##// END OF EJS Templates
Block360Update
rflores -
r1439:14a3ab7942a7
parent child
Show More

The requested changes are too big and content was truncated. Show full diff

This diff has been collapsed as it changes many lines, (513 lines changed) Show them Hide them
@@ -1,1865 +1,2378
1 1 import os
2 2 import datetime
3 3 import numpy
4 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
4 5
5 6 from schainpy.model.graphics.jroplot_base import Plot, plt
6 7 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
7 8 from schainpy.utils import log
8 9 # libreria wradlib
9 10 import wradlib as wrl
10 11
11 12 EARTH_RADIUS = 6.3710e3
12 13
13 14
14 15 def ll2xy(lat1, lon1, lat2, lon2):
15 16
16 17 p = 0.017453292519943295
17 18 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
18 19 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
19 20 r = 12742 * numpy.arcsin(numpy.sqrt(a))
20 21 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
21 22 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
22 23 theta = -theta + numpy.pi/2
23 24 return r*numpy.cos(theta), r*numpy.sin(theta)
24 25
25 26
26 27 def km2deg(km):
27 28 '''
28 29 Convert distance in km to degrees
29 30 '''
30 31
31 32 return numpy.rad2deg(km/EARTH_RADIUS)
32 33
33 34
34 35
35 36 class SpectralMomentsPlot(SpectraPlot):
36 37 '''
37 38 Plot for Spectral Moments
38 39 '''
39 40 CODE = 'spc_moments'
40 41 # colormap = 'jet'
41 42 # plot_type = 'pcolor'
42 43
43 44 class DobleGaussianPlot(SpectraPlot):
44 45 '''
45 46 Plot for Double Gaussian Plot
46 47 '''
47 48 CODE = 'gaussian_fit'
48 49 # colormap = 'jet'
49 50 # plot_type = 'pcolor'
50 51
51 52 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
52 53 '''
53 54 Plot SpectraCut with Double Gaussian Fit
54 55 '''
55 56 CODE = 'cut_gaussian_fit'
56 57
57 58 class SnrPlot(RTIPlot):
58 59 '''
59 60 Plot for SNR Data
60 61 '''
61 62
62 63 CODE = 'snr'
63 64 colormap = 'jet'
64 65
65 66 def update(self, dataOut):
66 67
67 68 data = {
68 69 'snr': 10*numpy.log10(dataOut.data_snr)
69 70 }
70 71
71 72 return data, {}
72 73
73 74 class DopplerPlot(RTIPlot):
74 75 '''
75 76 Plot for DOPPLER Data (1st moment)
76 77 '''
77 78
78 79 CODE = 'dop'
79 80 colormap = 'jet'
80 81
81 82 def update(self, dataOut):
82 83
83 84 data = {
84 85 'dop': 10*numpy.log10(dataOut.data_dop)
85 86 }
86 87
87 88 return data, {}
88 89
89 90 class PowerPlot(RTIPlot):
90 91 '''
91 92 Plot for Power Data (0 moment)
92 93 '''
93 94
94 95 CODE = 'pow'
95 96 colormap = 'jet'
96 97
97 98 def update(self, dataOut):
98 99 data = {
99 100 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
100 101 }
101 102 return data, {}
102 103
103 104 class SpectralWidthPlot(RTIPlot):
104 105 '''
105 106 Plot for Spectral Width Data (2nd moment)
106 107 '''
107 108
108 109 CODE = 'width'
109 110 colormap = 'jet'
110 111
111 112 def update(self, dataOut):
112 113
113 114 data = {
114 115 'width': dataOut.data_width
115 116 }
116 117
117 118 return data, {}
118 119
119 120 class SkyMapPlot(Plot):
120 121 '''
121 122 Plot for meteors detection data
122 123 '''
123 124
124 125 CODE = 'param'
125 126
126 127 def setup(self):
127 128
128 129 self.ncols = 1
129 130 self.nrows = 1
130 131 self.width = 7.2
131 132 self.height = 7.2
132 133 self.nplots = 1
133 134 self.xlabel = 'Zonal Zenith Angle (deg)'
134 135 self.ylabel = 'Meridional Zenith Angle (deg)'
135 136 self.polar = True
136 137 self.ymin = -180
137 138 self.ymax = 180
138 139 self.colorbar = False
139 140
140 141 def plot(self):
141 142
142 143 arrayParameters = numpy.concatenate(self.data['param'])
143 144 error = arrayParameters[:, -1]
144 145 indValid = numpy.where(error == 0)[0]
145 146 finalMeteor = arrayParameters[indValid, :]
146 147 finalAzimuth = finalMeteor[:, 3]
147 148 finalZenith = finalMeteor[:, 4]
148 149
149 150 x = finalAzimuth * numpy.pi / 180
150 151 y = finalZenith
151 152
152 153 ax = self.axes[0]
153 154
154 155 if ax.firsttime:
155 156 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
156 157 else:
157 158 ax.plot.set_data(x, y)
158 159
159 160 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
160 161 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
161 162 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
162 163 dt2,
163 164 len(x))
164 165 self.titles[0] = title
165 166
166 167
167 168 class GenericRTIPlot(Plot):
168 169 '''
169 170 Plot for data_xxxx object
170 171 '''
171 172
172 173 CODE = 'param'
173 174 colormap = 'viridis'
174 175 plot_type = 'pcolorbuffer'
175 176
176 177 def setup(self):
177 178 self.xaxis = 'time'
178 179 self.ncols = 1
179 180 self.nrows = self.data.shape('param')[0]
180 181 self.nplots = self.nrows
181 182 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
182 183
183 184 if not self.xlabel:
184 185 self.xlabel = 'Time'
185 186
186 187 self.ylabel = 'Range [km]'
187 188 if not self.titles:
188 189 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
189 190
190 191 def update(self, dataOut):
191 192
192 193 data = {
193 194 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
194 195 }
195 196
196 197 meta = {}
197 198
198 199 return data, meta
199 200
200 201 def plot(self):
201 202 # self.data.normalize_heights()
202 203 self.x = self.data.times
203 204 self.y = self.data.yrange
204 205 self.z = self.data['param']
205 206 self.z = 10*numpy.log10(self.z)
206 207 self.z = numpy.ma.masked_invalid(self.z)
207 208
208 209 if self.decimation is None:
209 210 x, y, z = self.fill_gaps(self.x, self.y, self.z)
210 211 else:
211 212 x, y, z = self.fill_gaps(*self.decimate())
212 213
213 214 for n, ax in enumerate(self.axes):
214 215
215 216 self.zmax = self.zmax if self.zmax is not None else numpy.max(
216 217 self.z[n])
217 218 self.zmin = self.zmin if self.zmin is not None else numpy.min(
218 219 self.z[n])
219 220
220 221 if ax.firsttime:
221 222 if self.zlimits is not None:
222 223 self.zmin, self.zmax = self.zlimits[n]
223 224
224 225 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
225 226 vmin=self.zmin,
226 227 vmax=self.zmax,
227 228 cmap=self.cmaps[n]
228 229 )
229 230 else:
230 231 if self.zlimits is not None:
231 232 self.zmin, self.zmax = self.zlimits[n]
232 233 ax.collections.remove(ax.collections[0])
233 234 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
234 235 vmin=self.zmin,
235 236 vmax=self.zmax,
236 237 cmap=self.cmaps[n]
237 238 )
238 239
239 240
240 241 class PolarMapPlot(Plot):
241 242 '''
242 243 Plot for weather radar
243 244 '''
244 245
245 246 CODE = 'param'
246 247 colormap = 'seismic'
247 248
248 249 def setup(self):
249 250 self.ncols = 1
250 251 self.nrows = 1
251 252 self.width = 9
252 253 self.height = 8
253 254 self.mode = self.data.meta['mode']
254 255 if self.channels is not None:
255 256 self.nplots = len(self.channels)
256 257 self.nrows = len(self.channels)
257 258 else:
258 259 self.nplots = self.data.shape(self.CODE)[0]
259 260 self.nrows = self.nplots
260 261 self.channels = list(range(self.nplots))
261 262 if self.mode == 'E':
262 263 self.xlabel = 'Longitude'
263 264 self.ylabel = 'Latitude'
264 265 else:
265 266 self.xlabel = 'Range (km)'
266 267 self.ylabel = 'Height (km)'
267 268 self.bgcolor = 'white'
268 269 self.cb_labels = self.data.meta['units']
269 270 self.lat = self.data.meta['latitude']
270 271 self.lon = self.data.meta['longitude']
271 272 self.xmin, self.xmax = float(
272 273 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
273 274 self.ymin, self.ymax = float(
274 275 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
275 276 # self.polar = True
276 277
277 278 def plot(self):
278 279
279 280 for n, ax in enumerate(self.axes):
280 281 data = self.data['param'][self.channels[n]]
281 282
282 283 zeniths = numpy.linspace(
283 284 0, self.data.meta['max_range'], data.shape[1])
284 285 if self.mode == 'E':
285 286 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
286 287 r, theta = numpy.meshgrid(zeniths, azimuths)
287 288 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
288 289 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
289 290 x = km2deg(x) + self.lon
290 291 y = km2deg(y) + self.lat
291 292 else:
292 293 azimuths = numpy.radians(self.data.yrange)
293 294 r, theta = numpy.meshgrid(zeniths, azimuths)
294 295 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
295 296 self.y = zeniths
296 297
297 298 if ax.firsttime:
298 299 if self.zlimits is not None:
299 300 self.zmin, self.zmax = self.zlimits[n]
300 301 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
301 302 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
302 303 vmin=self.zmin,
303 304 vmax=self.zmax,
304 305 cmap=self.cmaps[n])
305 306 else:
306 307 if self.zlimits is not None:
307 308 self.zmin, self.zmax = self.zlimits[n]
308 309 ax.collections.remove(ax.collections[0])
309 310 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
310 311 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
311 312 vmin=self.zmin,
312 313 vmax=self.zmax,
313 314 cmap=self.cmaps[n])
314 315
315 316 if self.mode == 'A':
316 317 continue
317 318
318 319 # plot district names
319 320 f = open('/data/workspace/schain_scripts/distrito.csv')
320 321 for line in f:
321 322 label, lon, lat = [s.strip() for s in line.split(',') if s]
322 323 lat = float(lat)
323 324 lon = float(lon)
324 325 # ax.plot(lon, lat, '.b', ms=2)
325 326 ax.text(lon, lat, label.decode('utf8'), ha='center',
326 327 va='bottom', size='8', color='black')
327 328
328 329 # plot limites
329 330 limites = []
330 331 tmp = []
331 332 for line in open('/data/workspace/schain_scripts/lima.csv'):
332 333 if '#' in line:
333 334 if tmp:
334 335 limites.append(tmp)
335 336 tmp = []
336 337 continue
337 338 values = line.strip().split(',')
338 339 tmp.append((float(values[0]), float(values[1])))
339 340 for points in limites:
340 341 ax.add_patch(
341 342 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
342 343
343 344 # plot Cuencas
344 345 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
345 346 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
346 347 values = [line.strip().split(',') for line in f]
347 348 points = [(float(s[0]), float(s[1])) for s in values]
348 349 ax.add_patch(Polygon(points, ec='b', fc='none'))
349 350
350 351 # plot grid
351 352 for r in (15, 30, 45, 60):
352 353 ax.add_artist(plt.Circle((self.lon, self.lat),
353 354 km2deg(r), color='0.6', fill=False, lw=0.2))
354 355 ax.text(
355 356 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
356 357 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
357 358 '{}km'.format(r),
358 359 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
359 360
360 361 if self.mode == 'E':
361 362 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
362 363 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
363 364 else:
364 365 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
365 366 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
366 367
367 368 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
368 369 self.titles = ['{} {}'.format(
369 370 self.data.parameters[x], title) for x in self.channels]
370 371
371 372 class WeatherPlot(Plot):
372 373 CODE = 'weather'
373 374 plot_name = 'weather'
374 375 plot_type = 'ppistyle'
375 376 buffering = False
376 377
377 378 def setup(self):
378 379 self.ncols = 1
379 380 self.nrows = 1
380 381 self.width =8
381 382 self.height =8
382 383 self.nplots= 1
383 384 self.ylabel= 'Range [Km]'
384 385 self.titles= ['Weather']
385 386 self.colorbar=False
386 387 self.ini =0
387 388 self.len_azi =0
388 389 self.buffer_ini = None
389 390 self.buffer_azi = None
390 391 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
391 392 self.flag =0
392 393 self.indicador= 0
393 394 self.last_data_azi = None
394 395 self.val_mean = None
395 396
396 397 def update(self, dataOut):
397 398
398 399 data = {}
399 400 meta = {}
400 401 if hasattr(dataOut, 'dataPP_POWER'):
401 402 factor = 1
402 403 if hasattr(dataOut, 'nFFTPoints'):
403 404 factor = dataOut.normFactor
404 405 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
405 406 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
406 407 data['azi'] = dataOut.data_azi
407 408 data['ele'] = dataOut.data_ele
408 409 return data, meta
409 410
410 411 def get2List(self,angulos):
411 412 list1=[]
412 413 list2=[]
413 414 for i in reversed(range(len(angulos))):
414 415 diff_ = angulos[i]-angulos[i-1]
415 416 if diff_ >1.5:
416 417 list1.append(i-1)
417 418 list2.append(diff_)
418 419 return list(reversed(list1)),list(reversed(list2))
419 420
420 421 def fixData360(self,list_,ang_):
421 422 if list_[0]==-1:
422 423 vec = numpy.where(ang_<ang_[0])
423 424 ang_[vec] = ang_[vec]+360
424 425 return ang_
425 426 return ang_
426 427
427 428 def fixData360HL(self,angulos):
428 429 vec = numpy.where(angulos>=360)
429 430 angulos[vec]=angulos[vec]-360
430 431 return angulos
431 432
432 433 def search_pos(self,pos,list_):
433 434 for i in range(len(list_)):
434 435 if pos == list_[i]:
435 436 return True,i
436 437 i=None
437 438 return False,i
438 439
439 440 def fixDataComp(self,ang_,list1_,list2_):
440 441 size = len(ang_)
441 442 size2 = 0
442 443 for i in range(len(list2_)):
443 444 size2=size2+round(list2_[i])-1
444 445 new_size= size+size2
445 446 ang_new = numpy.zeros(new_size)
446 447 ang_new2 = numpy.zeros(new_size)
447 448
448 449 tmp = 0
449 450 c = 0
450 451 for i in range(len(ang_)):
451 452 ang_new[tmp +c] = ang_[i]
452 453 ang_new2[tmp+c] = ang_[i]
453 454 condition , value = self.search_pos(i,list1_)
454 455 if condition:
455 456 pos = tmp + c + 1
456 457 for k in range(round(list2_[value])-1):
457 458 ang_new[pos+k] = ang_new[pos+k-1]+1
458 459 ang_new2[pos+k] = numpy.nan
459 460 tmp = pos +k
460 461 c = 0
461 462 c=c+1
462 463 return ang_new,ang_new2
463 464
464 465 def globalCheckPED(self,angulos):
465 466 l1,l2 = self.get2List(angulos)
466 467 if len(l1)>0:
467 468 angulos2 = self.fixData360(list_=l1,ang_=angulos)
468 469 l1,l2 = self.get2List(angulos2)
469 470
470 471 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
471 472 ang1_ = self.fixData360HL(ang1_)
472 473 ang2_ = self.fixData360HL(ang2_)
473 474 else:
474 475 ang1_= angulos
475 476 ang2_= angulos
476 477 return ang1_,ang2_
477 478
478 479 def analizeDATA(self,data_azi):
479 480 list1 = []
480 481 list2 = []
481 482 dat = data_azi
482 483 for i in reversed(range(1,len(dat))):
483 484 if dat[i]>dat[i-1]:
484 485 diff = int(dat[i])-int(dat[i-1])
485 486 else:
486 487 diff = 360+int(dat[i])-int(dat[i-1])
487 488 if diff > 1:
488 489 list1.append(i-1)
489 490 list2.append(diff-1)
490 491 return list1,list2
491 492
492 493 def fixDATANEW(self,data_azi,data_weather):
493 494 list1,list2 = self.analizeDATA(data_azi)
494 495 if len(list1)== 0:
495 496 return data_azi,data_weather
496 497 else:
497 498 resize = 0
498 499 for i in range(len(list2)):
499 500 resize= resize + list2[i]
500 501 new_data_azi = numpy.resize(data_azi,resize)
501 502 new_data_weather= numpy.resize(date_weather,resize)
502 503
503 504 for i in range(len(list2)):
504 505 j=0
505 506 position=list1[i]+1
506 507 for j in range(list2[i]):
507 508 new_data_azi[position+j]=new_data_azi[position+j-1]+1
508 509 return new_data_azi
509 510
510 511 def fixDATA(self,data_azi):
511 512 data=data_azi
512 513 for i in range(len(data)):
513 514 if numpy.isnan(data[i]):
514 515 data[i]=data[i-1]+1
515 516 return data
516 517
517 518 def replaceNAN(self,data_weather,data_azi,val):
518 519 data= data_azi
519 520 data_T= data_weather
520 521 if data.shape[0]> data_T.shape[0]:
521 522 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
522 523 c = 0
523 524 for i in range(len(data)):
524 525 if numpy.isnan(data[i]):
525 526 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
526 527 else:
527 528 data_N[i,:]=data_T[c,:]
528 529 c=c+1
529 530 return data_N
530 531 else:
531 532 for i in range(len(data)):
532 533 if numpy.isnan(data[i]):
533 534 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
534 535 return data_T
535 536
536 537 def const_ploteo(self,data_weather,data_azi,step,res):
537 538 if self.ini==0:
538 539 #-------
539 540 n = (360/res)-len(data_azi)
540 541 #--------------------- new -------------------------
541 542 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
542 543 #------------------------
543 544 start = data_azi_new[-1] + res
544 545 end = data_azi_new[0] - res
545 546 #------ new
546 547 self.last_data_azi = end
547 548 if start>end:
548 549 end = end + 360
549 550 azi_vacia = numpy.linspace(start,end,int(n))
550 551 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
551 552 data_azi = numpy.hstack((data_azi_new,azi_vacia))
552 553 # RADAR
553 554 val_mean = numpy.mean(data_weather[:,-1])
554 555 self.val_mean = val_mean
555 556 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
556 557 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
557 558 data_weather = numpy.vstack((data_weather,data_weather_cmp))
558 559 else:
559 560 # azimuth
560 561 flag=0
561 562 start_azi = self.res_azi[0]
562 563 #-----------new------------
563 564 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
564 565 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
565 566 #--------------------------
566 567 start = data_azi[0]
567 568 end = data_azi[-1]
568 569 self.last_data_azi= end
569 570 if start< start_azi:
570 571 start = start +360
571 572 if end <start_azi:
572 573 end = end +360
573 574
574 575 pos_ini = int((start-start_azi)/res)
575 576 len_azi = len(data_azi)
576 577 if (360-pos_ini)<len_azi:
577 578 if pos_ini+1==360:
578 579 pos_ini=0
579 580 else:
580 581 flag=1
581 582 dif= 360-pos_ini
582 583 comp= len_azi-dif
583 584 #-----------------
584 585 if flag==0:
585 586 # AZIMUTH
586 587 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
587 588 # RADAR
588 589 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
589 590 else:
590 591 # AZIMUTH
591 592 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
592 593 self.res_azi[0:comp] = data_azi[dif:]
593 594 # RADAR
594 595 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
595 596 self.res_weather[0:comp,:] = data_weather[dif:,:]
596 597 flag=0
597 598 data_azi = self.res_azi
598 599 data_weather = self.res_weather
599 600
600 601 return data_weather,data_azi
601 602
602 603 def plot(self):
603 604 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
604 605 data = self.data[-1]
605 606 r = self.data.yrange
606 607 delta_height = r[1]-r[0]
607 608 r_mask = numpy.where(r>=0)[0]
608 609 r = numpy.arange(len(r_mask))*delta_height
609 610 self.y = 2*r
610 611 # RADAR
611 612 #data_weather = data['weather']
612 613 # PEDESTAL
613 614 #data_azi = data['azi']
614 615 res = 1
615 616 # STEP
616 617 step = (360/(res*data['weather'].shape[0]))
617 618
618 619 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
619 620 self.res_ele = numpy.mean(data['ele'])
620 621 ################# PLOTEO ###################
621 622 for i,ax in enumerate(self.axes):
622 623 if ax.firsttime:
623 624 plt.clf()
624 625 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
625 626 else:
626 627 plt.clf()
627 628 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
628 629 caax = cgax.parasites[0]
629 630 paax = cgax.parasites[1]
630 631 cbar = plt.gcf().colorbar(pm, pad=0.075)
631 632 caax.set_xlabel('x_range [km]')
632 633 caax.set_ylabel('y_range [km]')
633 634 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right')
634 635
635 636 self.ini= self.ini+1
636 637
637 638
638 639 class WeatherRHIPlot(Plot):
639 640 CODE = 'weather'
640 641 plot_name = 'weather'
641 642 plot_type = 'rhistyle'
642 643 buffering = False
643 644 data_ele_tmp = None
644 645
645 646 def setup(self):
646 647 print("********************")
647 648 print("********************")
648 649 print("********************")
649 650 print("SETUP WEATHER PLOT")
650 651 self.ncols = 1
651 652 self.nrows = 1
652 653 self.nplots= 1
653 654 self.ylabel= 'Range [Km]'
654 655 self.titles= ['Weather']
655 656 if self.channels is not None:
656 657 self.nplots = len(self.channels)
657 658 self.nrows = len(self.channels)
658 659 else:
659 660 self.nplots = self.data.shape(self.CODE)[0]
660 661 self.nrows = self.nplots
661 662 self.channels = list(range(self.nplots))
662 663 print("channels",self.channels)
663 664 print("que saldra", self.data.shape(self.CODE)[0])
664 665 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
665 666 print("self.titles",self.titles)
666 667 self.colorbar=False
667 668 self.width =8
668 669 self.height =8
669 670 self.ini =0
670 671 self.len_azi =0
671 672 self.buffer_ini = None
672 673 self.buffer_ele = None
673 674 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
674 675 self.flag =0
675 676 self.indicador= 0
676 677 self.last_data_ele = None
677 678 self.val_mean = None
678 679
679 680 def update(self, dataOut):
680 681
681 682 data = {}
682 683 meta = {}
683 684 if hasattr(dataOut, 'dataPP_POWER'):
684 685 factor = 1
685 686 if hasattr(dataOut, 'nFFTPoints'):
686 687 factor = dataOut.normFactor
687 688 print("dataOut",dataOut.data_360.shape)
688 689 #
689 690 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
690 691 #
691 692 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
692 693 data['azi'] = dataOut.data_azi
693 694 data['ele'] = dataOut.data_ele
694 695 #print("UPDATE")
695 696 #print("data[weather]",data['weather'].shape)
696 697 #print("data[azi]",data['azi'])
697 698 return data, meta
698 699
699 700 def get2List(self,angulos):
700 701 list1=[]
701 702 list2=[]
702 703 for i in reversed(range(len(angulos))):
703 704 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
704 705 diff_ = angulos[i]-angulos[i-1]
705 706 if abs(diff_) >1.5:
706 707 list1.append(i-1)
707 708 list2.append(diff_)
708 709 return list(reversed(list1)),list(reversed(list2))
709 710
710 711 def fixData90(self,list_,ang_):
711 712 if list_[0]==-1:
712 713 vec = numpy.where(ang_<ang_[0])
713 714 ang_[vec] = ang_[vec]+90
714 715 return ang_
715 716 return ang_
716 717
717 718 def fixData90HL(self,angulos):
718 719 vec = numpy.where(angulos>=90)
719 720 angulos[vec]=angulos[vec]-90
720 721 return angulos
721 722
722 723
723 724 def search_pos(self,pos,list_):
724 725 for i in range(len(list_)):
725 726 if pos == list_[i]:
726 727 return True,i
727 728 i=None
728 729 return False,i
729 730
730 731 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
731 732 size = len(ang_)
732 733 size2 = 0
733 734 for i in range(len(list2_)):
734 735 size2=size2+round(abs(list2_[i]))-1
735 736 new_size= size+size2
736 737 ang_new = numpy.zeros(new_size)
737 738 ang_new2 = numpy.zeros(new_size)
738 739
739 740 tmp = 0
740 741 c = 0
741 742 for i in range(len(ang_)):
742 743 ang_new[tmp +c] = ang_[i]
743 744 ang_new2[tmp+c] = ang_[i]
744 745 condition , value = self.search_pos(i,list1_)
745 746 if condition:
746 747 pos = tmp + c + 1
747 748 for k in range(round(abs(list2_[value]))-1):
748 749 if tipo_case==0 or tipo_case==3:#subida
749 750 ang_new[pos+k] = ang_new[pos+k-1]+1
750 751 ang_new2[pos+k] = numpy.nan
751 752 elif tipo_case==1 or tipo_case==2:#bajada
752 753 ang_new[pos+k] = ang_new[pos+k-1]-1
753 754 ang_new2[pos+k] = numpy.nan
754 755
755 756 tmp = pos +k
756 757 c = 0
757 758 c=c+1
758 759 return ang_new,ang_new2
759 760
760 761 def globalCheckPED(self,angulos,tipo_case):
761 762 l1,l2 = self.get2List(angulos)
762 763 ##print("l1",l1)
763 764 ##print("l2",l2)
764 765 if len(l1)>0:
765 766 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
766 767 #l1,l2 = self.get2List(angulos2)
767 768 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
768 769 #ang1_ = self.fixData90HL(ang1_)
769 770 #ang2_ = self.fixData90HL(ang2_)
770 771 else:
771 772 ang1_= angulos
772 773 ang2_= angulos
773 774 return ang1_,ang2_
774 775
775 776
776 777 def replaceNAN(self,data_weather,data_ele,val):
777 778 data= data_ele
778 779 data_T= data_weather
779 780 if data.shape[0]> data_T.shape[0]:
780 781 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
781 782 c = 0
782 783 for i in range(len(data)):
783 784 if numpy.isnan(data[i]):
784 785 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
785 786 else:
786 787 data_N[i,:]=data_T[c,:]
787 788 c=c+1
788 789 return data_N
789 790 else:
790 791 for i in range(len(data)):
791 792 if numpy.isnan(data[i]):
792 793 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
793 794 return data_T
794 795
795 796 def check_case(self,data_ele,ang_max,ang_min):
796 797 start = data_ele[0]
797 798 end = data_ele[-1]
798 799 number = (end-start)
799 800 len_ang=len(data_ele)
800 801 print("start",start)
801 802 print("end",end)
802 803 print("number",number)
803 804
804 805 print("len_ang",len_ang)
805 806
806 807 #exit(1)
807 808
808 809 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
809 810 return 0
810 811 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
811 812 # return 1
812 813 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
813 814 return 1
814 815 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
815 816 return 2
816 817 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
817 818 return 3
818 819
819 820
820 821 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
821 822 ang_max= ang_max
822 823 ang_min= ang_min
823 824 data_weather=data_weather
824 825 val_ch=val_ch
825 826 ##print("*********************DATA WEATHER**************************************")
826 827 ##print(data_weather)
827 828 if self.ini==0:
828 829 '''
829 830 print("**********************************************")
830 831 print("**********************************************")
831 832 print("***************ini**************")
832 833 print("**********************************************")
833 834 print("**********************************************")
834 835 '''
835 836 #print("data_ele",data_ele)
836 837 #----------------------------------------------------------
837 838 tipo_case = self.check_case(data_ele,ang_max,ang_min)
838 839 print("check_case",tipo_case)
839 840 #exit(1)
840 841 #--------------------- new -------------------------
841 842 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
842 843
843 844 #-------------------------CAMBIOS RHI---------------------------------
844 845 start= ang_min
845 846 end = ang_max
846 847 n= (ang_max-ang_min)/res
847 848 #------ new
848 849 self.start_data_ele = data_ele_new[0]
849 850 self.end_data_ele = data_ele_new[-1]
850 851 if tipo_case==0 or tipo_case==3: # SUBIDA
851 852 n1= round(self.start_data_ele)- start
852 853 n2= end - round(self.end_data_ele)
853 854 print(self.start_data_ele)
854 855 print(self.end_data_ele)
855 856 if n1>0:
856 857 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
857 858 ele1_nan= numpy.ones(n1)*numpy.nan
858 859 data_ele = numpy.hstack((ele1,data_ele_new))
859 860 print("ele1_nan",ele1_nan.shape)
860 861 print("data_ele_old",data_ele_old.shape)
861 862 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
862 863 if n2>0:
863 864 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
864 865 ele2_nan= numpy.ones(n2)*numpy.nan
865 866 data_ele = numpy.hstack((data_ele,ele2))
866 867 print("ele2_nan",ele2_nan.shape)
867 868 print("data_ele_old",data_ele_old.shape)
868 869 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
869 870
870 871 if tipo_case==1 or tipo_case==2: # BAJADA
871 872 data_ele_new = data_ele_new[::-1] # reversa
872 873 data_ele_old = data_ele_old[::-1]# reversa
873 874 data_weather = data_weather[::-1,:]# reversa
874 875 vec= numpy.where(data_ele_new<ang_max)
875 876 data_ele_new = data_ele_new[vec]
876 877 data_ele_old = data_ele_old[vec]
877 878 data_weather = data_weather[vec[0]]
878 879 vec2= numpy.where(0<data_ele_new)
879 880 data_ele_new = data_ele_new[vec2]
880 881 data_ele_old = data_ele_old[vec2]
881 882 data_weather = data_weather[vec2[0]]
882 883 self.start_data_ele = data_ele_new[0]
883 884 self.end_data_ele = data_ele_new[-1]
884 885
885 886 n1= round(self.start_data_ele)- start
886 887 n2= end - round(self.end_data_ele)-1
887 888 print(self.start_data_ele)
888 889 print(self.end_data_ele)
889 890 if n1>0:
890 891 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
891 892 ele1_nan= numpy.ones(n1)*numpy.nan
892 893 data_ele = numpy.hstack((ele1,data_ele_new))
893 894 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
894 895 if n2>0:
895 896 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
896 897 ele2_nan= numpy.ones(n2)*numpy.nan
897 898 data_ele = numpy.hstack((data_ele,ele2))
898 899 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
899 900 # RADAR
900 901 # NOTA data_ele y data_weather es la variable que retorna
901 902 val_mean = numpy.mean(data_weather[:,-1])
902 903 self.val_mean = val_mean
903 904 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
904 905 self.data_ele_tmp[val_ch]= data_ele_old
905 906 else:
906 907 #print("**********************************************")
907 908 #print("****************VARIABLE**********************")
908 909 #-------------------------CAMBIOS RHI---------------------------------
909 910 #---------------------------------------------------------------------
910 911 ##print("INPUT data_ele",data_ele)
911 912 flag=0
912 913 start_ele = self.res_ele[0]
913 914 tipo_case = self.check_case(data_ele,ang_max,ang_min)
914 915 #print("TIPO DE DATA",tipo_case)
915 916 #-----------new------------
916 917 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
917 918 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
918 919
919 920 #-------------------------------NEW RHI ITERATIVO-------------------------
920 921
921 922 if tipo_case==0 : # SUBIDA
922 923 vec = numpy.where(data_ele<ang_max)
923 924 data_ele = data_ele[vec]
924 925 data_ele_old = data_ele_old[vec]
925 926 data_weather = data_weather[vec[0]]
926 927
927 928 vec2 = numpy.where(0<data_ele)
928 929 data_ele= data_ele[vec2]
929 930 data_ele_old= data_ele_old[vec2]
930 931 ##print(data_ele_new)
931 932 data_weather= data_weather[vec2[0]]
932 933
933 934 new_i_ele = int(round(data_ele[0]))
934 935 new_f_ele = int(round(data_ele[-1]))
935 936 #print(new_i_ele)
936 937 #print(new_f_ele)
937 938 #print(data_ele,len(data_ele))
938 939 #print(data_ele_old,len(data_ele_old))
939 940 if new_i_ele< 2:
940 941 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
941 942 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
942 943 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
943 944 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
944 945 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
945 946 data_ele = self.res_ele
946 947 data_weather = self.res_weather[val_ch]
947 948
948 949 elif tipo_case==1 : #BAJADA
949 950 data_ele = data_ele[::-1] # reversa
950 951 data_ele_old = data_ele_old[::-1]# reversa
951 952 data_weather = data_weather[::-1,:]# reversa
952 953 vec= numpy.where(data_ele<ang_max)
953 954 data_ele = data_ele[vec]
954 955 data_ele_old = data_ele_old[vec]
955 956 data_weather = data_weather[vec[0]]
956 957 vec2= numpy.where(0<data_ele)
957 958 data_ele = data_ele[vec2]
958 959 data_ele_old = data_ele_old[vec2]
959 960 data_weather = data_weather[vec2[0]]
960 961
961 962
962 963 new_i_ele = int(round(data_ele[0]))
963 964 new_f_ele = int(round(data_ele[-1]))
964 965 #print(data_ele)
965 966 #print(ang_max)
966 967 #print(data_ele_old)
967 968 if new_i_ele <= 1:
968 969 new_i_ele = 1
969 970 if round(data_ele[-1])>=ang_max-1:
970 971 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
971 972 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
972 973 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
973 974 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
974 975 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
975 976 data_ele = self.res_ele
976 977 data_weather = self.res_weather[val_ch]
977 978
978 979 elif tipo_case==2: #bajada
979 980 vec = numpy.where(data_ele<ang_max)
980 981 data_ele = data_ele[vec]
981 982 data_weather= data_weather[vec[0]]
982 983
983 984 len_vec = len(vec)
984 985 data_ele_new = data_ele[::-1] # reversa
985 986 data_weather = data_weather[::-1,:]
986 987 new_i_ele = int(data_ele_new[0])
987 988 new_f_ele = int(data_ele_new[-1])
988 989
989 990 n1= new_i_ele- ang_min
990 991 n2= ang_max - new_f_ele-1
991 992 if n1>0:
992 993 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
993 994 ele1_nan= numpy.ones(n1)*numpy.nan
994 995 data_ele = numpy.hstack((ele1,data_ele_new))
995 996 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
996 997 if n2>0:
997 998 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
998 999 ele2_nan= numpy.ones(n2)*numpy.nan
999 1000 data_ele = numpy.hstack((data_ele,ele2))
1000 1001 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1001 1002
1002 1003 self.data_ele_tmp[val_ch] = data_ele_old
1003 1004 self.res_ele = data_ele
1004 1005 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1005 1006 data_ele = self.res_ele
1006 1007 data_weather = self.res_weather[val_ch]
1007 1008
1008 1009 elif tipo_case==3:#subida
1009 1010 vec = numpy.where(0<data_ele)
1010 1011 data_ele= data_ele[vec]
1011 1012 data_ele_new = data_ele
1012 1013 data_ele_old= data_ele_old[vec]
1013 1014 data_weather= data_weather[vec[0]]
1014 1015 pos_ini = numpy.argmin(data_ele)
1015 1016 if pos_ini>0:
1016 1017 len_vec= len(data_ele)
1017 1018 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1018 1019 #print(vec3)
1019 1020 data_ele= data_ele[vec3]
1020 1021 data_ele_new = data_ele
1021 1022 data_ele_old= data_ele_old[vec3]
1022 1023 data_weather= data_weather[vec3]
1023 1024
1024 1025 new_i_ele = int(data_ele_new[0])
1025 1026 new_f_ele = int(data_ele_new[-1])
1026 1027 n1= new_i_ele- ang_min
1027 1028 n2= ang_max - new_f_ele-1
1028 1029 if n1>0:
1029 1030 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1030 1031 ele1_nan= numpy.ones(n1)*numpy.nan
1031 1032 data_ele = numpy.hstack((ele1,data_ele_new))
1032 1033 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1033 1034 if n2>0:
1034 1035 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1035 1036 ele2_nan= numpy.ones(n2)*numpy.nan
1036 1037 data_ele = numpy.hstack((data_ele,ele2))
1037 1038 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1038 1039
1039 1040 self.data_ele_tmp[val_ch] = data_ele_old
1040 1041 self.res_ele = data_ele
1041 1042 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1042 1043 data_ele = self.res_ele
1043 1044 data_weather = self.res_weather[val_ch]
1044 1045 #print("self.data_ele_tmp",self.data_ele_tmp)
1045 1046 return data_weather,data_ele
1046 1047
1047 1048
1048 1049 def plot(self):
1049 1050 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1050 1051 data = self.data[-1]
1051 1052 r = self.data.yrange
1052 1053 delta_height = r[1]-r[0]
1053 1054 r_mask = numpy.where(r>=0)[0]
1054 1055 ##print("delta_height",delta_height)
1055 1056 #print("r_mask",r_mask,len(r_mask))
1056 1057 r = numpy.arange(len(r_mask))*delta_height
1057 1058 self.y = 2*r
1058 1059 res = 1
1059 1060 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1060 1061 ang_max = self.ang_max
1061 1062 ang_min = self.ang_min
1062 1063 var_ang =ang_max - ang_min
1063 1064 step = (int(var_ang)/(res*data['weather'].shape[0]))
1064 1065 ###print("step",step)
1065 1066 #--------------------------------------------------------
1066 1067 ##print('weather',data['weather'].shape)
1067 1068 ##print('ele',data['ele'].shape)
1068 1069
1069 1070 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1070 1071 ###self.res_azi = numpy.mean(data['azi'])
1071 1072 ###print("self.res_ele",self.res_ele)
1072 1073 plt.clf()
1073 1074 subplots = [121, 122]
1074 1075 if self.ini==0:
1075 1076 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1076 1077 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1077 1078 print("SHAPE",self.data_ele_tmp.shape)
1078 1079
1079 1080 for i,ax in enumerate(self.axes):
1080 1081 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1081 1082 self.res_azi = numpy.mean(data['azi'])
1082 1083 if i==0:
1083 1084 print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
1084 1085 if ax.firsttime:
1085 1086 #plt.clf()
1086 1087 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1087 1088 #fig=self.figures[0]
1088 1089 else:
1089 1090 #plt.clf()
1090 1091 if i==0:
1091 1092 print(self.res_weather[i])
1092 1093 print(self.res_ele)
1093 1094 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1094 1095 caax = cgax.parasites[0]
1095 1096 paax = cgax.parasites[1]
1096 1097 cbar = plt.gcf().colorbar(pm, pad=0.075)
1097 1098 caax.set_xlabel('x_range [km]')
1098 1099 caax.set_ylabel('y_range [km]')
1099 1100 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1100 1101 print("***************************self.ini****************************",self.ini)
1101 1102 self.ini= self.ini+1
1102 1103
1103 1104 class WeatherRHI_vRF2_Plot(Plot):
1104 1105 CODE = 'weather'
1105 1106 plot_name = 'weather'
1106 1107 plot_type = 'rhistyle'
1107 1108 buffering = False
1108 1109 data_ele_tmp = None
1109 1110
1110 1111 def setup(self):
1111 1112 print("********************")
1112 1113 print("********************")
1113 1114 print("********************")
1114 1115 print("SETUP WEATHER PLOT")
1115 1116 self.ncols = 1
1116 1117 self.nrows = 1
1117 1118 self.nplots= 1
1118 1119 self.ylabel= 'Range [Km]'
1119 1120 self.titles= ['Weather']
1120 1121 if self.channels is not None:
1121 1122 self.nplots = len(self.channels)
1122 1123 self.nrows = len(self.channels)
1123 1124 else:
1124 1125 self.nplots = self.data.shape(self.CODE)[0]
1125 1126 self.nrows = self.nplots
1126 1127 self.channels = list(range(self.nplots))
1127 1128 print("channels",self.channels)
1128 1129 print("que saldra", self.data.shape(self.CODE)[0])
1129 1130 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1130 1131 print("self.titles",self.titles)
1131 1132 self.colorbar=False
1132 1133 self.width =8
1133 1134 self.height =8
1134 1135 self.ini =0
1135 1136 self.len_azi =0
1136 1137 self.buffer_ini = None
1137 1138 self.buffer_ele = None
1138 1139 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1139 1140 self.flag =0
1140 1141 self.indicador= 0
1141 1142 self.last_data_ele = None
1142 1143 self.val_mean = None
1143 1144
1144 1145 def update(self, dataOut):
1145 1146
1146 1147 data = {}
1147 1148 meta = {}
1148 1149 if hasattr(dataOut, 'dataPP_POWER'):
1149 1150 factor = 1
1150 1151 if hasattr(dataOut, 'nFFTPoints'):
1151 1152 factor = dataOut.normFactor
1152 1153 print("dataOut",dataOut.data_360.shape)
1153 1154 #
1154 1155 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1155 1156 #
1156 1157 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1157 1158 data['azi'] = dataOut.data_azi
1158 1159 data['ele'] = dataOut.data_ele
1159 1160 data['case_flag'] = dataOut.case_flag
1160 1161 #print("UPDATE")
1161 1162 #print("data[weather]",data['weather'].shape)
1162 1163 #print("data[azi]",data['azi'])
1163 1164 return data, meta
1164 1165
1165 1166 def get2List(self,angulos):
1166 1167 list1=[]
1167 1168 list2=[]
1168 1169 for i in reversed(range(len(angulos))):
1169 1170 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1170 1171 diff_ = angulos[i]-angulos[i-1]
1171 1172 if abs(diff_) >1.5:
1172 1173 list1.append(i-1)
1173 1174 list2.append(diff_)
1174 1175 return list(reversed(list1)),list(reversed(list2))
1175 1176
1176 1177 def fixData90(self,list_,ang_):
1177 1178 if list_[0]==-1:
1178 1179 vec = numpy.where(ang_<ang_[0])
1179 1180 ang_[vec] = ang_[vec]+90
1180 1181 return ang_
1181 1182 return ang_
1182 1183
1183 1184 def fixData90HL(self,angulos):
1184 1185 vec = numpy.where(angulos>=90)
1185 1186 angulos[vec]=angulos[vec]-90
1186 1187 return angulos
1187 1188
1188 1189
1189 1190 def search_pos(self,pos,list_):
1190 1191 for i in range(len(list_)):
1191 1192 if pos == list_[i]:
1192 1193 return True,i
1193 1194 i=None
1194 1195 return False,i
1195 1196
1196 1197 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1197 1198 size = len(ang_)
1198 1199 size2 = 0
1199 1200 for i in range(len(list2_)):
1200 1201 size2=size2+round(abs(list2_[i]))-1
1201 1202 new_size= size+size2
1202 1203 ang_new = numpy.zeros(new_size)
1203 1204 ang_new2 = numpy.zeros(new_size)
1204 1205
1205 1206 tmp = 0
1206 1207 c = 0
1207 1208 for i in range(len(ang_)):
1208 1209 ang_new[tmp +c] = ang_[i]
1209 1210 ang_new2[tmp+c] = ang_[i]
1210 1211 condition , value = self.search_pos(i,list1_)
1211 1212 if condition:
1212 1213 pos = tmp + c + 1
1213 1214 for k in range(round(abs(list2_[value]))-1):
1214 1215 if tipo_case==0 or tipo_case==3:#subida
1215 1216 ang_new[pos+k] = ang_new[pos+k-1]+1
1216 1217 ang_new2[pos+k] = numpy.nan
1217 1218 elif tipo_case==1 or tipo_case==2:#bajada
1218 1219 ang_new[pos+k] = ang_new[pos+k-1]-1
1219 1220 ang_new2[pos+k] = numpy.nan
1220 1221
1221 1222 tmp = pos +k
1222 1223 c = 0
1223 1224 c=c+1
1224 1225 return ang_new,ang_new2
1225 1226
1226 1227 def globalCheckPED(self,angulos,tipo_case):
1227 1228 l1,l2 = self.get2List(angulos)
1228 1229 ##print("l1",l1)
1229 1230 ##print("l2",l2)
1230 1231 if len(l1)>0:
1231 1232 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1232 1233 #l1,l2 = self.get2List(angulos2)
1233 1234 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1234 1235 #ang1_ = self.fixData90HL(ang1_)
1235 1236 #ang2_ = self.fixData90HL(ang2_)
1236 1237 else:
1237 1238 ang1_= angulos
1238 1239 ang2_= angulos
1239 1240 return ang1_,ang2_
1240 1241
1241 1242
1242 1243 def replaceNAN(self,data_weather,data_ele,val):
1243 1244 data= data_ele
1244 1245 data_T= data_weather
1245 1246 if data.shape[0]> data_T.shape[0]:
1246 1247 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1247 1248 c = 0
1248 1249 for i in range(len(data)):
1249 1250 if numpy.isnan(data[i]):
1250 1251 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1251 1252 else:
1252 1253 data_N[i,:]=data_T[c,:]
1253 1254 c=c+1
1254 1255 return data_N
1255 1256 else:
1256 1257 for i in range(len(data)):
1257 1258 if numpy.isnan(data[i]):
1258 1259 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1259 1260 return data_T
1260 1261
1261 1262 def check_case(self,data_ele,ang_max,ang_min):
1262 1263 start = data_ele[0]
1263 1264 end = data_ele[-1]
1264 1265 number = (end-start)
1265 1266 len_ang=len(data_ele)
1266 1267 print("start",start)
1267 1268 print("end",end)
1268 1269 print("number",number)
1269 1270
1270 1271 print("len_ang",len_ang)
1271 1272
1272 1273 #exit(1)
1273 1274
1274 1275 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
1275 1276 return 0
1276 1277 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
1277 1278 # return 1
1278 1279 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
1279 1280 return 1
1280 1281 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
1281 1282 return 2
1282 1283 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
1283 1284 return 3
1284 1285
1285 1286
1286 1287 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1287 1288 ang_max= ang_max
1288 1289 ang_min= ang_min
1289 1290 data_weather=data_weather
1290 1291 val_ch=val_ch
1291 1292 ##print("*********************DATA WEATHER**************************************")
1292 1293 ##print(data_weather)
1293 1294 if self.ini==0:
1294 1295 '''
1295 1296 print("**********************************************")
1296 1297 print("**********************************************")
1297 1298 print("***************ini**************")
1298 1299 print("**********************************************")
1299 1300 print("**********************************************")
1300 1301 '''
1301 1302 #print("data_ele",data_ele)
1302 1303 #----------------------------------------------------------
1303 1304 tipo_case = case_flag[-1]
1304 1305 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1305 1306 print("check_case",tipo_case)
1306 1307 #exit(1)
1307 1308 #--------------------- new -------------------------
1308 1309 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1309 1310
1310 1311 #-------------------------CAMBIOS RHI---------------------------------
1311 1312 start= ang_min
1312 1313 end = ang_max
1313 1314 n= (ang_max-ang_min)/res
1314 1315 #------ new
1315 1316 self.start_data_ele = data_ele_new[0]
1316 1317 self.end_data_ele = data_ele_new[-1]
1317 1318 if tipo_case==0 or tipo_case==3: # SUBIDA
1318 1319 n1= round(self.start_data_ele)- start
1319 1320 n2= end - round(self.end_data_ele)
1320 1321 print(self.start_data_ele)
1321 1322 print(self.end_data_ele)
1322 1323 if n1>0:
1323 1324 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1324 1325 ele1_nan= numpy.ones(n1)*numpy.nan
1325 1326 data_ele = numpy.hstack((ele1,data_ele_new))
1326 1327 print("ele1_nan",ele1_nan.shape)
1327 1328 print("data_ele_old",data_ele_old.shape)
1328 1329 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1329 1330 if n2>0:
1330 1331 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1331 1332 ele2_nan= numpy.ones(n2)*numpy.nan
1332 1333 data_ele = numpy.hstack((data_ele,ele2))
1333 1334 print("ele2_nan",ele2_nan.shape)
1334 1335 print("data_ele_old",data_ele_old.shape)
1335 1336 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1336 1337
1337 1338 if tipo_case==1 or tipo_case==2: # BAJADA
1338 1339 data_ele_new = data_ele_new[::-1] # reversa
1339 1340 data_ele_old = data_ele_old[::-1]# reversa
1340 1341 data_weather = data_weather[::-1,:]# reversa
1341 1342 vec= numpy.where(data_ele_new<ang_max)
1342 1343 data_ele_new = data_ele_new[vec]
1343 1344 data_ele_old = data_ele_old[vec]
1344 1345 data_weather = data_weather[vec[0]]
1345 1346 vec2= numpy.where(0<data_ele_new)
1346 1347 data_ele_new = data_ele_new[vec2]
1347 1348 data_ele_old = data_ele_old[vec2]
1348 1349 data_weather = data_weather[vec2[0]]
1349 1350 self.start_data_ele = data_ele_new[0]
1350 1351 self.end_data_ele = data_ele_new[-1]
1351 1352
1352 1353 n1= round(self.start_data_ele)- start
1353 1354 n2= end - round(self.end_data_ele)-1
1354 1355 print(self.start_data_ele)
1355 1356 print(self.end_data_ele)
1356 1357 if n1>0:
1357 1358 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1358 1359 ele1_nan= numpy.ones(n1)*numpy.nan
1359 1360 data_ele = numpy.hstack((ele1,data_ele_new))
1360 1361 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1361 1362 if n2>0:
1362 1363 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1363 1364 ele2_nan= numpy.ones(n2)*numpy.nan
1364 1365 data_ele = numpy.hstack((data_ele,ele2))
1365 1366 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1366 1367 # RADAR
1367 1368 # NOTA data_ele y data_weather es la variable que retorna
1368 1369 val_mean = numpy.mean(data_weather[:,-1])
1369 1370 self.val_mean = val_mean
1370 1371 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1371 1372 print("eleold",data_ele_old)
1372 1373 print(self.data_ele_tmp[val_ch])
1373 1374 print(data_ele_old.shape[0])
1374 1375 print(self.data_ele_tmp[val_ch].shape[0])
1375 1376 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
1376 1377 import sys
1377 1378 print("EXIT",self.ini)
1378 1379
1379 1380 sys.exit(1)
1380 1381 self.data_ele_tmp[val_ch]= data_ele_old
1381 1382 else:
1382 1383 #print("**********************************************")
1383 1384 #print("****************VARIABLE**********************")
1384 1385 #-------------------------CAMBIOS RHI---------------------------------
1385 1386 #---------------------------------------------------------------------
1386 1387 ##print("INPUT data_ele",data_ele)
1387 1388 flag=0
1388 1389 start_ele = self.res_ele[0]
1389 1390 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1390 1391 tipo_case = case_flag[-1]
1391 1392 #print("TIPO DE DATA",tipo_case)
1392 1393 #-----------new------------
1393 1394 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
1394 1395 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1395 1396
1396 1397 #-------------------------------NEW RHI ITERATIVO-------------------------
1397 1398
1398 1399 if tipo_case==0 : # SUBIDA
1399 1400 vec = numpy.where(data_ele<ang_max)
1400 1401 data_ele = data_ele[vec]
1401 1402 data_ele_old = data_ele_old[vec]
1402 1403 data_weather = data_weather[vec[0]]
1403 1404
1404 1405 vec2 = numpy.where(0<data_ele)
1405 1406 data_ele= data_ele[vec2]
1406 1407 data_ele_old= data_ele_old[vec2]
1407 1408 ##print(data_ele_new)
1408 1409 data_weather= data_weather[vec2[0]]
1409 1410
1410 1411 new_i_ele = int(round(data_ele[0]))
1411 1412 new_f_ele = int(round(data_ele[-1]))
1412 1413 #print(new_i_ele)
1413 1414 #print(new_f_ele)
1414 1415 #print(data_ele,len(data_ele))
1415 1416 #print(data_ele_old,len(data_ele_old))
1416 1417 if new_i_ele< 2:
1417 1418 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1418 1419 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1419 1420 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
1420 1421 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
1421 1422 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
1422 1423 data_ele = self.res_ele
1423 1424 data_weather = self.res_weather[val_ch]
1424 1425
1425 1426 elif tipo_case==1 : #BAJADA
1426 1427 data_ele = data_ele[::-1] # reversa
1427 1428 data_ele_old = data_ele_old[::-1]# reversa
1428 1429 data_weather = data_weather[::-1,:]# reversa
1429 1430 vec= numpy.where(data_ele<ang_max)
1430 1431 data_ele = data_ele[vec]
1431 1432 data_ele_old = data_ele_old[vec]
1432 1433 data_weather = data_weather[vec[0]]
1433 1434 vec2= numpy.where(0<data_ele)
1434 1435 data_ele = data_ele[vec2]
1435 1436 data_ele_old = data_ele_old[vec2]
1436 1437 data_weather = data_weather[vec2[0]]
1437 1438
1438 1439
1439 1440 new_i_ele = int(round(data_ele[0]))
1440 1441 new_f_ele = int(round(data_ele[-1]))
1441 1442 #print(data_ele)
1442 1443 #print(ang_max)
1443 1444 #print(data_ele_old)
1444 1445 if new_i_ele <= 1:
1445 1446 new_i_ele = 1
1446 1447 if round(data_ele[-1])>=ang_max-1:
1447 1448 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1448 1449 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1449 1450 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
1450 1451 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
1451 1452 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
1452 1453 data_ele = self.res_ele
1453 1454 data_weather = self.res_weather[val_ch]
1454 1455
1455 1456 elif tipo_case==2: #bajada
1456 1457 vec = numpy.where(data_ele<ang_max)
1457 1458 data_ele = data_ele[vec]
1458 1459 data_weather= data_weather[vec[0]]
1459 1460
1460 1461 len_vec = len(vec)
1461 1462 data_ele_new = data_ele[::-1] # reversa
1462 1463 data_weather = data_weather[::-1,:]
1463 1464 new_i_ele = int(data_ele_new[0])
1464 1465 new_f_ele = int(data_ele_new[-1])
1465 1466
1466 1467 n1= new_i_ele- ang_min
1467 1468 n2= ang_max - new_f_ele-1
1468 1469 if n1>0:
1469 1470 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1470 1471 ele1_nan= numpy.ones(n1)*numpy.nan
1471 1472 data_ele = numpy.hstack((ele1,data_ele_new))
1472 1473 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1473 1474 if n2>0:
1474 1475 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1475 1476 ele2_nan= numpy.ones(n2)*numpy.nan
1476 1477 data_ele = numpy.hstack((data_ele,ele2))
1477 1478 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1478 1479
1479 1480 self.data_ele_tmp[val_ch] = data_ele_old
1480 1481 self.res_ele = data_ele
1481 1482 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1482 1483 data_ele = self.res_ele
1483 1484 data_weather = self.res_weather[val_ch]
1484 1485
1485 1486 elif tipo_case==3:#subida
1486 1487 vec = numpy.where(0<data_ele)
1487 1488 data_ele= data_ele[vec]
1488 1489 data_ele_new = data_ele
1489 1490 data_ele_old= data_ele_old[vec]
1490 1491 data_weather= data_weather[vec[0]]
1491 1492 pos_ini = numpy.argmin(data_ele)
1492 1493 if pos_ini>0:
1493 1494 len_vec= len(data_ele)
1494 1495 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1495 1496 #print(vec3)
1496 1497 data_ele= data_ele[vec3]
1497 1498 data_ele_new = data_ele
1498 1499 data_ele_old= data_ele_old[vec3]
1499 1500 data_weather= data_weather[vec3]
1500 1501
1501 1502 new_i_ele = int(data_ele_new[0])
1502 1503 new_f_ele = int(data_ele_new[-1])
1503 1504 n1= new_i_ele- ang_min
1504 1505 n2= ang_max - new_f_ele-1
1505 1506 if n1>0:
1506 1507 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1507 1508 ele1_nan= numpy.ones(n1)*numpy.nan
1508 1509 data_ele = numpy.hstack((ele1,data_ele_new))
1509 1510 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1510 1511 if n2>0:
1511 1512 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1512 1513 ele2_nan= numpy.ones(n2)*numpy.nan
1513 1514 data_ele = numpy.hstack((data_ele,ele2))
1514 1515 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1515 1516
1516 1517 self.data_ele_tmp[val_ch] = data_ele_old
1517 1518 self.res_ele = data_ele
1518 1519 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1519 1520 data_ele = self.res_ele
1520 1521 data_weather = self.res_weather[val_ch]
1521 1522 #print("self.data_ele_tmp",self.data_ele_tmp)
1522 1523 return data_weather,data_ele
1523 1524
1524 1525
1525 1526 def plot(self):
1526 1527 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1527 1528 data = self.data[-1]
1528 1529 r = self.data.yrange
1529 1530 delta_height = r[1]-r[0]
1530 1531 r_mask = numpy.where(r>=0)[0]
1531 1532 ##print("delta_height",delta_height)
1532 1533 #print("r_mask",r_mask,len(r_mask))
1533 1534 r = numpy.arange(len(r_mask))*delta_height
1534 1535 self.y = 2*r
1535 1536 res = 1
1536 1537 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1537 1538 ang_max = self.ang_max
1538 1539 ang_min = self.ang_min
1539 1540 var_ang =ang_max - ang_min
1540 1541 step = (int(var_ang)/(res*data['weather'].shape[0]))
1541 1542 ###print("step",step)
1542 1543 #--------------------------------------------------------
1543 1544 ##print('weather',data['weather'].shape)
1544 1545 ##print('ele',data['ele'].shape)
1545 1546
1546 1547 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1547 1548 ###self.res_azi = numpy.mean(data['azi'])
1548 1549 ###print("self.res_ele",self.res_ele)
1549 1550 plt.clf()
1550 1551 subplots = [121, 122]
1551 1552 try:
1552 1553 if self.data[-2]['ele'].max()<data['ele'].max():
1553 1554 self.ini=0
1554 1555 except:
1555 1556 pass
1556 1557 if self.ini==0:
1557 1558 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1558 1559 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1559 1560 print("SHAPE",self.data_ele_tmp.shape)
1560 1561
1561 1562 for i,ax in enumerate(self.axes):
1562 1563 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1563 1564 self.res_azi = numpy.mean(data['azi'])
1564 1565
1565 1566 if ax.firsttime:
1566 1567 #plt.clf()
1567 1568 print("Frist Plot")
1568 1569 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1569 1570 #fig=self.figures[0]
1570 1571 else:
1571 1572 #plt.clf()
1572 1573 print("ELSE PLOT")
1573 1574 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1574 1575 caax = cgax.parasites[0]
1575 1576 paax = cgax.parasites[1]
1576 1577 cbar = plt.gcf().colorbar(pm, pad=0.075)
1577 1578 caax.set_xlabel('x_range [km]')
1578 1579 caax.set_ylabel('y_range [km]')
1579 1580 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1580 1581 print("***************************self.ini****************************",self.ini)
1581 1582 self.ini= self.ini+1
1582 1583
1583 1584 class WeatherRHI_vRF_Plot(Plot):
1584 1585 CODE = 'weather'
1585 1586 plot_name = 'weather'
1586 1587 plot_type = 'rhistyle'
1587 1588 buffering = False
1588 1589 data_ele_tmp = None
1589 1590
1590 1591 def setup(self):
1591 1592 print("********************")
1592 1593 print("********************")
1593 1594 print("********************")
1594 1595 print("SETUP WEATHER PLOT")
1595 1596 self.ncols = 1
1596 1597 self.nrows = 1
1597 1598 self.nplots= 1
1598 1599 self.ylabel= 'Range [Km]'
1599 1600 self.titles= ['Weather']
1600 1601 if self.channels is not None:
1601 1602 self.nplots = len(self.channels)
1602 1603 self.nrows = len(self.channels)
1603 1604 else:
1604 1605 self.nplots = self.data.shape(self.CODE)[0]
1605 1606 self.nrows = self.nplots
1606 1607 self.channels = list(range(self.nplots))
1607 1608 print("channels",self.channels)
1608 1609 print("que saldra", self.data.shape(self.CODE)[0])
1609 1610 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1610 1611 print("self.titles",self.titles)
1611 1612 self.colorbar=False
1612 1613 self.width =8
1613 1614 self.height =8
1614 1615 self.ini =0
1615 1616 self.len_azi =0
1616 1617 self.buffer_ini = None
1617 1618 self.buffer_ele = None
1618 1619 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1619 1620 self.flag =0
1620 1621 self.indicador= 0
1621 1622 self.last_data_ele = None
1622 1623 self.val_mean = None
1623 1624
1624 1625 def update(self, dataOut):
1625 1626
1626 1627 data = {}
1627 1628 meta = {}
1628 1629 if hasattr(dataOut, 'dataPP_POWER'):
1629 1630 factor = 1
1630 1631 if hasattr(dataOut, 'nFFTPoints'):
1631 1632 factor = dataOut.normFactor
1632 1633 print("dataOut",dataOut.data_360.shape)
1633 1634 #
1634 1635 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1635 1636 #
1636 1637 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1637 1638 data['azi'] = dataOut.data_azi
1638 1639 data['ele'] = dataOut.data_ele
1639 1640 data['case_flag'] = dataOut.case_flag
1640 1641 #print("UPDATE")
1641 1642 #print("data[weather]",data['weather'].shape)
1642 1643 #print("data[azi]",data['azi'])
1643 1644 return data, meta
1644 1645
1645 1646 def get2List(self,angulos):
1646 1647 list1=[]
1647 1648 list2=[]
1648 1649 #print(angulos)
1649 1650 #exit(1)
1650 1651 for i in reversed(range(len(angulos))):
1651 1652 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1652 1653 diff_ = angulos[i]-angulos[i-1]
1653 1654 if abs(diff_) >1.5:
1654 1655 list1.append(i-1)
1655 1656 list2.append(diff_)
1656 1657 return list(reversed(list1)),list(reversed(list2))
1657 1658
1658 1659 def fixData90(self,list_,ang_):
1659 1660 if list_[0]==-1:
1660 1661 vec = numpy.where(ang_<ang_[0])
1661 1662 ang_[vec] = ang_[vec]+90
1662 1663 return ang_
1663 1664 return ang_
1664 1665
1665 1666 def fixData90HL(self,angulos):
1666 1667 vec = numpy.where(angulos>=90)
1667 1668 angulos[vec]=angulos[vec]-90
1668 1669 return angulos
1669 1670
1670 1671
1671 1672 def search_pos(self,pos,list_):
1672 1673 for i in range(len(list_)):
1673 1674 if pos == list_[i]:
1674 1675 return True,i
1675 1676 i=None
1676 1677 return False,i
1677 1678
1678 1679 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1679 1680 size = len(ang_)
1680 1681 size2 = 0
1681 1682 for i in range(len(list2_)):
1682 1683 size2=size2+round(abs(list2_[i]))-1
1683 1684 new_size= size+size2
1684 1685 ang_new = numpy.zeros(new_size)
1685 1686 ang_new2 = numpy.zeros(new_size)
1686 1687
1687 1688 tmp = 0
1688 1689 c = 0
1689 1690 for i in range(len(ang_)):
1690 1691 ang_new[tmp +c] = ang_[i]
1691 1692 ang_new2[tmp+c] = ang_[i]
1692 1693 condition , value = self.search_pos(i,list1_)
1693 1694 if condition:
1694 1695 pos = tmp + c + 1
1695 1696 for k in range(round(abs(list2_[value]))-1):
1696 1697 if tipo_case==0 or tipo_case==3:#subida
1697 1698 ang_new[pos+k] = ang_new[pos+k-1]+1
1698 1699 ang_new2[pos+k] = numpy.nan
1699 1700 elif tipo_case==1 or tipo_case==2:#bajada
1700 1701 ang_new[pos+k] = ang_new[pos+k-1]-1
1701 1702 ang_new2[pos+k] = numpy.nan
1702 1703
1703 1704 tmp = pos +k
1704 1705 c = 0
1705 1706 c=c+1
1706 1707 return ang_new,ang_new2
1707 1708
1708 1709 def globalCheckPED(self,angulos,tipo_case):
1709 1710 l1,l2 = self.get2List(angulos)
1710 1711 print("l1",l1)
1711 1712 print("l2",l2)
1712 1713 if len(l1)>0:
1713 1714 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1714 1715 #l1,l2 = self.get2List(angulos2)
1715 1716 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1716 1717 #ang1_ = self.fixData90HL(ang1_)
1717 1718 #ang2_ = self.fixData90HL(ang2_)
1718 1719 else:
1719 1720 ang1_= angulos
1720 1721 ang2_= angulos
1721 1722 return ang1_,ang2_
1722 1723
1723 1724
1724 1725 def replaceNAN(self,data_weather,data_ele,val):
1725 1726 data= data_ele
1726 1727 data_T= data_weather
1727 1728 #print(data.shape[0])
1728 1729 #print(data_T.shape[0])
1729 1730 #exit(1)
1730 1731 if data.shape[0]> data_T.shape[0]:
1731 1732 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1732 1733 c = 0
1733 1734 for i in range(len(data)):
1734 1735 if numpy.isnan(data[i]):
1735 1736 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1736 1737 else:
1737 1738 data_N[i,:]=data_T[c,:]
1738 1739 c=c+1
1739 1740 return data_N
1740 1741 else:
1741 1742 for i in range(len(data)):
1742 1743 if numpy.isnan(data[i]):
1743 1744 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1744 1745 return data_T
1745 1746
1746 1747
1747 1748 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1748 1749 ang_max= ang_max
1749 1750 ang_min= ang_min
1750 1751 data_weather=data_weather
1751 1752 val_ch=val_ch
1752 1753 ##print("*********************DATA WEATHER**************************************")
1753 1754 ##print(data_weather)
1754 1755
1755 1756 '''
1756 1757 print("**********************************************")
1757 1758 print("**********************************************")
1758 1759 print("***************ini**************")
1759 1760 print("**********************************************")
1760 1761 print("**********************************************")
1761 1762 '''
1762 1763 #print("data_ele",data_ele)
1763 1764 #----------------------------------------------------------
1764 1765
1765 1766 #exit(1)
1766 1767 tipo_case = case_flag[-1]
1767 1768 print("tipo_case",tipo_case)
1768 1769 #--------------------- new -------------------------
1769 1770 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1770 1771
1771 1772 #-------------------------CAMBIOS RHI---------------------------------
1772 1773
1773 1774 vec = numpy.where(data_ele<ang_max)
1774 1775 data_ele = data_ele[vec]
1775 1776 data_weather= data_weather[vec[0]]
1776 1777
1777 1778 len_vec = len(vec)
1778 1779 data_ele_new = data_ele[::-1] # reversa
1779 1780 data_weather = data_weather[::-1,:]
1780 1781 new_i_ele = int(data_ele_new[0])
1781 1782 new_f_ele = int(data_ele_new[-1])
1782 1783
1783 1784 n1= new_i_ele- ang_min
1784 1785 n2= ang_max - new_f_ele-1
1785 1786 if n1>0:
1786 1787 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1787 1788 ele1_nan= numpy.ones(n1)*numpy.nan
1788 1789 data_ele = numpy.hstack((ele1,data_ele_new))
1789 1790 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1790 1791 if n2>0:
1791 1792 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1792 1793 ele2_nan= numpy.ones(n2)*numpy.nan
1793 1794 data_ele = numpy.hstack((data_ele,ele2))
1794 1795 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1795 1796
1796 1797
1797 1798 print("ele shape",data_ele.shape)
1798 1799 print(data_ele)
1799 1800
1800 1801 #print("self.data_ele_tmp",self.data_ele_tmp)
1801 1802 val_mean = numpy.mean(data_weather[:,-1])
1802 1803 self.val_mean = val_mean
1803 1804 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1804 1805 self.data_ele_tmp[val_ch]= data_ele_old
1805 1806
1806 1807
1807 1808 print("data_weather shape",data_weather.shape)
1808 1809 print(data_weather)
1809 1810 #exit(1)
1810 1811 return data_weather,data_ele
1811 1812
1812 1813
1813 1814 def plot(self):
1814 1815 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1815 1816 data = self.data[-1]
1816 1817 r = self.data.yrange
1817 1818 delta_height = r[1]-r[0]
1818 1819 r_mask = numpy.where(r>=0)[0]
1819 1820 ##print("delta_height",delta_height)
1820 1821 #print("r_mask",r_mask,len(r_mask))
1821 1822 r = numpy.arange(len(r_mask))*delta_height
1822 1823 self.y = 2*r
1823 1824 res = 1
1824 1825 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1825 1826 ang_max = self.ang_max
1826 1827 ang_min = self.ang_min
1827 1828 var_ang =ang_max - ang_min
1828 1829 step = (int(var_ang)/(res*data['weather'].shape[0]))
1829 1830 ###print("step",step)
1830 1831 #--------------------------------------------------------
1831 1832 ##print('weather',data['weather'].shape)
1832 1833 ##print('ele',data['ele'].shape)
1833 1834
1834 1835 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1835 1836 ###self.res_azi = numpy.mean(data['azi'])
1836 1837 ###print("self.res_ele",self.res_ele)
1837 1838 plt.clf()
1838 1839 subplots = [121, 122]
1839 1840 if self.ini==0:
1840 1841 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1841 1842 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1842 1843 print("SHAPE",self.data_ele_tmp.shape)
1843 1844
1844 1845 for i,ax in enumerate(self.axes):
1845 1846 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1846 1847 self.res_azi = numpy.mean(data['azi'])
1847 1848
1848 1849 print(self.res_ele)
1849 1850 #exit(1)
1850 1851 if ax.firsttime:
1851 1852 #plt.clf()
1852 1853 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1853 1854 #fig=self.figures[0]
1854 1855 else:
1855 1856
1856 1857 #plt.clf()
1857 1858 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1858 1859 caax = cgax.parasites[0]
1859 1860 paax = cgax.parasites[1]
1860 1861 cbar = plt.gcf().colorbar(pm, pad=0.075)
1861 1862 caax.set_xlabel('x_range [km]')
1862 1863 caax.set_ylabel('y_range [km]')
1863 1864 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1864 1865 print("***************************self.ini****************************",self.ini)
1865 1866 self.ini= self.ini+1
1867
1868 class WeatherRHI_vRF3_Plot(Plot):
1869 CODE = 'weather'
1870 plot_name = 'weather'
1871 plot_type = 'rhistyle'
1872 buffering = False
1873 data_ele_tmp = None
1874
1875 def setup(self):
1876 print("********************")
1877 print("********************")
1878 print("********************")
1879 print("SETUP WEATHER PLOT")
1880 self.ncols = 1
1881 self.nrows = 1
1882 self.nplots= 1
1883 self.ylabel= 'Range [Km]'
1884 self.titles= ['Weather']
1885 if self.channels is not None:
1886 self.nplots = len(self.channels)
1887 self.nrows = len(self.channels)
1888 else:
1889 self.nplots = self.data.shape(self.CODE)[0]
1890 self.nrows = self.nplots
1891 self.channels = list(range(self.nplots))
1892 print("channels",self.channels)
1893 print("que saldra", self.data.shape(self.CODE)[0])
1894 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1895 print("self.titles",self.titles)
1896 self.colorbar=False
1897 self.width =8
1898 self.height =8
1899 self.ini =0
1900 self.len_azi =0
1901 self.buffer_ini = None
1902 self.buffer_ele = None
1903 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1904 self.flag =0
1905 self.indicador= 0
1906 self.last_data_ele = None
1907 self.val_mean = None
1908
1909 def update(self, dataOut):
1910
1911 data = {}
1912 meta = {}
1913 if hasattr(dataOut, 'dataPP_POWER'):
1914 factor = 1
1915 if hasattr(dataOut, 'nFFTPoints'):
1916 factor = dataOut.normFactor
1917 print("dataOut",dataOut.data_360.shape)
1918 #
1919 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1920 #
1921 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1922 data['azi'] = dataOut.data_azi
1923 data['ele'] = dataOut.data_ele
1924 #data['case_flag'] = dataOut.case_flag
1925 #print("UPDATE")
1926 #print("data[weather]",data['weather'].shape)
1927 #print("data[azi]",data['azi'])
1928 return data, meta
1929
1930 def get2List(self,angulos):
1931 list1=[]
1932 list2=[]
1933 for i in reversed(range(len(angulos))):
1934 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1935 diff_ = angulos[i]-angulos[i-1]
1936 if abs(diff_) >1.5:
1937 list1.append(i-1)
1938 list2.append(diff_)
1939 return list(reversed(list1)),list(reversed(list2))
1940
1941 def fixData90(self,list_,ang_):
1942 if list_[0]==-1:
1943 vec = numpy.where(ang_<ang_[0])
1944 ang_[vec] = ang_[vec]+90
1945 return ang_
1946 return ang_
1947
1948 def fixData90HL(self,angulos):
1949 vec = numpy.where(angulos>=90)
1950 angulos[vec]=angulos[vec]-90
1951 return angulos
1952
1953
1954 def search_pos(self,pos,list_):
1955 for i in range(len(list_)):
1956 if pos == list_[i]:
1957 return True,i
1958 i=None
1959 return False,i
1960
1961 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1962 size = len(ang_)
1963 size2 = 0
1964 for i in range(len(list2_)):
1965 size2=size2+round(abs(list2_[i]))-1
1966 new_size= size+size2
1967 ang_new = numpy.zeros(new_size)
1968 ang_new2 = numpy.zeros(new_size)
1969
1970 tmp = 0
1971 c = 0
1972 for i in range(len(ang_)):
1973 ang_new[tmp +c] = ang_[i]
1974 ang_new2[tmp+c] = ang_[i]
1975 condition , value = self.search_pos(i,list1_)
1976 if condition:
1977 pos = tmp + c + 1
1978 for k in range(round(abs(list2_[value]))-1):
1979 if tipo_case==0 or tipo_case==3:#subida
1980 ang_new[pos+k] = ang_new[pos+k-1]+1
1981 ang_new2[pos+k] = numpy.nan
1982 elif tipo_case==1 or tipo_case==2:#bajada
1983 ang_new[pos+k] = ang_new[pos+k-1]-1
1984 ang_new2[pos+k] = numpy.nan
1985
1986 tmp = pos +k
1987 c = 0
1988 c=c+1
1989 return ang_new,ang_new2
1990
1991 def globalCheckPED(self,angulos,tipo_case):
1992 l1,l2 = self.get2List(angulos)
1993 ##print("l1",l1)
1994 ##print("l2",l2)
1995 if len(l1)>0:
1996 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1997 #l1,l2 = self.get2List(angulos2)
1998 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1999 #ang1_ = self.fixData90HL(ang1_)
2000 #ang2_ = self.fixData90HL(ang2_)
2001 else:
2002 ang1_= angulos
2003 ang2_= angulos
2004 return ang1_,ang2_
2005
2006
2007 def replaceNAN(self,data_weather,data_ele,val):
2008 data= data_ele
2009 data_T= data_weather
2010
2011 if data.shape[0]> data_T.shape[0]:
2012 print("IF")
2013 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
2014 c = 0
2015 for i in range(len(data)):
2016 if numpy.isnan(data[i]):
2017 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2018 else:
2019 data_N[i,:]=data_T[c,:]
2020 c=c+1
2021 return data_N
2022 else:
2023 print("else")
2024 for i in range(len(data)):
2025 if numpy.isnan(data[i]):
2026 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2027 return data_T
2028
2029 def check_case(self,data_ele,ang_max,ang_min):
2030 start = data_ele[0]
2031 end = data_ele[-1]
2032 number = (end-start)
2033 len_ang=len(data_ele)
2034 print("start",start)
2035 print("end",end)
2036 print("number",number)
2037
2038 print("len_ang",len_ang)
2039
2040 #exit(1)
2041
2042 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
2043 return 0
2044 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
2045 # return 1
2046 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
2047 return 1
2048 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
2049 return 2
2050 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
2051 return 3
2052
2053
2054 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
2055 ang_max= ang_max
2056 ang_min= ang_min
2057 data_weather=data_weather
2058 val_ch=val_ch
2059 ##print("*********************DATA WEATHER**************************************")
2060 ##print(data_weather)
2061 if self.ini==0:
2062
2063 #--------------------- new -------------------------
2064 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
2065
2066 #-------------------------CAMBIOS RHI---------------------------------
2067 start= ang_min
2068 end = ang_max
2069 n= (ang_max-ang_min)/res
2070 #------ new
2071 self.start_data_ele = data_ele_new[0]
2072 self.end_data_ele = data_ele_new[-1]
2073 if tipo_case==0 or tipo_case==3: # SUBIDA
2074 n1= round(self.start_data_ele)- start
2075 n2= end - round(self.end_data_ele)
2076 print(self.start_data_ele)
2077 print(self.end_data_ele)
2078 if n1>0:
2079 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2080 ele1_nan= numpy.ones(n1)*numpy.nan
2081 data_ele = numpy.hstack((ele1,data_ele_new))
2082 print("ele1_nan",ele1_nan.shape)
2083 print("data_ele_old",data_ele_old.shape)
2084 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2085 if n2>0:
2086 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2087 ele2_nan= numpy.ones(n2)*numpy.nan
2088 data_ele = numpy.hstack((data_ele,ele2))
2089 print("ele2_nan",ele2_nan.shape)
2090 print("data_ele_old",data_ele_old.shape)
2091 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2092
2093 if tipo_case==1 or tipo_case==2: # BAJADA
2094 data_ele_new = data_ele_new[::-1] # reversa
2095 data_ele_old = data_ele_old[::-1]# reversa
2096 data_weather = data_weather[::-1,:]# reversa
2097 vec= numpy.where(data_ele_new<ang_max)
2098 data_ele_new = data_ele_new[vec]
2099 data_ele_old = data_ele_old[vec]
2100 data_weather = data_weather[vec[0]]
2101 vec2= numpy.where(0<data_ele_new)
2102 data_ele_new = data_ele_new[vec2]
2103 data_ele_old = data_ele_old[vec2]
2104 data_weather = data_weather[vec2[0]]
2105 self.start_data_ele = data_ele_new[0]
2106 self.end_data_ele = data_ele_new[-1]
2107
2108 n1= round(self.start_data_ele)- start
2109 n2= end - round(self.end_data_ele)-1
2110 print(self.start_data_ele)
2111 print(self.end_data_ele)
2112 if n1>0:
2113 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2114 ele1_nan= numpy.ones(n1)*numpy.nan
2115 data_ele = numpy.hstack((ele1,data_ele_new))
2116 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2117 if n2>0:
2118 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2119 ele2_nan= numpy.ones(n2)*numpy.nan
2120 data_ele = numpy.hstack((data_ele,ele2))
2121 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2122 # RADAR
2123 # NOTA data_ele y data_weather es la variable que retorna
2124 val_mean = numpy.mean(data_weather[:,-1])
2125 self.val_mean = val_mean
2126 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2127 print("eleold",data_ele_old)
2128 print(self.data_ele_tmp[val_ch])
2129 print(data_ele_old.shape[0])
2130 print(self.data_ele_tmp[val_ch].shape[0])
2131 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
2132 import sys
2133 print("EXIT",self.ini)
2134
2135 sys.exit(1)
2136 self.data_ele_tmp[val_ch]= data_ele_old
2137 else:
2138 #print("**********************************************")
2139 #print("****************VARIABLE**********************")
2140 #-------------------------CAMBIOS RHI---------------------------------
2141 #---------------------------------------------------------------------
2142 ##print("INPUT data_ele",data_ele)
2143 flag=0
2144 start_ele = self.res_ele[0]
2145 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
2146 tipo_case = case_flag[-1]
2147 #print("TIPO DE DATA",tipo_case)
2148 #-----------new------------
2149 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
2150 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2151
2152 #-------------------------------NEW RHI ITERATIVO-------------------------
2153
2154 if tipo_case==0 : # SUBIDA
2155 vec = numpy.where(data_ele<ang_max)
2156 data_ele = data_ele[vec]
2157 data_ele_old = data_ele_old[vec]
2158 data_weather = data_weather[vec[0]]
2159
2160 vec2 = numpy.where(0<data_ele)
2161 data_ele= data_ele[vec2]
2162 data_ele_old= data_ele_old[vec2]
2163 ##print(data_ele_new)
2164 data_weather= data_weather[vec2[0]]
2165
2166 new_i_ele = int(round(data_ele[0]))
2167 new_f_ele = int(round(data_ele[-1]))
2168 #print(new_i_ele)
2169 #print(new_f_ele)
2170 #print(data_ele,len(data_ele))
2171 #print(data_ele_old,len(data_ele_old))
2172 if new_i_ele< 2:
2173 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2174 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2175 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
2176 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
2177 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
2178 data_ele = self.res_ele
2179 data_weather = self.res_weather[val_ch]
2180
2181 elif tipo_case==1 : #BAJADA
2182 data_ele = data_ele[::-1] # reversa
2183 data_ele_old = data_ele_old[::-1]# reversa
2184 data_weather = data_weather[::-1,:]# reversa
2185 vec= numpy.where(data_ele<ang_max)
2186 data_ele = data_ele[vec]
2187 data_ele_old = data_ele_old[vec]
2188 data_weather = data_weather[vec[0]]
2189 vec2= numpy.where(0<data_ele)
2190 data_ele = data_ele[vec2]
2191 data_ele_old = data_ele_old[vec2]
2192 data_weather = data_weather[vec2[0]]
2193
2194
2195 new_i_ele = int(round(data_ele[0]))
2196 new_f_ele = int(round(data_ele[-1]))
2197 #print(data_ele)
2198 #print(ang_max)
2199 #print(data_ele_old)
2200 if new_i_ele <= 1:
2201 new_i_ele = 1
2202 if round(data_ele[-1])>=ang_max-1:
2203 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2204 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2205 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
2206 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
2207 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
2208 data_ele = self.res_ele
2209 data_weather = self.res_weather[val_ch]
2210
2211 elif tipo_case==2: #bajada
2212 vec = numpy.where(data_ele<ang_max)
2213 data_ele = data_ele[vec]
2214 data_weather= data_weather[vec[0]]
2215
2216 len_vec = len(vec)
2217 data_ele_new = data_ele[::-1] # reversa
2218 data_weather = data_weather[::-1,:]
2219 new_i_ele = int(data_ele_new[0])
2220 new_f_ele = int(data_ele_new[-1])
2221
2222 n1= new_i_ele- ang_min
2223 n2= ang_max - new_f_ele-1
2224 if n1>0:
2225 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2226 ele1_nan= numpy.ones(n1)*numpy.nan
2227 data_ele = numpy.hstack((ele1,data_ele_new))
2228 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2229 if n2>0:
2230 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2231 ele2_nan= numpy.ones(n2)*numpy.nan
2232 data_ele = numpy.hstack((data_ele,ele2))
2233 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2234
2235 self.data_ele_tmp[val_ch] = data_ele_old
2236 self.res_ele = data_ele
2237 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2238 data_ele = self.res_ele
2239 data_weather = self.res_weather[val_ch]
2240
2241 elif tipo_case==3:#subida
2242 vec = numpy.where(0<data_ele)
2243 data_ele= data_ele[vec]
2244 data_ele_new = data_ele
2245 data_ele_old= data_ele_old[vec]
2246 data_weather= data_weather[vec[0]]
2247 pos_ini = numpy.argmin(data_ele)
2248 if pos_ini>0:
2249 len_vec= len(data_ele)
2250 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
2251 #print(vec3)
2252 data_ele= data_ele[vec3]
2253 data_ele_new = data_ele
2254 data_ele_old= data_ele_old[vec3]
2255 data_weather= data_weather[vec3]
2256
2257 new_i_ele = int(data_ele_new[0])
2258 new_f_ele = int(data_ele_new[-1])
2259 n1= new_i_ele- ang_min
2260 n2= ang_max - new_f_ele-1
2261 if n1>0:
2262 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2263 ele1_nan= numpy.ones(n1)*numpy.nan
2264 data_ele = numpy.hstack((ele1,data_ele_new))
2265 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2266 if n2>0:
2267 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2268 ele2_nan= numpy.ones(n2)*numpy.nan
2269 data_ele = numpy.hstack((data_ele,ele2))
2270 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2271
2272 self.data_ele_tmp[val_ch] = data_ele_old
2273 self.res_ele = data_ele
2274 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2275 data_ele = self.res_ele
2276 data_weather = self.res_weather[val_ch]
2277 #print("self.data_ele_tmp",self.data_ele_tmp)
2278 return data_weather,data_ele
2279
2280 def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min):
2281
2282 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1)
2283
2284 data_ele = data_ele_old.copy()
2285
2286 diff_1 = ang_max - data_ele[0]
2287 angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan
2288
2289 diff_2 = data_ele[-1]-ang_min
2290 angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan
2291
2292 angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan))
2293
2294 print(angles_filled)
2295
2296 data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan
2297 data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan
2298
2299 data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0)
2300 #val_mean = numpy.mean(data_weather[:,-1])
2301 #self.val_mean = val_mean
2302 print(data_filled)
2303 data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan)
2304
2305 print(data_filled)
2306 print(data_filled.shape)
2307 print(angles_filled.shape)
2308
2309 return data_filled,angles_filled
2310
2311 def plot(self):
2312 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
2313 data = self.data[-1]
2314 r = self.data.yrange
2315 delta_height = r[1]-r[0]
2316 r_mask = numpy.where(r>=0)[0]
2317 self.r_mask =r_mask
2318 ##print("delta_height",delta_height)
2319 #print("r_mask",r_mask,len(r_mask))
2320 r = numpy.arange(len(r_mask))*delta_height
2321 self.y = 2*r
2322 res = 1
2323 ###print("data['weather'].shape[0]",data['weather'].shape[0])
2324 ang_max = self.ang_max
2325 ang_min = self.ang_min
2326 var_ang =ang_max - ang_min
2327 step = (int(var_ang)/(res*data['weather'].shape[0]))
2328 ###print("step",step)
2329 #--------------------------------------------------------
2330 ##print('weather',data['weather'].shape)
2331 ##print('ele',data['ele'].shape)
2332
2333 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
2334 ###self.res_azi = numpy.mean(data['azi'])
2335 ###print("self.res_ele",self.res_ele)
2336
2337 plt.clf()
2338 subplots = [121, 122]
2339 #if self.ini==0:
2340 #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
2341 #print("SHAPE",self.data_ele_tmp.shape)
2342
2343 for i,ax in enumerate(self.axes):
2344 res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min)
2345 self.res_azi = numpy.mean(data['azi'])
2346
2347 if ax.firsttime:
2348 #plt.clf()
2349 print("Frist Plot")
2350 print(data['weather'][i][:,r_mask].shape)
2351 print(data['ele'].shape)
2352 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2353 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2354 gh = cgax.get_grid_helper()
2355 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2356 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2357 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2358
2359
2360 #fig=self.figures[0]
2361 else:
2362 #plt.clf()
2363 print("ELSE PLOT")
2364 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2365 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2366 gh = cgax.get_grid_helper()
2367 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2368 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2369 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2370
2371 caax = cgax.parasites[0]
2372 paax = cgax.parasites[1]
2373 cbar = plt.gcf().colorbar(pm, pad=0.075)
2374 caax.set_xlabel('x_range [km]')
2375 caax.set_ylabel('y_range [km]')
2376 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
2377 print("***************************self.ini****************************",self.ini)
2378 self.ini= self.ini+1
1 NO CONTENT: modified file
The requested commit or file is too big and content was truncated. Show full diff
General Comments 0
You need to be logged in to leave comments. Login now