | ang_min = self.ang_min | |
|
2326 | var_ang =ang_max - ang_min | |
|
2327 | step = (int(var_ang)/(res*data['weather'].shape[0])) | |
|
2328 | ###print("step",step) | |
|
2329 | #-------------------------------------------------------- | |
|
2330 | ##print('weather',data['weather'].shape) | |
|
2331 | ##print('ele',data['ele'].shape) | |
|
2332 | ||
|
2333 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |
|
2334 | ###self.res_azi = numpy.mean(data['azi']) | |
|
2335 | ###print("self.res_ele",self.res_ele) | |
|
2336 | ||
|
2337 | plt.clf() | |
|
2338 | subplots = [121, 122] | |
|
2339 | #if self.ini==0: | |
|
2340 | #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan | |
|
2341 | #print("SHAPE",self.data_ele_tmp.shape) | |
|
2342 | ||
|
2343 | for i,ax in enumerate(self.axes): | |
|
2344 | res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min) | |
|
2345 | self.res_azi = numpy.mean(data['azi']) | |
|
2346 | ||
|
2347 | if ax.firsttime: | |
|
2348 | #plt.clf() | |
|
2349 | print("Frist Plot") | |
|
2350 | print(data['weather'][i][:,r_mask].shape) | |
|
2351 | print(data['ele'].shape) | |
|
2352 | cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
|
2353 | #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
|
2354 | gh = cgax.get_grid_helper() | |
|
2355 | locs = numpy.linspace(ang_min,ang_max,var_ang+1) | |
|
2356 | gh.grid_finder.grid_locator1 = FixedLocator(locs) | |
|
2357 | gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs])) | |
|
2358 | ||
|
2359 | ||
|
2360 | #fig=self.figures[0] | |
|
2361 | else: | |
|
2362 | #plt.clf() | |
|
2363 | print("ELSE PLOT") | |
|
2364 | cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
|
2365 | #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
|
2366 | gh = cgax.get_grid_helper() | |
|
2367 | locs = numpy.linspace(ang_min,ang_max,var_ang+1) | |
|
2368 | gh.grid_finder.grid_locator1 = FixedLocator(locs) | |
|
2369 | gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs])) | |
|
2370 | ||
|
2371 | caax = cgax.parasites[0] | |
|
2372 | paax = cgax.parasites[1] | |
|
2373 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
|
2374 | caax.set_xlabel('x_range [km]') | |
|
2375 | caax.set_ylabel('y_range [km]') | |
|
2376 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') | |
|
2377 | print("***************************self.ini****************************",self.ini) | |
|
2378 | self.ini= self.ini+1 |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now