##// END OF EJS Templates
Block360Update
rflores -
r1439:14a3ab7942a7
parent child
Show More

The requested changes are too big and content was truncated. Show full diff

This diff has been collapsed as it changes many lines, (513 lines changed) Show them Hide them
@@ -1,1865 +1,2378
1 import os
1 import os
2 import datetime
2 import datetime
3 import numpy
3 import numpy
4 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
4
5
5 from schainpy.model.graphics.jroplot_base import Plot, plt
6 from schainpy.model.graphics.jroplot_base import Plot, plt
6 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
7 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
7 from schainpy.utils import log
8 from schainpy.utils import log
8 # libreria wradlib
9 # libreria wradlib
9 import wradlib as wrl
10 import wradlib as wrl
10
11
11 EARTH_RADIUS = 6.3710e3
12 EARTH_RADIUS = 6.3710e3
12
13
13
14
14 def ll2xy(lat1, lon1, lat2, lon2):
15 def ll2xy(lat1, lon1, lat2, lon2):
15
16
16 p = 0.017453292519943295
17 p = 0.017453292519943295
17 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
18 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
18 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
19 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
19 r = 12742 * numpy.arcsin(numpy.sqrt(a))
20 r = 12742 * numpy.arcsin(numpy.sqrt(a))
20 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
21 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
21 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
22 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
22 theta = -theta + numpy.pi/2
23 theta = -theta + numpy.pi/2
23 return r*numpy.cos(theta), r*numpy.sin(theta)
24 return r*numpy.cos(theta), r*numpy.sin(theta)
24
25
25
26
26 def km2deg(km):
27 def km2deg(km):
27 '''
28 '''
28 Convert distance in km to degrees
29 Convert distance in km to degrees
29 '''
30 '''
30
31
31 return numpy.rad2deg(km/EARTH_RADIUS)
32 return numpy.rad2deg(km/EARTH_RADIUS)
32
33
33
34
34
35
35 class SpectralMomentsPlot(SpectraPlot):
36 class SpectralMomentsPlot(SpectraPlot):
36 '''
37 '''
37 Plot for Spectral Moments
38 Plot for Spectral Moments
38 '''
39 '''
39 CODE = 'spc_moments'
40 CODE = 'spc_moments'
40 # colormap = 'jet'
41 # colormap = 'jet'
41 # plot_type = 'pcolor'
42 # plot_type = 'pcolor'
42
43
43 class DobleGaussianPlot(SpectraPlot):
44 class DobleGaussianPlot(SpectraPlot):
44 '''
45 '''
45 Plot for Double Gaussian Plot
46 Plot for Double Gaussian Plot
46 '''
47 '''
47 CODE = 'gaussian_fit'
48 CODE = 'gaussian_fit'
48 # colormap = 'jet'
49 # colormap = 'jet'
49 # plot_type = 'pcolor'
50 # plot_type = 'pcolor'
50
51
51 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
52 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
52 '''
53 '''
53 Plot SpectraCut with Double Gaussian Fit
54 Plot SpectraCut with Double Gaussian Fit
54 '''
55 '''
55 CODE = 'cut_gaussian_fit'
56 CODE = 'cut_gaussian_fit'
56
57
57 class SnrPlot(RTIPlot):
58 class SnrPlot(RTIPlot):
58 '''
59 '''
59 Plot for SNR Data
60 Plot for SNR Data
60 '''
61 '''
61
62
62 CODE = 'snr'
63 CODE = 'snr'
63 colormap = 'jet'
64 colormap = 'jet'
64
65
65 def update(self, dataOut):
66 def update(self, dataOut):
66
67
67 data = {
68 data = {
68 'snr': 10*numpy.log10(dataOut.data_snr)
69 'snr': 10*numpy.log10(dataOut.data_snr)
69 }
70 }
70
71
71 return data, {}
72 return data, {}
72
73
73 class DopplerPlot(RTIPlot):
74 class DopplerPlot(RTIPlot):
74 '''
75 '''
75 Plot for DOPPLER Data (1st moment)
76 Plot for DOPPLER Data (1st moment)
76 '''
77 '''
77
78
78 CODE = 'dop'
79 CODE = 'dop'
79 colormap = 'jet'
80 colormap = 'jet'
80
81
81 def update(self, dataOut):
82 def update(self, dataOut):
82
83
83 data = {
84 data = {
84 'dop': 10*numpy.log10(dataOut.data_dop)
85 'dop': 10*numpy.log10(dataOut.data_dop)
85 }
86 }
86
87
87 return data, {}
88 return data, {}
88
89
89 class PowerPlot(RTIPlot):
90 class PowerPlot(RTIPlot):
90 '''
91 '''
91 Plot for Power Data (0 moment)
92 Plot for Power Data (0 moment)
92 '''
93 '''
93
94
94 CODE = 'pow'
95 CODE = 'pow'
95 colormap = 'jet'
96 colormap = 'jet'
96
97
97 def update(self, dataOut):
98 def update(self, dataOut):
98 data = {
99 data = {
99 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
100 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
100 }
101 }
101 return data, {}
102 return data, {}
102
103
103 class SpectralWidthPlot(RTIPlot):
104 class SpectralWidthPlot(RTIPlot):
104 '''
105 '''
105 Plot for Spectral Width Data (2nd moment)
106 Plot for Spectral Width Data (2nd moment)
106 '''
107 '''
107
108
108 CODE = 'width'
109 CODE = 'width'
109 colormap = 'jet'
110 colormap = 'jet'
110
111
111 def update(self, dataOut):
112 def update(self, dataOut):
112
113
113 data = {
114 data = {
114 'width': dataOut.data_width
115 'width': dataOut.data_width
115 }
116 }
116
117
117 return data, {}
118 return data, {}
118
119
119 class SkyMapPlot(Plot):
120 class SkyMapPlot(Plot):
120 '''
121 '''
121 Plot for meteors detection data
122 Plot for meteors detection data
122 '''
123 '''
123
124
124 CODE = 'param'
125 CODE = 'param'
125
126
126 def setup(self):
127 def setup(self):
127
128
128 self.ncols = 1
129 self.ncols = 1
129 self.nrows = 1
130 self.nrows = 1
130 self.width = 7.2
131 self.width = 7.2
131 self.height = 7.2
132 self.height = 7.2
132 self.nplots = 1
133 self.nplots = 1
133 self.xlabel = 'Zonal Zenith Angle (deg)'
134 self.xlabel = 'Zonal Zenith Angle (deg)'
134 self.ylabel = 'Meridional Zenith Angle (deg)'
135 self.ylabel = 'Meridional Zenith Angle (deg)'
135 self.polar = True
136 self.polar = True
136 self.ymin = -180
137 self.ymin = -180
137 self.ymax = 180
138 self.ymax = 180
138 self.colorbar = False
139 self.colorbar = False
139
140
140 def plot(self):
141 def plot(self):
141
142
142 arrayParameters = numpy.concatenate(self.data['param'])
143 arrayParameters = numpy.concatenate(self.data['param'])
143 error = arrayParameters[:, -1]
144 error = arrayParameters[:, -1]
144 indValid = numpy.where(error == 0)[0]
145 indValid = numpy.where(error == 0)[0]
145 finalMeteor = arrayParameters[indValid, :]
146 finalMeteor = arrayParameters[indValid, :]
146 finalAzimuth = finalMeteor[:, 3]
147 finalAzimuth = finalMeteor[:, 3]
147 finalZenith = finalMeteor[:, 4]
148 finalZenith = finalMeteor[:, 4]
148
149
149 x = finalAzimuth * numpy.pi / 180
150 x = finalAzimuth * numpy.pi / 180
150 y = finalZenith
151 y = finalZenith
151
152
152 ax = self.axes[0]
153 ax = self.axes[0]
153
154
154 if ax.firsttime:
155 if ax.firsttime:
155 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
156 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
156 else:
157 else:
157 ax.plot.set_data(x, y)
158 ax.plot.set_data(x, y)
158
159
159 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
160 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
160 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
161 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
161 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
162 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
162 dt2,
163 dt2,
163 len(x))
164 len(x))
164 self.titles[0] = title
165 self.titles[0] = title
165
166
166
167
167 class GenericRTIPlot(Plot):
168 class GenericRTIPlot(Plot):
168 '''
169 '''
169 Plot for data_xxxx object
170 Plot for data_xxxx object
170 '''
171 '''
171
172
172 CODE = 'param'
173 CODE = 'param'
173 colormap = 'viridis'
174 colormap = 'viridis'
174 plot_type = 'pcolorbuffer'
175 plot_type = 'pcolorbuffer'
175
176
176 def setup(self):
177 def setup(self):
177 self.xaxis = 'time'
178 self.xaxis = 'time'
178 self.ncols = 1
179 self.ncols = 1
179 self.nrows = self.data.shape('param')[0]
180 self.nrows = self.data.shape('param')[0]
180 self.nplots = self.nrows
181 self.nplots = self.nrows
181 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
182 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
182
183
183 if not self.xlabel:
184 if not self.xlabel:
184 self.xlabel = 'Time'
185 self.xlabel = 'Time'
185
186
186 self.ylabel = 'Range [km]'
187 self.ylabel = 'Range [km]'
187 if not self.titles:
188 if not self.titles:
188 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
189 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
189
190
190 def update(self, dataOut):
191 def update(self, dataOut):
191
192
192 data = {
193 data = {
193 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
194 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
194 }
195 }
195
196
196 meta = {}
197 meta = {}
197
198
198 return data, meta
199 return data, meta
199
200
200 def plot(self):
201 def plot(self):
201 # self.data.normalize_heights()
202 # self.data.normalize_heights()
202 self.x = self.data.times
203 self.x = self.data.times
203 self.y = self.data.yrange
204 self.y = self.data.yrange
204 self.z = self.data['param']
205 self.z = self.data['param']
205 self.z = 10*numpy.log10(self.z)
206 self.z = 10*numpy.log10(self.z)
206 self.z = numpy.ma.masked_invalid(self.z)
207 self.z = numpy.ma.masked_invalid(self.z)
207
208
208 if self.decimation is None:
209 if self.decimation is None:
209 x, y, z = self.fill_gaps(self.x, self.y, self.z)
210 x, y, z = self.fill_gaps(self.x, self.y, self.z)
210 else:
211 else:
211 x, y, z = self.fill_gaps(*self.decimate())
212 x, y, z = self.fill_gaps(*self.decimate())
212
213
213 for n, ax in enumerate(self.axes):
214 for n, ax in enumerate(self.axes):
214
215
215 self.zmax = self.zmax if self.zmax is not None else numpy.max(
216 self.zmax = self.zmax if self.zmax is not None else numpy.max(
216 self.z[n])
217 self.z[n])
217 self.zmin = self.zmin if self.zmin is not None else numpy.min(
218 self.zmin = self.zmin if self.zmin is not None else numpy.min(
218 self.z[n])
219 self.z[n])
219
220
220 if ax.firsttime:
221 if ax.firsttime:
221 if self.zlimits is not None:
222 if self.zlimits is not None:
222 self.zmin, self.zmax = self.zlimits[n]
223 self.zmin, self.zmax = self.zlimits[n]
223
224
224 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
225 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
225 vmin=self.zmin,
226 vmin=self.zmin,
226 vmax=self.zmax,
227 vmax=self.zmax,
227 cmap=self.cmaps[n]
228 cmap=self.cmaps[n]
228 )
229 )
229 else:
230 else:
230 if self.zlimits is not None:
231 if self.zlimits is not None:
231 self.zmin, self.zmax = self.zlimits[n]
232 self.zmin, self.zmax = self.zlimits[n]
232 ax.collections.remove(ax.collections[0])
233 ax.collections.remove(ax.collections[0])
233 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
234 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
234 vmin=self.zmin,
235 vmin=self.zmin,
235 vmax=self.zmax,
236 vmax=self.zmax,
236 cmap=self.cmaps[n]
237 cmap=self.cmaps[n]
237 )
238 )
238
239
239
240
240 class PolarMapPlot(Plot):
241 class PolarMapPlot(Plot):
241 '''
242 '''
242 Plot for weather radar
243 Plot for weather radar
243 '''
244 '''
244
245
245 CODE = 'param'
246 CODE = 'param'
246 colormap = 'seismic'
247 colormap = 'seismic'
247
248
248 def setup(self):
249 def setup(self):
249 self.ncols = 1
250 self.ncols = 1
250 self.nrows = 1
251 self.nrows = 1
251 self.width = 9
252 self.width = 9
252 self.height = 8
253 self.height = 8
253 self.mode = self.data.meta['mode']
254 self.mode = self.data.meta['mode']
254 if self.channels is not None:
255 if self.channels is not None:
255 self.nplots = len(self.channels)
256 self.nplots = len(self.channels)
256 self.nrows = len(self.channels)
257 self.nrows = len(self.channels)
257 else:
258 else:
258 self.nplots = self.data.shape(self.CODE)[0]
259 self.nplots = self.data.shape(self.CODE)[0]
259 self.nrows = self.nplots
260 self.nrows = self.nplots
260 self.channels = list(range(self.nplots))
261 self.channels = list(range(self.nplots))
261 if self.mode == 'E':
262 if self.mode == 'E':
262 self.xlabel = 'Longitude'
263 self.xlabel = 'Longitude'
263 self.ylabel = 'Latitude'
264 self.ylabel = 'Latitude'
264 else:
265 else:
265 self.xlabel = 'Range (km)'
266 self.xlabel = 'Range (km)'
266 self.ylabel = 'Height (km)'
267 self.ylabel = 'Height (km)'
267 self.bgcolor = 'white'
268 self.bgcolor = 'white'
268 self.cb_labels = self.data.meta['units']
269 self.cb_labels = self.data.meta['units']
269 self.lat = self.data.meta['latitude']
270 self.lat = self.data.meta['latitude']
270 self.lon = self.data.meta['longitude']
271 self.lon = self.data.meta['longitude']
271 self.xmin, self.xmax = float(
272 self.xmin, self.xmax = float(
272 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
273 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
273 self.ymin, self.ymax = float(
274 self.ymin, self.ymax = float(
274 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
275 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
275 # self.polar = True
276 # self.polar = True
276
277
277 def plot(self):
278 def plot(self):
278
279
279 for n, ax in enumerate(self.axes):
280 for n, ax in enumerate(self.axes):
280 data = self.data['param'][self.channels[n]]
281 data = self.data['param'][self.channels[n]]
281
282
282 zeniths = numpy.linspace(
283 zeniths = numpy.linspace(
283 0, self.data.meta['max_range'], data.shape[1])
284 0, self.data.meta['max_range'], data.shape[1])
284 if self.mode == 'E':
285 if self.mode == 'E':
285 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
286 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
286 r, theta = numpy.meshgrid(zeniths, azimuths)
287 r, theta = numpy.meshgrid(zeniths, azimuths)
287 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
288 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
288 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
289 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
289 x = km2deg(x) + self.lon
290 x = km2deg(x) + self.lon
290 y = km2deg(y) + self.lat
291 y = km2deg(y) + self.lat
291 else:
292 else:
292 azimuths = numpy.radians(self.data.yrange)
293 azimuths = numpy.radians(self.data.yrange)
293 r, theta = numpy.meshgrid(zeniths, azimuths)
294 r, theta = numpy.meshgrid(zeniths, azimuths)
294 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
295 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
295 self.y = zeniths
296 self.y = zeniths
296
297
297 if ax.firsttime:
298 if ax.firsttime:
298 if self.zlimits is not None:
299 if self.zlimits is not None:
299 self.zmin, self.zmax = self.zlimits[n]
300 self.zmin, self.zmax = self.zlimits[n]
300 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
301 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
301 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
302 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
302 vmin=self.zmin,
303 vmin=self.zmin,
303 vmax=self.zmax,
304 vmax=self.zmax,
304 cmap=self.cmaps[n])
305 cmap=self.cmaps[n])
305 else:
306 else:
306 if self.zlimits is not None:
307 if self.zlimits is not None:
307 self.zmin, self.zmax = self.zlimits[n]
308 self.zmin, self.zmax = self.zlimits[n]
308 ax.collections.remove(ax.collections[0])
309 ax.collections.remove(ax.collections[0])
309 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
310 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
310 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
311 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
311 vmin=self.zmin,
312 vmin=self.zmin,
312 vmax=self.zmax,
313 vmax=self.zmax,
313 cmap=self.cmaps[n])
314 cmap=self.cmaps[n])
314
315
315 if self.mode == 'A':
316 if self.mode == 'A':
316 continue
317 continue
317
318
318 # plot district names
319 # plot district names
319 f = open('/data/workspace/schain_scripts/distrito.csv')
320 f = open('/data/workspace/schain_scripts/distrito.csv')
320 for line in f:
321 for line in f:
321 label, lon, lat = [s.strip() for s in line.split(',') if s]
322 label, lon, lat = [s.strip() for s in line.split(',') if s]
322 lat = float(lat)
323 lat = float(lat)
323 lon = float(lon)
324 lon = float(lon)
324 # ax.plot(lon, lat, '.b', ms=2)
325 # ax.plot(lon, lat, '.b', ms=2)
325 ax.text(lon, lat, label.decode('utf8'), ha='center',
326 ax.text(lon, lat, label.decode('utf8'), ha='center',
326 va='bottom', size='8', color='black')
327 va='bottom', size='8', color='black')
327
328
328 # plot limites
329 # plot limites
329 limites = []
330 limites = []
330 tmp = []
331 tmp = []
331 for line in open('/data/workspace/schain_scripts/lima.csv'):
332 for line in open('/data/workspace/schain_scripts/lima.csv'):
332 if '#' in line:
333 if '#' in line:
333 if tmp:
334 if tmp:
334 limites.append(tmp)
335 limites.append(tmp)
335 tmp = []
336 tmp = []
336 continue
337 continue
337 values = line.strip().split(',')
338 values = line.strip().split(',')
338 tmp.append((float(values[0]), float(values[1])))
339 tmp.append((float(values[0]), float(values[1])))
339 for points in limites:
340 for points in limites:
340 ax.add_patch(
341 ax.add_patch(
341 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
342 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
342
343
343 # plot Cuencas
344 # plot Cuencas
344 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
345 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
345 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
346 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
346 values = [line.strip().split(',') for line in f]
347 values = [line.strip().split(',') for line in f]
347 points = [(float(s[0]), float(s[1])) for s in values]
348 points = [(float(s[0]), float(s[1])) for s in values]
348 ax.add_patch(Polygon(points, ec='b', fc='none'))
349 ax.add_patch(Polygon(points, ec='b', fc='none'))
349
350
350 # plot grid
351 # plot grid
351 for r in (15, 30, 45, 60):
352 for r in (15, 30, 45, 60):
352 ax.add_artist(plt.Circle((self.lon, self.lat),
353 ax.add_artist(plt.Circle((self.lon, self.lat),
353 km2deg(r), color='0.6', fill=False, lw=0.2))
354 km2deg(r), color='0.6', fill=False, lw=0.2))
354 ax.text(
355 ax.text(
355 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
356 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
356 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
357 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
357 '{}km'.format(r),
358 '{}km'.format(r),
358 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
359 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
359
360
360 if self.mode == 'E':
361 if self.mode == 'E':
361 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
362 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
362 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
363 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
363 else:
364 else:
364 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
365 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
365 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
366 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
366
367
367 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
368 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
368 self.titles = ['{} {}'.format(
369 self.titles = ['{} {}'.format(
369 self.data.parameters[x], title) for x in self.channels]
370 self.data.parameters[x], title) for x in self.channels]
370
371
371 class WeatherPlot(Plot):
372 class WeatherPlot(Plot):
372 CODE = 'weather'
373 CODE = 'weather'
373 plot_name = 'weather'
374 plot_name = 'weather'
374 plot_type = 'ppistyle'
375 plot_type = 'ppistyle'
375 buffering = False
376 buffering = False
376
377
377 def setup(self):
378 def setup(self):
378 self.ncols = 1
379 self.ncols = 1
379 self.nrows = 1
380 self.nrows = 1
380 self.width =8
381 self.width =8
381 self.height =8
382 self.height =8
382 self.nplots= 1
383 self.nplots= 1
383 self.ylabel= 'Range [Km]'
384 self.ylabel= 'Range [Km]'
384 self.titles= ['Weather']
385 self.titles= ['Weather']
385 self.colorbar=False
386 self.colorbar=False
386 self.ini =0
387 self.ini =0
387 self.len_azi =0
388 self.len_azi =0
388 self.buffer_ini = None
389 self.buffer_ini = None
389 self.buffer_azi = None
390 self.buffer_azi = None
390 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
391 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
391 self.flag =0
392 self.flag =0
392 self.indicador= 0
393 self.indicador= 0
393 self.last_data_azi = None
394 self.last_data_azi = None
394 self.val_mean = None
395 self.val_mean = None
395
396
396 def update(self, dataOut):
397 def update(self, dataOut):
397
398
398 data = {}
399 data = {}
399 meta = {}
400 meta = {}
400 if hasattr(dataOut, 'dataPP_POWER'):
401 if hasattr(dataOut, 'dataPP_POWER'):
401 factor = 1
402 factor = 1
402 if hasattr(dataOut, 'nFFTPoints'):
403 if hasattr(dataOut, 'nFFTPoints'):
403 factor = dataOut.normFactor
404 factor = dataOut.normFactor
404 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
405 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
405 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
406 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
406 data['azi'] = dataOut.data_azi
407 data['azi'] = dataOut.data_azi
407 data['ele'] = dataOut.data_ele
408 data['ele'] = dataOut.data_ele
408 return data, meta
409 return data, meta
409
410
410 def get2List(self,angulos):
411 def get2List(self,angulos):
411 list1=[]
412 list1=[]
412 list2=[]
413 list2=[]
413 for i in reversed(range(len(angulos))):
414 for i in reversed(range(len(angulos))):
414 diff_ = angulos[i]-angulos[i-1]
415 diff_ = angulos[i]-angulos[i-1]
415 if diff_ >1.5:
416 if diff_ >1.5:
416 list1.append(i-1)
417 list1.append(i-1)
417 list2.append(diff_)
418 list2.append(diff_)
418 return list(reversed(list1)),list(reversed(list2))
419 return list(reversed(list1)),list(reversed(list2))
419
420
420 def fixData360(self,list_,ang_):
421 def fixData360(self,list_,ang_):
421 if list_[0]==-1:
422 if list_[0]==-1:
422 vec = numpy.where(ang_<ang_[0])
423 vec = numpy.where(ang_<ang_[0])
423 ang_[vec] = ang_[vec]+360
424 ang_[vec] = ang_[vec]+360
424 return ang_
425 return ang_
425 return ang_
426 return ang_
426
427
427 def fixData360HL(self,angulos):
428 def fixData360HL(self,angulos):
428 vec = numpy.where(angulos>=360)
429 vec = numpy.where(angulos>=360)
429 angulos[vec]=angulos[vec]-360
430 angulos[vec]=angulos[vec]-360
430 return angulos
431 return angulos
431
432
432 def search_pos(self,pos,list_):
433 def search_pos(self,pos,list_):
433 for i in range(len(list_)):
434 for i in range(len(list_)):
434 if pos == list_[i]:
435 if pos == list_[i]:
435 return True,i
436 return True,i
436 i=None
437 i=None
437 return False,i
438 return False,i
438
439
439 def fixDataComp(self,ang_,list1_,list2_):
440 def fixDataComp(self,ang_,list1_,list2_):
440 size = len(ang_)
441 size = len(ang_)
441 size2 = 0
442 size2 = 0
442 for i in range(len(list2_)):
443 for i in range(len(list2_)):
443 size2=size2+round(list2_[i])-1
444 size2=size2+round(list2_[i])-1
444 new_size= size+size2
445 new_size= size+size2
445 ang_new = numpy.zeros(new_size)
446 ang_new = numpy.zeros(new_size)
446 ang_new2 = numpy.zeros(new_size)
447 ang_new2 = numpy.zeros(new_size)
447
448
448 tmp = 0
449 tmp = 0
449 c = 0
450 c = 0
450 for i in range(len(ang_)):
451 for i in range(len(ang_)):
451 ang_new[tmp +c] = ang_[i]
452 ang_new[tmp +c] = ang_[i]
452 ang_new2[tmp+c] = ang_[i]
453 ang_new2[tmp+c] = ang_[i]
453 condition , value = self.search_pos(i,list1_)
454 condition , value = self.search_pos(i,list1_)
454 if condition:
455 if condition:
455 pos = tmp + c + 1
456 pos = tmp + c + 1
456 for k in range(round(list2_[value])-1):
457 for k in range(round(list2_[value])-1):
457 ang_new[pos+k] = ang_new[pos+k-1]+1
458 ang_new[pos+k] = ang_new[pos+k-1]+1
458 ang_new2[pos+k] = numpy.nan
459 ang_new2[pos+k] = numpy.nan
459 tmp = pos +k
460 tmp = pos +k
460 c = 0
461 c = 0
461 c=c+1
462 c=c+1
462 return ang_new,ang_new2
463 return ang_new,ang_new2
463
464
464 def globalCheckPED(self,angulos):
465 def globalCheckPED(self,angulos):
465 l1,l2 = self.get2List(angulos)
466 l1,l2 = self.get2List(angulos)
466 if len(l1)>0:
467 if len(l1)>0:
467 angulos2 = self.fixData360(list_=l1,ang_=angulos)
468 angulos2 = self.fixData360(list_=l1,ang_=angulos)
468 l1,l2 = self.get2List(angulos2)
469 l1,l2 = self.get2List(angulos2)
469
470
470 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
471 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
471 ang1_ = self.fixData360HL(ang1_)
472 ang1_ = self.fixData360HL(ang1_)
472 ang2_ = self.fixData360HL(ang2_)
473 ang2_ = self.fixData360HL(ang2_)
473 else:
474 else:
474 ang1_= angulos
475 ang1_= angulos
475 ang2_= angulos
476 ang2_= angulos
476 return ang1_,ang2_
477 return ang1_,ang2_
477
478
478 def analizeDATA(self,data_azi):
479 def analizeDATA(self,data_azi):
479 list1 = []
480 list1 = []
480 list2 = []
481 list2 = []
481 dat = data_azi
482 dat = data_azi
482 for i in reversed(range(1,len(dat))):
483 for i in reversed(range(1,len(dat))):
483 if dat[i]>dat[i-1]:
484 if dat[i]>dat[i-1]:
484 diff = int(dat[i])-int(dat[i-1])
485 diff = int(dat[i])-int(dat[i-1])
485 else:
486 else:
486 diff = 360+int(dat[i])-int(dat[i-1])
487 diff = 360+int(dat[i])-int(dat[i-1])
487 if diff > 1:
488 if diff > 1:
488 list1.append(i-1)
489 list1.append(i-1)
489 list2.append(diff-1)
490 list2.append(diff-1)
490 return list1,list2
491 return list1,list2
491
492
492 def fixDATANEW(self,data_azi,data_weather):
493 def fixDATANEW(self,data_azi,data_weather):
493 list1,list2 = self.analizeDATA(data_azi)
494 list1,list2 = self.analizeDATA(data_azi)
494 if len(list1)== 0:
495 if len(list1)== 0:
495 return data_azi,data_weather
496 return data_azi,data_weather
496 else:
497 else:
497 resize = 0
498 resize = 0
498 for i in range(len(list2)):
499 for i in range(len(list2)):
499 resize= resize + list2[i]
500 resize= resize + list2[i]
500 new_data_azi = numpy.resize(data_azi,resize)
501 new_data_azi = numpy.resize(data_azi,resize)
501 new_data_weather= numpy.resize(date_weather,resize)
502 new_data_weather= numpy.resize(date_weather,resize)
502
503
503 for i in range(len(list2)):
504 for i in range(len(list2)):
504 j=0
505 j=0
505 position=list1[i]+1
506 position=list1[i]+1
506 for j in range(list2[i]):
507 for j in range(list2[i]):
507 new_data_azi[position+j]=new_data_azi[position+j-1]+1
508 new_data_azi[position+j]=new_data_azi[position+j-1]+1
508 return new_data_azi
509 return new_data_azi
509
510
510 def fixDATA(self,data_azi):
511 def fixDATA(self,data_azi):
511 data=data_azi
512 data=data_azi
512 for i in range(len(data)):
513 for i in range(len(data)):
513 if numpy.isnan(data[i]):
514 if numpy.isnan(data[i]):
514 data[i]=data[i-1]+1
515 data[i]=data[i-1]+1
515 return data
516 return data
516
517
517 def replaceNAN(self,data_weather,data_azi,val):
518 def replaceNAN(self,data_weather,data_azi,val):
518 data= data_azi
519 data= data_azi
519 data_T= data_weather
520 data_T= data_weather
520 if data.shape[0]> data_T.shape[0]:
521 if data.shape[0]> data_T.shape[0]:
521 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
522 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
522 c = 0
523 c = 0
523 for i in range(len(data)):
524 for i in range(len(data)):
524 if numpy.isnan(data[i]):
525 if numpy.isnan(data[i]):
525 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
526 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
526 else:
527 else:
527 data_N[i,:]=data_T[c,:]
528 data_N[i,:]=data_T[c,:]
528 c=c+1
529 c=c+1
529 return data_N
530 return data_N
530 else:
531 else:
531 for i in range(len(data)):
532 for i in range(len(data)):
532 if numpy.isnan(data[i]):
533 if numpy.isnan(data[i]):
533 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
534 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
534 return data_T
535 return data_T
535
536
536 def const_ploteo(self,data_weather,data_azi,step,res):
537 def const_ploteo(self,data_weather,data_azi,step,res):
537 if self.ini==0:
538 if self.ini==0:
538 #-------
539 #-------
539 n = (360/res)-len(data_azi)
540 n = (360/res)-len(data_azi)
540 #--------------------- new -------------------------
541 #--------------------- new -------------------------
541 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
542 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
542 #------------------------
543 #------------------------
543 start = data_azi_new[-1] + res
544 start = data_azi_new[-1] + res
544 end = data_azi_new[0] - res
545 end = data_azi_new[0] - res
545 #------ new
546 #------ new
546 self.last_data_azi = end
547 self.last_data_azi = end
547 if start>end:
548 if start>end:
548 end = end + 360
549 end = end + 360
549 azi_vacia = numpy.linspace(start,end,int(n))
550 azi_vacia = numpy.linspace(start,end,int(n))
550 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
551 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
551 data_azi = numpy.hstack((data_azi_new,azi_vacia))
552 data_azi = numpy.hstack((data_azi_new,azi_vacia))
552 # RADAR
553 # RADAR
553 val_mean = numpy.mean(data_weather[:,-1])
554 val_mean = numpy.mean(data_weather[:,-1])
554 self.val_mean = val_mean
555 self.val_mean = val_mean
555 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
556 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
556 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
557 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
557 data_weather = numpy.vstack((data_weather,data_weather_cmp))
558 data_weather = numpy.vstack((data_weather,data_weather_cmp))
558 else:
559 else:
559 # azimuth
560 # azimuth
560 flag=0
561 flag=0
561 start_azi = self.res_azi[0]
562 start_azi = self.res_azi[0]
562 #-----------new------------
563 #-----------new------------
563 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
564 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
564 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
565 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
565 #--------------------------
566 #--------------------------
566 start = data_azi[0]
567 start = data_azi[0]
567 end = data_azi[-1]
568 end = data_azi[-1]
568 self.last_data_azi= end
569 self.last_data_azi= end
569 if start< start_azi:
570 if start< start_azi:
570 start = start +360
571 start = start +360
571 if end <start_azi:
572 if end <start_azi:
572 end = end +360
573 end = end +360
573
574
574 pos_ini = int((start-start_azi)/res)
575 pos_ini = int((start-start_azi)/res)
575 len_azi = len(data_azi)
576 len_azi = len(data_azi)
576 if (360-pos_ini)<len_azi:
577 if (360-pos_ini)<len_azi:
577 if pos_ini+1==360:
578 if pos_ini+1==360:
578 pos_ini=0
579 pos_ini=0
579 else:
580 else:
580 flag=1
581 flag=1
581 dif= 360-pos_ini
582 dif= 360-pos_ini
582 comp= len_azi-dif
583 comp= len_azi-dif
583 #-----------------
584 #-----------------
584 if flag==0:
585 if flag==0:
585 # AZIMUTH
586 # AZIMUTH
586 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
587 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
587 # RADAR
588 # RADAR
588 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
589 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
589 else:
590 else:
590 # AZIMUTH
591 # AZIMUTH
591 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
592 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
592 self.res_azi[0:comp] = data_azi[dif:]
593 self.res_azi[0:comp] = data_azi[dif:]
593 # RADAR
594 # RADAR
594 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
595 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
595 self.res_weather[0:comp,:] = data_weather[dif:,:]
596 self.res_weather[0:comp,:] = data_weather[dif:,:]
596 flag=0
597 flag=0
597 data_azi = self.res_azi
598 data_azi = self.res_azi
598 data_weather = self.res_weather
599 data_weather = self.res_weather
599
600
600 return data_weather,data_azi
601 return data_weather,data_azi
601
602
602 def plot(self):
603 def plot(self):
603 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
604 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
604 data = self.data[-1]
605 data = self.data[-1]
605 r = self.data.yrange
606 r = self.data.yrange
606 delta_height = r[1]-r[0]
607 delta_height = r[1]-r[0]
607 r_mask = numpy.where(r>=0)[0]
608 r_mask = numpy.where(r>=0)[0]
608 r = numpy.arange(len(r_mask))*delta_height
609 r = numpy.arange(len(r_mask))*delta_height
609 self.y = 2*r
610 self.y = 2*r
610 # RADAR
611 # RADAR
611 #data_weather = data['weather']
612 #data_weather = data['weather']
612 # PEDESTAL
613 # PEDESTAL
613 #data_azi = data['azi']
614 #data_azi = data['azi']
614 res = 1
615 res = 1
615 # STEP
616 # STEP
616 step = (360/(res*data['weather'].shape[0]))
617 step = (360/(res*data['weather'].shape[0]))
617
618
618 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
619 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
619 self.res_ele = numpy.mean(data['ele'])
620 self.res_ele = numpy.mean(data['ele'])
620 ################# PLOTEO ###################
621 ################# PLOTEO ###################
621 for i,ax in enumerate(self.axes):
622 for i,ax in enumerate(self.axes):
622 if ax.firsttime:
623 if ax.firsttime:
623 plt.clf()
624 plt.clf()
624 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
625 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
625 else:
626 else:
626 plt.clf()
627 plt.clf()
627 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
628 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
628 caax = cgax.parasites[0]
629 caax = cgax.parasites[0]
629 paax = cgax.parasites[1]
630 paax = cgax.parasites[1]
630 cbar = plt.gcf().colorbar(pm, pad=0.075)
631 cbar = plt.gcf().colorbar(pm, pad=0.075)
631 caax.set_xlabel('x_range [km]')
632 caax.set_xlabel('x_range [km]')
632 caax.set_ylabel('y_range [km]')
633 caax.set_ylabel('y_range [km]')
633 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right')
634 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right')
634
635
635 self.ini= self.ini+1
636 self.ini= self.ini+1
636
637
637
638
638 class WeatherRHIPlot(Plot):
639 class WeatherRHIPlot(Plot):
639 CODE = 'weather'
640 CODE = 'weather'
640 plot_name = 'weather'
641 plot_name = 'weather'
641 plot_type = 'rhistyle'
642 plot_type = 'rhistyle'
642 buffering = False
643 buffering = False
643 data_ele_tmp = None
644 data_ele_tmp = None
644
645
645 def setup(self):
646 def setup(self):
646 print("********************")
647 print("********************")
647 print("********************")
648 print("********************")
648 print("********************")
649 print("********************")
649 print("SETUP WEATHER PLOT")
650 print("SETUP WEATHER PLOT")
650 self.ncols = 1
651 self.ncols = 1
651 self.nrows = 1
652 self.nrows = 1
652 self.nplots= 1
653 self.nplots= 1
653 self.ylabel= 'Range [Km]'
654 self.ylabel= 'Range [Km]'
654 self.titles= ['Weather']
655 self.titles= ['Weather']
655 if self.channels is not None:
656 if self.channels is not None:
656 self.nplots = len(self.channels)
657 self.nplots = len(self.channels)
657 self.nrows = len(self.channels)
658 self.nrows = len(self.channels)
658 else:
659 else:
659 self.nplots = self.data.shape(self.CODE)[0]
660 self.nplots = self.data.shape(self.CODE)[0]
660 self.nrows = self.nplots
661 self.nrows = self.nplots
661 self.channels = list(range(self.nplots))
662 self.channels = list(range(self.nplots))
662 print("channels",self.channels)
663 print("channels",self.channels)
663 print("que saldra", self.data.shape(self.CODE)[0])
664 print("que saldra", self.data.shape(self.CODE)[0])
664 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
665 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
665 print("self.titles",self.titles)
666 print("self.titles",self.titles)
666 self.colorbar=False
667 self.colorbar=False
667 self.width =8
668 self.width =8
668 self.height =8
669 self.height =8
669 self.ini =0
670 self.ini =0
670 self.len_azi =0
671 self.len_azi =0
671 self.buffer_ini = None
672 self.buffer_ini = None
672 self.buffer_ele = None
673 self.buffer_ele = None
673 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
674 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
674 self.flag =0
675 self.flag =0
675 self.indicador= 0
676 self.indicador= 0
676 self.last_data_ele = None
677 self.last_data_ele = None
677 self.val_mean = None
678 self.val_mean = None
678
679
679 def update(self, dataOut):
680 def update(self, dataOut):
680
681
681 data = {}
682 data = {}
682 meta = {}
683 meta = {}
683 if hasattr(dataOut, 'dataPP_POWER'):
684 if hasattr(dataOut, 'dataPP_POWER'):
684 factor = 1
685 factor = 1
685 if hasattr(dataOut, 'nFFTPoints'):
686 if hasattr(dataOut, 'nFFTPoints'):
686 factor = dataOut.normFactor
687 factor = dataOut.normFactor
687 print("dataOut",dataOut.data_360.shape)
688 print("dataOut",dataOut.data_360.shape)
688 #
689 #
689 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
690 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
690 #
691 #
691 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
692 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
692 data['azi'] = dataOut.data_azi
693 data['azi'] = dataOut.data_azi
693 data['ele'] = dataOut.data_ele
694 data['ele'] = dataOut.data_ele
694 #print("UPDATE")
695 #print("UPDATE")
695 #print("data[weather]",data['weather'].shape)
696 #print("data[weather]",data['weather'].shape)
696 #print("data[azi]",data['azi'])
697 #print("data[azi]",data['azi'])
697 return data, meta
698 return data, meta
698
699
699 def get2List(self,angulos):
700 def get2List(self,angulos):
700 list1=[]
701 list1=[]
701 list2=[]
702 list2=[]
702 for i in reversed(range(len(angulos))):
703 for i in reversed(range(len(angulos))):
703 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
704 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
704 diff_ = angulos[i]-angulos[i-1]
705 diff_ = angulos[i]-angulos[i-1]
705 if abs(diff_) >1.5:
706 if abs(diff_) >1.5:
706 list1.append(i-1)
707 list1.append(i-1)
707 list2.append(diff_)
708 list2.append(diff_)
708 return list(reversed(list1)),list(reversed(list2))
709 return list(reversed(list1)),list(reversed(list2))
709
710
710 def fixData90(self,list_,ang_):
711 def fixData90(self,list_,ang_):
711 if list_[0]==-1:
712 if list_[0]==-1:
712 vec = numpy.where(ang_<ang_[0])
713 vec = numpy.where(ang_<ang_[0])
713 ang_[vec] = ang_[vec]+90
714 ang_[vec] = ang_[vec]+90
714 return ang_
715 return ang_
715 return ang_
716 return ang_
716
717
717 def fixData90HL(self,angulos):
718 def fixData90HL(self,angulos):
718 vec = numpy.where(angulos>=90)
719 vec = numpy.where(angulos>=90)
719 angulos[vec]=angulos[vec]-90
720 angulos[vec]=angulos[vec]-90
720 return angulos
721 return angulos
721
722
722
723
723 def search_pos(self,pos,list_):
724 def search_pos(self,pos,list_):
724 for i in range(len(list_)):
725 for i in range(len(list_)):
725 if pos == list_[i]:
726 if pos == list_[i]:
726 return True,i
727 return True,i
727 i=None
728 i=None
728 return False,i
729 return False,i
729
730
730 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
731 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
731 size = len(ang_)
732 size = len(ang_)
732 size2 = 0
733 size2 = 0
733 for i in range(len(list2_)):
734 for i in range(len(list2_)):
734 size2=size2+round(abs(list2_[i]))-1
735 size2=size2+round(abs(list2_[i]))-1
735 new_size= size+size2
736 new_size= size+size2
736 ang_new = numpy.zeros(new_size)
737 ang_new = numpy.zeros(new_size)
737 ang_new2 = numpy.zeros(new_size)
738 ang_new2 = numpy.zeros(new_size)
738
739
739 tmp = 0
740 tmp = 0
740 c = 0
741 c = 0
741 for i in range(len(ang_)):
742 for i in range(len(ang_)):
742 ang_new[tmp +c] = ang_[i]
743 ang_new[tmp +c] = ang_[i]
743 ang_new2[tmp+c] = ang_[i]
744 ang_new2[tmp+c] = ang_[i]
744 condition , value = self.search_pos(i,list1_)
745 condition , value = self.search_pos(i,list1_)
745 if condition:
746 if condition:
746 pos = tmp + c + 1
747 pos = tmp + c + 1
747 for k in range(round(abs(list2_[value]))-1):
748 for k in range(round(abs(list2_[value]))-1):
748 if tipo_case==0 or tipo_case==3:#subida
749 if tipo_case==0 or tipo_case==3:#subida
749 ang_new[pos+k] = ang_new[pos+k-1]+1
750 ang_new[pos+k] = ang_new[pos+k-1]+1
750 ang_new2[pos+k] = numpy.nan
751 ang_new2[pos+k] = numpy.nan
751 elif tipo_case==1 or tipo_case==2:#bajada
752 elif tipo_case==1 or tipo_case==2:#bajada
752 ang_new[pos+k] = ang_new[pos+k-1]-1
753 ang_new[pos+k] = ang_new[pos+k-1]-1
753 ang_new2[pos+k] = numpy.nan
754 ang_new2[pos+k] = numpy.nan
754
755
755 tmp = pos +k
756 tmp = pos +k
756 c = 0
757 c = 0
757 c=c+1
758 c=c+1
758 return ang_new,ang_new2
759 return ang_new,ang_new2
759
760
760 def globalCheckPED(self,angulos,tipo_case):
761 def globalCheckPED(self,angulos,tipo_case):
761 l1,l2 = self.get2List(angulos)
762 l1,l2 = self.get2List(angulos)
762 ##print("l1",l1)
763 ##print("l1",l1)
763 ##print("l2",l2)
764 ##print("l2",l2)
764 if len(l1)>0:
765 if len(l1)>0:
765 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
766 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
766 #l1,l2 = self.get2List(angulos2)
767 #l1,l2 = self.get2List(angulos2)
767 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
768 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
768 #ang1_ = self.fixData90HL(ang1_)
769 #ang1_ = self.fixData90HL(ang1_)
769 #ang2_ = self.fixData90HL(ang2_)
770 #ang2_ = self.fixData90HL(ang2_)
770 else:
771 else:
771 ang1_= angulos
772 ang1_= angulos
772 ang2_= angulos
773 ang2_= angulos
773 return ang1_,ang2_
774 return ang1_,ang2_
774
775
775
776
776 def replaceNAN(self,data_weather,data_ele,val):
777 def replaceNAN(self,data_weather,data_ele,val):
777 data= data_ele
778 data= data_ele
778 data_T= data_weather
779 data_T= data_weather
779 if data.shape[0]> data_T.shape[0]:
780 if data.shape[0]> data_T.shape[0]:
780 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
781 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
781 c = 0
782 c = 0
782 for i in range(len(data)):
783 for i in range(len(data)):
783 if numpy.isnan(data[i]):
784 if numpy.isnan(data[i]):
784 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
785 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
785 else:
786 else:
786 data_N[i,:]=data_T[c,:]
787 data_N[i,:]=data_T[c,:]
787 c=c+1
788 c=c+1
788 return data_N
789 return data_N
789 else:
790 else:
790 for i in range(len(data)):
791 for i in range(len(data)):
791 if numpy.isnan(data[i]):
792 if numpy.isnan(data[i]):
792 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
793 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
793 return data_T
794 return data_T
794
795
795 def check_case(self,data_ele,ang_max,ang_min):
796 def check_case(self,data_ele,ang_max,ang_min):
796 start = data_ele[0]
797 start = data_ele[0]
797 end = data_ele[-1]
798 end = data_ele[-1]
798 number = (end-start)
799 number = (end-start)
799 len_ang=len(data_ele)
800 len_ang=len(data_ele)
800 print("start",start)
801 print("start",start)
801 print("end",end)
802 print("end",end)
802 print("number",number)
803 print("number",number)
803
804
804 print("len_ang",len_ang)
805 print("len_ang",len_ang)
805
806
806 #exit(1)
807 #exit(1)
807
808
808 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
809 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
809 return 0
810 return 0
810 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
811 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
811 # return 1
812 # return 1
812 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
813 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
813 return 1
814 return 1
814 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
815 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
815 return 2
816 return 2
816 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
817 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
817 return 3
818 return 3
818
819
819
820
820 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
821 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
821 ang_max= ang_max
822 ang_max= ang_max
822 ang_min= ang_min
823 ang_min= ang_min
823 data_weather=data_weather
824 data_weather=data_weather
824 val_ch=val_ch
825 val_ch=val_ch
825 ##print("*********************DATA WEATHER**************************************")
826 ##print("*********************DATA WEATHER**************************************")
826 ##print(data_weather)
827 ##print(data_weather)
827 if self.ini==0:
828 if self.ini==0:
828 '''
829 '''
829 print("**********************************************")
830 print("**********************************************")
830 print("**********************************************")
831 print("**********************************************")
831 print("***************ini**************")
832 print("***************ini**************")
832 print("**********************************************")
833 print("**********************************************")
833 print("**********************************************")
834 print("**********************************************")
834 '''
835 '''
835 #print("data_ele",data_ele)
836 #print("data_ele",data_ele)
836 #----------------------------------------------------------
837 #----------------------------------------------------------
837 tipo_case = self.check_case(data_ele,ang_max,ang_min)
838 tipo_case = self.check_case(data_ele,ang_max,ang_min)
838 print("check_case",tipo_case)
839 print("check_case",tipo_case)
839 #exit(1)
840 #exit(1)
840 #--------------------- new -------------------------
841 #--------------------- new -------------------------
841 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
842 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
842
843
843 #-------------------------CAMBIOS RHI---------------------------------
844 #-------------------------CAMBIOS RHI---------------------------------
844 start= ang_min
845 start= ang_min
845 end = ang_max
846 end = ang_max
846 n= (ang_max-ang_min)/res
847 n= (ang_max-ang_min)/res
847 #------ new
848 #------ new
848 self.start_data_ele = data_ele_new[0]
849 self.start_data_ele = data_ele_new[0]
849 self.end_data_ele = data_ele_new[-1]
850 self.end_data_ele = data_ele_new[-1]
850 if tipo_case==0 or tipo_case==3: # SUBIDA
851 if tipo_case==0 or tipo_case==3: # SUBIDA
851 n1= round(self.start_data_ele)- start
852 n1= round(self.start_data_ele)- start
852 n2= end - round(self.end_data_ele)
853 n2= end - round(self.end_data_ele)
853 print(self.start_data_ele)
854 print(self.start_data_ele)
854 print(self.end_data_ele)
855 print(self.end_data_ele)
855 if n1>0:
856 if n1>0:
856 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
857 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
857 ele1_nan= numpy.ones(n1)*numpy.nan
858 ele1_nan= numpy.ones(n1)*numpy.nan
858 data_ele = numpy.hstack((ele1,data_ele_new))
859 data_ele = numpy.hstack((ele1,data_ele_new))
859 print("ele1_nan",ele1_nan.shape)
860 print("ele1_nan",ele1_nan.shape)
860 print("data_ele_old",data_ele_old.shape)
861 print("data_ele_old",data_ele_old.shape)
861 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
862 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
862 if n2>0:
863 if n2>0:
863 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
864 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
864 ele2_nan= numpy.ones(n2)*numpy.nan
865 ele2_nan= numpy.ones(n2)*numpy.nan
865 data_ele = numpy.hstack((data_ele,ele2))
866 data_ele = numpy.hstack((data_ele,ele2))
866 print("ele2_nan",ele2_nan.shape)
867 print("ele2_nan",ele2_nan.shape)
867 print("data_ele_old",data_ele_old.shape)
868 print("data_ele_old",data_ele_old.shape)
868 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
869 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
869
870
870 if tipo_case==1 or tipo_case==2: # BAJADA
871 if tipo_case==1 or tipo_case==2: # BAJADA
871 data_ele_new = data_ele_new[::-1] # reversa
872 data_ele_new = data_ele_new[::-1] # reversa
872 data_ele_old = data_ele_old[::-1]# reversa
873 data_ele_old = data_ele_old[::-1]# reversa
873 data_weather = data_weather[::-1,:]# reversa
874 data_weather = data_weather[::-1,:]# reversa
874 vec= numpy.where(data_ele_new<ang_max)
875 vec= numpy.where(data_ele_new<ang_max)
875 data_ele_new = data_ele_new[vec]
876 data_ele_new = data_ele_new[vec]
876 data_ele_old = data_ele_old[vec]
877 data_ele_old = data_ele_old[vec]
877 data_weather = data_weather[vec[0]]
878 data_weather = data_weather[vec[0]]
878 vec2= numpy.where(0<data_ele_new)
879 vec2= numpy.where(0<data_ele_new)
879 data_ele_new = data_ele_new[vec2]
880 data_ele_new = data_ele_new[vec2]
880 data_ele_old = data_ele_old[vec2]
881 data_ele_old = data_ele_old[vec2]
881 data_weather = data_weather[vec2[0]]
882 data_weather = data_weather[vec2[0]]
882 self.start_data_ele = data_ele_new[0]
883 self.start_data_ele = data_ele_new[0]
883 self.end_data_ele = data_ele_new[-1]
884 self.end_data_ele = data_ele_new[-1]
884
885
885 n1= round(self.start_data_ele)- start
886 n1= round(self.start_data_ele)- start
886 n2= end - round(self.end_data_ele)-1
887 n2= end - round(self.end_data_ele)-1
887 print(self.start_data_ele)
888 print(self.start_data_ele)
888 print(self.end_data_ele)
889 print(self.end_data_ele)
889 if n1>0:
890 if n1>0:
890 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
891 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
891 ele1_nan= numpy.ones(n1)*numpy.nan
892 ele1_nan= numpy.ones(n1)*numpy.nan
892 data_ele = numpy.hstack((ele1,data_ele_new))
893 data_ele = numpy.hstack((ele1,data_ele_new))
893 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
894 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
894 if n2>0:
895 if n2>0:
895 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
896 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
896 ele2_nan= numpy.ones(n2)*numpy.nan
897 ele2_nan= numpy.ones(n2)*numpy.nan
897 data_ele = numpy.hstack((data_ele,ele2))
898 data_ele = numpy.hstack((data_ele,ele2))
898 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
899 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
899 # RADAR
900 # RADAR
900 # NOTA data_ele y data_weather es la variable que retorna
901 # NOTA data_ele y data_weather es la variable que retorna
901 val_mean = numpy.mean(data_weather[:,-1])
902 val_mean = numpy.mean(data_weather[:,-1])
902 self.val_mean = val_mean
903 self.val_mean = val_mean
903 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
904 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
904 self.data_ele_tmp[val_ch]= data_ele_old
905 self.data_ele_tmp[val_ch]= data_ele_old
905 else:
906 else:
906 #print("**********************************************")
907 #print("**********************************************")
907 #print("****************VARIABLE**********************")
908 #print("****************VARIABLE**********************")
908 #-------------------------CAMBIOS RHI---------------------------------
909 #-------------------------CAMBIOS RHI---------------------------------
909 #---------------------------------------------------------------------
910 #---------------------------------------------------------------------
910 ##print("INPUT data_ele",data_ele)
911 ##print("INPUT data_ele",data_ele)
911 flag=0
912 flag=0
912 start_ele = self.res_ele[0]
913 start_ele = self.res_ele[0]
913 tipo_case = self.check_case(data_ele,ang_max,ang_min)
914 tipo_case = self.check_case(data_ele,ang_max,ang_min)
914 #print("TIPO DE DATA",tipo_case)
915 #print("TIPO DE DATA",tipo_case)
915 #-----------new------------
916 #-----------new------------
916 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
917 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
917 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
918 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
918
919
919 #-------------------------------NEW RHI ITERATIVO-------------------------
920 #-------------------------------NEW RHI ITERATIVO-------------------------
920
921
921 if tipo_case==0 : # SUBIDA
922 if tipo_case==0 : # SUBIDA
922 vec = numpy.where(data_ele<ang_max)
923 vec = numpy.where(data_ele<ang_max)
923 data_ele = data_ele[vec]
924 data_ele = data_ele[vec]
924 data_ele_old = data_ele_old[vec]
925 data_ele_old = data_ele_old[vec]
925 data_weather = data_weather[vec[0]]
926 data_weather = data_weather[vec[0]]
926
927
927 vec2 = numpy.where(0<data_ele)
928 vec2 = numpy.where(0<data_ele)
928 data_ele= data_ele[vec2]
929 data_ele= data_ele[vec2]
929 data_ele_old= data_ele_old[vec2]
930 data_ele_old= data_ele_old[vec2]
930 ##print(data_ele_new)
931 ##print(data_ele_new)
931 data_weather= data_weather[vec2[0]]
932 data_weather= data_weather[vec2[0]]
932
933
933 new_i_ele = int(round(data_ele[0]))
934 new_i_ele = int(round(data_ele[0]))
934 new_f_ele = int(round(data_ele[-1]))
935 new_f_ele = int(round(data_ele[-1]))
935 #print(new_i_ele)
936 #print(new_i_ele)
936 #print(new_f_ele)
937 #print(new_f_ele)
937 #print(data_ele,len(data_ele))
938 #print(data_ele,len(data_ele))
938 #print(data_ele_old,len(data_ele_old))
939 #print(data_ele_old,len(data_ele_old))
939 if new_i_ele< 2:
940 if new_i_ele< 2:
940 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
941 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
941 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
942 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
942 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
943 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
943 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
944 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
944 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
945 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
945 data_ele = self.res_ele
946 data_ele = self.res_ele
946 data_weather = self.res_weather[val_ch]
947 data_weather = self.res_weather[val_ch]
947
948
948 elif tipo_case==1 : #BAJADA
949 elif tipo_case==1 : #BAJADA
949 data_ele = data_ele[::-1] # reversa
950 data_ele = data_ele[::-1] # reversa
950 data_ele_old = data_ele_old[::-1]# reversa
951 data_ele_old = data_ele_old[::-1]# reversa
951 data_weather = data_weather[::-1,:]# reversa
952 data_weather = data_weather[::-1,:]# reversa
952 vec= numpy.where(data_ele<ang_max)
953 vec= numpy.where(data_ele<ang_max)
953 data_ele = data_ele[vec]
954 data_ele = data_ele[vec]
954 data_ele_old = data_ele_old[vec]
955 data_ele_old = data_ele_old[vec]
955 data_weather = data_weather[vec[0]]
956 data_weather = data_weather[vec[0]]
956 vec2= numpy.where(0<data_ele)
957 vec2= numpy.where(0<data_ele)
957 data_ele = data_ele[vec2]
958 data_ele = data_ele[vec2]
958 data_ele_old = data_ele_old[vec2]
959 data_ele_old = data_ele_old[vec2]
959 data_weather = data_weather[vec2[0]]
960 data_weather = data_weather[vec2[0]]
960
961
961
962
962 new_i_ele = int(round(data_ele[0]))
963 new_i_ele = int(round(data_ele[0]))
963 new_f_ele = int(round(data_ele[-1]))
964 new_f_ele = int(round(data_ele[-1]))
964 #print(data_ele)
965 #print(data_ele)
965 #print(ang_max)
966 #print(ang_max)
966 #print(data_ele_old)
967 #print(data_ele_old)
967 if new_i_ele <= 1:
968 if new_i_ele <= 1:
968 new_i_ele = 1
969 new_i_ele = 1
969 if round(data_ele[-1])>=ang_max-1:
970 if round(data_ele[-1])>=ang_max-1:
970 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
971 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
971 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
972 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
972 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
973 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
973 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
974 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
974 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
975 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
975 data_ele = self.res_ele
976 data_ele = self.res_ele
976 data_weather = self.res_weather[val_ch]
977 data_weather = self.res_weather[val_ch]
977
978
978 elif tipo_case==2: #bajada
979 elif tipo_case==2: #bajada
979 vec = numpy.where(data_ele<ang_max)
980 vec = numpy.where(data_ele<ang_max)
980 data_ele = data_ele[vec]
981 data_ele = data_ele[vec]
981 data_weather= data_weather[vec[0]]
982 data_weather= data_weather[vec[0]]
982
983
983 len_vec = len(vec)
984 len_vec = len(vec)
984 data_ele_new = data_ele[::-1] # reversa
985 data_ele_new = data_ele[::-1] # reversa
985 data_weather = data_weather[::-1,:]
986 data_weather = data_weather[::-1,:]
986 new_i_ele = int(data_ele_new[0])
987 new_i_ele = int(data_ele_new[0])
987 new_f_ele = int(data_ele_new[-1])
988 new_f_ele = int(data_ele_new[-1])
988
989
989 n1= new_i_ele- ang_min
990 n1= new_i_ele- ang_min
990 n2= ang_max - new_f_ele-1
991 n2= ang_max - new_f_ele-1
991 if n1>0:
992 if n1>0:
992 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
993 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
993 ele1_nan= numpy.ones(n1)*numpy.nan
994 ele1_nan= numpy.ones(n1)*numpy.nan
994 data_ele = numpy.hstack((ele1,data_ele_new))
995 data_ele = numpy.hstack((ele1,data_ele_new))
995 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
996 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
996 if n2>0:
997 if n2>0:
997 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
998 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
998 ele2_nan= numpy.ones(n2)*numpy.nan
999 ele2_nan= numpy.ones(n2)*numpy.nan
999 data_ele = numpy.hstack((data_ele,ele2))
1000 data_ele = numpy.hstack((data_ele,ele2))
1000 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1001 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1001
1002
1002 self.data_ele_tmp[val_ch] = data_ele_old
1003 self.data_ele_tmp[val_ch] = data_ele_old
1003 self.res_ele = data_ele
1004 self.res_ele = data_ele
1004 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1005 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1005 data_ele = self.res_ele
1006 data_ele = self.res_ele
1006 data_weather = self.res_weather[val_ch]
1007 data_weather = self.res_weather[val_ch]
1007
1008
1008 elif tipo_case==3:#subida
1009 elif tipo_case==3:#subida
1009 vec = numpy.where(0<data_ele)
1010 vec = numpy.where(0<data_ele)
1010 data_ele= data_ele[vec]
1011 data_ele= data_ele[vec]
1011 data_ele_new = data_ele
1012 data_ele_new = data_ele
1012 data_ele_old= data_ele_old[vec]
1013 data_ele_old= data_ele_old[vec]
1013 data_weather= data_weather[vec[0]]
1014 data_weather= data_weather[vec[0]]
1014 pos_ini = numpy.argmin(data_ele)
1015 pos_ini = numpy.argmin(data_ele)
1015 if pos_ini>0:
1016 if pos_ini>0:
1016 len_vec= len(data_ele)
1017 len_vec= len(data_ele)
1017 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1018 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1018 #print(vec3)
1019 #print(vec3)
1019 data_ele= data_ele[vec3]
1020 data_ele= data_ele[vec3]
1020 data_ele_new = data_ele
1021 data_ele_new = data_ele
1021 data_ele_old= data_ele_old[vec3]
1022 data_ele_old= data_ele_old[vec3]
1022 data_weather= data_weather[vec3]
1023 data_weather= data_weather[vec3]
1023
1024
1024 new_i_ele = int(data_ele_new[0])
1025 new_i_ele = int(data_ele_new[0])
1025 new_f_ele = int(data_ele_new[-1])
1026 new_f_ele = int(data_ele_new[-1])
1026 n1= new_i_ele- ang_min
1027 n1= new_i_ele- ang_min
1027 n2= ang_max - new_f_ele-1
1028 n2= ang_max - new_f_ele-1
1028 if n1>0:
1029 if n1>0:
1029 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1030 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1030 ele1_nan= numpy.ones(n1)*numpy.nan
1031 ele1_nan= numpy.ones(n1)*numpy.nan
1031 data_ele = numpy.hstack((ele1,data_ele_new))
1032 data_ele = numpy.hstack((ele1,data_ele_new))
1032 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1033 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1033 if n2>0:
1034 if n2>0:
1034 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1035 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1035 ele2_nan= numpy.ones(n2)*numpy.nan
1036 ele2_nan= numpy.ones(n2)*numpy.nan
1036 data_ele = numpy.hstack((data_ele,ele2))
1037 data_ele = numpy.hstack((data_ele,ele2))
1037 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1038 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1038
1039
1039 self.data_ele_tmp[val_ch] = data_ele_old
1040 self.data_ele_tmp[val_ch] = data_ele_old
1040 self.res_ele = data_ele
1041 self.res_ele = data_ele
1041 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1042 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1042 data_ele = self.res_ele
1043 data_ele = self.res_ele
1043 data_weather = self.res_weather[val_ch]
1044 data_weather = self.res_weather[val_ch]
1044 #print("self.data_ele_tmp",self.data_ele_tmp)
1045 #print("self.data_ele_tmp",self.data_ele_tmp)
1045 return data_weather,data_ele
1046 return data_weather,data_ele
1046
1047
1047
1048
1048 def plot(self):
1049 def plot(self):
1049 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1050 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1050 data = self.data[-1]
1051 data = self.data[-1]
1051 r = self.data.yrange
1052 r = self.data.yrange
1052 delta_height = r[1]-r[0]
1053 delta_height = r[1]-r[0]
1053 r_mask = numpy.where(r>=0)[0]
1054 r_mask = numpy.where(r>=0)[0]
1054 ##print("delta_height",delta_height)
1055 ##print("delta_height",delta_height)
1055 #print("r_mask",r_mask,len(r_mask))
1056 #print("r_mask",r_mask,len(r_mask))
1056 r = numpy.arange(len(r_mask))*delta_height
1057 r = numpy.arange(len(r_mask))*delta_height
1057 self.y = 2*r
1058 self.y = 2*r
1058 res = 1
1059 res = 1
1059 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1060 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1060 ang_max = self.ang_max
1061 ang_max = self.ang_max
1061 ang_min = self.ang_min
1062 ang_min = self.ang_min
1062 var_ang =ang_max - ang_min
1063 var_ang =ang_max - ang_min
1063 step = (int(var_ang)/(res*data['weather'].shape[0]))
1064 step = (int(var_ang)/(res*data['weather'].shape[0]))
1064 ###print("step",step)
1065 ###print("step",step)
1065 #--------------------------------------------------------
1066 #--------------------------------------------------------
1066 ##print('weather',data['weather'].shape)
1067 ##print('weather',data['weather'].shape)
1067 ##print('ele',data['ele'].shape)
1068 ##print('ele',data['ele'].shape)
1068
1069
1069 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1070 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1070 ###self.res_azi = numpy.mean(data['azi'])
1071 ###self.res_azi = numpy.mean(data['azi'])
1071 ###print("self.res_ele",self.res_ele)
1072 ###print("self.res_ele",self.res_ele)
1072 plt.clf()
1073 plt.clf()
1073 subplots = [121, 122]
1074 subplots = [121, 122]
1074 if self.ini==0:
1075 if self.ini==0:
1075 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1076 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1076 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1077 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1077 print("SHAPE",self.data_ele_tmp.shape)
1078 print("SHAPE",self.data_ele_tmp.shape)
1078
1079
1079 for i,ax in enumerate(self.axes):
1080 for i,ax in enumerate(self.axes):
1080 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1081 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1081 self.res_azi = numpy.mean(data['azi'])
1082 self.res_azi = numpy.mean(data['azi'])
1082 if i==0:
1083 if i==0:
1083 print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
1084 print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
1084 if ax.firsttime:
1085 if ax.firsttime:
1085 #plt.clf()
1086 #plt.clf()
1086 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1087 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1087 #fig=self.figures[0]
1088 #fig=self.figures[0]
1088 else:
1089 else:
1089 #plt.clf()
1090 #plt.clf()
1090 if i==0:
1091 if i==0:
1091 print(self.res_weather[i])
1092 print(self.res_weather[i])
1092 print(self.res_ele)
1093 print(self.res_ele)
1093 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1094 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1094 caax = cgax.parasites[0]
1095 caax = cgax.parasites[0]
1095 paax = cgax.parasites[1]
1096 paax = cgax.parasites[1]
1096 cbar = plt.gcf().colorbar(pm, pad=0.075)
1097 cbar = plt.gcf().colorbar(pm, pad=0.075)
1097 caax.set_xlabel('x_range [km]')
1098 caax.set_xlabel('x_range [km]')
1098 caax.set_ylabel('y_range [km]')
1099 caax.set_ylabel('y_range [km]')
1099 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1100 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1100 print("***************************self.ini****************************",self.ini)
1101 print("***************************self.ini****************************",self.ini)
1101 self.ini= self.ini+1
1102 self.ini= self.ini+1
1102
1103
1103 class WeatherRHI_vRF2_Plot(Plot):
1104 class WeatherRHI_vRF2_Plot(Plot):
1104 CODE = 'weather'
1105 CODE = 'weather'
1105 plot_name = 'weather'
1106 plot_name = 'weather'
1106 plot_type = 'rhistyle'
1107 plot_type = 'rhistyle'
1107 buffering = False
1108 buffering = False
1108 data_ele_tmp = None
1109 data_ele_tmp = None
1109
1110
1110 def setup(self):
1111 def setup(self):
1111 print("********************")
1112 print("********************")
1112 print("********************")
1113 print("********************")
1113 print("********************")
1114 print("********************")
1114 print("SETUP WEATHER PLOT")
1115 print("SETUP WEATHER PLOT")
1115 self.ncols = 1
1116 self.ncols = 1
1116 self.nrows = 1
1117 self.nrows = 1
1117 self.nplots= 1
1118 self.nplots= 1
1118 self.ylabel= 'Range [Km]'
1119 self.ylabel= 'Range [Km]'
1119 self.titles= ['Weather']
1120 self.titles= ['Weather']
1120 if self.channels is not None:
1121 if self.channels is not None:
1121 self.nplots = len(self.channels)
1122 self.nplots = len(self.channels)
1122 self.nrows = len(self.channels)
1123 self.nrows = len(self.channels)
1123 else:
1124 else:
1124 self.nplots = self.data.shape(self.CODE)[0]
1125 self.nplots = self.data.shape(self.CODE)[0]
1125 self.nrows = self.nplots
1126 self.nrows = self.nplots
1126 self.channels = list(range(self.nplots))
1127 self.channels = list(range(self.nplots))
1127 print("channels",self.channels)
1128 print("channels",self.channels)
1128 print("que saldra", self.data.shape(self.CODE)[0])
1129 print("que saldra", self.data.shape(self.CODE)[0])
1129 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1130 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1130 print("self.titles",self.titles)
1131 print("self.titles",self.titles)
1131 self.colorbar=False
1132 self.colorbar=False
1132 self.width =8
1133 self.width =8
1133 self.height =8
1134 self.height =8
1134 self.ini =0
1135 self.ini =0
1135 self.len_azi =0
1136 self.len_azi =0
1136 self.buffer_ini = None
1137 self.buffer_ini = None
1137 self.buffer_ele = None
1138 self.buffer_ele = None
1138 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1139 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1139 self.flag =0
1140 self.flag =0
1140 self.indicador= 0
1141 self.indicador= 0
1141 self.last_data_ele = None
1142 self.last_data_ele = None
1142 self.val_mean = None
1143 self.val_mean = None
1143
1144
1144 def update(self, dataOut):
1145 def update(self, dataOut):
1145
1146
1146 data = {}
1147 data = {}
1147 meta = {}
1148 meta = {}
1148 if hasattr(dataOut, 'dataPP_POWER'):
1149 if hasattr(dataOut, 'dataPP_POWER'):
1149 factor = 1
1150 factor = 1
1150 if hasattr(dataOut, 'nFFTPoints'):
1151 if hasattr(dataOut, 'nFFTPoints'):
1151 factor = dataOut.normFactor
1152 factor = dataOut.normFactor
1152 print("dataOut",dataOut.data_360.shape)
1153 print("dataOut",dataOut.data_360.shape)
1153 #
1154 #
1154 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1155 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1155 #
1156 #
1156 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1157 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1157 data['azi'] = dataOut.data_azi
1158 data['azi'] = dataOut.data_azi
1158 data['ele'] = dataOut.data_ele
1159 data['ele'] = dataOut.data_ele
1159 data['case_flag'] = dataOut.case_flag
1160 data['case_flag'] = dataOut.case_flag
1160 #print("UPDATE")
1161 #print("UPDATE")
1161 #print("data[weather]",data['weather'].shape)
1162 #print("data[weather]",data['weather'].shape)
1162 #print("data[azi]",data['azi'])
1163 #print("data[azi]",data['azi'])
1163 return data, meta
1164 return data, meta
1164
1165
1165 def get2List(self,angulos):
1166 def get2List(self,angulos):
1166 list1=[]
1167 list1=[]
1167 list2=[]
1168 list2=[]
1168 for i in reversed(range(len(angulos))):
1169 for i in reversed(range(len(angulos))):
1169 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1170 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1170 diff_ = angulos[i]-angulos[i-1]
1171 diff_ = angulos[i]-angulos[i-1]
1171 if abs(diff_) >1.5:
1172 if abs(diff_) >1.5:
1172 list1.append(i-1)
1173 list1.append(i-1)
1173 list2.append(diff_)
1174 list2.append(diff_)
1174 return list(reversed(list1)),list(reversed(list2))
1175 return list(reversed(list1)),list(reversed(list2))
1175
1176
1176 def fixData90(self,list_,ang_):
1177 def fixData90(self,list_,ang_):
1177 if list_[0]==-1:
1178 if list_[0]==-1:
1178 vec = numpy.where(ang_<ang_[0])
1179 vec = numpy.where(ang_<ang_[0])
1179 ang_[vec] = ang_[vec]+90
1180 ang_[vec] = ang_[vec]+90
1180 return ang_
1181 return ang_
1181 return ang_
1182 return ang_
1182
1183
1183 def fixData90HL(self,angulos):
1184 def fixData90HL(self,angulos):
1184 vec = numpy.where(angulos>=90)
1185 vec = numpy.where(angulos>=90)
1185 angulos[vec]=angulos[vec]-90
1186 angulos[vec]=angulos[vec]-90
1186 return angulos
1187 return angulos
1187
1188
1188
1189
1189 def search_pos(self,pos,list_):
1190 def search_pos(self,pos,list_):
1190 for i in range(len(list_)):
1191 for i in range(len(list_)):
1191 if pos == list_[i]:
1192 if pos == list_[i]:
1192 return True,i
1193 return True,i
1193 i=None
1194 i=None
1194 return False,i
1195 return False,i
1195
1196
1196 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1197 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1197 size = len(ang_)
1198 size = len(ang_)
1198 size2 = 0
1199 size2 = 0
1199 for i in range(len(list2_)):
1200 for i in range(len(list2_)):
1200 size2=size2+round(abs(list2_[i]))-1
1201 size2=size2+round(abs(list2_[i]))-1
1201 new_size= size+size2
1202 new_size= size+size2
1202 ang_new = numpy.zeros(new_size)
1203 ang_new = numpy.zeros(new_size)
1203 ang_new2 = numpy.zeros(new_size)
1204 ang_new2 = numpy.zeros(new_size)
1204
1205
1205 tmp = 0
1206 tmp = 0
1206 c = 0
1207 c = 0
1207 for i in range(len(ang_)):
1208 for i in range(len(ang_)):
1208 ang_new[tmp +c] = ang_[i]
1209 ang_new[tmp +c] = ang_[i]
1209 ang_new2[tmp+c] = ang_[i]
1210 ang_new2[tmp+c] = ang_[i]
1210 condition , value = self.search_pos(i,list1_)
1211 condition , value = self.search_pos(i,list1_)
1211 if condition:
1212 if condition:
1212 pos = tmp + c + 1
1213 pos = tmp + c + 1
1213 for k in range(round(abs(list2_[value]))-1):
1214 for k in range(round(abs(list2_[value]))-1):
1214 if tipo_case==0 or tipo_case==3:#subida
1215 if tipo_case==0 or tipo_case==3:#subida
1215 ang_new[pos+k] = ang_new[pos+k-1]+1
1216 ang_new[pos+k] = ang_new[pos+k-1]+1
1216 ang_new2[pos+k] = numpy.nan
1217 ang_new2[pos+k] = numpy.nan
1217 elif tipo_case==1 or tipo_case==2:#bajada
1218 elif tipo_case==1 or tipo_case==2:#bajada
1218 ang_new[pos+k] = ang_new[pos+k-1]-1
1219 ang_new[pos+k] = ang_new[pos+k-1]-1
1219 ang_new2[pos+k] = numpy.nan
1220 ang_new2[pos+k] = numpy.nan
1220
1221
1221 tmp = pos +k
1222 tmp = pos +k
1222 c = 0
1223 c = 0
1223 c=c+1
1224 c=c+1
1224 return ang_new,ang_new2
1225 return ang_new,ang_new2
1225
1226
1226 def globalCheckPED(self,angulos,tipo_case):
1227 def globalCheckPED(self,angulos,tipo_case):
1227 l1,l2 = self.get2List(angulos)
1228 l1,l2 = self.get2List(angulos)
1228 ##print("l1",l1)
1229 ##print("l1",l1)
1229 ##print("l2",l2)
1230 ##print("l2",l2)
1230 if len(l1)>0:
1231 if len(l1)>0:
1231 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1232 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1232 #l1,l2 = self.get2List(angulos2)
1233 #l1,l2 = self.get2List(angulos2)
1233 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1234 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1234 #ang1_ = self.fixData90HL(ang1_)
1235 #ang1_ = self.fixData90HL(ang1_)
1235 #ang2_ = self.fixData90HL(ang2_)
1236 #ang2_ = self.fixData90HL(ang2_)
1236 else:
1237 else:
1237 ang1_= angulos
1238 ang1_= angulos
1238 ang2_= angulos
1239 ang2_= angulos
1239 return ang1_,ang2_
1240 return ang1_,ang2_
1240
1241
1241
1242
1242 def replaceNAN(self,data_weather,data_ele,val):
1243 def replaceNAN(self,data_weather,data_ele,val):
1243 data= data_ele
1244 data= data_ele
1244 data_T= data_weather
1245 data_T= data_weather
1245 if data.shape[0]> data_T.shape[0]:
1246 if data.shape[0]> data_T.shape[0]:
1246 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1247 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1247 c = 0
1248 c = 0
1248 for i in range(len(data)):
1249 for i in range(len(data)):
1249 if numpy.isnan(data[i]):
1250 if numpy.isnan(data[i]):
1250 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1251 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1251 else:
1252 else:
1252 data_N[i,:]=data_T[c,:]
1253 data_N[i,:]=data_T[c,:]
1253 c=c+1
1254 c=c+1
1254 return data_N
1255 return data_N
1255 else:
1256 else:
1256 for i in range(len(data)):
1257 for i in range(len(data)):
1257 if numpy.isnan(data[i]):
1258 if numpy.isnan(data[i]):
1258 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1259 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1259 return data_T
1260 return data_T
1260
1261
1261 def check_case(self,data_ele,ang_max,ang_min):
1262 def check_case(self,data_ele,ang_max,ang_min):
1262 start = data_ele[0]
1263 start = data_ele[0]
1263 end = data_ele[-1]
1264 end = data_ele[-1]
1264 number = (end-start)
1265 number = (end-start)
1265 len_ang=len(data_ele)
1266 len_ang=len(data_ele)
1266 print("start",start)
1267 print("start",start)
1267 print("end",end)
1268 print("end",end)
1268 print("number",number)
1269 print("number",number)
1269
1270
1270 print("len_ang",len_ang)
1271 print("len_ang",len_ang)
1271
1272
1272 #exit(1)
1273 #exit(1)
1273
1274
1274 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
1275 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
1275 return 0
1276 return 0
1276 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
1277 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
1277 # return 1
1278 # return 1
1278 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
1279 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
1279 return 1
1280 return 1
1280 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
1281 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
1281 return 2
1282 return 2
1282 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
1283 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
1283 return 3
1284 return 3
1284
1285
1285
1286
1286 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1287 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1287 ang_max= ang_max
1288 ang_max= ang_max
1288 ang_min= ang_min
1289 ang_min= ang_min
1289 data_weather=data_weather
1290 data_weather=data_weather
1290 val_ch=val_ch
1291 val_ch=val_ch
1291 ##print("*********************DATA WEATHER**************************************")
1292 ##print("*********************DATA WEATHER**************************************")
1292 ##print(data_weather)
1293 ##print(data_weather)
1293 if self.ini==0:
1294 if self.ini==0:
1294 '''
1295 '''
1295 print("**********************************************")
1296 print("**********************************************")
1296 print("**********************************************")
1297 print("**********************************************")
1297 print("***************ini**************")
1298 print("***************ini**************")
1298 print("**********************************************")
1299 print("**********************************************")
1299 print("**********************************************")
1300 print("**********************************************")
1300 '''
1301 '''
1301 #print("data_ele",data_ele)
1302 #print("data_ele",data_ele)
1302 #----------------------------------------------------------
1303 #----------------------------------------------------------
1303 tipo_case = case_flag[-1]
1304 tipo_case = case_flag[-1]
1304 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1305 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1305 print("check_case",tipo_case)
1306 print("check_case",tipo_case)
1306 #exit(1)
1307 #exit(1)
1307 #--------------------- new -------------------------
1308 #--------------------- new -------------------------
1308 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1309 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1309
1310
1310 #-------------------------CAMBIOS RHI---------------------------------
1311 #-------------------------CAMBIOS RHI---------------------------------
1311 start= ang_min
1312 start= ang_min
1312 end = ang_max
1313 end = ang_max
1313 n= (ang_max-ang_min)/res
1314 n= (ang_max-ang_min)/res
1314 #------ new
1315 #------ new
1315 self.start_data_ele = data_ele_new[0]
1316 self.start_data_ele = data_ele_new[0]
1316 self.end_data_ele = data_ele_new[-1]
1317 self.end_data_ele = data_ele_new[-1]
1317 if tipo_case==0 or tipo_case==3: # SUBIDA
1318 if tipo_case==0 or tipo_case==3: # SUBIDA
1318 n1= round(self.start_data_ele)- start
1319 n1= round(self.start_data_ele)- start
1319 n2= end - round(self.end_data_ele)
1320 n2= end - round(self.end_data_ele)
1320 print(self.start_data_ele)
1321 print(self.start_data_ele)
1321 print(self.end_data_ele)
1322 print(self.end_data_ele)
1322 if n1>0:
1323 if n1>0:
1323 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1324 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1324 ele1_nan= numpy.ones(n1)*numpy.nan
1325 ele1_nan= numpy.ones(n1)*numpy.nan
1325 data_ele = numpy.hstack((ele1,data_ele_new))
1326 data_ele = numpy.hstack((ele1,data_ele_new))
1326 print("ele1_nan",ele1_nan.shape)
1327 print("ele1_nan",ele1_nan.shape)
1327 print("data_ele_old",data_ele_old.shape)
1328 print("data_ele_old",data_ele_old.shape)
1328 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1329 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1329 if n2>0:
1330 if n2>0:
1330 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1331 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1331 ele2_nan= numpy.ones(n2)*numpy.nan
1332 ele2_nan= numpy.ones(n2)*numpy.nan
1332 data_ele = numpy.hstack((data_ele,ele2))
1333 data_ele = numpy.hstack((data_ele,ele2))
1333 print("ele2_nan",ele2_nan.shape)
1334 print("ele2_nan",ele2_nan.shape)
1334 print("data_ele_old",data_ele_old.shape)
1335 print("data_ele_old",data_ele_old.shape)
1335 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1336 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1336
1337
1337 if tipo_case==1 or tipo_case==2: # BAJADA
1338 if tipo_case==1 or tipo_case==2: # BAJADA
1338 data_ele_new = data_ele_new[::-1] # reversa
1339 data_ele_new = data_ele_new[::-1] # reversa
1339 data_ele_old = data_ele_old[::-1]# reversa
1340 data_ele_old = data_ele_old[::-1]# reversa
1340 data_weather = data_weather[::-1,:]# reversa
1341 data_weather = data_weather[::-1,:]# reversa
1341 vec= numpy.where(data_ele_new<ang_max)
1342 vec= numpy.where(data_ele_new<ang_max)
1342 data_ele_new = data_ele_new[vec]
1343 data_ele_new = data_ele_new[vec]
1343 data_ele_old = data_ele_old[vec]
1344 data_ele_old = data_ele_old[vec]
1344 data_weather = data_weather[vec[0]]
1345 data_weather = data_weather[vec[0]]
1345 vec2= numpy.where(0<data_ele_new)
1346 vec2= numpy.where(0<data_ele_new)
1346 data_ele_new = data_ele_new[vec2]
1347 data_ele_new = data_ele_new[vec2]
1347 data_ele_old = data_ele_old[vec2]
1348 data_ele_old = data_ele_old[vec2]
1348 data_weather = data_weather[vec2[0]]
1349 data_weather = data_weather[vec2[0]]
1349 self.start_data_ele = data_ele_new[0]
1350 self.start_data_ele = data_ele_new[0]
1350 self.end_data_ele = data_ele_new[-1]
1351 self.end_data_ele = data_ele_new[-1]
1351
1352
1352 n1= round(self.start_data_ele)- start
1353 n1= round(self.start_data_ele)- start
1353 n2= end - round(self.end_data_ele)-1
1354 n2= end - round(self.end_data_ele)-1
1354 print(self.start_data_ele)
1355 print(self.start_data_ele)
1355 print(self.end_data_ele)
1356 print(self.end_data_ele)
1356 if n1>0:
1357 if n1>0:
1357 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1358 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1358 ele1_nan= numpy.ones(n1)*numpy.nan
1359 ele1_nan= numpy.ones(n1)*numpy.nan
1359 data_ele = numpy.hstack((ele1,data_ele_new))
1360 data_ele = numpy.hstack((ele1,data_ele_new))
1360 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1361 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1361 if n2>0:
1362 if n2>0:
1362 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1363 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1363 ele2_nan= numpy.ones(n2)*numpy.nan
1364 ele2_nan= numpy.ones(n2)*numpy.nan
1364 data_ele = numpy.hstack((data_ele,ele2))
1365 data_ele = numpy.hstack((data_ele,ele2))
1365 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1366 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1366 # RADAR
1367 # RADAR
1367 # NOTA data_ele y data_weather es la variable que retorna
1368 # NOTA data_ele y data_weather es la variable que retorna
1368 val_mean = numpy.mean(data_weather[:,-1])
1369 val_mean = numpy.mean(data_weather[:,-1])
1369 self.val_mean = val_mean
1370 self.val_mean = val_mean
1370 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1371 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1371 print("eleold",data_ele_old)
1372 print("eleold",data_ele_old)
1372 print(self.data_ele_tmp[val_ch])
1373 print(self.data_ele_tmp[val_ch])
1373 print(data_ele_old.shape[0])
1374 print(data_ele_old.shape[0])
1374 print(self.data_ele_tmp[val_ch].shape[0])
1375 print(self.data_ele_tmp[val_ch].shape[0])
1375 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
1376 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
1376 import sys
1377 import sys
1377 print("EXIT",self.ini)
1378 print("EXIT",self.ini)
1378
1379
1379 sys.exit(1)
1380 sys.exit(1)
1380 self.data_ele_tmp[val_ch]= data_ele_old
1381 self.data_ele_tmp[val_ch]= data_ele_old
1381 else:
1382 else:
1382 #print("**********************************************")
1383 #print("**********************************************")
1383 #print("****************VARIABLE**********************")
1384 #print("****************VARIABLE**********************")
1384 #-------------------------CAMBIOS RHI---------------------------------
1385 #-------------------------CAMBIOS RHI---------------------------------
1385 #---------------------------------------------------------------------
1386 #---------------------------------------------------------------------
1386 ##print("INPUT data_ele",data_ele)
1387 ##print("INPUT data_ele",data_ele)
1387 flag=0
1388 flag=0
1388 start_ele = self.res_ele[0]
1389 start_ele = self.res_ele[0]
1389 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1390 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1390 tipo_case = case_flag[-1]
1391 tipo_case = case_flag[-1]
1391 #print("TIPO DE DATA",tipo_case)
1392 #print("TIPO DE DATA",tipo_case)
1392 #-----------new------------
1393 #-----------new------------
1393 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
1394 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
1394 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1395 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1395
1396
1396 #-------------------------------NEW RHI ITERATIVO-------------------------
1397 #-------------------------------NEW RHI ITERATIVO-------------------------
1397
1398
1398 if tipo_case==0 : # SUBIDA
1399 if tipo_case==0 : # SUBIDA
1399 vec = numpy.where(data_ele<ang_max)
1400 vec = numpy.where(data_ele<ang_max)
1400 data_ele = data_ele[vec]
1401 data_ele = data_ele[vec]
1401 data_ele_old = data_ele_old[vec]
1402 data_ele_old = data_ele_old[vec]
1402 data_weather = data_weather[vec[0]]
1403 data_weather = data_weather[vec[0]]
1403
1404
1404 vec2 = numpy.where(0<data_ele)
1405 vec2 = numpy.where(0<data_ele)
1405 data_ele= data_ele[vec2]
1406 data_ele= data_ele[vec2]
1406 data_ele_old= data_ele_old[vec2]
1407 data_ele_old= data_ele_old[vec2]
1407 ##print(data_ele_new)
1408 ##print(data_ele_new)
1408 data_weather= data_weather[vec2[0]]
1409 data_weather= data_weather[vec2[0]]
1409
1410
1410 new_i_ele = int(round(data_ele[0]))
1411 new_i_ele = int(round(data_ele[0]))
1411 new_f_ele = int(round(data_ele[-1]))
1412 new_f_ele = int(round(data_ele[-1]))
1412 #print(new_i_ele)
1413 #print(new_i_ele)
1413 #print(new_f_ele)
1414 #print(new_f_ele)
1414 #print(data_ele,len(data_ele))
1415 #print(data_ele,len(data_ele))
1415 #print(data_ele_old,len(data_ele_old))
1416 #print(data_ele_old,len(data_ele_old))
1416 if new_i_ele< 2:
1417 if new_i_ele< 2:
1417 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1418 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1418 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1419 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1419 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
1420 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
1420 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
1421 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
1421 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
1422 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
1422 data_ele = self.res_ele
1423 data_ele = self.res_ele
1423 data_weather = self.res_weather[val_ch]
1424 data_weather = self.res_weather[val_ch]
1424
1425
1425 elif tipo_case==1 : #BAJADA
1426 elif tipo_case==1 : #BAJADA
1426 data_ele = data_ele[::-1] # reversa
1427 data_ele = data_ele[::-1] # reversa
1427 data_ele_old = data_ele_old[::-1]# reversa
1428 data_ele_old = data_ele_old[::-1]# reversa
1428 data_weather = data_weather[::-1,:]# reversa
1429 data_weather = data_weather[::-1,:]# reversa
1429 vec= numpy.where(data_ele<ang_max)
1430 vec= numpy.where(data_ele<ang_max)
1430 data_ele = data_ele[vec]
1431 data_ele = data_ele[vec]
1431 data_ele_old = data_ele_old[vec]
1432 data_ele_old = data_ele_old[vec]
1432 data_weather = data_weather[vec[0]]
1433 data_weather = data_weather[vec[0]]
1433 vec2= numpy.where(0<data_ele)
1434 vec2= numpy.where(0<data_ele)
1434 data_ele = data_ele[vec2]
1435 data_ele = data_ele[vec2]
1435 data_ele_old = data_ele_old[vec2]
1436 data_ele_old = data_ele_old[vec2]
1436 data_weather = data_weather[vec2[0]]
1437 data_weather = data_weather[vec2[0]]
1437
1438
1438
1439
1439 new_i_ele = int(round(data_ele[0]))
1440 new_i_ele = int(round(data_ele[0]))
1440 new_f_ele = int(round(data_ele[-1]))
1441 new_f_ele = int(round(data_ele[-1]))
1441 #print(data_ele)
1442 #print(data_ele)
1442 #print(ang_max)
1443 #print(ang_max)
1443 #print(data_ele_old)
1444 #print(data_ele_old)
1444 if new_i_ele <= 1:
1445 if new_i_ele <= 1:
1445 new_i_ele = 1
1446 new_i_ele = 1
1446 if round(data_ele[-1])>=ang_max-1:
1447 if round(data_ele[-1])>=ang_max-1:
1447 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1448 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1448 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1449 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1449 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
1450 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
1450 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
1451 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
1451 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
1452 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
1452 data_ele = self.res_ele
1453 data_ele = self.res_ele
1453 data_weather = self.res_weather[val_ch]
1454 data_weather = self.res_weather[val_ch]
1454
1455
1455 elif tipo_case==2: #bajada
1456 elif tipo_case==2: #bajada
1456 vec = numpy.where(data_ele<ang_max)
1457 vec = numpy.where(data_ele<ang_max)
1457 data_ele = data_ele[vec]
1458 data_ele = data_ele[vec]
1458 data_weather= data_weather[vec[0]]
1459 data_weather= data_weather[vec[0]]
1459
1460
1460 len_vec = len(vec)
1461 len_vec = len(vec)
1461 data_ele_new = data_ele[::-1] # reversa
1462 data_ele_new = data_ele[::-1] # reversa
1462 data_weather = data_weather[::-1,:]
1463 data_weather = data_weather[::-1,:]
1463 new_i_ele = int(data_ele_new[0])
1464 new_i_ele = int(data_ele_new[0])
1464 new_f_ele = int(data_ele_new[-1])
1465 new_f_ele = int(data_ele_new[-1])
1465
1466
1466 n1= new_i_ele- ang_min
1467 n1= new_i_ele- ang_min
1467 n2= ang_max - new_f_ele-1
1468 n2= ang_max - new_f_ele-1
1468 if n1>0:
1469 if n1>0:
1469 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1470 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1470 ele1_nan= numpy.ones(n1)*numpy.nan
1471 ele1_nan= numpy.ones(n1)*numpy.nan
1471 data_ele = numpy.hstack((ele1,data_ele_new))
1472 data_ele = numpy.hstack((ele1,data_ele_new))
1472 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1473 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1473 if n2>0:
1474 if n2>0:
1474 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1475 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1475 ele2_nan= numpy.ones(n2)*numpy.nan
1476 ele2_nan= numpy.ones(n2)*numpy.nan
1476 data_ele = numpy.hstack((data_ele,ele2))
1477 data_ele = numpy.hstack((data_ele,ele2))
1477 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1478 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1478
1479
1479 self.data_ele_tmp[val_ch] = data_ele_old
1480 self.data_ele_tmp[val_ch] = data_ele_old
1480 self.res_ele = data_ele
1481 self.res_ele = data_ele
1481 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1482 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1482 data_ele = self.res_ele
1483 data_ele = self.res_ele
1483 data_weather = self.res_weather[val_ch]
1484 data_weather = self.res_weather[val_ch]
1484
1485
1485 elif tipo_case==3:#subida
1486 elif tipo_case==3:#subida
1486 vec = numpy.where(0<data_ele)
1487 vec = numpy.where(0<data_ele)
1487 data_ele= data_ele[vec]
1488 data_ele= data_ele[vec]
1488 data_ele_new = data_ele
1489 data_ele_new = data_ele
1489 data_ele_old= data_ele_old[vec]
1490 data_ele_old= data_ele_old[vec]
1490 data_weather= data_weather[vec[0]]
1491 data_weather= data_weather[vec[0]]
1491 pos_ini = numpy.argmin(data_ele)
1492 pos_ini = numpy.argmin(data_ele)
1492 if pos_ini>0:
1493 if pos_ini>0:
1493 len_vec= len(data_ele)
1494 len_vec= len(data_ele)
1494 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1495 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1495 #print(vec3)
1496 #print(vec3)
1496 data_ele= data_ele[vec3]
1497 data_ele= data_ele[vec3]
1497 data_ele_new = data_ele
1498 data_ele_new = data_ele
1498 data_ele_old= data_ele_old[vec3]
1499 data_ele_old= data_ele_old[vec3]
1499 data_weather= data_weather[vec3]
1500 data_weather= data_weather[vec3]
1500
1501
1501 new_i_ele = int(data_ele_new[0])
1502 new_i_ele = int(data_ele_new[0])
1502 new_f_ele = int(data_ele_new[-1])
1503 new_f_ele = int(data_ele_new[-1])
1503 n1= new_i_ele- ang_min
1504 n1= new_i_ele- ang_min
1504 n2= ang_max - new_f_ele-1
1505 n2= ang_max - new_f_ele-1
1505 if n1>0:
1506 if n1>0:
1506 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1507 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1507 ele1_nan= numpy.ones(n1)*numpy.nan
1508 ele1_nan= numpy.ones(n1)*numpy.nan
1508 data_ele = numpy.hstack((ele1,data_ele_new))
1509 data_ele = numpy.hstack((ele1,data_ele_new))
1509 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1510 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1510 if n2>0:
1511 if n2>0:
1511 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1512 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1512 ele2_nan= numpy.ones(n2)*numpy.nan
1513 ele2_nan= numpy.ones(n2)*numpy.nan
1513 data_ele = numpy.hstack((data_ele,ele2))
1514 data_ele = numpy.hstack((data_ele,ele2))
1514 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1515 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1515
1516
1516 self.data_ele_tmp[val_ch] = data_ele_old
1517 self.data_ele_tmp[val_ch] = data_ele_old
1517 self.res_ele = data_ele
1518 self.res_ele = data_ele
1518 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1519 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1519 data_ele = self.res_ele
1520 data_ele = self.res_ele
1520 data_weather = self.res_weather[val_ch]
1521 data_weather = self.res_weather[val_ch]
1521 #print("self.data_ele_tmp",self.data_ele_tmp)
1522 #print("self.data_ele_tmp",self.data_ele_tmp)
1522 return data_weather,data_ele
1523 return data_weather,data_ele
1523
1524
1524
1525
1525 def plot(self):
1526 def plot(self):
1526 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1527 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1527 data = self.data[-1]
1528 data = self.data[-1]
1528 r = self.data.yrange
1529 r = self.data.yrange
1529 delta_height = r[1]-r[0]
1530 delta_height = r[1]-r[0]
1530 r_mask = numpy.where(r>=0)[0]
1531 r_mask = numpy.where(r>=0)[0]
1531 ##print("delta_height",delta_height)
1532 ##print("delta_height",delta_height)
1532 #print("r_mask",r_mask,len(r_mask))
1533 #print("r_mask",r_mask,len(r_mask))
1533 r = numpy.arange(len(r_mask))*delta_height
1534 r = numpy.arange(len(r_mask))*delta_height
1534 self.y = 2*r
1535 self.y = 2*r
1535 res = 1
1536 res = 1
1536 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1537 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1537 ang_max = self.ang_max
1538 ang_max = self.ang_max
1538 ang_min = self.ang_min
1539 ang_min = self.ang_min
1539 var_ang =ang_max - ang_min
1540 var_ang =ang_max - ang_min
1540 step = (int(var_ang)/(res*data['weather'].shape[0]))
1541 step = (int(var_ang)/(res*data['weather'].shape[0]))
1541 ###print("step",step)
1542 ###print("step",step)
1542 #--------------------------------------------------------
1543 #--------------------------------------------------------
1543 ##print('weather',data['weather'].shape)
1544 ##print('weather',data['weather'].shape)
1544 ##print('ele',data['ele'].shape)
1545 ##print('ele',data['ele'].shape)
1545
1546
1546 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1547 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1547 ###self.res_azi = numpy.mean(data['azi'])
1548 ###self.res_azi = numpy.mean(data['azi'])
1548 ###print("self.res_ele",self.res_ele)
1549 ###print("self.res_ele",self.res_ele)
1549 plt.clf()
1550 plt.clf()
1550 subplots = [121, 122]
1551 subplots = [121, 122]
1551 try:
1552 try:
1552 if self.data[-2]['ele'].max()<data['ele'].max():
1553 if self.data[-2]['ele'].max()<data['ele'].max():
1553 self.ini=0
1554 self.ini=0
1554 except:
1555 except:
1555 pass
1556 pass
1556 if self.ini==0:
1557 if self.ini==0:
1557 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1558 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1558 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1559 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1559 print("SHAPE",self.data_ele_tmp.shape)
1560 print("SHAPE",self.data_ele_tmp.shape)
1560
1561
1561 for i,ax in enumerate(self.axes):
1562 for i,ax in enumerate(self.axes):
1562 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1563 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1563 self.res_azi = numpy.mean(data['azi'])
1564 self.res_azi = numpy.mean(data['azi'])
1564
1565
1565 if ax.firsttime:
1566 if ax.firsttime:
1566 #plt.clf()
1567 #plt.clf()
1567 print("Frist Plot")
1568 print("Frist Plot")
1568 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1569 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1569 #fig=self.figures[0]
1570 #fig=self.figures[0]
1570 else:
1571 else:
1571 #plt.clf()
1572 #plt.clf()
1572 print("ELSE PLOT")
1573 print("ELSE PLOT")
1573 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1574 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1574 caax = cgax.parasites[0]
1575 caax = cgax.parasites[0]
1575 paax = cgax.parasites[1]
1576 paax = cgax.parasites[1]
1576 cbar = plt.gcf().colorbar(pm, pad=0.075)
1577 cbar = plt.gcf().colorbar(pm, pad=0.075)
1577 caax.set_xlabel('x_range [km]')
1578 caax.set_xlabel('x_range [km]')
1578 caax.set_ylabel('y_range [km]')
1579 caax.set_ylabel('y_range [km]')
1579 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1580 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1580 print("***************************self.ini****************************",self.ini)
1581 print("***************************self.ini****************************",self.ini)
1581 self.ini= self.ini+1
1582 self.ini= self.ini+1
1582
1583
1583 class WeatherRHI_vRF_Plot(Plot):
1584 class WeatherRHI_vRF_Plot(Plot):
1584 CODE = 'weather'
1585 CODE = 'weather'
1585 plot_name = 'weather'
1586 plot_name = 'weather'
1586 plot_type = 'rhistyle'
1587 plot_type = 'rhistyle'
1587 buffering = False
1588 buffering = False
1588 data_ele_tmp = None
1589 data_ele_tmp = None
1589
1590
1590 def setup(self):
1591 def setup(self):
1591 print("********************")
1592 print("********************")
1592 print("********************")
1593 print("********************")
1593 print("********************")
1594 print("********************")
1594 print("SETUP WEATHER PLOT")
1595 print("SETUP WEATHER PLOT")
1595 self.ncols = 1
1596 self.ncols = 1
1596 self.nrows = 1
1597 self.nrows = 1
1597 self.nplots= 1
1598 self.nplots= 1
1598 self.ylabel= 'Range [Km]'
1599 self.ylabel= 'Range [Km]'
1599 self.titles= ['Weather']
1600 self.titles= ['Weather']
1600 if self.channels is not None:
1601 if self.channels is not None:
1601 self.nplots = len(self.channels)
1602 self.nplots = len(self.channels)
1602 self.nrows = len(self.channels)
1603 self.nrows = len(self.channels)
1603 else:
1604 else:
1604 self.nplots = self.data.shape(self.CODE)[0]
1605 self.nplots = self.data.shape(self.CODE)[0]
1605 self.nrows = self.nplots
1606 self.nrows = self.nplots
1606 self.channels = list(range(self.nplots))
1607 self.channels = list(range(self.nplots))
1607 print("channels",self.channels)
1608 print("channels",self.channels)
1608 print("que saldra", self.data.shape(self.CODE)[0])
1609 print("que saldra", self.data.shape(self.CODE)[0])
1609 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1610 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1610 print("self.titles",self.titles)
1611 print("self.titles",self.titles)
1611 self.colorbar=False
1612 self.colorbar=False
1612 self.width =8
1613 self.width =8
1613 self.height =8
1614 self.height =8
1614 self.ini =0
1615 self.ini =0
1615 self.len_azi =0
1616 self.len_azi =0
1616 self.buffer_ini = None
1617 self.buffer_ini = None
1617 self.buffer_ele = None
1618 self.buffer_ele = None
1618 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1619 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1619 self.flag =0
1620 self.flag =0
1620 self.indicador= 0
1621 self.indicador= 0
1621 self.last_data_ele = None
1622 self.last_data_ele = None
1622 self.val_mean = None
1623 self.val_mean = None
1623
1624
1624 def update(self, dataOut):
1625 def update(self, dataOut):
1625
1626
1626 data = {}
1627 data = {}
1627 meta = {}
1628 meta = {}
1628 if hasattr(dataOut, 'dataPP_POWER'):
1629 if hasattr(dataOut, 'dataPP_POWER'):
1629 factor = 1
1630 factor = 1
1630 if hasattr(dataOut, 'nFFTPoints'):
1631 if hasattr(dataOut, 'nFFTPoints'):
1631 factor = dataOut.normFactor
1632 factor = dataOut.normFactor
1632 print("dataOut",dataOut.data_360.shape)
1633 print("dataOut",dataOut.data_360.shape)
1633 #
1634 #
1634 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1635 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1635 #
1636 #
1636 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1637 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1637 data['azi'] = dataOut.data_azi
1638 data['azi'] = dataOut.data_azi
1638 data['ele'] = dataOut.data_ele
1639 data['ele'] = dataOut.data_ele
1639 data['case_flag'] = dataOut.case_flag
1640 data['case_flag'] = dataOut.case_flag
1640 #print("UPDATE")
1641 #print("UPDATE")
1641 #print("data[weather]",data['weather'].shape)
1642 #print("data[weather]",data['weather'].shape)
1642 #print("data[azi]",data['azi'])
1643 #print("data[azi]",data['azi'])
1643 return data, meta
1644 return data, meta
1644
1645
1645 def get2List(self,angulos):
1646 def get2List(self,angulos):
1646 list1=[]
1647 list1=[]
1647 list2=[]
1648 list2=[]
1648 #print(angulos)
1649 #print(angulos)
1649 #exit(1)
1650 #exit(1)
1650 for i in reversed(range(len(angulos))):
1651 for i in reversed(range(len(angulos))):
1651 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1652 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1652 diff_ = angulos[i]-angulos[i-1]
1653 diff_ = angulos[i]-angulos[i-1]
1653 if abs(diff_) >1.5:
1654 if abs(diff_) >1.5:
1654 list1.append(i-1)
1655 list1.append(i-1)
1655 list2.append(diff_)
1656 list2.append(diff_)
1656 return list(reversed(list1)),list(reversed(list2))
1657 return list(reversed(list1)),list(reversed(list2))
1657
1658
1658 def fixData90(self,list_,ang_):
1659 def fixData90(self,list_,ang_):
1659 if list_[0]==-1:
1660 if list_[0]==-1:
1660 vec = numpy.where(ang_<ang_[0])
1661 vec = numpy.where(ang_<ang_[0])
1661 ang_[vec] = ang_[vec]+90
1662 ang_[vec] = ang_[vec]+90
1662 return ang_
1663 return ang_
1663 return ang_
1664 return ang_
1664
1665
1665 def fixData90HL(self,angulos):
1666 def fixData90HL(self,angulos):
1666 vec = numpy.where(angulos>=90)
1667 vec = numpy.where(angulos>=90)
1667 angulos[vec]=angulos[vec]-90
1668 angulos[vec]=angulos[vec]-90
1668 return angulos
1669 return angulos
1669
1670
1670
1671
1671 def search_pos(self,pos,list_):
1672 def search_pos(self,pos,list_):
1672 for i in range(len(list_)):
1673 for i in range(len(list_)):
1673 if pos == list_[i]:
1674 if pos == list_[i]:
1674 return True,i
1675 return True,i
1675 i=None
1676 i=None
1676 return False,i
1677 return False,i
1677
1678
1678 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1679 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1679 size = len(ang_)
1680 size = len(ang_)
1680 size2 = 0
1681 size2 = 0
1681 for i in range(len(list2_)):
1682 for i in range(len(list2_)):
1682 size2=size2+round(abs(list2_[i]))-1
1683 size2=size2+round(abs(list2_[i]))-1
1683 new_size= size+size2
1684 new_size= size+size2
1684 ang_new = numpy.zeros(new_size)
1685 ang_new = numpy.zeros(new_size)
1685 ang_new2 = numpy.zeros(new_size)
1686 ang_new2 = numpy.zeros(new_size)
1686
1687
1687 tmp = 0
1688 tmp = 0
1688 c = 0
1689 c = 0
1689 for i in range(len(ang_)):
1690 for i in range(len(ang_)):
1690 ang_new[tmp +c] = ang_[i]
1691 ang_new[tmp +c] = ang_[i]
1691 ang_new2[tmp+c] = ang_[i]
1692 ang_new2[tmp+c] = ang_[i]
1692 condition , value = self.search_pos(i,list1_)
1693 condition , value = self.search_pos(i,list1_)
1693 if condition:
1694 if condition:
1694 pos = tmp + c + 1
1695 pos = tmp + c + 1
1695 for k in range(round(abs(list2_[value]))-1):
1696 for k in range(round(abs(list2_[value]))-1):
1696 if tipo_case==0 or tipo_case==3:#subida
1697 if tipo_case==0 or tipo_case==3:#subida
1697 ang_new[pos+k] = ang_new[pos+k-1]+1
1698 ang_new[pos+k] = ang_new[pos+k-1]+1
1698 ang_new2[pos+k] = numpy.nan
1699 ang_new2[pos+k] = numpy.nan
1699 elif tipo_case==1 or tipo_case==2:#bajada
1700 elif tipo_case==1 or tipo_case==2:#bajada
1700 ang_new[pos+k] = ang_new[pos+k-1]-1
1701 ang_new[pos+k] = ang_new[pos+k-1]-1
1701 ang_new2[pos+k] = numpy.nan
1702 ang_new2[pos+k] = numpy.nan
1702
1703
1703 tmp = pos +k
1704 tmp = pos +k
1704 c = 0
1705 c = 0
1705 c=c+1
1706 c=c+1
1706 return ang_new,ang_new2
1707 return ang_new,ang_new2
1707
1708
1708 def globalCheckPED(self,angulos,tipo_case):
1709 def globalCheckPED(self,angulos,tipo_case):
1709 l1,l2 = self.get2List(angulos)
1710 l1,l2 = self.get2List(angulos)
1710 print("l1",l1)
1711 print("l1",l1)
1711 print("l2",l2)
1712 print("l2",l2)
1712 if len(l1)>0:
1713 if len(l1)>0:
1713 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1714 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1714 #l1,l2 = self.get2List(angulos2)
1715 #l1,l2 = self.get2List(angulos2)
1715 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1716 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1716 #ang1_ = self.fixData90HL(ang1_)
1717 #ang1_ = self.fixData90HL(ang1_)
1717 #ang2_ = self.fixData90HL(ang2_)
1718 #ang2_ = self.fixData90HL(ang2_)
1718 else:
1719 else:
1719 ang1_= angulos
1720 ang1_= angulos
1720 ang2_= angulos
1721 ang2_= angulos
1721 return ang1_,ang2_
1722 return ang1_,ang2_
1722
1723
1723
1724
1724 def replaceNAN(self,data_weather,data_ele,val):
1725 def replaceNAN(self,data_weather,data_ele,val):
1725 data= data_ele
1726 data= data_ele
1726 data_T= data_weather
1727 data_T= data_weather
1727 #print(data.shape[0])
1728 #print(data.shape[0])
1728 #print(data_T.shape[0])
1729 #print(data_T.shape[0])
1729 #exit(1)
1730 #exit(1)
1730 if data.shape[0]> data_T.shape[0]:
1731 if data.shape[0]> data_T.shape[0]:
1731 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1732 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1732 c = 0
1733 c = 0
1733 for i in range(len(data)):
1734 for i in range(len(data)):
1734 if numpy.isnan(data[i]):
1735 if numpy.isnan(data[i]):
1735 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1736 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1736 else:
1737 else:
1737 data_N[i,:]=data_T[c,:]
1738 data_N[i,:]=data_T[c,:]
1738 c=c+1
1739 c=c+1
1739 return data_N
1740 return data_N
1740 else:
1741 else:
1741 for i in range(len(data)):
1742 for i in range(len(data)):
1742 if numpy.isnan(data[i]):
1743 if numpy.isnan(data[i]):
1743 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1744 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1744 return data_T
1745 return data_T
1745
1746
1746
1747
1747 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1748 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1748 ang_max= ang_max
1749 ang_max= ang_max
1749 ang_min= ang_min
1750 ang_min= ang_min
1750 data_weather=data_weather
1751 data_weather=data_weather
1751 val_ch=val_ch
1752 val_ch=val_ch
1752 ##print("*********************DATA WEATHER**************************************")
1753 ##print("*********************DATA WEATHER**************************************")
1753 ##print(data_weather)
1754 ##print(data_weather)
1754
1755
1755 '''
1756 '''
1756 print("**********************************************")
1757 print("**********************************************")
1757 print("**********************************************")
1758 print("**********************************************")
1758 print("***************ini**************")
1759 print("***************ini**************")
1759 print("**********************************************")
1760 print("**********************************************")
1760 print("**********************************************")
1761 print("**********************************************")
1761 '''
1762 '''
1762 #print("data_ele",data_ele)
1763 #print("data_ele",data_ele)
1763 #----------------------------------------------------------
1764 #----------------------------------------------------------
1764
1765
1765 #exit(1)
1766 #exit(1)
1766 tipo_case = case_flag[-1]
1767 tipo_case = case_flag[-1]
1767 print("tipo_case",tipo_case)
1768 print("tipo_case",tipo_case)
1768 #--------------------- new -------------------------
1769 #--------------------- new -------------------------
1769 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1770 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1770
1771
1771 #-------------------------CAMBIOS RHI---------------------------------
1772 #-------------------------CAMBIOS RHI---------------------------------
1772
1773
1773 vec = numpy.where(data_ele<ang_max)
1774 vec = numpy.where(data_ele<ang_max)
1774 data_ele = data_ele[vec]
1775 data_ele = data_ele[vec]
1775 data_weather= data_weather[vec[0]]
1776 data_weather= data_weather[vec[0]]
1776
1777
1777 len_vec = len(vec)
1778 len_vec = len(vec)
1778 data_ele_new = data_ele[::-1] # reversa
1779 data_ele_new = data_ele[::-1] # reversa
1779 data_weather = data_weather[::-1,:]
1780 data_weather = data_weather[::-1,:]
1780 new_i_ele = int(data_ele_new[0])
1781 new_i_ele = int(data_ele_new[0])
1781 new_f_ele = int(data_ele_new[-1])
1782 new_f_ele = int(data_ele_new[-1])
1782
1783
1783 n1= new_i_ele- ang_min
1784 n1= new_i_ele- ang_min
1784 n2= ang_max - new_f_ele-1
1785 n2= ang_max - new_f_ele-1
1785 if n1>0:
1786 if n1>0:
1786 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1787 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1787 ele1_nan= numpy.ones(n1)*numpy.nan
1788 ele1_nan= numpy.ones(n1)*numpy.nan
1788 data_ele = numpy.hstack((ele1,data_ele_new))
1789 data_ele = numpy.hstack((ele1,data_ele_new))
1789 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1790 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1790 if n2>0:
1791 if n2>0:
1791 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1792 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1792 ele2_nan= numpy.ones(n2)*numpy.nan
1793 ele2_nan= numpy.ones(n2)*numpy.nan
1793 data_ele = numpy.hstack((data_ele,ele2))
1794 data_ele = numpy.hstack((data_ele,ele2))
1794 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1795 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1795
1796
1796
1797
1797 print("ele shape",data_ele.shape)
1798 print("ele shape",data_ele.shape)
1798 print(data_ele)
1799 print(data_ele)
1799
1800
1800 #print("self.data_ele_tmp",self.data_ele_tmp)
1801 #print("self.data_ele_tmp",self.data_ele_tmp)
1801 val_mean = numpy.mean(data_weather[:,-1])
1802 val_mean = numpy.mean(data_weather[:,-1])
1802 self.val_mean = val_mean
1803 self.val_mean = val_mean
1803 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1804 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1804 self.data_ele_tmp[val_ch]= data_ele_old
1805 self.data_ele_tmp[val_ch]= data_ele_old
1805
1806
1806
1807
1807 print("data_weather shape",data_weather.shape)
1808 print("data_weather shape",data_weather.shape)
1808 print(data_weather)
1809 print(data_weather)
1809 #exit(1)
1810 #exit(1)
1810 return data_weather,data_ele
1811 return data_weather,data_ele
1811
1812
1812
1813
1813 def plot(self):
1814 def plot(self):
1814 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1815 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1815 data = self.data[-1]
1816 data = self.data[-1]
1816 r = self.data.yrange
1817 r = self.data.yrange
1817 delta_height = r[1]-r[0]
1818 delta_height = r[1]-r[0]
1818 r_mask = numpy.where(r>=0)[0]
1819 r_mask = numpy.where(r>=0)[0]
1819 ##print("delta_height",delta_height)
1820 ##print("delta_height",delta_height)
1820 #print("r_mask",r_mask,len(r_mask))
1821 #print("r_mask",r_mask,len(r_mask))
1821 r = numpy.arange(len(r_mask))*delta_height
1822 r = numpy.arange(len(r_mask))*delta_height
1822 self.y = 2*r
1823 self.y = 2*r
1823 res = 1
1824 res = 1
1824 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1825 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1825 ang_max = self.ang_max
1826 ang_max = self.ang_max
1826 ang_min = self.ang_min
1827 ang_min = self.ang_min
1827 var_ang =ang_max - ang_min
1828 var_ang =ang_max - ang_min
1828 step = (int(var_ang)/(res*data['weather'].shape[0]))
1829 step = (int(var_ang)/(res*data['weather'].shape[0]))
1829 ###print("step",step)
1830 ###print("step",step)
1830 #--------------------------------------------------------
1831 #--------------------------------------------------------
1831 ##print('weather',data['weather'].shape)
1832 ##print('weather',data['weather'].shape)
1832 ##print('ele',data['ele'].shape)
1833 ##print('ele',data['ele'].shape)
1833
1834
1834 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1835 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1835 ###self.res_azi = numpy.mean(data['azi'])
1836 ###self.res_azi = numpy.mean(data['azi'])
1836 ###print("self.res_ele",self.res_ele)
1837 ###print("self.res_ele",self.res_ele)
1837 plt.clf()
1838 plt.clf()
1838 subplots = [121, 122]
1839 subplots = [121, 122]
1839 if self.ini==0:
1840 if self.ini==0:
1840 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1841 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1841 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1842 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1842 print("SHAPE",self.data_ele_tmp.shape)
1843 print("SHAPE",self.data_ele_tmp.shape)
1843
1844
1844 for i,ax in enumerate(self.axes):
1845 for i,ax in enumerate(self.axes):
1845 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1846 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1846 self.res_azi = numpy.mean(data['azi'])
1847 self.res_azi = numpy.mean(data['azi'])
1847
1848
1848 print(self.res_ele)
1849 print(self.res_ele)
1849 #exit(1)
1850 #exit(1)
1850 if ax.firsttime:
1851 if ax.firsttime:
1851 #plt.clf()
1852 #plt.clf()
1852 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1853 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1853 #fig=self.figures[0]
1854 #fig=self.figures[0]
1854 else:
1855 else:
1855
1856
1856 #plt.clf()
1857 #plt.clf()
1857 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1858 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1858 caax = cgax.parasites[0]
1859 caax = cgax.parasites[0]
1859 paax = cgax.parasites[1]
1860 paax = cgax.parasites[1]
1860 cbar = plt.gcf().colorbar(pm, pad=0.075)
1861 cbar = plt.gcf().colorbar(pm, pad=0.075)
1861 caax.set_xlabel('x_range [km]')
1862 caax.set_xlabel('x_range [km]')
1862 caax.set_ylabel('y_range [km]')
1863 caax.set_ylabel('y_range [km]')
1863 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1864 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1864 print("***************************self.ini****************************",self.ini)
1865 print("***************************self.ini****************************",self.ini)
1865 self.ini= self.ini+1
1866 self.ini= self.ini+1
1867
1868 class WeatherRHI_vRF3_Plot(Plot):
1869 CODE = 'weather'
1870 plot_name = 'weather'
1871 plot_type = 'rhistyle'
1872 buffering = False
1873 data_ele_tmp = None
1874
1875 def setup(self):
1876 print("********************")
1877 print("********************")
1878 print("********************")
1879 print("SETUP WEATHER PLOT")
1880 self.ncols = 1
1881 self.nrows = 1
1882 self.nplots= 1
1883 self.ylabel= 'Range [Km]'
1884 self.titles= ['Weather']
1885 if self.channels is not None:
1886 self.nplots = len(self.channels)
1887 self.nrows = len(self.channels)
1888 else:
1889 self.nplots = self.data.shape(self.CODE)[0]
1890 self.nrows = self.nplots
1891 self.channels = list(range(self.nplots))
1892 print("channels",self.channels)
1893 print("que saldra", self.data.shape(self.CODE)[0])
1894 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1895 print("self.titles",self.titles)
1896 self.colorbar=False
1897 self.width =8
1898 self.height =8
1899 self.ini =0
1900 self.len_azi =0
1901 self.buffer_ini = None
1902 self.buffer_ele = None
1903 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1904 self.flag =0
1905 self.indicador= 0
1906 self.last_data_ele = None
1907 self.val_mean = None
1908
1909 def update(self, dataOut):
1910
1911 data = {}
1912 meta = {}
1913 if hasattr(dataOut, 'dataPP_POWER'):
1914 factor = 1
1915 if hasattr(dataOut, 'nFFTPoints'):
1916 factor = dataOut.normFactor
1917 print("dataOut",dataOut.data_360.shape)
1918 #
1919 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1920 #
1921 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1922 data['azi'] = dataOut.data_azi
1923 data['ele'] = dataOut.data_ele
1924 #data['case_flag'] = dataOut.case_flag
1925 #print("UPDATE")
1926 #print("data[weather]",data['weather'].shape)
1927 #print("data[azi]",data['azi'])
1928 return data, meta
1929
1930 def get2List(self,angulos):
1931 list1=[]
1932 list2=[]
1933 for i in reversed(range(len(angulos))):
1934 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1935 diff_ = angulos[i]-angulos[i-1]
1936 if abs(diff_) >1.5:
1937 list1.append(i-1)
1938 list2.append(diff_)
1939 return list(reversed(list1)),list(reversed(list2))
1940
1941 def fixData90(self,list_,ang_):
1942 if list_[0]==-1:
1943 vec = numpy.where(ang_<ang_[0])
1944 ang_[vec] = ang_[vec]+90
1945 return ang_
1946 return ang_
1947
1948 def fixData90HL(self,angulos):
1949 vec = numpy.where(angulos>=90)
1950 angulos[vec]=angulos[vec]-90
1951 return angulos
1952
1953
1954 def search_pos(self,pos,list_):
1955 for i in range(len(list_)):
1956 if pos == list_[i]:
1957 return True,i
1958 i=None
1959 return False,i
1960
1961 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1962 size = len(ang_)
1963 size2 = 0
1964 for i in range(len(list2_)):
1965 size2=size2+round(abs(list2_[i]))-1
1966 new_size= size+size2
1967 ang_new = numpy.zeros(new_size)
1968 ang_new2 = numpy.zeros(new_size)
1969
1970 tmp = 0
1971 c = 0
1972 for i in range(len(ang_)):
1973 ang_new[tmp +c] = ang_[i]
1974 ang_new2[tmp+c] = ang_[i]
1975 condition , value = self.search_pos(i,list1_)
1976 if condition:
1977 pos = tmp + c + 1
1978 for k in range(round(abs(list2_[value]))-1):
1979 if tipo_case==0 or tipo_case==3:#subida
1980 ang_new[pos+k] = ang_new[pos+k-1]+1
1981 ang_new2[pos+k] = numpy.nan
1982 elif tipo_case==1 or tipo_case==2:#bajada
1983 ang_new[pos+k] = ang_new[pos+k-1]-1
1984 ang_new2[pos+k] = numpy.nan
1985
1986 tmp = pos +k
1987 c = 0
1988 c=c+1
1989 return ang_new,ang_new2
1990
1991 def globalCheckPED(self,angulos,tipo_case):
1992 l1,l2 = self.get2List(angulos)
1993 ##print("l1",l1)
1994 ##print("l2",l2)
1995 if len(l1)>0:
1996 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1997 #l1,l2 = self.get2List(angulos2)
1998 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1999 #ang1_ = self.fixData90HL(ang1_)
2000 #ang2_ = self.fixData90HL(ang2_)
2001 else:
2002 ang1_= angulos
2003 ang2_= angulos
2004 return ang1_,ang2_
2005
2006
2007 def replaceNAN(self,data_weather,data_ele,val):
2008 data= data_ele
2009 data_T= data_weather
2010
2011 if data.shape[0]> data_T.shape[0]:
2012 print("IF")
2013 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
2014 c = 0
2015 for i in range(len(data)):
2016 if numpy.isnan(data[i]):
2017 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2018 else:
2019 data_N[i,:]=data_T[c,:]
2020 c=c+1
2021 return data_N
2022 else:
2023 print("else")
2024 for i in range(len(data)):
2025 if numpy.isnan(data[i]):
2026 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2027 return data_T
2028
2029 def check_case(self,data_ele,ang_max,ang_min):
2030 start = data_ele[0]
2031 end = data_ele[-1]
2032 number = (end-start)
2033 len_ang=len(data_ele)
2034 print("start",start)
2035 print("end",end)
2036 print("number",number)
2037
2038 print("len_ang",len_ang)
2039
2040 #exit(1)
2041
2042 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
2043 return 0
2044 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
2045 # return 1
2046 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
2047 return 1
2048 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
2049 return 2
2050 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
2051 return 3
2052
2053
2054 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
2055 ang_max= ang_max
2056 ang_min= ang_min
2057 data_weather=data_weather
2058 val_ch=val_ch
2059 ##print("*********************DATA WEATHER**************************************")
2060 ##print(data_weather)
2061 if self.ini==0:
2062
2063 #--------------------- new -------------------------
2064 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
2065
2066 #-------------------------CAMBIOS RHI---------------------------------
2067 start= ang_min
2068 end = ang_max
2069 n= (ang_max-ang_min)/res
2070 #------ new
2071 self.start_data_ele = data_ele_new[0]
2072 self.end_data_ele = data_ele_new[-1]
2073 if tipo_case==0 or tipo_case==3: # SUBIDA
2074 n1= round(self.start_data_ele)- start
2075 n2= end - round(self.end_data_ele)
2076 print(self.start_data_ele)
2077 print(self.end_data_ele)
2078 if n1>0:
2079 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2080 ele1_nan= numpy.ones(n1)*numpy.nan
2081 data_ele = numpy.hstack((ele1,data_ele_new))
2082 print("ele1_nan",ele1_nan.shape)
2083 print("data_ele_old",data_ele_old.shape)
2084 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2085 if n2>0:
2086 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2087 ele2_nan= numpy.ones(n2)*numpy.nan
2088 data_ele = numpy.hstack((data_ele,ele2))
2089 print("ele2_nan",ele2_nan.shape)
2090 print("data_ele_old",data_ele_old.shape)
2091 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2092
2093 if tipo_case==1 or tipo_case==2: # BAJADA
2094 data_ele_new = data_ele_new[::-1] # reversa
2095 data_ele_old = data_ele_old[::-1]# reversa
2096 data_weather = data_weather[::-1,:]# reversa
2097 vec= numpy.where(data_ele_new<ang_max)
2098 data_ele_new = data_ele_new[vec]
2099 data_ele_old = data_ele_old[vec]
2100 data_weather = data_weather[vec[0]]
2101 vec2= numpy.where(0<data_ele_new)
2102 data_ele_new = data_ele_new[vec2]
2103 data_ele_old = data_ele_old[vec2]
2104 data_weather = data_weather[vec2[0]]
2105 self.start_data_ele = data_ele_new[0]
2106 self.end_data_ele = data_ele_new[-1]
2107
2108 n1= round(self.start_data_ele)- start
2109 n2= end - round(self.end_data_ele)-1
2110 print(self.start_data_ele)
2111 print(self.end_data_ele)
2112 if n1>0:
2113 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2114 ele1_nan= numpy.ones(n1)*numpy.nan
2115 data_ele = numpy.hstack((ele1,data_ele_new))
2116 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2117 if n2>0:
2118 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2119 ele2_nan= numpy.ones(n2)*numpy.nan
2120 data_ele = numpy.hstack((data_ele,ele2))
2121 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2122 # RADAR
2123 # NOTA data_ele y data_weather es la variable que retorna
2124 val_mean = numpy.mean(data_weather[:,-1])
2125 self.val_mean = val_mean
2126 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2127 print("eleold",data_ele_old)
2128 print(self.data_ele_tmp[val_ch])
2129 print(data_ele_old.shape[0])
2130 print(self.data_ele_tmp[val_ch].shape[0])
2131 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
2132 import sys
2133 print("EXIT",self.ini)
2134
2135 sys.exit(1)
2136 self.data_ele_tmp[val_ch]= data_ele_old
2137 else:
2138 #print("**********************************************")
2139 #print("****************VARIABLE**********************")
2140 #-------------------------CAMBIOS RHI---------------------------------
2141 #---------------------------------------------------------------------
2142 ##print("INPUT data_ele",data_ele)
2143 flag=0
2144 start_ele = self.res_ele[0]
2145 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
2146 tipo_case = case_flag[-1]
2147 #print("TIPO DE DATA",tipo_case)
2148 #-----------new------------
2149 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
2150 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2151
2152 #-------------------------------NEW RHI ITERATIVO-------------------------
2153
2154 if tipo_case==0 : # SUBIDA
2155 vec = numpy.where(data_ele<ang_max)
2156 data_ele = data_ele[vec]
2157 data_ele_old = data_ele_old[vec]
2158 data_weather = data_weather[vec[0]]
2159
2160 vec2 = numpy.where(0<data_ele)
2161 data_ele= data_ele[vec2]
2162 data_ele_old= data_ele_old[vec2]
2163 ##print(data_ele_new)
2164 data_weather= data_weather[vec2[0]]
2165
2166 new_i_ele = int(round(data_ele[0]))
2167 new_f_ele = int(round(data_ele[-1]))
2168 #print(new_i_ele)
2169 #print(new_f_ele)
2170 #print(data_ele,len(data_ele))
2171 #print(data_ele_old,len(data_ele_old))
2172 if new_i_ele< 2:
2173 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2174 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2175 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
2176 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
2177 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
2178 data_ele = self.res_ele
2179 data_weather = self.res_weather[val_ch]
2180
2181 elif tipo_case==1 : #BAJADA
2182 data_ele = data_ele[::-1] # reversa
2183 data_ele_old = data_ele_old[::-1]# reversa
2184 data_weather = data_weather[::-1,:]# reversa
2185 vec= numpy.where(data_ele<ang_max)
2186 data_ele = data_ele[vec]
2187 data_ele_old = data_ele_old[vec]
2188 data_weather = data_weather[vec[0]]
2189 vec2= numpy.where(0<data_ele)
2190 data_ele = data_ele[vec2]
2191 data_ele_old = data_ele_old[vec2]
2192 data_weather = data_weather[vec2[0]]
2193
2194
2195 new_i_ele = int(round(data_ele[0]))
2196 new_f_ele = int(round(data_ele[-1]))
2197 #print(data_ele)
2198 #print(ang_max)
2199 #print(data_ele_old)
2200 if new_i_ele <= 1:
2201 new_i_ele = 1
2202 if round(data_ele[-1])>=ang_max-1:
2203 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2204 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2205 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
2206 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
2207 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
2208 data_ele = self.res_ele
2209 data_weather = self.res_weather[val_ch]
2210
2211 elif tipo_case==2: #bajada
2212 vec = numpy.where(data_ele<ang_max)
2213 data_ele = data_ele[vec]
2214 data_weather= data_weather[vec[0]]
2215
2216 len_vec = len(vec)
2217 data_ele_new = data_ele[::-1] # reversa
2218 data_weather = data_weather[::-1,:]
2219 new_i_ele = int(data_ele_new[0])
2220 new_f_ele = int(data_ele_new[-1])
2221
2222 n1= new_i_ele- ang_min
2223 n2= ang_max - new_f_ele-1
2224 if n1>0:
2225 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2226 ele1_nan= numpy.ones(n1)*numpy.nan
2227 data_ele = numpy.hstack((ele1,data_ele_new))
2228 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2229 if n2>0:
2230 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2231 ele2_nan= numpy.ones(n2)*numpy.nan
2232 data_ele = numpy.hstack((data_ele,ele2))
2233 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2234
2235 self.data_ele_tmp[val_ch] = data_ele_old
2236 self.res_ele = data_ele
2237 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2238 data_ele = self.res_ele
2239 data_weather = self.res_weather[val_ch]
2240
2241 elif tipo_case==3:#subida
2242 vec = numpy.where(0<data_ele)
2243 data_ele= data_ele[vec]
2244 data_ele_new = data_ele
2245 data_ele_old= data_ele_old[vec]
2246 data_weather= data_weather[vec[0]]
2247 pos_ini = numpy.argmin(data_ele)
2248 if pos_ini>0:
2249 len_vec= len(data_ele)
2250 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
2251 #print(vec3)
2252 data_ele= data_ele[vec3]
2253 data_ele_new = data_ele
2254 data_ele_old= data_ele_old[vec3]
2255 data_weather= data_weather[vec3]
2256
2257 new_i_ele = int(data_ele_new[0])
2258 new_f_ele = int(data_ele_new[-1])
2259 n1= new_i_ele- ang_min
2260 n2= ang_max - new_f_ele-1
2261 if n1>0:
2262 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2263 ele1_nan= numpy.ones(n1)*numpy.nan
2264 data_ele = numpy.hstack((ele1,data_ele_new))
2265 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2266 if n2>0:
2267 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2268 ele2_nan= numpy.ones(n2)*numpy.nan
2269 data_ele = numpy.hstack((data_ele,ele2))
2270 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2271
2272 self.data_ele_tmp[val_ch] = data_ele_old
2273 self.res_ele = data_ele
2274 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2275 data_ele = self.res_ele
2276 data_weather = self.res_weather[val_ch]
2277 #print("self.data_ele_tmp",self.data_ele_tmp)
2278 return data_weather,data_ele
2279
2280 def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min):
2281
2282 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1)
2283
2284 data_ele = data_ele_old.copy()
2285
2286 diff_1 = ang_max - data_ele[0]
2287 angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan
2288
2289 diff_2 = data_ele[-1]-ang_min
2290 angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan
2291
2292 angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan))
2293
2294 print(angles_filled)
2295
2296 data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan
2297 data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan
2298
2299 data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0)
2300 #val_mean = numpy.mean(data_weather[:,-1])
2301 #self.val_mean = val_mean
2302 print(data_filled)
2303 data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan)
2304
2305 print(data_filled)
2306 print(data_filled.shape)
2307 print(angles_filled.shape)
2308
2309 return data_filled,angles_filled
2310
2311 def plot(self):
2312 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
2313 data = self.data[-1]
2314 r = self.data.yrange
2315 delta_height = r[1]-r[0]
2316 r_mask = numpy.where(r>=0)[0]
2317 self.r_mask =r_mask
2318 ##print("delta_height",delta_height)
2319 #print("r_mask",r_mask,len(r_mask))
2320 r = numpy.arange(len(r_mask))*delta_height
2321 self.y = 2*r
2322 res = 1
2323 ###print("data['weather'].shape[0]",data['weather'].shape[0])
2324 ang_max = self.ang_max
2325 ang_min = self.ang_min
2326 var_ang =ang_max - ang_min
2327 step = (int(var_ang)/(res*data['weather'].shape[0]))
2328 ###print("step",step)
2329 #--------------------------------------------------------
2330 ##print('weather',data['weather'].shape)
2331 ##print('ele',data['ele'].shape)
2332
2333 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
2334 ###self.res_azi = numpy.mean(data['azi'])
2335 ###print("self.res_ele",self.res_ele)
2336
2337 plt.clf()
2338 subplots = [121, 122]
2339 #if self.ini==0:
2340 #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
2341 #print("SHAPE",self.data_ele_tmp.shape)
2342
2343 for i,ax in enumerate(self.axes):
2344 res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min)
2345 self.res_azi = numpy.mean(data['azi'])
2346
2347 if ax.firsttime:
2348 #plt.clf()
2349 print("Frist Plot")
2350 print(data['weather'][i][:,r_mask].shape)
2351 print(data['ele'].shape)
2352 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2353 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2354 gh = cgax.get_grid_helper()
2355 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2356 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2357 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2358
2359
2360 #fig=self.figures[0]
2361 else:
2362 #plt.clf()
2363 print("ELSE PLOT")
2364 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2365 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2366 gh = cgax.get_grid_helper()
2367 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2368 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2369 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2370
2371 caax = cgax.parasites[0]
2372 paax = cgax.parasites[1]
2373 cbar = plt.gcf().colorbar(pm, pad=0.075)
2374 caax.set_xlabel('x_range [km]')
2375 caax.set_ylabel('y_range [km]')
2376 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
2377 print("***************************self.ini****************************",self.ini)
2378 self.ini= self.ini+1
1 NO CONTENT: modified file
NO CONTENT: modified file
The requested commit or file is too big and content was truncated. Show full diff
General Comments 0
You need to be logged in to leave comments. Login now