The requested changes are too big and content was truncated. Show full diff
This diff has been collapsed as it changes many lines, (513 lines changed) Show them Hide them | |||||
@@ -1,1865 +1,2378 | |||||
1 | import os |
|
1 | import os | |
2 | import datetime |
|
2 | import datetime | |
3 | import numpy |
|
3 | import numpy | |
|
4 | from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter | |||
4 |
|
5 | |||
5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
7 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot | |
7 | from schainpy.utils import log |
|
8 | from schainpy.utils import log | |
8 | # libreria wradlib |
|
9 | # libreria wradlib | |
9 | import wradlib as wrl |
|
10 | import wradlib as wrl | |
10 |
|
11 | |||
11 | EARTH_RADIUS = 6.3710e3 |
|
12 | EARTH_RADIUS = 6.3710e3 | |
12 |
|
13 | |||
13 |
|
14 | |||
14 | def ll2xy(lat1, lon1, lat2, lon2): |
|
15 | def ll2xy(lat1, lon1, lat2, lon2): | |
15 |
|
16 | |||
16 | p = 0.017453292519943295 |
|
17 | p = 0.017453292519943295 | |
17 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
18 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
18 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
19 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
19 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
20 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
20 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
21 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
21 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
22 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
22 | theta = -theta + numpy.pi/2 |
|
23 | theta = -theta + numpy.pi/2 | |
23 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
24 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
24 |
|
25 | |||
25 |
|
26 | |||
26 | def km2deg(km): |
|
27 | def km2deg(km): | |
27 | ''' |
|
28 | ''' | |
28 | Convert distance in km to degrees |
|
29 | Convert distance in km to degrees | |
29 | ''' |
|
30 | ''' | |
30 |
|
31 | |||
31 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
32 | return numpy.rad2deg(km/EARTH_RADIUS) | |
32 |
|
33 | |||
33 |
|
34 | |||
34 |
|
35 | |||
35 | class SpectralMomentsPlot(SpectraPlot): |
|
36 | class SpectralMomentsPlot(SpectraPlot): | |
36 | ''' |
|
37 | ''' | |
37 | Plot for Spectral Moments |
|
38 | Plot for Spectral Moments | |
38 | ''' |
|
39 | ''' | |
39 | CODE = 'spc_moments' |
|
40 | CODE = 'spc_moments' | |
40 | # colormap = 'jet' |
|
41 | # colormap = 'jet' | |
41 | # plot_type = 'pcolor' |
|
42 | # plot_type = 'pcolor' | |
42 |
|
43 | |||
43 | class DobleGaussianPlot(SpectraPlot): |
|
44 | class DobleGaussianPlot(SpectraPlot): | |
44 | ''' |
|
45 | ''' | |
45 | Plot for Double Gaussian Plot |
|
46 | Plot for Double Gaussian Plot | |
46 | ''' |
|
47 | ''' | |
47 | CODE = 'gaussian_fit' |
|
48 | CODE = 'gaussian_fit' | |
48 | # colormap = 'jet' |
|
49 | # colormap = 'jet' | |
49 | # plot_type = 'pcolor' |
|
50 | # plot_type = 'pcolor' | |
50 |
|
51 | |||
51 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
52 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): | |
52 | ''' |
|
53 | ''' | |
53 | Plot SpectraCut with Double Gaussian Fit |
|
54 | Plot SpectraCut with Double Gaussian Fit | |
54 | ''' |
|
55 | ''' | |
55 | CODE = 'cut_gaussian_fit' |
|
56 | CODE = 'cut_gaussian_fit' | |
56 |
|
57 | |||
57 | class SnrPlot(RTIPlot): |
|
58 | class SnrPlot(RTIPlot): | |
58 | ''' |
|
59 | ''' | |
59 | Plot for SNR Data |
|
60 | Plot for SNR Data | |
60 | ''' |
|
61 | ''' | |
61 |
|
62 | |||
62 | CODE = 'snr' |
|
63 | CODE = 'snr' | |
63 | colormap = 'jet' |
|
64 | colormap = 'jet' | |
64 |
|
65 | |||
65 | def update(self, dataOut): |
|
66 | def update(self, dataOut): | |
66 |
|
67 | |||
67 | data = { |
|
68 | data = { | |
68 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
69 | 'snr': 10*numpy.log10(dataOut.data_snr) | |
69 | } |
|
70 | } | |
70 |
|
71 | |||
71 | return data, {} |
|
72 | return data, {} | |
72 |
|
73 | |||
73 | class DopplerPlot(RTIPlot): |
|
74 | class DopplerPlot(RTIPlot): | |
74 | ''' |
|
75 | ''' | |
75 | Plot for DOPPLER Data (1st moment) |
|
76 | Plot for DOPPLER Data (1st moment) | |
76 | ''' |
|
77 | ''' | |
77 |
|
78 | |||
78 | CODE = 'dop' |
|
79 | CODE = 'dop' | |
79 | colormap = 'jet' |
|
80 | colormap = 'jet' | |
80 |
|
81 | |||
81 | def update(self, dataOut): |
|
82 | def update(self, dataOut): | |
82 |
|
83 | |||
83 | data = { |
|
84 | data = { | |
84 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
85 | 'dop': 10*numpy.log10(dataOut.data_dop) | |
85 | } |
|
86 | } | |
86 |
|
87 | |||
87 | return data, {} |
|
88 | return data, {} | |
88 |
|
89 | |||
89 | class PowerPlot(RTIPlot): |
|
90 | class PowerPlot(RTIPlot): | |
90 | ''' |
|
91 | ''' | |
91 | Plot for Power Data (0 moment) |
|
92 | Plot for Power Data (0 moment) | |
92 | ''' |
|
93 | ''' | |
93 |
|
94 | |||
94 | CODE = 'pow' |
|
95 | CODE = 'pow' | |
95 | colormap = 'jet' |
|
96 | colormap = 'jet' | |
96 |
|
97 | |||
97 | def update(self, dataOut): |
|
98 | def update(self, dataOut): | |
98 | data = { |
|
99 | data = { | |
99 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
100 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) | |
100 | } |
|
101 | } | |
101 | return data, {} |
|
102 | return data, {} | |
102 |
|
103 | |||
103 | class SpectralWidthPlot(RTIPlot): |
|
104 | class SpectralWidthPlot(RTIPlot): | |
104 | ''' |
|
105 | ''' | |
105 | Plot for Spectral Width Data (2nd moment) |
|
106 | Plot for Spectral Width Data (2nd moment) | |
106 | ''' |
|
107 | ''' | |
107 |
|
108 | |||
108 | CODE = 'width' |
|
109 | CODE = 'width' | |
109 | colormap = 'jet' |
|
110 | colormap = 'jet' | |
110 |
|
111 | |||
111 | def update(self, dataOut): |
|
112 | def update(self, dataOut): | |
112 |
|
113 | |||
113 | data = { |
|
114 | data = { | |
114 | 'width': dataOut.data_width |
|
115 | 'width': dataOut.data_width | |
115 | } |
|
116 | } | |
116 |
|
117 | |||
117 | return data, {} |
|
118 | return data, {} | |
118 |
|
119 | |||
119 | class SkyMapPlot(Plot): |
|
120 | class SkyMapPlot(Plot): | |
120 | ''' |
|
121 | ''' | |
121 | Plot for meteors detection data |
|
122 | Plot for meteors detection data | |
122 | ''' |
|
123 | ''' | |
123 |
|
124 | |||
124 | CODE = 'param' |
|
125 | CODE = 'param' | |
125 |
|
126 | |||
126 | def setup(self): |
|
127 | def setup(self): | |
127 |
|
128 | |||
128 | self.ncols = 1 |
|
129 | self.ncols = 1 | |
129 | self.nrows = 1 |
|
130 | self.nrows = 1 | |
130 | self.width = 7.2 |
|
131 | self.width = 7.2 | |
131 | self.height = 7.2 |
|
132 | self.height = 7.2 | |
132 | self.nplots = 1 |
|
133 | self.nplots = 1 | |
133 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
134 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
134 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
135 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
135 | self.polar = True |
|
136 | self.polar = True | |
136 | self.ymin = -180 |
|
137 | self.ymin = -180 | |
137 | self.ymax = 180 |
|
138 | self.ymax = 180 | |
138 | self.colorbar = False |
|
139 | self.colorbar = False | |
139 |
|
140 | |||
140 | def plot(self): |
|
141 | def plot(self): | |
141 |
|
142 | |||
142 | arrayParameters = numpy.concatenate(self.data['param']) |
|
143 | arrayParameters = numpy.concatenate(self.data['param']) | |
143 | error = arrayParameters[:, -1] |
|
144 | error = arrayParameters[:, -1] | |
144 | indValid = numpy.where(error == 0)[0] |
|
145 | indValid = numpy.where(error == 0)[0] | |
145 | finalMeteor = arrayParameters[indValid, :] |
|
146 | finalMeteor = arrayParameters[indValid, :] | |
146 | finalAzimuth = finalMeteor[:, 3] |
|
147 | finalAzimuth = finalMeteor[:, 3] | |
147 | finalZenith = finalMeteor[:, 4] |
|
148 | finalZenith = finalMeteor[:, 4] | |
148 |
|
149 | |||
149 | x = finalAzimuth * numpy.pi / 180 |
|
150 | x = finalAzimuth * numpy.pi / 180 | |
150 | y = finalZenith |
|
151 | y = finalZenith | |
151 |
|
152 | |||
152 | ax = self.axes[0] |
|
153 | ax = self.axes[0] | |
153 |
|
154 | |||
154 | if ax.firsttime: |
|
155 | if ax.firsttime: | |
155 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
156 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] | |
156 | else: |
|
157 | else: | |
157 | ax.plot.set_data(x, y) |
|
158 | ax.plot.set_data(x, y) | |
158 |
|
159 | |||
159 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
160 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | |
160 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
161 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | |
161 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
162 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
162 | dt2, |
|
163 | dt2, | |
163 | len(x)) |
|
164 | len(x)) | |
164 | self.titles[0] = title |
|
165 | self.titles[0] = title | |
165 |
|
166 | |||
166 |
|
167 | |||
167 | class GenericRTIPlot(Plot): |
|
168 | class GenericRTIPlot(Plot): | |
168 | ''' |
|
169 | ''' | |
169 | Plot for data_xxxx object |
|
170 | Plot for data_xxxx object | |
170 | ''' |
|
171 | ''' | |
171 |
|
172 | |||
172 | CODE = 'param' |
|
173 | CODE = 'param' | |
173 | colormap = 'viridis' |
|
174 | colormap = 'viridis' | |
174 | plot_type = 'pcolorbuffer' |
|
175 | plot_type = 'pcolorbuffer' | |
175 |
|
176 | |||
176 | def setup(self): |
|
177 | def setup(self): | |
177 | self.xaxis = 'time' |
|
178 | self.xaxis = 'time' | |
178 | self.ncols = 1 |
|
179 | self.ncols = 1 | |
179 | self.nrows = self.data.shape('param')[0] |
|
180 | self.nrows = self.data.shape('param')[0] | |
180 | self.nplots = self.nrows |
|
181 | self.nplots = self.nrows | |
181 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
182 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) | |
182 |
|
183 | |||
183 | if not self.xlabel: |
|
184 | if not self.xlabel: | |
184 | self.xlabel = 'Time' |
|
185 | self.xlabel = 'Time' | |
185 |
|
186 | |||
186 | self.ylabel = 'Range [km]' |
|
187 | self.ylabel = 'Range [km]' | |
187 | if not self.titles: |
|
188 | if not self.titles: | |
188 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
189 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] | |
189 |
|
190 | |||
190 | def update(self, dataOut): |
|
191 | def update(self, dataOut): | |
191 |
|
192 | |||
192 | data = { |
|
193 | data = { | |
193 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
194 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) | |
194 | } |
|
195 | } | |
195 |
|
196 | |||
196 | meta = {} |
|
197 | meta = {} | |
197 |
|
198 | |||
198 | return data, meta |
|
199 | return data, meta | |
199 |
|
200 | |||
200 | def plot(self): |
|
201 | def plot(self): | |
201 | # self.data.normalize_heights() |
|
202 | # self.data.normalize_heights() | |
202 | self.x = self.data.times |
|
203 | self.x = self.data.times | |
203 | self.y = self.data.yrange |
|
204 | self.y = self.data.yrange | |
204 | self.z = self.data['param'] |
|
205 | self.z = self.data['param'] | |
205 | self.z = 10*numpy.log10(self.z) |
|
206 | self.z = 10*numpy.log10(self.z) | |
206 | self.z = numpy.ma.masked_invalid(self.z) |
|
207 | self.z = numpy.ma.masked_invalid(self.z) | |
207 |
|
208 | |||
208 | if self.decimation is None: |
|
209 | if self.decimation is None: | |
209 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
210 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
210 | else: |
|
211 | else: | |
211 | x, y, z = self.fill_gaps(*self.decimate()) |
|
212 | x, y, z = self.fill_gaps(*self.decimate()) | |
212 |
|
213 | |||
213 | for n, ax in enumerate(self.axes): |
|
214 | for n, ax in enumerate(self.axes): | |
214 |
|
215 | |||
215 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
216 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
216 | self.z[n]) |
|
217 | self.z[n]) | |
217 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
218 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
218 | self.z[n]) |
|
219 | self.z[n]) | |
219 |
|
220 | |||
220 | if ax.firsttime: |
|
221 | if ax.firsttime: | |
221 | if self.zlimits is not None: |
|
222 | if self.zlimits is not None: | |
222 | self.zmin, self.zmax = self.zlimits[n] |
|
223 | self.zmin, self.zmax = self.zlimits[n] | |
223 |
|
224 | |||
224 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
225 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
225 | vmin=self.zmin, |
|
226 | vmin=self.zmin, | |
226 | vmax=self.zmax, |
|
227 | vmax=self.zmax, | |
227 | cmap=self.cmaps[n] |
|
228 | cmap=self.cmaps[n] | |
228 | ) |
|
229 | ) | |
229 | else: |
|
230 | else: | |
230 | if self.zlimits is not None: |
|
231 | if self.zlimits is not None: | |
231 | self.zmin, self.zmax = self.zlimits[n] |
|
232 | self.zmin, self.zmax = self.zlimits[n] | |
232 | ax.collections.remove(ax.collections[0]) |
|
233 | ax.collections.remove(ax.collections[0]) | |
233 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
234 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
234 | vmin=self.zmin, |
|
235 | vmin=self.zmin, | |
235 | vmax=self.zmax, |
|
236 | vmax=self.zmax, | |
236 | cmap=self.cmaps[n] |
|
237 | cmap=self.cmaps[n] | |
237 | ) |
|
238 | ) | |
238 |
|
239 | |||
239 |
|
240 | |||
240 | class PolarMapPlot(Plot): |
|
241 | class PolarMapPlot(Plot): | |
241 | ''' |
|
242 | ''' | |
242 | Plot for weather radar |
|
243 | Plot for weather radar | |
243 | ''' |
|
244 | ''' | |
244 |
|
245 | |||
245 | CODE = 'param' |
|
246 | CODE = 'param' | |
246 | colormap = 'seismic' |
|
247 | colormap = 'seismic' | |
247 |
|
248 | |||
248 | def setup(self): |
|
249 | def setup(self): | |
249 | self.ncols = 1 |
|
250 | self.ncols = 1 | |
250 | self.nrows = 1 |
|
251 | self.nrows = 1 | |
251 | self.width = 9 |
|
252 | self.width = 9 | |
252 | self.height = 8 |
|
253 | self.height = 8 | |
253 | self.mode = self.data.meta['mode'] |
|
254 | self.mode = self.data.meta['mode'] | |
254 | if self.channels is not None: |
|
255 | if self.channels is not None: | |
255 | self.nplots = len(self.channels) |
|
256 | self.nplots = len(self.channels) | |
256 | self.nrows = len(self.channels) |
|
257 | self.nrows = len(self.channels) | |
257 | else: |
|
258 | else: | |
258 | self.nplots = self.data.shape(self.CODE)[0] |
|
259 | self.nplots = self.data.shape(self.CODE)[0] | |
259 | self.nrows = self.nplots |
|
260 | self.nrows = self.nplots | |
260 | self.channels = list(range(self.nplots)) |
|
261 | self.channels = list(range(self.nplots)) | |
261 | if self.mode == 'E': |
|
262 | if self.mode == 'E': | |
262 | self.xlabel = 'Longitude' |
|
263 | self.xlabel = 'Longitude' | |
263 | self.ylabel = 'Latitude' |
|
264 | self.ylabel = 'Latitude' | |
264 | else: |
|
265 | else: | |
265 | self.xlabel = 'Range (km)' |
|
266 | self.xlabel = 'Range (km)' | |
266 | self.ylabel = 'Height (km)' |
|
267 | self.ylabel = 'Height (km)' | |
267 | self.bgcolor = 'white' |
|
268 | self.bgcolor = 'white' | |
268 | self.cb_labels = self.data.meta['units'] |
|
269 | self.cb_labels = self.data.meta['units'] | |
269 | self.lat = self.data.meta['latitude'] |
|
270 | self.lat = self.data.meta['latitude'] | |
270 | self.lon = self.data.meta['longitude'] |
|
271 | self.lon = self.data.meta['longitude'] | |
271 | self.xmin, self.xmax = float( |
|
272 | self.xmin, self.xmax = float( | |
272 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
273 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | |
273 | self.ymin, self.ymax = float( |
|
274 | self.ymin, self.ymax = float( | |
274 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
275 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | |
275 | # self.polar = True |
|
276 | # self.polar = True | |
276 |
|
277 | |||
277 | def plot(self): |
|
278 | def plot(self): | |
278 |
|
279 | |||
279 | for n, ax in enumerate(self.axes): |
|
280 | for n, ax in enumerate(self.axes): | |
280 | data = self.data['param'][self.channels[n]] |
|
281 | data = self.data['param'][self.channels[n]] | |
281 |
|
282 | |||
282 | zeniths = numpy.linspace( |
|
283 | zeniths = numpy.linspace( | |
283 | 0, self.data.meta['max_range'], data.shape[1]) |
|
284 | 0, self.data.meta['max_range'], data.shape[1]) | |
284 | if self.mode == 'E': |
|
285 | if self.mode == 'E': | |
285 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
286 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 | |
286 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
287 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
287 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
288 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | |
288 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
289 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | |
289 | x = km2deg(x) + self.lon |
|
290 | x = km2deg(x) + self.lon | |
290 | y = km2deg(y) + self.lat |
|
291 | y = km2deg(y) + self.lat | |
291 | else: |
|
292 | else: | |
292 | azimuths = numpy.radians(self.data.yrange) |
|
293 | azimuths = numpy.radians(self.data.yrange) | |
293 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
294 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
294 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
295 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
295 | self.y = zeniths |
|
296 | self.y = zeniths | |
296 |
|
297 | |||
297 | if ax.firsttime: |
|
298 | if ax.firsttime: | |
298 | if self.zlimits is not None: |
|
299 | if self.zlimits is not None: | |
299 | self.zmin, self.zmax = self.zlimits[n] |
|
300 | self.zmin, self.zmax = self.zlimits[n] | |
300 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
301 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
301 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
302 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
302 | vmin=self.zmin, |
|
303 | vmin=self.zmin, | |
303 | vmax=self.zmax, |
|
304 | vmax=self.zmax, | |
304 | cmap=self.cmaps[n]) |
|
305 | cmap=self.cmaps[n]) | |
305 | else: |
|
306 | else: | |
306 | if self.zlimits is not None: |
|
307 | if self.zlimits is not None: | |
307 | self.zmin, self.zmax = self.zlimits[n] |
|
308 | self.zmin, self.zmax = self.zlimits[n] | |
308 | ax.collections.remove(ax.collections[0]) |
|
309 | ax.collections.remove(ax.collections[0]) | |
309 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
310 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
310 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
311 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
311 | vmin=self.zmin, |
|
312 | vmin=self.zmin, | |
312 | vmax=self.zmax, |
|
313 | vmax=self.zmax, | |
313 | cmap=self.cmaps[n]) |
|
314 | cmap=self.cmaps[n]) | |
314 |
|
315 | |||
315 | if self.mode == 'A': |
|
316 | if self.mode == 'A': | |
316 | continue |
|
317 | continue | |
317 |
|
318 | |||
318 | # plot district names |
|
319 | # plot district names | |
319 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
320 | f = open('/data/workspace/schain_scripts/distrito.csv') | |
320 | for line in f: |
|
321 | for line in f: | |
321 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
322 | label, lon, lat = [s.strip() for s in line.split(',') if s] | |
322 | lat = float(lat) |
|
323 | lat = float(lat) | |
323 | lon = float(lon) |
|
324 | lon = float(lon) | |
324 | # ax.plot(lon, lat, '.b', ms=2) |
|
325 | # ax.plot(lon, lat, '.b', ms=2) | |
325 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
326 | ax.text(lon, lat, label.decode('utf8'), ha='center', | |
326 | va='bottom', size='8', color='black') |
|
327 | va='bottom', size='8', color='black') | |
327 |
|
328 | |||
328 | # plot limites |
|
329 | # plot limites | |
329 | limites = [] |
|
330 | limites = [] | |
330 | tmp = [] |
|
331 | tmp = [] | |
331 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
332 | for line in open('/data/workspace/schain_scripts/lima.csv'): | |
332 | if '#' in line: |
|
333 | if '#' in line: | |
333 | if tmp: |
|
334 | if tmp: | |
334 | limites.append(tmp) |
|
335 | limites.append(tmp) | |
335 | tmp = [] |
|
336 | tmp = [] | |
336 | continue |
|
337 | continue | |
337 | values = line.strip().split(',') |
|
338 | values = line.strip().split(',') | |
338 | tmp.append((float(values[0]), float(values[1]))) |
|
339 | tmp.append((float(values[0]), float(values[1]))) | |
339 | for points in limites: |
|
340 | for points in limites: | |
340 | ax.add_patch( |
|
341 | ax.add_patch( | |
341 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
342 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | |
342 |
|
343 | |||
343 | # plot Cuencas |
|
344 | # plot Cuencas | |
344 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
345 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | |
345 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
346 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) | |
346 | values = [line.strip().split(',') for line in f] |
|
347 | values = [line.strip().split(',') for line in f] | |
347 | points = [(float(s[0]), float(s[1])) for s in values] |
|
348 | points = [(float(s[0]), float(s[1])) for s in values] | |
348 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
349 | ax.add_patch(Polygon(points, ec='b', fc='none')) | |
349 |
|
350 | |||
350 | # plot grid |
|
351 | # plot grid | |
351 | for r in (15, 30, 45, 60): |
|
352 | for r in (15, 30, 45, 60): | |
352 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
353 | ax.add_artist(plt.Circle((self.lon, self.lat), | |
353 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
354 | km2deg(r), color='0.6', fill=False, lw=0.2)) | |
354 | ax.text( |
|
355 | ax.text( | |
355 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
356 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), | |
356 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
357 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), | |
357 | '{}km'.format(r), |
|
358 | '{}km'.format(r), | |
358 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
359 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') | |
359 |
|
360 | |||
360 | if self.mode == 'E': |
|
361 | if self.mode == 'E': | |
361 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
362 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | |
362 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
363 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | |
363 | else: |
|
364 | else: | |
364 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
365 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | |
365 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
366 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | |
366 |
|
367 | |||
367 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
368 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
368 | self.titles = ['{} {}'.format( |
|
369 | self.titles = ['{} {}'.format( | |
369 | self.data.parameters[x], title) for x in self.channels] |
|
370 | self.data.parameters[x], title) for x in self.channels] | |
370 |
|
371 | |||
371 | class WeatherPlot(Plot): |
|
372 | class WeatherPlot(Plot): | |
372 | CODE = 'weather' |
|
373 | CODE = 'weather' | |
373 | plot_name = 'weather' |
|
374 | plot_name = 'weather' | |
374 | plot_type = 'ppistyle' |
|
375 | plot_type = 'ppistyle' | |
375 | buffering = False |
|
376 | buffering = False | |
376 |
|
377 | |||
377 | def setup(self): |
|
378 | def setup(self): | |
378 | self.ncols = 1 |
|
379 | self.ncols = 1 | |
379 | self.nrows = 1 |
|
380 | self.nrows = 1 | |
380 | self.width =8 |
|
381 | self.width =8 | |
381 | self.height =8 |
|
382 | self.height =8 | |
382 | self.nplots= 1 |
|
383 | self.nplots= 1 | |
383 | self.ylabel= 'Range [Km]' |
|
384 | self.ylabel= 'Range [Km]' | |
384 | self.titles= ['Weather'] |
|
385 | self.titles= ['Weather'] | |
385 | self.colorbar=False |
|
386 | self.colorbar=False | |
386 | self.ini =0 |
|
387 | self.ini =0 | |
387 | self.len_azi =0 |
|
388 | self.len_azi =0 | |
388 | self.buffer_ini = None |
|
389 | self.buffer_ini = None | |
389 | self.buffer_azi = None |
|
390 | self.buffer_azi = None | |
390 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
391 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
391 | self.flag =0 |
|
392 | self.flag =0 | |
392 | self.indicador= 0 |
|
393 | self.indicador= 0 | |
393 | self.last_data_azi = None |
|
394 | self.last_data_azi = None | |
394 | self.val_mean = None |
|
395 | self.val_mean = None | |
395 |
|
396 | |||
396 | def update(self, dataOut): |
|
397 | def update(self, dataOut): | |
397 |
|
398 | |||
398 | data = {} |
|
399 | data = {} | |
399 | meta = {} |
|
400 | meta = {} | |
400 | if hasattr(dataOut, 'dataPP_POWER'): |
|
401 | if hasattr(dataOut, 'dataPP_POWER'): | |
401 | factor = 1 |
|
402 | factor = 1 | |
402 | if hasattr(dataOut, 'nFFTPoints'): |
|
403 | if hasattr(dataOut, 'nFFTPoints'): | |
403 | factor = dataOut.normFactor |
|
404 | factor = dataOut.normFactor | |
404 | #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape) |
|
405 | #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape) | |
405 | data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
406 | data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | |
406 | data['azi'] = dataOut.data_azi |
|
407 | data['azi'] = dataOut.data_azi | |
407 | data['ele'] = dataOut.data_ele |
|
408 | data['ele'] = dataOut.data_ele | |
408 | return data, meta |
|
409 | return data, meta | |
409 |
|
410 | |||
410 | def get2List(self,angulos): |
|
411 | def get2List(self,angulos): | |
411 | list1=[] |
|
412 | list1=[] | |
412 | list2=[] |
|
413 | list2=[] | |
413 | for i in reversed(range(len(angulos))): |
|
414 | for i in reversed(range(len(angulos))): | |
414 | diff_ = angulos[i]-angulos[i-1] |
|
415 | diff_ = angulos[i]-angulos[i-1] | |
415 | if diff_ >1.5: |
|
416 | if diff_ >1.5: | |
416 | list1.append(i-1) |
|
417 | list1.append(i-1) | |
417 | list2.append(diff_) |
|
418 | list2.append(diff_) | |
418 | return list(reversed(list1)),list(reversed(list2)) |
|
419 | return list(reversed(list1)),list(reversed(list2)) | |
419 |
|
420 | |||
420 | def fixData360(self,list_,ang_): |
|
421 | def fixData360(self,list_,ang_): | |
421 | if list_[0]==-1: |
|
422 | if list_[0]==-1: | |
422 | vec = numpy.where(ang_<ang_[0]) |
|
423 | vec = numpy.where(ang_<ang_[0]) | |
423 | ang_[vec] = ang_[vec]+360 |
|
424 | ang_[vec] = ang_[vec]+360 | |
424 | return ang_ |
|
425 | return ang_ | |
425 | return ang_ |
|
426 | return ang_ | |
426 |
|
427 | |||
427 | def fixData360HL(self,angulos): |
|
428 | def fixData360HL(self,angulos): | |
428 | vec = numpy.where(angulos>=360) |
|
429 | vec = numpy.where(angulos>=360) | |
429 | angulos[vec]=angulos[vec]-360 |
|
430 | angulos[vec]=angulos[vec]-360 | |
430 | return angulos |
|
431 | return angulos | |
431 |
|
432 | |||
432 | def search_pos(self,pos,list_): |
|
433 | def search_pos(self,pos,list_): | |
433 | for i in range(len(list_)): |
|
434 | for i in range(len(list_)): | |
434 | if pos == list_[i]: |
|
435 | if pos == list_[i]: | |
435 | return True,i |
|
436 | return True,i | |
436 | i=None |
|
437 | i=None | |
437 | return False,i |
|
438 | return False,i | |
438 |
|
439 | |||
439 | def fixDataComp(self,ang_,list1_,list2_): |
|
440 | def fixDataComp(self,ang_,list1_,list2_): | |
440 | size = len(ang_) |
|
441 | size = len(ang_) | |
441 | size2 = 0 |
|
442 | size2 = 0 | |
442 | for i in range(len(list2_)): |
|
443 | for i in range(len(list2_)): | |
443 | size2=size2+round(list2_[i])-1 |
|
444 | size2=size2+round(list2_[i])-1 | |
444 | new_size= size+size2 |
|
445 | new_size= size+size2 | |
445 | ang_new = numpy.zeros(new_size) |
|
446 | ang_new = numpy.zeros(new_size) | |
446 | ang_new2 = numpy.zeros(new_size) |
|
447 | ang_new2 = numpy.zeros(new_size) | |
447 |
|
448 | |||
448 | tmp = 0 |
|
449 | tmp = 0 | |
449 | c = 0 |
|
450 | c = 0 | |
450 | for i in range(len(ang_)): |
|
451 | for i in range(len(ang_)): | |
451 | ang_new[tmp +c] = ang_[i] |
|
452 | ang_new[tmp +c] = ang_[i] | |
452 | ang_new2[tmp+c] = ang_[i] |
|
453 | ang_new2[tmp+c] = ang_[i] | |
453 | condition , value = self.search_pos(i,list1_) |
|
454 | condition , value = self.search_pos(i,list1_) | |
454 | if condition: |
|
455 | if condition: | |
455 | pos = tmp + c + 1 |
|
456 | pos = tmp + c + 1 | |
456 | for k in range(round(list2_[value])-1): |
|
457 | for k in range(round(list2_[value])-1): | |
457 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
458 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |
458 | ang_new2[pos+k] = numpy.nan |
|
459 | ang_new2[pos+k] = numpy.nan | |
459 | tmp = pos +k |
|
460 | tmp = pos +k | |
460 | c = 0 |
|
461 | c = 0 | |
461 | c=c+1 |
|
462 | c=c+1 | |
462 | return ang_new,ang_new2 |
|
463 | return ang_new,ang_new2 | |
463 |
|
464 | |||
464 | def globalCheckPED(self,angulos): |
|
465 | def globalCheckPED(self,angulos): | |
465 | l1,l2 = self.get2List(angulos) |
|
466 | l1,l2 = self.get2List(angulos) | |
466 | if len(l1)>0: |
|
467 | if len(l1)>0: | |
467 | angulos2 = self.fixData360(list_=l1,ang_=angulos) |
|
468 | angulos2 = self.fixData360(list_=l1,ang_=angulos) | |
468 | l1,l2 = self.get2List(angulos2) |
|
469 | l1,l2 = self.get2List(angulos2) | |
469 |
|
470 | |||
470 | ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2) |
|
471 | ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2) | |
471 | ang1_ = self.fixData360HL(ang1_) |
|
472 | ang1_ = self.fixData360HL(ang1_) | |
472 | ang2_ = self.fixData360HL(ang2_) |
|
473 | ang2_ = self.fixData360HL(ang2_) | |
473 | else: |
|
474 | else: | |
474 | ang1_= angulos |
|
475 | ang1_= angulos | |
475 | ang2_= angulos |
|
476 | ang2_= angulos | |
476 | return ang1_,ang2_ |
|
477 | return ang1_,ang2_ | |
477 |
|
478 | |||
478 | def analizeDATA(self,data_azi): |
|
479 | def analizeDATA(self,data_azi): | |
479 | list1 = [] |
|
480 | list1 = [] | |
480 | list2 = [] |
|
481 | list2 = [] | |
481 | dat = data_azi |
|
482 | dat = data_azi | |
482 | for i in reversed(range(1,len(dat))): |
|
483 | for i in reversed(range(1,len(dat))): | |
483 | if dat[i]>dat[i-1]: |
|
484 | if dat[i]>dat[i-1]: | |
484 | diff = int(dat[i])-int(dat[i-1]) |
|
485 | diff = int(dat[i])-int(dat[i-1]) | |
485 | else: |
|
486 | else: | |
486 | diff = 360+int(dat[i])-int(dat[i-1]) |
|
487 | diff = 360+int(dat[i])-int(dat[i-1]) | |
487 | if diff > 1: |
|
488 | if diff > 1: | |
488 | list1.append(i-1) |
|
489 | list1.append(i-1) | |
489 | list2.append(diff-1) |
|
490 | list2.append(diff-1) | |
490 | return list1,list2 |
|
491 | return list1,list2 | |
491 |
|
492 | |||
492 | def fixDATANEW(self,data_azi,data_weather): |
|
493 | def fixDATANEW(self,data_azi,data_weather): | |
493 | list1,list2 = self.analizeDATA(data_azi) |
|
494 | list1,list2 = self.analizeDATA(data_azi) | |
494 | if len(list1)== 0: |
|
495 | if len(list1)== 0: | |
495 | return data_azi,data_weather |
|
496 | return data_azi,data_weather | |
496 | else: |
|
497 | else: | |
497 | resize = 0 |
|
498 | resize = 0 | |
498 | for i in range(len(list2)): |
|
499 | for i in range(len(list2)): | |
499 | resize= resize + list2[i] |
|
500 | resize= resize + list2[i] | |
500 | new_data_azi = numpy.resize(data_azi,resize) |
|
501 | new_data_azi = numpy.resize(data_azi,resize) | |
501 | new_data_weather= numpy.resize(date_weather,resize) |
|
502 | new_data_weather= numpy.resize(date_weather,resize) | |
502 |
|
503 | |||
503 | for i in range(len(list2)): |
|
504 | for i in range(len(list2)): | |
504 | j=0 |
|
505 | j=0 | |
505 | position=list1[i]+1 |
|
506 | position=list1[i]+1 | |
506 | for j in range(list2[i]): |
|
507 | for j in range(list2[i]): | |
507 | new_data_azi[position+j]=new_data_azi[position+j-1]+1 |
|
508 | new_data_azi[position+j]=new_data_azi[position+j-1]+1 | |
508 | return new_data_azi |
|
509 | return new_data_azi | |
509 |
|
510 | |||
510 | def fixDATA(self,data_azi): |
|
511 | def fixDATA(self,data_azi): | |
511 | data=data_azi |
|
512 | data=data_azi | |
512 | for i in range(len(data)): |
|
513 | for i in range(len(data)): | |
513 | if numpy.isnan(data[i]): |
|
514 | if numpy.isnan(data[i]): | |
514 | data[i]=data[i-1]+1 |
|
515 | data[i]=data[i-1]+1 | |
515 | return data |
|
516 | return data | |
516 |
|
517 | |||
517 | def replaceNAN(self,data_weather,data_azi,val): |
|
518 | def replaceNAN(self,data_weather,data_azi,val): | |
518 | data= data_azi |
|
519 | data= data_azi | |
519 | data_T= data_weather |
|
520 | data_T= data_weather | |
520 | if data.shape[0]> data_T.shape[0]: |
|
521 | if data.shape[0]> data_T.shape[0]: | |
521 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
522 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | |
522 | c = 0 |
|
523 | c = 0 | |
523 | for i in range(len(data)): |
|
524 | for i in range(len(data)): | |
524 | if numpy.isnan(data[i]): |
|
525 | if numpy.isnan(data[i]): | |
525 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
526 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
526 | else: |
|
527 | else: | |
527 | data_N[i,:]=data_T[c,:] |
|
528 | data_N[i,:]=data_T[c,:] | |
528 | c=c+1 |
|
529 | c=c+1 | |
529 | return data_N |
|
530 | return data_N | |
530 | else: |
|
531 | else: | |
531 | for i in range(len(data)): |
|
532 | for i in range(len(data)): | |
532 | if numpy.isnan(data[i]): |
|
533 | if numpy.isnan(data[i]): | |
533 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
534 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
534 | return data_T |
|
535 | return data_T | |
535 |
|
536 | |||
536 | def const_ploteo(self,data_weather,data_azi,step,res): |
|
537 | def const_ploteo(self,data_weather,data_azi,step,res): | |
537 | if self.ini==0: |
|
538 | if self.ini==0: | |
538 | #------- |
|
539 | #------- | |
539 | n = (360/res)-len(data_azi) |
|
540 | n = (360/res)-len(data_azi) | |
540 | #--------------------- new ------------------------- |
|
541 | #--------------------- new ------------------------- | |
541 | data_azi_new ,data_azi_old= self.globalCheckPED(data_azi) |
|
542 | data_azi_new ,data_azi_old= self.globalCheckPED(data_azi) | |
542 | #------------------------ |
|
543 | #------------------------ | |
543 | start = data_azi_new[-1] + res |
|
544 | start = data_azi_new[-1] + res | |
544 | end = data_azi_new[0] - res |
|
545 | end = data_azi_new[0] - res | |
545 | #------ new |
|
546 | #------ new | |
546 | self.last_data_azi = end |
|
547 | self.last_data_azi = end | |
547 | if start>end: |
|
548 | if start>end: | |
548 | end = end + 360 |
|
549 | end = end + 360 | |
549 | azi_vacia = numpy.linspace(start,end,int(n)) |
|
550 | azi_vacia = numpy.linspace(start,end,int(n)) | |
550 | azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) |
|
551 | azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) | |
551 | data_azi = numpy.hstack((data_azi_new,azi_vacia)) |
|
552 | data_azi = numpy.hstack((data_azi_new,azi_vacia)) | |
552 | # RADAR |
|
553 | # RADAR | |
553 | val_mean = numpy.mean(data_weather[:,-1]) |
|
554 | val_mean = numpy.mean(data_weather[:,-1]) | |
554 | self.val_mean = val_mean |
|
555 | self.val_mean = val_mean | |
555 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean |
|
556 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean | |
556 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) |
|
557 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) | |
557 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) |
|
558 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) | |
558 | else: |
|
559 | else: | |
559 | # azimuth |
|
560 | # azimuth | |
560 | flag=0 |
|
561 | flag=0 | |
561 | start_azi = self.res_azi[0] |
|
562 | start_azi = self.res_azi[0] | |
562 | #-----------new------------ |
|
563 | #-----------new------------ | |
563 | data_azi ,data_azi_old= self.globalCheckPED(data_azi) |
|
564 | data_azi ,data_azi_old= self.globalCheckPED(data_azi) | |
564 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) |
|
565 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) | |
565 | #-------------------------- |
|
566 | #-------------------------- | |
566 | start = data_azi[0] |
|
567 | start = data_azi[0] | |
567 | end = data_azi[-1] |
|
568 | end = data_azi[-1] | |
568 | self.last_data_azi= end |
|
569 | self.last_data_azi= end | |
569 | if start< start_azi: |
|
570 | if start< start_azi: | |
570 | start = start +360 |
|
571 | start = start +360 | |
571 | if end <start_azi: |
|
572 | if end <start_azi: | |
572 | end = end +360 |
|
573 | end = end +360 | |
573 |
|
574 | |||
574 | pos_ini = int((start-start_azi)/res) |
|
575 | pos_ini = int((start-start_azi)/res) | |
575 | len_azi = len(data_azi) |
|
576 | len_azi = len(data_azi) | |
576 | if (360-pos_ini)<len_azi: |
|
577 | if (360-pos_ini)<len_azi: | |
577 | if pos_ini+1==360: |
|
578 | if pos_ini+1==360: | |
578 | pos_ini=0 |
|
579 | pos_ini=0 | |
579 | else: |
|
580 | else: | |
580 | flag=1 |
|
581 | flag=1 | |
581 | dif= 360-pos_ini |
|
582 | dif= 360-pos_ini | |
582 | comp= len_azi-dif |
|
583 | comp= len_azi-dif | |
583 | #----------------- |
|
584 | #----------------- | |
584 | if flag==0: |
|
585 | if flag==0: | |
585 | # AZIMUTH |
|
586 | # AZIMUTH | |
586 | self.res_azi[pos_ini:pos_ini+len_azi] = data_azi |
|
587 | self.res_azi[pos_ini:pos_ini+len_azi] = data_azi | |
587 | # RADAR |
|
588 | # RADAR | |
588 | self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather |
|
589 | self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather | |
589 | else: |
|
590 | else: | |
590 | # AZIMUTH |
|
591 | # AZIMUTH | |
591 | self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] |
|
592 | self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] | |
592 | self.res_azi[0:comp] = data_azi[dif:] |
|
593 | self.res_azi[0:comp] = data_azi[dif:] | |
593 | # RADAR |
|
594 | # RADAR | |
594 | self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] |
|
595 | self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] | |
595 | self.res_weather[0:comp,:] = data_weather[dif:,:] |
|
596 | self.res_weather[0:comp,:] = data_weather[dif:,:] | |
596 | flag=0 |
|
597 | flag=0 | |
597 | data_azi = self.res_azi |
|
598 | data_azi = self.res_azi | |
598 | data_weather = self.res_weather |
|
599 | data_weather = self.res_weather | |
599 |
|
600 | |||
600 | return data_weather,data_azi |
|
601 | return data_weather,data_azi | |
601 |
|
602 | |||
602 | def plot(self): |
|
603 | def plot(self): | |
603 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
604 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |
604 | data = self.data[-1] |
|
605 | data = self.data[-1] | |
605 | r = self.data.yrange |
|
606 | r = self.data.yrange | |
606 | delta_height = r[1]-r[0] |
|
607 | delta_height = r[1]-r[0] | |
607 | r_mask = numpy.where(r>=0)[0] |
|
608 | r_mask = numpy.where(r>=0)[0] | |
608 | r = numpy.arange(len(r_mask))*delta_height |
|
609 | r = numpy.arange(len(r_mask))*delta_height | |
609 | self.y = 2*r |
|
610 | self.y = 2*r | |
610 | # RADAR |
|
611 | # RADAR | |
611 | #data_weather = data['weather'] |
|
612 | #data_weather = data['weather'] | |
612 | # PEDESTAL |
|
613 | # PEDESTAL | |
613 | #data_azi = data['azi'] |
|
614 | #data_azi = data['azi'] | |
614 | res = 1 |
|
615 | res = 1 | |
615 | # STEP |
|
616 | # STEP | |
616 | step = (360/(res*data['weather'].shape[0])) |
|
617 | step = (360/(res*data['weather'].shape[0])) | |
617 |
|
618 | |||
618 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res) |
|
619 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res) | |
619 | self.res_ele = numpy.mean(data['ele']) |
|
620 | self.res_ele = numpy.mean(data['ele']) | |
620 | ################# PLOTEO ################### |
|
621 | ################# PLOTEO ################### | |
621 | for i,ax in enumerate(self.axes): |
|
622 | for i,ax in enumerate(self.axes): | |
622 | if ax.firsttime: |
|
623 | if ax.firsttime: | |
623 | plt.clf() |
|
624 | plt.clf() | |
624 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) |
|
625 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) | |
625 | else: |
|
626 | else: | |
626 | plt.clf() |
|
627 | plt.clf() | |
627 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) |
|
628 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) | |
628 | caax = cgax.parasites[0] |
|
629 | caax = cgax.parasites[0] | |
629 | paax = cgax.parasites[1] |
|
630 | paax = cgax.parasites[1] | |
630 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
631 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
631 | caax.set_xlabel('x_range [km]') |
|
632 | caax.set_xlabel('x_range [km]') | |
632 | caax.set_ylabel('y_range [km]') |
|
633 | caax.set_ylabel('y_range [km]') | |
633 | plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
634 | plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right') | |
634 |
|
635 | |||
635 | self.ini= self.ini+1 |
|
636 | self.ini= self.ini+1 | |
636 |
|
637 | |||
637 |
|
638 | |||
638 | class WeatherRHIPlot(Plot): |
|
639 | class WeatherRHIPlot(Plot): | |
639 | CODE = 'weather' |
|
640 | CODE = 'weather' | |
640 | plot_name = 'weather' |
|
641 | plot_name = 'weather' | |
641 | plot_type = 'rhistyle' |
|
642 | plot_type = 'rhistyle' | |
642 | buffering = False |
|
643 | buffering = False | |
643 | data_ele_tmp = None |
|
644 | data_ele_tmp = None | |
644 |
|
645 | |||
645 | def setup(self): |
|
646 | def setup(self): | |
646 | print("********************") |
|
647 | print("********************") | |
647 | print("********************") |
|
648 | print("********************") | |
648 | print("********************") |
|
649 | print("********************") | |
649 | print("SETUP WEATHER PLOT") |
|
650 | print("SETUP WEATHER PLOT") | |
650 | self.ncols = 1 |
|
651 | self.ncols = 1 | |
651 | self.nrows = 1 |
|
652 | self.nrows = 1 | |
652 | self.nplots= 1 |
|
653 | self.nplots= 1 | |
653 | self.ylabel= 'Range [Km]' |
|
654 | self.ylabel= 'Range [Km]' | |
654 | self.titles= ['Weather'] |
|
655 | self.titles= ['Weather'] | |
655 | if self.channels is not None: |
|
656 | if self.channels is not None: | |
656 | self.nplots = len(self.channels) |
|
657 | self.nplots = len(self.channels) | |
657 | self.nrows = len(self.channels) |
|
658 | self.nrows = len(self.channels) | |
658 | else: |
|
659 | else: | |
659 | self.nplots = self.data.shape(self.CODE)[0] |
|
660 | self.nplots = self.data.shape(self.CODE)[0] | |
660 | self.nrows = self.nplots |
|
661 | self.nrows = self.nplots | |
661 | self.channels = list(range(self.nplots)) |
|
662 | self.channels = list(range(self.nplots)) | |
662 | print("channels",self.channels) |
|
663 | print("channels",self.channels) | |
663 | print("que saldra", self.data.shape(self.CODE)[0]) |
|
664 | print("que saldra", self.data.shape(self.CODE)[0]) | |
664 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
665 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | |
665 | print("self.titles",self.titles) |
|
666 | print("self.titles",self.titles) | |
666 | self.colorbar=False |
|
667 | self.colorbar=False | |
667 | self.width =8 |
|
668 | self.width =8 | |
668 | self.height =8 |
|
669 | self.height =8 | |
669 | self.ini =0 |
|
670 | self.ini =0 | |
670 | self.len_azi =0 |
|
671 | self.len_azi =0 | |
671 | self.buffer_ini = None |
|
672 | self.buffer_ini = None | |
672 | self.buffer_ele = None |
|
673 | self.buffer_ele = None | |
673 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
674 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
674 | self.flag =0 |
|
675 | self.flag =0 | |
675 | self.indicador= 0 |
|
676 | self.indicador= 0 | |
676 | self.last_data_ele = None |
|
677 | self.last_data_ele = None | |
677 | self.val_mean = None |
|
678 | self.val_mean = None | |
678 |
|
679 | |||
679 | def update(self, dataOut): |
|
680 | def update(self, dataOut): | |
680 |
|
681 | |||
681 | data = {} |
|
682 | data = {} | |
682 | meta = {} |
|
683 | meta = {} | |
683 | if hasattr(dataOut, 'dataPP_POWER'): |
|
684 | if hasattr(dataOut, 'dataPP_POWER'): | |
684 | factor = 1 |
|
685 | factor = 1 | |
685 | if hasattr(dataOut, 'nFFTPoints'): |
|
686 | if hasattr(dataOut, 'nFFTPoints'): | |
686 | factor = dataOut.normFactor |
|
687 | factor = dataOut.normFactor | |
687 | print("dataOut",dataOut.data_360.shape) |
|
688 | print("dataOut",dataOut.data_360.shape) | |
688 | # |
|
689 | # | |
689 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) |
|
690 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) | |
690 | # |
|
691 | # | |
691 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
692 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | |
692 | data['azi'] = dataOut.data_azi |
|
693 | data['azi'] = dataOut.data_azi | |
693 | data['ele'] = dataOut.data_ele |
|
694 | data['ele'] = dataOut.data_ele | |
694 | #print("UPDATE") |
|
695 | #print("UPDATE") | |
695 | #print("data[weather]",data['weather'].shape) |
|
696 | #print("data[weather]",data['weather'].shape) | |
696 | #print("data[azi]",data['azi']) |
|
697 | #print("data[azi]",data['azi']) | |
697 | return data, meta |
|
698 | return data, meta | |
698 |
|
699 | |||
699 | def get2List(self,angulos): |
|
700 | def get2List(self,angulos): | |
700 | list1=[] |
|
701 | list1=[] | |
701 | list2=[] |
|
702 | list2=[] | |
702 | for i in reversed(range(len(angulos))): |
|
703 | for i in reversed(range(len(angulos))): | |
703 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
704 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante | |
704 | diff_ = angulos[i]-angulos[i-1] |
|
705 | diff_ = angulos[i]-angulos[i-1] | |
705 | if abs(diff_) >1.5: |
|
706 | if abs(diff_) >1.5: | |
706 | list1.append(i-1) |
|
707 | list1.append(i-1) | |
707 | list2.append(diff_) |
|
708 | list2.append(diff_) | |
708 | return list(reversed(list1)),list(reversed(list2)) |
|
709 | return list(reversed(list1)),list(reversed(list2)) | |
709 |
|
710 | |||
710 | def fixData90(self,list_,ang_): |
|
711 | def fixData90(self,list_,ang_): | |
711 | if list_[0]==-1: |
|
712 | if list_[0]==-1: | |
712 | vec = numpy.where(ang_<ang_[0]) |
|
713 | vec = numpy.where(ang_<ang_[0]) | |
713 | ang_[vec] = ang_[vec]+90 |
|
714 | ang_[vec] = ang_[vec]+90 | |
714 | return ang_ |
|
715 | return ang_ | |
715 | return ang_ |
|
716 | return ang_ | |
716 |
|
717 | |||
717 | def fixData90HL(self,angulos): |
|
718 | def fixData90HL(self,angulos): | |
718 | vec = numpy.where(angulos>=90) |
|
719 | vec = numpy.where(angulos>=90) | |
719 | angulos[vec]=angulos[vec]-90 |
|
720 | angulos[vec]=angulos[vec]-90 | |
720 | return angulos |
|
721 | return angulos | |
721 |
|
722 | |||
722 |
|
723 | |||
723 | def search_pos(self,pos,list_): |
|
724 | def search_pos(self,pos,list_): | |
724 | for i in range(len(list_)): |
|
725 | for i in range(len(list_)): | |
725 | if pos == list_[i]: |
|
726 | if pos == list_[i]: | |
726 | return True,i |
|
727 | return True,i | |
727 | i=None |
|
728 | i=None | |
728 | return False,i |
|
729 | return False,i | |
729 |
|
730 | |||
730 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
731 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): | |
731 | size = len(ang_) |
|
732 | size = len(ang_) | |
732 | size2 = 0 |
|
733 | size2 = 0 | |
733 | for i in range(len(list2_)): |
|
734 | for i in range(len(list2_)): | |
734 | size2=size2+round(abs(list2_[i]))-1 |
|
735 | size2=size2+round(abs(list2_[i]))-1 | |
735 | new_size= size+size2 |
|
736 | new_size= size+size2 | |
736 | ang_new = numpy.zeros(new_size) |
|
737 | ang_new = numpy.zeros(new_size) | |
737 | ang_new2 = numpy.zeros(new_size) |
|
738 | ang_new2 = numpy.zeros(new_size) | |
738 |
|
739 | |||
739 | tmp = 0 |
|
740 | tmp = 0 | |
740 | c = 0 |
|
741 | c = 0 | |
741 | for i in range(len(ang_)): |
|
742 | for i in range(len(ang_)): | |
742 | ang_new[tmp +c] = ang_[i] |
|
743 | ang_new[tmp +c] = ang_[i] | |
743 | ang_new2[tmp+c] = ang_[i] |
|
744 | ang_new2[tmp+c] = ang_[i] | |
744 | condition , value = self.search_pos(i,list1_) |
|
745 | condition , value = self.search_pos(i,list1_) | |
745 | if condition: |
|
746 | if condition: | |
746 | pos = tmp + c + 1 |
|
747 | pos = tmp + c + 1 | |
747 | for k in range(round(abs(list2_[value]))-1): |
|
748 | for k in range(round(abs(list2_[value]))-1): | |
748 | if tipo_case==0 or tipo_case==3:#subida |
|
749 | if tipo_case==0 or tipo_case==3:#subida | |
749 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
750 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |
750 | ang_new2[pos+k] = numpy.nan |
|
751 | ang_new2[pos+k] = numpy.nan | |
751 | elif tipo_case==1 or tipo_case==2:#bajada |
|
752 | elif tipo_case==1 or tipo_case==2:#bajada | |
752 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
753 | ang_new[pos+k] = ang_new[pos+k-1]-1 | |
753 | ang_new2[pos+k] = numpy.nan |
|
754 | ang_new2[pos+k] = numpy.nan | |
754 |
|
755 | |||
755 | tmp = pos +k |
|
756 | tmp = pos +k | |
756 | c = 0 |
|
757 | c = 0 | |
757 | c=c+1 |
|
758 | c=c+1 | |
758 | return ang_new,ang_new2 |
|
759 | return ang_new,ang_new2 | |
759 |
|
760 | |||
760 | def globalCheckPED(self,angulos,tipo_case): |
|
761 | def globalCheckPED(self,angulos,tipo_case): | |
761 | l1,l2 = self.get2List(angulos) |
|
762 | l1,l2 = self.get2List(angulos) | |
762 | ##print("l1",l1) |
|
763 | ##print("l1",l1) | |
763 | ##print("l2",l2) |
|
764 | ##print("l2",l2) | |
764 | if len(l1)>0: |
|
765 | if len(l1)>0: | |
765 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
766 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) | |
766 | #l1,l2 = self.get2List(angulos2) |
|
767 | #l1,l2 = self.get2List(angulos2) | |
767 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
768 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) | |
768 | #ang1_ = self.fixData90HL(ang1_) |
|
769 | #ang1_ = self.fixData90HL(ang1_) | |
769 | #ang2_ = self.fixData90HL(ang2_) |
|
770 | #ang2_ = self.fixData90HL(ang2_) | |
770 | else: |
|
771 | else: | |
771 | ang1_= angulos |
|
772 | ang1_= angulos | |
772 | ang2_= angulos |
|
773 | ang2_= angulos | |
773 | return ang1_,ang2_ |
|
774 | return ang1_,ang2_ | |
774 |
|
775 | |||
775 |
|
776 | |||
776 | def replaceNAN(self,data_weather,data_ele,val): |
|
777 | def replaceNAN(self,data_weather,data_ele,val): | |
777 | data= data_ele |
|
778 | data= data_ele | |
778 | data_T= data_weather |
|
779 | data_T= data_weather | |
779 | if data.shape[0]> data_T.shape[0]: |
|
780 | if data.shape[0]> data_T.shape[0]: | |
780 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
781 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | |
781 | c = 0 |
|
782 | c = 0 | |
782 | for i in range(len(data)): |
|
783 | for i in range(len(data)): | |
783 | if numpy.isnan(data[i]): |
|
784 | if numpy.isnan(data[i]): | |
784 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
785 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
785 | else: |
|
786 | else: | |
786 | data_N[i,:]=data_T[c,:] |
|
787 | data_N[i,:]=data_T[c,:] | |
787 | c=c+1 |
|
788 | c=c+1 | |
788 | return data_N |
|
789 | return data_N | |
789 | else: |
|
790 | else: | |
790 | for i in range(len(data)): |
|
791 | for i in range(len(data)): | |
791 | if numpy.isnan(data[i]): |
|
792 | if numpy.isnan(data[i]): | |
792 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
793 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
793 | return data_T |
|
794 | return data_T | |
794 |
|
795 | |||
795 | def check_case(self,data_ele,ang_max,ang_min): |
|
796 | def check_case(self,data_ele,ang_max,ang_min): | |
796 | start = data_ele[0] |
|
797 | start = data_ele[0] | |
797 | end = data_ele[-1] |
|
798 | end = data_ele[-1] | |
798 | number = (end-start) |
|
799 | number = (end-start) | |
799 | len_ang=len(data_ele) |
|
800 | len_ang=len(data_ele) | |
800 | print("start",start) |
|
801 | print("start",start) | |
801 | print("end",end) |
|
802 | print("end",end) | |
802 | print("number",number) |
|
803 | print("number",number) | |
803 |
|
804 | |||
804 | print("len_ang",len_ang) |
|
805 | print("len_ang",len_ang) | |
805 |
|
806 | |||
806 | #exit(1) |
|
807 | #exit(1) | |
807 |
|
808 | |||
808 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida |
|
809 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida | |
809 | return 0 |
|
810 | return 0 | |
810 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada |
|
811 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada | |
811 | # return 1 |
|
812 | # return 1 | |
812 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada |
|
813 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada | |
813 | return 1 |
|
814 | return 1 | |
814 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX |
|
815 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX | |
815 | return 2 |
|
816 | return 2 | |
816 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN |
|
817 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN | |
817 | return 3 |
|
818 | return 3 | |
818 |
|
819 | |||
819 |
|
820 | |||
820 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min): |
|
821 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min): | |
821 | ang_max= ang_max |
|
822 | ang_max= ang_max | |
822 | ang_min= ang_min |
|
823 | ang_min= ang_min | |
823 | data_weather=data_weather |
|
824 | data_weather=data_weather | |
824 | val_ch=val_ch |
|
825 | val_ch=val_ch | |
825 | ##print("*********************DATA WEATHER**************************************") |
|
826 | ##print("*********************DATA WEATHER**************************************") | |
826 | ##print(data_weather) |
|
827 | ##print(data_weather) | |
827 | if self.ini==0: |
|
828 | if self.ini==0: | |
828 | ''' |
|
829 | ''' | |
829 | print("**********************************************") |
|
830 | print("**********************************************") | |
830 | print("**********************************************") |
|
831 | print("**********************************************") | |
831 | print("***************ini**************") |
|
832 | print("***************ini**************") | |
832 | print("**********************************************") |
|
833 | print("**********************************************") | |
833 | print("**********************************************") |
|
834 | print("**********************************************") | |
834 | ''' |
|
835 | ''' | |
835 | #print("data_ele",data_ele) |
|
836 | #print("data_ele",data_ele) | |
836 | #---------------------------------------------------------- |
|
837 | #---------------------------------------------------------- | |
837 | tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
838 | tipo_case = self.check_case(data_ele,ang_max,ang_min) | |
838 | print("check_case",tipo_case) |
|
839 | print("check_case",tipo_case) | |
839 | #exit(1) |
|
840 | #exit(1) | |
840 | #--------------------- new ------------------------- |
|
841 | #--------------------- new ------------------------- | |
841 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
842 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) | |
842 |
|
843 | |||
843 | #-------------------------CAMBIOS RHI--------------------------------- |
|
844 | #-------------------------CAMBIOS RHI--------------------------------- | |
844 | start= ang_min |
|
845 | start= ang_min | |
845 | end = ang_max |
|
846 | end = ang_max | |
846 | n= (ang_max-ang_min)/res |
|
847 | n= (ang_max-ang_min)/res | |
847 | #------ new |
|
848 | #------ new | |
848 | self.start_data_ele = data_ele_new[0] |
|
849 | self.start_data_ele = data_ele_new[0] | |
849 | self.end_data_ele = data_ele_new[-1] |
|
850 | self.end_data_ele = data_ele_new[-1] | |
850 | if tipo_case==0 or tipo_case==3: # SUBIDA |
|
851 | if tipo_case==0 or tipo_case==3: # SUBIDA | |
851 | n1= round(self.start_data_ele)- start |
|
852 | n1= round(self.start_data_ele)- start | |
852 | n2= end - round(self.end_data_ele) |
|
853 | n2= end - round(self.end_data_ele) | |
853 | print(self.start_data_ele) |
|
854 | print(self.start_data_ele) | |
854 | print(self.end_data_ele) |
|
855 | print(self.end_data_ele) | |
855 | if n1>0: |
|
856 | if n1>0: | |
856 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
857 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
857 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
858 | ele1_nan= numpy.ones(n1)*numpy.nan | |
858 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
859 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
859 | print("ele1_nan",ele1_nan.shape) |
|
860 | print("ele1_nan",ele1_nan.shape) | |
860 | print("data_ele_old",data_ele_old.shape) |
|
861 | print("data_ele_old",data_ele_old.shape) | |
861 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
862 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
862 | if n2>0: |
|
863 | if n2>0: | |
863 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
864 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
864 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
865 | ele2_nan= numpy.ones(n2)*numpy.nan | |
865 | data_ele = numpy.hstack((data_ele,ele2)) |
|
866 | data_ele = numpy.hstack((data_ele,ele2)) | |
866 | print("ele2_nan",ele2_nan.shape) |
|
867 | print("ele2_nan",ele2_nan.shape) | |
867 | print("data_ele_old",data_ele_old.shape) |
|
868 | print("data_ele_old",data_ele_old.shape) | |
868 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
869 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
869 |
|
870 | |||
870 | if tipo_case==1 or tipo_case==2: # BAJADA |
|
871 | if tipo_case==1 or tipo_case==2: # BAJADA | |
871 | data_ele_new = data_ele_new[::-1] # reversa |
|
872 | data_ele_new = data_ele_new[::-1] # reversa | |
872 | data_ele_old = data_ele_old[::-1]# reversa |
|
873 | data_ele_old = data_ele_old[::-1]# reversa | |
873 | data_weather = data_weather[::-1,:]# reversa |
|
874 | data_weather = data_weather[::-1,:]# reversa | |
874 | vec= numpy.where(data_ele_new<ang_max) |
|
875 | vec= numpy.where(data_ele_new<ang_max) | |
875 | data_ele_new = data_ele_new[vec] |
|
876 | data_ele_new = data_ele_new[vec] | |
876 | data_ele_old = data_ele_old[vec] |
|
877 | data_ele_old = data_ele_old[vec] | |
877 | data_weather = data_weather[vec[0]] |
|
878 | data_weather = data_weather[vec[0]] | |
878 | vec2= numpy.where(0<data_ele_new) |
|
879 | vec2= numpy.where(0<data_ele_new) | |
879 | data_ele_new = data_ele_new[vec2] |
|
880 | data_ele_new = data_ele_new[vec2] | |
880 | data_ele_old = data_ele_old[vec2] |
|
881 | data_ele_old = data_ele_old[vec2] | |
881 | data_weather = data_weather[vec2[0]] |
|
882 | data_weather = data_weather[vec2[0]] | |
882 | self.start_data_ele = data_ele_new[0] |
|
883 | self.start_data_ele = data_ele_new[0] | |
883 | self.end_data_ele = data_ele_new[-1] |
|
884 | self.end_data_ele = data_ele_new[-1] | |
884 |
|
885 | |||
885 | n1= round(self.start_data_ele)- start |
|
886 | n1= round(self.start_data_ele)- start | |
886 | n2= end - round(self.end_data_ele)-1 |
|
887 | n2= end - round(self.end_data_ele)-1 | |
887 | print(self.start_data_ele) |
|
888 | print(self.start_data_ele) | |
888 | print(self.end_data_ele) |
|
889 | print(self.end_data_ele) | |
889 | if n1>0: |
|
890 | if n1>0: | |
890 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
891 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
891 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
892 | ele1_nan= numpy.ones(n1)*numpy.nan | |
892 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
893 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
893 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
894 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
894 | if n2>0: |
|
895 | if n2>0: | |
895 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
896 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
896 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
897 | ele2_nan= numpy.ones(n2)*numpy.nan | |
897 | data_ele = numpy.hstack((data_ele,ele2)) |
|
898 | data_ele = numpy.hstack((data_ele,ele2)) | |
898 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
899 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
899 | # RADAR |
|
900 | # RADAR | |
900 | # NOTA data_ele y data_weather es la variable que retorna |
|
901 | # NOTA data_ele y data_weather es la variable que retorna | |
901 | val_mean = numpy.mean(data_weather[:,-1]) |
|
902 | val_mean = numpy.mean(data_weather[:,-1]) | |
902 | self.val_mean = val_mean |
|
903 | self.val_mean = val_mean | |
903 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
904 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
904 | self.data_ele_tmp[val_ch]= data_ele_old |
|
905 | self.data_ele_tmp[val_ch]= data_ele_old | |
905 | else: |
|
906 | else: | |
906 | #print("**********************************************") |
|
907 | #print("**********************************************") | |
907 | #print("****************VARIABLE**********************") |
|
908 | #print("****************VARIABLE**********************") | |
908 | #-------------------------CAMBIOS RHI--------------------------------- |
|
909 | #-------------------------CAMBIOS RHI--------------------------------- | |
909 | #--------------------------------------------------------------------- |
|
910 | #--------------------------------------------------------------------- | |
910 | ##print("INPUT data_ele",data_ele) |
|
911 | ##print("INPUT data_ele",data_ele) | |
911 | flag=0 |
|
912 | flag=0 | |
912 | start_ele = self.res_ele[0] |
|
913 | start_ele = self.res_ele[0] | |
913 | tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
914 | tipo_case = self.check_case(data_ele,ang_max,ang_min) | |
914 | #print("TIPO DE DATA",tipo_case) |
|
915 | #print("TIPO DE DATA",tipo_case) | |
915 | #-----------new------------ |
|
916 | #-----------new------------ | |
916 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) |
|
917 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) | |
917 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
918 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
918 |
|
919 | |||
919 | #-------------------------------NEW RHI ITERATIVO------------------------- |
|
920 | #-------------------------------NEW RHI ITERATIVO------------------------- | |
920 |
|
921 | |||
921 | if tipo_case==0 : # SUBIDA |
|
922 | if tipo_case==0 : # SUBIDA | |
922 | vec = numpy.where(data_ele<ang_max) |
|
923 | vec = numpy.where(data_ele<ang_max) | |
923 | data_ele = data_ele[vec] |
|
924 | data_ele = data_ele[vec] | |
924 | data_ele_old = data_ele_old[vec] |
|
925 | data_ele_old = data_ele_old[vec] | |
925 | data_weather = data_weather[vec[0]] |
|
926 | data_weather = data_weather[vec[0]] | |
926 |
|
927 | |||
927 | vec2 = numpy.where(0<data_ele) |
|
928 | vec2 = numpy.where(0<data_ele) | |
928 | data_ele= data_ele[vec2] |
|
929 | data_ele= data_ele[vec2] | |
929 | data_ele_old= data_ele_old[vec2] |
|
930 | data_ele_old= data_ele_old[vec2] | |
930 | ##print(data_ele_new) |
|
931 | ##print(data_ele_new) | |
931 | data_weather= data_weather[vec2[0]] |
|
932 | data_weather= data_weather[vec2[0]] | |
932 |
|
933 | |||
933 | new_i_ele = int(round(data_ele[0])) |
|
934 | new_i_ele = int(round(data_ele[0])) | |
934 | new_f_ele = int(round(data_ele[-1])) |
|
935 | new_f_ele = int(round(data_ele[-1])) | |
935 | #print(new_i_ele) |
|
936 | #print(new_i_ele) | |
936 | #print(new_f_ele) |
|
937 | #print(new_f_ele) | |
937 | #print(data_ele,len(data_ele)) |
|
938 | #print(data_ele,len(data_ele)) | |
938 | #print(data_ele_old,len(data_ele_old)) |
|
939 | #print(data_ele_old,len(data_ele_old)) | |
939 | if new_i_ele< 2: |
|
940 | if new_i_ele< 2: | |
940 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
941 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
941 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
942 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
942 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old |
|
943 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old | |
943 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele |
|
944 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele | |
944 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather |
|
945 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather | |
945 | data_ele = self.res_ele |
|
946 | data_ele = self.res_ele | |
946 | data_weather = self.res_weather[val_ch] |
|
947 | data_weather = self.res_weather[val_ch] | |
947 |
|
948 | |||
948 | elif tipo_case==1 : #BAJADA |
|
949 | elif tipo_case==1 : #BAJADA | |
949 | data_ele = data_ele[::-1] # reversa |
|
950 | data_ele = data_ele[::-1] # reversa | |
950 | data_ele_old = data_ele_old[::-1]# reversa |
|
951 | data_ele_old = data_ele_old[::-1]# reversa | |
951 | data_weather = data_weather[::-1,:]# reversa |
|
952 | data_weather = data_weather[::-1,:]# reversa | |
952 | vec= numpy.where(data_ele<ang_max) |
|
953 | vec= numpy.where(data_ele<ang_max) | |
953 | data_ele = data_ele[vec] |
|
954 | data_ele = data_ele[vec] | |
954 | data_ele_old = data_ele_old[vec] |
|
955 | data_ele_old = data_ele_old[vec] | |
955 | data_weather = data_weather[vec[0]] |
|
956 | data_weather = data_weather[vec[0]] | |
956 | vec2= numpy.where(0<data_ele) |
|
957 | vec2= numpy.where(0<data_ele) | |
957 | data_ele = data_ele[vec2] |
|
958 | data_ele = data_ele[vec2] | |
958 | data_ele_old = data_ele_old[vec2] |
|
959 | data_ele_old = data_ele_old[vec2] | |
959 | data_weather = data_weather[vec2[0]] |
|
960 | data_weather = data_weather[vec2[0]] | |
960 |
|
961 | |||
961 |
|
962 | |||
962 | new_i_ele = int(round(data_ele[0])) |
|
963 | new_i_ele = int(round(data_ele[0])) | |
963 | new_f_ele = int(round(data_ele[-1])) |
|
964 | new_f_ele = int(round(data_ele[-1])) | |
964 | #print(data_ele) |
|
965 | #print(data_ele) | |
965 | #print(ang_max) |
|
966 | #print(ang_max) | |
966 | #print(data_ele_old) |
|
967 | #print(data_ele_old) | |
967 | if new_i_ele <= 1: |
|
968 | if new_i_ele <= 1: | |
968 | new_i_ele = 1 |
|
969 | new_i_ele = 1 | |
969 | if round(data_ele[-1])>=ang_max-1: |
|
970 | if round(data_ele[-1])>=ang_max-1: | |
970 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
971 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
971 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
972 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
972 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old |
|
973 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old | |
973 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele |
|
974 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele | |
974 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather |
|
975 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather | |
975 | data_ele = self.res_ele |
|
976 | data_ele = self.res_ele | |
976 | data_weather = self.res_weather[val_ch] |
|
977 | data_weather = self.res_weather[val_ch] | |
977 |
|
978 | |||
978 | elif tipo_case==2: #bajada |
|
979 | elif tipo_case==2: #bajada | |
979 | vec = numpy.where(data_ele<ang_max) |
|
980 | vec = numpy.where(data_ele<ang_max) | |
980 | data_ele = data_ele[vec] |
|
981 | data_ele = data_ele[vec] | |
981 | data_weather= data_weather[vec[0]] |
|
982 | data_weather= data_weather[vec[0]] | |
982 |
|
983 | |||
983 | len_vec = len(vec) |
|
984 | len_vec = len(vec) | |
984 | data_ele_new = data_ele[::-1] # reversa |
|
985 | data_ele_new = data_ele[::-1] # reversa | |
985 | data_weather = data_weather[::-1,:] |
|
986 | data_weather = data_weather[::-1,:] | |
986 | new_i_ele = int(data_ele_new[0]) |
|
987 | new_i_ele = int(data_ele_new[0]) | |
987 | new_f_ele = int(data_ele_new[-1]) |
|
988 | new_f_ele = int(data_ele_new[-1]) | |
988 |
|
989 | |||
989 | n1= new_i_ele- ang_min |
|
990 | n1= new_i_ele- ang_min | |
990 | n2= ang_max - new_f_ele-1 |
|
991 | n2= ang_max - new_f_ele-1 | |
991 | if n1>0: |
|
992 | if n1>0: | |
992 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
993 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
993 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
994 | ele1_nan= numpy.ones(n1)*numpy.nan | |
994 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
995 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
995 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
996 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
996 | if n2>0: |
|
997 | if n2>0: | |
997 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
998 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
998 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
999 | ele2_nan= numpy.ones(n2)*numpy.nan | |
999 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1000 | data_ele = numpy.hstack((data_ele,ele2)) | |
1000 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1001 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1001 |
|
1002 | |||
1002 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1003 | self.data_ele_tmp[val_ch] = data_ele_old | |
1003 | self.res_ele = data_ele |
|
1004 | self.res_ele = data_ele | |
1004 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1005 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1005 | data_ele = self.res_ele |
|
1006 | data_ele = self.res_ele | |
1006 | data_weather = self.res_weather[val_ch] |
|
1007 | data_weather = self.res_weather[val_ch] | |
1007 |
|
1008 | |||
1008 | elif tipo_case==3:#subida |
|
1009 | elif tipo_case==3:#subida | |
1009 | vec = numpy.where(0<data_ele) |
|
1010 | vec = numpy.where(0<data_ele) | |
1010 | data_ele= data_ele[vec] |
|
1011 | data_ele= data_ele[vec] | |
1011 | data_ele_new = data_ele |
|
1012 | data_ele_new = data_ele | |
1012 | data_ele_old= data_ele_old[vec] |
|
1013 | data_ele_old= data_ele_old[vec] | |
1013 | data_weather= data_weather[vec[0]] |
|
1014 | data_weather= data_weather[vec[0]] | |
1014 | pos_ini = numpy.argmin(data_ele) |
|
1015 | pos_ini = numpy.argmin(data_ele) | |
1015 | if pos_ini>0: |
|
1016 | if pos_ini>0: | |
1016 | len_vec= len(data_ele) |
|
1017 | len_vec= len(data_ele) | |
1017 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) |
|
1018 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) | |
1018 | #print(vec3) |
|
1019 | #print(vec3) | |
1019 | data_ele= data_ele[vec3] |
|
1020 | data_ele= data_ele[vec3] | |
1020 | data_ele_new = data_ele |
|
1021 | data_ele_new = data_ele | |
1021 | data_ele_old= data_ele_old[vec3] |
|
1022 | data_ele_old= data_ele_old[vec3] | |
1022 | data_weather= data_weather[vec3] |
|
1023 | data_weather= data_weather[vec3] | |
1023 |
|
1024 | |||
1024 | new_i_ele = int(data_ele_new[0]) |
|
1025 | new_i_ele = int(data_ele_new[0]) | |
1025 | new_f_ele = int(data_ele_new[-1]) |
|
1026 | new_f_ele = int(data_ele_new[-1]) | |
1026 | n1= new_i_ele- ang_min |
|
1027 | n1= new_i_ele- ang_min | |
1027 | n2= ang_max - new_f_ele-1 |
|
1028 | n2= ang_max - new_f_ele-1 | |
1028 | if n1>0: |
|
1029 | if n1>0: | |
1029 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1030 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
1030 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1031 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1031 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1032 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1032 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1033 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
1033 | if n2>0: |
|
1034 | if n2>0: | |
1034 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1035 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
1035 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1036 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1036 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1037 | data_ele = numpy.hstack((data_ele,ele2)) | |
1037 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1038 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1038 |
|
1039 | |||
1039 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1040 | self.data_ele_tmp[val_ch] = data_ele_old | |
1040 | self.res_ele = data_ele |
|
1041 | self.res_ele = data_ele | |
1041 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1042 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1042 | data_ele = self.res_ele |
|
1043 | data_ele = self.res_ele | |
1043 | data_weather = self.res_weather[val_ch] |
|
1044 | data_weather = self.res_weather[val_ch] | |
1044 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
1045 | #print("self.data_ele_tmp",self.data_ele_tmp) | |
1045 | return data_weather,data_ele |
|
1046 | return data_weather,data_ele | |
1046 |
|
1047 | |||
1047 |
|
1048 | |||
1048 | def plot(self): |
|
1049 | def plot(self): | |
1049 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
1050 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |
1050 | data = self.data[-1] |
|
1051 | data = self.data[-1] | |
1051 | r = self.data.yrange |
|
1052 | r = self.data.yrange | |
1052 | delta_height = r[1]-r[0] |
|
1053 | delta_height = r[1]-r[0] | |
1053 | r_mask = numpy.where(r>=0)[0] |
|
1054 | r_mask = numpy.where(r>=0)[0] | |
1054 | ##print("delta_height",delta_height) |
|
1055 | ##print("delta_height",delta_height) | |
1055 | #print("r_mask",r_mask,len(r_mask)) |
|
1056 | #print("r_mask",r_mask,len(r_mask)) | |
1056 | r = numpy.arange(len(r_mask))*delta_height |
|
1057 | r = numpy.arange(len(r_mask))*delta_height | |
1057 | self.y = 2*r |
|
1058 | self.y = 2*r | |
1058 | res = 1 |
|
1059 | res = 1 | |
1059 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
1060 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) | |
1060 | ang_max = self.ang_max |
|
1061 | ang_max = self.ang_max | |
1061 | ang_min = self.ang_min |
|
1062 | ang_min = self.ang_min | |
1062 | var_ang =ang_max - ang_min |
|
1063 | var_ang =ang_max - ang_min | |
1063 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
1064 | step = (int(var_ang)/(res*data['weather'].shape[0])) | |
1064 | ###print("step",step) |
|
1065 | ###print("step",step) | |
1065 | #-------------------------------------------------------- |
|
1066 | #-------------------------------------------------------- | |
1066 | ##print('weather',data['weather'].shape) |
|
1067 | ##print('weather',data['weather'].shape) | |
1067 | ##print('ele',data['ele'].shape) |
|
1068 | ##print('ele',data['ele'].shape) | |
1068 |
|
1069 | |||
1069 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1070 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |
1070 | ###self.res_azi = numpy.mean(data['azi']) |
|
1071 | ###self.res_azi = numpy.mean(data['azi']) | |
1071 | ###print("self.res_ele",self.res_ele) |
|
1072 | ###print("self.res_ele",self.res_ele) | |
1072 | plt.clf() |
|
1073 | plt.clf() | |
1073 | subplots = [121, 122] |
|
1074 | subplots = [121, 122] | |
1074 | if self.ini==0: |
|
1075 | if self.ini==0: | |
1075 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan |
|
1076 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan | |
1076 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan |
|
1077 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan | |
1077 | print("SHAPE",self.data_ele_tmp.shape) |
|
1078 | print("SHAPE",self.data_ele_tmp.shape) | |
1078 |
|
1079 | |||
1079 | for i,ax in enumerate(self.axes): |
|
1080 | for i,ax in enumerate(self.axes): | |
1080 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1081 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |
1081 | self.res_azi = numpy.mean(data['azi']) |
|
1082 | self.res_azi = numpy.mean(data['azi']) | |
1082 | if i==0: |
|
1083 | if i==0: | |
1083 | print("*****************************************************************************to plot**************************",self.res_weather[i].shape) |
|
1084 | print("*****************************************************************************to plot**************************",self.res_weather[i].shape) | |
1084 | if ax.firsttime: |
|
1085 | if ax.firsttime: | |
1085 | #plt.clf() |
|
1086 | #plt.clf() | |
1086 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1087 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
1087 | #fig=self.figures[0] |
|
1088 | #fig=self.figures[0] | |
1088 | else: |
|
1089 | else: | |
1089 | #plt.clf() |
|
1090 | #plt.clf() | |
1090 | if i==0: |
|
1091 | if i==0: | |
1091 | print(self.res_weather[i]) |
|
1092 | print(self.res_weather[i]) | |
1092 | print(self.res_ele) |
|
1093 | print(self.res_ele) | |
1093 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1094 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
1094 | caax = cgax.parasites[0] |
|
1095 | caax = cgax.parasites[0] | |
1095 | paax = cgax.parasites[1] |
|
1096 | paax = cgax.parasites[1] | |
1096 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
1097 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
1097 | caax.set_xlabel('x_range [km]') |
|
1098 | caax.set_xlabel('x_range [km]') | |
1098 | caax.set_ylabel('y_range [km]') |
|
1099 | caax.set_ylabel('y_range [km]') | |
1099 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
1100 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') | |
1100 | print("***************************self.ini****************************",self.ini) |
|
1101 | print("***************************self.ini****************************",self.ini) | |
1101 | self.ini= self.ini+1 |
|
1102 | self.ini= self.ini+1 | |
1102 |
|
1103 | |||
1103 | class WeatherRHI_vRF2_Plot(Plot): |
|
1104 | class WeatherRHI_vRF2_Plot(Plot): | |
1104 | CODE = 'weather' |
|
1105 | CODE = 'weather' | |
1105 | plot_name = 'weather' |
|
1106 | plot_name = 'weather' | |
1106 | plot_type = 'rhistyle' |
|
1107 | plot_type = 'rhistyle' | |
1107 | buffering = False |
|
1108 | buffering = False | |
1108 | data_ele_tmp = None |
|
1109 | data_ele_tmp = None | |
1109 |
|
1110 | |||
1110 | def setup(self): |
|
1111 | def setup(self): | |
1111 | print("********************") |
|
1112 | print("********************") | |
1112 | print("********************") |
|
1113 | print("********************") | |
1113 | print("********************") |
|
1114 | print("********************") | |
1114 | print("SETUP WEATHER PLOT") |
|
1115 | print("SETUP WEATHER PLOT") | |
1115 | self.ncols = 1 |
|
1116 | self.ncols = 1 | |
1116 | self.nrows = 1 |
|
1117 | self.nrows = 1 | |
1117 | self.nplots= 1 |
|
1118 | self.nplots= 1 | |
1118 | self.ylabel= 'Range [Km]' |
|
1119 | self.ylabel= 'Range [Km]' | |
1119 | self.titles= ['Weather'] |
|
1120 | self.titles= ['Weather'] | |
1120 | if self.channels is not None: |
|
1121 | if self.channels is not None: | |
1121 | self.nplots = len(self.channels) |
|
1122 | self.nplots = len(self.channels) | |
1122 | self.nrows = len(self.channels) |
|
1123 | self.nrows = len(self.channels) | |
1123 | else: |
|
1124 | else: | |
1124 | self.nplots = self.data.shape(self.CODE)[0] |
|
1125 | self.nplots = self.data.shape(self.CODE)[0] | |
1125 | self.nrows = self.nplots |
|
1126 | self.nrows = self.nplots | |
1126 | self.channels = list(range(self.nplots)) |
|
1127 | self.channels = list(range(self.nplots)) | |
1127 | print("channels",self.channels) |
|
1128 | print("channels",self.channels) | |
1128 | print("que saldra", self.data.shape(self.CODE)[0]) |
|
1129 | print("que saldra", self.data.shape(self.CODE)[0]) | |
1129 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
1130 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | |
1130 | print("self.titles",self.titles) |
|
1131 | print("self.titles",self.titles) | |
1131 | self.colorbar=False |
|
1132 | self.colorbar=False | |
1132 | self.width =8 |
|
1133 | self.width =8 | |
1133 | self.height =8 |
|
1134 | self.height =8 | |
1134 | self.ini =0 |
|
1135 | self.ini =0 | |
1135 | self.len_azi =0 |
|
1136 | self.len_azi =0 | |
1136 | self.buffer_ini = None |
|
1137 | self.buffer_ini = None | |
1137 | self.buffer_ele = None |
|
1138 | self.buffer_ele = None | |
1138 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
1139 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
1139 | self.flag =0 |
|
1140 | self.flag =0 | |
1140 | self.indicador= 0 |
|
1141 | self.indicador= 0 | |
1141 | self.last_data_ele = None |
|
1142 | self.last_data_ele = None | |
1142 | self.val_mean = None |
|
1143 | self.val_mean = None | |
1143 |
|
1144 | |||
1144 | def update(self, dataOut): |
|
1145 | def update(self, dataOut): | |
1145 |
|
1146 | |||
1146 | data = {} |
|
1147 | data = {} | |
1147 | meta = {} |
|
1148 | meta = {} | |
1148 | if hasattr(dataOut, 'dataPP_POWER'): |
|
1149 | if hasattr(dataOut, 'dataPP_POWER'): | |
1149 | factor = 1 |
|
1150 | factor = 1 | |
1150 | if hasattr(dataOut, 'nFFTPoints'): |
|
1151 | if hasattr(dataOut, 'nFFTPoints'): | |
1151 | factor = dataOut.normFactor |
|
1152 | factor = dataOut.normFactor | |
1152 | print("dataOut",dataOut.data_360.shape) |
|
1153 | print("dataOut",dataOut.data_360.shape) | |
1153 | # |
|
1154 | # | |
1154 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) |
|
1155 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) | |
1155 | # |
|
1156 | # | |
1156 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
1157 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | |
1157 | data['azi'] = dataOut.data_azi |
|
1158 | data['azi'] = dataOut.data_azi | |
1158 | data['ele'] = dataOut.data_ele |
|
1159 | data['ele'] = dataOut.data_ele | |
1159 | data['case_flag'] = dataOut.case_flag |
|
1160 | data['case_flag'] = dataOut.case_flag | |
1160 | #print("UPDATE") |
|
1161 | #print("UPDATE") | |
1161 | #print("data[weather]",data['weather'].shape) |
|
1162 | #print("data[weather]",data['weather'].shape) | |
1162 | #print("data[azi]",data['azi']) |
|
1163 | #print("data[azi]",data['azi']) | |
1163 | return data, meta |
|
1164 | return data, meta | |
1164 |
|
1165 | |||
1165 | def get2List(self,angulos): |
|
1166 | def get2List(self,angulos): | |
1166 | list1=[] |
|
1167 | list1=[] | |
1167 | list2=[] |
|
1168 | list2=[] | |
1168 | for i in reversed(range(len(angulos))): |
|
1169 | for i in reversed(range(len(angulos))): | |
1169 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
1170 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante | |
1170 | diff_ = angulos[i]-angulos[i-1] |
|
1171 | diff_ = angulos[i]-angulos[i-1] | |
1171 | if abs(diff_) >1.5: |
|
1172 | if abs(diff_) >1.5: | |
1172 | list1.append(i-1) |
|
1173 | list1.append(i-1) | |
1173 | list2.append(diff_) |
|
1174 | list2.append(diff_) | |
1174 | return list(reversed(list1)),list(reversed(list2)) |
|
1175 | return list(reversed(list1)),list(reversed(list2)) | |
1175 |
|
1176 | |||
1176 | def fixData90(self,list_,ang_): |
|
1177 | def fixData90(self,list_,ang_): | |
1177 | if list_[0]==-1: |
|
1178 | if list_[0]==-1: | |
1178 | vec = numpy.where(ang_<ang_[0]) |
|
1179 | vec = numpy.where(ang_<ang_[0]) | |
1179 | ang_[vec] = ang_[vec]+90 |
|
1180 | ang_[vec] = ang_[vec]+90 | |
1180 | return ang_ |
|
1181 | return ang_ | |
1181 | return ang_ |
|
1182 | return ang_ | |
1182 |
|
1183 | |||
1183 | def fixData90HL(self,angulos): |
|
1184 | def fixData90HL(self,angulos): | |
1184 | vec = numpy.where(angulos>=90) |
|
1185 | vec = numpy.where(angulos>=90) | |
1185 | angulos[vec]=angulos[vec]-90 |
|
1186 | angulos[vec]=angulos[vec]-90 | |
1186 | return angulos |
|
1187 | return angulos | |
1187 |
|
1188 | |||
1188 |
|
1189 | |||
1189 | def search_pos(self,pos,list_): |
|
1190 | def search_pos(self,pos,list_): | |
1190 | for i in range(len(list_)): |
|
1191 | for i in range(len(list_)): | |
1191 | if pos == list_[i]: |
|
1192 | if pos == list_[i]: | |
1192 | return True,i |
|
1193 | return True,i | |
1193 | i=None |
|
1194 | i=None | |
1194 | return False,i |
|
1195 | return False,i | |
1195 |
|
1196 | |||
1196 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
1197 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): | |
1197 | size = len(ang_) |
|
1198 | size = len(ang_) | |
1198 | size2 = 0 |
|
1199 | size2 = 0 | |
1199 | for i in range(len(list2_)): |
|
1200 | for i in range(len(list2_)): | |
1200 | size2=size2+round(abs(list2_[i]))-1 |
|
1201 | size2=size2+round(abs(list2_[i]))-1 | |
1201 | new_size= size+size2 |
|
1202 | new_size= size+size2 | |
1202 | ang_new = numpy.zeros(new_size) |
|
1203 | ang_new = numpy.zeros(new_size) | |
1203 | ang_new2 = numpy.zeros(new_size) |
|
1204 | ang_new2 = numpy.zeros(new_size) | |
1204 |
|
1205 | |||
1205 | tmp = 0 |
|
1206 | tmp = 0 | |
1206 | c = 0 |
|
1207 | c = 0 | |
1207 | for i in range(len(ang_)): |
|
1208 | for i in range(len(ang_)): | |
1208 | ang_new[tmp +c] = ang_[i] |
|
1209 | ang_new[tmp +c] = ang_[i] | |
1209 | ang_new2[tmp+c] = ang_[i] |
|
1210 | ang_new2[tmp+c] = ang_[i] | |
1210 | condition , value = self.search_pos(i,list1_) |
|
1211 | condition , value = self.search_pos(i,list1_) | |
1211 | if condition: |
|
1212 | if condition: | |
1212 | pos = tmp + c + 1 |
|
1213 | pos = tmp + c + 1 | |
1213 | for k in range(round(abs(list2_[value]))-1): |
|
1214 | for k in range(round(abs(list2_[value]))-1): | |
1214 | if tipo_case==0 or tipo_case==3:#subida |
|
1215 | if tipo_case==0 or tipo_case==3:#subida | |
1215 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
1216 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |
1216 | ang_new2[pos+k] = numpy.nan |
|
1217 | ang_new2[pos+k] = numpy.nan | |
1217 | elif tipo_case==1 or tipo_case==2:#bajada |
|
1218 | elif tipo_case==1 or tipo_case==2:#bajada | |
1218 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
1219 | ang_new[pos+k] = ang_new[pos+k-1]-1 | |
1219 | ang_new2[pos+k] = numpy.nan |
|
1220 | ang_new2[pos+k] = numpy.nan | |
1220 |
|
1221 | |||
1221 | tmp = pos +k |
|
1222 | tmp = pos +k | |
1222 | c = 0 |
|
1223 | c = 0 | |
1223 | c=c+1 |
|
1224 | c=c+1 | |
1224 | return ang_new,ang_new2 |
|
1225 | return ang_new,ang_new2 | |
1225 |
|
1226 | |||
1226 | def globalCheckPED(self,angulos,tipo_case): |
|
1227 | def globalCheckPED(self,angulos,tipo_case): | |
1227 | l1,l2 = self.get2List(angulos) |
|
1228 | l1,l2 = self.get2List(angulos) | |
1228 | ##print("l1",l1) |
|
1229 | ##print("l1",l1) | |
1229 | ##print("l2",l2) |
|
1230 | ##print("l2",l2) | |
1230 | if len(l1)>0: |
|
1231 | if len(l1)>0: | |
1231 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
1232 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) | |
1232 | #l1,l2 = self.get2List(angulos2) |
|
1233 | #l1,l2 = self.get2List(angulos2) | |
1233 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
1234 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) | |
1234 | #ang1_ = self.fixData90HL(ang1_) |
|
1235 | #ang1_ = self.fixData90HL(ang1_) | |
1235 | #ang2_ = self.fixData90HL(ang2_) |
|
1236 | #ang2_ = self.fixData90HL(ang2_) | |
1236 | else: |
|
1237 | else: | |
1237 | ang1_= angulos |
|
1238 | ang1_= angulos | |
1238 | ang2_= angulos |
|
1239 | ang2_= angulos | |
1239 | return ang1_,ang2_ |
|
1240 | return ang1_,ang2_ | |
1240 |
|
1241 | |||
1241 |
|
1242 | |||
1242 | def replaceNAN(self,data_weather,data_ele,val): |
|
1243 | def replaceNAN(self,data_weather,data_ele,val): | |
1243 | data= data_ele |
|
1244 | data= data_ele | |
1244 | data_T= data_weather |
|
1245 | data_T= data_weather | |
1245 | if data.shape[0]> data_T.shape[0]: |
|
1246 | if data.shape[0]> data_T.shape[0]: | |
1246 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
1247 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | |
1247 | c = 0 |
|
1248 | c = 0 | |
1248 | for i in range(len(data)): |
|
1249 | for i in range(len(data)): | |
1249 | if numpy.isnan(data[i]): |
|
1250 | if numpy.isnan(data[i]): | |
1250 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1251 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
1251 | else: |
|
1252 | else: | |
1252 | data_N[i,:]=data_T[c,:] |
|
1253 | data_N[i,:]=data_T[c,:] | |
1253 | c=c+1 |
|
1254 | c=c+1 | |
1254 | return data_N |
|
1255 | return data_N | |
1255 | else: |
|
1256 | else: | |
1256 | for i in range(len(data)): |
|
1257 | for i in range(len(data)): | |
1257 | if numpy.isnan(data[i]): |
|
1258 | if numpy.isnan(data[i]): | |
1258 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1259 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
1259 | return data_T |
|
1260 | return data_T | |
1260 |
|
1261 | |||
1261 | def check_case(self,data_ele,ang_max,ang_min): |
|
1262 | def check_case(self,data_ele,ang_max,ang_min): | |
1262 | start = data_ele[0] |
|
1263 | start = data_ele[0] | |
1263 | end = data_ele[-1] |
|
1264 | end = data_ele[-1] | |
1264 | number = (end-start) |
|
1265 | number = (end-start) | |
1265 | len_ang=len(data_ele) |
|
1266 | len_ang=len(data_ele) | |
1266 | print("start",start) |
|
1267 | print("start",start) | |
1267 | print("end",end) |
|
1268 | print("end",end) | |
1268 | print("number",number) |
|
1269 | print("number",number) | |
1269 |
|
1270 | |||
1270 | print("len_ang",len_ang) |
|
1271 | print("len_ang",len_ang) | |
1271 |
|
1272 | |||
1272 | #exit(1) |
|
1273 | #exit(1) | |
1273 |
|
1274 | |||
1274 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida |
|
1275 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida | |
1275 | return 0 |
|
1276 | return 0 | |
1276 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada |
|
1277 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada | |
1277 | # return 1 |
|
1278 | # return 1 | |
1278 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada |
|
1279 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada | |
1279 | return 1 |
|
1280 | return 1 | |
1280 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX |
|
1281 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX | |
1281 | return 2 |
|
1282 | return 2 | |
1282 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN |
|
1283 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN | |
1283 | return 3 |
|
1284 | return 3 | |
1284 |
|
1285 | |||
1285 |
|
1286 | |||
1286 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): |
|
1287 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): | |
1287 | ang_max= ang_max |
|
1288 | ang_max= ang_max | |
1288 | ang_min= ang_min |
|
1289 | ang_min= ang_min | |
1289 | data_weather=data_weather |
|
1290 | data_weather=data_weather | |
1290 | val_ch=val_ch |
|
1291 | val_ch=val_ch | |
1291 | ##print("*********************DATA WEATHER**************************************") |
|
1292 | ##print("*********************DATA WEATHER**************************************") | |
1292 | ##print(data_weather) |
|
1293 | ##print(data_weather) | |
1293 | if self.ini==0: |
|
1294 | if self.ini==0: | |
1294 | ''' |
|
1295 | ''' | |
1295 | print("**********************************************") |
|
1296 | print("**********************************************") | |
1296 | print("**********************************************") |
|
1297 | print("**********************************************") | |
1297 | print("***************ini**************") |
|
1298 | print("***************ini**************") | |
1298 | print("**********************************************") |
|
1299 | print("**********************************************") | |
1299 | print("**********************************************") |
|
1300 | print("**********************************************") | |
1300 | ''' |
|
1301 | ''' | |
1301 | #print("data_ele",data_ele) |
|
1302 | #print("data_ele",data_ele) | |
1302 | #---------------------------------------------------------- |
|
1303 | #---------------------------------------------------------- | |
1303 | tipo_case = case_flag[-1] |
|
1304 | tipo_case = case_flag[-1] | |
1304 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
1305 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) | |
1305 | print("check_case",tipo_case) |
|
1306 | print("check_case",tipo_case) | |
1306 | #exit(1) |
|
1307 | #exit(1) | |
1307 | #--------------------- new ------------------------- |
|
1308 | #--------------------- new ------------------------- | |
1308 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
1309 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) | |
1309 |
|
1310 | |||
1310 | #-------------------------CAMBIOS RHI--------------------------------- |
|
1311 | #-------------------------CAMBIOS RHI--------------------------------- | |
1311 | start= ang_min |
|
1312 | start= ang_min | |
1312 | end = ang_max |
|
1313 | end = ang_max | |
1313 | n= (ang_max-ang_min)/res |
|
1314 | n= (ang_max-ang_min)/res | |
1314 | #------ new |
|
1315 | #------ new | |
1315 | self.start_data_ele = data_ele_new[0] |
|
1316 | self.start_data_ele = data_ele_new[0] | |
1316 | self.end_data_ele = data_ele_new[-1] |
|
1317 | self.end_data_ele = data_ele_new[-1] | |
1317 | if tipo_case==0 or tipo_case==3: # SUBIDA |
|
1318 | if tipo_case==0 or tipo_case==3: # SUBIDA | |
1318 | n1= round(self.start_data_ele)- start |
|
1319 | n1= round(self.start_data_ele)- start | |
1319 | n2= end - round(self.end_data_ele) |
|
1320 | n2= end - round(self.end_data_ele) | |
1320 | print(self.start_data_ele) |
|
1321 | print(self.start_data_ele) | |
1321 | print(self.end_data_ele) |
|
1322 | print(self.end_data_ele) | |
1322 | if n1>0: |
|
1323 | if n1>0: | |
1323 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
1324 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
1324 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1325 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1325 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1326 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1326 | print("ele1_nan",ele1_nan.shape) |
|
1327 | print("ele1_nan",ele1_nan.shape) | |
1327 | print("data_ele_old",data_ele_old.shape) |
|
1328 | print("data_ele_old",data_ele_old.shape) | |
1328 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
1329 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
1329 | if n2>0: |
|
1330 | if n2>0: | |
1330 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
1331 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
1331 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1332 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1332 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1333 | data_ele = numpy.hstack((data_ele,ele2)) | |
1333 | print("ele2_nan",ele2_nan.shape) |
|
1334 | print("ele2_nan",ele2_nan.shape) | |
1334 | print("data_ele_old",data_ele_old.shape) |
|
1335 | print("data_ele_old",data_ele_old.shape) | |
1335 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1336 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1336 |
|
1337 | |||
1337 | if tipo_case==1 or tipo_case==2: # BAJADA |
|
1338 | if tipo_case==1 or tipo_case==2: # BAJADA | |
1338 | data_ele_new = data_ele_new[::-1] # reversa |
|
1339 | data_ele_new = data_ele_new[::-1] # reversa | |
1339 | data_ele_old = data_ele_old[::-1]# reversa |
|
1340 | data_ele_old = data_ele_old[::-1]# reversa | |
1340 | data_weather = data_weather[::-1,:]# reversa |
|
1341 | data_weather = data_weather[::-1,:]# reversa | |
1341 | vec= numpy.where(data_ele_new<ang_max) |
|
1342 | vec= numpy.where(data_ele_new<ang_max) | |
1342 | data_ele_new = data_ele_new[vec] |
|
1343 | data_ele_new = data_ele_new[vec] | |
1343 | data_ele_old = data_ele_old[vec] |
|
1344 | data_ele_old = data_ele_old[vec] | |
1344 | data_weather = data_weather[vec[0]] |
|
1345 | data_weather = data_weather[vec[0]] | |
1345 | vec2= numpy.where(0<data_ele_new) |
|
1346 | vec2= numpy.where(0<data_ele_new) | |
1346 | data_ele_new = data_ele_new[vec2] |
|
1347 | data_ele_new = data_ele_new[vec2] | |
1347 | data_ele_old = data_ele_old[vec2] |
|
1348 | data_ele_old = data_ele_old[vec2] | |
1348 | data_weather = data_weather[vec2[0]] |
|
1349 | data_weather = data_weather[vec2[0]] | |
1349 | self.start_data_ele = data_ele_new[0] |
|
1350 | self.start_data_ele = data_ele_new[0] | |
1350 | self.end_data_ele = data_ele_new[-1] |
|
1351 | self.end_data_ele = data_ele_new[-1] | |
1351 |
|
1352 | |||
1352 | n1= round(self.start_data_ele)- start |
|
1353 | n1= round(self.start_data_ele)- start | |
1353 | n2= end - round(self.end_data_ele)-1 |
|
1354 | n2= end - round(self.end_data_ele)-1 | |
1354 | print(self.start_data_ele) |
|
1355 | print(self.start_data_ele) | |
1355 | print(self.end_data_ele) |
|
1356 | print(self.end_data_ele) | |
1356 | if n1>0: |
|
1357 | if n1>0: | |
1357 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
1358 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
1358 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1359 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1359 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1360 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1360 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
1361 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
1361 | if n2>0: |
|
1362 | if n2>0: | |
1362 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
1363 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
1363 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1364 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1364 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1365 | data_ele = numpy.hstack((data_ele,ele2)) | |
1365 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1366 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1366 | # RADAR |
|
1367 | # RADAR | |
1367 | # NOTA data_ele y data_weather es la variable que retorna |
|
1368 | # NOTA data_ele y data_weather es la variable que retorna | |
1368 | val_mean = numpy.mean(data_weather[:,-1]) |
|
1369 | val_mean = numpy.mean(data_weather[:,-1]) | |
1369 | self.val_mean = val_mean |
|
1370 | self.val_mean = val_mean | |
1370 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1371 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1371 | print("eleold",data_ele_old) |
|
1372 | print("eleold",data_ele_old) | |
1372 | print(self.data_ele_tmp[val_ch]) |
|
1373 | print(self.data_ele_tmp[val_ch]) | |
1373 | print(data_ele_old.shape[0]) |
|
1374 | print(data_ele_old.shape[0]) | |
1374 | print(self.data_ele_tmp[val_ch].shape[0]) |
|
1375 | print(self.data_ele_tmp[val_ch].shape[0]) | |
1375 | if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91): |
|
1376 | if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91): | |
1376 | import sys |
|
1377 | import sys | |
1377 | print("EXIT",self.ini) |
|
1378 | print("EXIT",self.ini) | |
1378 |
|
1379 | |||
1379 | sys.exit(1) |
|
1380 | sys.exit(1) | |
1380 | self.data_ele_tmp[val_ch]= data_ele_old |
|
1381 | self.data_ele_tmp[val_ch]= data_ele_old | |
1381 | else: |
|
1382 | else: | |
1382 | #print("**********************************************") |
|
1383 | #print("**********************************************") | |
1383 | #print("****************VARIABLE**********************") |
|
1384 | #print("****************VARIABLE**********************") | |
1384 | #-------------------------CAMBIOS RHI--------------------------------- |
|
1385 | #-------------------------CAMBIOS RHI--------------------------------- | |
1385 | #--------------------------------------------------------------------- |
|
1386 | #--------------------------------------------------------------------- | |
1386 | ##print("INPUT data_ele",data_ele) |
|
1387 | ##print("INPUT data_ele",data_ele) | |
1387 | flag=0 |
|
1388 | flag=0 | |
1388 | start_ele = self.res_ele[0] |
|
1389 | start_ele = self.res_ele[0] | |
1389 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
1390 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) | |
1390 | tipo_case = case_flag[-1] |
|
1391 | tipo_case = case_flag[-1] | |
1391 | #print("TIPO DE DATA",tipo_case) |
|
1392 | #print("TIPO DE DATA",tipo_case) | |
1392 | #-----------new------------ |
|
1393 | #-----------new------------ | |
1393 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) |
|
1394 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) | |
1394 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1395 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1395 |
|
1396 | |||
1396 | #-------------------------------NEW RHI ITERATIVO------------------------- |
|
1397 | #-------------------------------NEW RHI ITERATIVO------------------------- | |
1397 |
|
1398 | |||
1398 | if tipo_case==0 : # SUBIDA |
|
1399 | if tipo_case==0 : # SUBIDA | |
1399 | vec = numpy.where(data_ele<ang_max) |
|
1400 | vec = numpy.where(data_ele<ang_max) | |
1400 | data_ele = data_ele[vec] |
|
1401 | data_ele = data_ele[vec] | |
1401 | data_ele_old = data_ele_old[vec] |
|
1402 | data_ele_old = data_ele_old[vec] | |
1402 | data_weather = data_weather[vec[0]] |
|
1403 | data_weather = data_weather[vec[0]] | |
1403 |
|
1404 | |||
1404 | vec2 = numpy.where(0<data_ele) |
|
1405 | vec2 = numpy.where(0<data_ele) | |
1405 | data_ele= data_ele[vec2] |
|
1406 | data_ele= data_ele[vec2] | |
1406 | data_ele_old= data_ele_old[vec2] |
|
1407 | data_ele_old= data_ele_old[vec2] | |
1407 | ##print(data_ele_new) |
|
1408 | ##print(data_ele_new) | |
1408 | data_weather= data_weather[vec2[0]] |
|
1409 | data_weather= data_weather[vec2[0]] | |
1409 |
|
1410 | |||
1410 | new_i_ele = int(round(data_ele[0])) |
|
1411 | new_i_ele = int(round(data_ele[0])) | |
1411 | new_f_ele = int(round(data_ele[-1])) |
|
1412 | new_f_ele = int(round(data_ele[-1])) | |
1412 | #print(new_i_ele) |
|
1413 | #print(new_i_ele) | |
1413 | #print(new_f_ele) |
|
1414 | #print(new_f_ele) | |
1414 | #print(data_ele,len(data_ele)) |
|
1415 | #print(data_ele,len(data_ele)) | |
1415 | #print(data_ele_old,len(data_ele_old)) |
|
1416 | #print(data_ele_old,len(data_ele_old)) | |
1416 | if new_i_ele< 2: |
|
1417 | if new_i_ele< 2: | |
1417 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
1418 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
1418 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
1419 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
1419 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old |
|
1420 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old | |
1420 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele |
|
1421 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele | |
1421 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather |
|
1422 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather | |
1422 | data_ele = self.res_ele |
|
1423 | data_ele = self.res_ele | |
1423 | data_weather = self.res_weather[val_ch] |
|
1424 | data_weather = self.res_weather[val_ch] | |
1424 |
|
1425 | |||
1425 | elif tipo_case==1 : #BAJADA |
|
1426 | elif tipo_case==1 : #BAJADA | |
1426 | data_ele = data_ele[::-1] # reversa |
|
1427 | data_ele = data_ele[::-1] # reversa | |
1427 | data_ele_old = data_ele_old[::-1]# reversa |
|
1428 | data_ele_old = data_ele_old[::-1]# reversa | |
1428 | data_weather = data_weather[::-1,:]# reversa |
|
1429 | data_weather = data_weather[::-1,:]# reversa | |
1429 | vec= numpy.where(data_ele<ang_max) |
|
1430 | vec= numpy.where(data_ele<ang_max) | |
1430 | data_ele = data_ele[vec] |
|
1431 | data_ele = data_ele[vec] | |
1431 | data_ele_old = data_ele_old[vec] |
|
1432 | data_ele_old = data_ele_old[vec] | |
1432 | data_weather = data_weather[vec[0]] |
|
1433 | data_weather = data_weather[vec[0]] | |
1433 | vec2= numpy.where(0<data_ele) |
|
1434 | vec2= numpy.where(0<data_ele) | |
1434 | data_ele = data_ele[vec2] |
|
1435 | data_ele = data_ele[vec2] | |
1435 | data_ele_old = data_ele_old[vec2] |
|
1436 | data_ele_old = data_ele_old[vec2] | |
1436 | data_weather = data_weather[vec2[0]] |
|
1437 | data_weather = data_weather[vec2[0]] | |
1437 |
|
1438 | |||
1438 |
|
1439 | |||
1439 | new_i_ele = int(round(data_ele[0])) |
|
1440 | new_i_ele = int(round(data_ele[0])) | |
1440 | new_f_ele = int(round(data_ele[-1])) |
|
1441 | new_f_ele = int(round(data_ele[-1])) | |
1441 | #print(data_ele) |
|
1442 | #print(data_ele) | |
1442 | #print(ang_max) |
|
1443 | #print(ang_max) | |
1443 | #print(data_ele_old) |
|
1444 | #print(data_ele_old) | |
1444 | if new_i_ele <= 1: |
|
1445 | if new_i_ele <= 1: | |
1445 | new_i_ele = 1 |
|
1446 | new_i_ele = 1 | |
1446 | if round(data_ele[-1])>=ang_max-1: |
|
1447 | if round(data_ele[-1])>=ang_max-1: | |
1447 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
1448 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
1448 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
1449 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
1449 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old |
|
1450 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old | |
1450 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele |
|
1451 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele | |
1451 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather |
|
1452 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather | |
1452 | data_ele = self.res_ele |
|
1453 | data_ele = self.res_ele | |
1453 | data_weather = self.res_weather[val_ch] |
|
1454 | data_weather = self.res_weather[val_ch] | |
1454 |
|
1455 | |||
1455 | elif tipo_case==2: #bajada |
|
1456 | elif tipo_case==2: #bajada | |
1456 | vec = numpy.where(data_ele<ang_max) |
|
1457 | vec = numpy.where(data_ele<ang_max) | |
1457 | data_ele = data_ele[vec] |
|
1458 | data_ele = data_ele[vec] | |
1458 | data_weather= data_weather[vec[0]] |
|
1459 | data_weather= data_weather[vec[0]] | |
1459 |
|
1460 | |||
1460 | len_vec = len(vec) |
|
1461 | len_vec = len(vec) | |
1461 | data_ele_new = data_ele[::-1] # reversa |
|
1462 | data_ele_new = data_ele[::-1] # reversa | |
1462 | data_weather = data_weather[::-1,:] |
|
1463 | data_weather = data_weather[::-1,:] | |
1463 | new_i_ele = int(data_ele_new[0]) |
|
1464 | new_i_ele = int(data_ele_new[0]) | |
1464 | new_f_ele = int(data_ele_new[-1]) |
|
1465 | new_f_ele = int(data_ele_new[-1]) | |
1465 |
|
1466 | |||
1466 | n1= new_i_ele- ang_min |
|
1467 | n1= new_i_ele- ang_min | |
1467 | n2= ang_max - new_f_ele-1 |
|
1468 | n2= ang_max - new_f_ele-1 | |
1468 | if n1>0: |
|
1469 | if n1>0: | |
1469 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1470 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
1470 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1471 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1471 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1472 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1472 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1473 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
1473 | if n2>0: |
|
1474 | if n2>0: | |
1474 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1475 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
1475 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1476 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1476 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1477 | data_ele = numpy.hstack((data_ele,ele2)) | |
1477 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1478 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1478 |
|
1479 | |||
1479 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1480 | self.data_ele_tmp[val_ch] = data_ele_old | |
1480 | self.res_ele = data_ele |
|
1481 | self.res_ele = data_ele | |
1481 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1482 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1482 | data_ele = self.res_ele |
|
1483 | data_ele = self.res_ele | |
1483 | data_weather = self.res_weather[val_ch] |
|
1484 | data_weather = self.res_weather[val_ch] | |
1484 |
|
1485 | |||
1485 | elif tipo_case==3:#subida |
|
1486 | elif tipo_case==3:#subida | |
1486 | vec = numpy.where(0<data_ele) |
|
1487 | vec = numpy.where(0<data_ele) | |
1487 | data_ele= data_ele[vec] |
|
1488 | data_ele= data_ele[vec] | |
1488 | data_ele_new = data_ele |
|
1489 | data_ele_new = data_ele | |
1489 | data_ele_old= data_ele_old[vec] |
|
1490 | data_ele_old= data_ele_old[vec] | |
1490 | data_weather= data_weather[vec[0]] |
|
1491 | data_weather= data_weather[vec[0]] | |
1491 | pos_ini = numpy.argmin(data_ele) |
|
1492 | pos_ini = numpy.argmin(data_ele) | |
1492 | if pos_ini>0: |
|
1493 | if pos_ini>0: | |
1493 | len_vec= len(data_ele) |
|
1494 | len_vec= len(data_ele) | |
1494 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) |
|
1495 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) | |
1495 | #print(vec3) |
|
1496 | #print(vec3) | |
1496 | data_ele= data_ele[vec3] |
|
1497 | data_ele= data_ele[vec3] | |
1497 | data_ele_new = data_ele |
|
1498 | data_ele_new = data_ele | |
1498 | data_ele_old= data_ele_old[vec3] |
|
1499 | data_ele_old= data_ele_old[vec3] | |
1499 | data_weather= data_weather[vec3] |
|
1500 | data_weather= data_weather[vec3] | |
1500 |
|
1501 | |||
1501 | new_i_ele = int(data_ele_new[0]) |
|
1502 | new_i_ele = int(data_ele_new[0]) | |
1502 | new_f_ele = int(data_ele_new[-1]) |
|
1503 | new_f_ele = int(data_ele_new[-1]) | |
1503 | n1= new_i_ele- ang_min |
|
1504 | n1= new_i_ele- ang_min | |
1504 | n2= ang_max - new_f_ele-1 |
|
1505 | n2= ang_max - new_f_ele-1 | |
1505 | if n1>0: |
|
1506 | if n1>0: | |
1506 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1507 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
1507 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1508 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1508 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1509 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1509 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1510 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
1510 | if n2>0: |
|
1511 | if n2>0: | |
1511 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1512 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
1512 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1513 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1513 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1514 | data_ele = numpy.hstack((data_ele,ele2)) | |
1514 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1515 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1515 |
|
1516 | |||
1516 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1517 | self.data_ele_tmp[val_ch] = data_ele_old | |
1517 | self.res_ele = data_ele |
|
1518 | self.res_ele = data_ele | |
1518 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1519 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1519 | data_ele = self.res_ele |
|
1520 | data_ele = self.res_ele | |
1520 | data_weather = self.res_weather[val_ch] |
|
1521 | data_weather = self.res_weather[val_ch] | |
1521 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
1522 | #print("self.data_ele_tmp",self.data_ele_tmp) | |
1522 | return data_weather,data_ele |
|
1523 | return data_weather,data_ele | |
1523 |
|
1524 | |||
1524 |
|
1525 | |||
1525 | def plot(self): |
|
1526 | def plot(self): | |
1526 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
1527 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |
1527 | data = self.data[-1] |
|
1528 | data = self.data[-1] | |
1528 | r = self.data.yrange |
|
1529 | r = self.data.yrange | |
1529 | delta_height = r[1]-r[0] |
|
1530 | delta_height = r[1]-r[0] | |
1530 | r_mask = numpy.where(r>=0)[0] |
|
1531 | r_mask = numpy.where(r>=0)[0] | |
1531 | ##print("delta_height",delta_height) |
|
1532 | ##print("delta_height",delta_height) | |
1532 | #print("r_mask",r_mask,len(r_mask)) |
|
1533 | #print("r_mask",r_mask,len(r_mask)) | |
1533 | r = numpy.arange(len(r_mask))*delta_height |
|
1534 | r = numpy.arange(len(r_mask))*delta_height | |
1534 | self.y = 2*r |
|
1535 | self.y = 2*r | |
1535 | res = 1 |
|
1536 | res = 1 | |
1536 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
1537 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) | |
1537 | ang_max = self.ang_max |
|
1538 | ang_max = self.ang_max | |
1538 | ang_min = self.ang_min |
|
1539 | ang_min = self.ang_min | |
1539 | var_ang =ang_max - ang_min |
|
1540 | var_ang =ang_max - ang_min | |
1540 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
1541 | step = (int(var_ang)/(res*data['weather'].shape[0])) | |
1541 | ###print("step",step) |
|
1542 | ###print("step",step) | |
1542 | #-------------------------------------------------------- |
|
1543 | #-------------------------------------------------------- | |
1543 | ##print('weather',data['weather'].shape) |
|
1544 | ##print('weather',data['weather'].shape) | |
1544 | ##print('ele',data['ele'].shape) |
|
1545 | ##print('ele',data['ele'].shape) | |
1545 |
|
1546 | |||
1546 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1547 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |
1547 | ###self.res_azi = numpy.mean(data['azi']) |
|
1548 | ###self.res_azi = numpy.mean(data['azi']) | |
1548 | ###print("self.res_ele",self.res_ele) |
|
1549 | ###print("self.res_ele",self.res_ele) | |
1549 | plt.clf() |
|
1550 | plt.clf() | |
1550 | subplots = [121, 122] |
|
1551 | subplots = [121, 122] | |
1551 | try: |
|
1552 | try: | |
1552 | if self.data[-2]['ele'].max()<data['ele'].max(): |
|
1553 | if self.data[-2]['ele'].max()<data['ele'].max(): | |
1553 | self.ini=0 |
|
1554 | self.ini=0 | |
1554 | except: |
|
1555 | except: | |
1555 | pass |
|
1556 | pass | |
1556 | if self.ini==0: |
|
1557 | if self.ini==0: | |
1557 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan |
|
1558 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan | |
1558 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan |
|
1559 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan | |
1559 | print("SHAPE",self.data_ele_tmp.shape) |
|
1560 | print("SHAPE",self.data_ele_tmp.shape) | |
1560 |
|
1561 | |||
1561 | for i,ax in enumerate(self.axes): |
|
1562 | for i,ax in enumerate(self.axes): | |
1562 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag']) |
|
1563 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag']) | |
1563 | self.res_azi = numpy.mean(data['azi']) |
|
1564 | self.res_azi = numpy.mean(data['azi']) | |
1564 |
|
1565 | |||
1565 | if ax.firsttime: |
|
1566 | if ax.firsttime: | |
1566 | #plt.clf() |
|
1567 | #plt.clf() | |
1567 | print("Frist Plot") |
|
1568 | print("Frist Plot") | |
1568 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1569 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
1569 | #fig=self.figures[0] |
|
1570 | #fig=self.figures[0] | |
1570 | else: |
|
1571 | else: | |
1571 | #plt.clf() |
|
1572 | #plt.clf() | |
1572 | print("ELSE PLOT") |
|
1573 | print("ELSE PLOT") | |
1573 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1574 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
1574 | caax = cgax.parasites[0] |
|
1575 | caax = cgax.parasites[0] | |
1575 | paax = cgax.parasites[1] |
|
1576 | paax = cgax.parasites[1] | |
1576 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
1577 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
1577 | caax.set_xlabel('x_range [km]') |
|
1578 | caax.set_xlabel('x_range [km]') | |
1578 | caax.set_ylabel('y_range [km]') |
|
1579 | caax.set_ylabel('y_range [km]') | |
1579 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
1580 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') | |
1580 | print("***************************self.ini****************************",self.ini) |
|
1581 | print("***************************self.ini****************************",self.ini) | |
1581 | self.ini= self.ini+1 |
|
1582 | self.ini= self.ini+1 | |
1582 |
|
1583 | |||
1583 | class WeatherRHI_vRF_Plot(Plot): |
|
1584 | class WeatherRHI_vRF_Plot(Plot): | |
1584 | CODE = 'weather' |
|
1585 | CODE = 'weather' | |
1585 | plot_name = 'weather' |
|
1586 | plot_name = 'weather' | |
1586 | plot_type = 'rhistyle' |
|
1587 | plot_type = 'rhistyle' | |
1587 | buffering = False |
|
1588 | buffering = False | |
1588 | data_ele_tmp = None |
|
1589 | data_ele_tmp = None | |
1589 |
|
1590 | |||
1590 | def setup(self): |
|
1591 | def setup(self): | |
1591 | print("********************") |
|
1592 | print("********************") | |
1592 | print("********************") |
|
1593 | print("********************") | |
1593 | print("********************") |
|
1594 | print("********************") | |
1594 | print("SETUP WEATHER PLOT") |
|
1595 | print("SETUP WEATHER PLOT") | |
1595 | self.ncols = 1 |
|
1596 | self.ncols = 1 | |
1596 | self.nrows = 1 |
|
1597 | self.nrows = 1 | |
1597 | self.nplots= 1 |
|
1598 | self.nplots= 1 | |
1598 | self.ylabel= 'Range [Km]' |
|
1599 | self.ylabel= 'Range [Km]' | |
1599 | self.titles= ['Weather'] |
|
1600 | self.titles= ['Weather'] | |
1600 | if self.channels is not None: |
|
1601 | if self.channels is not None: | |
1601 | self.nplots = len(self.channels) |
|
1602 | self.nplots = len(self.channels) | |
1602 | self.nrows = len(self.channels) |
|
1603 | self.nrows = len(self.channels) | |
1603 | else: |
|
1604 | else: | |
1604 | self.nplots = self.data.shape(self.CODE)[0] |
|
1605 | self.nplots = self.data.shape(self.CODE)[0] | |
1605 | self.nrows = self.nplots |
|
1606 | self.nrows = self.nplots | |
1606 | self.channels = list(range(self.nplots)) |
|
1607 | self.channels = list(range(self.nplots)) | |
1607 | print("channels",self.channels) |
|
1608 | print("channels",self.channels) | |
1608 | print("que saldra", self.data.shape(self.CODE)[0]) |
|
1609 | print("que saldra", self.data.shape(self.CODE)[0]) | |
1609 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
1610 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | |
1610 | print("self.titles",self.titles) |
|
1611 | print("self.titles",self.titles) | |
1611 | self.colorbar=False |
|
1612 | self.colorbar=False | |
1612 | self.width =8 |
|
1613 | self.width =8 | |
1613 | self.height =8 |
|
1614 | self.height =8 | |
1614 | self.ini =0 |
|
1615 | self.ini =0 | |
1615 | self.len_azi =0 |
|
1616 | self.len_azi =0 | |
1616 | self.buffer_ini = None |
|
1617 | self.buffer_ini = None | |
1617 | self.buffer_ele = None |
|
1618 | self.buffer_ele = None | |
1618 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
1619 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
1619 | self.flag =0 |
|
1620 | self.flag =0 | |
1620 | self.indicador= 0 |
|
1621 | self.indicador= 0 | |
1621 | self.last_data_ele = None |
|
1622 | self.last_data_ele = None | |
1622 | self.val_mean = None |
|
1623 | self.val_mean = None | |
1623 |
|
1624 | |||
1624 | def update(self, dataOut): |
|
1625 | def update(self, dataOut): | |
1625 |
|
1626 | |||
1626 | data = {} |
|
1627 | data = {} | |
1627 | meta = {} |
|
1628 | meta = {} | |
1628 | if hasattr(dataOut, 'dataPP_POWER'): |
|
1629 | if hasattr(dataOut, 'dataPP_POWER'): | |
1629 | factor = 1 |
|
1630 | factor = 1 | |
1630 | if hasattr(dataOut, 'nFFTPoints'): |
|
1631 | if hasattr(dataOut, 'nFFTPoints'): | |
1631 | factor = dataOut.normFactor |
|
1632 | factor = dataOut.normFactor | |
1632 | print("dataOut",dataOut.data_360.shape) |
|
1633 | print("dataOut",dataOut.data_360.shape) | |
1633 | # |
|
1634 | # | |
1634 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) |
|
1635 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) | |
1635 | # |
|
1636 | # | |
1636 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
1637 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | |
1637 | data['azi'] = dataOut.data_azi |
|
1638 | data['azi'] = dataOut.data_azi | |
1638 | data['ele'] = dataOut.data_ele |
|
1639 | data['ele'] = dataOut.data_ele | |
1639 | data['case_flag'] = dataOut.case_flag |
|
1640 | data['case_flag'] = dataOut.case_flag | |
1640 | #print("UPDATE") |
|
1641 | #print("UPDATE") | |
1641 | #print("data[weather]",data['weather'].shape) |
|
1642 | #print("data[weather]",data['weather'].shape) | |
1642 | #print("data[azi]",data['azi']) |
|
1643 | #print("data[azi]",data['azi']) | |
1643 | return data, meta |
|
1644 | return data, meta | |
1644 |
|
1645 | |||
1645 | def get2List(self,angulos): |
|
1646 | def get2List(self,angulos): | |
1646 | list1=[] |
|
1647 | list1=[] | |
1647 | list2=[] |
|
1648 | list2=[] | |
1648 | #print(angulos) |
|
1649 | #print(angulos) | |
1649 | #exit(1) |
|
1650 | #exit(1) | |
1650 | for i in reversed(range(len(angulos))): |
|
1651 | for i in reversed(range(len(angulos))): | |
1651 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
1652 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante | |
1652 | diff_ = angulos[i]-angulos[i-1] |
|
1653 | diff_ = angulos[i]-angulos[i-1] | |
1653 | if abs(diff_) >1.5: |
|
1654 | if abs(diff_) >1.5: | |
1654 | list1.append(i-1) |
|
1655 | list1.append(i-1) | |
1655 | list2.append(diff_) |
|
1656 | list2.append(diff_) | |
1656 | return list(reversed(list1)),list(reversed(list2)) |
|
1657 | return list(reversed(list1)),list(reversed(list2)) | |
1657 |
|
1658 | |||
1658 | def fixData90(self,list_,ang_): |
|
1659 | def fixData90(self,list_,ang_): | |
1659 | if list_[0]==-1: |
|
1660 | if list_[0]==-1: | |
1660 | vec = numpy.where(ang_<ang_[0]) |
|
1661 | vec = numpy.where(ang_<ang_[0]) | |
1661 | ang_[vec] = ang_[vec]+90 |
|
1662 | ang_[vec] = ang_[vec]+90 | |
1662 | return ang_ |
|
1663 | return ang_ | |
1663 | return ang_ |
|
1664 | return ang_ | |
1664 |
|
1665 | |||
1665 | def fixData90HL(self,angulos): |
|
1666 | def fixData90HL(self,angulos): | |
1666 | vec = numpy.where(angulos>=90) |
|
1667 | vec = numpy.where(angulos>=90) | |
1667 | angulos[vec]=angulos[vec]-90 |
|
1668 | angulos[vec]=angulos[vec]-90 | |
1668 | return angulos |
|
1669 | return angulos | |
1669 |
|
1670 | |||
1670 |
|
1671 | |||
1671 | def search_pos(self,pos,list_): |
|
1672 | def search_pos(self,pos,list_): | |
1672 | for i in range(len(list_)): |
|
1673 | for i in range(len(list_)): | |
1673 | if pos == list_[i]: |
|
1674 | if pos == list_[i]: | |
1674 | return True,i |
|
1675 | return True,i | |
1675 | i=None |
|
1676 | i=None | |
1676 | return False,i |
|
1677 | return False,i | |
1677 |
|
1678 | |||
1678 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
1679 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): | |
1679 | size = len(ang_) |
|
1680 | size = len(ang_) | |
1680 | size2 = 0 |
|
1681 | size2 = 0 | |
1681 | for i in range(len(list2_)): |
|
1682 | for i in range(len(list2_)): | |
1682 | size2=size2+round(abs(list2_[i]))-1 |
|
1683 | size2=size2+round(abs(list2_[i]))-1 | |
1683 | new_size= size+size2 |
|
1684 | new_size= size+size2 | |
1684 | ang_new = numpy.zeros(new_size) |
|
1685 | ang_new = numpy.zeros(new_size) | |
1685 | ang_new2 = numpy.zeros(new_size) |
|
1686 | ang_new2 = numpy.zeros(new_size) | |
1686 |
|
1687 | |||
1687 | tmp = 0 |
|
1688 | tmp = 0 | |
1688 | c = 0 |
|
1689 | c = 0 | |
1689 | for i in range(len(ang_)): |
|
1690 | for i in range(len(ang_)): | |
1690 | ang_new[tmp +c] = ang_[i] |
|
1691 | ang_new[tmp +c] = ang_[i] | |
1691 | ang_new2[tmp+c] = ang_[i] |
|
1692 | ang_new2[tmp+c] = ang_[i] | |
1692 | condition , value = self.search_pos(i,list1_) |
|
1693 | condition , value = self.search_pos(i,list1_) | |
1693 | if condition: |
|
1694 | if condition: | |
1694 | pos = tmp + c + 1 |
|
1695 | pos = tmp + c + 1 | |
1695 | for k in range(round(abs(list2_[value]))-1): |
|
1696 | for k in range(round(abs(list2_[value]))-1): | |
1696 | if tipo_case==0 or tipo_case==3:#subida |
|
1697 | if tipo_case==0 or tipo_case==3:#subida | |
1697 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
1698 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |
1698 | ang_new2[pos+k] = numpy.nan |
|
1699 | ang_new2[pos+k] = numpy.nan | |
1699 | elif tipo_case==1 or tipo_case==2:#bajada |
|
1700 | elif tipo_case==1 or tipo_case==2:#bajada | |
1700 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
1701 | ang_new[pos+k] = ang_new[pos+k-1]-1 | |
1701 | ang_new2[pos+k] = numpy.nan |
|
1702 | ang_new2[pos+k] = numpy.nan | |
1702 |
|
1703 | |||
1703 | tmp = pos +k |
|
1704 | tmp = pos +k | |
1704 | c = 0 |
|
1705 | c = 0 | |
1705 | c=c+1 |
|
1706 | c=c+1 | |
1706 | return ang_new,ang_new2 |
|
1707 | return ang_new,ang_new2 | |
1707 |
|
1708 | |||
1708 | def globalCheckPED(self,angulos,tipo_case): |
|
1709 | def globalCheckPED(self,angulos,tipo_case): | |
1709 | l1,l2 = self.get2List(angulos) |
|
1710 | l1,l2 = self.get2List(angulos) | |
1710 | print("l1",l1) |
|
1711 | print("l1",l1) | |
1711 | print("l2",l2) |
|
1712 | print("l2",l2) | |
1712 | if len(l1)>0: |
|
1713 | if len(l1)>0: | |
1713 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
1714 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) | |
1714 | #l1,l2 = self.get2List(angulos2) |
|
1715 | #l1,l2 = self.get2List(angulos2) | |
1715 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
1716 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) | |
1716 | #ang1_ = self.fixData90HL(ang1_) |
|
1717 | #ang1_ = self.fixData90HL(ang1_) | |
1717 | #ang2_ = self.fixData90HL(ang2_) |
|
1718 | #ang2_ = self.fixData90HL(ang2_) | |
1718 | else: |
|
1719 | else: | |
1719 | ang1_= angulos |
|
1720 | ang1_= angulos | |
1720 | ang2_= angulos |
|
1721 | ang2_= angulos | |
1721 | return ang1_,ang2_ |
|
1722 | return ang1_,ang2_ | |
1722 |
|
1723 | |||
1723 |
|
1724 | |||
1724 | def replaceNAN(self,data_weather,data_ele,val): |
|
1725 | def replaceNAN(self,data_weather,data_ele,val): | |
1725 | data= data_ele |
|
1726 | data= data_ele | |
1726 | data_T= data_weather |
|
1727 | data_T= data_weather | |
1727 | #print(data.shape[0]) |
|
1728 | #print(data.shape[0]) | |
1728 | #print(data_T.shape[0]) |
|
1729 | #print(data_T.shape[0]) | |
1729 | #exit(1) |
|
1730 | #exit(1) | |
1730 | if data.shape[0]> data_T.shape[0]: |
|
1731 | if data.shape[0]> data_T.shape[0]: | |
1731 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
1732 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | |
1732 | c = 0 |
|
1733 | c = 0 | |
1733 | for i in range(len(data)): |
|
1734 | for i in range(len(data)): | |
1734 | if numpy.isnan(data[i]): |
|
1735 | if numpy.isnan(data[i]): | |
1735 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1736 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
1736 | else: |
|
1737 | else: | |
1737 | data_N[i,:]=data_T[c,:] |
|
1738 | data_N[i,:]=data_T[c,:] | |
1738 | c=c+1 |
|
1739 | c=c+1 | |
1739 | return data_N |
|
1740 | return data_N | |
1740 | else: |
|
1741 | else: | |
1741 | for i in range(len(data)): |
|
1742 | for i in range(len(data)): | |
1742 | if numpy.isnan(data[i]): |
|
1743 | if numpy.isnan(data[i]): | |
1743 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1744 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
1744 | return data_T |
|
1745 | return data_T | |
1745 |
|
1746 | |||
1746 |
|
1747 | |||
1747 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): |
|
1748 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): | |
1748 | ang_max= ang_max |
|
1749 | ang_max= ang_max | |
1749 | ang_min= ang_min |
|
1750 | ang_min= ang_min | |
1750 | data_weather=data_weather |
|
1751 | data_weather=data_weather | |
1751 | val_ch=val_ch |
|
1752 | val_ch=val_ch | |
1752 | ##print("*********************DATA WEATHER**************************************") |
|
1753 | ##print("*********************DATA WEATHER**************************************") | |
1753 | ##print(data_weather) |
|
1754 | ##print(data_weather) | |
1754 |
|
1755 | |||
1755 | ''' |
|
1756 | ''' | |
1756 | print("**********************************************") |
|
1757 | print("**********************************************") | |
1757 | print("**********************************************") |
|
1758 | print("**********************************************") | |
1758 | print("***************ini**************") |
|
1759 | print("***************ini**************") | |
1759 | print("**********************************************") |
|
1760 | print("**********************************************") | |
1760 | print("**********************************************") |
|
1761 | print("**********************************************") | |
1761 | ''' |
|
1762 | ''' | |
1762 | #print("data_ele",data_ele) |
|
1763 | #print("data_ele",data_ele) | |
1763 | #---------------------------------------------------------- |
|
1764 | #---------------------------------------------------------- | |
1764 |
|
1765 | |||
1765 | #exit(1) |
|
1766 | #exit(1) | |
1766 | tipo_case = case_flag[-1] |
|
1767 | tipo_case = case_flag[-1] | |
1767 | print("tipo_case",tipo_case) |
|
1768 | print("tipo_case",tipo_case) | |
1768 | #--------------------- new ------------------------- |
|
1769 | #--------------------- new ------------------------- | |
1769 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
1770 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) | |
1770 |
|
1771 | |||
1771 | #-------------------------CAMBIOS RHI--------------------------------- |
|
1772 | #-------------------------CAMBIOS RHI--------------------------------- | |
1772 |
|
1773 | |||
1773 | vec = numpy.where(data_ele<ang_max) |
|
1774 | vec = numpy.where(data_ele<ang_max) | |
1774 | data_ele = data_ele[vec] |
|
1775 | data_ele = data_ele[vec] | |
1775 | data_weather= data_weather[vec[0]] |
|
1776 | data_weather= data_weather[vec[0]] | |
1776 |
|
1777 | |||
1777 | len_vec = len(vec) |
|
1778 | len_vec = len(vec) | |
1778 | data_ele_new = data_ele[::-1] # reversa |
|
1779 | data_ele_new = data_ele[::-1] # reversa | |
1779 | data_weather = data_weather[::-1,:] |
|
1780 | data_weather = data_weather[::-1,:] | |
1780 | new_i_ele = int(data_ele_new[0]) |
|
1781 | new_i_ele = int(data_ele_new[0]) | |
1781 | new_f_ele = int(data_ele_new[-1]) |
|
1782 | new_f_ele = int(data_ele_new[-1]) | |
1782 |
|
1783 | |||
1783 | n1= new_i_ele- ang_min |
|
1784 | n1= new_i_ele- ang_min | |
1784 | n2= ang_max - new_f_ele-1 |
|
1785 | n2= ang_max - new_f_ele-1 | |
1785 | if n1>0: |
|
1786 | if n1>0: | |
1786 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1787 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
1787 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1788 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1788 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1789 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1789 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1790 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
1790 | if n2>0: |
|
1791 | if n2>0: | |
1791 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1792 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
1792 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1793 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1793 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1794 | data_ele = numpy.hstack((data_ele,ele2)) | |
1794 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1795 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1795 |
|
1796 | |||
1796 |
|
1797 | |||
1797 | print("ele shape",data_ele.shape) |
|
1798 | print("ele shape",data_ele.shape) | |
1798 | print(data_ele) |
|
1799 | print(data_ele) | |
1799 |
|
1800 | |||
1800 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
1801 | #print("self.data_ele_tmp",self.data_ele_tmp) | |
1801 | val_mean = numpy.mean(data_weather[:,-1]) |
|
1802 | val_mean = numpy.mean(data_weather[:,-1]) | |
1802 | self.val_mean = val_mean |
|
1803 | self.val_mean = val_mean | |
1803 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1804 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1804 | self.data_ele_tmp[val_ch]= data_ele_old |
|
1805 | self.data_ele_tmp[val_ch]= data_ele_old | |
1805 |
|
1806 | |||
1806 |
|
1807 | |||
1807 | print("data_weather shape",data_weather.shape) |
|
1808 | print("data_weather shape",data_weather.shape) | |
1808 | print(data_weather) |
|
1809 | print(data_weather) | |
1809 | #exit(1) |
|
1810 | #exit(1) | |
1810 | return data_weather,data_ele |
|
1811 | return data_weather,data_ele | |
1811 |
|
1812 | |||
1812 |
|
1813 | |||
1813 | def plot(self): |
|
1814 | def plot(self): | |
1814 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
1815 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |
1815 | data = self.data[-1] |
|
1816 | data = self.data[-1] | |
1816 | r = self.data.yrange |
|
1817 | r = self.data.yrange | |
1817 | delta_height = r[1]-r[0] |
|
1818 | delta_height = r[1]-r[0] | |
1818 | r_mask = numpy.where(r>=0)[0] |
|
1819 | r_mask = numpy.where(r>=0)[0] | |
1819 | ##print("delta_height",delta_height) |
|
1820 | ##print("delta_height",delta_height) | |
1820 | #print("r_mask",r_mask,len(r_mask)) |
|
1821 | #print("r_mask",r_mask,len(r_mask)) | |
1821 | r = numpy.arange(len(r_mask))*delta_height |
|
1822 | r = numpy.arange(len(r_mask))*delta_height | |
1822 | self.y = 2*r |
|
1823 | self.y = 2*r | |
1823 | res = 1 |
|
1824 | res = 1 | |
1824 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
1825 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) | |
1825 | ang_max = self.ang_max |
|
1826 | ang_max = self.ang_max | |
1826 | ang_min = self.ang_min |
|
1827 | ang_min = self.ang_min | |
1827 | var_ang =ang_max - ang_min |
|
1828 | var_ang =ang_max - ang_min | |
1828 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
1829 | step = (int(var_ang)/(res*data['weather'].shape[0])) | |
1829 | ###print("step",step) |
|
1830 | ###print("step",step) | |
1830 | #-------------------------------------------------------- |
|
1831 | #-------------------------------------------------------- | |
1831 | ##print('weather',data['weather'].shape) |
|
1832 | ##print('weather',data['weather'].shape) | |
1832 | ##print('ele',data['ele'].shape) |
|
1833 | ##print('ele',data['ele'].shape) | |
1833 |
|
1834 | |||
1834 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1835 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |
1835 | ###self.res_azi = numpy.mean(data['azi']) |
|
1836 | ###self.res_azi = numpy.mean(data['azi']) | |
1836 | ###print("self.res_ele",self.res_ele) |
|
1837 | ###print("self.res_ele",self.res_ele) | |
1837 | plt.clf() |
|
1838 | plt.clf() | |
1838 | subplots = [121, 122] |
|
1839 | subplots = [121, 122] | |
1839 | if self.ini==0: |
|
1840 | if self.ini==0: | |
1840 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan |
|
1841 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan | |
1841 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan |
|
1842 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan | |
1842 | print("SHAPE",self.data_ele_tmp.shape) |
|
1843 | print("SHAPE",self.data_ele_tmp.shape) | |
1843 |
|
1844 | |||
1844 | for i,ax in enumerate(self.axes): |
|
1845 | for i,ax in enumerate(self.axes): | |
1845 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag']) |
|
1846 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag']) | |
1846 | self.res_azi = numpy.mean(data['azi']) |
|
1847 | self.res_azi = numpy.mean(data['azi']) | |
1847 |
|
1848 | |||
1848 | print(self.res_ele) |
|
1849 | print(self.res_ele) | |
1849 | #exit(1) |
|
1850 | #exit(1) | |
1850 | if ax.firsttime: |
|
1851 | if ax.firsttime: | |
1851 | #plt.clf() |
|
1852 | #plt.clf() | |
1852 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1853 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
1853 | #fig=self.figures[0] |
|
1854 | #fig=self.figures[0] | |
1854 | else: |
|
1855 | else: | |
1855 |
|
1856 | |||
1856 | #plt.clf() |
|
1857 | #plt.clf() | |
1857 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1858 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
1858 | caax = cgax.parasites[0] |
|
1859 | caax = cgax.parasites[0] | |
1859 | paax = cgax.parasites[1] |
|
1860 | paax = cgax.parasites[1] | |
1860 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
1861 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
1861 | caax.set_xlabel('x_range [km]') |
|
1862 | caax.set_xlabel('x_range [km]') | |
1862 | caax.set_ylabel('y_range [km]') |
|
1863 | caax.set_ylabel('y_range [km]') | |
1863 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
1864 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') | |
1864 | print("***************************self.ini****************************",self.ini) |
|
1865 | print("***************************self.ini****************************",self.ini) | |
1865 | self.ini= self.ini+1 |
|
1866 | self.ini= self.ini+1 | |
|
1867 | ||||
|
1868 | class WeatherRHI_vRF3_Plot(Plot): | |||
|
1869 | CODE = 'weather' | |||
|
1870 | plot_name = 'weather' | |||
|
1871 | plot_type = 'rhistyle' | |||
|
1872 | buffering = False | |||
|
1873 | data_ele_tmp = None | |||
|
1874 | ||||
|
1875 | def setup(self): | |||
|
1876 | print("********************") | |||
|
1877 | print("********************") | |||
|
1878 | print("********************") | |||
|
1879 | print("SETUP WEATHER PLOT") | |||
|
1880 | self.ncols = 1 | |||
|
1881 | self.nrows = 1 | |||
|
1882 | self.nplots= 1 | |||
|
1883 | self.ylabel= 'Range [Km]' | |||
|
1884 | self.titles= ['Weather'] | |||
|
1885 | if self.channels is not None: | |||
|
1886 | self.nplots = len(self.channels) | |||
|
1887 | self.nrows = len(self.channels) | |||
|
1888 | else: | |||
|
1889 | self.nplots = self.data.shape(self.CODE)[0] | |||
|
1890 | self.nrows = self.nplots | |||
|
1891 | self.channels = list(range(self.nplots)) | |||
|
1892 | print("channels",self.channels) | |||
|
1893 | print("que saldra", self.data.shape(self.CODE)[0]) | |||
|
1894 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | |||
|
1895 | print("self.titles",self.titles) | |||
|
1896 | self.colorbar=False | |||
|
1897 | self.width =8 | |||
|
1898 | self.height =8 | |||
|
1899 | self.ini =0 | |||
|
1900 | self.len_azi =0 | |||
|
1901 | self.buffer_ini = None | |||
|
1902 | self.buffer_ele = None | |||
|
1903 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |||
|
1904 | self.flag =0 | |||
|
1905 | self.indicador= 0 | |||
|
1906 | self.last_data_ele = None | |||
|
1907 | self.val_mean = None | |||
|
1908 | ||||
|
1909 | def update(self, dataOut): | |||
|
1910 | ||||
|
1911 | data = {} | |||
|
1912 | meta = {} | |||
|
1913 | if hasattr(dataOut, 'dataPP_POWER'): | |||
|
1914 | factor = 1 | |||
|
1915 | if hasattr(dataOut, 'nFFTPoints'): | |||
|
1916 | factor = dataOut.normFactor | |||
|
1917 | print("dataOut",dataOut.data_360.shape) | |||
|
1918 | # | |||
|
1919 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) | |||
|
1920 | # | |||
|
1921 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | |||
|
1922 | data['azi'] = dataOut.data_azi | |||
|
1923 | data['ele'] = dataOut.data_ele | |||
|
1924 | #data['case_flag'] = dataOut.case_flag | |||
|
1925 | #print("UPDATE") | |||
|
1926 | #print("data[weather]",data['weather'].shape) | |||
|
1927 | #print("data[azi]",data['azi']) | |||
|
1928 | return data, meta | |||
|
1929 | ||||
|
1930 | def get2List(self,angulos): | |||
|
1931 | list1=[] | |||
|
1932 | list2=[] | |||
|
1933 | for i in reversed(range(len(angulos))): | |||
|
1934 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante | |||
|
1935 | diff_ = angulos[i]-angulos[i-1] | |||
|
1936 | if abs(diff_) >1.5: | |||
|
1937 | list1.append(i-1) | |||
|
1938 | list2.append(diff_) | |||
|
1939 | return list(reversed(list1)),list(reversed(list2)) | |||
|
1940 | ||||
|
1941 | def fixData90(self,list_,ang_): | |||
|
1942 | if list_[0]==-1: | |||
|
1943 | vec = numpy.where(ang_<ang_[0]) | |||
|
1944 | ang_[vec] = ang_[vec]+90 | |||
|
1945 | return ang_ | |||
|
1946 | return ang_ | |||
|
1947 | ||||
|
1948 | def fixData90HL(self,angulos): | |||
|
1949 | vec = numpy.where(angulos>=90) | |||
|
1950 | angulos[vec]=angulos[vec]-90 | |||
|
1951 | return angulos | |||
|
1952 | ||||
|
1953 | ||||
|
1954 | def search_pos(self,pos,list_): | |||
|
1955 | for i in range(len(list_)): | |||
|
1956 | if pos == list_[i]: | |||
|
1957 | return True,i | |||
|
1958 | i=None | |||
|
1959 | return False,i | |||
|
1960 | ||||
|
1961 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): | |||
|
1962 | size = len(ang_) | |||
|
1963 | size2 = 0 | |||
|
1964 | for i in range(len(list2_)): | |||
|
1965 | size2=size2+round(abs(list2_[i]))-1 | |||
|
1966 | new_size= size+size2 | |||
|
1967 | ang_new = numpy.zeros(new_size) | |||
|
1968 | ang_new2 = numpy.zeros(new_size) | |||
|
1969 | ||||
|
1970 | tmp = 0 | |||
|
1971 | c = 0 | |||
|
1972 | for i in range(len(ang_)): | |||
|
1973 | ang_new[tmp +c] = ang_[i] | |||
|
1974 | ang_new2[tmp+c] = ang_[i] | |||
|
1975 | condition , value = self.search_pos(i,list1_) | |||
|
1976 | if condition: | |||
|
1977 | pos = tmp + c + 1 | |||
|
1978 | for k in range(round(abs(list2_[value]))-1): | |||
|
1979 | if tipo_case==0 or tipo_case==3:#subida | |||
|
1980 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |||
|
1981 | ang_new2[pos+k] = numpy.nan | |||
|
1982 | elif tipo_case==1 or tipo_case==2:#bajada | |||
|
1983 | ang_new[pos+k] = ang_new[pos+k-1]-1 | |||
|
1984 | ang_new2[pos+k] = numpy.nan | |||
|
1985 | ||||
|
1986 | tmp = pos +k | |||
|
1987 | c = 0 | |||
|
1988 | c=c+1 | |||
|
1989 | return ang_new,ang_new2 | |||
|
1990 | ||||
|
1991 | def globalCheckPED(self,angulos,tipo_case): | |||
|
1992 | l1,l2 = self.get2List(angulos) | |||
|
1993 | ##print("l1",l1) | |||
|
1994 | ##print("l2",l2) | |||
|
1995 | if len(l1)>0: | |||
|
1996 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) | |||
|
1997 | #l1,l2 = self.get2List(angulos2) | |||
|
1998 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) | |||
|
1999 | #ang1_ = self.fixData90HL(ang1_) | |||
|
2000 | #ang2_ = self.fixData90HL(ang2_) | |||
|
2001 | else: | |||
|
2002 | ang1_= angulos | |||
|
2003 | ang2_= angulos | |||
|
2004 | return ang1_,ang2_ | |||
|
2005 | ||||
|
2006 | ||||
|
2007 | def replaceNAN(self,data_weather,data_ele,val): | |||
|
2008 | data= data_ele | |||
|
2009 | data_T= data_weather | |||
|
2010 | ||||
|
2011 | if data.shape[0]> data_T.shape[0]: | |||
|
2012 | print("IF") | |||
|
2013 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | |||
|
2014 | c = 0 | |||
|
2015 | for i in range(len(data)): | |||
|
2016 | if numpy.isnan(data[i]): | |||
|
2017 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |||
|
2018 | else: | |||
|
2019 | data_N[i,:]=data_T[c,:] | |||
|
2020 | c=c+1 | |||
|
2021 | return data_N | |||
|
2022 | else: | |||
|
2023 | print("else") | |||
|
2024 | for i in range(len(data)): | |||
|
2025 | if numpy.isnan(data[i]): | |||
|
2026 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |||
|
2027 | return data_T | |||
|
2028 | ||||
|
2029 | def check_case(self,data_ele,ang_max,ang_min): | |||
|
2030 | start = data_ele[0] | |||
|
2031 | end = data_ele[-1] | |||
|
2032 | number = (end-start) | |||
|
2033 | len_ang=len(data_ele) | |||
|
2034 | print("start",start) | |||
|
2035 | print("end",end) | |||
|
2036 | print("number",number) | |||
|
2037 | ||||
|
2038 | print("len_ang",len_ang) | |||
|
2039 | ||||
|
2040 | #exit(1) | |||
|
2041 | ||||
|
2042 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida | |||
|
2043 | return 0 | |||
|
2044 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada | |||
|
2045 | # return 1 | |||
|
2046 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada | |||
|
2047 | return 1 | |||
|
2048 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX | |||
|
2049 | return 2 | |||
|
2050 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN | |||
|
2051 | return 3 | |||
|
2052 | ||||
|
2053 | ||||
|
2054 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): | |||
|
2055 | ang_max= ang_max | |||
|
2056 | ang_min= ang_min | |||
|
2057 | data_weather=data_weather | |||
|
2058 | val_ch=val_ch | |||
|
2059 | ##print("*********************DATA WEATHER**************************************") | |||
|
2060 | ##print(data_weather) | |||
|
2061 | if self.ini==0: | |||
|
2062 | ||||
|
2063 | #--------------------- new ------------------------- | |||
|
2064 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) | |||
|
2065 | ||||
|
2066 | #-------------------------CAMBIOS RHI--------------------------------- | |||
|
2067 | start= ang_min | |||
|
2068 | end = ang_max | |||
|
2069 | n= (ang_max-ang_min)/res | |||
|
2070 | #------ new | |||
|
2071 | self.start_data_ele = data_ele_new[0] | |||
|
2072 | self.end_data_ele = data_ele_new[-1] | |||
|
2073 | if tipo_case==0 or tipo_case==3: # SUBIDA | |||
|
2074 | n1= round(self.start_data_ele)- start | |||
|
2075 | n2= end - round(self.end_data_ele) | |||
|
2076 | print(self.start_data_ele) | |||
|
2077 | print(self.end_data_ele) | |||
|
2078 | if n1>0: | |||
|
2079 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |||
|
2080 | ele1_nan= numpy.ones(n1)*numpy.nan | |||
|
2081 | data_ele = numpy.hstack((ele1,data_ele_new)) | |||
|
2082 | print("ele1_nan",ele1_nan.shape) | |||
|
2083 | print("data_ele_old",data_ele_old.shape) | |||
|
2084 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |||
|
2085 | if n2>0: | |||
|
2086 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |||
|
2087 | ele2_nan= numpy.ones(n2)*numpy.nan | |||
|
2088 | data_ele = numpy.hstack((data_ele,ele2)) | |||
|
2089 | print("ele2_nan",ele2_nan.shape) | |||
|
2090 | print("data_ele_old",data_ele_old.shape) | |||
|
2091 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |||
|
2092 | ||||
|
2093 | if tipo_case==1 or tipo_case==2: # BAJADA | |||
|
2094 | data_ele_new = data_ele_new[::-1] # reversa | |||
|
2095 | data_ele_old = data_ele_old[::-1]# reversa | |||
|
2096 | data_weather = data_weather[::-1,:]# reversa | |||
|
2097 | vec= numpy.where(data_ele_new<ang_max) | |||
|
2098 | data_ele_new = data_ele_new[vec] | |||
|
2099 | data_ele_old = data_ele_old[vec] | |||
|
2100 | data_weather = data_weather[vec[0]] | |||
|
2101 | vec2= numpy.where(0<data_ele_new) | |||
|
2102 | data_ele_new = data_ele_new[vec2] | |||
|
2103 | data_ele_old = data_ele_old[vec2] | |||
|
2104 | data_weather = data_weather[vec2[0]] | |||
|
2105 | self.start_data_ele = data_ele_new[0] | |||
|
2106 | self.end_data_ele = data_ele_new[-1] | |||
|
2107 | ||||
|
2108 | n1= round(self.start_data_ele)- start | |||
|
2109 | n2= end - round(self.end_data_ele)-1 | |||
|
2110 | print(self.start_data_ele) | |||
|
2111 | print(self.end_data_ele) | |||
|
2112 | if n1>0: | |||
|
2113 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |||
|
2114 | ele1_nan= numpy.ones(n1)*numpy.nan | |||
|
2115 | data_ele = numpy.hstack((ele1,data_ele_new)) | |||
|
2116 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |||
|
2117 | if n2>0: | |||
|
2118 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |||
|
2119 | ele2_nan= numpy.ones(n2)*numpy.nan | |||
|
2120 | data_ele = numpy.hstack((data_ele,ele2)) | |||
|
2121 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |||
|
2122 | # RADAR | |||
|
2123 | # NOTA data_ele y data_weather es la variable que retorna | |||
|
2124 | val_mean = numpy.mean(data_weather[:,-1]) | |||
|
2125 | self.val_mean = val_mean | |||
|
2126 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |||
|
2127 | print("eleold",data_ele_old) | |||
|
2128 | print(self.data_ele_tmp[val_ch]) | |||
|
2129 | print(data_ele_old.shape[0]) | |||
|
2130 | print(self.data_ele_tmp[val_ch].shape[0]) | |||
|
2131 | if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91): | |||
|
2132 | import sys | |||
|
2133 | print("EXIT",self.ini) | |||
|
2134 | ||||
|
2135 | sys.exit(1) | |||
|
2136 | self.data_ele_tmp[val_ch]= data_ele_old | |||
|
2137 | else: | |||
|
2138 | #print("**********************************************") | |||
|
2139 | #print("****************VARIABLE**********************") | |||
|
2140 | #-------------------------CAMBIOS RHI--------------------------------- | |||
|
2141 | #--------------------------------------------------------------------- | |||
|
2142 | ##print("INPUT data_ele",data_ele) | |||
|
2143 | flag=0 | |||
|
2144 | start_ele = self.res_ele[0] | |||
|
2145 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) | |||
|
2146 | tipo_case = case_flag[-1] | |||
|
2147 | #print("TIPO DE DATA",tipo_case) | |||
|
2148 | #-----------new------------ | |||
|
2149 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) | |||
|
2150 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |||
|
2151 | ||||
|
2152 | #-------------------------------NEW RHI ITERATIVO------------------------- | |||
|
2153 | ||||
|
2154 | if tipo_case==0 : # SUBIDA | |||
|
2155 | vec = numpy.where(data_ele<ang_max) | |||
|
2156 | data_ele = data_ele[vec] | |||
|
2157 | data_ele_old = data_ele_old[vec] | |||
|
2158 | data_weather = data_weather[vec[0]] | |||
|
2159 | ||||
|
2160 | vec2 = numpy.where(0<data_ele) | |||
|
2161 | data_ele= data_ele[vec2] | |||
|
2162 | data_ele_old= data_ele_old[vec2] | |||
|
2163 | ##print(data_ele_new) | |||
|
2164 | data_weather= data_weather[vec2[0]] | |||
|
2165 | ||||
|
2166 | new_i_ele = int(round(data_ele[0])) | |||
|
2167 | new_f_ele = int(round(data_ele[-1])) | |||
|
2168 | #print(new_i_ele) | |||
|
2169 | #print(new_f_ele) | |||
|
2170 | #print(data_ele,len(data_ele)) | |||
|
2171 | #print(data_ele_old,len(data_ele_old)) | |||
|
2172 | if new_i_ele< 2: | |||
|
2173 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |||
|
2174 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |||
|
2175 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old | |||
|
2176 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele | |||
|
2177 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather | |||
|
2178 | data_ele = self.res_ele | |||
|
2179 | data_weather = self.res_weather[val_ch] | |||
|
2180 | ||||
|
2181 | elif tipo_case==1 : #BAJADA | |||
|
2182 | data_ele = data_ele[::-1] # reversa | |||
|
2183 | data_ele_old = data_ele_old[::-1]# reversa | |||
|
2184 | data_weather = data_weather[::-1,:]# reversa | |||
|
2185 | vec= numpy.where(data_ele<ang_max) | |||
|
2186 | data_ele = data_ele[vec] | |||
|
2187 | data_ele_old = data_ele_old[vec] | |||
|
2188 | data_weather = data_weather[vec[0]] | |||
|
2189 | vec2= numpy.where(0<data_ele) | |||
|
2190 | data_ele = data_ele[vec2] | |||
|
2191 | data_ele_old = data_ele_old[vec2] | |||
|
2192 | data_weather = data_weather[vec2[0]] | |||
|
2193 | ||||
|
2194 | ||||
|
2195 | new_i_ele = int(round(data_ele[0])) | |||
|
2196 | new_f_ele = int(round(data_ele[-1])) | |||
|
2197 | #print(data_ele) | |||
|
2198 | #print(ang_max) | |||
|
2199 | #print(data_ele_old) | |||
|
2200 | if new_i_ele <= 1: | |||
|
2201 | new_i_ele = 1 | |||
|
2202 | if round(data_ele[-1])>=ang_max-1: | |||
|
2203 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |||
|
2204 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |||
|
2205 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old | |||
|
2206 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele | |||
|
2207 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather | |||
|
2208 | data_ele = self.res_ele | |||
|
2209 | data_weather = self.res_weather[val_ch] | |||
|
2210 | ||||
|
2211 | elif tipo_case==2: #bajada | |||
|
2212 | vec = numpy.where(data_ele<ang_max) | |||
|
2213 | data_ele = data_ele[vec] | |||
|
2214 | data_weather= data_weather[vec[0]] | |||
|
2215 | ||||
|
2216 | len_vec = len(vec) | |||
|
2217 | data_ele_new = data_ele[::-1] # reversa | |||
|
2218 | data_weather = data_weather[::-1,:] | |||
|
2219 | new_i_ele = int(data_ele_new[0]) | |||
|
2220 | new_f_ele = int(data_ele_new[-1]) | |||
|
2221 | ||||
|
2222 | n1= new_i_ele- ang_min | |||
|
2223 | n2= ang_max - new_f_ele-1 | |||
|
2224 | if n1>0: | |||
|
2225 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |||
|
2226 | ele1_nan= numpy.ones(n1)*numpy.nan | |||
|
2227 | data_ele = numpy.hstack((ele1,data_ele_new)) | |||
|
2228 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |||
|
2229 | if n2>0: | |||
|
2230 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |||
|
2231 | ele2_nan= numpy.ones(n2)*numpy.nan | |||
|
2232 | data_ele = numpy.hstack((data_ele,ele2)) | |||
|
2233 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |||
|
2234 | ||||
|
2235 | self.data_ele_tmp[val_ch] = data_ele_old | |||
|
2236 | self.res_ele = data_ele | |||
|
2237 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |||
|
2238 | data_ele = self.res_ele | |||
|
2239 | data_weather = self.res_weather[val_ch] | |||
|
2240 | ||||
|
2241 | elif tipo_case==3:#subida | |||
|
2242 | vec = numpy.where(0<data_ele) | |||
|
2243 | data_ele= data_ele[vec] | |||
|
2244 | data_ele_new = data_ele | |||
|
2245 | data_ele_old= data_ele_old[vec] | |||
|
2246 | data_weather= data_weather[vec[0]] | |||
|
2247 | pos_ini = numpy.argmin(data_ele) | |||
|
2248 | if pos_ini>0: | |||
|
2249 | len_vec= len(data_ele) | |||
|
2250 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) | |||
|
2251 | #print(vec3) | |||
|
2252 | data_ele= data_ele[vec3] | |||
|
2253 | data_ele_new = data_ele | |||
|
2254 | data_ele_old= data_ele_old[vec3] | |||
|
2255 | data_weather= data_weather[vec3] | |||
|
2256 | ||||
|
2257 | new_i_ele = int(data_ele_new[0]) | |||
|
2258 | new_f_ele = int(data_ele_new[-1]) | |||
|
2259 | n1= new_i_ele- ang_min | |||
|
2260 | n2= ang_max - new_f_ele-1 | |||
|
2261 | if n1>0: | |||
|
2262 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |||
|
2263 | ele1_nan= numpy.ones(n1)*numpy.nan | |||
|
2264 | data_ele = numpy.hstack((ele1,data_ele_new)) | |||
|
2265 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |||
|
2266 | if n2>0: | |||
|
2267 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |||
|
2268 | ele2_nan= numpy.ones(n2)*numpy.nan | |||
|
2269 | data_ele = numpy.hstack((data_ele,ele2)) | |||
|
2270 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |||
|
2271 | ||||
|
2272 | self.data_ele_tmp[val_ch] = data_ele_old | |||
|
2273 | self.res_ele = data_ele | |||
|
2274 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |||
|
2275 | data_ele = self.res_ele | |||
|
2276 | data_weather = self.res_weather[val_ch] | |||
|
2277 | #print("self.data_ele_tmp",self.data_ele_tmp) | |||
|
2278 | return data_weather,data_ele | |||
|
2279 | ||||
|
2280 | def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min): | |||
|
2281 | ||||
|
2282 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1) | |||
|
2283 | ||||
|
2284 | data_ele = data_ele_old.copy() | |||
|
2285 | ||||
|
2286 | diff_1 = ang_max - data_ele[0] | |||
|
2287 | angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan | |||
|
2288 | ||||
|
2289 | diff_2 = data_ele[-1]-ang_min | |||
|
2290 | angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan | |||
|
2291 | ||||
|
2292 | angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan)) | |||
|
2293 | ||||
|
2294 | print(angles_filled) | |||
|
2295 | ||||
|
2296 | data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan | |||
|
2297 | data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan | |||
|
2298 | ||||
|
2299 | data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0) | |||
|
2300 | #val_mean = numpy.mean(data_weather[:,-1]) | |||
|
2301 | #self.val_mean = val_mean | |||
|
2302 | print(data_filled) | |||
|
2303 | data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan) | |||
|
2304 | ||||
|
2305 | print(data_filled) | |||
|
2306 | print(data_filled.shape) | |||
|
2307 | print(angles_filled.shape) | |||
|
2308 | ||||
|
2309 | return data_filled,angles_filled | |||
|
2310 | ||||
|
2311 | def plot(self): | |||
|
2312 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |||
|
2313 | data = self.data[-1] | |||
|
2314 | r = self.data.yrange | |||
|
2315 | delta_height = r[1]-r[0] | |||
|
2316 | r_mask = numpy.where(r>=0)[0] | |||
|
2317 | self.r_mask =r_mask | |||
|
2318 | ##print("delta_height",delta_height) | |||
|
2319 | #print("r_mask",r_mask,len(r_mask)) | |||
|
2320 | r = numpy.arange(len(r_mask))*delta_height | |||
|
2321 | self.y = 2*r | |||
|
2322 | res = 1 | |||
|
2323 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) | |||
|
2324 | ang_max = self.ang_max | |||
|
2325 | ang_min = self.ang_min | |||
|
2326 | var_ang =ang_max - ang_min | |||
|
2327 | step = (int(var_ang)/(res*data['weather'].shape[0])) | |||
|
2328 | ###print("step",step) | |||
|
2329 | #-------------------------------------------------------- | |||
|
2330 | ##print('weather',data['weather'].shape) | |||
|
2331 | ##print('ele',data['ele'].shape) | |||
|
2332 | ||||
|
2333 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |||
|
2334 | ###self.res_azi = numpy.mean(data['azi']) | |||
|
2335 | ###print("self.res_ele",self.res_ele) | |||
|
2336 | ||||
|
2337 | plt.clf() | |||
|
2338 | subplots = [121, 122] | |||
|
2339 | #if self.ini==0: | |||
|
2340 | #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan | |||
|
2341 | #print("SHAPE",self.data_ele_tmp.shape) | |||
|
2342 | ||||
|
2343 | for i,ax in enumerate(self.axes): | |||
|
2344 | res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min) | |||
|
2345 | self.res_azi = numpy.mean(data['azi']) | |||
|
2346 | ||||
|
2347 | if ax.firsttime: | |||
|
2348 | #plt.clf() | |||
|
2349 | print("Frist Plot") | |||
|
2350 | print(data['weather'][i][:,r_mask].shape) | |||
|
2351 | print(data['ele'].shape) | |||
|
2352 | cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |||
|
2353 | #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80) | |||
|
2354 | gh = cgax.get_grid_helper() | |||
|
2355 | locs = numpy.linspace(ang_min,ang_max,var_ang+1) | |||
|
2356 | gh.grid_finder.grid_locator1 = FixedLocator(locs) | |||
|
2357 | gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs])) | |||
|
2358 | ||||
|
2359 | ||||
|
2360 | #fig=self.figures[0] | |||
|
2361 | else: | |||
|
2362 | #plt.clf() | |||
|
2363 | print("ELSE PLOT") | |||
|
2364 | cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |||
|
2365 | #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80) | |||
|
2366 | gh = cgax.get_grid_helper() | |||
|
2367 | locs = numpy.linspace(ang_min,ang_max,var_ang+1) | |||
|
2368 | gh.grid_finder.grid_locator1 = FixedLocator(locs) | |||
|
2369 | gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs])) | |||
|
2370 | ||||
|
2371 | caax = cgax.parasites[0] | |||
|
2372 | paax = cgax.parasites[1] | |||
|
2373 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |||
|
2374 | caax.set_xlabel('x_range [km]') | |||
|
2375 | caax.set_ylabel('y_range [km]') | |||
|
2376 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') | |||
|
2377 | print("***************************self.ini****************************",self.ini) | |||
|
2378 | self.ini= self.ini+1 |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now