@@ -1,705 +1,707 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Base class to create plot operations |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import sys |
|
11 | 11 | import zmq |
|
12 | 12 | import time |
|
13 | 13 | import numpy |
|
14 | 14 | import datetime |
|
15 | 15 | from collections import deque |
|
16 | 16 | from functools import wraps |
|
17 | 17 | from threading import Thread |
|
18 | 18 | import matplotlib |
|
19 | 19 | |
|
20 | 20 | if 'BACKEND' in os.environ: |
|
21 | 21 | matplotlib.use(os.environ['BACKEND']) |
|
22 | 22 | elif 'linux' in sys.platform: |
|
23 | 23 | matplotlib.use("TkAgg") |
|
24 | 24 | elif 'darwin' in sys.platform: |
|
25 | 25 | matplotlib.use('MacOSX') |
|
26 | 26 | else: |
|
27 | 27 | from schainpy.utils import log |
|
28 | 28 | log.warning('Using default Backend="Agg"', 'INFO') |
|
29 | 29 | matplotlib.use('Agg') |
|
30 | 30 | |
|
31 | 31 | import matplotlib.pyplot as plt |
|
32 | 32 | from matplotlib.patches import Polygon |
|
33 | 33 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
34 | 34 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator |
|
35 | 35 | |
|
36 | 36 | from schainpy.model.data.jrodata import PlotterData |
|
37 | 37 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
38 | 38 | from schainpy.utils import log |
|
39 | 39 | |
|
40 | 40 | jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90] |
|
41 | 41 | blu_values = matplotlib.pyplot.get_cmap( |
|
42 | 42 | 'seismic_r', 20)(numpy.arange(20))[10:15] |
|
43 | 43 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( |
|
44 | 44 | 'jro', numpy.vstack((blu_values, jet_values))) |
|
45 | 45 | matplotlib.pyplot.register_cmap(cmap=ncmap) |
|
46 | 46 | |
|
47 | 47 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis', |
|
48 | 48 | 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')] |
|
49 | 49 | |
|
50 | 50 | EARTH_RADIUS = 6.3710e3 |
|
51 | 51 | |
|
52 | 52 | def ll2xy(lat1, lon1, lat2, lon2): |
|
53 | 53 | |
|
54 | 54 | p = 0.017453292519943295 |
|
55 | 55 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
56 | 56 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
57 | 57 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
58 | 58 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
59 | 59 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
60 | 60 | theta = -theta + numpy.pi/2 |
|
61 | 61 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | def km2deg(km): |
|
65 | 65 | ''' |
|
66 | 66 | Convert distance in km to degrees |
|
67 | 67 | ''' |
|
68 | 68 | |
|
69 | 69 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
70 | 70 | |
|
71 | 71 | |
|
72 | 72 | def figpause(interval): |
|
73 | 73 | backend = plt.rcParams['backend'] |
|
74 | 74 | if backend in matplotlib.rcsetup.interactive_bk: |
|
75 | 75 | figManager = matplotlib._pylab_helpers.Gcf.get_active() |
|
76 | 76 | if figManager is not None: |
|
77 | 77 | canvas = figManager.canvas |
|
78 | 78 | if canvas.figure.stale: |
|
79 | 79 | canvas.draw() |
|
80 | 80 | try: |
|
81 | 81 | canvas.start_event_loop(interval) |
|
82 | 82 | except: |
|
83 | 83 | pass |
|
84 | 84 | return |
|
85 | 85 | |
|
86 | 86 | def popup(message): |
|
87 | 87 | ''' |
|
88 | 88 | ''' |
|
89 | 89 | |
|
90 | 90 | fig = plt.figure(figsize=(12, 8), facecolor='r') |
|
91 | 91 | text = '\n'.join([s.strip() for s in message.split(':')]) |
|
92 | 92 | fig.text(0.01, 0.5, text, ha='left', va='center', |
|
93 | 93 | size='20', weight='heavy', color='w') |
|
94 | 94 | fig.show() |
|
95 | 95 | figpause(1000) |
|
96 | 96 | |
|
97 | 97 | |
|
98 | 98 | class Throttle(object): |
|
99 | 99 | ''' |
|
100 | 100 | Decorator that prevents a function from being called more than once every |
|
101 | 101 | time period. |
|
102 | 102 | To create a function that cannot be called more than once a minute, but |
|
103 | 103 | will sleep until it can be called: |
|
104 | 104 | @Throttle(minutes=1) |
|
105 | 105 | def foo(): |
|
106 | 106 | pass |
|
107 | 107 | |
|
108 | 108 | for i in range(10): |
|
109 | 109 | foo() |
|
110 | 110 | print "This function has run %s times." % i |
|
111 | 111 | ''' |
|
112 | 112 | |
|
113 | 113 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
114 | 114 | self.throttle_period = datetime.timedelta( |
|
115 | 115 | seconds=seconds, minutes=minutes, hours=hours |
|
116 | 116 | ) |
|
117 | 117 | |
|
118 | 118 | self.time_of_last_call = datetime.datetime.min |
|
119 | 119 | |
|
120 | 120 | def __call__(self, fn): |
|
121 | 121 | @wraps(fn) |
|
122 | 122 | def wrapper(*args, **kwargs): |
|
123 | 123 | coerce = kwargs.pop('coerce', None) |
|
124 | 124 | if coerce: |
|
125 | 125 | self.time_of_last_call = datetime.datetime.now() |
|
126 | 126 | return fn(*args, **kwargs) |
|
127 | 127 | else: |
|
128 | 128 | now = datetime.datetime.now() |
|
129 | 129 | time_since_last_call = now - self.time_of_last_call |
|
130 | 130 | time_left = self.throttle_period - time_since_last_call |
|
131 | 131 | |
|
132 | 132 | if time_left > datetime.timedelta(seconds=0): |
|
133 | 133 | return |
|
134 | 134 | |
|
135 | 135 | self.time_of_last_call = datetime.datetime.now() |
|
136 | 136 | return fn(*args, **kwargs) |
|
137 | 137 | |
|
138 | 138 | return wrapper |
|
139 | 139 | |
|
140 | 140 | def apply_throttle(value): |
|
141 | 141 | |
|
142 | 142 | @Throttle(seconds=value) |
|
143 | 143 | def fnThrottled(fn): |
|
144 | 144 | fn() |
|
145 | 145 | |
|
146 | 146 | return fnThrottled |
|
147 | 147 | |
|
148 | 148 | |
|
149 | 149 | @MPDecorator |
|
150 | 150 | class Plot(Operation): |
|
151 | 151 | """Base class for Schain plotting operations |
|
152 | 152 | |
|
153 | 153 | This class should never be use directtly you must subclass a new operation, |
|
154 | 154 | children classes must be defined as follow: |
|
155 | 155 | |
|
156 | 156 | ExamplePlot(Plot): |
|
157 | 157 | |
|
158 | 158 | CODE = 'code' |
|
159 | 159 | colormap = 'jet' |
|
160 | 160 | plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer') |
|
161 | 161 | |
|
162 | 162 | def setup(self): |
|
163 | 163 | pass |
|
164 | 164 | |
|
165 | 165 | def plot(self): |
|
166 | 166 | pass |
|
167 | 167 | |
|
168 | 168 | """ |
|
169 | 169 | |
|
170 | 170 | CODE = 'Figure' |
|
171 | 171 | colormap = 'jet' |
|
172 | 172 | bgcolor = 'white' |
|
173 | 173 | buffering = True |
|
174 | 174 | __missing = 1E30 |
|
175 | 175 | |
|
176 | 176 | __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title', |
|
177 | 177 | 'showprofile'] |
|
178 | 178 | |
|
179 | 179 | def __init__(self): |
|
180 | 180 | |
|
181 | 181 | Operation.__init__(self) |
|
182 | 182 | self.isConfig = False |
|
183 | 183 | self.isPlotConfig = False |
|
184 | 184 | self.save_time = 0 |
|
185 | 185 | self.sender_time = 0 |
|
186 | 186 | self.data = None |
|
187 | 187 | self.firsttime = True |
|
188 | 188 | self.sender_queue = deque(maxlen=10) |
|
189 | 189 | self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2} |
|
190 | 190 | |
|
191 | 191 | def __fmtTime(self, x, pos): |
|
192 | 192 | ''' |
|
193 | 193 | ''' |
|
194 | 194 | if self.t_units == "h_m": |
|
195 | 195 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) |
|
196 | 196 | if self.t_units == "h": |
|
197 | 197 | return '{}'.format(self.getDateTime(x).strftime('%H')) |
|
198 | 198 | |
|
199 | 199 | def __setup(self, **kwargs): |
|
200 | 200 | ''' |
|
201 | 201 | Initialize variables |
|
202 | 202 | ''' |
|
203 | 203 | |
|
204 | 204 | self.figures = [] |
|
205 | 205 | self.axes = [] |
|
206 | 206 | self.cb_axes = [] |
|
207 | 207 | self.pf_axes = [] |
|
208 | 208 | self.localtime = kwargs.pop('localtime', True) |
|
209 | 209 | self.show = kwargs.get('show', True) |
|
210 | 210 | self.save = kwargs.get('save', False) |
|
211 | 211 | self.save_period = kwargs.get('save_period', 0) |
|
212 | 212 | self.colormap = kwargs.get('colormap', self.colormap) |
|
213 | 213 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
214 | 214 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
215 | 215 | self.colormaps = kwargs.get('colormaps', None) |
|
216 | 216 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) |
|
217 | 217 | self.showprofile = kwargs.get('showprofile', False) |
|
218 | 218 | self.title = kwargs.get('wintitle', self.CODE.upper()) |
|
219 | 219 | self.cb_label = kwargs.get('cb_label', None) |
|
220 | 220 | self.cb_labels = kwargs.get('cb_labels', None) |
|
221 | 221 | self.labels = kwargs.get('labels', None) |
|
222 | 222 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
223 | 223 | self.zmin = kwargs.get('zmin', None) |
|
224 | 224 | self.zmax = kwargs.get('zmax', None) |
|
225 | 225 | self.zlimits = kwargs.get('zlimits', None) |
|
226 | 226 | self.xmin = kwargs.get('xmin', None) |
|
227 | 227 | self.xmax = kwargs.get('xmax', None) |
|
228 | 228 | self.xrange = kwargs.get('xrange', 12) |
|
229 | 229 | self.xscale = kwargs.get('xscale', None) |
|
230 | 230 | self.ymin = kwargs.get('ymin', None) |
|
231 | 231 | self.ymax = kwargs.get('ymax', None) |
|
232 | 232 | self.yscale = kwargs.get('yscale', None) |
|
233 | 233 | self.xlabel = kwargs.get('xlabel', None) |
|
234 | 234 | self.attr_time = kwargs.get('attr_time', 'utctime') |
|
235 | 235 | self.attr_data = kwargs.get('attr_data', 'data_param') |
|
236 | 236 | self.decimation = kwargs.get('decimation', None) |
|
237 | 237 | self.oneFigure = kwargs.get('oneFigure', True) |
|
238 | 238 | self.width = kwargs.get('width', None) |
|
239 | 239 | self.height = kwargs.get('height', None) |
|
240 | 240 | self.colorbar = kwargs.get('colorbar', True) |
|
241 | 241 | self.factors = kwargs.get('factors', range(18)) |
|
242 | 242 | self.channels = kwargs.get('channels', None) |
|
243 | 243 | self.titles = kwargs.get('titles', []) |
|
244 | 244 | self.polar = False |
|
245 | 245 | self.type = kwargs.get('type', 'iq') |
|
246 | 246 | self.grid = kwargs.get('grid', False) |
|
247 | 247 | self.pause = kwargs.get('pause', False) |
|
248 | 248 | self.save_code = kwargs.get('save_code', self.CODE) |
|
249 | 249 | self.throttle = kwargs.get('throttle', 0) |
|
250 | 250 | self.exp_code = kwargs.get('exp_code', None) |
|
251 | 251 | self.server = kwargs.get('server', False) |
|
252 | 252 | self.sender_period = kwargs.get('sender_period', 60) |
|
253 | 253 | self.tag = kwargs.get('tag', '') |
|
254 | 254 | self.height_index = kwargs.get('height_index', []) |
|
255 | 255 | self.__throttle_plot = apply_throttle(self.throttle) |
|
256 | 256 | code = self.attr_data if self.attr_data else self.CODE |
|
257 | 257 | self.data = PlotterData(self.CODE, self.exp_code, self.localtime) |
|
258 | 258 | self.tmin = kwargs.get('tmin', None) |
|
259 | 259 | self.t_units = kwargs.get('t_units', "h_m") |
|
260 | 260 | self.selectedHeightsList = kwargs.get('selectedHeightsList', []) |
|
261 | 261 | if isinstance(self.selectedHeightsList, int): |
|
262 | 262 | self.selectedHeightsList = [self.selectedHeightsList] |
|
263 | 263 | |
|
264 | 264 | if self.server: |
|
265 | 265 | if not self.server.startswith('tcp://'): |
|
266 | 266 | self.server = 'tcp://{}'.format(self.server) |
|
267 | 267 | log.success( |
|
268 | 268 | 'Sending to server: {}'.format(self.server), |
|
269 | 269 | self.name |
|
270 | 270 | ) |
|
271 | 271 | |
|
272 | 272 | if isinstance(self.attr_data, str): |
|
273 | 273 | self.attr_data = [self.attr_data] |
|
274 | 274 | |
|
275 | 275 | def __setup_plot(self): |
|
276 | 276 | ''' |
|
277 | 277 | Common setup for all figures, here figures and axes are created |
|
278 | 278 | ''' |
|
279 | 279 | |
|
280 | 280 | self.setup() |
|
281 | 281 | |
|
282 | 282 | self.time_label = 'LT' if self.localtime else 'UTC' |
|
283 | 283 | |
|
284 | 284 | if self.width is None: |
|
285 | 285 | self.width = 8 |
|
286 | 286 | |
|
287 | 287 | self.figures = [] |
|
288 | 288 | self.axes = [] |
|
289 | 289 | self.cb_axes = [] |
|
290 | 290 | self.pf_axes = [] |
|
291 | 291 | self.cmaps = [] |
|
292 | 292 | |
|
293 | 293 | size = '15%' if self.ncols == 1 else '30%' |
|
294 | 294 | pad = '4%' if self.ncols == 1 else '8%' |
|
295 | 295 | |
|
296 | 296 | if self.oneFigure: |
|
297 | 297 | if self.height is None: |
|
298 | 298 | self.height = 1.4 * self.nrows + 1 |
|
299 | 299 | fig = plt.figure(figsize=(self.width, self.height), |
|
300 | 300 | edgecolor='k', |
|
301 | 301 | facecolor='w') |
|
302 | 302 | self.figures.append(fig) |
|
303 | 303 | for n in range(self.nplots): |
|
304 | 304 | ax = fig.add_subplot(self.nrows, self.ncols, |
|
305 | 305 | n + 1, polar=self.polar) |
|
306 | 306 | ax.tick_params(labelsize=8) |
|
307 | 307 | ax.firsttime = True |
|
308 | 308 | ax.index = 0 |
|
309 | 309 | ax.press = None |
|
310 | 310 | self.axes.append(ax) |
|
311 | 311 | if self.showprofile: |
|
312 | 312 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
313 | 313 | cax.tick_params(labelsize=8) |
|
314 | 314 | self.pf_axes.append(cax) |
|
315 | 315 | else: |
|
316 | 316 | if self.height is None: |
|
317 | 317 | self.height = 3 |
|
318 | 318 | for n in range(self.nplots): |
|
319 | 319 | fig = plt.figure(figsize=(self.width, self.height), |
|
320 | 320 | edgecolor='k', |
|
321 | 321 | facecolor='w') |
|
322 | 322 | ax = fig.add_subplot(1, 1, 1, polar=self.polar) |
|
323 | 323 | ax.tick_params(labelsize=8) |
|
324 | 324 | ax.firsttime = True |
|
325 | 325 | ax.index = 0 |
|
326 | 326 | ax.press = None |
|
327 | 327 | self.figures.append(fig) |
|
328 | 328 | self.axes.append(ax) |
|
329 | 329 | if self.showprofile: |
|
330 | 330 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
331 | 331 | cax.tick_params(labelsize=8) |
|
332 | 332 | self.pf_axes.append(cax) |
|
333 | 333 | |
|
334 | 334 | for n in range(self.nrows): |
|
335 | 335 | if self.colormaps is not None: |
|
336 | 336 | cmap = plt.get_cmap(self.colormaps[n]) |
|
337 | 337 | else: |
|
338 | 338 | cmap = plt.get_cmap(self.colormap) |
|
339 | 339 | cmap.set_bad(self.bgcolor, 1.) |
|
340 | 340 | self.cmaps.append(cmap) |
|
341 | 341 | |
|
342 | 342 | def __add_axes(self, ax, size='30%', pad='8%'): |
|
343 | 343 | ''' |
|
344 | 344 | Add new axes to the given figure |
|
345 | 345 | ''' |
|
346 | 346 | divider = make_axes_locatable(ax) |
|
347 | 347 | nax = divider.new_horizontal(size=size, pad=pad) |
|
348 | 348 | ax.figure.add_axes(nax) |
|
349 | 349 | return nax |
|
350 | 350 | |
|
351 | 351 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
352 | 352 | ''' |
|
353 | 353 | Create a masked array for missing data |
|
354 | 354 | ''' |
|
355 | 355 | if x_buffer.shape[0] < 2: |
|
356 | 356 | return x_buffer, y_buffer, z_buffer |
|
357 | 357 | |
|
358 | 358 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
359 | 359 | x_median = numpy.median(deltas) |
|
360 | 360 | |
|
361 | 361 | index = numpy.where(deltas > 5 * x_median) |
|
362 | 362 | |
|
363 | 363 | if len(index[0]) != 0: |
|
364 | 364 | z_buffer[::, index[0], ::] = self.__missing |
|
365 | 365 | z_buffer = numpy.ma.masked_inside(z_buffer, |
|
366 | 366 | 0.99 * self.__missing, |
|
367 | 367 | 1.01 * self.__missing) |
|
368 | 368 | |
|
369 | 369 | return x_buffer, y_buffer, z_buffer |
|
370 | 370 | |
|
371 | 371 | def decimate(self): |
|
372 | 372 | |
|
373 | 373 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
374 | 374 | dy = int(len(self.y) / self.decimation) + 1 |
|
375 | 375 | |
|
376 | 376 | # x = self.x[::dx] |
|
377 | 377 | x = self.x |
|
378 | 378 | y = self.y[::dy] |
|
379 | 379 | z = self.z[::, ::, ::dy] |
|
380 | 380 | |
|
381 | 381 | return x, y, z |
|
382 | 382 | |
|
383 | 383 | def format(self): |
|
384 | 384 | ''' |
|
385 | 385 | Set min and max values, labels, ticks and titles |
|
386 | 386 | ''' |
|
387 | 387 | |
|
388 | 388 | for n, ax in enumerate(self.axes): |
|
389 | 389 | if ax.firsttime: |
|
390 | 390 | if self.xaxis != 'time': |
|
391 | 391 | xmin = self.xmin |
|
392 | 392 | xmax = self.xmax |
|
393 | 393 | else: |
|
394 | 394 | xmin = self.tmin |
|
395 | 395 | xmax = self.tmin + self.xrange*60*60 |
|
396 | 396 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) |
|
397 | 397 | if self.t_units == "h_m": |
|
398 | 398 | ax.xaxis.set_major_locator(LinearLocator(9)) |
|
399 | 399 | if self.t_units == "h": |
|
400 | 400 | ax.xaxis.set_major_locator(LinearLocator(int((xmax-xmin)/3600)+1)) |
|
401 | 401 | ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)]) |
|
402 | 402 | ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)]) |
|
403 | 403 | ax.set_facecolor(self.bgcolor) |
|
404 | 404 | if self.xscale: |
|
405 | 405 | ax.xaxis.set_major_formatter(FuncFormatter( |
|
406 | 406 | lambda x, pos: '{0:g}'.format(x*self.xscale))) |
|
407 | 407 | if self.yscale: |
|
408 | 408 | ax.yaxis.set_major_formatter(FuncFormatter( |
|
409 | 409 | lambda x, pos: '{0:g}'.format(x*self.yscale))) |
|
410 | 410 | if self.xlabel is not None: |
|
411 | 411 | ax.set_xlabel(self.xlabel) |
|
412 | 412 | if self.ylabel is not None: |
|
413 | 413 | ax.set_ylabel(self.ylabel) |
|
414 | 414 | if self.showprofile: |
|
415 | 415 | self.pf_axes[n].set_ylim(ymin, ymax) |
|
416 | 416 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) |
|
417 | 417 | self.pf_axes[n].set_xlabel('dB') |
|
418 | 418 | self.pf_axes[n].grid(b=True, axis='x') |
|
419 | 419 | [tick.set_visible(False) |
|
420 | 420 | for tick in self.pf_axes[n].get_yticklabels()] |
|
421 | 421 | if self.colorbar: |
|
422 | 422 | ax.cbar = plt.colorbar( |
|
423 | 423 | ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10) |
|
424 | 424 | ax.cbar.ax.tick_params(labelsize=8) |
|
425 | 425 | ax.cbar.ax.press = None |
|
426 | 426 | if self.cb_label: |
|
427 | 427 | ax.cbar.set_label(self.cb_label, size=8) |
|
428 | 428 | elif self.cb_labels: |
|
429 | 429 | ax.cbar.set_label(self.cb_labels[n], size=8) |
|
430 | 430 | else: |
|
431 | 431 | ax.cbar = None |
|
432 | 432 | ax.set_xlim(xmin, xmax) |
|
433 | 433 | ax.set_ylim(ymin, ymax) |
|
434 | 434 | ax.firsttime = False |
|
435 | 435 | if self.grid: |
|
436 | 436 | ax.grid(True) |
|
437 | 437 | |
|
438 | 438 | if not self.polar: |
|
439 | 439 | ax.set_title('{} {} {}'.format( |
|
440 | 440 | self.titles[n], |
|
441 | 441 | self.getDateTime(self.data.max_time).strftime( |
|
442 | 442 | '%Y-%m-%d %H:%M:%S'), |
|
443 | 443 | self.time_label), |
|
444 | 444 | size=8) |
|
445 | 445 | else: |
|
446 | 446 | |
|
447 | 447 | ax.set_title('{}'.format(self.titles[n]), size=8) |
|
448 | 448 | ax.set_ylim(0, 90) |
|
449 | 449 | ax.set_yticks(numpy.arange(0, 90, 20)) |
|
450 | 450 | ax.yaxis.labelpad = 40 |
|
451 | 451 | |
|
452 | 452 | if self.firsttime: |
|
453 | 453 | for n, fig in enumerate(self.figures): |
|
454 | 454 | fig.subplots_adjust(**self.plots_adjust) |
|
455 | 455 | self.firsttime = False |
|
456 | 456 | |
|
457 | 457 | def clear_figures(self): |
|
458 | 458 | ''' |
|
459 | 459 | Reset axes for redraw plots |
|
460 | 460 | ''' |
|
461 | 461 | |
|
462 | 462 | for ax in self.axes+self.pf_axes+self.cb_axes: |
|
463 | 463 | ax.clear() |
|
464 | 464 | ax.firsttime = True |
|
465 | 465 | if hasattr(ax, 'cbar') and ax.cbar: |
|
466 | 466 | ax.cbar.remove() |
|
467 | 467 | |
|
468 | 468 | def __plot(self): |
|
469 | 469 | ''' |
|
470 | 470 | Main function to plot, format and save figures |
|
471 | 471 | ''' |
|
472 | 472 | |
|
473 | 473 | self.plot() |
|
474 | 474 | self.format() |
|
475 | 475 | |
|
476 | 476 | for n, fig in enumerate(self.figures): |
|
477 | 477 | if self.nrows == 0 or self.nplots == 0: |
|
478 | 478 | log.warning('No data', self.name) |
|
479 | 479 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') |
|
480 | 480 | fig.canvas.manager.set_window_title(self.CODE) |
|
481 | 481 | continue |
|
482 | 482 | |
|
483 | 483 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, |
|
484 | 484 | self.getDateTime(self.data.max_time).strftime('%Y/%m/%d'))) |
|
485 | 485 | |
|
486 | 486 | fig.canvas.draw() |
|
487 | 487 | if self.show: |
|
488 | 488 | fig.show() |
|
489 | 489 | figpause(0.01) |
|
490 | 490 | |
|
491 | 491 | if self.save: |
|
492 | 492 | self.save_figure(n) |
|
493 | 493 | |
|
494 | 494 | if self.server: |
|
495 | 495 | self.send_to_server() |
|
496 | 496 | |
|
497 | 497 | def __update(self, dataOut, timestamp): |
|
498 | 498 | ''' |
|
499 | 499 | ''' |
|
500 | 500 | |
|
501 | 501 | metadata = { |
|
502 | 502 | 'yrange': dataOut.heightList, |
|
503 | 503 | 'interval': dataOut.timeInterval, |
|
504 | 504 | 'channels': dataOut.channelList |
|
505 | 505 | } |
|
506 | 506 | data, meta = self.update(dataOut) |
|
507 | 507 | metadata.update(meta) |
|
508 | 508 | self.data.update(data, timestamp, metadata) |
|
509 | 509 | |
|
510 | 510 | def save_figure(self, n): |
|
511 | 511 | ''' |
|
512 | 512 | ''' |
|
513 | 513 | |
|
514 | 514 | if (self.data.max_time - self.save_time) <= self.save_period: |
|
515 | 515 | return |
|
516 | 516 | |
|
517 | 517 | self.save_time = self.data.max_time |
|
518 | 518 | |
|
519 | 519 | fig = self.figures[n] |
|
520 | 520 | |
|
521 | 521 | if self.throttle == 0: |
|
522 | 522 | figname = os.path.join( |
|
523 | 523 | self.save, |
|
524 | 524 | self.save_code, |
|
525 | 525 | '{}_{}.png'.format( |
|
526 | 526 | self.save_code, |
|
527 | 527 | self.getDateTime(self.data.max_time).strftime( |
|
528 | 528 | '%Y%m%d_%H%M%S' |
|
529 | 529 | ), |
|
530 | 530 | ) |
|
531 | 531 | ) |
|
532 | 532 | log.log('Saving figure: {}'.format(figname), self.name) |
|
533 | 533 | if not os.path.isdir(os.path.dirname(figname)): |
|
534 | 534 | os.makedirs(os.path.dirname(figname)) |
|
535 | 535 | fig.savefig(figname) |
|
536 | 536 | |
|
537 | 537 | figname = os.path.join( |
|
538 | 538 | self.save, |
|
539 | 539 | '{}_{}.png'.format( |
|
540 | 540 | self.save_code, |
|
541 | 541 | self.getDateTime(self.data.min_time).strftime( |
|
542 | 542 | '%Y%m%d' |
|
543 | 543 | ), |
|
544 | 544 | ) |
|
545 | 545 | ) |
|
546 | 546 | |
|
547 | 547 | log.log('Saving figure: {}'.format(figname), self.name) |
|
548 | 548 | if not os.path.isdir(os.path.dirname(figname)): |
|
549 | 549 | os.makedirs(os.path.dirname(figname)) |
|
550 | 550 | fig.savefig(figname) |
|
551 | 551 | |
|
552 | 552 | def send_to_server(self): |
|
553 | 553 | ''' |
|
554 | 554 | ''' |
|
555 | 555 | |
|
556 | 556 | if self.exp_code == None: |
|
557 | 557 | log.warning('Missing `exp_code` skipping sending to server...') |
|
558 | 558 | |
|
559 | 559 | last_time = self.data.max_time |
|
560 | 560 | interval = last_time - self.sender_time |
|
561 | 561 | if interval < self.sender_period: |
|
562 | 562 | return |
|
563 | 563 | |
|
564 | 564 | self.sender_time = last_time |
|
565 | 565 | |
|
566 | 566 | attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax'] |
|
567 | 567 | for attr in attrs: |
|
568 | 568 | value = getattr(self, attr) |
|
569 | 569 | if value: |
|
570 | 570 | if isinstance(value, (numpy.float32, numpy.float64)): |
|
571 | 571 | value = round(float(value), 2) |
|
572 | 572 | self.data.meta[attr] = value |
|
573 | 573 | if self.colormap == 'jet': |
|
574 | 574 | self.data.meta['colormap'] = 'Jet' |
|
575 | 575 | elif 'RdBu' in self.colormap: |
|
576 | 576 | self.data.meta['colormap'] = 'RdBu' |
|
577 | 577 | else: |
|
578 | 578 | self.data.meta['colormap'] = 'Viridis' |
|
579 | 579 | self.data.meta['interval'] = int(interval) |
|
580 | 580 | |
|
581 | 581 | self.sender_queue.append(last_time) |
|
582 | 582 | |
|
583 | 583 | while 1: |
|
584 | 584 | try: |
|
585 | 585 | tm = self.sender_queue.popleft() |
|
586 | 586 | except IndexError: |
|
587 | 587 | break |
|
588 | 588 | msg = self.data.jsonify(tm, self.save_code, self.plot_type) |
|
589 | 589 | self.socket.send_string(msg) |
|
590 | 590 | socks = dict(self.poll.poll(2000)) |
|
591 | 591 | if socks.get(self.socket) == zmq.POLLIN: |
|
592 | 592 | reply = self.socket.recv_string() |
|
593 | 593 | if reply == 'ok': |
|
594 | 594 | log.log("Response from server ok", self.name) |
|
595 | 595 | time.sleep(0.1) |
|
596 | 596 | continue |
|
597 | 597 | else: |
|
598 | 598 | log.warning( |
|
599 | 599 | "Malformed reply from server: {}".format(reply), self.name) |
|
600 | 600 | else: |
|
601 | 601 | log.warning( |
|
602 | 602 | "No response from server, retrying...", self.name) |
|
603 | 603 | self.sender_queue.appendleft(tm) |
|
604 | 604 | self.socket.setsockopt(zmq.LINGER, 0) |
|
605 | 605 | self.socket.close() |
|
606 | 606 | self.poll.unregister(self.socket) |
|
607 | 607 | self.socket = self.context.socket(zmq.REQ) |
|
608 | 608 | self.socket.connect(self.server) |
|
609 | 609 | self.poll.register(self.socket, zmq.POLLIN) |
|
610 | 610 | break |
|
611 | 611 | |
|
612 | 612 | def setup(self): |
|
613 | 613 | ''' |
|
614 | 614 | This method should be implemented in the child class, the following |
|
615 | 615 | attributes should be set: |
|
616 | 616 | |
|
617 | 617 | self.nrows: number of rows |
|
618 | 618 | self.ncols: number of cols |
|
619 | 619 | self.nplots: number of plots (channels or pairs) |
|
620 | 620 | self.ylabel: label for Y axes |
|
621 | 621 | self.titles: list of axes title |
|
622 | 622 | |
|
623 | 623 | ''' |
|
624 | 624 | raise NotImplementedError |
|
625 | 625 | |
|
626 | 626 | def plot(self): |
|
627 | 627 | ''' |
|
628 | 628 | Must be defined in the child class, the actual plotting method |
|
629 | 629 | ''' |
|
630 | 630 | raise NotImplementedError |
|
631 | 631 | |
|
632 | 632 | def update(self, dataOut): |
|
633 | 633 | ''' |
|
634 | 634 | Must be defined in the child class, update self.data with new data |
|
635 | 635 | ''' |
|
636 | 636 | |
|
637 | 637 | data = { |
|
638 | 638 | self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE)) |
|
639 | 639 | } |
|
640 | 640 | meta = {} |
|
641 | 641 | |
|
642 | 642 | return data, meta |
|
643 | 643 | |
|
644 | 644 | def run(self, dataOut, **kwargs): |
|
645 | 645 | ''' |
|
646 | 646 | Main plotting routine |
|
647 | 647 | ''' |
|
648 | 648 | if self.isConfig is False: |
|
649 | 649 | self.__setup(**kwargs) |
|
650 | 650 | |
|
651 | 651 | if self.localtime: |
|
652 | 652 | self.getDateTime = datetime.datetime.fromtimestamp |
|
653 | 653 | else: |
|
654 | 654 | self.getDateTime = datetime.datetime.utcfromtimestamp |
|
655 | 655 | |
|
656 | 656 | self.data.setup() |
|
657 | 657 | self.isConfig = True |
|
658 | 658 | if self.server: |
|
659 | 659 | self.context = zmq.Context() |
|
660 | 660 | self.socket = self.context.socket(zmq.REQ) |
|
661 | 661 | self.socket.connect(self.server) |
|
662 | 662 | self.poll = zmq.Poller() |
|
663 | 663 | self.poll.register(self.socket, zmq.POLLIN) |
|
664 | 664 | |
|
665 | 665 | tm = getattr(dataOut, self.attr_time) |
|
666 | 666 | |
|
667 | 667 | if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60: |
|
668 | self.clear_figures() | |
|
668 | 669 | self.save_time = tm |
|
670 | self.__plot() | |
|
669 | 671 | self.tmin += self.xrange*60*60 |
|
670 | 672 | self.data.setup() |
|
671 | self.clear_figures() | |
|
672 |
|
|
|
673 | #self.clear_figures() | |
|
674 | ||
|
673 | 675 | |
|
674 | 676 | self.__update(dataOut, tm) |
|
675 | 677 | |
|
676 | 678 | if self.isPlotConfig is False: |
|
677 | 679 | self.__setup_plot() |
|
678 | 680 | self.isPlotConfig = True |
|
679 | 681 | if self.xaxis == 'time': |
|
680 | 682 | dt = self.getDateTime(tm) |
|
681 | 683 | if self.xmin is None: |
|
682 | 684 | self.tmin = tm |
|
683 | 685 | self.xmin = dt.hour |
|
684 | 686 | minutes = (self.xmin-int(self.xmin)) * 60 |
|
685 | 687 | seconds = (minutes - int(minutes)) * 60 |
|
686 | 688 | self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) - |
|
687 | 689 | datetime.datetime(1970, 1, 1)).total_seconds() |
|
688 | 690 | if self.localtime: |
|
689 | 691 | self.tmin += time.timezone |
|
690 | 692 | |
|
691 | 693 | if self.xmin is not None and self.xmax is not None: |
|
692 | 694 | self.xrange = self.xmax - self.xmin |
|
693 | 695 | |
|
694 | 696 | if self.throttle == 0: |
|
695 | 697 | self.__plot() |
|
696 | 698 | else: |
|
697 | 699 | self.__throttle_plot(self.__plot)#, coerce=coerce) |
|
698 | 700 | |
|
699 | 701 | def close(self): |
|
700 | 702 | |
|
701 | 703 | if self.data and not self.data.flagNoData: |
|
702 | 704 | self.save_time = 0 |
|
703 | 705 | self.__plot() |
|
704 | 706 | if self.data and not self.data.flagNoData and self.pause: |
|
705 | 707 | figpause(10) |
@@ -1,3787 +1,3813 | |||
|
1 | 1 | import sys |
|
2 | 2 | import numpy,math |
|
3 | 3 | from scipy import interpolate |
|
4 | 4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
5 | 5 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon |
|
6 | 6 | from schainpy.utils import log |
|
7 | 7 | from schainpy.model.io.utilsIO import getHei_index |
|
8 | 8 | from time import time |
|
9 | 9 | import datetime |
|
10 | 10 | import numpy |
|
11 | 11 | #import copy |
|
12 | 12 | from schainpy.model.data import _noise |
|
13 | 13 | |
|
14 | 14 | from matplotlib import pyplot as plt |
|
15 | 15 | |
|
16 | 16 | class VoltageProc(ProcessingUnit): |
|
17 | 17 | |
|
18 | 18 | def __init__(self): |
|
19 | 19 | |
|
20 | 20 | ProcessingUnit.__init__(self) |
|
21 | 21 | |
|
22 | 22 | self.dataOut = Voltage() |
|
23 | 23 | self.flip = 1 |
|
24 | 24 | self.setupReq = False |
|
25 | 25 | |
|
26 | 26 | def run(self): |
|
27 | 27 | #print("running volt proc") |
|
28 | 28 | |
|
29 | 29 | if self.dataIn.type == 'AMISR': |
|
30 | 30 | self.__updateObjFromAmisrInput() |
|
31 | 31 | |
|
32 | 32 | if self.dataOut.buffer_empty: |
|
33 | 33 | if self.dataIn.type == 'Voltage': |
|
34 | 34 | self.dataOut.copy(self.dataIn) |
|
35 | 35 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
36 | 36 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
37 | 37 | self.dataOut.ipp = self.dataIn.ipp |
|
38 | 38 | |
|
39 | 39 | #update Processing Header: |
|
40 | 40 | self.dataOut.processingHeaderObj.heightList = self.dataOut.heightList |
|
41 | 41 | self.dataOut.processingHeaderObj.ipp = self.dataOut.ipp |
|
42 | 42 | self.dataOut.processingHeaderObj.nCohInt = self.dataOut.nCohInt |
|
43 | 43 | self.dataOut.processingHeaderObj.dtype = self.dataOut.type |
|
44 | 44 | self.dataOut.processingHeaderObj.channelList = self.dataOut.channelList |
|
45 | 45 | self.dataOut.processingHeaderObj.azimuthList = self.dataOut.azimuthList |
|
46 | 46 | self.dataOut.processingHeaderObj.elevationList = self.dataOut.elevationList |
|
47 | 47 | self.dataOut.processingHeaderObj.codeList = self.dataOut.nChannels |
|
48 | 48 | self.dataOut.processingHeaderObj.heightList = self.dataOut.heightList |
|
49 | 49 | self.dataOut.processingHeaderObj.heightResolution = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
50 | 50 | |
|
51 | 51 | |
|
52 | 52 | |
|
53 | 53 | def __updateObjFromAmisrInput(self): |
|
54 | 54 | |
|
55 | 55 | self.dataOut.timeZone = self.dataIn.timeZone |
|
56 | 56 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
57 | 57 | self.dataOut.errorCount = self.dataIn.errorCount |
|
58 | 58 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
59 | 59 | |
|
60 | 60 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
61 | 61 | self.dataOut.data = self.dataIn.data |
|
62 | 62 | self.dataOut.utctime = self.dataIn.utctime |
|
63 | 63 | self.dataOut.channelList = self.dataIn.channelList |
|
64 | 64 | #self.dataOut.timeInterval = self.dataIn.timeInterval |
|
65 | 65 | self.dataOut.heightList = self.dataIn.heightList |
|
66 | 66 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
67 | 67 | |
|
68 | 68 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
69 | 69 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
70 | 70 | self.dataOut.frequency = self.dataIn.frequency |
|
71 | 71 | |
|
72 | 72 | self.dataOut.azimuth = self.dataIn.azimuth |
|
73 | 73 | self.dataOut.zenith = self.dataIn.zenith |
|
74 | 74 | |
|
75 | 75 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
76 | 76 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
77 | 77 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
78 | 78 | |
|
79 | 79 | |
|
80 | 80 | class selectChannels(Operation): |
|
81 | 81 | |
|
82 | 82 | def run(self, dataOut, channelList=None): |
|
83 | 83 | self.channelList = channelList |
|
84 | 84 | if self.channelList == None: |
|
85 | 85 | print("Missing channelList") |
|
86 | 86 | return dataOut |
|
87 | 87 | channelIndexList = [] |
|
88 | 88 | if not dataOut.buffer_empty: # cuando se usa proc volts como buffer de datos |
|
89 | 89 | return dataOut |
|
90 | 90 | #print("channel List: ", dataOut.channelList) |
|
91 | 91 | if type(dataOut.channelList) is not list: #leer array desde HDF5 |
|
92 | 92 | try: |
|
93 | 93 | dataOut.channelList = dataOut.channelList.tolist() |
|
94 | 94 | except Exception as e: |
|
95 | 95 | print("Select Channels: ",e) |
|
96 | 96 | for channel in self.channelList: |
|
97 | 97 | if channel not in dataOut.channelList: |
|
98 | 98 | raise ValueError("Channel %d is not in %s" %(channel, str(dataOut.channelList))) |
|
99 | 99 | |
|
100 | 100 | index = dataOut.channelList.index(channel) |
|
101 | 101 | channelIndexList.append(index) |
|
102 | 102 | dataOut = self.selectChannelsByIndex(dataOut,channelIndexList) |
|
103 | 103 | |
|
104 | 104 | #update Processing Header: |
|
105 | 105 | dataOut.processingHeaderObj.channelList = dataOut.channelList |
|
106 | 106 | dataOut.processingHeaderObj.elevationList = dataOut.elevationList |
|
107 | 107 | dataOut.processingHeaderObj.azimuthList = dataOut.azimuthList |
|
108 | 108 | dataOut.processingHeaderObj.codeList = dataOut.codeList |
|
109 | 109 | dataOut.processingHeaderObj.nChannels = len(dataOut.channelList) |
|
110 | 110 | |
|
111 | 111 | return dataOut |
|
112 | 112 | |
|
113 | 113 | def selectChannelsByIndex(self, dataOut, channelIndexList): |
|
114 | 114 | """ |
|
115 | 115 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
116 | 116 | |
|
117 | 117 | Input: |
|
118 | 118 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
119 | 119 | |
|
120 | 120 | Affected: |
|
121 | 121 | dataOut.data |
|
122 | 122 | dataOut.channelIndexList |
|
123 | 123 | dataOut.nChannels |
|
124 | 124 | dataOut.m_ProcessingHeader.totalSpectra |
|
125 | 125 | dataOut.systemHeaderObj.numChannels |
|
126 | 126 | dataOut.m_ProcessingHeader.blockSize |
|
127 | 127 | |
|
128 | 128 | Return: |
|
129 | 129 | None |
|
130 | 130 | """ |
|
131 | 131 | #print("selectChannelsByIndex") |
|
132 | 132 | # for channelIndex in channelIndexList: |
|
133 | 133 | # if channelIndex not in dataOut.channelIndexList: |
|
134 | 134 | # raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) |
|
135 | 135 | |
|
136 | 136 | if dataOut.type == 'Voltage': |
|
137 | 137 | if dataOut.flagDataAsBlock: |
|
138 | 138 | """ |
|
139 | 139 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
140 | 140 | """ |
|
141 | 141 | data = dataOut.data[channelIndexList,:,:] |
|
142 | 142 | else: |
|
143 | 143 | data = dataOut.data[channelIndexList,:] |
|
144 | 144 | |
|
145 | 145 | dataOut.data = data |
|
146 | 146 | # dataOut.channelList = [dataOut.channelList[i] for i in channelIndexList] |
|
147 | 147 | dataOut.channelList = [n for n in range(len(channelIndexList))] |
|
148 | 148 | |
|
149 | 149 | elif dataOut.type == 'Spectra': |
|
150 | 150 | if hasattr(dataOut, 'data_spc'): |
|
151 | 151 | if dataOut.data_spc is None: |
|
152 | 152 | raise ValueError("data_spc is None") |
|
153 | 153 | return dataOut |
|
154 | 154 | else: |
|
155 | 155 | data_spc = dataOut.data_spc[channelIndexList, :] |
|
156 | 156 | dataOut.data_spc = data_spc |
|
157 | 157 | |
|
158 | 158 | # if hasattr(dataOut, 'data_dc') :# and |
|
159 | 159 | # if dataOut.data_dc is None: |
|
160 | 160 | # raise ValueError("data_dc is None") |
|
161 | 161 | # return dataOut |
|
162 | 162 | # else: |
|
163 | 163 | # data_dc = dataOut.data_dc[channelIndexList, :] |
|
164 | 164 | # dataOut.data_dc = data_dc |
|
165 | 165 | # dataOut.channelList = [dataOut.channelList[i] for i in channelIndexList] |
|
166 | 166 | dataOut.channelList = channelIndexList |
|
167 | 167 | dataOut = self.__selectPairsByChannel(dataOut,channelIndexList) |
|
168 | 168 | if len(dataOut.elevationList>0): |
|
169 | 169 | dataOut.elevationList = dataOut.elevationList[channelIndexList] |
|
170 | 170 | dataOut.azimuthList = dataOut.azimuthList[channelIndexList] |
|
171 | 171 | dataOut.codeList = dataOut.codeList[channelIndexList] |
|
172 | 172 | return dataOut |
|
173 | 173 | |
|
174 | 174 | def __selectPairsByChannel(self, dataOut, channelList=None): |
|
175 | 175 | #print("__selectPairsByChannel") |
|
176 | 176 | if channelList == None: |
|
177 | 177 | return |
|
178 | 178 | |
|
179 | 179 | pairsIndexListSelected = [] |
|
180 | 180 | for pairIndex in dataOut.pairsIndexList: |
|
181 | 181 | # First pair |
|
182 | 182 | if dataOut.pairsList[pairIndex][0] not in channelList: |
|
183 | 183 | continue |
|
184 | 184 | # Second pair |
|
185 | 185 | if dataOut.pairsList[pairIndex][1] not in channelList: |
|
186 | 186 | continue |
|
187 | 187 | |
|
188 | 188 | pairsIndexListSelected.append(pairIndex) |
|
189 | 189 | if not pairsIndexListSelected: |
|
190 | 190 | dataOut.data_cspc = None |
|
191 | 191 | dataOut.pairsList = [] |
|
192 | 192 | return |
|
193 | 193 | |
|
194 | 194 | dataOut.data_cspc = dataOut.data_cspc[pairsIndexListSelected] |
|
195 | 195 | dataOut.pairsList = [dataOut.pairsList[i] |
|
196 | 196 | for i in pairsIndexListSelected] |
|
197 | 197 | |
|
198 | 198 | return dataOut |
|
199 | 199 | |
|
200 | 200 | class selectHeights(Operation): |
|
201 | 201 | |
|
202 | 202 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): |
|
203 | 203 | """ |
|
204 | 204 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
205 | 205 | minHei <= height <= maxHei |
|
206 | 206 | |
|
207 | 207 | Input: |
|
208 | 208 | minHei : valor minimo de altura a considerar |
|
209 | 209 | maxHei : valor maximo de altura a considerar |
|
210 | 210 | |
|
211 | 211 | Affected: |
|
212 | 212 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
213 | 213 | |
|
214 | 214 | Return: |
|
215 | 215 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
216 | 216 | """ |
|
217 | 217 | |
|
218 | 218 | self.dataOut = dataOut |
|
219 | 219 | |
|
220 | 220 | if minHei and maxHei: |
|
221 | 221 | |
|
222 | 222 | if (minHei < dataOut.heightList[0]): |
|
223 | 223 | minHei = dataOut.heightList[0] |
|
224 | 224 | |
|
225 | 225 | if (maxHei > dataOut.heightList[-1]): |
|
226 | 226 | maxHei = dataOut.heightList[-1] |
|
227 | 227 | |
|
228 | 228 | minIndex = 0 |
|
229 | 229 | maxIndex = 0 |
|
230 | 230 | heights = dataOut.heightList |
|
231 | 231 | |
|
232 | 232 | inda = numpy.where(heights >= minHei) |
|
233 | 233 | indb = numpy.where(heights <= maxHei) |
|
234 | 234 | |
|
235 | 235 | try: |
|
236 | 236 | minIndex = inda[0][0] |
|
237 | 237 | except: |
|
238 | 238 | minIndex = 0 |
|
239 | 239 | |
|
240 | 240 | try: |
|
241 | 241 | maxIndex = indb[0][-1] |
|
242 | 242 | except: |
|
243 | 243 | maxIndex = len(heights) |
|
244 | 244 | |
|
245 | 245 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
246 | 246 | |
|
247 | 247 | #update Processing Header: |
|
248 | 248 | dataOut.processingHeaderObj.heightList = dataOut.heightList |
|
249 | 249 | |
|
250 | 250 | |
|
251 | 251 | |
|
252 | 252 | return dataOut |
|
253 | 253 | |
|
254 | 254 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
255 | 255 | """ |
|
256 | 256 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
257 | 257 | minIndex <= index <= maxIndex |
|
258 | 258 | |
|
259 | 259 | Input: |
|
260 | 260 | minIndex : valor de indice minimo de altura a considerar |
|
261 | 261 | maxIndex : valor de indice maximo de altura a considerar |
|
262 | 262 | |
|
263 | 263 | Affected: |
|
264 | 264 | self.dataOut.data |
|
265 | 265 | self.dataOut.heightList |
|
266 | 266 | |
|
267 | 267 | Return: |
|
268 | 268 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
269 | 269 | """ |
|
270 | 270 | |
|
271 | 271 | if self.dataOut.type == 'Voltage': |
|
272 | 272 | if (minIndex < 0) or (minIndex > maxIndex): |
|
273 | 273 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
274 | 274 | |
|
275 | 275 | if (maxIndex >= self.dataOut.nHeights): |
|
276 | 276 | maxIndex = self.dataOut.nHeights |
|
277 | 277 | |
|
278 | 278 | #voltage |
|
279 | 279 | if self.dataOut.flagDataAsBlock: |
|
280 | 280 | """ |
|
281 | 281 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
282 | 282 | """ |
|
283 | 283 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
284 | 284 | else: |
|
285 | 285 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
286 | 286 | |
|
287 | 287 | # firstHeight = self.dataOut.heightList[minIndex] |
|
288 | 288 | |
|
289 | 289 | self.dataOut.data = data |
|
290 | 290 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
291 | 291 | |
|
292 | 292 | if self.dataOut.nHeights <= 1: |
|
293 | 293 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) |
|
294 | 294 | elif self.dataOut.type == 'Spectra': |
|
295 | 295 | if (minIndex < 0) or (minIndex > maxIndex): |
|
296 | 296 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( |
|
297 | 297 | minIndex, maxIndex)) |
|
298 | 298 | |
|
299 | 299 | if (maxIndex >= self.dataOut.nHeights): |
|
300 | 300 | maxIndex = self.dataOut.nHeights - 1 |
|
301 | 301 | |
|
302 | 302 | # Spectra |
|
303 | 303 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
304 | 304 | |
|
305 | 305 | data_cspc = None |
|
306 | 306 | if self.dataOut.data_cspc is not None: |
|
307 | 307 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
308 | 308 | |
|
309 | 309 | data_dc = None |
|
310 | 310 | if self.dataOut.data_dc is not None: |
|
311 | 311 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
312 | 312 | |
|
313 | 313 | self.dataOut.data_spc = data_spc |
|
314 | 314 | self.dataOut.data_cspc = data_cspc |
|
315 | 315 | self.dataOut.data_dc = data_dc |
|
316 | 316 | |
|
317 | 317 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
318 | 318 | |
|
319 | 319 | return 1 |
|
320 | 320 | |
|
321 | 321 | |
|
322 | 322 | class filterByHeights(Operation): |
|
323 | ||
|
323 | ifConfig=False | |
|
324 | deltaHeight = None | |
|
325 | newdelta=None | |
|
326 | newheights=None | |
|
327 | r=None | |
|
328 | h0=None | |
|
329 | nHeights=None | |
|
324 | 330 | def run(self, dataOut, window): |
|
325 | ||
|
326 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
|
327 | ||
|
331 | ||
|
332 | ||
|
333 | # print("1",dataOut.data.shape) | |
|
334 | # print(dataOut.nHeights) | |
|
328 | 335 | if window == None: |
|
329 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight | |
|
330 | ||
|
331 | newdelta = deltaHeight * window | |
|
332 | r = dataOut.nHeights % window | |
|
333 | newheights = (dataOut.nHeights-r)/window | |
|
334 | ||
|
335 | if newheights <= 1: | |
|
336 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) | |
|
336 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / self.deltaHeight | |
|
337 | ||
|
338 | if not self.ifConfig: #and dataOut.useInputBuffer: | |
|
339 | self.deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
|
340 | self.ifConfig = True | |
|
341 | self.newdelta = self.deltaHeight * window | |
|
342 | self.r = dataOut.nHeights % window | |
|
343 | self.newheights = (dataOut.nHeights-self.r)/window | |
|
344 | self.h0 = dataOut.heightList[0] | |
|
345 | self.nHeights = dataOut.nHeights | |
|
346 | if self.newheights <= 1: | |
|
347 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) | |
|
337 | 348 | |
|
338 | 349 | if dataOut.flagDataAsBlock: |
|
339 | 350 | """ |
|
340 | 351 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
341 | 352 | """ |
|
342 |
buffer = dataOut.data[:, :, 0:int( |
|
|
343 |
buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int( |
|
|
353 | buffer = dataOut.data[:, :, 0:int(self.nHeights-self.r)] | |
|
354 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(self.nHeights/window), window) | |
|
344 | 355 | buffer = numpy.sum(buffer,3) |
|
345 | 356 | |
|
346 | 357 | else: |
|
347 |
buffer = dataOut.data[:,0:int( |
|
|
348 |
buffer = buffer.reshape(dataOut.nChannels,int( |
|
|
358 | buffer = dataOut.data[:,0:int(self.nHeights-self.r)] | |
|
359 | buffer = buffer.reshape(dataOut.nChannels,int(self.nHeights/window),int(window)) | |
|
349 | 360 | buffer = numpy.sum(buffer,2) |
|
350 | 361 | |
|
351 | 362 | dataOut.data = buffer |
|
352 |
dataOut.heightList = |
|
|
363 | dataOut.heightList = self.h0 + numpy.arange( self.newheights )*self.newdelta | |
|
353 | 364 | dataOut.windowOfFilter = window |
|
354 | 365 | |
|
355 | 366 | #update Processing Header: |
|
356 | 367 | dataOut.processingHeaderObj.heightList = dataOut.heightList |
|
357 | 368 | dataOut.processingHeaderObj.nWindows = window |
|
358 | ||
|
369 | ||
|
359 | 370 | return dataOut |
|
360 | 371 | |
|
361 | 372 | |
|
373 | ||
|
362 | 374 | class setH0(Operation): |
|
363 | 375 | |
|
364 | 376 | def run(self, dataOut, h0, deltaHeight = None): |
|
365 | 377 | |
|
366 | 378 | if not deltaHeight: |
|
367 | 379 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
368 | 380 | |
|
369 | 381 | nHeights = dataOut.nHeights |
|
370 | 382 | |
|
371 | 383 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
372 | 384 | |
|
373 | 385 | dataOut.heightList = newHeiRange |
|
374 | 386 | |
|
375 | 387 | #update Processing Header: |
|
376 | 388 | dataOut.processingHeaderObj.heightList = dataOut.heightList |
|
377 | 389 | |
|
378 | 390 | return dataOut |
|
379 | 391 | |
|
380 | 392 | |
|
381 | 393 | class deFlip(Operation): |
|
382 | 394 | |
|
383 | 395 | def run(self, dataOut, channelList = []): |
|
384 | 396 | |
|
385 | 397 | data = dataOut.data.copy() |
|
386 | 398 | |
|
387 | 399 | if dataOut.flagDataAsBlock: |
|
388 | 400 | flip = self.flip |
|
389 | 401 | profileList = list(range(dataOut.nProfiles)) |
|
390 | 402 | |
|
391 | 403 | if not channelList: |
|
392 | 404 | for thisProfile in profileList: |
|
393 | 405 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
394 | 406 | flip *= -1.0 |
|
395 | 407 | else: |
|
396 | 408 | for thisChannel in channelList: |
|
397 | 409 | if thisChannel not in dataOut.channelList: |
|
398 | 410 | continue |
|
399 | 411 | |
|
400 | 412 | for thisProfile in profileList: |
|
401 | 413 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
402 | 414 | flip *= -1.0 |
|
403 | 415 | |
|
404 | 416 | self.flip = flip |
|
405 | 417 | |
|
406 | 418 | else: |
|
407 | 419 | if not channelList: |
|
408 | 420 | data[:,:] = data[:,:]*self.flip |
|
409 | 421 | else: |
|
410 | 422 | for thisChannel in channelList: |
|
411 | 423 | if thisChannel not in dataOut.channelList: |
|
412 | 424 | continue |
|
413 | 425 | |
|
414 | 426 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
415 | 427 | |
|
416 | 428 | self.flip *= -1. |
|
417 | 429 | |
|
418 | 430 | dataOut.data = data |
|
419 | 431 | |
|
420 | 432 | return dataOut |
|
421 | 433 | |
|
422 | 434 | |
|
423 | 435 | class setAttribute(Operation): |
|
424 | 436 | ''' |
|
425 | 437 | Set an arbitrary attribute(s) to dataOut |
|
426 | 438 | ''' |
|
427 | 439 | |
|
428 | 440 | def __init__(self): |
|
429 | 441 | |
|
430 | 442 | Operation.__init__(self) |
|
431 | 443 | self._ready = False |
|
432 | 444 | |
|
433 | 445 | def run(self, dataOut, **kwargs): |
|
434 | 446 | |
|
435 | 447 | for key, value in kwargs.items(): |
|
436 | 448 | setattr(dataOut, key, value) |
|
437 | 449 | |
|
438 | 450 | return dataOut |
|
439 | 451 | |
|
440 | 452 | |
|
441 | 453 | @MPDecorator |
|
442 | 454 | class printAttribute(Operation): |
|
443 | 455 | ''' |
|
444 | 456 | Print an arbitrary attribute of dataOut |
|
445 | 457 | ''' |
|
446 | 458 | |
|
447 | 459 | def __init__(self): |
|
448 | 460 | |
|
449 | 461 | Operation.__init__(self) |
|
450 | 462 | |
|
451 | 463 | def run(self, dataOut, attributes): |
|
452 | 464 | |
|
453 | 465 | if isinstance(attributes, str): |
|
454 | 466 | attributes = [attributes] |
|
455 | 467 | for attr in attributes: |
|
456 | 468 | if hasattr(dataOut, attr): |
|
457 | 469 | log.log(getattr(dataOut, attr), attr) |
|
458 | 470 | |
|
459 | 471 | class cleanHeightsInterf(Operation): |
|
460 | 472 | __slots__ =('heights_indx', 'repeats', 'step', 'factor', 'idate', 'idxs','config','wMask') |
|
461 | 473 | def __init__(self): |
|
462 | 474 | self.repeats = 0 |
|
463 | 475 | self.factor=1 |
|
464 | 476 | self.wMask = None |
|
465 | 477 | self.config = False |
|
466 | 478 | self.idxs = None |
|
467 | 479 | self.heights_indx = None |
|
468 | 480 | |
|
469 | 481 | def run(self, dataOut, heightsList, repeats=0, step=0, factor=1, idate=None, startH=None, endH=None): |
|
470 | 482 | |
|
471 | 483 | #print(dataOut.data.shape) |
|
472 | 484 | |
|
473 | 485 | startTime = datetime.datetime.combine(idate,startH) |
|
474 | 486 | endTime = datetime.datetime.combine(idate,endH) |
|
475 | 487 | currentTime = datetime.datetime.fromtimestamp(dataOut.utctime) |
|
476 | 488 | |
|
477 | 489 | if currentTime < startTime or currentTime > endTime: |
|
478 | 490 | return dataOut |
|
479 | 491 | if not self.config: |
|
480 | 492 | |
|
481 | 493 | #print(wMask) |
|
482 | 494 | heights = [float(hei) for hei in heightsList] |
|
483 | 495 | for r in range(repeats): |
|
484 | 496 | heights += [ (h+(step*(r+1))) for h in heights] |
|
485 | 497 | #print(heights) |
|
486 | 498 | heiList = dataOut.heightList |
|
487 | 499 | self.heights_indx = [getHei_index(h,h,heiList)[0] for h in heights] |
|
488 | 500 | |
|
489 | 501 | self.wMask = numpy.asarray(factor) |
|
490 | 502 | self.wMask = numpy.tile(self.wMask,(repeats+2)) |
|
491 | 503 | self.config = True |
|
492 | 504 | |
|
493 | 505 | """ |
|
494 | 506 | getNoisebyHildebrand(self, channel=None, ymin_index=None, ymax_index=None) |
|
495 | 507 | """ |
|
496 | 508 | #print(self.noise =10*numpy.log10(dataOut.getNoisebyHildebrand(ymin_index=self.min_ref, ymax_index=self.max_ref))) |
|
497 | 509 | |
|
498 | 510 | |
|
499 | 511 | for ch in range(dataOut.data.shape[0]): |
|
500 | 512 | i = 0 |
|
501 | 513 | |
|
502 | 514 | |
|
503 | 515 | for hei in self.heights_indx: |
|
504 | 516 | h = hei - 1 |
|
505 | 517 | |
|
506 | 518 | |
|
507 | 519 | if dataOut.data.ndim < 3: |
|
508 | 520 | module = numpy.absolute(dataOut.data[ch,h]) |
|
509 | 521 | prev_h1 = numpy.absolute(dataOut.data[ch,h-1]) |
|
510 | 522 | dataOut.data[ch,h] = (dataOut.data[ch,h])/module * prev_h1 |
|
511 | 523 | |
|
512 | 524 | #dataOut.data[ch,hei-1] = (dataOut.data[ch,hei-1])*self.wMask[i] |
|
513 | 525 | else: |
|
514 | 526 | module = numpy.absolute(dataOut.data[ch,:,h]) |
|
515 | 527 | prev_h1 = numpy.absolute(dataOut.data[ch,:,h-1]) |
|
516 | 528 | dataOut.data[ch,:,h] = (dataOut.data[ch,:,h])/module * prev_h1 |
|
517 | 529 | #dataOut.data[ch,:,hei-1] = (dataOut.data[ch,:,hei-1])*self.wMask[i] |
|
518 | 530 | #print("done") |
|
519 | 531 | i += 1 |
|
520 | 532 | |
|
521 | 533 | |
|
522 | 534 | return dataOut |
|
523 | 535 | |
|
524 | 536 | |
|
525 | 537 | |
|
526 | 538 | class interpolateHeights(Operation): |
|
527 | 539 | |
|
528 | 540 | def run(self, dataOut, topLim, botLim): |
|
529 | 541 | #69 al 72 para julia |
|
530 | 542 | #82-84 para meteoros |
|
531 | 543 | if len(numpy.shape(dataOut.data))==2: |
|
532 | 544 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 |
|
533 | 545 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
534 | 546 | #dataOut.data[:,botLim:limSup+1] = sampInterp |
|
535 | 547 | dataOut.data[:,botLim:topLim+1] = sampInterp |
|
536 | 548 | else: |
|
537 | 549 | nHeights = dataOut.data.shape[2] |
|
538 | 550 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
539 | 551 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] |
|
540 | 552 | f = interpolate.interp1d(x, y, axis = 2) |
|
541 | 553 | xnew = numpy.arange(botLim,topLim+1) |
|
542 | 554 | ynew = f(xnew) |
|
543 | 555 | dataOut.data[:,:,botLim:topLim+1] = ynew |
|
544 | 556 | |
|
545 | 557 | return dataOut |
|
546 | 558 | |
|
547 | 559 | |
|
548 | 560 | class CohInt(Operation): |
|
549 | 561 | |
|
550 | 562 | isConfig = False |
|
551 | 563 | __profIndex = 0 |
|
552 | 564 | __byTime = False |
|
553 | 565 | __initime = None |
|
554 | 566 | __lastdatatime = None |
|
555 | 567 | __integrationtime = None |
|
556 | 568 | __buffer = None |
|
557 | 569 | __bufferStride = [] |
|
558 | 570 | __dataReady = False |
|
559 | 571 | __profIndexStride = 0 |
|
560 | 572 | __dataToPutStride = False |
|
561 | 573 | n = None |
|
562 | 574 | |
|
563 | 575 | def __init__(self, **kwargs): |
|
564 | 576 | |
|
565 | 577 | Operation.__init__(self, **kwargs) |
|
566 | 578 | |
|
567 | 579 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
568 | 580 | """ |
|
569 | 581 | Set the parameters of the integration class. |
|
570 | 582 | |
|
571 | 583 | Inputs: |
|
572 | 584 | |
|
573 | 585 | n : Number of coherent integrations |
|
574 | 586 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
575 | 587 | overlapping : |
|
576 | 588 | """ |
|
577 | 589 | |
|
578 | 590 | self.__initime = None |
|
579 | 591 | self.__lastdatatime = 0 |
|
580 | 592 | self.__buffer = None |
|
581 | 593 | self.__dataReady = False |
|
582 | 594 | self.byblock = byblock |
|
583 | 595 | self.stride = stride |
|
584 | 596 | |
|
585 | 597 | if n == None and timeInterval == None: |
|
586 | 598 | raise ValueError("n or timeInterval should be specified ...") |
|
587 | 599 | |
|
588 | 600 | if n != None: |
|
589 | 601 | self.n = n |
|
590 | 602 | self.__byTime = False |
|
591 | 603 | else: |
|
592 | 604 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
593 | 605 | self.n = 9999 |
|
594 | 606 | self.__byTime = True |
|
595 | 607 | |
|
596 | 608 | if overlapping: |
|
597 | 609 | self.__withOverlapping = True |
|
598 | 610 | self.__buffer = None |
|
599 | 611 | else: |
|
600 | 612 | self.__withOverlapping = False |
|
601 | 613 | self.__buffer = 0 |
|
602 | 614 | |
|
603 | 615 | self.__profIndex = 0 |
|
604 | 616 | |
|
605 | 617 | def putData(self, data): |
|
606 | 618 | |
|
607 | 619 | """ |
|
608 | 620 | Add a profile to the __buffer and increase in one the __profileIndex |
|
609 | 621 | |
|
610 | 622 | """ |
|
611 | 623 | |
|
612 | 624 | if not self.__withOverlapping: |
|
613 | 625 | self.__buffer += data.copy() |
|
614 | 626 | self.__profIndex += 1 |
|
615 | 627 | return |
|
616 | 628 | |
|
617 | 629 | #Overlapping data |
|
618 | 630 | nChannels, nHeis = data.shape |
|
619 | 631 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
620 | 632 | |
|
621 | 633 | #If the buffer is empty then it takes the data value |
|
622 | 634 | if self.__buffer is None: |
|
623 | 635 | self.__buffer = data |
|
624 | 636 | self.__profIndex += 1 |
|
625 | 637 | return |
|
626 | 638 | |
|
627 | 639 | #If the buffer length is lower than n then stakcing the data value |
|
628 | 640 | if self.__profIndex < self.n: |
|
629 | 641 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
630 | 642 | self.__profIndex += 1 |
|
631 | 643 | return |
|
632 | 644 | |
|
633 | 645 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
634 | 646 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
635 | 647 | self.__buffer[self.n-1] = data |
|
636 | 648 | self.__profIndex = self.n |
|
637 | 649 | return |
|
638 | 650 | |
|
639 | 651 | |
|
640 | 652 | def pushData(self): |
|
641 | 653 | """ |
|
642 | 654 | Return the sum of the last profiles and the profiles used in the sum. |
|
643 | 655 | |
|
644 | 656 | Affected: |
|
645 | 657 | |
|
646 | 658 | self.__profileIndex |
|
647 | 659 | |
|
648 | 660 | """ |
|
649 | 661 | |
|
650 | 662 | if not self.__withOverlapping: |
|
651 | 663 | data = self.__buffer |
|
652 | 664 | n = self.__profIndex |
|
653 | 665 | |
|
654 | 666 | self.__buffer = 0 |
|
655 | 667 | self.__profIndex = 0 |
|
656 | 668 | |
|
657 | 669 | return data, n |
|
658 | 670 | |
|
659 | 671 | #Integration with Overlapping |
|
660 | 672 | data = numpy.sum(self.__buffer, axis=0) |
|
661 | 673 | # print data |
|
662 | 674 | # raise |
|
663 | 675 | n = self.__profIndex |
|
664 | 676 | |
|
665 | 677 | return data, n |
|
666 | 678 | |
|
667 | 679 | def byProfiles(self, data): |
|
668 | 680 | |
|
669 | 681 | self.__dataReady = False |
|
670 | 682 | avgdata = None |
|
671 | 683 | # n = None |
|
672 | 684 | # print data |
|
673 | 685 | # raise |
|
674 | 686 | self.putData(data) |
|
675 | 687 | |
|
676 | 688 | if self.__profIndex == self.n: |
|
677 | 689 | avgdata, n = self.pushData() |
|
678 | 690 | self.__dataReady = True |
|
679 | 691 | |
|
680 | 692 | return avgdata |
|
681 | 693 | |
|
682 | 694 | def byTime(self, data, datatime): |
|
683 | 695 | |
|
684 | 696 | self.__dataReady = False |
|
685 | 697 | avgdata = None |
|
686 | 698 | n = None |
|
687 | 699 | |
|
688 | 700 | self.putData(data) |
|
689 | 701 | |
|
690 | 702 | if (datatime - self.__initime) >= self.__integrationtime: |
|
691 | 703 | avgdata, n = self.pushData() |
|
692 | 704 | self.n = n |
|
693 | 705 | self.__dataReady = True |
|
694 | 706 | |
|
695 | 707 | return avgdata |
|
696 | 708 | |
|
697 | 709 | def integrateByStride(self, data, datatime): |
|
698 | 710 | # print data |
|
699 | 711 | if self.__profIndex == 0: |
|
700 | 712 | self.__buffer = [[data.copy(), datatime]] |
|
701 | 713 | else: |
|
702 | 714 | self.__buffer.append([data.copy(),datatime]) |
|
703 | 715 | self.__profIndex += 1 |
|
704 | 716 | self.__dataReady = False |
|
705 | 717 | |
|
706 | 718 | if self.__profIndex == self.n * self.stride : |
|
707 | 719 | self.__dataToPutStride = True |
|
708 | 720 | self.__profIndexStride = 0 |
|
709 | 721 | self.__profIndex = 0 |
|
710 | 722 | self.__bufferStride = [] |
|
711 | 723 | for i in range(self.stride): |
|
712 | 724 | current = self.__buffer[i::self.stride] |
|
713 | 725 | data = numpy.sum([t[0] for t in current], axis=0) |
|
714 | 726 | avgdatatime = numpy.average([t[1] for t in current]) |
|
715 | 727 | # print data |
|
716 | 728 | self.__bufferStride.append((data, avgdatatime)) |
|
717 | 729 | |
|
718 | 730 | if self.__dataToPutStride: |
|
719 | 731 | self.__dataReady = True |
|
720 | 732 | self.__profIndexStride += 1 |
|
721 | 733 | if self.__profIndexStride == self.stride: |
|
722 | 734 | self.__dataToPutStride = False |
|
723 | 735 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
724 | 736 | # raise |
|
725 | 737 | return self.__bufferStride[self.__profIndexStride - 1] |
|
726 | 738 | |
|
727 | 739 | |
|
728 | 740 | return None, None |
|
729 | 741 | |
|
730 | 742 | def integrate(self, data, datatime=None): |
|
731 | 743 | |
|
732 | 744 | if self.__initime == None: |
|
733 | 745 | self.__initime = datatime |
|
734 | 746 | |
|
735 | 747 | if self.__byTime: |
|
736 | 748 | avgdata = self.byTime(data, datatime) |
|
737 | 749 | else: |
|
738 | 750 | avgdata = self.byProfiles(data) |
|
739 | 751 | |
|
740 | 752 | |
|
741 | 753 | self.__lastdatatime = datatime |
|
742 | 754 | |
|
743 | 755 | if avgdata is None: |
|
744 | 756 | return None, None |
|
745 | 757 | |
|
746 | 758 | avgdatatime = self.__initime |
|
747 | 759 | |
|
748 | 760 | deltatime = datatime - self.__lastdatatime |
|
749 | 761 | |
|
750 | 762 | if not self.__withOverlapping: |
|
751 | 763 | self.__initime = datatime |
|
752 | 764 | else: |
|
753 | 765 | self.__initime += deltatime |
|
754 | 766 | |
|
755 | 767 | return avgdata, avgdatatime |
|
756 | 768 | |
|
757 | 769 | def integrateByBlock(self, dataOut): |
|
758 | 770 | |
|
759 | 771 | times = int(dataOut.data.shape[1]/self.n) |
|
760 | 772 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
761 | 773 | |
|
762 | 774 | id_min = 0 |
|
763 | 775 | id_max = self.n |
|
764 | 776 | |
|
765 | 777 | for i in range(times): |
|
766 | 778 | junk = dataOut.data[:,id_min:id_max,:] |
|
767 | 779 | avgdata[:,i,:] = junk.sum(axis=1) |
|
768 | 780 | id_min += self.n |
|
769 | 781 | id_max += self.n |
|
770 | 782 | |
|
771 | 783 | timeInterval = dataOut.ippSeconds*self.n |
|
772 | 784 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
773 | 785 | self.__dataReady = True |
|
774 | 786 | return avgdata, avgdatatime |
|
775 | 787 | |
|
776 | 788 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
777 | 789 | |
|
778 | 790 | if not self.isConfig: |
|
779 | 791 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
780 | 792 | self.isConfig = True |
|
781 | 793 | |
|
782 | 794 | if dataOut.flagDataAsBlock: |
|
783 | 795 | """ |
|
784 | 796 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
785 | 797 | """ |
|
786 | 798 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
787 | 799 | dataOut.nProfiles /= self.n |
|
788 | 800 | else: |
|
789 | 801 | if stride is None: |
|
790 | 802 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
791 | 803 | else: |
|
792 | 804 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
793 | 805 | |
|
794 | 806 | |
|
795 | 807 | # dataOut.timeInterval *= n |
|
796 | 808 | dataOut.flagNoData = True |
|
797 | 809 | |
|
798 | 810 | if self.__dataReady: |
|
799 | 811 | dataOut.data = avgdata |
|
800 | 812 | if not dataOut.flagCohInt: |
|
801 | 813 | dataOut.nCohInt *= self.n |
|
802 | 814 | dataOut.flagCohInt = True |
|
803 | 815 | dataOut.utctime = avgdatatime |
|
804 | 816 | # print avgdata, avgdatatime |
|
805 | 817 | # raise |
|
806 | 818 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
807 | 819 | dataOut.flagNoData = False |
|
808 | 820 | |
|
809 | 821 | #update Processing Header: |
|
810 | 822 | dataOut.processingHeaderObj.nCohInt = dataOut.nCohInt |
|
811 | 823 | |
|
812 | 824 | |
|
813 | 825 | return dataOut |
|
814 | 826 | |
|
815 | 827 | class Decoder(Operation): |
|
816 | 828 | |
|
817 | 829 | isConfig = False |
|
818 | 830 | __profIndex = 0 |
|
819 | 831 | |
|
820 | 832 | code = None |
|
821 | 833 | |
|
822 | 834 | nCode = None |
|
823 | 835 | nBaud = None |
|
824 | 836 | |
|
825 | 837 | def __init__(self, **kwargs): |
|
826 | 838 | |
|
827 | 839 | Operation.__init__(self, **kwargs) |
|
828 | 840 | |
|
829 | 841 | self.times = None |
|
830 | 842 | self.osamp = None |
|
831 | 843 | # self.__setValues = False |
|
832 | 844 | self.isConfig = False |
|
833 | 845 | self.setupReq = False |
|
834 | 846 | def setup(self, code, osamp, dataOut): |
|
835 | 847 | |
|
836 | 848 | self.__profIndex = 0 |
|
837 | 849 | |
|
838 | 850 | self.code = code |
|
839 | 851 | |
|
840 | 852 | self.nCode = len(code) |
|
841 | 853 | self.nBaud = len(code[0]) |
|
842 | 854 | if (osamp != None) and (osamp >1): |
|
843 | 855 | self.osamp = osamp |
|
844 | 856 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
845 | 857 | self.nBaud = self.nBaud*self.osamp |
|
846 | 858 | |
|
847 | 859 | self.__nChannels = dataOut.nChannels |
|
848 | 860 | self.__nProfiles = dataOut.nProfiles |
|
849 | 861 | self.__nHeis = dataOut.nHeights |
|
850 | 862 | |
|
851 | 863 | if self.__nHeis < self.nBaud: |
|
852 | 864 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) |
|
853 | 865 | |
|
854 | 866 | #Frequency |
|
855 | 867 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
856 | 868 | |
|
857 | 869 | __codeBuffer[:,0:self.nBaud] = self.code |
|
858 | 870 | |
|
859 | 871 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
860 | 872 | |
|
861 | 873 | if dataOut.flagDataAsBlock: |
|
862 | 874 | |
|
863 | 875 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
864 | 876 | |
|
865 | 877 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
866 | 878 | |
|
867 | 879 | else: |
|
868 | 880 | |
|
869 | 881 | #Time |
|
870 | 882 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
871 | 883 | |
|
872 | 884 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
873 | 885 | |
|
874 | 886 | def __convolutionInFreq(self, data): |
|
875 | 887 | |
|
876 | 888 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
877 | 889 | |
|
878 | 890 | fft_data = numpy.fft.fft(data, axis=1) |
|
879 | 891 | |
|
880 | 892 | conv = fft_data*fft_code |
|
881 | 893 | |
|
882 | 894 | data = numpy.fft.ifft(conv,axis=1) |
|
883 | 895 | |
|
884 | 896 | return data |
|
885 | 897 | |
|
886 | 898 | def __convolutionInFreqOpt(self, data): |
|
887 | 899 | |
|
888 | 900 | raise NotImplementedError |
|
889 | 901 | |
|
890 | 902 | def __convolutionInTime(self, data): |
|
891 | 903 | |
|
892 | 904 | code = self.code[self.__profIndex] |
|
893 | 905 | for i in range(self.__nChannels): |
|
894 | 906 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
895 | 907 | |
|
896 | 908 | return self.datadecTime |
|
897 | 909 | |
|
898 | 910 | def __convolutionByBlockInTime(self, data): |
|
899 | 911 | |
|
900 | 912 | repetitions = int(self.__nProfiles / self.nCode) |
|
901 | 913 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
902 | 914 | junk = junk.flatten() |
|
903 | 915 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
904 | 916 | profilesList = range(self.__nProfiles) |
|
905 | 917 | |
|
906 | 918 | for i in range(self.__nChannels): |
|
907 | 919 | for j in profilesList: |
|
908 | 920 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
909 | 921 | return self.datadecTime |
|
910 | 922 | |
|
911 | 923 | def __convolutionByBlockInFreq(self, data): |
|
912 | 924 | |
|
913 | 925 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") |
|
914 | 926 | |
|
915 | 927 | |
|
916 | 928 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
917 | 929 | |
|
918 | 930 | fft_data = numpy.fft.fft(data, axis=2) |
|
919 | 931 | |
|
920 | 932 | conv = fft_data*fft_code |
|
921 | 933 | |
|
922 | 934 | data = numpy.fft.ifft(conv,axis=2) |
|
923 | 935 | |
|
924 | 936 | return data |
|
925 | 937 | |
|
926 | 938 | |
|
927 | 939 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
928 | 940 | |
|
929 | 941 | if dataOut.flagDecodeData: |
|
930 | 942 | print("This data is already decoded, recoding again ...") |
|
931 | 943 | |
|
932 | 944 | if not self.isConfig: |
|
933 | 945 | |
|
934 | 946 | if code is None: |
|
935 | 947 | if dataOut.code is None: |
|
936 | 948 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) |
|
937 | 949 | |
|
938 | 950 | code = dataOut.code |
|
939 | 951 | else: |
|
940 | 952 | code = numpy.array(code).reshape(nCode,nBaud) |
|
941 | 953 | self.setup(code, osamp, dataOut) |
|
942 | 954 | |
|
943 | 955 | self.isConfig = True |
|
944 | 956 | |
|
945 | 957 | if mode == 3: |
|
946 | 958 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
947 | 959 | |
|
948 | 960 | if times != None: |
|
949 | 961 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
950 | 962 | |
|
951 | 963 | if self.code is None: |
|
952 | 964 | print("Fail decoding: Code is not defined.") |
|
953 | 965 | return |
|
954 | 966 | |
|
955 | 967 | self.__nProfiles = dataOut.nProfiles |
|
956 | 968 | datadec = None |
|
957 | 969 | |
|
958 | 970 | if mode == 3: |
|
959 | 971 | mode = 0 |
|
960 | 972 | |
|
961 | 973 | if dataOut.flagDataAsBlock: |
|
962 | 974 | """ |
|
963 | 975 | Decoding when data have been read as block, |
|
964 | 976 | """ |
|
965 | 977 | |
|
966 | 978 | if mode == 0: |
|
967 | 979 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
968 | 980 | if mode == 1: |
|
969 | 981 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
970 | 982 | else: |
|
971 | 983 | """ |
|
972 | 984 | Decoding when data have been read profile by profile |
|
973 | 985 | """ |
|
974 | 986 | if mode == 0: |
|
975 | 987 | datadec = self.__convolutionInTime(dataOut.data) |
|
976 | 988 | |
|
977 | 989 | if mode == 1: |
|
978 | 990 | datadec = self.__convolutionInFreq(dataOut.data) |
|
979 | 991 | |
|
980 | 992 | if mode == 2: |
|
981 | 993 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
982 | 994 | |
|
983 | 995 | if datadec is None: |
|
984 | 996 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) |
|
985 | 997 | |
|
986 | 998 | dataOut.code = self.code |
|
987 | 999 | dataOut.nCode = self.nCode |
|
988 | 1000 | dataOut.nBaud = self.nBaud |
|
989 | 1001 | |
|
990 | 1002 | dataOut.data = datadec |
|
991 | 1003 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
992 | 1004 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
993 | 1005 | |
|
994 | 1006 | |
|
995 | 1007 | #update Processing Header: |
|
996 | 1008 | dataOut.radarControllerHeaderObj.code = self.code |
|
997 | 1009 | dataOut.radarControllerHeaderObj.nCode = self.nCode |
|
998 | 1010 | dataOut.radarControllerHeaderObj.nBaud = self.nBaud |
|
999 | 1011 | dataOut.radarControllerHeaderObj.nOsamp = osamp |
|
1000 | 1012 | #update Processing Header: |
|
1001 | 1013 | dataOut.processingHeaderObj.heightList = dataOut.heightList |
|
1002 | 1014 | dataOut.processingHeaderObj.heightResolution = dataOut.heightList[1]-dataOut.heightList[0] |
|
1003 | 1015 | |
|
1004 | 1016 | if self.__profIndex == self.nCode-1: |
|
1005 | 1017 | self.__profIndex = 0 |
|
1006 | 1018 | return dataOut |
|
1007 | 1019 | |
|
1008 | 1020 | self.__profIndex += 1 |
|
1009 | 1021 | |
|
1010 | 1022 | return dataOut |
|
1011 | 1023 | |
|
1012 | 1024 | class ProfileConcat(Operation): |
|
1013 | 1025 | |
|
1014 | 1026 | isConfig = False |
|
1015 | 1027 | buffer = None |
|
1016 | 1028 | |
|
1017 | 1029 | def __init__(self, **kwargs): |
|
1018 | 1030 | |
|
1019 | 1031 | Operation.__init__(self, **kwargs) |
|
1020 | 1032 | self.profileIndex = 0 |
|
1021 | 1033 | |
|
1022 | 1034 | def reset(self): |
|
1023 | 1035 | self.buffer = numpy.zeros_like(self.buffer) |
|
1024 | 1036 | self.start_index = 0 |
|
1025 | 1037 | self.times = 1 |
|
1026 | 1038 | |
|
1027 | 1039 | def setup(self, data, m, n=1): |
|
1028 | 1040 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
1029 | 1041 | self.nHeights = data.shape[1]#.nHeights |
|
1030 | 1042 | self.start_index = 0 |
|
1031 | 1043 | self.times = 1 |
|
1032 | 1044 | |
|
1033 | 1045 | def concat(self, data): |
|
1034 | 1046 | |
|
1035 | 1047 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
1036 | 1048 | self.start_index = self.start_index + self.nHeights |
|
1037 | 1049 | |
|
1038 | 1050 | def run(self, dataOut, m): |
|
1039 | 1051 | dataOut.flagNoData = True |
|
1040 | 1052 | |
|
1041 | 1053 | if not self.isConfig: |
|
1042 | 1054 | self.setup(dataOut.data, m, 1) |
|
1043 | 1055 | self.isConfig = True |
|
1044 | 1056 | |
|
1045 | 1057 | if dataOut.flagDataAsBlock: |
|
1046 | 1058 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") |
|
1047 | 1059 | |
|
1048 | 1060 | else: |
|
1049 | 1061 | self.concat(dataOut.data) |
|
1050 | 1062 | self.times += 1 |
|
1051 | 1063 | if self.times > m: |
|
1052 | 1064 | dataOut.data = self.buffer |
|
1053 | 1065 | self.reset() |
|
1054 | 1066 | dataOut.flagNoData = False |
|
1055 | 1067 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
1056 | 1068 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1057 | 1069 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
1058 | 1070 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
1059 | 1071 | dataOut.ippSeconds *= m |
|
1060 | 1072 | |
|
1061 | 1073 | #update Processing Header: |
|
1062 | 1074 | dataOut.processingHeaderObj.heightList = dataOut.heightList |
|
1063 | 1075 | dataOut.processingHeaderObj.ipp = dataOut.ippSeconds |
|
1064 | 1076 | |
|
1065 | 1077 | return dataOut |
|
1066 | 1078 | |
|
1067 | 1079 | class ProfileSelector(Operation): |
|
1068 | 1080 | |
|
1069 | 1081 | profileIndex = None |
|
1070 | 1082 | # Tamanho total de los perfiles |
|
1071 | 1083 | nProfiles = None |
|
1072 | 1084 | |
|
1073 | 1085 | def __init__(self, **kwargs): |
|
1074 | 1086 | |
|
1075 | 1087 | Operation.__init__(self, **kwargs) |
|
1076 | 1088 | self.profileIndex = 0 |
|
1077 | 1089 | |
|
1078 | 1090 | def incProfileIndex(self): |
|
1079 | 1091 | |
|
1080 | 1092 | self.profileIndex += 1 |
|
1081 | 1093 | |
|
1082 | 1094 | if self.profileIndex >= self.nProfiles: |
|
1083 | 1095 | self.profileIndex = 0 |
|
1084 | 1096 | |
|
1085 | 1097 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
1086 | 1098 | |
|
1087 | 1099 | if profileIndex < minIndex: |
|
1088 | 1100 | return False |
|
1089 | 1101 | |
|
1090 | 1102 | if profileIndex > maxIndex: |
|
1091 | 1103 | return False |
|
1092 | 1104 | |
|
1093 | 1105 | return True |
|
1094 | 1106 | |
|
1095 | 1107 | def isThisProfileInList(self, profileIndex, profileList): |
|
1096 | 1108 | |
|
1097 | 1109 | if profileIndex not in profileList: |
|
1098 | 1110 | return False |
|
1099 | 1111 | |
|
1100 | 1112 | return True |
|
1101 | 1113 | |
|
1102 | 1114 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
1103 | 1115 | |
|
1104 | 1116 | """ |
|
1105 | 1117 | ProfileSelector: |
|
1106 | 1118 | |
|
1107 | 1119 | Inputs: |
|
1108 | 1120 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
1109 | 1121 | |
|
1110 | 1122 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
1111 | 1123 | |
|
1112 | 1124 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
1113 | 1125 | |
|
1114 | 1126 | """ |
|
1115 | 1127 | |
|
1116 | 1128 | if rangeList is not None: |
|
1117 | 1129 | if type(rangeList[0]) not in (tuple, list): |
|
1118 | 1130 | rangeList = [rangeList] |
|
1119 | 1131 | |
|
1120 | 1132 | dataOut.flagNoData = True |
|
1121 | 1133 | |
|
1122 | 1134 | if dataOut.flagDataAsBlock: |
|
1123 | 1135 | """ |
|
1124 | 1136 | data dimension = [nChannels, nProfiles, nHeis] |
|
1125 | 1137 | """ |
|
1126 | 1138 | if profileList != None: |
|
1127 | 1139 | dataOut.data = dataOut.data[:,profileList,:] |
|
1128 | 1140 | |
|
1129 | 1141 | if profileRangeList != None: |
|
1130 | 1142 | minIndex = profileRangeList[0] |
|
1131 | 1143 | maxIndex = profileRangeList[1] |
|
1132 | 1144 | profileList = list(range(minIndex, maxIndex+1)) |
|
1133 | 1145 | |
|
1134 | 1146 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
1135 | 1147 | |
|
1136 | 1148 | if rangeList != None: |
|
1137 | 1149 | |
|
1138 | 1150 | profileList = [] |
|
1139 | 1151 | |
|
1140 | 1152 | for thisRange in rangeList: |
|
1141 | 1153 | minIndex = thisRange[0] |
|
1142 | 1154 | maxIndex = thisRange[1] |
|
1143 | 1155 | |
|
1144 | 1156 | profileList.extend(list(range(minIndex, maxIndex+1))) |
|
1145 | 1157 | |
|
1146 | 1158 | dataOut.data = dataOut.data[:,profileList,:] |
|
1147 | 1159 | |
|
1148 | 1160 | dataOut.nProfiles = len(profileList) |
|
1149 | 1161 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
1150 | 1162 | dataOut.flagNoData = False |
|
1151 | 1163 | |
|
1152 | 1164 | return dataOut |
|
1153 | 1165 | |
|
1154 | 1166 | """ |
|
1155 | 1167 | data dimension = [nChannels, nHeis] |
|
1156 | 1168 | """ |
|
1157 | 1169 | |
|
1158 | 1170 | if profileList != None: |
|
1159 | 1171 | |
|
1160 | 1172 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
1161 | 1173 | |
|
1162 | 1174 | self.nProfiles = len(profileList) |
|
1163 | 1175 | dataOut.nProfiles = self.nProfiles |
|
1164 | 1176 | dataOut.profileIndex = self.profileIndex |
|
1165 | 1177 | dataOut.flagNoData = False |
|
1166 | 1178 | |
|
1167 | 1179 | self.incProfileIndex() |
|
1168 | 1180 | return dataOut |
|
1169 | 1181 | |
|
1170 | 1182 | if profileRangeList != None: |
|
1171 | 1183 | |
|
1172 | 1184 | minIndex = profileRangeList[0] |
|
1173 | 1185 | maxIndex = profileRangeList[1] |
|
1174 | 1186 | |
|
1175 | 1187 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1176 | 1188 | |
|
1177 | 1189 | self.nProfiles = maxIndex - minIndex + 1 |
|
1178 | 1190 | dataOut.nProfiles = self.nProfiles |
|
1179 | 1191 | dataOut.profileIndex = self.profileIndex |
|
1180 | 1192 | dataOut.flagNoData = False |
|
1181 | 1193 | |
|
1182 | 1194 | self.incProfileIndex() |
|
1183 | 1195 | return dataOut |
|
1184 | 1196 | |
|
1185 | 1197 | if rangeList != None: |
|
1186 | 1198 | |
|
1187 | 1199 | nProfiles = 0 |
|
1188 | 1200 | |
|
1189 | 1201 | for thisRange in rangeList: |
|
1190 | 1202 | minIndex = thisRange[0] |
|
1191 | 1203 | maxIndex = thisRange[1] |
|
1192 | 1204 | |
|
1193 | 1205 | nProfiles += maxIndex - minIndex + 1 |
|
1194 | 1206 | |
|
1195 | 1207 | for thisRange in rangeList: |
|
1196 | 1208 | |
|
1197 | 1209 | minIndex = thisRange[0] |
|
1198 | 1210 | maxIndex = thisRange[1] |
|
1199 | 1211 | |
|
1200 | 1212 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1201 | 1213 | |
|
1202 | 1214 | self.nProfiles = nProfiles |
|
1203 | 1215 | dataOut.nProfiles = self.nProfiles |
|
1204 | 1216 | dataOut.profileIndex = self.profileIndex |
|
1205 | 1217 | dataOut.flagNoData = False |
|
1206 | 1218 | |
|
1207 | 1219 | self.incProfileIndex() |
|
1208 | 1220 | |
|
1209 | 1221 | break |
|
1210 | 1222 | |
|
1211 | 1223 | return dataOut |
|
1212 | 1224 | |
|
1213 | 1225 | |
|
1214 | 1226 | if beam != None: #beam is only for AMISR data |
|
1215 | 1227 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
1216 | 1228 | dataOut.flagNoData = False |
|
1217 | 1229 | dataOut.profileIndex = self.profileIndex |
|
1218 | 1230 | |
|
1219 | 1231 | self.incProfileIndex() |
|
1220 | 1232 | |
|
1221 | 1233 | return dataOut |
|
1222 | 1234 | |
|
1223 | 1235 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") |
|
1224 | 1236 | |
|
1225 | 1237 | |
|
1226 | 1238 | class Reshaper(Operation): |
|
1227 | 1239 | |
|
1228 | 1240 | def __init__(self, **kwargs): |
|
1229 | 1241 | |
|
1230 | 1242 | Operation.__init__(self, **kwargs) |
|
1231 | 1243 | |
|
1232 | 1244 | self.__buffer = None |
|
1233 | 1245 | self.__nitems = 0 |
|
1234 | 1246 | |
|
1235 | 1247 | def __appendProfile(self, dataOut, nTxs): |
|
1236 | 1248 | |
|
1237 | 1249 | if self.__buffer is None: |
|
1238 | 1250 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
1239 | 1251 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
1240 | 1252 | |
|
1241 | 1253 | ini = dataOut.nHeights * self.__nitems |
|
1242 | 1254 | end = ini + dataOut.nHeights |
|
1243 | 1255 | |
|
1244 | 1256 | self.__buffer[:, ini:end] = dataOut.data |
|
1245 | 1257 | |
|
1246 | 1258 | self.__nitems += 1 |
|
1247 | 1259 | |
|
1248 | 1260 | return int(self.__nitems*nTxs) |
|
1249 | 1261 | |
|
1250 | 1262 | def __getBuffer(self): |
|
1251 | 1263 | |
|
1252 | 1264 | if self.__nitems == int(1./self.__nTxs): |
|
1253 | 1265 | |
|
1254 | 1266 | self.__nitems = 0 |
|
1255 | 1267 | |
|
1256 | 1268 | return self.__buffer.copy() |
|
1257 | 1269 | |
|
1258 | 1270 | return None |
|
1259 | 1271 | |
|
1260 | 1272 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1261 | 1273 | |
|
1262 | 1274 | if shape is None and nTxs is None: |
|
1263 | 1275 | raise ValueError("Reshaper: shape of factor should be defined") |
|
1264 | 1276 | |
|
1265 | 1277 | if nTxs: |
|
1266 | 1278 | if nTxs < 0: |
|
1267 | 1279 | raise ValueError("nTxs should be greater than 0") |
|
1268 | 1280 | |
|
1269 | 1281 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1270 | 1282 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) |
|
1271 | 1283 | |
|
1272 | 1284 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1273 | 1285 | |
|
1274 | 1286 | return shape, nTxs |
|
1275 | 1287 | |
|
1276 | 1288 | if len(shape) != 2 and len(shape) != 3: |
|
1277 | 1289 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) |
|
1278 | 1290 | |
|
1279 | 1291 | if len(shape) == 2: |
|
1280 | 1292 | shape_tuple = [dataOut.nChannels] |
|
1281 | 1293 | shape_tuple.extend(shape) |
|
1282 | 1294 | else: |
|
1283 | 1295 | shape_tuple = list(shape) |
|
1284 | 1296 | |
|
1285 | 1297 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1286 | 1298 | |
|
1287 | 1299 | return shape_tuple, nTxs |
|
1288 | 1300 | |
|
1289 | 1301 | def run(self, dataOut, shape=None, nTxs=None): |
|
1290 | 1302 | |
|
1291 | 1303 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1292 | 1304 | |
|
1293 | 1305 | dataOut.flagNoData = True |
|
1294 | 1306 | profileIndex = None |
|
1295 | 1307 | |
|
1296 | 1308 | if dataOut.flagDataAsBlock: |
|
1297 | 1309 | |
|
1298 | 1310 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1299 | 1311 | dataOut.flagNoData = False |
|
1300 | 1312 | |
|
1301 | 1313 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1302 | 1314 | |
|
1303 | 1315 | else: |
|
1304 | 1316 | |
|
1305 | 1317 | if self.__nTxs < 1: |
|
1306 | 1318 | |
|
1307 | 1319 | self.__appendProfile(dataOut, self.__nTxs) |
|
1308 | 1320 | new_data = self.__getBuffer() |
|
1309 | 1321 | |
|
1310 | 1322 | if new_data is not None: |
|
1311 | 1323 | dataOut.data = new_data |
|
1312 | 1324 | dataOut.flagNoData = False |
|
1313 | 1325 | |
|
1314 | 1326 | profileIndex = dataOut.profileIndex*nTxs |
|
1315 | 1327 | |
|
1316 | 1328 | else: |
|
1317 | 1329 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") |
|
1318 | 1330 | |
|
1319 | 1331 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1320 | 1332 | |
|
1321 | 1333 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1322 | 1334 | |
|
1323 | 1335 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1324 | 1336 | |
|
1325 | 1337 | dataOut.profileIndex = profileIndex |
|
1326 | 1338 | |
|
1327 | 1339 | dataOut.ippSeconds /= self.__nTxs |
|
1328 | 1340 | |
|
1329 | 1341 | return dataOut |
|
1330 | 1342 | |
|
1331 | 1343 | class SplitProfiles(Operation): |
|
1332 | 1344 | |
|
1333 | 1345 | def __init__(self, **kwargs): |
|
1334 | 1346 | |
|
1335 | 1347 | Operation.__init__(self, **kwargs) |
|
1336 | 1348 | |
|
1337 | 1349 | def run(self, dataOut, n): |
|
1338 | 1350 | |
|
1339 | 1351 | dataOut.flagNoData = True |
|
1340 | 1352 | profileIndex = None |
|
1341 | 1353 | |
|
1342 | 1354 | if dataOut.flagDataAsBlock: |
|
1343 | 1355 | |
|
1344 | 1356 | #nchannels, nprofiles, nsamples |
|
1345 | 1357 | shape = dataOut.data.shape |
|
1346 | 1358 | |
|
1347 | 1359 | if shape[2] % n != 0: |
|
1348 | 1360 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) |
|
1349 | 1361 | |
|
1350 | 1362 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) |
|
1351 | 1363 | |
|
1352 | 1364 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1353 | 1365 | dataOut.flagNoData = False |
|
1354 | 1366 | |
|
1355 | 1367 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1356 | 1368 | |
|
1357 | 1369 | else: |
|
1358 | 1370 | |
|
1359 | 1371 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") |
|
1360 | 1372 | |
|
1361 | 1373 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1362 | 1374 | |
|
1363 | 1375 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1364 | 1376 | |
|
1365 | 1377 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1366 | 1378 | |
|
1367 | 1379 | dataOut.profileIndex = profileIndex |
|
1368 | 1380 | |
|
1369 | 1381 | dataOut.ippSeconds /= n |
|
1370 | 1382 | |
|
1371 | 1383 | return dataOut |
|
1372 | 1384 | |
|
1373 | 1385 | class CombineProfiles(Operation): |
|
1374 | 1386 | def __init__(self, **kwargs): |
|
1375 | 1387 | |
|
1376 | 1388 | Operation.__init__(self, **kwargs) |
|
1377 | 1389 | |
|
1378 | 1390 | self.__remData = None |
|
1379 | 1391 | self.__profileIndex = 0 |
|
1380 | 1392 | |
|
1381 | 1393 | def run(self, dataOut, n): |
|
1382 | 1394 | |
|
1383 | 1395 | dataOut.flagNoData = True |
|
1384 | 1396 | profileIndex = None |
|
1385 | 1397 | |
|
1386 | 1398 | if dataOut.flagDataAsBlock: |
|
1387 | 1399 | |
|
1388 | 1400 | #nchannels, nprofiles, nsamples |
|
1389 | 1401 | shape = dataOut.data.shape |
|
1390 | 1402 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1391 | 1403 | |
|
1392 | 1404 | if shape[1] % n != 0: |
|
1393 | 1405 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) |
|
1394 | 1406 | |
|
1395 | 1407 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1396 | 1408 | dataOut.flagNoData = False |
|
1397 | 1409 | |
|
1398 | 1410 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1399 | 1411 | |
|
1400 | 1412 | else: |
|
1401 | 1413 | |
|
1402 | 1414 | #nchannels, nsamples |
|
1403 | 1415 | if self.__remData is None: |
|
1404 | 1416 | newData = dataOut.data |
|
1405 | 1417 | else: |
|
1406 | 1418 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1407 | 1419 | |
|
1408 | 1420 | self.__profileIndex += 1 |
|
1409 | 1421 | |
|
1410 | 1422 | if self.__profileIndex < n: |
|
1411 | 1423 | self.__remData = newData |
|
1412 | 1424 | #continue |
|
1413 | 1425 | return |
|
1414 | 1426 | |
|
1415 | 1427 | self.__profileIndex = 0 |
|
1416 | 1428 | self.__remData = None |
|
1417 | 1429 | |
|
1418 | 1430 | dataOut.data = newData |
|
1419 | 1431 | dataOut.flagNoData = False |
|
1420 | 1432 | |
|
1421 | 1433 | profileIndex = dataOut.profileIndex/n |
|
1422 | 1434 | |
|
1423 | 1435 | |
|
1424 | 1436 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1425 | 1437 | |
|
1426 | 1438 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1427 | 1439 | |
|
1428 | 1440 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1429 | 1441 | |
|
1430 | 1442 | dataOut.profileIndex = profileIndex |
|
1431 | 1443 | |
|
1432 | 1444 | dataOut.ippSeconds *= n |
|
1433 | 1445 | |
|
1434 | 1446 | return dataOut |
|
1435 | 1447 | |
|
1436 | 1448 | class PulsePairVoltage(Operation): |
|
1437 | 1449 | ''' |
|
1438 | 1450 | Function PulsePair(Signal Power, Velocity) |
|
1439 | 1451 | The real component of Lag[0] provides Intensity Information |
|
1440 | 1452 | The imag component of Lag[1] Phase provides Velocity Information |
|
1441 | 1453 | |
|
1442 | 1454 | Configuration Parameters: |
|
1443 | 1455 | nPRF = Number of Several PRF |
|
1444 | 1456 | theta = Degree Azimuth angel Boundaries |
|
1445 | 1457 | |
|
1446 | 1458 | Input: |
|
1447 | 1459 | self.dataOut |
|
1448 | 1460 | lag[N] |
|
1449 | 1461 | Affected: |
|
1450 | 1462 | self.dataOut.spc |
|
1451 | 1463 | ''' |
|
1452 | 1464 | isConfig = False |
|
1453 | 1465 | __profIndex = 0 |
|
1454 | 1466 | __initime = None |
|
1455 | 1467 | __lastdatatime = None |
|
1456 | 1468 | __buffer = None |
|
1457 | 1469 | noise = None |
|
1458 | 1470 | __dataReady = False |
|
1459 | 1471 | n = None |
|
1460 | 1472 | __nch = 0 |
|
1461 | 1473 | __nHeis = 0 |
|
1462 | 1474 | removeDC = False |
|
1463 | 1475 | ipp = None |
|
1464 | 1476 | lambda_ = 0 |
|
1465 | 1477 | |
|
1466 | 1478 | def __init__(self,**kwargs): |
|
1467 | 1479 | Operation.__init__(self,**kwargs) |
|
1468 | 1480 | |
|
1469 | 1481 | def setup(self, dataOut, n = None, removeDC=False): |
|
1470 | 1482 | ''' |
|
1471 | 1483 | n= Numero de PRF's de entrada |
|
1472 | 1484 | ''' |
|
1473 | 1485 | self.__initime = None |
|
1474 | 1486 | self.__lastdatatime = 0 |
|
1475 | 1487 | self.__dataReady = False |
|
1476 | 1488 | self.__buffer = 0 |
|
1477 | 1489 | self.__profIndex = 0 |
|
1478 | 1490 | self.noise = None |
|
1479 | 1491 | self.__nch = dataOut.nChannels |
|
1480 | 1492 | self.__nHeis = dataOut.nHeights |
|
1481 | 1493 | self.removeDC = removeDC |
|
1482 | 1494 | self.lambda_ = 3.0e8/(9345.0e6) |
|
1483 | 1495 | self.ippSec = dataOut.ippSeconds |
|
1484 | 1496 | self.nCohInt = dataOut.nCohInt |
|
1485 | 1497 | |
|
1486 | 1498 | if n == None: |
|
1487 | 1499 | raise ValueError("n should be specified.") |
|
1488 | 1500 | |
|
1489 | 1501 | if n != None: |
|
1490 | 1502 | if n<2: |
|
1491 | 1503 | raise ValueError("n should be greater than 2") |
|
1492 | 1504 | |
|
1493 | 1505 | self.n = n |
|
1494 | 1506 | self.__nProf = n |
|
1495 | 1507 | |
|
1496 | 1508 | self.__buffer = numpy.zeros((dataOut.nChannels, |
|
1497 | 1509 | n, |
|
1498 | 1510 | dataOut.nHeights), |
|
1499 | 1511 | dtype='complex') |
|
1500 | 1512 | |
|
1501 | 1513 | def putData(self,data): |
|
1502 | 1514 | ''' |
|
1503 | 1515 | Add a profile to he __buffer and increase in one the __profiel Index |
|
1504 | 1516 | ''' |
|
1505 | 1517 | self.__buffer[:,self.__profIndex,:]= data |
|
1506 | 1518 | self.__profIndex += 1 |
|
1507 | 1519 | return |
|
1508 | 1520 | |
|
1509 | 1521 | def pushData(self,dataOut): |
|
1510 | 1522 | ''' |
|
1511 | 1523 | Return the PULSEPAIR and the profiles used in the operation |
|
1512 | 1524 | Affected : self.__profileIndex |
|
1513 | 1525 | ''' |
|
1514 | 1526 | #----------------- Remove DC----------------------------------- |
|
1515 | 1527 | if self.removeDC==True: |
|
1516 | 1528 | mean = numpy.mean(self.__buffer,1) |
|
1517 | 1529 | tmp = mean.reshape(self.__nch,1,self.__nHeis) |
|
1518 | 1530 | dc= numpy.tile(tmp,[1,self.__nProf,1]) |
|
1519 | 1531 | self.__buffer = self.__buffer - dc |
|
1520 | 1532 | #------------------Calculo de Potencia ------------------------ |
|
1521 | 1533 | pair0 = self.__buffer*numpy.conj(self.__buffer) |
|
1522 | 1534 | pair0 = pair0.real |
|
1523 | 1535 | lag_0 = numpy.sum(pair0,1) |
|
1524 | 1536 | #------------------Calculo de Ruido x canal-------------------- |
|
1525 | 1537 | self.noise = numpy.zeros(self.__nch) |
|
1526 | 1538 | for i in range(self.__nch): |
|
1527 | 1539 | daux = numpy.sort(pair0[i,:,:],axis= None) |
|
1528 | 1540 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) |
|
1529 | 1541 | |
|
1530 | 1542 | self.noise = self.noise.reshape(self.__nch,1) |
|
1531 | 1543 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) |
|
1532 | 1544 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) |
|
1533 | 1545 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) |
|
1534 | 1546 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- |
|
1535 | 1547 | #------------------ P= S+N ,P=lag_0/N --------------------------------- |
|
1536 | 1548 | #-------------------- Power -------------------------------------------------- |
|
1537 | 1549 | data_power = lag_0/(self.n*self.nCohInt) |
|
1538 | 1550 | #------------------ Senal --------------------------------------------------- |
|
1539 | 1551 | data_intensity = pair0 - noise_buffer |
|
1540 | 1552 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) |
|
1541 | 1553 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) |
|
1542 | 1554 | for i in range(self.__nch): |
|
1543 | 1555 | for j in range(self.__nHeis): |
|
1544 | 1556 | if data_intensity[i][j] < 0: |
|
1545 | 1557 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) |
|
1546 | 1558 | |
|
1547 | 1559 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- |
|
1548 | 1560 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) |
|
1549 | 1561 | lag_1 = numpy.sum(pair1,1) |
|
1550 | 1562 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) |
|
1551 | 1563 | data_velocity = (self.lambda_/2.0)*data_freq |
|
1552 | 1564 | |
|
1553 | 1565 | #---------------- Potencia promedio estimada de la Senal----------- |
|
1554 | 1566 | lag_0 = lag_0/self.n |
|
1555 | 1567 | S = lag_0-self.noise |
|
1556 | 1568 | |
|
1557 | 1569 | #---------------- Frecuencia Doppler promedio --------------------- |
|
1558 | 1570 | lag_1 = lag_1/(self.n-1) |
|
1559 | 1571 | R1 = numpy.abs(lag_1) |
|
1560 | 1572 | |
|
1561 | 1573 | #---------------- Calculo del SNR---------------------------------- |
|
1562 | 1574 | data_snrPP = S/self.noise |
|
1563 | 1575 | for i in range(self.__nch): |
|
1564 | 1576 | for j in range(self.__nHeis): |
|
1565 | 1577 | if data_snrPP[i][j] < 1.e-20: |
|
1566 | 1578 | data_snrPP[i][j] = 1.e-20 |
|
1567 | 1579 | |
|
1568 | 1580 | #----------------- Calculo del ancho espectral ---------------------- |
|
1569 | 1581 | L = S/R1 |
|
1570 | 1582 | L = numpy.where(L<0,1,L) |
|
1571 | 1583 | L = numpy.log(L) |
|
1572 | 1584 | tmp = numpy.sqrt(numpy.absolute(L)) |
|
1573 | 1585 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) |
|
1574 | 1586 | n = self.__profIndex |
|
1575 | 1587 | |
|
1576 | 1588 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') |
|
1577 | 1589 | self.__profIndex = 0 |
|
1578 | 1590 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n |
|
1579 | 1591 | |
|
1580 | 1592 | |
|
1581 | 1593 | def pulsePairbyProfiles(self,dataOut): |
|
1582 | 1594 | |
|
1583 | 1595 | self.__dataReady = False |
|
1584 | 1596 | data_power = None |
|
1585 | 1597 | data_intensity = None |
|
1586 | 1598 | data_velocity = None |
|
1587 | 1599 | data_specwidth = None |
|
1588 | 1600 | data_snrPP = None |
|
1589 | 1601 | self.putData(data=dataOut.data) |
|
1590 | 1602 | if self.__profIndex == self.n: |
|
1591 | 1603 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) |
|
1592 | 1604 | self.__dataReady = True |
|
1593 | 1605 | |
|
1594 | 1606 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth |
|
1595 | 1607 | |
|
1596 | 1608 | |
|
1597 | 1609 | def pulsePairOp(self, dataOut, datatime= None): |
|
1598 | 1610 | |
|
1599 | 1611 | if self.__initime == None: |
|
1600 | 1612 | self.__initime = datatime |
|
1601 | 1613 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) |
|
1602 | 1614 | self.__lastdatatime = datatime |
|
1603 | 1615 | |
|
1604 | 1616 | if data_power is None: |
|
1605 | 1617 | return None, None, None,None,None,None |
|
1606 | 1618 | |
|
1607 | 1619 | avgdatatime = self.__initime |
|
1608 | 1620 | deltatime = datatime - self.__lastdatatime |
|
1609 | 1621 | self.__initime = datatime |
|
1610 | 1622 | |
|
1611 | 1623 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime |
|
1612 | 1624 | |
|
1613 | 1625 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): |
|
1614 | 1626 | |
|
1615 | 1627 | if not self.isConfig: |
|
1616 | 1628 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) |
|
1617 | 1629 | self.isConfig = True |
|
1618 | 1630 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) |
|
1619 | 1631 | dataOut.flagNoData = True |
|
1620 | 1632 | |
|
1621 | 1633 | if self.__dataReady: |
|
1622 | 1634 | dataOut.nCohInt *= self.n |
|
1623 | 1635 | dataOut.dataPP_POW = data_intensity # S |
|
1624 | 1636 | dataOut.dataPP_POWER = data_power # P |
|
1625 | 1637 | dataOut.dataPP_DOP = data_velocity |
|
1626 | 1638 | dataOut.dataPP_SNR = data_snrPP |
|
1627 | 1639 | dataOut.dataPP_WIDTH = data_specwidth |
|
1628 | 1640 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. |
|
1629 | 1641 | dataOut.utctime = avgdatatime |
|
1630 | 1642 | dataOut.flagNoData = False |
|
1631 | 1643 | return dataOut |
|
1632 | 1644 | |
|
1633 | 1645 | |
|
1634 | 1646 | |
|
1635 | 1647 | # import collections |
|
1636 | 1648 | # from scipy.stats import mode |
|
1637 | 1649 | # |
|
1638 | 1650 | # class Synchronize(Operation): |
|
1639 | 1651 | # |
|
1640 | 1652 | # isConfig = False |
|
1641 | 1653 | # __profIndex = 0 |
|
1642 | 1654 | # |
|
1643 | 1655 | # def __init__(self, **kwargs): |
|
1644 | 1656 | # |
|
1645 | 1657 | # Operation.__init__(self, **kwargs) |
|
1646 | 1658 | # # self.isConfig = False |
|
1647 | 1659 | # self.__powBuffer = None |
|
1648 | 1660 | # self.__startIndex = 0 |
|
1649 | 1661 | # self.__pulseFound = False |
|
1650 | 1662 | # |
|
1651 | 1663 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1652 | 1664 | # |
|
1653 | 1665 | # #Read data |
|
1654 | 1666 | # |
|
1655 | 1667 | # powerdB = dataOut.getPower(channel = channel) |
|
1656 | 1668 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1657 | 1669 | # |
|
1658 | 1670 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1659 | 1671 | # |
|
1660 | 1672 | # dataArray = numpy.array(self.__powBuffer) |
|
1661 | 1673 | # |
|
1662 | 1674 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1663 | 1675 | # |
|
1664 | 1676 | # maxValue = numpy.nanmax(filteredPower) |
|
1665 | 1677 | # |
|
1666 | 1678 | # if maxValue < noisedB + 10: |
|
1667 | 1679 | # #No se encuentra ningun pulso de transmision |
|
1668 | 1680 | # return None |
|
1669 | 1681 | # |
|
1670 | 1682 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1671 | 1683 | # |
|
1672 | 1684 | # if len(maxValuesIndex) < 2: |
|
1673 | 1685 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1674 | 1686 | # return None |
|
1675 | 1687 | # |
|
1676 | 1688 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1677 | 1689 | # |
|
1678 | 1690 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1679 | 1691 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1680 | 1692 | # |
|
1681 | 1693 | # if len(pulseIndex) < 2: |
|
1682 | 1694 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1683 | 1695 | # return None |
|
1684 | 1696 | # |
|
1685 | 1697 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1686 | 1698 | # |
|
1687 | 1699 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1688 | 1700 | # #(No deberian existir IPP menor a 10 unidades) |
|
1689 | 1701 | # |
|
1690 | 1702 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1691 | 1703 | # |
|
1692 | 1704 | # if len(realIndex) < 2: |
|
1693 | 1705 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1694 | 1706 | # return None |
|
1695 | 1707 | # |
|
1696 | 1708 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1697 | 1709 | # realPulseIndex = pulseIndex[realIndex] |
|
1698 | 1710 | # |
|
1699 | 1711 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1700 | 1712 | # |
|
1701 | 1713 | # print "IPP = %d samples" %period |
|
1702 | 1714 | # |
|
1703 | 1715 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1704 | 1716 | # self.__startIndex = int(realPulseIndex[0]) |
|
1705 | 1717 | # |
|
1706 | 1718 | # return 1 |
|
1707 | 1719 | # |
|
1708 | 1720 | # |
|
1709 | 1721 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1710 | 1722 | # |
|
1711 | 1723 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1712 | 1724 | # maxlen = buffer_size*nSamples) |
|
1713 | 1725 | # |
|
1714 | 1726 | # bufferList = [] |
|
1715 | 1727 | # |
|
1716 | 1728 | # for i in range(nChannels): |
|
1717 | 1729 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1718 | 1730 | # maxlen = buffer_size*nSamples) |
|
1719 | 1731 | # |
|
1720 | 1732 | # bufferList.append(bufferByChannel) |
|
1721 | 1733 | # |
|
1722 | 1734 | # self.__nSamples = nSamples |
|
1723 | 1735 | # self.__nChannels = nChannels |
|
1724 | 1736 | # self.__bufferList = bufferList |
|
1725 | 1737 | # |
|
1726 | 1738 | # def run(self, dataOut, channel = 0): |
|
1727 | 1739 | # |
|
1728 | 1740 | # if not self.isConfig: |
|
1729 | 1741 | # nSamples = dataOut.nHeights |
|
1730 | 1742 | # nChannels = dataOut.nChannels |
|
1731 | 1743 | # self.setup(nSamples, nChannels) |
|
1732 | 1744 | # self.isConfig = True |
|
1733 | 1745 | # |
|
1734 | 1746 | # #Append new data to internal buffer |
|
1735 | 1747 | # for thisChannel in range(self.__nChannels): |
|
1736 | 1748 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1737 | 1749 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1738 | 1750 | # |
|
1739 | 1751 | # if self.__pulseFound: |
|
1740 | 1752 | # self.__startIndex -= self.__nSamples |
|
1741 | 1753 | # |
|
1742 | 1754 | # #Finding Tx Pulse |
|
1743 | 1755 | # if not self.__pulseFound: |
|
1744 | 1756 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1745 | 1757 | # |
|
1746 | 1758 | # if indexFound == None: |
|
1747 | 1759 | # dataOut.flagNoData = True |
|
1748 | 1760 | # return |
|
1749 | 1761 | # |
|
1750 | 1762 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1751 | 1763 | # self.__pulseFound = True |
|
1752 | 1764 | # self.__startIndex = indexFound |
|
1753 | 1765 | # |
|
1754 | 1766 | # #If pulse was found ... |
|
1755 | 1767 | # for thisChannel in range(self.__nChannels): |
|
1756 | 1768 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1757 | 1769 | # #print self.__startIndex |
|
1758 | 1770 | # x = numpy.array(bufferByChannel) |
|
1759 | 1771 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1760 | 1772 | # |
|
1761 | 1773 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1762 | 1774 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1763 | 1775 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1764 | 1776 | # |
|
1765 | 1777 | # dataOut.data = self.__arrayBuffer |
|
1766 | 1778 | # |
|
1767 | 1779 | # self.__startIndex += self.__newNSamples |
|
1768 | 1780 | # |
|
1769 | 1781 | # return |
|
1770 | 1782 | class SSheightProfiles(Operation): |
|
1771 | 1783 | |
|
1772 | 1784 | step = None |
|
1773 | 1785 | nsamples = None |
|
1774 | 1786 | bufferShape = None |
|
1775 | 1787 | profileShape = None |
|
1776 | 1788 | sshProfiles = None |
|
1777 | 1789 | profileIndex = None |
|
1778 | 1790 | |
|
1779 | 1791 | def __init__(self, **kwargs): |
|
1780 | 1792 | |
|
1781 | 1793 | Operation.__init__(self, **kwargs) |
|
1782 | 1794 | self.isConfig = False |
|
1783 | 1795 | |
|
1784 | 1796 | def setup(self,dataOut ,step = None , nsamples = None): |
|
1785 | 1797 | |
|
1786 | 1798 | if step == None and nsamples == None: |
|
1787 | 1799 | raise ValueError("step or nheights should be specified ...") |
|
1788 | 1800 | |
|
1789 | 1801 | self.step = step |
|
1790 | 1802 | self.nsamples = nsamples |
|
1791 | 1803 | self.__nChannels = dataOut.nChannels |
|
1792 | 1804 | self.__nProfiles = dataOut.nProfiles |
|
1793 | 1805 | self.__nHeis = dataOut.nHeights |
|
1794 | 1806 | shape = dataOut.data.shape #nchannels, nprofiles, nsamples |
|
1795 | 1807 | |
|
1796 | 1808 | residue = (shape[1] - self.nsamples) % self.step |
|
1797 | 1809 | if residue != 0: |
|
1798 | 1810 | print("The residue is %d, step=%d should be multiple of %d to avoid loss of %d samples"%(residue,step,shape[1] - self.nsamples,residue)) |
|
1799 | 1811 | |
|
1800 | 1812 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1801 | 1813 | numberProfile = self.nsamples |
|
1802 | 1814 | numberSamples = (shape[1] - self.nsamples)/self.step |
|
1803 | 1815 | |
|
1804 | 1816 | self.bufferShape = int(shape[0]), int(numberSamples), int(numberProfile) # nchannels, nsamples , nprofiles |
|
1805 | 1817 | self.profileShape = int(shape[0]), int(numberProfile), int(numberSamples) # nchannels, nprofiles, nsamples |
|
1806 | 1818 | |
|
1807 | 1819 | self.buffer = numpy.zeros(self.bufferShape , dtype=numpy.complex) |
|
1808 | 1820 | self.sshProfiles = numpy.zeros(self.profileShape, dtype=numpy.complex) |
|
1809 | 1821 | |
|
1810 | 1822 | def run(self, dataOut, step, nsamples, code = None, repeat = None): |
|
1811 | 1823 | dataOut.flagNoData = True |
|
1812 | 1824 | |
|
1813 | 1825 | profileIndex = None |
|
1814 | 1826 | #print("nProfiles, nHeights ",dataOut.nProfiles, dataOut.nHeights) |
|
1815 | 1827 | #print(dataOut.getFreqRange(1)/1000.) |
|
1816 | 1828 | #exit(1) |
|
1817 | 1829 | if dataOut.flagDataAsBlock: |
|
1818 | 1830 | dataOut.data = numpy.average(dataOut.data,axis=1) |
|
1819 | 1831 | #print("jee") |
|
1820 | 1832 | dataOut.flagDataAsBlock = False |
|
1821 | 1833 | if not self.isConfig: |
|
1822 | 1834 | self.setup(dataOut, step=step , nsamples=nsamples) |
|
1823 | 1835 | #print("Setup done") |
|
1824 | 1836 | self.isConfig = True |
|
1825 | 1837 | |
|
1826 | 1838 | |
|
1827 | 1839 | if code is not None: |
|
1828 | 1840 | code = numpy.array(code) |
|
1829 | 1841 | code_block = code |
|
1830 | 1842 | |
|
1831 | 1843 | if repeat is not None: |
|
1832 | 1844 | code_block = numpy.repeat(code_block, repeats=repeat, axis=1) |
|
1833 | 1845 | #print(code_block.shape) |
|
1834 | 1846 | for i in range(self.buffer.shape[1]): |
|
1835 | 1847 | |
|
1836 | 1848 | if code is not None: |
|
1837 | 1849 | self.buffer[:,i] = dataOut.data[:,i*self.step:i*self.step + self.nsamples]*code_block |
|
1838 | 1850 | |
|
1839 | 1851 | else: |
|
1840 | 1852 | |
|
1841 | 1853 | self.buffer[:,i] = dataOut.data[:,i*self.step:i*self.step + self.nsamples]#*code[dataOut.profileIndex,:] |
|
1842 | 1854 | |
|
1843 | 1855 | #self.buffer[:,j,self.__nHeis-j*self.step - self.nheights:self.__nHeis-j*self.step] = numpy.flip(dataOut.data[:,j*self.step:j*self.step + self.nheights]) |
|
1844 | 1856 | |
|
1845 | 1857 | for j in range(self.buffer.shape[0]): |
|
1846 | 1858 | self.sshProfiles[j] = numpy.transpose(self.buffer[j]) |
|
1847 | 1859 | |
|
1848 | 1860 | profileIndex = self.nsamples |
|
1849 | 1861 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1850 | 1862 | ippSeconds = (deltaHeight*1.0e-6)/(0.15) |
|
1851 | 1863 | #print("ippSeconds, dH: ",ippSeconds,deltaHeight) |
|
1852 | 1864 | try: |
|
1853 | 1865 | if dataOut.concat_m is not None: |
|
1854 | 1866 | ippSeconds= ippSeconds/float(dataOut.concat_m) |
|
1855 | 1867 | #print "Profile concat %d"%dataOut.concat_m |
|
1856 | 1868 | except: |
|
1857 | 1869 | pass |
|
1858 | 1870 | |
|
1859 | 1871 | dataOut.data = self.sshProfiles |
|
1860 | 1872 | dataOut.flagNoData = False |
|
1861 | 1873 | dataOut.heightList = numpy.arange(self.buffer.shape[1]) *self.step*deltaHeight + dataOut.heightList[0] |
|
1862 | 1874 | dataOut.nProfiles = int(dataOut.nProfiles*self.nsamples) |
|
1863 | 1875 | |
|
1864 | 1876 | dataOut.profileIndex = profileIndex |
|
1865 | 1877 | dataOut.flagDataAsBlock = True |
|
1866 | 1878 | dataOut.ippSeconds = ippSeconds |
|
1867 | 1879 | dataOut.step = self.step |
|
1868 | 1880 | #print(numpy.shape(dataOut.data)) |
|
1869 | 1881 | #exit(1) |
|
1870 | 1882 | #print("new data shape and time:", dataOut.data.shape, dataOut.utctime) |
|
1871 | 1883 | |
|
1872 | 1884 | return dataOut |
|
1873 | 1885 | ################################################################################3############################3 |
|
1874 | 1886 | ################################################################################3############################3 |
|
1875 | 1887 | ################################################################################3############################3 |
|
1876 | 1888 | ################################################################################3############################3 |
|
1877 | 1889 | |
|
1878 | 1890 | class SSheightProfiles2(Operation): |
|
1879 | 1891 | ''' |
|
1880 | 1892 | Procesa por perfiles y por bloques |
|
1881 | 1893 | VersiΓ³n corregida y actualizada para trabajar con RemoveProfileSats2 |
|
1882 | 1894 | Usar esto |
|
1883 | 1895 | ''' |
|
1884 | 1896 | |
|
1885 | 1897 | |
|
1886 | 1898 | bufferShape = None |
|
1887 | 1899 | profileShape = None |
|
1888 | 1900 | sshProfiles = None |
|
1889 | 1901 | profileIndex = None |
|
1890 | 1902 | #nsamples = None |
|
1891 | 1903 | #step = None |
|
1892 | 1904 | #deltaHeight = None |
|
1893 | 1905 | #init_range = None |
|
1894 | 1906 | __slots__ = ('step', 'nsamples', 'deltaHeight', 'init_range', 'isConfig', '__nChannels', |
|
1895 | 1907 | '__nProfiles', '__nHeis', 'deltaHeight', 'new_nHeights') |
|
1896 | 1908 | |
|
1897 | 1909 | def __init__(self, **kwargs): |
|
1898 | 1910 | |
|
1899 | 1911 | Operation.__init__(self, **kwargs) |
|
1900 | 1912 | self.isConfig = False |
|
1901 | 1913 | |
|
1902 | 1914 | def setup(self,dataOut ,step = None , nsamples = None): |
|
1903 | 1915 | |
|
1904 | 1916 | if step == None and nsamples == None: |
|
1905 | 1917 | raise ValueError("step or nheights should be specified ...") |
|
1906 | 1918 | |
|
1907 | 1919 | self.step = step |
|
1908 | 1920 | self.nsamples = nsamples |
|
1909 | 1921 | self.__nChannels = int(dataOut.nChannels) |
|
1910 | 1922 | self.__nProfiles = int(dataOut.nProfiles) |
|
1911 | 1923 | self.__nHeis = int(dataOut.nHeights) |
|
1912 | 1924 | |
|
1913 | 1925 | residue = (self.__nHeis - self.nsamples) % self.step |
|
1914 | 1926 | if residue != 0: |
|
1915 | 1927 | print("The residue is %d, step=%d should be multiple of %d to avoid loss of %d samples"%(residue,step,self.__nProfiles - self.nsamples,residue)) |
|
1916 | 1928 | |
|
1917 | 1929 | self.deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1918 | 1930 | self.init_range = dataOut.heightList[0] |
|
1919 | 1931 | #numberProfile = self.nsamples |
|
1920 | 1932 | numberSamples = (self.__nHeis - self.nsamples)/self.step |
|
1921 | 1933 | |
|
1922 | 1934 | self.new_nHeights = numberSamples |
|
1923 | 1935 | |
|
1924 | 1936 | self.bufferShape = int(self.__nChannels), int(numberSamples), int(self.nsamples) # nchannels, nsamples , nprofiles |
|
1925 | 1937 | self.profileShape = int(self.__nChannels), int(self.nsamples), int(numberSamples) # nchannels, nprofiles, nsamples |
|
1926 | 1938 | |
|
1927 | 1939 | self.buffer = numpy.zeros(self.bufferShape , dtype=numpy.complex) |
|
1928 | 1940 | self.sshProfiles = numpy.zeros(self.profileShape, dtype=numpy.complex) |
|
1929 | 1941 | |
|
1930 | 1942 | def getNewProfiles(self, data, code=None, repeat=None): |
|
1931 | 1943 | |
|
1932 | 1944 | if code is not None: |
|
1933 | 1945 | code = numpy.array(code) |
|
1934 | 1946 | code_block = code |
|
1935 | 1947 | |
|
1936 | 1948 | if repeat is not None: |
|
1937 | 1949 | code_block = numpy.repeat(code_block, repeats=repeat, axis=1) |
|
1938 | 1950 | if data.ndim < 3: |
|
1939 | 1951 | data = data.reshape(self.__nChannels,1,self.__nHeis ) |
|
1940 | 1952 | #print("buff, data, :",self.buffer.shape, data.shape,self.sshProfiles.shape, code_block.shape) |
|
1941 | 1953 | for ch in range(self.__nChannels): |
|
1942 | 1954 | for i in range(int(self.new_nHeights)): #nuevas alturas |
|
1943 | 1955 | if code is not None: |
|
1944 | 1956 | self.buffer[ch,i,:] = data[ch,:,i*self.step:i*self.step + self.nsamples]*code_block |
|
1945 | 1957 | else: |
|
1946 | 1958 | self.buffer[ch,i,:] = data[ch,:,i*self.step:i*self.step + self.nsamples]#*code[dataOut.profileIndex,:] |
|
1947 | 1959 | |
|
1948 | 1960 | for j in range(self.__nChannels): #en los cananles |
|
1949 | 1961 | self.sshProfiles[j,:,:] = numpy.transpose(self.buffer[j,:,:]) |
|
1950 | 1962 | #print("new profs Done") |
|
1951 | 1963 | |
|
1952 | 1964 | |
|
1953 | 1965 | |
|
1954 | 1966 | def run(self, dataOut, step, nsamples, code = None, repeat = None): |
|
1955 | 1967 | # print("running") |
|
1956 | 1968 | if dataOut.flagNoData == True: |
|
1957 | 1969 | return dataOut |
|
1958 | 1970 | dataOut.flagNoData = True |
|
1959 | 1971 | #print("init data shape:", dataOut.data.shape) |
|
1960 | 1972 | #print("ch: {} prof: {} hs: {}".format(int(dataOut.nChannels), |
|
1961 | 1973 | # int(dataOut.nProfiles),int(dataOut.nHeights))) |
|
1962 | 1974 | |
|
1963 | 1975 | profileIndex = None |
|
1964 | 1976 | # if not dataOut.flagDataAsBlock: |
|
1965 | 1977 | # dataOut.nProfiles = 1 |
|
1966 | 1978 | |
|
1967 | 1979 | if not self.isConfig: |
|
1968 | 1980 | self.setup(dataOut, step=step , nsamples=nsamples) |
|
1969 | 1981 | #print("Setup done") |
|
1970 | 1982 | self.isConfig = True |
|
1971 | 1983 | |
|
1972 | 1984 | dataBlock = None |
|
1973 | 1985 | |
|
1974 | 1986 | nprof = 1 |
|
1975 | 1987 | if dataOut.flagDataAsBlock: |
|
1976 | 1988 | nprof = int(dataOut.nProfiles) |
|
1977 | 1989 | |
|
1978 | 1990 | #print("dataOut nProfiles:", dataOut.nProfiles) |
|
1979 | 1991 | for profile in range(nprof): |
|
1980 | 1992 | if dataOut.flagDataAsBlock: |
|
1981 | 1993 | #print("read blocks") |
|
1982 | 1994 | self.getNewProfiles(dataOut.data[:,profile,:], code=code, repeat=repeat) |
|
1983 | 1995 | else: |
|
1984 | 1996 | #print("read profiles") |
|
1985 | 1997 | self.getNewProfiles(dataOut.data, code=code, repeat=repeat) #only one channe |
|
1986 | 1998 | if profile == 0: |
|
1987 | 1999 | dataBlock = self.sshProfiles.copy() |
|
1988 | 2000 | else: #by blocks |
|
1989 | 2001 | dataBlock = numpy.concatenate((dataBlock,self.sshProfiles), axis=1) #profile axis |
|
1990 | 2002 | #print("by blocks: ",dataBlock.shape, self.sshProfiles.shape) |
|
1991 | 2003 | |
|
1992 | 2004 | profileIndex = self.nsamples |
|
1993 | 2005 | #deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1994 | 2006 | ippSeconds = (self.deltaHeight*1.0e-6)/(0.15) |
|
1995 | 2007 | |
|
1996 | 2008 | |
|
1997 | 2009 | dataOut.data = dataBlock |
|
1998 | 2010 | #print("show me: ",self.step,self.deltaHeight, dataOut.heightList, self.new_nHeights) |
|
1999 | 2011 | dataOut.heightList = numpy.arange(int(self.new_nHeights)) *self.step*self.deltaHeight + self.init_range |
|
2000 | 2012 | dataOut.sampled_heightsFFT = self.nsamples |
|
2001 | 2013 | dataOut.ippSeconds = ippSeconds |
|
2002 | 2014 | dataOut.step = self.step |
|
2003 | 2015 | dataOut.deltaHeight = self.step*self.deltaHeight |
|
2004 | 2016 | dataOut.flagNoData = False |
|
2005 | 2017 | if dataOut.flagDataAsBlock: |
|
2006 | 2018 | dataOut.nProfiles = int(dataOut.nProfiles*self.nsamples) |
|
2007 | 2019 | |
|
2008 | 2020 | else: |
|
2009 | 2021 | dataOut.nProfiles = int(self.nsamples) |
|
2010 | 2022 | dataOut.profileIndex = dataOut.nProfiles |
|
2011 | 2023 | dataOut.flagDataAsBlock = True |
|
2012 | 2024 | |
|
2013 | 2025 | dataBlock = None |
|
2014 | 2026 | |
|
2015 | 2027 | #print("new data shape:", dataOut.data.shape, dataOut.utctime) |
|
2016 | 2028 | |
|
2017 | 2029 | #update Processing Header: |
|
2018 | 2030 | dataOut.processingHeaderObj.heightList = dataOut.heightList |
|
2019 | 2031 | dataOut.processingHeaderObj.ipp = ippSeconds |
|
2020 | 2032 | dataOut.processingHeaderObj.heightResolution = dataOut.deltaHeight |
|
2021 | 2033 | #dataOut.processingHeaderObj.profilesPerBlock = nProfiles |
|
2022 | 2034 | |
|
2023 | 2035 | # # dataOut.data = CH, PROFILES, HEIGHTS |
|
2024 | 2036 | #print(dataOut.data .shape) |
|
2025 | 2037 | if dataOut.flagProfilesByRange: |
|
2026 | 2038 | # #assuming the same remotion for all channels |
|
2027 | 2039 | aux = [ self.nsamples - numpy.count_nonzero(dataOut.data[0, :, h]==0) for h in range(len(dataOut.heightList))] |
|
2028 | 2040 | dataOut.nProfilesByRange = (numpy.asarray(aux)).reshape((1,len(dataOut.heightList) )) |
|
2029 | 2041 | #print(dataOut.nProfilesByRange.shape) |
|
2030 | 2042 | else: |
|
2031 | 2043 | dataOut.nProfilesByRange = numpy.ones((1, len(dataOut.heightList)))*dataOut.nProfiles |
|
2032 | 2044 | return dataOut |
|
2033 | 2045 | |
|
2034 | 2046 | |
|
2035 | 2047 | |
|
2036 | 2048 | |
|
2037 | 2049 | |
|
2038 | 2050 | class removeProfileByFaradayHS(Operation): |
|
2039 | 2051 | ''' |
|
2040 | 2052 | |
|
2041 | 2053 | ''' |
|
2042 | 2054 | |
|
2043 | 2055 | __buffer_data = [] |
|
2044 | 2056 | __buffer_times = [] |
|
2045 | 2057 | |
|
2046 | 2058 | buffer = None |
|
2047 | 2059 | |
|
2048 | 2060 | outliers_IDs_list = [] |
|
2049 | 2061 | |
|
2050 | 2062 | |
|
2051 | 2063 | __slots__ = ('n','navg','profileMargin','thHistOutlier','minHei_idx','maxHei_idx','nHeights', |
|
2052 | 2064 | '__dh','first_utcBlock','__profIndex','init_prof','end_prof','lenProfileOut','nChannels', |
|
2053 | 2065 | '__count_exec','__initime','__dataReady','__ipp') |
|
2054 | 2066 | def __init__(self, **kwargs): |
|
2055 | 2067 | |
|
2056 | 2068 | Operation.__init__(self, **kwargs) |
|
2057 | 2069 | self.isConfig = False |
|
2058 | 2070 | |
|
2059 | 2071 | def setup(self,dataOut, n=None , navg=0.8, profileMargin=50,thHistOutlier=3, minHei=None, maxHei=None): |
|
2060 | 2072 | |
|
2061 | 2073 | if n == None and timeInterval == None: |
|
2062 | 2074 | raise ValueError("nprofiles or timeInterval should be specified ...") |
|
2063 | 2075 | |
|
2064 | 2076 | if n != None: |
|
2065 | 2077 | self.n = n |
|
2066 | 2078 | |
|
2067 | 2079 | self.navg = navg |
|
2068 | 2080 | self.profileMargin = profileMargin |
|
2069 | 2081 | self.thHistOutlier = thHistOutlier |
|
2070 | 2082 | self.__profIndex = 0 |
|
2071 | 2083 | self.buffer = None |
|
2072 | 2084 | self._ipp = dataOut.ippSeconds |
|
2073 | 2085 | self.n_prof_released = 0 |
|
2074 | 2086 | self.heightList = dataOut.heightList |
|
2075 | 2087 | self.init_prof = 0 |
|
2076 | 2088 | self.end_prof = 0 |
|
2077 | 2089 | self.__count_exec = 0 |
|
2078 | 2090 | self.__profIndex = 0 |
|
2079 | 2091 | self.first_utcBlock = None |
|
2080 | 2092 | self.__dh = dataOut.heightList[1] - dataOut.heightList[0] |
|
2081 | 2093 | minHei = minHei |
|
2082 | 2094 | maxHei = maxHei |
|
2083 | 2095 | if minHei==None : |
|
2084 | 2096 | minHei = dataOut.heightList[0] |
|
2085 | 2097 | if maxHei==None : |
|
2086 | 2098 | maxHei = dataOut.heightList[-1] |
|
2087 | 2099 | self.minHei_idx,self.maxHei_idx = getHei_index(minHei, maxHei, dataOut.heightList) |
|
2088 | 2100 | |
|
2089 | 2101 | self.nChannels = dataOut.nChannels |
|
2090 | 2102 | self.nHeights = dataOut.nHeights |
|
2091 | 2103 | self.test_counter = 0 |
|
2092 | 2104 | |
|
2093 | 2105 | def filterSatsProfiles(self): |
|
2094 | 2106 | data = self.__buffer_data |
|
2095 | 2107 | #print(data.shape) |
|
2096 | 2108 | nChannels, profiles, heights = data.shape |
|
2097 | 2109 | indexes=[] |
|
2098 | 2110 | outliers_IDs=[] |
|
2099 | 2111 | for c in range(nChannels): |
|
2100 | 2112 | for h in range(self.minHei_idx, self.maxHei_idx): |
|
2101 | 2113 | power = 10* numpy.log10((data[c,:,h] * numpy.conjugate(data[c,:,h])).real) |
|
2102 | 2114 | #power = power.real |
|
2103 | 2115 | #power = (numpy.abs(data[c,:,h].real)) |
|
2104 | 2116 | sortdata = numpy.sort(power, axis=None) |
|
2105 | 2117 | sortID=power.argsort() |
|
2106 | 2118 | index = _noise.hildebrand_sekhon2(sortdata,self.navg) |
|
2107 | 2119 | |
|
2108 | 2120 | indexes.append(index) |
|
2109 | 2121 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) |
|
2110 | 2122 | |
|
2111 | 2123 | # print(sortdata.min(), sortdata.max(), sortdata.mean()) |
|
2112 | 2124 | # fig,ax = plt.subplots() |
|
2113 | 2125 | # #ax.set_title(str(k)+" "+str(j)) |
|
2114 | 2126 | # x=range(len(sortdata)) |
|
2115 | 2127 | # ax.scatter(x,sortdata) |
|
2116 | 2128 | # ax.axvline(index) |
|
2117 | 2129 | # plt.grid() |
|
2118 | 2130 | # plt.show() |
|
2119 | 2131 | |
|
2120 | 2132 | |
|
2121 | 2133 | |
|
2122 | 2134 | |
|
2123 | 2135 | outliers_IDs = outliers_IDs.astype(numpy.dtype('int64')) |
|
2124 | 2136 | outliers_IDs = numpy.unique(outliers_IDs) |
|
2125 | 2137 | outs_lines = numpy.sort(outliers_IDs) |
|
2126 | 2138 | # #print("outliers Ids: ", outs_lines, outs_lines.shape) |
|
2127 | 2139 | #hist, bin_edges = numpy.histogram(outs_lines, bins=10, density=True) |
|
2128 | 2140 | |
|
2129 | 2141 | |
|
2130 | 2142 | #Agrupando el histograma de outliers, |
|
2131 | 2143 | my_bins = numpy.linspace(0,int(profiles), int(profiles/100), endpoint=False) |
|
2132 | 2144 | #my_bins = numpy.linspace(0,1600, 96, endpoint=False) |
|
2133 | 2145 | |
|
2134 | 2146 | hist, bins = numpy.histogram(outs_lines,bins=my_bins) |
|
2135 | 2147 | hist_outliers_indexes = numpy.where(hist > self.thHistOutlier) #es outlier |
|
2136 | 2148 | #print(hist_outliers_indexes[0]) |
|
2137 | 2149 | bins_outliers_indexes = [int(i) for i in bins[hist_outliers_indexes]] # |
|
2138 | 2150 | #print(bins_outliers_indexes) |
|
2139 | 2151 | outlier_loc_index = [] |
|
2140 | 2152 | |
|
2141 | 2153 | |
|
2142 | 2154 | # for n in range(len(bins_outliers_indexes)-1): |
|
2143 | 2155 | # for k in range(bins_outliers_indexes[n]-self.profileMargin,bins_outliers_indexes[n+1]+self.profileMargin): |
|
2144 | 2156 | # outlier_loc_index.append(k) |
|
2145 | 2157 | |
|
2146 | 2158 | outlier_loc_index = [e for n in range(len(bins_outliers_indexes)-1) for e in range(bins_outliers_indexes[n]-self.profileMargin,bins_outliers_indexes[n+1]+self.profileMargin) ] |
|
2147 | 2159 | |
|
2148 | 2160 | outlier_loc_index = numpy.asarray(outlier_loc_index) |
|
2149 | 2161 | #print(len(numpy.unique(outlier_loc_index)), numpy.unique(outlier_loc_index)) |
|
2150 | 2162 | |
|
2151 | 2163 | |
|
2152 | 2164 | |
|
2153 | 2165 | x, y = numpy.meshgrid(numpy.arange(profiles), self.heightList) |
|
2154 | 2166 | fig, ax = plt.subplots(1,2,figsize=(8, 6)) |
|
2155 | 2167 | |
|
2156 | 2168 | dat = data[0,:,:].real |
|
2157 | 2169 | dat = 10* numpy.log10((data[0,:,:] * numpy.conjugate(data[0,:,:])).real) |
|
2158 | 2170 | m = numpy.nanmean(dat) |
|
2159 | 2171 | o = numpy.nanstd(dat) |
|
2160 | 2172 | #print(m, o, x.shape, y.shape) |
|
2161 | 2173 | c = ax[0].pcolormesh(x, y, dat.T, cmap ='YlGnBu', vmin = (m-2*o), vmax = (m+2*o)) |
|
2162 | 2174 | ax[0].vlines(outs_lines,200,600, linestyles='dashed', label = 'outs', color='w') |
|
2163 | 2175 | fig.colorbar(c) |
|
2164 | 2176 | ax[0].vlines(outlier_loc_index,650,750, linestyles='dashed', label = 'outs', color='r') |
|
2165 | 2177 | ax[1].hist(outs_lines,bins=my_bins) |
|
2166 | 2178 | plt.show() |
|
2167 | 2179 | |
|
2168 | 2180 | |
|
2169 | 2181 | self.outliers_IDs_list = numpy.unique(outlier_loc_index) |
|
2170 | 2182 | print("outs list: ", self.outliers_IDs_list) |
|
2171 | 2183 | return data |
|
2172 | 2184 | |
|
2173 | 2185 | def filterSatsProfiles2(self): |
|
2174 | 2186 | data = self.__buffer_data |
|
2175 | 2187 | #print(data.shape) |
|
2176 | 2188 | nChannels, profiles, heights = data.shape |
|
2177 | 2189 | indexes=numpy.zeros([], dtype=int) |
|
2178 | 2190 | outliers_IDs=[] |
|
2179 | 2191 | for c in range(nChannels): |
|
2180 | 2192 | noise_ref =10* numpy.log10((data[c,:,550:600] * numpy.conjugate(data[c,:,550:600])).real) |
|
2181 | 2193 | print("Noise ",noise_ref.mean()) |
|
2182 | 2194 | for h in range(self.minHei_idx, self.maxHei_idx): |
|
2183 | 2195 | power = 10* numpy.log10((data[c,:,h] * numpy.conjugate(data[c,:,h])).real) |
|
2184 | 2196 | #power = power.real |
|
2185 | 2197 | #power = (numpy.abs(data[c,:,h].real)) |
|
2186 | 2198 | #sortdata = numpy.sort(power, axis=None) |
|
2187 | 2199 | #sortID=power.argsort() |
|
2188 | 2200 | #print(sortID) |
|
2189 | 2201 | th = 60 + 10 |
|
2190 | 2202 | index = numpy.where(power > th ) |
|
2191 | 2203 | if index[0].size > 10 and index[0].size < int(0.8*profiles): |
|
2192 | 2204 | indexes = numpy.append(indexes, index[0]) |
|
2193 | 2205 | #print(index[0]) |
|
2194 | 2206 | #print(index[0]) |
|
2195 | 2207 | |
|
2196 | 2208 | # fig,ax = plt.subplots() |
|
2197 | 2209 | # #ax.set_title(str(k)+" "+str(j)) |
|
2198 | 2210 | # x=range(len(power)) |
|
2199 | 2211 | # ax.scatter(x,power) |
|
2200 | 2212 | # #ax.axvline(index) |
|
2201 | 2213 | # plt.grid() |
|
2202 | 2214 | # plt.show() |
|
2203 | 2215 | #print(indexes) |
|
2204 | 2216 | |
|
2205 | 2217 | #outliers_IDs = outliers_IDs.astype(numpy.dtype('int64')) |
|
2206 | 2218 | #outliers_IDs = numpy.unique(outliers_IDs) |
|
2207 | 2219 | |
|
2208 | 2220 | outs_lines = numpy.unique(indexes) |
|
2209 | 2221 | print("outliers Ids: ", outs_lines, outs_lines.shape) |
|
2210 | 2222 | #hist, bin_edges = numpy.histogram(outs_lines, bins=10, density=True) |
|
2211 | 2223 | |
|
2212 | 2224 | |
|
2213 | 2225 | #Agrupando el histograma de outliers, |
|
2214 | 2226 | my_bins = numpy.linspace(0,int(profiles), int(profiles/100), endpoint=False) |
|
2215 | 2227 | #my_bins = numpy.linspace(0,1600, 96, endpoint=False) |
|
2216 | 2228 | |
|
2217 | 2229 | hist, bins = numpy.histogram(outs_lines,bins=my_bins) |
|
2218 | 2230 | hist_outliers_indexes = numpy.where(hist > self.thHistOutlier) #es outlier |
|
2219 | 2231 | #print(hist_outliers_indexes[0]) |
|
2220 | 2232 | bins_outliers_indexes = [int(i) for i in bins[hist_outliers_indexes]] # |
|
2221 | 2233 | #print(bins_outliers_indexes) |
|
2222 | 2234 | outlier_loc_index = [] |
|
2223 | 2235 | |
|
2224 | 2236 | |
|
2225 | 2237 | |
|
2226 | 2238 | outlier_loc_index = [e for n in range(len(bins_outliers_indexes)-1) for e in range(bins_outliers_indexes[n]-self.profileMargin,bins_outliers_indexes[n+1]+self.profileMargin) ] |
|
2227 | 2239 | |
|
2228 | 2240 | outlier_loc_index = numpy.asarray(outlier_loc_index) |
|
2229 | 2241 | outlier_loc_index = outlier_loc_index[~numpy.all(outlier_loc_index < 0)] |
|
2230 | 2242 | |
|
2231 | 2243 | print("outliers final: ", outlier_loc_index) |
|
2232 | 2244 | |
|
2233 | 2245 | x, y = numpy.meshgrid(numpy.arange(profiles), self.heightList) |
|
2234 | 2246 | fig, ax = plt.subplots(1,2,figsize=(8, 6)) |
|
2235 | 2247 | |
|
2236 | 2248 | dat = data[0,:,:].real |
|
2237 | 2249 | dat = 10* numpy.log10((data[0,:,:] * numpy.conjugate(data[0,:,:])).real) |
|
2238 | 2250 | m = numpy.nanmean(dat) |
|
2239 | 2251 | o = numpy.nanstd(dat) |
|
2240 | 2252 | #print(m, o, x.shape, y.shape) |
|
2241 | 2253 | c = ax[0].pcolormesh(x, y, dat.T, cmap ='YlGnBu', vmin = (m-2*o), vmax = (m+2*o)) |
|
2242 | 2254 | ax[0].vlines(outs_lines,200,600, linestyles='dashed', label = 'outs', color='w') |
|
2243 | 2255 | fig.colorbar(c) |
|
2244 | 2256 | ax[0].vlines(outlier_loc_index,650,750, linestyles='dashed', label = 'outs', color='r') |
|
2245 | 2257 | ax[1].hist(outs_lines,bins=my_bins) |
|
2246 | 2258 | plt.show() |
|
2247 | 2259 | |
|
2248 | 2260 | |
|
2249 | 2261 | self.outliers_IDs_list = numpy.unique(outlier_loc_index) |
|
2250 | 2262 | print("outs list: ", self.outliers_IDs_list) |
|
2251 | 2263 | return data |
|
2252 | 2264 | |
|
2253 | 2265 | def cleanSpikesFFT2D(self): |
|
2254 | 2266 | incoh_int = 10 |
|
2255 | 2267 | norm_img = 75 |
|
2256 | 2268 | import matplotlib.pyplot as plt |
|
2257 | 2269 | import datetime |
|
2258 | 2270 | import cv2 |
|
2259 | 2271 | data = self.__buffer_data |
|
2260 | 2272 | print("cleaning shape inpt: ",data.shape) |
|
2261 | 2273 | self.__buffer_data = [] |
|
2262 | 2274 | |
|
2263 | 2275 | |
|
2264 | 2276 | channels , profiles, heights = data.shape |
|
2265 | 2277 | len_split_prof = profiles / incoh_int |
|
2266 | 2278 | |
|
2267 | 2279 | |
|
2268 | 2280 | for ch in range(channels): |
|
2269 | 2281 | data_10 = numpy.split(data[ch, :, self.minHei_idx:], incoh_int, axis=0) # divisiΓ³n de los perfiles |
|
2270 | 2282 | print("splited data: ",len(data_10)," -> ", data_10[0].shape) |
|
2271 | 2283 | int_img = None |
|
2272 | 2284 | i_count = 0 |
|
2273 | 2285 | n_x, n_y = data_10[0].shape |
|
2274 | 2286 | for s_data in data_10: #porciones de espectro |
|
2275 | 2287 | spectrum = numpy.fft.fft2(s_data, axes=(0,1)) |
|
2276 | 2288 | z = numpy.abs(spectrum) |
|
2277 | 2289 | mg = z[2:n_y,:] #omitir dc y adjunto |
|
2278 | 2290 | dat = numpy.log10(mg.T) |
|
2279 | 2291 | i_count += 1 |
|
2280 | 2292 | if i_count == 1: |
|
2281 | 2293 | int_img = dat |
|
2282 | 2294 | else: |
|
2283 | 2295 | int_img += dat |
|
2284 | 2296 | #print(i_count) |
|
2285 | 2297 | |
|
2286 | 2298 | min, max = int_img.min(), int_img.max() |
|
2287 | 2299 | int_img = ((int_img-min)*255/(max-min)).astype(numpy.uint8) |
|
2288 | 2300 | |
|
2289 | 2301 | cv2.imshow('integrated image', int_img) #numpy.fft.fftshift(img)) |
|
2290 | 2302 | cv2.waitKey(0) |
|
2291 | 2303 | ##################################################################### |
|
2292 | 2304 | kernel_h = numpy.zeros((3,3)) # |
|
2293 | 2305 | kernel_h[0, :] = -2 |
|
2294 | 2306 | kernel_h[1, :] = 3 |
|
2295 | 2307 | kernel_h[2, :] = -2 |
|
2296 | 2308 | |
|
2297 | 2309 | |
|
2298 | 2310 | kernel_5h = numpy.zeros((5,5)) # |
|
2299 | 2311 | kernel_5h[0, :] = -2 |
|
2300 | 2312 | kernel_5h[1, :] = -1 |
|
2301 | 2313 | kernel_5h[2, :] = 5 |
|
2302 | 2314 | kernel_5h[3, :] = -1 |
|
2303 | 2315 | kernel_5h[4, :] = -2 |
|
2304 | 2316 | |
|
2305 | 2317 | ##################################################################### |
|
2306 | 2318 | sharp_img = cv2.filter2D(src=int_img, ddepth=-1, kernel=kernel_5h) |
|
2307 | 2319 | # cv2.imshow('sharp image h ', sharp_img) |
|
2308 | 2320 | # cv2.waitKey(0) |
|
2309 | 2321 | ##################################################################### |
|
2310 | 2322 | horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,1)) #11 |
|
2311 | 2323 | ##################################################################### |
|
2312 | 2324 | detected_lines_h = cv2.morphologyEx(sharp_img, cv2.MORPH_OPEN, horizontal_kernel, iterations=1) |
|
2313 | 2325 | # cv2.imshow('lines horizontal', detected_lines_h) #numpy.fft.fftshift(detected_lines_h)) |
|
2314 | 2326 | # cv2.waitKey(0) |
|
2315 | 2327 | ##################################################################### |
|
2316 | 2328 | ret, detected_lines_h = cv2.threshold(detected_lines_h, 200, 255, cv2.THRESH_BINARY)# |
|
2317 | 2329 | cv2.imshow('binary img', detected_lines_h) #numpy.fft.fftshift(detected_lines_h)) |
|
2318 | 2330 | cv2.waitKey(0) |
|
2319 | 2331 | ##################################################################### |
|
2320 | 2332 | cnts_h, h0 = cv2.findContours(detected_lines_h, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) |
|
2321 | 2333 | ##################################################################### |
|
2322 | 2334 | h_line_index = [] |
|
2323 | 2335 | v_line_index = [] |
|
2324 | 2336 | |
|
2325 | 2337 | #cnts_h += cnts_h_s #combine large and small lines |
|
2326 | 2338 | |
|
2327 | 2339 | # line indexes x1, x2, y |
|
2328 | 2340 | for c in cnts_h: |
|
2329 | 2341 | #print(c) |
|
2330 | 2342 | if len(c) < 3: #contorno linea |
|
2331 | 2343 | x1 = c[0][0][0] |
|
2332 | 2344 | x2 = c[1][0][0] |
|
2333 | 2345 | if x1 > 5 and x2 < (n_x-5) : |
|
2334 | 2346 | start = incoh_int + (x1 * incoh_int) |
|
2335 | 2347 | end = incoh_int + (x2 * incoh_int) |
|
2336 | 2348 | h_line_index.append( [start, end, c[0][0][1]] ) |
|
2337 | 2349 | |
|
2338 | 2350 | #print("x1, x2, y", c[0][0][0],c[1][0][0], c[0][0][1]) |
|
2339 | 2351 | else: #contorno poligono |
|
2340 | 2352 | pairs = numpy.asarray([c[n][0] for n in range(len(c))]) |
|
2341 | 2353 | y = numpy.unique(pairs[:,1]) |
|
2342 | 2354 | x = numpy.unique(pairs[:,0]) |
|
2343 | 2355 | #print(x) |
|
2344 | 2356 | for yk in y: |
|
2345 | 2357 | x0 = x[0] |
|
2346 | 2358 | if x0 < 8: |
|
2347 | 2359 | x0 = 10 |
|
2348 | 2360 | #print(x[0], x[-1], yk) |
|
2349 | 2361 | h_line_index.append( [x0, x[-1], yk]) |
|
2350 | 2362 | #print("x1, x2, y ->p ", x[0], x[-1], yk) |
|
2351 | 2363 | ################################################################### |
|
2352 | 2364 | #print("Cleaning") |
|
2353 | 2365 | # # clean Spectrum |
|
2354 | 2366 | spectrum = numpy.fft.fft2(data[ch,:,self.minHei_idx:], axes=(0,1)) |
|
2355 | 2367 | z = numpy.abs(spectrum) |
|
2356 | 2368 | phase = numpy.angle(spectrum) |
|
2357 | 2369 | print("Total Horizontal", len(h_line_index)) |
|
2358 | 2370 | if len(h_line_index) < 75 : |
|
2359 | 2371 | for x1, x2, y in h_line_index: |
|
2360 | 2372 | print(x1, x2, y) |
|
2361 | 2373 | z[x1:x2,y] = 0 |
|
2362 | 2374 | |
|
2363 | 2375 | |
|
2364 | 2376 | spcCleaned = z * numpy.exp(1j*phase) |
|
2365 | 2377 | |
|
2366 | 2378 | dat2 = numpy.log10(z[1:-1,:].T) |
|
2367 | 2379 | min, max =dat2.min(), dat2.max() |
|
2368 | 2380 | print(min, max) |
|
2369 | 2381 | img2 = ((dat2-min)*255/(max-min)).astype(numpy.uint8) |
|
2370 | 2382 | cv2.imshow('cleaned', img2) #numpy.fft.fftshift(img_cleaned)) |
|
2371 | 2383 | cv2.waitKey(0) |
|
2372 | 2384 | cv2.destroyAllWindows() |
|
2373 | 2385 | |
|
2374 | 2386 | data[ch,:,self.minHei_idx:] = numpy.fft.ifft2(spcCleaned, axes=(0,1)) |
|
2375 | 2387 | |
|
2376 | 2388 | |
|
2377 | 2389 | #print("cleanOutliersByBlock Done", data.shape) |
|
2378 | 2390 | self.__buffer_data = data |
|
2379 | 2391 | return data |
|
2380 | 2392 | |
|
2381 | 2393 | |
|
2382 | 2394 | |
|
2383 | 2395 | |
|
2384 | 2396 | def cleanOutliersByBlock(self): |
|
2385 | 2397 | import matplotlib.pyplot as plt |
|
2386 | 2398 | import datetime |
|
2387 | 2399 | import cv2 |
|
2388 | 2400 | #print(self.__buffer_data[0].shape) |
|
2389 | 2401 | data = self.__buffer_data#.copy() |
|
2390 | 2402 | print("cleaning shape inpt: ",data.shape) |
|
2391 | 2403 | self.__buffer_data = [] |
|
2392 | 2404 | |
|
2393 | 2405 | |
|
2394 | 2406 | spectrum = numpy.fft.fft2(data[:,:,self.minHei_idx:], axes=(1,2)) |
|
2395 | 2407 | print("spc : ",spectrum.shape) |
|
2396 | 2408 | (nch,nsamples, nh) = spectrum.shape |
|
2397 | 2409 | data2 = None |
|
2398 | 2410 | #print(data.shape) |
|
2399 | 2411 | cleanedBlock = None |
|
2400 | 2412 | spectrum2 = spectrum.copy() |
|
2401 | 2413 | for ch in range(nch): |
|
2402 | 2414 | dh = self.__dh |
|
2403 | 2415 | dt1 = (dh*1.0e-6)/(0.15) |
|
2404 | 2416 | dt2 = self.__buffer_times[1]-self.__buffer_times[0] |
|
2405 | 2417 | |
|
2406 | 2418 | freqv = numpy.fft.fftfreq(nh, d=dt1) |
|
2407 | 2419 | freqh = numpy.fft.fftfreq(self.n, d=dt2) |
|
2408 | 2420 | |
|
2409 | 2421 | z = numpy.abs(spectrum[ch,:,:]) |
|
2410 | 2422 | phase = numpy.angle(spectrum[ch,:,:]) |
|
2411 | 2423 | z1 = z[0,:] |
|
2412 | 2424 | #print("shape z: ", z.shape, nsamples) |
|
2413 | 2425 | |
|
2414 | 2426 | dat = numpy.log10(z[1:nsamples,:].T) |
|
2415 | 2427 | |
|
2416 | 2428 | pdat = numpy.log10(phase.T) |
|
2417 | 2429 | #print("dat mean",dat.mean()) |
|
2418 | 2430 | |
|
2419 | 2431 | mean, min, max = dat.mean(), dat.min(), dat.max() |
|
2420 | 2432 | img = ((dat-min)*200/(max-min)).astype(numpy.uint8) |
|
2421 | 2433 | |
|
2422 | 2434 | # print(img.shape) |
|
2423 | 2435 | cv2.imshow('image', img) #numpy.fft.fftshift(img)) |
|
2424 | 2436 | cv2.waitKey(0) |
|
2425 | 2437 | |
|
2426 | 2438 | |
|
2427 | 2439 | ''' #FUNCIONA LINEAS PEQUEΓAS |
|
2428 | 2440 | kernel_5h = numpy.zeros((5,3)) # |
|
2429 | 2441 | kernel_5h[0, :] = 2 |
|
2430 | 2442 | kernel_5h[1, :] = 1 |
|
2431 | 2443 | kernel_5h[2, :] = 0 |
|
2432 | 2444 | kernel_5h[3, :] = -1 |
|
2433 | 2445 | kernel_5h[4, :] = -2 |
|
2434 | 2446 | |
|
2435 | 2447 | sharp_imgh = cv2.filter2D(src=img, ddepth=-1, kernel=kernel_5h) |
|
2436 | 2448 | cv2.imshow('sharp image h',sharp_imgh) |
|
2437 | 2449 | cv2.waitKey(0) |
|
2438 | 2450 | horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (20,1)) |
|
2439 | 2451 | |
|
2440 | 2452 | detected_lines_h = cv2.morphologyEx(sharp_imgh, cv2.MORPH_OPEN, horizontal_kernel, iterations=1) |
|
2441 | 2453 | #detected_lines_h = cv2.medianBlur(detected_lines_h, 3) |
|
2442 | 2454 | #detected_lines_h = cv2.filter2D(src=img, ddepth=-1, kernel=kernel) |
|
2443 | 2455 | cv2.imshow('lines h gray', detected_lines_h) |
|
2444 | 2456 | cv2.waitKey(0) |
|
2445 | 2457 | reth, detected_lines_h = cv2.threshold(detected_lines_h, 90, 255, cv2.THRESH_BINARY) |
|
2446 | 2458 | cv2.imshow('lines h ', detected_lines_h) |
|
2447 | 2459 | cv2.waitKey(0) |
|
2448 | 2460 | ''' |
|
2449 | 2461 | |
|
2450 | 2462 | |
|
2451 | 2463 | ''' |
|
2452 | 2464 | kernel_3h = numpy.zeros((3,10)) #10 |
|
2453 | 2465 | kernel_3h[0, :] = -1 |
|
2454 | 2466 | kernel_3h[1, :] = 2 |
|
2455 | 2467 | kernel_3h[2, :] = -1 |
|
2456 | 2468 | |
|
2457 | 2469 | |
|
2458 | 2470 | kernel_h = numpy.zeros((3,20)) #20 |
|
2459 | 2471 | kernel_h[0, :] = -1 |
|
2460 | 2472 | kernel_h[1, :] = 2 |
|
2461 | 2473 | kernel_h[2, :] = -1 |
|
2462 | 2474 | |
|
2463 | 2475 | kernel_v = numpy.zeros((30,3)) #30 |
|
2464 | 2476 | kernel_v[:, 0] = -1 |
|
2465 | 2477 | kernel_v[:, 1] = 2 |
|
2466 | 2478 | kernel_v[:, 2] = -1 |
|
2467 | 2479 | |
|
2468 | 2480 | kernel_4h = numpy.zeros((4,20)) # |
|
2469 | 2481 | kernel_4h[0, :] = 1 |
|
2470 | 2482 | kernel_4h[1, :] = 0 |
|
2471 | 2483 | kernel_4h[2, :] = 0 |
|
2472 | 2484 | kernel_4h[3, :] = -1 |
|
2473 | 2485 | |
|
2474 | 2486 | kernel_5h = numpy.zeros((5,30)) # |
|
2475 | 2487 | kernel_5h[0, :] = 2 |
|
2476 | 2488 | kernel_5h[1, :] = 1 |
|
2477 | 2489 | kernel_5h[2, :] = 0 |
|
2478 | 2490 | kernel_5h[3, :] = -1 |
|
2479 | 2491 | kernel_5h[4, :] = -2 |
|
2480 | 2492 | |
|
2481 | 2493 | |
|
2482 | 2494 | sharp_img0 = cv2.filter2D(src=img, ddepth=-1, kernel=kernel_3h) |
|
2483 | 2495 | # cv2.imshow('sharp image small h',sharp_img0) # numpy.fft.fftshift(sharp_img1)) |
|
2484 | 2496 | # cv2.waitKey(0) |
|
2485 | 2497 | |
|
2486 | 2498 | sharp_img1 = cv2.filter2D(src=img, ddepth=-1, kernel=kernel_h) |
|
2487 | 2499 | # cv2.imshow('sharp image h',sharp_img1) # numpy.fft.fftshift(sharp_img1)) |
|
2488 | 2500 | # cv2.waitKey(0) |
|
2489 | 2501 | |
|
2490 | 2502 | sharp_img2 = cv2.filter2D(src=img, ddepth=-1, kernel=kernel_v) |
|
2491 | 2503 | # cv2.imshow('sharp image v', sharp_img2) #numpy.fft.fftshift(sharp_img2)) |
|
2492 | 2504 | # cv2.waitKey(0) |
|
2493 | 2505 | |
|
2494 | 2506 | sharp_imgw = cv2.filter2D(src=img, ddepth=-1, kernel=kernel_4h) |
|
2495 | 2507 | # cv2.imshow('sharp image h wide', sharp_imgw) #numpy.fft.fftshift(sharp_img2)) |
|
2496 | 2508 | # cv2.waitKey(0) |
|
2497 | 2509 | |
|
2498 | 2510 | sharp_imgwl = cv2.filter2D(src=img, ddepth=-1, kernel=kernel_5h, borderType = cv2.BORDER_ISOLATED) |
|
2499 | 2511 | cv2.imshow('sharp image h long wide', sharp_imgwl) #numpy.fft.fftshift(sharp_img2)) |
|
2500 | 2512 | cv2.waitKey(0) |
|
2501 | 2513 | |
|
2502 | 2514 | # cv2.imwrite('/home/soporte/Data/AMISR14/ISR/spc/spc/sharp_h.jpg', sharp_img1) |
|
2503 | 2515 | # cv2.imwrite('/home/soporte/Data/AMISR14/ISR/spc/spc/sharp_v.jpg', sharp_img2) |
|
2504 | 2516 | # cv2.imwrite('/home/soporte/Data/AMISR14/ISR/spc/spc/input_img.jpg', img) |
|
2505 | 2517 | |
|
2506 | 2518 | ########################small horizontal |
|
2507 | 2519 | horizontal_kernel_s = cv2.getStructuringElement(cv2.MORPH_RECT, (11,1)) #11 |
|
2508 | 2520 | ######################## horizontal |
|
2509 | 2521 | horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (30,1)) #30 |
|
2510 | 2522 | ######################## vertical |
|
2511 | 2523 | vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,50)) #50 |
|
2512 | 2524 | ######################## horizontal wide |
|
2513 | 2525 | horizontal_kernel_w = cv2.getStructuringElement(cv2.MORPH_RECT, (30,1)) # 30 |
|
2514 | 2526 | |
|
2515 | 2527 | horizontal_kernel_expand = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3)) # |
|
2516 | 2528 | |
|
2517 | 2529 | horizontal_kernel_wl = cv2.getStructuringElement(cv2.MORPH_RECT, (50,1)) # |
|
2518 | 2530 | |
|
2519 | 2531 | detected_lines_h_s = cv2.morphologyEx(sharp_img0, cv2.MORPH_OPEN, horizontal_kernel_s, iterations=7) #7 |
|
2520 | 2532 | detected_lines_h = cv2.morphologyEx(sharp_img1, cv2.MORPH_OPEN, horizontal_kernel, iterations=7) #7 |
|
2521 | 2533 | detected_lines_v = cv2.morphologyEx(sharp_img2, cv2.MORPH_OPEN, vertical_kernel, iterations=7) #7 |
|
2522 | 2534 | detected_lines_h_w = cv2.morphologyEx(sharp_imgw, cv2.MORPH_OPEN, horizontal_kernel_w, iterations=5) #5 |
|
2523 | 2535 | |
|
2524 | 2536 | detected_lines_h_wl = cv2.morphologyEx(sharp_imgwl, cv2.MORPH_OPEN, horizontal_kernel_wl, iterations=5) # |
|
2525 | 2537 | detected_lines_h_wl = cv2.filter2D(src=detected_lines_h_wl, ddepth=-1, kernel=horizontal_kernel_expand) |
|
2526 | 2538 | |
|
2527 | 2539 | # cv2.imshow('lines h small gray', detected_lines_h_s) #numpy.fft.fftshift(detected_lines_h)) |
|
2528 | 2540 | # cv2.waitKey(0) |
|
2529 | 2541 | # cv2.imshow('lines h gray', detected_lines_h) #numpy.fft.fftshift(detected_lines_h)) |
|
2530 | 2542 | # cv2.waitKey(0) |
|
2531 | 2543 | # cv2.imshow('lines v gray', detected_lines_v) #numpy.fft.fftshift(detected_lines_h)) |
|
2532 | 2544 | # cv2.waitKey(0) |
|
2533 | 2545 | # cv2.imshow('lines h wide gray', detected_lines_h_w) #numpy.fft.fftshift(detected_lines_h)) |
|
2534 | 2546 | # cv2.waitKey(0) |
|
2535 | 2547 | cv2.imshow('lines h long wide gray', detected_lines_h_wl) #numpy.fft.fftshift(detected_lines_h)) |
|
2536 | 2548 | cv2.waitKey(0) |
|
2537 | 2549 | |
|
2538 | 2550 | reth_s, detected_lines_h_s = cv2.threshold(detected_lines_h_s, 85, 255, cv2.THRESH_BINARY)# 85 |
|
2539 | 2551 | reth, detected_lines_h = cv2.threshold(detected_lines_h, 30, 255, cv2.THRESH_BINARY) #30 |
|
2540 | 2552 | retv, detected_lines_v = cv2.threshold(detected_lines_v, 30, 255, cv2.THRESH_BINARY) #30 |
|
2541 | 2553 | reth_w, detected_lines_h_w = cv2.threshold(detected_lines_h_w, 35, 255, cv2.THRESH_BINARY)# |
|
2542 | 2554 | reth_wl, detected_lines_h_wl = cv2.threshold(detected_lines_h_wl, 200, 255, cv2.THRESH_BINARY)# |
|
2543 | 2555 | |
|
2544 | 2556 | cnts_h_s, h0 = cv2.findContours(detected_lines_h_s, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) |
|
2545 | 2557 | cnts_h, h1 = cv2.findContours(detected_lines_h, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) |
|
2546 | 2558 | cnts_v, h2 = cv2.findContours(detected_lines_v, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) |
|
2547 | 2559 | cnts_h_w, h3 = cv2.findContours(detected_lines_h_w, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) |
|
2548 | 2560 | cnts_h_wl, h4 = cv2.findContours(detected_lines_h_wl, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) |
|
2549 | 2561 | #print("horizontal ", cnts_h) |
|
2550 | 2562 | #print("vertical ", cnts_v) |
|
2551 | 2563 | # cnts, h = cv2.findContours(detected_lines_h, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
2552 | 2564 | # print(cnts) |
|
2553 | 2565 | # cv2.imshow('lines h wide', detected_lines_h_w) #numpy.fft.fftshift(detected_lines_h)) |
|
2554 | 2566 | # cv2.waitKey(0) |
|
2555 | 2567 | cv2.imshow('lines h wide long ', detected_lines_h_wl) #numpy.fft.fftshift(detected_lines_v)) |
|
2556 | 2568 | cv2.waitKey(0) |
|
2557 | 2569 | # cv2.imshow('lines h small', detected_lines_h_s) #numpy.fft.fftshift(detected_lines_h)) |
|
2558 | 2570 | # cv2.waitKey(0) |
|
2559 | 2571 | # cv2.imshow('lines h ', detected_lines_h) #numpy.fft.fftshift(detected_lines_h)) |
|
2560 | 2572 | # cv2.waitKey(0) |
|
2561 | 2573 | # cv2.imshow('lines v ', detected_lines_v) #numpy.fft.fftshift(detected_lines_v)) |
|
2562 | 2574 | # cv2.waitKey(0) |
|
2563 | 2575 | |
|
2564 | 2576 | # cv2.imwrite('/home/soporte/Data/AMISR14/ISR/spc/spc/lines_h.jpg', detected_lines_h) |
|
2565 | 2577 | # cv2.imwrite('/home/soporte/Data/AMISR14/ISR/spc/spc/lines_v.jpg', detected_lines_v) |
|
2566 | 2578 | |
|
2567 | 2579 | #cnts = cnts[0] if len(cnts) == 2 else cnts[1] |
|
2568 | 2580 | #y_line_index = numpy.asarray([ [c[0][0][0],c[1][0][0], c[0][0][1]] for c in cnts_v ]) |
|
2569 | 2581 | h_line_index = [] |
|
2570 | 2582 | v_line_index = [] |
|
2571 | 2583 | |
|
2572 | 2584 | cnts_h += cnts_h_s #combine large and small lines |
|
2573 | 2585 | |
|
2574 | 2586 | # line indexes x1, x2, y |
|
2575 | 2587 | for c in cnts_h: |
|
2576 | 2588 | #print(c) |
|
2577 | 2589 | if len(c) < 3: #contorno linea |
|
2578 | 2590 | x1 = c[0][0][0] |
|
2579 | 2591 | if x1 < 8: |
|
2580 | 2592 | x1 = 10 |
|
2581 | 2593 | h_line_index.append( [x1,c[1][0][0], c[0][0][1]] ) |
|
2582 | 2594 | #print("x1, x2, y", c[0][0][0],c[1][0][0], c[0][0][1]) |
|
2583 | 2595 | else: #contorno poligono |
|
2584 | 2596 | pairs = numpy.asarray([c[n][0] for n in range(len(c))]) |
|
2585 | 2597 | y = numpy.unique(pairs[:,1]) |
|
2586 | 2598 | x = numpy.unique(pairs[:,0]) |
|
2587 | 2599 | #print(x) |
|
2588 | 2600 | for yk in y: |
|
2589 | 2601 | x0 = x[0] |
|
2590 | 2602 | if x0 < 8: |
|
2591 | 2603 | x0 = 10 |
|
2592 | 2604 | #print(x[0], x[-1], yk) |
|
2593 | 2605 | h_line_index.append( [x0, x[-1], yk]) |
|
2594 | 2606 | #print("x1, x2, y ->p ", x[0], x[-1], yk) |
|
2595 | 2607 | for c in cnts_h_w: |
|
2596 | 2608 | #print(c) |
|
2597 | 2609 | if len(c) < 3: #contorno linea |
|
2598 | 2610 | x1 = c[0][0][0] |
|
2599 | 2611 | if x1 < 8: |
|
2600 | 2612 | x1 = 10 |
|
2601 | 2613 | y = c[0][0][1] - 2 # se incrementa 2 lΓneas x el filtro |
|
2602 | 2614 | h_line_index.append( [x1,c[1][0][0],y] ) |
|
2603 | 2615 | #print("x1, x2, y", c[0][0][0],c[1][0][0], c[0][0][1]) |
|
2604 | 2616 | else: #contorno poligono |
|
2605 | 2617 | pairs = numpy.asarray([c[n][0] for n in range(len(c))]) |
|
2606 | 2618 | y = numpy.unique(pairs[:,1]) |
|
2607 | 2619 | x = numpy.unique(pairs[:,0]) |
|
2608 | 2620 | #print(x) |
|
2609 | 2621 | for yk in y: |
|
2610 | 2622 | |
|
2611 | 2623 | x0 = x[0] |
|
2612 | 2624 | if x0 < 8: |
|
2613 | 2625 | x0 = 10 |
|
2614 | 2626 | h_line_index.append( [x0, x[-1], yk-2]) |
|
2615 | 2627 | |
|
2616 | 2628 | for c in cnts_h_wl: # # revisar |
|
2617 | 2629 | #print(c) |
|
2618 | 2630 | if len(c) < 3: #contorno linea |
|
2619 | 2631 | x1 = c[0][0][0] |
|
2620 | 2632 | if x1 < 8: |
|
2621 | 2633 | x1 = 10 |
|
2622 | 2634 | y = c[0][0][1] - 2 # se incrementa 2 lΓneas x el filtro |
|
2623 | 2635 | h_line_index.append( [x1,c[1][0][0],y] ) |
|
2624 | 2636 | #print("x1, x2, y", c[0][0][0],c[1][0][0], c[0][0][1]) |
|
2625 | 2637 | else: #contorno poligono |
|
2626 | 2638 | pairs = numpy.asarray([c[n][0] for n in range(len(c))]) |
|
2627 | 2639 | y = numpy.unique(pairs[:,1]) |
|
2628 | 2640 | x = numpy.unique(pairs[:,0]) |
|
2629 | 2641 | for yk in range(y[-1]-y[0]): |
|
2630 | 2642 | y_k = yk +y[0] |
|
2631 | 2643 | |
|
2632 | 2644 | x0 = x[0] |
|
2633 | 2645 | if x0 < 8: |
|
2634 | 2646 | x0 = 10 |
|
2635 | 2647 | h_line_index.append( [x0, x[-1], y_k-2]) |
|
2636 | 2648 | |
|
2637 | 2649 | print([[c[0][0][1],c[1][0][1], c[0][0][0] ] for c in cnts_v]) |
|
2638 | 2650 | # line indexes y1, y2, x |
|
2639 | 2651 | for c in cnts_v: |
|
2640 | 2652 | if len(c) < 3: #contorno linea |
|
2641 | 2653 | v_line_index.append( [c[0][0][1],c[1][0][1], c[0][0][0] ] ) |
|
2642 | 2654 | else: #contorno poligono |
|
2643 | 2655 | pairs = numpy.asarray([c[n][0] for n in range(len(c))]) |
|
2644 | 2656 | #print(pairs) |
|
2645 | 2657 | y = numpy.unique(pairs[:,1]) |
|
2646 | 2658 | x = numpy.unique(pairs[:,0]) |
|
2647 | 2659 | |
|
2648 | 2660 | for xk in x: |
|
2649 | 2661 | #print(x[0], x[-1], yk) |
|
2650 | 2662 | v_line_index.append( [y[0],y[-1], xk]) |
|
2651 | 2663 | |
|
2652 | 2664 | ################################################################### |
|
2653 | 2665 | # # clean Horizontal |
|
2654 | 2666 | print("Total Horizontal", len(h_line_index)) |
|
2655 | 2667 | if len(h_line_index) < 75 : |
|
2656 | 2668 | for x1, x2, y in h_line_index: |
|
2657 | 2669 | #print("cleaning ",x1, x2, y) |
|
2658 | 2670 | len_line = x2 - x1 |
|
2659 | 2671 | if y > 10 and y < (nh -10): |
|
2660 | 2672 | # if y != (nh-1): |
|
2661 | 2673 | # list = [ ((z[n, y-1] + z[n,y+1])/2) for n in range(len_line)] |
|
2662 | 2674 | # else: |
|
2663 | 2675 | # list = [ ((z[n, y-1] + z[n,0])/2) for n in range(len_line)] |
|
2664 | 2676 | # |
|
2665 | 2677 | # z[x1:x2,y] = numpy.asarray(list) |
|
2666 | 2678 | z[x1-5:x2+5,y:y+1] = 0 |
|
2667 | 2679 | |
|
2668 | 2680 | # clean vertical |
|
2669 | 2681 | for y1, y2, x in v_line_index: |
|
2670 | 2682 | len_line = y2 - y1 |
|
2671 | 2683 | #print(x) |
|
2672 | 2684 | if x > 0 and x < (nsamples-2): |
|
2673 | 2685 | # if x != (nsamples-1): |
|
2674 | 2686 | # list = [ ((z[x-2, n] + z[x+2,n])/2) for n in range(len_line)] |
|
2675 | 2687 | # else: |
|
2676 | 2688 | # list = [ ((z[x-2, n] + z[1,n])/2) for n in range(len_line)] |
|
2677 | 2689 | # |
|
2678 | 2690 | # #z[x-1:x+1,y1:y2] = numpy.asarray(list) |
|
2679 | 2691 | # |
|
2680 | 2692 | z[x+1,y1:y2] = 0 |
|
2681 | 2693 | |
|
2682 | 2694 | ''' |
|
2683 | 2695 | #z[: ,[215, 217, 221, 223, 225, 340, 342, 346, 348, 350, 465, 467, 471, 473, 475]]=0 |
|
2684 | 2696 | z[1: ,[112, 114, 118, 120, 122, 237, 239, 245, 247, 249, 362, 364, 368, 370, 372]]=0 |
|
2685 | 2697 | # z[: ,217]=0 |
|
2686 | 2698 | # z[: ,221]=0 |
|
2687 | 2699 | # z[: ,223]=0 |
|
2688 | 2700 | # z[: ,225]=0 |
|
2689 | 2701 | |
|
2690 | 2702 | dat2 = numpy.log10(z.T) |
|
2691 | 2703 | #print(dat2) |
|
2692 | 2704 | max = dat2.max() |
|
2693 | 2705 | #print(" min, max ", max, min) |
|
2694 | 2706 | img2 = ((dat2-min)*255/(max-min)).astype(numpy.uint8) |
|
2695 | 2707 | #img_cleaned = img2.copy() |
|
2696 | 2708 | #cv2.drawContours(img2, cnts_h, -1, (255,255,255), 1) |
|
2697 | 2709 | #cv2.drawContours(img2, cnts_v, -1, (255,255,255), 1) |
|
2698 | 2710 | |
|
2699 | 2711 | |
|
2700 | 2712 | spcCleaned = z * numpy.exp(1j*phase) |
|
2701 | 2713 | #print(spcCleaned) |
|
2702 | 2714 | |
|
2703 | 2715 | |
|
2704 | 2716 | # cv2.imshow('image contours', img2) #numpy.fft.fftshift(img)) |
|
2705 | 2717 | # cv2.waitKey(0) |
|
2706 | 2718 | |
|
2707 | 2719 | cv2.imshow('cleaned', img2) #numpy.fft.fftshift(img_cleaned)) |
|
2708 | 2720 | cv2.waitKey(0) |
|
2709 | 2721 | # # cv2.imwrite('/home/soporte/Data/AMISR14/ISR/spc/spc/cleaned_{}.jpg'.format(self.test_counter), img2) |
|
2710 | 2722 | cv2.destroyAllWindows() |
|
2711 | 2723 | # self.test_counter += 1 |
|
2712 | 2724 | |
|
2713 | 2725 | |
|
2714 | 2726 | #print("DC difference " ,z1 - z[0,:]) |
|
2715 | 2727 | |
|
2716 | 2728 | # m = numpy.mean(dat) |
|
2717 | 2729 | # o = numpy.std(dat) |
|
2718 | 2730 | # print("mean ", m, " std ", o) |
|
2719 | 2731 | # fig, ax = plt.subplots(1,2,figsize=(12, 6)) |
|
2720 | 2732 | # #X, Y = numpy.meshgrid(numpy.sort(freqh),numpy.sort(freqv)) |
|
2721 | 2733 | # X, Y = numpy.meshgrid(numpy.fft.fftshift(freqh),numpy.fft.fftshift(freqv)) |
|
2722 | 2734 | # |
|
2723 | 2735 | # colormap = 'jet' |
|
2724 | 2736 | # #c = ax[0].pcolormesh(x, y, dat, cmap =colormap, vmin = (m-2*o)/2, vmax = (m+2*o)) |
|
2725 | 2737 | # #c = ax[0].pcolormesh(X, Y, numpy.fft.fftshift(dat), cmap =colormap, vmin = 6.5, vmax = 6.8) |
|
2726 | 2738 | # c = ax[0].pcolormesh(X, Y, numpy.fft.fftshift(dat), cmap =colormap, vmin = (m-2*o), vmax = (m+1.5*o)) |
|
2727 | 2739 | # fig.colorbar(c, ax=ax[0]) |
|
2728 | 2740 | # |
|
2729 | 2741 | # |
|
2730 | 2742 | # #c = ax.pcolor( z.T , cmap ='gray', vmin = (m-2*o), vmax = (m+2*o)) |
|
2731 | 2743 | # #date_time = datetime.datetime.fromtimestamp(self.__buffer_times[0]).strftime('%Y-%m-%d %H:%M:%S.%f') |
|
2732 | 2744 | # #strftime('%Y-%m-%d %H:%M:%S') |
|
2733 | 2745 | # #ax[0].set_title('Spectrum magnitude '+date_time) |
|
2734 | 2746 | # #fig.canvas.set_window_title('Spectrum magnitude {} '.format(self.n)+date_time) |
|
2735 | 2747 | # #print("aqui estoy2",dat2[:,:,0].shape) |
|
2736 | 2748 | # #c = ax[1].pcolormesh(X, Y, numpy.fft.fftshift(pdat), cmap =colormap, vmin = 4.2, vmax = 5.0) |
|
2737 | 2749 | # c = ax[0].pcolormesh(X, Y, numpy.fft.fftshift(dat2), cmap =colormap, vmin = (m-2*o), vmax = (m+1.5*o)) |
|
2738 | 2750 | # #c = ax[1].pcolormesh(X, Y, numpy.fft.fftshift(pdat), cmap =colormap ) #, vmin = 0.0, vmax = 0.5) |
|
2739 | 2751 | # #c = ax[1].pcolormesh(x, y, dat2[:,:,0], cmap =colormap, vmin = (m-2*o)/2, vmax = (m+2*o)-1) |
|
2740 | 2752 | # #print("aqui estoy3") |
|
2741 | 2753 | # fig.colorbar(c, ax=ax[1]) |
|
2742 | 2754 | # plt.show() |
|
2743 | 2755 | |
|
2744 | 2756 | spectrum[ch,:,:] = spcCleaned |
|
2745 | 2757 | |
|
2746 | 2758 | #print(data2.shape) |
|
2747 | 2759 | |
|
2748 | 2760 | |
|
2749 | 2761 | |
|
2750 | 2762 | data[:,:,self.minHei_idx:] = numpy.fft.ifft2(spectrum, axes=(1,2)) |
|
2751 | 2763 | |
|
2752 | 2764 | #print("cleanOutliersByBlock Done", data.shape) |
|
2753 | 2765 | self.__buffer_data = data |
|
2754 | 2766 | return data |
|
2755 | 2767 | |
|
2756 | 2768 | |
|
2757 | 2769 | |
|
2758 | 2770 | def fillBuffer(self, data, datatime): |
|
2759 | 2771 | |
|
2760 | 2772 | if self.__profIndex == 0: |
|
2761 | 2773 | self.__buffer_data = data.copy() |
|
2762 | 2774 | |
|
2763 | 2775 | else: |
|
2764 | 2776 | self.__buffer_data = numpy.concatenate((self.__buffer_data,data), axis=1)#en perfiles |
|
2765 | 2777 | self.__profIndex += 1 |
|
2766 | 2778 | self.__buffer_times.append(datatime) |
|
2767 | 2779 | |
|
2768 | 2780 | def getData(self, data, datatime=None): |
|
2769 | 2781 | |
|
2770 | 2782 | if self.__profIndex == 0: |
|
2771 | 2783 | self.__initime = datatime |
|
2772 | 2784 | |
|
2773 | 2785 | |
|
2774 | 2786 | self.__dataReady = False |
|
2775 | 2787 | |
|
2776 | 2788 | self.fillBuffer(data, datatime) |
|
2777 | 2789 | dataBlock = None |
|
2778 | 2790 | |
|
2779 | 2791 | if self.__profIndex == self.n: |
|
2780 | 2792 | #print("apnd : ",data) |
|
2781 | 2793 | dataBlock = self.cleanOutliersByBlock() |
|
2782 | 2794 | #dataBlock = self.cleanSpikesFFT2D() |
|
2783 | 2795 | #dataBlock = self.filterSatsProfiles2() |
|
2784 | 2796 | self.__dataReady = True |
|
2785 | 2797 | |
|
2786 | 2798 | return dataBlock |
|
2787 | 2799 | |
|
2788 | 2800 | if dataBlock is None: |
|
2789 | 2801 | return None, None |
|
2790 | 2802 | |
|
2791 | 2803 | |
|
2792 | 2804 | |
|
2793 | 2805 | return dataBlock |
|
2794 | 2806 | |
|
2795 | 2807 | def releaseBlock(self): |
|
2796 | 2808 | |
|
2797 | 2809 | if self.n % self.lenProfileOut != 0: |
|
2798 | 2810 | raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n)) |
|
2799 | 2811 | return None |
|
2800 | 2812 | |
|
2801 | 2813 | data = self.buffer[:,self.init_prof:self.end_prof:,:] #ch, prof, alt |
|
2802 | 2814 | |
|
2803 | 2815 | self.init_prof = self.end_prof |
|
2804 | 2816 | self.end_prof += self.lenProfileOut |
|
2805 | 2817 | #print("data release shape: ",dataOut.data.shape, self.end_prof) |
|
2806 | 2818 | self.n_prof_released += 1 |
|
2807 | 2819 | |
|
2808 | 2820 | |
|
2809 | 2821 | #print("f_no_data ", dataOut.flagNoData) |
|
2810 | 2822 | return data |
|
2811 | 2823 | |
|
2812 | 2824 | def run(self, dataOut, n=None, navg=0.8, nProfilesOut=1, profile_margin=50,th_hist_outlier=3,minHei=None, maxHei=None): |
|
2813 | 2825 | #print("run op buffer 2D",dataOut.ippSeconds) |
|
2814 | 2826 | # self.nChannels = dataOut.nChannels |
|
2815 | 2827 | # self.nHeights = dataOut.nHeights |
|
2816 | 2828 | |
|
2817 | 2829 | if not self.isConfig: |
|
2818 | 2830 | #print("init p idx: ", dataOut.profileIndex ) |
|
2819 | 2831 | self.setup(dataOut,n=n, navg=navg,profileMargin=profile_margin, |
|
2820 | 2832 | thHistOutlier=th_hist_outlier,minHei=minHei, maxHei=maxHei) |
|
2821 | 2833 | self.isConfig = True |
|
2822 | 2834 | |
|
2823 | 2835 | dataBlock = None |
|
2824 | 2836 | |
|
2825 | 2837 | if not dataOut.buffer_empty: #hay datos acumulados |
|
2826 | 2838 | |
|
2827 | 2839 | if self.init_prof == 0: |
|
2828 | 2840 | self.n_prof_released = 0 |
|
2829 | 2841 | self.lenProfileOut = nProfilesOut |
|
2830 | 2842 | dataOut.flagNoData = False |
|
2831 | 2843 | #print("tp 2 ",dataOut.data.shape) |
|
2832 | 2844 | |
|
2833 | 2845 | self.init_prof = 0 |
|
2834 | 2846 | self.end_prof = self.lenProfileOut |
|
2835 | 2847 | |
|
2836 | 2848 | dataOut.nProfiles = self.lenProfileOut |
|
2837 | 2849 | if nProfilesOut == 1: |
|
2838 | 2850 | dataOut.flagDataAsBlock = False |
|
2839 | 2851 | else: |
|
2840 | 2852 | dataOut.flagDataAsBlock = True |
|
2841 | 2853 | #print("prof: ",self.init_prof) |
|
2842 | 2854 | dataOut.flagNoData = False |
|
2843 | 2855 | if numpy.isin(self.n_prof_released, self.outliers_IDs_list): |
|
2844 | 2856 | print("omitting: ", self.n_prof_released) |
|
2845 | 2857 | dataOut.flagNoData = True |
|
2846 | 2858 | dataOut.ippSeconds = self._ipp |
|
2847 | 2859 | dataOut.utctime = self.first_utcBlock + self.init_prof*self._ipp |
|
2848 | 2860 | # print("time: ", dataOut.utctime, self.first_utcBlock, self.init_prof,self._ipp,dataOut.ippSeconds) |
|
2849 | 2861 | #dataOut.data = self.releaseBlock() |
|
2850 | 2862 | #########################################################3 |
|
2851 | 2863 | if self.n % self.lenProfileOut != 0: |
|
2852 | 2864 | raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n)) |
|
2853 | 2865 | return None |
|
2854 | 2866 | |
|
2855 | 2867 | dataOut.data = self.buffer[:,self.init_prof:self.end_prof:,:] #ch, prof, alt |
|
2856 | 2868 | |
|
2857 | 2869 | self.init_prof = self.end_prof |
|
2858 | 2870 | self.end_prof += self.lenProfileOut |
|
2859 | 2871 | #print("data release shape: ",dataOut.data.shape, self.end_prof, dataOut.flagNoData) |
|
2860 | 2872 | self.n_prof_released += 1 |
|
2861 | 2873 | |
|
2862 | 2874 | if self.end_prof >= (self.n +self.lenProfileOut): |
|
2863 | 2875 | |
|
2864 | 2876 | self.init_prof = 0 |
|
2865 | 2877 | self.__profIndex = 0 |
|
2866 | 2878 | self.buffer = None |
|
2867 | 2879 | dataOut.buffer_empty = True |
|
2868 | 2880 | self.outliers_IDs_list = [] |
|
2869 | 2881 | self.n_prof_released = 0 |
|
2870 | 2882 | dataOut.flagNoData = False #enviar ultimo aunque sea outlier :( |
|
2871 | 2883 | #print("cleaning...", dataOut.buffer_empty) |
|
2872 | 2884 | dataOut.profileIndex = 0 #self.lenProfileOut |
|
2873 | 2885 | #################################################################### |
|
2874 | 2886 | return dataOut |
|
2875 | 2887 | |
|
2876 | 2888 | |
|
2877 | 2889 | #print("tp 223 ",dataOut.data.shape) |
|
2878 | 2890 | dataOut.flagNoData = True |
|
2879 | 2891 | |
|
2880 | 2892 | |
|
2881 | 2893 | |
|
2882 | 2894 | try: |
|
2883 | 2895 | #dataBlock = self.getData(dataOut.data.reshape(self.nChannels,1,self.nHeights), dataOut.utctime) |
|
2884 | 2896 | dataBlock = self.getData(numpy.reshape(dataOut.data,(self.nChannels,1,self.nHeights)), dataOut.utctime) |
|
2885 | 2897 | self.__count_exec +=1 |
|
2886 | 2898 | except Exception as e: |
|
2887 | 2899 | print("Error getting profiles data",self.__count_exec ) |
|
2888 | 2900 | print(e) |
|
2889 | 2901 | sys.exit() |
|
2890 | 2902 | |
|
2891 | 2903 | if self.__dataReady: |
|
2892 | 2904 | #print("omitting: ", len(self.outliers_IDs_list)) |
|
2893 | 2905 | self.__count_exec = 0 |
|
2894 | 2906 | #dataOut.data = |
|
2895 | 2907 | #self.buffer = numpy.flip(dataBlock, axis=1) |
|
2896 | 2908 | self.buffer = dataBlock |
|
2897 | 2909 | self.first_utcBlock = self.__initime |
|
2898 | 2910 | dataOut.utctime = self.__initime |
|
2899 | 2911 | dataOut.nProfiles = self.__profIndex |
|
2900 | 2912 | #dataOut.flagNoData = False |
|
2901 | 2913 | self.init_prof = 0 |
|
2902 | 2914 | self.__profIndex = 0 |
|
2903 | 2915 | self.__initime = None |
|
2904 | 2916 | dataBlock = None |
|
2905 | 2917 | self.__buffer_times = [] |
|
2906 | 2918 | dataOut.error = False |
|
2907 | 2919 | dataOut.useInputBuffer = True |
|
2908 | 2920 | dataOut.buffer_empty = False |
|
2909 | 2921 | #print("1 ch: {} prof: {} hs: {}".format(int(dataOut.nChannels),int(dataOut.nProfiles),int(dataOut.nHeights))) |
|
2910 | 2922 | |
|
2911 | 2923 | |
|
2912 | 2924 | |
|
2913 | 2925 | #print(self.__count_exec) |
|
2914 | 2926 | |
|
2915 | 2927 | return dataOut |
|
2916 | 2928 | |
|
2917 | 2929 | |
|
2918 | 2930 | class RemoveProfileSats(Operation): |
|
2919 | 2931 | ''' |
|
2920 | 2932 | Escrito: Joab Apaza |
|
2921 | 2933 | |
|
2922 | 2934 | Omite los perfiles contaminados con seΓ±al de satΓ©lites, usando una altura de referencia |
|
2923 | 2935 | In: minHei = min_sat_range |
|
2924 | 2936 | max_sat_range |
|
2925 | 2937 | min_hei_ref |
|
2926 | 2938 | max_hei_ref |
|
2927 | 2939 | th = diference between profiles mean, ref and sats |
|
2928 | 2940 | Out: |
|
2929 | 2941 | profile clean |
|
2930 | 2942 | ''' |
|
2931 | 2943 | |
|
2932 | 2944 | |
|
2933 | 2945 | __buffer_data = [] |
|
2934 | 2946 | __buffer_times = [] |
|
2935 | 2947 | |
|
2936 | 2948 | buffer = None |
|
2937 | 2949 | |
|
2938 | 2950 | outliers_IDs_list = [] |
|
2939 | 2951 | |
|
2940 | 2952 | |
|
2941 | 2953 | __slots__ = ('n','navg','profileMargin','thHistOutlier','minHei_idx','maxHei_idx','nHeights', |
|
2942 | 2954 | 'first_utcBlock','__profIndex','init_prof','end_prof','lenProfileOut','nChannels', |
|
2943 | 2955 | '__count_exec','__initime','__dataReady','__ipp', 'minRef', 'maxRef', 'thdB') |
|
2944 | 2956 | def __init__(self, **kwargs): |
|
2945 | 2957 | |
|
2946 | 2958 | Operation.__init__(self, **kwargs) |
|
2947 | 2959 | self.isConfig = False |
|
2948 | 2960 | |
|
2949 | 2961 | def setup(self,dataOut, n=None , navg=0.8, profileMargin=50,thHistOutlier=15, |
|
2950 | 2962 | minHei=None, maxHei=None, minRef=None, maxRef=None, thdB=10): |
|
2951 | 2963 | |
|
2952 | 2964 | if n == None and timeInterval == None: |
|
2953 | 2965 | raise ValueError("nprofiles or timeInterval should be specified ...") |
|
2954 | 2966 | |
|
2955 | 2967 | if n != None: |
|
2956 | 2968 | self.n = n |
|
2957 | 2969 | |
|
2958 | 2970 | self.navg = navg |
|
2959 | 2971 | self.profileMargin = profileMargin |
|
2960 | 2972 | self.thHistOutlier = thHistOutlier |
|
2961 | 2973 | self.__profIndex = 0 |
|
2962 | 2974 | self.buffer = None |
|
2963 | 2975 | self._ipp = dataOut.ippSeconds |
|
2964 | 2976 | self.n_prof_released = 0 |
|
2965 | 2977 | self.heightList = dataOut.heightList |
|
2966 | 2978 | self.init_prof = 0 |
|
2967 | 2979 | self.end_prof = 0 |
|
2968 | 2980 | self.__count_exec = 0 |
|
2969 | 2981 | self.__profIndex = 0 |
|
2970 | 2982 | self.first_utcBlock = None |
|
2971 | 2983 | #self.__dh = dataOut.heightList[1] - dataOut.heightList[0] |
|
2972 | 2984 | minHei = minHei |
|
2973 | 2985 | maxHei = maxHei |
|
2974 | 2986 | if minHei==None : |
|
2975 | 2987 | minHei = dataOut.heightList[0] |
|
2976 | 2988 | if maxHei==None : |
|
2977 | 2989 | maxHei = dataOut.heightList[-1] |
|
2978 | 2990 | self.minHei_idx,self.maxHei_idx = getHei_index(minHei, maxHei, dataOut.heightList) |
|
2979 | 2991 | self.min_ref, self.max_ref = getHei_index(minRef, maxRef, dataOut.heightList) |
|
2980 | 2992 | self.nChannels = dataOut.nChannels |
|
2981 | 2993 | self.nHeights = dataOut.nHeights |
|
2982 | 2994 | self.test_counter = 0 |
|
2983 | 2995 | self.thdB = thdB |
|
2984 | 2996 | |
|
2985 | 2997 | def filterSatsProfiles(self): |
|
2986 | 2998 | data = self.__buffer_data |
|
2987 | 2999 | #print(data.shape) |
|
2988 | 3000 | nChannels, profiles, heights = data.shape |
|
2989 | 3001 | indexes=numpy.zeros([], dtype=int) |
|
2990 | 3002 | outliers_IDs=[] |
|
2991 | 3003 | for c in range(nChannels): |
|
2992 | 3004 | #print(self.min_ref,self.max_ref) |
|
2993 | 3005 | noise_ref = 10* numpy.log10((data[c,:,self.min_ref:self.max_ref] * numpy.conjugate(data[c,:,self.min_ref:self.max_ref])).real) |
|
2994 | 3006 | #print("Noise ",numpy.percentile(noise_ref,95)) |
|
2995 | 3007 | p95 = numpy.percentile(noise_ref,95) |
|
2996 | 3008 | noise_ref = noise_ref.mean() |
|
2997 | 3009 | #print("Noise ",noise_ref |
|
2998 | 3010 | |
|
2999 | 3011 | |
|
3000 | 3012 | for h in range(self.minHei_idx, self.maxHei_idx): |
|
3001 | 3013 | power = 10* numpy.log10((data[c,:,h] * numpy.conjugate(data[c,:,h])).real) |
|
3002 | 3014 | #th = noise_ref + self.thdB |
|
3003 | 3015 | th = noise_ref + 1.5*(p95-noise_ref) |
|
3004 | 3016 | index = numpy.where(power > th ) |
|
3005 | 3017 | if index[0].size > 10 and index[0].size < int(self.navg*profiles): |
|
3006 | 3018 | indexes = numpy.append(indexes, index[0]) |
|
3007 | 3019 | #print(index[0]) |
|
3008 | 3020 | #print(index[0]) |
|
3009 | 3021 | |
|
3010 | 3022 | # fig,ax = plt.subplots() |
|
3011 | 3023 | # #ax.set_title(str(k)+" "+str(j)) |
|
3012 | 3024 | # x=range(len(power)) |
|
3013 | 3025 | # ax.scatter(x,power) |
|
3014 | 3026 | # #ax.axvline(index) |
|
3015 | 3027 | # plt.grid() |
|
3016 | 3028 | # plt.show() |
|
3017 | 3029 | #print(indexes) |
|
3018 | 3030 | |
|
3019 | 3031 | #outliers_IDs = outliers_IDs.astype(numpy.dtype('int64')) |
|
3020 | 3032 | #outliers_IDs = numpy.unique(outliers_IDs) |
|
3021 | 3033 | |
|
3022 | 3034 | outs_lines = numpy.unique(indexes) |
|
3023 | 3035 | |
|
3024 | 3036 | |
|
3025 | 3037 | #Agrupando el histograma de outliers, |
|
3026 | 3038 | my_bins = numpy.linspace(0,int(profiles), int(profiles/100), endpoint=True) |
|
3027 | 3039 | |
|
3028 | 3040 | |
|
3029 | 3041 | hist, bins = numpy.histogram(outs_lines,bins=my_bins) |
|
3030 | 3042 | hist_outliers_indexes = numpy.where(hist > self.thHistOutlier) #es outlier |
|
3031 | 3043 | hist_outliers_indexes = hist_outliers_indexes[0] |
|
3032 | 3044 | # if len(hist_outliers_indexes>0): |
|
3033 | 3045 | # hist_outliers_indexes = numpy.append(hist_outliers_indexes,hist_outliers_indexes[-1]+1) |
|
3034 | 3046 | #print(hist_outliers_indexes) |
|
3035 | 3047 | #print(bins, hist_outliers_indexes) |
|
3036 | 3048 | bins_outliers_indexes = [int(i) for i in (bins[hist_outliers_indexes])] # |
|
3037 | 3049 | outlier_loc_index = [] |
|
3038 | 3050 | # for n in range(len(bins_outliers_indexes)): |
|
3039 | 3051 | # for e in range(bins_outliers_indexes[n]-self.profileMargin,bins_outliers_indexes[n]+ self.profileMargin): |
|
3040 | 3052 | # outlier_loc_index.append(e) |
|
3041 | 3053 | outlier_loc_index = [e for n in range(len(bins_outliers_indexes)) for e in range(bins_outliers_indexes[n]-self.profileMargin,bins_outliers_indexes[n]+ profiles//100 + self.profileMargin) ] |
|
3042 | 3054 | outlier_loc_index = numpy.asarray(outlier_loc_index) |
|
3043 | 3055 | |
|
3044 | 3056 | |
|
3045 | 3057 | |
|
3046 | 3058 | |
|
3047 | 3059 | #print("outliers Ids: ", outlier_loc_index, outlier_loc_index.shape) |
|
3048 | 3060 | outlier_loc_index = outlier_loc_index[ (outlier_loc_index >= 0) & (outlier_loc_index<profiles)] |
|
3049 | 3061 | #print("outliers final: ", outlier_loc_index) |
|
3050 | 3062 | |
|
3051 | 3063 | from matplotlib import pyplot as plt |
|
3052 | 3064 | x, y = numpy.meshgrid(numpy.arange(profiles), self.heightList) |
|
3053 | 3065 | fig, ax = plt.subplots(1,2,figsize=(8, 6)) |
|
3054 | 3066 | dat = data[0,:,:].real |
|
3055 | 3067 | dat = 10* numpy.log10((data[0,:,:] * numpy.conjugate(data[0,:,:])).real) |
|
3056 | 3068 | m = numpy.nanmean(dat) |
|
3057 | 3069 | o = numpy.nanstd(dat) |
|
3058 | 3070 | #print(m, o, x.shape, y.shape) |
|
3059 | 3071 | #c = ax[0].pcolormesh(x, y, dat.T, cmap ='YlGnBu', vmin = (m-2*o), vmax = (m+2*o)) |
|
3060 | 3072 | c = ax[0].pcolormesh(x, y, dat.T, cmap ='YlGnBu', vmin = 50, vmax = 75) |
|
3061 | 3073 | ax[0].vlines(outs_lines,200,600, linestyles='dashed', label = 'outs', color='w') |
|
3062 | 3074 | fig.colorbar(c) |
|
3063 | 3075 | ax[0].vlines(outlier_loc_index,650,750, linestyles='dashed', label = 'outs', color='r') |
|
3064 | 3076 | ax[1].hist(outs_lines,bins=my_bins) |
|
3065 | 3077 | plt.show() |
|
3066 | 3078 | |
|
3067 | 3079 | |
|
3068 | 3080 | self.outliers_IDs_list = outlier_loc_index |
|
3069 | 3081 | #print("outs list: ", self.outliers_IDs_list) |
|
3070 | 3082 | return data |
|
3071 | 3083 | |
|
3072 | 3084 | |
|
3073 | 3085 | |
|
3074 | 3086 | def fillBuffer(self, data, datatime): |
|
3075 | 3087 | |
|
3076 | 3088 | if self.__profIndex == 0: |
|
3077 | 3089 | self.__buffer_data = data.copy() |
|
3078 | 3090 | |
|
3079 | 3091 | else: |
|
3080 | 3092 | self.__buffer_data = numpy.concatenate((self.__buffer_data,data), axis=1)#en perfiles |
|
3081 | 3093 | self.__profIndex += 1 |
|
3082 | 3094 | self.__buffer_times.append(datatime) |
|
3083 | 3095 | |
|
3084 | 3096 | def getData(self, data, datatime=None): |
|
3085 | 3097 | |
|
3086 | 3098 | if self.__profIndex == 0: |
|
3087 | 3099 | self.__initime = datatime |
|
3088 | 3100 | |
|
3089 | 3101 | |
|
3090 | 3102 | self.__dataReady = False |
|
3091 | 3103 | |
|
3092 | 3104 | self.fillBuffer(data, datatime) |
|
3093 | 3105 | dataBlock = None |
|
3094 | 3106 | |
|
3095 | 3107 | if self.__profIndex == self.n: |
|
3096 | 3108 | #print("apnd : ",data) |
|
3097 | 3109 | dataBlock = self.filterSatsProfiles() |
|
3098 | 3110 | self.__dataReady = True |
|
3099 | 3111 | |
|
3100 | 3112 | return dataBlock |
|
3101 | 3113 | |
|
3102 | 3114 | if dataBlock is None: |
|
3103 | 3115 | return None, None |
|
3104 | 3116 | |
|
3105 | 3117 | |
|
3106 | 3118 | |
|
3107 | 3119 | return dataBlock |
|
3108 | 3120 | |
|
3109 | 3121 | def releaseBlock(self): |
|
3110 | 3122 | |
|
3111 | 3123 | if self.n % self.lenProfileOut != 0: |
|
3112 | 3124 | raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n)) |
|
3113 | 3125 | return None |
|
3114 | 3126 | |
|
3115 | 3127 | data = self.buffer[:,self.init_prof:self.end_prof:,:] #ch, prof, alt |
|
3116 | 3128 | |
|
3117 | 3129 | self.init_prof = self.end_prof |
|
3118 | 3130 | self.end_prof += self.lenProfileOut |
|
3119 | 3131 | #print("data release shape: ",dataOut.data.shape, self.end_prof) |
|
3120 | 3132 | self.n_prof_released += 1 |
|
3121 | 3133 | |
|
3122 | 3134 | return data |
|
3123 | 3135 | |
|
3124 | 3136 | def run(self, dataOut, n=None, navg=0.8, nProfilesOut=1, profile_margin=50, |
|
3125 | 3137 | th_hist_outlier=15,minHei=None, maxHei=None, minRef=None, maxRef=None, thdB=10): |
|
3126 | 3138 | |
|
3127 | 3139 | if not self.isConfig: |
|
3128 | 3140 | #print("init p idx: ", dataOut.profileIndex ) |
|
3129 | 3141 | self.setup(dataOut,n=n, navg=navg,profileMargin=profile_margin,thHistOutlier=th_hist_outlier, |
|
3130 | 3142 | minHei=minHei, maxHei=maxHei, minRef=minRef, maxRef=maxRef, thdB=thdB) |
|
3131 | 3143 | self.isConfig = True |
|
3132 | 3144 | |
|
3133 | 3145 | dataBlock = None |
|
3134 | 3146 | |
|
3135 | 3147 | if not dataOut.buffer_empty: #hay datos acumulados |
|
3136 | 3148 | |
|
3137 | 3149 | if self.init_prof == 0: |
|
3138 | 3150 | self.n_prof_released = 0 |
|
3139 | 3151 | self.lenProfileOut = nProfilesOut |
|
3140 | 3152 | dataOut.flagNoData = False |
|
3141 | 3153 | #print("tp 2 ",dataOut.data.shape) |
|
3142 | 3154 | |
|
3143 | 3155 | self.init_prof = 0 |
|
3144 | 3156 | self.end_prof = self.lenProfileOut |
|
3145 | 3157 | |
|
3146 | 3158 | dataOut.nProfiles = self.lenProfileOut |
|
3147 | 3159 | if nProfilesOut == 1: |
|
3148 | 3160 | dataOut.flagDataAsBlock = False |
|
3149 | 3161 | else: |
|
3150 | 3162 | dataOut.flagDataAsBlock = True |
|
3151 | 3163 | #print("prof: ",self.init_prof) |
|
3152 | 3164 | dataOut.flagNoData = False |
|
3153 | 3165 | if numpy.isin(self.n_prof_released, self.outliers_IDs_list): |
|
3154 | 3166 | #print("omitting: ", self.n_prof_released) |
|
3155 | 3167 | dataOut.flagNoData = True |
|
3156 | 3168 | dataOut.ippSeconds = self._ipp |
|
3157 | 3169 | dataOut.utctime = self.first_utcBlock + self.init_prof*self._ipp |
|
3158 | 3170 | # print("time: ", dataOut.utctime, self.first_utcBlock, self.init_prof,self._ipp,dataOut.ippSeconds) |
|
3159 | 3171 | #dataOut.data = self.releaseBlock() |
|
3160 | 3172 | #########################################################3 |
|
3161 | 3173 | if self.n % self.lenProfileOut != 0: |
|
3162 | 3174 | raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n)) |
|
3163 | 3175 | return None |
|
3164 | 3176 | |
|
3165 | 3177 | dataOut.data = None |
|
3166 | 3178 | |
|
3167 | 3179 | if nProfilesOut == 1: |
|
3168 | 3180 | dataOut.data = self.buffer[:,self.end_prof-1,:] #ch, prof, alt |
|
3169 | 3181 | else: |
|
3170 | 3182 | dataOut.data = self.buffer[:,self.init_prof:self.end_prof,:] #ch, prof, alt |
|
3171 | 3183 | |
|
3172 | 3184 | self.init_prof = self.end_prof |
|
3173 | 3185 | self.end_prof += self.lenProfileOut |
|
3174 | 3186 | #print("data release shape: ",dataOut.data.shape, self.end_prof, dataOut.flagNoData) |
|
3175 | 3187 | self.n_prof_released += 1 |
|
3176 | 3188 | |
|
3177 | 3189 | if self.end_prof >= (self.n +self.lenProfileOut): |
|
3178 | 3190 | |
|
3179 | 3191 | self.init_prof = 0 |
|
3180 | 3192 | self.__profIndex = 0 |
|
3181 | 3193 | self.buffer = None |
|
3182 | 3194 | dataOut.buffer_empty = True |
|
3183 | 3195 | self.outliers_IDs_list = [] |
|
3184 | 3196 | self.n_prof_released = 0 |
|
3185 | 3197 | dataOut.flagNoData = False #enviar ultimo aunque sea outlier :( |
|
3186 | 3198 | #print("cleaning...", dataOut.buffer_empty) |
|
3187 | 3199 | dataOut.profileIndex = 0 #self.lenProfileOut |
|
3188 | 3200 | #################################################################### |
|
3189 | 3201 | return dataOut |
|
3190 | 3202 | |
|
3191 | 3203 | |
|
3192 | 3204 | #print("tp 223 ",dataOut.data.shape) |
|
3193 | 3205 | dataOut.flagNoData = True |
|
3194 | 3206 | |
|
3195 | 3207 | |
|
3196 | 3208 | |
|
3197 | 3209 | try: |
|
3198 | 3210 | #dataBlock = self.getData(dataOut.data.reshape(self.nChannels,1,self.nHeights), dataOut.utctime) |
|
3199 | 3211 | dataBlock = self.getData(numpy.reshape(dataOut.data,(self.nChannels,1,self.nHeights)), dataOut.utctime) |
|
3200 | 3212 | self.__count_exec +=1 |
|
3201 | 3213 | except Exception as e: |
|
3202 | 3214 | print("Error getting profiles data",self.__count_exec ) |
|
3203 | 3215 | print(e) |
|
3204 | 3216 | sys.exit() |
|
3205 | 3217 | |
|
3206 | 3218 | if self.__dataReady: |
|
3207 | 3219 | #print("omitting: ", len(self.outliers_IDs_list)) |
|
3208 | 3220 | self.__count_exec = 0 |
|
3209 | 3221 | #dataOut.data = |
|
3210 | 3222 | #self.buffer = numpy.flip(dataBlock, axis=1) |
|
3211 | 3223 | self.buffer = dataBlock |
|
3212 | 3224 | self.first_utcBlock = self.__initime |
|
3213 | 3225 | dataOut.utctime = self.__initime |
|
3214 | 3226 | dataOut.nProfiles = self.__profIndex |
|
3215 | 3227 | #dataOut.flagNoData = False |
|
3216 | 3228 | self.init_prof = 0 |
|
3217 | 3229 | self.__profIndex = 0 |
|
3218 | 3230 | self.__initime = None |
|
3219 | 3231 | dataBlock = None |
|
3220 | 3232 | self.__buffer_times = [] |
|
3221 | 3233 | dataOut.error = False |
|
3222 | 3234 | dataOut.useInputBuffer = True |
|
3223 | 3235 | dataOut.buffer_empty = False |
|
3224 | 3236 | #print("1 ch: {} prof: {} hs: {}".format(int(dataOut.nChannels),int(dataOut.nProfiles),int(dataOut.nHeights))) |
|
3225 | 3237 | |
|
3226 | 3238 | |
|
3227 | 3239 | |
|
3228 | 3240 | #print(self.__count_exec) |
|
3229 | 3241 | |
|
3230 | 3242 | return dataOut |
|
3231 | 3243 | |
|
3232 | 3244 | |
|
3233 | 3245 | class RemoveProfileSats2(Operation): |
|
3234 | 3246 | ''' |
|
3235 | 3247 | Escrito: Joab Apaza |
|
3236 | 3248 | |
|
3237 | 3249 | Omite los perfiles contaminados con seΓ±al de satΓ©lites, usando una altura de referencia |
|
3238 | 3250 | promedia todas las alturas para los cΓ‘lculos |
|
3239 | 3251 | In: |
|
3240 | 3252 | n = Cantidad de perfiles que se acumularan, usualmente 10 segundos |
|
3241 | 3253 | navg = Porcentaje de perfiles que puede considerarse como satΓ©lite, mΓ‘ximo 90% |
|
3242 | 3254 | minHei = |
|
3243 | 3255 | minRef = |
|
3244 | 3256 | maxRef = |
|
3245 | 3257 | nBins = |
|
3246 | 3258 | profile_margin = |
|
3247 | 3259 | th_hist_outlier = |
|
3248 | 3260 | nProfilesOut = |
|
3249 | 3261 | |
|
3250 | 3262 | Pensado para remover interferencias de las YAGI, se puede adaptar a otras interferencias |
|
3251 | 3263 | |
|
3252 | 3264 | remYagi = Activa la funcion de remociΓ³n de interferencias de la YAGI |
|
3253 | 3265 | nProfYagi = Cantidad de perfiles que son afectados, acorde NTX de la YAGI |
|
3254 | 3266 | offYagi = |
|
3255 | 3267 | minHJULIA = Altura mΓnima donde aparece la seΓ±al referencia de JULIA (-50) |
|
3256 | 3268 | maxHJULIA = Altura mΓ‘xima donde aparece la seΓ±al referencia de JULIA (-15) |
|
3257 | 3269 | |
|
3258 | 3270 | debug = Activa los grΓ‘ficos, recomendable ejecutar para ajustar los parΓ‘metros |
|
3259 | 3271 | para un experimento en especΓfico. |
|
3260 | 3272 | |
|
3261 | 3273 | ** se modifica para remover interferencias puntuales, es decir, desde otros radares. |
|
3262 | 3274 | Inicialmente se ha configurado para omitir tambiΓ©n los perfiles de la YAGI en los datos |
|
3263 | 3275 | de AMISR-ISR. |
|
3264 | 3276 | |
|
3265 | 3277 | Out: |
|
3266 | 3278 | profile clean |
|
3267 | 3279 | ''' |
|
3268 | 3280 | |
|
3269 | 3281 | |
|
3270 | 3282 | __buffer_data = [] |
|
3271 | 3283 | __buffer_times = [] |
|
3272 | 3284 | |
|
3273 | 3285 | buffer = None |
|
3274 | 3286 | |
|
3275 | 3287 | outliers_IDs_list = [] |
|
3276 | 3288 | |
|
3277 | 3289 | |
|
3278 | 3290 | __slots__ = ('n','navg','profileMargin','thHistOutlier','minHei_idx','maxHei_idx','nHeights', |
|
3279 | 'first_utcBlock','__profIndex','init_prof','end_prof','lenProfileOut','nChannels', | |
|
3291 | 'first_utcBlock','__profIndex','init_prof','end_prof','lenProfileOut','nChannels','cohFactor', | |
|
3280 | 3292 | '__count_exec','__initime','__dataReady','__ipp', 'minRef', 'maxRef', 'debug','prev_pnoise') |
|
3281 | 3293 | def __init__(self, **kwargs): |
|
3282 | 3294 | |
|
3283 | 3295 | Operation.__init__(self, **kwargs) |
|
3284 | 3296 | self.isConfig = False |
|
3285 | 3297 | self.currentTime = None |
|
3286 | 3298 | |
|
3287 |
def setup(self,dataOut, n=None , navg=0. |
|
|
3299 | def setup(self,dataOut, n=None , navg=0.9, profileMargin=50,thHistOutlier=15,minHei=None, maxHei=None, nBins=10, | |
|
3288 | 3300 | minRef=None, maxRef=None, debug=False, remYagi=False, nProfYagi = 0, offYagi=0, minHJULIA=None, maxHJULIA=None, |
|
3289 | 3301 | idate=None,startH=None,endH=None ): |
|
3290 | 3302 | |
|
3291 | 3303 | if n == None and timeInterval == None: |
|
3292 | 3304 | raise ValueError("nprofiles or timeInterval should be specified ...") |
|
3293 | 3305 | |
|
3294 | 3306 | if n != None: |
|
3295 | 3307 | self.n = n |
|
3296 | 3308 | |
|
3297 | 3309 | self.navg = navg |
|
3298 | 3310 | self.profileMargin = profileMargin |
|
3299 | 3311 | self.thHistOutlier = thHistOutlier |
|
3300 | 3312 | self.__profIndex = 0 |
|
3301 | 3313 | self.buffer = None |
|
3302 | 3314 | self._ipp = dataOut.ippSeconds |
|
3303 | 3315 | self.n_prof_released = 0 |
|
3304 | 3316 | self.heightList = dataOut.heightList |
|
3305 | 3317 | self.init_prof = 0 |
|
3306 | 3318 | self.end_prof = 0 |
|
3307 | 3319 | self.__count_exec = 0 |
|
3308 | 3320 | self.__profIndex = 0 |
|
3309 | 3321 | self.first_utcBlock = None |
|
3310 | 3322 | self.prev_pnoise = None |
|
3311 | 3323 | self.nBins = nBins |
|
3312 | 3324 | #self.__dh = dataOut.heightList[1] - dataOut.heightList[0] |
|
3313 | 3325 | minHei = minHei |
|
3314 | 3326 | maxHei = maxHei |
|
3315 | 3327 | if minHei==None : |
|
3316 | 3328 | minHei = dataOut.heightList[0] |
|
3317 | 3329 | if maxHei==None : |
|
3318 | 3330 | maxHei = dataOut.heightList[-1] |
|
3319 | 3331 | self.minHei_idx,self.maxHei_idx = getHei_index(minHei, maxHei, dataOut.heightList) |
|
3320 | 3332 | self.min_ref, self.max_ref = getHei_index(minRef, maxRef, dataOut.heightList) |
|
3321 | 3333 | self.nChannels = dataOut.nChannels |
|
3322 | 3334 | self.nHeights = dataOut.nHeights |
|
3323 | 3335 | self.test_counter = 0 |
|
3324 | 3336 | self.debug = debug |
|
3325 | 3337 | self.remYagi = remYagi |
|
3326 | ||
|
3338 | self.cohFactor = dataOut.nCohInt | |
|
3327 | 3339 | if self.remYagi : |
|
3328 | 3340 | if minHJULIA==None or maxHJULIA==None: |
|
3329 | 3341 | raise ValueError("Parameters minHYagi and minHYagi are necessary!") |
|
3330 | 3342 | return |
|
3331 | 3343 | if idate==None or startH==None or endH==None: |
|
3332 | 3344 | raise ValueError("Date and hour parameters are necessary!") |
|
3333 | 3345 | return |
|
3334 | 3346 | self.minHJULIA_idx,self.maxHJULIA_idx = getHei_index(minHJULIA, maxHJULIA, dataOut.heightList) |
|
3335 | 3347 | self.offYagi = offYagi |
|
3336 | 3348 | self.nTxYagi = nProfYagi |
|
3337 | 3349 | |
|
3338 | 3350 | self.startTime = datetime.datetime.combine(idate,startH) |
|
3339 | 3351 | self.endTime = datetime.datetime.combine(idate,endH) |
|
3340 | 3352 | |
|
3341 |
log.warning("Be careful with the selection of parameters for sat removal! I |
|
|
3353 | log.warning("Be careful with the selection of parameters for sats removal! It is avisable to \ | |
|
3342 | 3354 | activate the debug parameter in this operation for calibration", self.name) |
|
3343 | 3355 | |
|
3344 | 3356 | |
|
3345 | 3357 | def filterSatsProfiles(self): |
|
3346 | 3358 | |
|
3347 | 3359 | data = self.__buffer_data.copy() |
|
3348 | 3360 | #print(data.shape) |
|
3349 | 3361 | nChannels, profiles, heights = data.shape |
|
3350 | 3362 | indexes=numpy.zeros([], dtype=int) |
|
3351 | 3363 | indexes = numpy.delete(indexes,0) |
|
3352 | 3364 | |
|
3353 | 3365 | indexesYagi=numpy.zeros([], dtype=int) |
|
3354 | 3366 | indexesYagi = numpy.delete(indexesYagi,0) |
|
3355 | 3367 | |
|
3356 | 3368 | indexesYagi_up=numpy.zeros([], dtype=int) |
|
3357 | 3369 | indexesYagi_up = numpy.delete(indexesYagi_up,0) |
|
3358 | 3370 | indexesYagi_down=numpy.zeros([], dtype=int) |
|
3359 | 3371 | indexesYagi_down = numpy.delete(indexesYagi_down,0) |
|
3360 | 3372 | |
|
3361 | 3373 | |
|
3362 | 3374 | indexesJULIA=numpy.zeros([], dtype=int) |
|
3363 | 3375 | indexesJULIA = numpy.delete(indexesJULIA,0) |
|
3364 | 3376 | |
|
3365 | 3377 | outliers_IDs=[] |
|
3366 | 3378 | |
|
3367 | 3379 | div = profiles//self.nBins |
|
3368 | 3380 | |
|
3369 | 3381 | for c in range(nChannels): |
|
3370 | 3382 | #print(self.min_ref,self.max_ref) |
|
3371 | 3383 | |
|
3372 | 3384 | import scipy.signal |
|
3373 |
b, a = scipy.signal.butter(3, 0. |
|
|
3374 |
noise_ref = (data[c,:,self.min_ref:self.max_ref] * numpy.conjugate(data[c,:,self.min_ref:self.max_ref])) |
|
|
3385 | b, a = scipy.signal.butter(3, 0.5) | |
|
3386 | #noise_ref = (data[c,:,self.min_ref:self.max_ref] * numpy.conjugate(data[c,:,self.min_ref:self.max_ref])) | |
|
3387 | noise_ref = numpy.abs(data[c,:,self.min_ref:self.max_ref]) | |
|
3388 | lnoise = len(noise_ref[0,:]) | |
|
3389 | #print(noise_ref.shape) | |
|
3375 | 3390 | noise_ref = noise_ref.mean(axis=1) |
|
3391 | #fnoise = noise_ref | |
|
3376 | 3392 | fnoise = scipy.signal.filtfilt(b, a, noise_ref) |
|
3377 | 3393 | #noise_refdB = 10* numpy.log10(noise_ref) |
|
3378 | 3394 | #print("Noise ",numpy.percentile(noise_ref,95)) |
|
3379 |
p |
|
|
3395 | p95 = numpy.percentile(fnoise,90) | |
|
3380 | 3396 | mean_noise = fnoise.mean() |
|
3397 | ||
|
3381 | 3398 | if self.prev_pnoise != None: |
|
3382 | 3399 | if mean_noise < (1.5 * self.prev_pnoise) : |
|
3383 | 3400 | self.prev_pnoise = mean_noise |
|
3384 | 3401 | else: |
|
3385 | 3402 | mean_noise = self.prev_pnoise |
|
3386 | 3403 | else: |
|
3387 | 3404 | self.prev_pnoise = mean_noise |
|
3388 | 3405 | |
|
3389 | 3406 | std = fnoise.std()+ fnoise.mean() |
|
3390 | 3407 | |
|
3391 | 3408 | |
|
3392 | 3409 | |
|
3393 |
power = (data[c,:,self.minHei_idx:self.maxHei_idx] * numpy.conjugate(data[c,:,self.minHei_idx:self.maxHei_idx])) |
|
|
3394 | heis = len(power[0,:]) | |
|
3395 |
power = power |
|
|
3410 | #power = (data[c,:,self.minHei_idx:self.maxHei_idx] * numpy.conjugate(data[c,:,self.minHei_idx:self.maxHei_idx])) | |
|
3411 | power = numpy.abs(data[c,:,self.minHei_idx:self.maxHei_idx]) | |
|
3412 | npower = len(power[0,:]) | |
|
3413 | #print(power.shape) | |
|
3414 | power = power.mean(axis=1) | |
|
3396 | 3415 | |
|
3397 | 3416 | fpower = scipy.signal.filtfilt(b, a, power) |
|
3398 | 3417 | #print(power.shape) |
|
3399 | 3418 | #powerdB = 10* numpy.log10(power) |
|
3400 | 3419 | |
|
3401 |
th = p |
|
|
3420 | th = p95 #* 1.1 | |
|
3421 | #th = mean_noise | |
|
3402 | 3422 | index = numpy.where(fpower > th ) |
|
3403 |
#print("Noise ",mean_noise, p |
|
|
3423 | #print("Noise ",mean_noise, p95) | |
|
3404 | 3424 | #print(index) |
|
3405 | 3425 | |
|
3406 | if index[0].size < int(self.navg*profiles): | |
|
3426 | ||
|
3427 | if index[0].size <= int(self.navg*profiles): | |
|
3407 | 3428 | indexes = numpy.append(indexes, index[0]) |
|
3408 | 3429 | |
|
3409 | 3430 | #print("sdas ", noise_ref.mean()) |
|
3410 | 3431 | |
|
3411 | 3432 | if self.remYagi : |
|
3412 | 3433 | #print(self.minHJULIA_idx, self.maxHJULIA_idx) |
|
3413 | 3434 | powerJULIA = (data[c,:,self.minHJULIA_idx:self.maxHJULIA_idx] * numpy.conjugate(data[c,:,self.minHJULIA_idx:self.maxHJULIA_idx])).real |
|
3414 | 3435 | powerJULIA = powerJULIA.mean(axis=1) |
|
3415 | 3436 | th_JULIA = powerJULIA.mean()*0.85 |
|
3416 | 3437 | indexJULIA = numpy.where(powerJULIA >= th_JULIA ) |
|
3417 | 3438 | |
|
3418 | 3439 | indexesJULIA= numpy.append(indexesJULIA, indexJULIA[0]) |
|
3419 | 3440 | |
|
3420 | 3441 | # fig, ax = plt.subplots() |
|
3421 | 3442 | # ax.plot(powerJULIA) |
|
3422 | 3443 | # ax.axhline(th_JULIA, color='r') |
|
3423 | 3444 | # plt.grid() |
|
3424 | 3445 | # plt.show() |
|
3425 | 3446 | |
|
3426 | # fig, ax = plt.subplots() | |
|
3427 |
|
|
|
3428 | # ax.axhline(th, color='r') | |
|
3429 | # ax.axhline(std, color='b') | |
|
3430 | # plt.grid() | |
|
3431 | # plt.show() | |
|
3447 | if self.debug: | |
|
3448 | fig, ax = plt.subplots() | |
|
3449 | ax.plot(fpower, label="power") | |
|
3450 | #ax.plot(fnoise, label="noise ref") | |
|
3451 | ax.axhline(th, color='g', label="th") | |
|
3452 | #ax.axhline(std, color='b', label="mean") | |
|
3453 | ax.legend() | |
|
3454 | plt.grid() | |
|
3455 | plt.show() | |
|
3432 | 3456 | |
|
3433 | 3457 | #print(indexes) |
|
3434 | 3458 | |
|
3435 | 3459 | #outliers_IDs = outliers_IDs.astype(numpy.dtype('int64')) |
|
3436 | 3460 | #outliers_IDs = numpy.unique(outliers_IDs) |
|
3437 | 3461 | # print(indexesJULIA) |
|
3438 | 3462 | if len(indexesJULIA > 1): |
|
3439 | 3463 | iJ = indexesJULIA |
|
3440 | 3464 | locs = [ (iJ[n]-iJ[n-1]) > 5 for n in range(len(iJ))] |
|
3441 | 3465 | locs_2 = numpy.where(locs)[0] |
|
3442 | 3466 | #print(locs_2, indexesJULIA[locs_2-1]) |
|
3443 | 3467 | indexesYagi_up = numpy.append(indexesYagi_up, indexesJULIA[locs_2-1]) |
|
3444 | 3468 | indexesYagi_down = numpy.append(indexesYagi_down, indexesJULIA[locs_2]) |
|
3445 | 3469 | |
|
3446 | 3470 | |
|
3447 | 3471 | indexesYagi_up = numpy.append(indexesYagi_up,indexesJULIA[-1]) |
|
3448 | 3472 | indexesYagi_down = numpy.append(indexesYagi_down,indexesJULIA[0]) |
|
3449 | 3473 | |
|
3450 | 3474 | indexesYagi_up = numpy.unique(indexesYagi_up) |
|
3451 | 3475 | indexesYagi_down = numpy.unique(indexesYagi_down) |
|
3452 | 3476 | |
|
3453 | 3477 | |
|
3454 | 3478 | aux_ind = [ numpy.arange( (self.offYagi + k)+1, (self.offYagi + k + self.nTxYagi)+1, 1, dtype=int) for k in indexesYagi_up] |
|
3455 | 3479 | indexesYagi_up = (numpy.asarray(aux_ind)).flatten() |
|
3456 | 3480 | |
|
3457 | 3481 | aux_ind2 = [ numpy.arange( (k - self.nTxYagi)+1, k+1 , 1, dtype=int) for k in indexesYagi_down] |
|
3458 | 3482 | indexesYagi_down = (numpy.asarray(aux_ind2)).flatten() |
|
3459 | 3483 | |
|
3460 | 3484 | indexesYagi = numpy.append(indexesYagi,indexesYagi_up) |
|
3461 | 3485 | indexesYagi = numpy.append(indexesYagi,indexesYagi_down) |
|
3462 | 3486 | |
|
3463 | 3487 | |
|
3464 | 3488 | indexesYagi = indexesYagi[ (indexesYagi >= 0) & (indexesYagi<profiles)] |
|
3465 | 3489 | indexesYagi = numpy.unique(indexesYagi) |
|
3466 | 3490 | |
|
3491 | #print("indexes: " ,indexes) | |
|
3467 | 3492 | outs_lines = numpy.unique(indexes) |
|
3468 | ||
|
3493 | #print(outs_lines) | |
|
3469 | 3494 | |
|
3470 | 3495 | #Agrupando el histograma de outliers, |
|
3471 | 3496 | my_bins = numpy.linspace(0,int(profiles), div, endpoint=True) |
|
3472 | 3497 | |
|
3473 | 3498 | |
|
3474 | 3499 | hist, bins = numpy.histogram(outs_lines,bins=my_bins) |
|
3475 | hist_outliers_indexes = numpy.where(hist >= self.thHistOutlier) #es outlier | |
|
3476 | hist_outliers_indexes = hist_outliers_indexes[0] | |
|
3500 | #print("hist: ",hist) | |
|
3501 | hist_outliers_indexes = numpy.where(hist >= self.thHistOutlier)[0] #es outlier | |
|
3502 | #print(hist_outliers_indexes) | |
|
3477 | 3503 | if len(hist_outliers_indexes>0): |
|
3478 | 3504 | hist_outliers_indexes = numpy.append(hist_outliers_indexes,hist_outliers_indexes[-1]+1) |
|
3479 | 3505 | |
|
3480 | 3506 | bins_outliers_indexes = [int(i) for i in (bins[hist_outliers_indexes])] # |
|
3481 | 3507 | outlier_loc_index = [] |
|
3482 | 3508 | #print("out indexes ", bins_outliers_indexes) |
|
3483 | 3509 | if len(bins_outliers_indexes) <= 3: |
|
3484 | 3510 | extprof = 0 |
|
3485 | 3511 | else: |
|
3486 | 3512 | extprof = self.profileMargin |
|
3487 | 3513 | outlier_loc_index = [e for n in range(len(bins_outliers_indexes)) for e in range(bins_outliers_indexes[n]-extprof,bins_outliers_indexes[n] + extprof) ] |
|
3488 | 3514 | outlier_loc_index = numpy.asarray(outlier_loc_index) |
|
3489 | 3515 | # if len(outlier_loc_index)>1: |
|
3490 | 3516 | # ipmax = numpy.where(fpower==fpower.max())[0] |
|
3491 | 3517 | # print("pmax: ",ipmax) |
|
3492 | 3518 | |
|
3493 | 3519 | |
|
3494 | 3520 | |
|
3495 | 3521 | |
|
3496 | 3522 | #print("outliers Ids: ", outlier_loc_index, outlier_loc_index.shape) |
|
3497 | 3523 | outlier_loc_index = outlier_loc_index[ (outlier_loc_index >= 0) & (outlier_loc_index<profiles)] |
|
3498 | 3524 | #print("outliers final: ", outlier_loc_index) |
|
3499 | 3525 | |
|
3500 | 3526 | |
|
3501 | 3527 | if self.debug: |
|
3502 | 3528 | x, y = numpy.meshgrid(numpy.arange(profiles), self.heightList) |
|
3503 | 3529 | fig, ax = plt.subplots(nChannels,2,figsize=(8, 6)) |
|
3504 | 3530 | |
|
3505 | 3531 | for i in range(nChannels): |
|
3506 | 3532 | dat = data[i,:,:].real |
|
3507 | 3533 | dat = 10* numpy.log10((data[i,:,:] * numpy.conjugate(data[i,:,:])).real) |
|
3508 | 3534 | m = numpy.nanmean(dat) |
|
3509 | 3535 | o = numpy.nanstd(dat) |
|
3510 | 3536 | if nChannels>1: |
|
3511 | 3537 | c = ax[i][0].pcolormesh(x, y, dat.T, cmap ='jet', vmin = 60, vmax = 70) |
|
3512 | 3538 | ax[i][0].vlines(outs_lines,650,700, linestyles='dashed', label = 'outs', color='w') |
|
3513 | 3539 | #fig.colorbar(c) |
|
3514 | 3540 | ax[i][0].vlines(outlier_loc_index,700,750, linestyles='dashed', label = 'outs', color='r') |
|
3515 | 3541 | ax[i][1].hist(outs_lines,bins=my_bins) |
|
3516 | 3542 | if self.remYagi : |
|
3517 | 3543 | ax[0].vlines(indexesYagi,750,850, linestyles='dashed', label = 'yagi', color='m') |
|
3518 | 3544 | else: |
|
3519 | c = ax[0].pcolormesh(x, y, dat.T, cmap ='jet', vmin = 60, vmax = 70) | |
|
3545 | c = ax[0].pcolormesh(x, y, dat.T, cmap ='jet', vmin = 60, vmax = (70+2*self.cohFactor)) | |
|
3520 | 3546 | ax[0].vlines(outs_lines,650,700, linestyles='dashed', label = 'outs', color='w') |
|
3521 | 3547 | #fig.colorbar(c) |
|
3522 | 3548 | ax[0].vlines(outlier_loc_index,700,750, linestyles='dashed', label = 'outs', color='r') |
|
3523 | 3549 | |
|
3524 | 3550 | ax[1].hist(outs_lines,bins=my_bins) |
|
3525 | 3551 | if self.remYagi : |
|
3526 | 3552 | ax[0].vlines(indexesYagi,750,850, linestyles='dashed', label = 'yagi', color='m') |
|
3527 | 3553 | plt.show() |
|
3528 | 3554 | |
|
3529 | 3555 | |
|
3530 | 3556 | |
|
3531 | 3557 | |
|
3532 | 3558 | if self.remYagi and (self.currentTime < self.startTime and self.currentTime < self.endTime): |
|
3533 | 3559 | outlier_loc_index = numpy.append(outlier_loc_index,indexesYagi) |
|
3534 | 3560 | |
|
3535 | 3561 | self.outliers_IDs_list = numpy.unique(outlier_loc_index) |
|
3536 | 3562 | |
|
3537 | 3563 | #print("outs list: ", self.outliers_IDs_list) |
|
3538 | 3564 | return self.__buffer_data |
|
3539 | 3565 | |
|
3540 | 3566 | |
|
3541 | 3567 | |
|
3542 | 3568 | def fillBuffer(self, data, datatime): |
|
3543 | 3569 | |
|
3544 | 3570 | if self.__profIndex == 0: |
|
3545 | 3571 | self.__buffer_data = data.copy() |
|
3546 | 3572 | |
|
3547 | 3573 | else: |
|
3548 | 3574 | self.__buffer_data = numpy.concatenate((self.__buffer_data,data), axis=1)#en perfiles |
|
3549 | 3575 | self.__profIndex += 1 |
|
3550 | 3576 | self.__buffer_times.append(datatime) |
|
3551 | 3577 | |
|
3552 | 3578 | def getData(self, data, datatime=None): |
|
3553 | 3579 | |
|
3554 | 3580 | if self.__profIndex == 0: |
|
3555 | 3581 | self.__initime = datatime |
|
3556 | 3582 | |
|
3557 | 3583 | |
|
3558 | 3584 | self.__dataReady = False |
|
3559 | 3585 | |
|
3560 | 3586 | self.fillBuffer(data, datatime) |
|
3561 | 3587 | dataBlock = None |
|
3562 | 3588 | |
|
3563 | 3589 | if self.__profIndex == self.n: |
|
3564 | 3590 | #print("apnd : ",data) |
|
3565 | 3591 | dataBlock = self.filterSatsProfiles() |
|
3566 | 3592 | self.__dataReady = True |
|
3567 | 3593 | |
|
3568 | 3594 | return dataBlock |
|
3569 | 3595 | |
|
3570 | 3596 | if dataBlock is None: |
|
3571 | 3597 | return None, None |
|
3572 | 3598 | |
|
3573 | 3599 | |
|
3574 | 3600 | |
|
3575 | 3601 | return dataBlock |
|
3576 | 3602 | |
|
3577 | 3603 | def releaseBlock(self): |
|
3578 | 3604 | |
|
3579 | 3605 | if self.n % self.lenProfileOut != 0: |
|
3580 | 3606 | raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n)) |
|
3581 | 3607 | return None |
|
3582 | 3608 | |
|
3583 | 3609 | data = self.buffer[:,self.init_prof:self.end_prof:,:] #ch, prof, alt |
|
3584 | 3610 | |
|
3585 | 3611 | self.init_prof = self.end_prof |
|
3586 | 3612 | self.end_prof += self.lenProfileOut |
|
3587 | 3613 | #print("data release shape: ",dataOut.data.shape, self.end_prof) |
|
3588 | 3614 | self.n_prof_released += 1 |
|
3589 | 3615 | |
|
3590 | 3616 | return data |
|
3591 | 3617 | |
|
3592 | 3618 | def run(self, dataOut, n=None, navg=0.9, nProfilesOut=1, profile_margin=50, th_hist_outlier=15,minHei=None,nBins=10, |
|
3593 | 3619 | maxHei=None, minRef=None, maxRef=None, debug=False, remYagi=False, nProfYagi = 0, offYagi=0, minHJULIA=None, maxHJULIA=None, |
|
3594 | 3620 | idate=None,startH=None,endH=None): |
|
3595 | 3621 | |
|
3596 | 3622 | if not self.isConfig: |
|
3597 | 3623 | #print("init p idx: ", dataOut.profileIndex ) |
|
3598 | 3624 | self.setup(dataOut,n=n, navg=navg,profileMargin=profile_margin,thHistOutlier=th_hist_outlier,minHei=minHei, |
|
3599 | 3625 | nBins=10, maxHei=maxHei, minRef=minRef, maxRef=maxRef, debug=debug, remYagi=remYagi, nProfYagi = nProfYagi, |
|
3600 | 3626 | offYagi=offYagi, minHJULIA=minHJULIA,maxHJULIA=maxHJULIA,idate=idate,startH=startH,endH=endH) |
|
3601 | 3627 | |
|
3602 | 3628 | self.isConfig = True |
|
3603 | 3629 | |
|
3604 | 3630 | dataBlock = None |
|
3605 | 3631 | self.currentTime = datetime.datetime.fromtimestamp(dataOut.utctime) |
|
3606 | 3632 | |
|
3607 | 3633 | if not dataOut.buffer_empty: #hay datos acumulados |
|
3608 | 3634 | |
|
3609 | 3635 | if self.init_prof == 0: |
|
3610 | 3636 | self.n_prof_released = 0 |
|
3611 | 3637 | self.lenProfileOut = nProfilesOut |
|
3612 | 3638 | dataOut.flagNoData = False |
|
3613 | 3639 | #print("tp 2 ",dataOut.data.shape) |
|
3614 | 3640 | |
|
3615 | 3641 | self.init_prof = 0 |
|
3616 | 3642 | self.end_prof = self.lenProfileOut |
|
3617 | 3643 | |
|
3618 | 3644 | dataOut.nProfiles = self.lenProfileOut |
|
3619 | 3645 | if nProfilesOut == 1: |
|
3620 | 3646 | dataOut.flagDataAsBlock = False |
|
3621 | 3647 | else: |
|
3622 | 3648 | dataOut.flagDataAsBlock = True |
|
3623 | 3649 | #print("prof: ",self.init_prof) |
|
3624 | 3650 | dataOut.flagNoData = False |
|
3625 | 3651 | if numpy.isin(self.n_prof_released, self.outliers_IDs_list): |
|
3626 | 3652 | #print("omitting: ", self.n_prof_released) |
|
3627 | 3653 | dataOut.flagNoData = True |
|
3628 | 3654 | dataOut.ippSeconds = self._ipp |
|
3629 | 3655 | dataOut.utctime = self.first_utcBlock + self.init_prof*self._ipp |
|
3630 | 3656 | # print("time: ", dataOut.utctime, self.first_utcBlock, self.init_prof,self._ipp,dataOut.ippSeconds) |
|
3631 | 3657 | #dataOut.data = self.releaseBlock() |
|
3632 | 3658 | #########################################################3 |
|
3633 | 3659 | if self.n % self.lenProfileOut != 0: |
|
3634 | 3660 | raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n)) |
|
3635 | 3661 | return None |
|
3636 | 3662 | |
|
3637 | 3663 | dataOut.data = None |
|
3638 | 3664 | |
|
3639 | 3665 | if nProfilesOut == 1: |
|
3640 | 3666 | dataOut.data = self.buffer[:,self.end_prof-1,:] #ch, prof, alt |
|
3641 | 3667 | else: |
|
3642 | 3668 | dataOut.data = self.buffer[:,self.init_prof:self.end_prof,:] #ch, prof, alt |
|
3643 | 3669 | |
|
3644 | 3670 | self.init_prof = self.end_prof |
|
3645 | 3671 | self.end_prof += self.lenProfileOut |
|
3646 | 3672 | #print("data release shape: ",dataOut.data.shape, self.end_prof, dataOut.flagNoData) |
|
3647 | 3673 | self.n_prof_released += 1 |
|
3648 | 3674 | |
|
3649 | 3675 | if self.end_prof >= (self.n +self.lenProfileOut): |
|
3650 | 3676 | |
|
3651 | 3677 | self.init_prof = 0 |
|
3652 | 3678 | self.__profIndex = 0 |
|
3653 | 3679 | self.buffer = None |
|
3654 | 3680 | dataOut.buffer_empty = True |
|
3655 | 3681 | self.outliers_IDs_list = [] |
|
3656 | 3682 | self.n_prof_released = 0 |
|
3657 | 3683 | dataOut.flagNoData = False #enviar ultimo aunque sea outlier :( |
|
3658 | 3684 | #print("cleaning...", dataOut.buffer_empty) |
|
3659 | 3685 | dataOut.profileIndex = self.__profIndex |
|
3660 | 3686 | #################################################################### |
|
3661 | 3687 | return dataOut |
|
3662 | 3688 | |
|
3663 | 3689 | |
|
3664 | 3690 | #print("tp 223 ",dataOut.data.shape) |
|
3665 | 3691 | dataOut.flagNoData = True |
|
3666 | 3692 | |
|
3667 | 3693 | |
|
3668 | 3694 | |
|
3669 | 3695 | try: |
|
3670 | 3696 | #dataBlock = self.getData(dataOut.data.reshape(self.nChannels,1,self.nHeights), dataOut.utctime) |
|
3671 | 3697 | dataBlock = self.getData(numpy.reshape(dataOut.data,(self.nChannels,1,self.nHeights)), dataOut.utctime) |
|
3672 | 3698 | self.__count_exec +=1 |
|
3673 | 3699 | except Exception as e: |
|
3674 | 3700 | print("Error getting profiles data",self.__count_exec ) |
|
3675 | 3701 | print(e) |
|
3676 | 3702 | sys.exit() |
|
3677 | 3703 | |
|
3678 | 3704 | if self.__dataReady: |
|
3679 | 3705 | #print("omitting: ", len(self.outliers_IDs_list)) |
|
3680 | 3706 | self.__count_exec = 0 |
|
3681 | 3707 | #dataOut.data = |
|
3682 | 3708 | #self.buffer = numpy.flip(dataBlock, axis=1) |
|
3683 | 3709 | self.buffer = dataBlock |
|
3684 | 3710 | self.first_utcBlock = self.__initime |
|
3685 | 3711 | dataOut.utctime = self.__initime |
|
3686 | 3712 | dataOut.nProfiles = self.__profIndex |
|
3687 | 3713 | #dataOut.flagNoData = False |
|
3688 | 3714 | self.init_prof = 0 |
|
3689 | 3715 | self.__profIndex = 0 |
|
3690 | 3716 | self.__initime = None |
|
3691 | 3717 | dataBlock = None |
|
3692 | 3718 | self.__buffer_times = [] |
|
3693 | 3719 | dataOut.error = False |
|
3694 | 3720 | dataOut.useInputBuffer = True |
|
3695 | 3721 | dataOut.buffer_empty = False |
|
3696 | 3722 | #print("1 ch: {} prof: {} hs: {}".format(int(dataOut.nChannels),int(dataOut.nProfiles),int(dataOut.nHeights))) |
|
3697 | 3723 | |
|
3698 | 3724 | |
|
3699 | 3725 | |
|
3700 | 3726 | #print(self.__count_exec) |
|
3701 | 3727 | |
|
3702 | 3728 | return dataOut |
|
3703 | 3729 | |
|
3704 | 3730 | |
|
3705 | 3731 | |
|
3706 | 3732 | |
|
3707 | 3733 | class remHeightsIppInterf(Operation): |
|
3708 | 3734 | |
|
3709 | 3735 | def __init__(self, **kwargs): |
|
3710 | 3736 | |
|
3711 | 3737 | |
|
3712 | 3738 | Operation.__init__(self, **kwargs) |
|
3713 | 3739 | |
|
3714 | 3740 | self.isConfig = False |
|
3715 | 3741 | |
|
3716 | 3742 | self.heights_indx = None |
|
3717 | 3743 | self.heightsList = [] |
|
3718 | 3744 | |
|
3719 | 3745 | self.ipp1 = None |
|
3720 | 3746 | self.ipp2 = None |
|
3721 | 3747 | self.tx1 = None |
|
3722 | 3748 | self.tx2 = None |
|
3723 | 3749 | self.dh1 = None |
|
3724 | 3750 | |
|
3725 | 3751 | |
|
3726 | 3752 | def setup(self, dataOut, ipp1=None, ipp2=None, tx1=None, tx2=None, dh1=None, |
|
3727 | 3753 | idate=None, startH=None, endH=None): |
|
3728 | 3754 | |
|
3729 | 3755 | |
|
3730 | 3756 | self.ipp1 = ipp1 |
|
3731 | 3757 | self.ipp2 = ipp2 |
|
3732 | 3758 | self.tx1 = tx1 |
|
3733 | 3759 | self.tx2 = tx2 |
|
3734 | 3760 | self.dh1 = dh1 |
|
3735 | 3761 | |
|
3736 | 3762 | _maxIpp1R = dataOut.heightList.max() |
|
3737 | 3763 | |
|
3738 | 3764 | _n_repeats = int(_maxIpp1R / ipp2) |
|
3739 | 3765 | _init_hIntf = (tx1 + ipp2/2)+ dh1 |
|
3740 | 3766 | _n_hIntf = int(tx2 / dh1) |
|
3741 | 3767 | |
|
3742 | 3768 | self.heightsList = [_init_hIntf+n*ipp2 for n in range(_n_repeats) ] |
|
3743 | 3769 | heiList = dataOut.heightList |
|
3744 | 3770 | self.heights_indx = [getHei_index(h,h,heiList)[0] for h in self.heightsList] |
|
3745 | 3771 | |
|
3746 | 3772 | self.heights_indx = [ numpy.asarray([k for k in range(_n_hIntf+2)])+(getHei_index(h,h,heiList)[0] -1) for h in self.heightsList] |
|
3747 | 3773 | |
|
3748 | 3774 | self.heights_indx = numpy.asarray(self.heights_indx ) |
|
3749 | 3775 | self.isConfig = True |
|
3750 | 3776 | self.startTime = datetime.datetime.combine(idate,startH) |
|
3751 | 3777 | self.endTime = datetime.datetime.combine(idate,endH) |
|
3752 | 3778 | #print(self.startTime, self.endTime) |
|
3753 | 3779 | #print("nrepeats: ", _n_repeats, " _nH: ",_n_hIntf ) |
|
3754 | 3780 | |
|
3755 | 3781 | log.warning("Heights set to zero (km): ", self.name) |
|
3756 | 3782 | log.warning(str((dataOut.heightList[self.heights_indx].flatten())), self.name) |
|
3757 | 3783 | log.warning("Be careful with the selection of heights for noise calculation!") |
|
3758 | 3784 | |
|
3759 | 3785 | def run(self, dataOut, ipp1=None, ipp2=None, tx1=None, tx2=None, dh1=None, idate=None, |
|
3760 | 3786 | startH=None, endH=None): |
|
3761 | 3787 | #print(locals().values()) |
|
3762 | 3788 | if None in locals().values(): |
|
3763 | 3789 | log.warning('Missing kwargs, invalid values """None""" ', self.name) |
|
3764 | 3790 | return dataOut |
|
3765 | 3791 | |
|
3766 | 3792 | |
|
3767 | 3793 | if not self.isConfig: |
|
3768 | 3794 | self.setup(dataOut, ipp1=ipp1, ipp2=ipp2, tx1=tx1, tx2=tx2, dh1=dh1, |
|
3769 | 3795 | idate=idate, startH=startH, endH=endH) |
|
3770 | 3796 | |
|
3771 | 3797 | dataOut.flagProfilesByRange = False |
|
3772 | 3798 | currentTime = datetime.datetime.fromtimestamp(dataOut.utctime) |
|
3773 | 3799 | |
|
3774 | 3800 | if currentTime < self.startTime or currentTime > self.endTime: |
|
3775 | 3801 | return dataOut |
|
3776 | 3802 | |
|
3777 | 3803 | for ch in range(dataOut.data.shape[0]): |
|
3778 | 3804 | |
|
3779 | 3805 | for hk in self.heights_indx.flatten(): |
|
3780 | 3806 | if dataOut.data.ndim < 3: |
|
3781 | 3807 | dataOut.data[ch,hk] = 0.0 + 0.0j |
|
3782 | 3808 | else: |
|
3783 | 3809 | dataOut.data[ch,:,hk] = 0.0 + 0.0j |
|
3784 | 3810 | |
|
3785 | 3811 | dataOut.flagProfilesByRange = True |
|
3786 | 3812 | |
|
3787 | 3813 | return dataOut No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now