##// END OF EJS Templates
Merge branch 'v3.0-devel' of http://jro-dev.igp.gob.pe/rhodecode/schain into v3.0-devel
Juan C. Espinoza -
r1323:133a5771abd8 merge
parent child
Show More
@@ -0,0 +1,87
1 import numpy
2 import sys
3 import zmq
4 import time
5 import h5py
6 import os
7
8 path="/home/alex/Downloads/pedestal"
9 ext=".hdf5"
10
11 port ="5556"
12 if len(sys.argv)>1:
13 port = sys.argv[1]
14 int(port)
15
16 if len(sys.argv)>2:
17 port1 = sys.argv[2]
18 int(port1)
19
20 #Socket to talk to server
21 context = zmq.Context()
22 socket = context.socket(zmq.SUB)
23
24 print("Collecting updates from weather server...")
25 socket.connect("tcp://localhost:%s"%port)
26
27 if len(sys.argv)>2:
28 socket.connect("tcp://localhost:%s"%port1)
29
30 #Subscribe to zipcode, default is NYC,10001
31 topicfilter = "10001"
32 socket.setsockopt_string(zmq.SUBSCRIBE,topicfilter)
33 #Process 5 updates
34 total_value=0
35 count= -1
36 azi= []
37 elev=[]
38 time0=[]
39 #for update_nbr in range(250):
40 while(True):
41 string= socket.recv()
42 topic,ang_elev,ang_elev_dec,ang_azi,ang_azi_dec,seconds,seconds_dec= string.split()
43 ang_azi =float(ang_azi)+1e-3*float(ang_azi_dec)
44 ang_elev =float(ang_elev)+1e-3*float(ang_elev_dec)
45 seconds =float(seconds) +1e-6*float(seconds_dec)
46 azi.append(ang_azi)
47 elev.append(ang_elev)
48 time0.append(seconds)
49 count +=1
50 if count == 100:
51 timetuple=time.localtime()
52 epoc = time.mktime(timetuple)
53 #print(epoc)
54 fullpath = path + ("/" if path[-1]!="/" else "")
55
56 if not os.path.exists(fullpath):
57 os.mkdir(fullpath)
58
59 azi_array = numpy.array(azi)
60 elev_array = numpy.array(elev)
61 time0_array= numpy.array(time0)
62 pedestal_array=numpy.array([azi,elev,time0])
63 count=0
64 azi= []
65 elev=[]
66 time0=[]
67 #print(pedestal_array[0])
68 #print(pedestal_array[1])
69
70 meta='PE'
71 filex="%s%4.4d%3.3d%10.4d%s"%(meta,timetuple.tm_year,timetuple.tm_yday,epoc,ext)
72 filename = os.path.join(fullpath,filex)
73 fp = h5py.File(filename,'w')
74 #print("Escribiendo HDF5...",epoc)
75 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DataΒ·....Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
76 grp = fp.create_group("Data")
77 dset = grp.create_dataset("azimuth" , data=pedestal_array[0])
78 dset = grp.create_dataset("elevacion", data=pedestal_array[1])
79 dset = grp.create_dataset("utc" , data=pedestal_array[2])
80 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· MetadataΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
81 grp = fp.create_group("Metadata")
82 dset = grp.create_dataset("utctimeInit", data=pedestal_array[2][0])
83 timeInterval = pedestal_array[2][1]-pedestal_array[2][0]
84 dset = grp.create_dataset("timeInterval", data=timeInterval)
85 fp.close()
86
87 #print ("Average messagedata value for topic '%s' was %dF" % ( topicfilter,total_value / update_nbr))
@@ -0,0 +1,48
1 ###########################################################################
2 ############################### SERVIDOR###################################
3 ######################### SIMULADOR DE PEDESTAL############################
4 ###########################################################################
5 import time
6 import math
7 import numpy
8 import struct
9 from time import sleep
10 import zmq
11 import pickle
12 port="5556"
13 context = zmq.Context()
14 socket = context.socket(zmq.PUB)
15 socket.bind("tcp://*:%s"%port)
16 ###### PARAMETROS DE ENTRADA################################
17 print("PEDESTAL RESOLUCION 0.01")
18 print("MAXIMA VELOCIDAD DEL PEDESTAL")
19 ang_elev = 4.12
20 ang_azi = 30
21 velocidad= input ("Ingresa velocidad:")
22 velocidad= float(velocidad)
23 print (velocidad)
24 ############################################################
25 sleep(3)
26 print("Start program")
27 t1 = time.time()
28 count=0
29 while(True):
30 tmp_vuelta = int(360/velocidad)
31 t1=t1+tmp_vuelta*count
32 count= count+1
33 muestras_seg = 100
34 t2 = time.time()
35 for i in range(tmp_vuelta):
36 for j in range(muestras_seg):
37 tmp_variable = (i+j/100.0)
38 ang_azi = (tmp_variable)*float(velocidad)
39 seconds = t1+ tmp_variable
40 topic=10001
41 print ("AzimΒ°: ","%.4f"%ang_azi,"Time:" ,"%.5f"%seconds)
42 seconds_dec=(seconds-int(seconds))*1e6
43 ang_azi_dec= (ang_azi-int(ang_azi))*1e3
44 ang_elev_dec=(ang_elev-int(ang_elev))*1e3
45 sleep(0.0088)
46 socket.send_string("%d %d %d %d %d %d %d"%(topic,ang_elev,ang_elev_dec,ang_azi,ang_azi_dec,seconds,seconds_dec))
47 t3 = time.time()
48 print ("Total time for 1 vuelta in Seconds",t3-t2)
@@ -0,0 +1,82
1 import os, sys
2 import datetime
3 import time
4 from schainpy.controller import Project
5
6 desc = "USRP_test"
7 filename = "USRP_processing.xml"
8 controllerObj = Project()
9 controllerObj.setup(id = '191', name='Test_USRP', description=desc)
10
11 ############## USED TO PLOT IQ VOLTAGE, POWER AND SPECTRA #############
12 ######PATH DE LECTURA, ESCRITURA, GRAFICOS Y ENVIO WEB#################
13 path = '/home/alex/Downloads/test_rawdata'
14 figpath = '/home/alex/Downloads/hdf5_test'
15 ######################## UNIDAD DE LECTURA#############################
16 '''
17 readUnitConfObj = controllerObj.addReadUnit(datatype='VoltageReader',
18 path=path,
19 startDate="2020/01/01", #"2020/01/01",#today,
20 endDate= "2020/12/01", #"2020/12/30",#today,
21 startTime='00:00:00',
22 endTime='23:59:59',
23 delay=0,
24 #set=0,
25 online=0,
26 walk=1)
27
28 '''
29 readUnitConfObj = controllerObj.addReadUnit(datatype='SimulatorReader',
30 frequency=9.345e9,
31 FixRCP_IPP= 60,
32 Tau_0 = 30,
33 AcqH0_0=0,
34 samples=330,
35 AcqDH_0=0.15,
36 FixRCP_TXA=0.15,
37 FixRCP_TXB=0.15,
38 Fdoppler=600.0,
39 Hdoppler=36,
40 Adoppler=300,#300
41 delay=0,
42 online=0,
43 walk=0,
44 profilesPerBlock=625,
45 dataBlocksPerFile=100)
46 #nTotalReadFiles=2)
47
48
49 #opObj11 = readUnitConfObj.addOperation(name='printInfo')
50
51 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
52
53 procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId())
54 procUnitConfObjB.addParameter(name='nFFTPoints', value=625, format='int')
55 procUnitConfObjB.addParameter(name='nProfiles', value=625, format='int')
56
57 opObj11 = procUnitConfObjB.addOperation(name='removeDC')
58 opObj11.addParameter(name='mode', value=2)
59 #opObj11 = procUnitConfObjB.addOperation(name='SpectraPlot')
60 #opObj11 = procUnitConfObjB.addOperation(name='PowerProfilePlot')
61
62 procUnitConfObjC= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjB.getId())
63 procUnitConfObjC.addOperation(name='SpectralMoments')
64 #opObj11 = procUnitConfObjC.addOperation(name='PowerPlot')
65
66 '''
67 opObj11 = procUnitConfObjC.addOperation(name='SpectralMomentsPlot')
68 #opObj11.addParameter(name='xmin', value=14)
69 #opObj11.addParameter(name='xmax', value=15)
70 #opObj11.addParameter(name='save', value=figpath)
71 opObj11.addParameter(name='showprofile', value=1)
72 #opObj11.addParameter(name='save_period', value=10)
73 '''
74
75 opObj10 = procUnitConfObjC.addOperation(name='ParameterWriter')
76 opObj10.addParameter(name='path',value=figpath)
77 #opObj10.addParameter(name='mode',value=0)
78 opObj10.addParameter(name='blocksPerFile',value='100',format='int')
79 opObj10.addParameter(name='metadataList',value='utctimeInit,timeInterval',format='list')
80 opObj10.addParameter(name='dataList',value='data_POW,data_DOP,data_WIDTH,data_SNR')#,format='list'
81
82 controllerObj.start()
@@ -0,0 +1,162
1 import os,numpy,h5py
2 from shutil import copyfile
3
4 def isNumber(str):
5 try:
6 float(str)
7 return True
8 except:
9 return False
10
11 def getfirstFilefromPath(path,meta,ext):
12 validFilelist = []
13 fileList = os.listdir(path)
14 if len(fileList)<1:
15 return None
16 # meta 1234 567 8-18 BCDE
17 # H,D,PE YYYY DDD EPOC .ext
18
19 for thisFile in fileList:
20 if meta =="PE":
21 try:
22 number= int(thisFile[len(meta)+7:len(meta)+17])
23 except:
24 print("There is a file or folder with different format")
25 if meta == "D":
26 try:
27 number= int(thisFile[8:11])
28 except:
29 print("There is a file or folder with different format")
30
31 if not isNumber(str=number):
32 continue
33 if (os.path.splitext(thisFile)[-1].lower() != ext.lower()):
34 continue
35 validFilelist.sort()
36 validFilelist.append(thisFile)
37 if len(validFilelist)>0:
38 validFilelist = sorted(validFilelist,key=str.lower)
39 return validFilelist
40 return None
41
42 def gettimeutcfromDirFilename(path,file):
43 dir_file= path+"/"+file
44 fp = h5py.File(dir_file,'r')
45 epoc = fp['Metadata'].get('utctimeInit')[()]
46 fp.close()
47 return epoc
48
49 def getDatavaluefromDirFilename(path,file,value):
50 dir_file= path+"/"+file
51 fp = h5py.File(dir_file,'r')
52 array = fp['Data'].get(value)[()]
53 fp.close()
54 return array
55
56
57 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Velocidad de PedestalΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
58 w = input ("Ingresa velocidad de Pedestal: ")
59 w = 4
60 w = float(w)
61 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Resolucion minimo en gradosΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
62 alfa = input ("Ingresa resolucion minima en grados: ")
63 alfa = 1
64 alfa = float(alfa)
65 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· IPP del Experimento Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
66 IPP = input ("Ingresa el IPP del experimento: ")
67 IPP = 0.0004
68 IPP = float(IPP)
69 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· MODE Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
70 mode = input ("Ingresa el MODO del experimento T or F: ")
71 mode = "T"
72 mode = str(mode)
73
74 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Tiempo en generar la resolucion minΒ·Β·Β·
75 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· MCU Β·Β· var_ang = w * (var_tiempo)Β·Β·Β·
76 var_tiempo = alfa/w
77 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Tiempo Equivalente en perfilesΒ·Β·Β·Β·Β·Β·Β·Β·
78 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· var_tiempo = IPP * ( num_perfiles )Β·
79 num_perfiles = int(var_tiempo/IPP)
80
81 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·DATA PEDESTALΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
82 dir_pedestal = "/home/alex/Downloads/pedestal"
83 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DATA ADQΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
84 if mode=="T":
85 dir_adq = "/home/alex/Downloads/hdf5_testPP/d2020194" # Time domain
86 else:
87 dir_adq = "/home/alex/Downloads/hdf5_test/d2020194" # Frequency domain
88
89 print( "Velocidad angular :", w)
90 print( "Resolucion minima en grados :", alfa)
91 print( "Numero de perfiles equivalente:", num_perfiles)
92 print( "Mode :", mode)
93
94 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· First FileΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
95 list_pedestal = getfirstFilefromPath(path=dir_pedestal,meta="PE",ext=".hdf5")
96 list_adq = getfirstFilefromPath(path=dir_adq ,meta="D",ext=".hdf5")
97
98 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· utc time Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
99 utc_pedestal= gettimeutcfromDirFilename(path=dir_pedestal,file=list_pedestal[0])
100 utc_adq = gettimeutcfromDirFilename(path=dir_adq ,file=list_adq[0])
101
102 print("utc_pedestal :",utc_pedestal)
103 print("utc_adq :",utc_adq)
104 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Relacion: utc_adq (+/-) var_tiempo*nro_file= utc_pedestal
105 time_Interval_p = 0.01
106 n_perfiles_p = 100
107 if utc_adq>utc_pedestal:
108 nro_file = int((int(utc_adq) - int(utc_pedestal))/(time_Interval_p*n_perfiles_p))
109 ff_pedestal = list_pedestal[nro_file]
110 utc_pedestal = gettimeutcfromDirFilename(path=dir_pedestal,file=ff_pedestal)
111 nro_key_p = int((utc_adq-utc_pedestal)/time_Interval_p)
112 if utc_adq >utc_pedestal:
113 ff_pedestal = ff_pedestal
114 else:
115 nro_file = nro_file-1
116 ff_pedestal = list_pedestal[nro_file]
117 angulo = getDatavaluefromDirFilename(path=dir_pedestal,file=ff_pedestal,value="azimuth")
118 nro_key_p = int((utc_adq-utc_pedestal)/time_Interval_p)
119 print("nro_file :",nro_file)
120 print("name_file :",ff_pedestal)
121 print("utc_pedestal_file :",utc_pedestal)
122 print("nro_key_p :",nro_key_p)
123 print("utc_pedestal_init :",utc_pedestal+nro_key_p*time_Interval_p)
124 print("angulo_array :",angulo[nro_key_p])
125 #4+25+25+25+21
126 #while True:
127 list_pedestal = getfirstFilefromPath(path=dir_pedestal,meta="PE",ext=".hdf5")
128 list_adq = getfirstFilefromPath(path=dir_adq ,meta="D",ext=".hdf5")
129
130 nro_file = nro_file #10
131 nro_key_perfil = nro_key_p
132 blocksPerFile = 100
133 wr_path = "/home/alex/Downloads/hdf5_wr/"
134 # Lectura de archivos de adquisicion para adicion de azimuth
135 for thisFile in range(len(list_adq)):
136 print("thisFileAdq",thisFile)
137 angulo_adq = numpy.zeros(blocksPerFile)
138 tmp = 0
139 for j in range(blocksPerFile):
140 iterador = nro_key_perfil + 25*(j-tmp)
141 if iterador < n_perfiles_p:
142 nro_file = nro_file
143 else:
144 nro_file = nro_file+1
145 tmp = j
146 iterador = nro_key_perfil
147 ff_pedestal = list_pedestal[nro_file]
148 angulo = getDatavaluefromDirFilename(path=dir_pedestal,file=ff_pedestal,value="azimuth")
149 angulo_adq[j]= angulo[iterador]
150 copyfile(dir_adq+"/"+list_adq[thisFile],wr_path+list_adq[thisFile])
151 fp = h5py.File(wr_path+list_adq[thisFile],'a')
152 grp = fp.create_group("Pedestal")
153 dset = grp.create_dataset("azimuth" , data=angulo_adq)
154 fp.close()
155 print("Angulo",angulo_adq)
156 print("Angulo",len(angulo_adq))
157 nro_key_perfil=iterador + 25
158 if nro_key_perfil< n_perfiles_p:
159 nro_file = nro_file
160 else:
161 nro_file = nro_file+1
162 nro_key_perfil= nro_key_p
@@ -360,9 +360,11 class Voltage(JROData):
360
360
361 # data es un numpy array de 2 dmensiones (canales, alturas)
361 # data es un numpy array de 2 dmensiones (canales, alturas)
362 data = None
362 data = None
363 data_intensity = None
363 dataPP_POW = None
364 data_velocity = None
364 dataPP_DOP = None
365 data_specwidth = None
365 dataPP_WIDTH = None
366 dataPP_SNR = None
367
366 def __init__(self):
368 def __init__(self):
367 '''
369 '''
368 Constructor
370 Constructor
@@ -1208,7 +1210,7 class PlotterData(object):
1208 '''
1210 '''
1209 Update data object with new dataOut
1211 Update data object with new dataOut
1210 '''
1212 '''
1211
1213
1212 self.profileIndex = dataOut.profileIndex
1214 self.profileIndex = dataOut.profileIndex
1213 self.tm = tm
1215 self.tm = tm
1214 self.type = dataOut.type
1216 self.type = dataOut.type
@@ -1261,15 +1263,19 class PlotterData(object):
1261 self.flagDataAsBlock = dataOut.flagDataAsBlock
1263 self.flagDataAsBlock = dataOut.flagDataAsBlock
1262 self.nProfiles = dataOut.nProfiles
1264 self.nProfiles = dataOut.nProfiles
1263 if plot == 'pp_power':
1265 if plot == 'pp_power':
1264 buffer = dataOut.data_intensity
1266 buffer = dataOut.dataPP_POWER
1267 self.flagDataAsBlock = dataOut.flagDataAsBlock
1268 self.nProfiles = dataOut.nProfiles
1269 if plot == 'pp_signal':
1270 buffer = dataOut.dataPP_POW
1265 self.flagDataAsBlock = dataOut.flagDataAsBlock
1271 self.flagDataAsBlock = dataOut.flagDataAsBlock
1266 self.nProfiles = dataOut.nProfiles
1272 self.nProfiles = dataOut.nProfiles
1267 if plot == 'pp_velocity':
1273 if plot == 'pp_velocity':
1268 buffer = dataOut.data_velocity
1274 buffer = dataOut.dataPP_DOP
1269 self.flagDataAsBlock = dataOut.flagDataAsBlock
1275 self.flagDataAsBlock = dataOut.flagDataAsBlock
1270 self.nProfiles = dataOut.nProfiles
1276 self.nProfiles = dataOut.nProfiles
1271 if plot == 'pp_specwidth':
1277 if plot == 'pp_specwidth':
1272 buffer = dataOut.data_specwidth
1278 buffer = dataOut.dataPP_WIDTH
1273 self.flagDataAsBlock = dataOut.flagDataAsBlock
1279 self.flagDataAsBlock = dataOut.flagDataAsBlock
1274 self.nProfiles = dataOut.nProfiles
1280 self.nProfiles = dataOut.nProfiles
1275
1281
@@ -156,6 +156,8 class ScopePlot(Plot):
156 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1])
156 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1])
157 if self.CODE == "pp_power":
157 if self.CODE == "pp_power":
158 scope = self.data['pp_power']
158 scope = self.data['pp_power']
159 elif self.CODE == "pp_signal":
160 scope = self.data["pp_signal"]
159 elif self.CODE == "pp_velocity":
161 elif self.CODE == "pp_velocity":
160 scope = self.data["pp_velocity"]
162 scope = self.data["pp_velocity"]
161 elif self.CODE == "pp_specwidth":
163 elif self.CODE == "pp_specwidth":
@@ -191,6 +193,13 class ScopePlot(Plot):
191 thisDatetime,
193 thisDatetime,
192 wintitle
194 wintitle
193 )
195 )
196 if self.CODE=="pp_signal":
197 self.plot_weatherpower(self.data.heights,
198 scope[:,i,:],
199 channels,
200 thisDatetime,
201 wintitle
202 )
194 if self.CODE=="pp_velocity":
203 if self.CODE=="pp_velocity":
195 self.plot_weathervelocity(scope[:,i,:],
204 self.plot_weathervelocity(scope[:,i,:],
196 self.data.heights,
205 self.data.heights,
@@ -230,6 +239,13 class ScopePlot(Plot):
230 thisDatetime,
239 thisDatetime,
231 wintitle
240 wintitle
232 )
241 )
242 if self.CODE=="pp_signal":
243 self.plot_weatherpower(self.data.heights,
244 scope,
245 channels,
246 thisDatetime,
247 wintitle
248 )
233 if self.CODE=="pp_velocity":
249 if self.CODE=="pp_velocity":
234 self.plot_weathervelocity(scope,
250 self.plot_weathervelocity(scope,
235 self.data.heights,
251 self.data.heights,
@@ -249,7 +265,7 class ScopePlot(Plot):
249
265
250 class PulsepairPowerPlot(ScopePlot):
266 class PulsepairPowerPlot(ScopePlot):
251 '''
267 '''
252 Plot for
268 Plot for P= S+N
253 '''
269 '''
254
270
255 CODE = 'pp_power'
271 CODE = 'pp_power'
@@ -259,7 +275,7 class PulsepairPowerPlot(ScopePlot):
259
275
260 class PulsepairVelocityPlot(ScopePlot):
276 class PulsepairVelocityPlot(ScopePlot):
261 '''
277 '''
262 Plot for
278 Plot for VELOCITY
263 '''
279 '''
264 CODE = 'pp_velocity'
280 CODE = 'pp_velocity'
265 plot_name = 'PulsepairVelocity'
281 plot_name = 'PulsepairVelocity'
@@ -268,9 +284,19 class PulsepairVelocityPlot(ScopePlot):
268
284
269 class PulsepairSpecwidthPlot(ScopePlot):
285 class PulsepairSpecwidthPlot(ScopePlot):
270 '''
286 '''
271 Plot for
287 Plot for WIDTH
272 '''
288 '''
273 CODE = 'pp_specwidth'
289 CODE = 'pp_specwidth'
274 plot_name = 'PulsepairSpecwidth'
290 plot_name = 'PulsepairSpecwidth'
275 plot_type = 'scatter'
291 plot_type = 'scatter'
276 buffering = False
292 buffering = False
293
294 class PulsepairSignalPlot(ScopePlot):
295 '''
296 Plot for S
297 '''
298
299 CODE = 'pp_signal'
300 plot_name = 'PulsepairSignal'
301 plot_type = 'scatter'
302 buffering = False
@@ -360,21 +360,27 class SimulatorReader(JRODataReader, ProcessingUnit):
360 fd = Fdoppler #+(600.0/120)*self.nReadBlocks
360 fd = Fdoppler #+(600.0/120)*self.nReadBlocks
361 d_signal = Adoppler*numpy.array(numpy.exp(1.0j*2.0*math.pi*fd*time_vec),dtype=numpy.complex64)
361 d_signal = Adoppler*numpy.array(numpy.exp(1.0j*2.0*math.pi*fd*time_vec),dtype=numpy.complex64)
362 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·SeΓ±al con ancho espectralΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
362 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·SeΓ±al con ancho espectralΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
363 #specw_sig = numpy.linspace(-149,150,300)
363 if prof_gen%2==0:
364 #w = 8
364 min = int(prof_gen/2.0-1.0)
365 #A = 20
365 max = int(prof_gen/2.0)
366 #specw_sig = specw_sig/w
366 else:
367 #specw_sig = numpy.sinc(specw_sig)
367 min = int(prof_gen/2.0)
368 #specw_sig = A*numpy.array(specw_sig,dtype=numpy.complex64)
368 max = int(prof_gen/2.0)
369 specw_sig = numpy.linspace(-min,max,prof_gen)
370 w = 4
371 A = 20
372 specw_sig = specw_sig/w
373 specw_sig = numpy.sinc(specw_sig)
374 specw_sig = A*numpy.array(specw_sig,dtype=numpy.complex64)
369 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DATABLOCK + DOPPLERΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
375 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DATABLOCK + DOPPLERΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
370 HD=int(Hdoppler/self.AcqDH_0)
376 HD=int(Hdoppler/self.AcqDH_0)
371 for i in range(12):
377 for i in range(12):
372 self.datablock[0,:,HD+i]=self.datablock[0,:,HD+i]+ d_signal# RESULT
378 self.datablock[0,:,HD+i]=self.datablock[0,:,HD+i]+ d_signal# RESULT
373 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DATABLOCK + DOPPLER*Sinc(x)Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
379 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DATABLOCK + DOPPLER*Sinc(x)Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
374 #HD=int(Hdoppler/self.AcqDH_0)
380 HD=int(Hdoppler/self.AcqDH_0)
375 #HD=int(HD/2)
381 HD=int(HD/2)
376 #for i in range(12):
382 for i in range(12):
377 # self.datablock[0,:,HD+i]=self.datablock[0,:,HD+i]+ specw_sig*d_signal# RESULT
383 self.datablock[0,:,HD+i]=self.datablock[0,:,HD+i]+ specw_sig*d_signal# RESULT
378
384
379 def readBlock(self):
385 def readBlock(self):
380
386
@@ -421,7 +427,8 class SimulatorReader(JRODataReader, ProcessingUnit):
421 FixPP_CohInt= 1,Tau_0= 250,AcqH0_0 = 70 ,AcqDH_0=1.25, Bauds= 32,
427 FixPP_CohInt= 1,Tau_0= 250,AcqH0_0 = 70 ,AcqDH_0=1.25, Bauds= 32,
422 FixRCP_TXA = 40, FixRCP_TXB = 50, fAngle = 2.0*math.pi*(1/16),DC_level= 50,
428 FixRCP_TXA = 40, FixRCP_TXB = 50, fAngle = 2.0*math.pi*(1/16),DC_level= 50,
423 stdev= 8,Num_Codes = 1 , Dyn_snCode = None, samples=200,
429 stdev= 8,Num_Codes = 1 , Dyn_snCode = None, samples=200,
424 channels=2,Fdoppler=20,Hdoppler=36,Adoppler=500,nTotalReadFiles=10000,
430 channels=2,Fdoppler=20,Hdoppler=36,Adoppler=500,
431 profilesPerBlock=300,dataBlocksPerFile=120,nTotalReadFiles=10000,
425 **kwargs):
432 **kwargs):
426
433
427 self.set_kwargs(**kwargs)
434 self.set_kwargs(**kwargs)
@@ -447,14 +454,14 class SimulatorReader(JRODataReader, ProcessingUnit):
447 codeType=0, nCode=Num_Codes, nBaud=32, code=Dyn_snCode,
454 codeType=0, nCode=Num_Codes, nBaud=32, code=Dyn_snCode,
448 flip1=0, flip2=0,Taus=Tau_0)
455 flip1=0, flip2=0,Taus=Tau_0)
449
456
450 self.set_PH(dtype=0, blockSize=0, profilesPerBlock=300,
457 self.set_PH(dtype=0, blockSize=0, profilesPerBlock=profilesPerBlock,
451 dataBlocksPerFile=120, nWindows=1, processFlags=numpy.array([1024]), nCohInt=1,
458 dataBlocksPerFile=dataBlocksPerFile, nWindows=1, processFlags=numpy.array([1024]), nCohInt=1,
452 nIncohInt=1, totalSpectra=0, nHeights=samples, firstHeight=AcqH0_0,
459 nIncohInt=1, totalSpectra=0, nHeights=samples, firstHeight=AcqH0_0,
453 deltaHeight=AcqDH_0, samplesWin=samples, spectraComb=0, nCode=0,
460 deltaHeight=AcqDH_0, samplesWin=samples, spectraComb=0, nCode=0,
454 code=0, nBaud=None, shif_fft=False, flag_dc=False,
461 code=0, nBaud=None, shif_fft=False, flag_dc=False,
455 flag_cspc=False, flag_decode=False, flag_deflip=False)
462 flag_cspc=False, flag_decode=False, flag_deflip=False)
456
463
457 self.set_SH(nSamples=samples, nProfiles=300, nChannels=channels)
464 self.set_SH(nSamples=samples, nProfiles=profilesPerBlock, nChannels=channels)
458
465
459 self.readFirstHeader()
466 self.readFirstHeader()
460
467
This diff has been collapsed as it changes many lines, (2141 lines changed) Show them Hide them
@@ -8,12 +8,12 import copy
8 import sys
8 import sys
9 import importlib
9 import importlib
10 import itertools
10 import itertools
11 from multiprocessing import Pool, TimeoutError
11 from multiprocessing import Pool, TimeoutError
12 from multiprocessing.pool import ThreadPool
12 from multiprocessing.pool import ThreadPool
13 import time
13 import time
14
14
15 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
15 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
16 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
16 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
17 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
17 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
18 from scipy import asarray as ar,exp
18 from scipy import asarray as ar,exp
19 from scipy.optimize import curve_fit
19 from scipy.optimize import curve_fit
@@ -48,13 +48,13 def _unpickle_method(func_name, obj, cls):
48
48
49
49
50 class ParametersProc(ProcessingUnit):
50 class ParametersProc(ProcessingUnit):
51
51
52 METHODS = {}
52 METHODS = {}
53 nSeconds = None
53 nSeconds = None
54
54
55 def __init__(self):
55 def __init__(self):
56 ProcessingUnit.__init__(self)
56 ProcessingUnit.__init__(self)
57
57
58 # self.objectDict = {}
58 # self.objectDict = {}
59 self.buffer = None
59 self.buffer = None
60 self.firstdatatime = None
60 self.firstdatatime = None
@@ -63,14 +63,14 class ParametersProc(ProcessingUnit):
63 self.setupReq = False #Agregar a todas las unidades de proc
63 self.setupReq = False #Agregar a todas las unidades de proc
64
64
65 def __updateObjFromInput(self):
65 def __updateObjFromInput(self):
66
66
67 self.dataOut.inputUnit = self.dataIn.type
67 self.dataOut.inputUnit = self.dataIn.type
68
68
69 self.dataOut.timeZone = self.dataIn.timeZone
69 self.dataOut.timeZone = self.dataIn.timeZone
70 self.dataOut.dstFlag = self.dataIn.dstFlag
70 self.dataOut.dstFlag = self.dataIn.dstFlag
71 self.dataOut.errorCount = self.dataIn.errorCount
71 self.dataOut.errorCount = self.dataIn.errorCount
72 self.dataOut.useLocalTime = self.dataIn.useLocalTime
72 self.dataOut.useLocalTime = self.dataIn.useLocalTime
73
73
74 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
74 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
75 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
75 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
76 self.dataOut.channelList = self.dataIn.channelList
76 self.dataOut.channelList = self.dataIn.channelList
@@ -92,27 +92,41 class ParametersProc(ProcessingUnit):
92 self.dataOut.ippSeconds = self.dataIn.ippSeconds
92 self.dataOut.ippSeconds = self.dataIn.ippSeconds
93 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
93 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
94 self.dataOut.timeInterval1 = self.dataIn.timeInterval
94 self.dataOut.timeInterval1 = self.dataIn.timeInterval
95 self.dataOut.heightList = self.dataIn.getHeiRange()
95 self.dataOut.heightList = self.dataIn.getHeiRange()
96 self.dataOut.frequency = self.dataIn.frequency
96 self.dataOut.frequency = self.dataIn.frequency
97 # self.dataOut.noise = self.dataIn.noise
97 # self.dataOut.noise = self.dataIn.noise
98
98
99 def run(self):
99 def run(self):
100
100
101
101
102
102
103 #---------------------- Voltage Data ---------------------------
103 #---------------------- Voltage Data ---------------------------
104
104
105 if self.dataIn.type == "Voltage":
105 if self.dataIn.type == "Voltage":
106
106
107 self.__updateObjFromInput()
107 self.__updateObjFromInput()
108 self.dataOut.data_pre = self.dataIn.data.copy()
108 self.dataOut.data_pre = self.dataIn.data.copy()
109 self.dataOut.flagNoData = False
109 self.dataOut.flagNoData = False
110 self.dataOut.utctimeInit = self.dataIn.utctime
110 self.dataOut.utctimeInit = self.dataIn.utctime
111 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
111 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
112 if hasattr(self.dataIn, 'dataPP_POW'):
113 self.dataOut.dataPP_POW = self.dataIn.dataPP_POW
114
115 if hasattr(self.dataIn, 'dataPP_POWER'):
116 self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER
117
118 if hasattr(self.dataIn, 'dataPP_DOP'):
119 self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP
120
121 if hasattr(self.dataIn, 'dataPP_SNR'):
122 self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR
123
124 if hasattr(self.dataIn, 'dataPP_WIDTH'):
125 self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH
112 return
126 return
113
127
114 #---------------------- Spectra Data ---------------------------
128 #---------------------- Spectra Data ---------------------------
115
129
116 if self.dataIn.type == "Spectra":
130 if self.dataIn.type == "Spectra":
117
131
118 self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc)
132 self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc)
@@ -126,243 +140,243 class ParametersProc(ProcessingUnit):
126 self.dataOut.spc_noise = self.dataIn.getNoise()
140 self.dataOut.spc_noise = self.dataIn.getNoise()
127 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
141 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
128 # self.dataOut.normFactor = self.dataIn.normFactor
142 # self.dataOut.normFactor = self.dataIn.normFactor
129 self.dataOut.pairsList = self.dataIn.pairsList
143 self.dataOut.pairsList = self.dataIn.pairsList
130 self.dataOut.groupList = self.dataIn.pairsList
144 self.dataOut.groupList = self.dataIn.pairsList
131 self.dataOut.flagNoData = False
145 self.dataOut.flagNoData = False
132
146
133 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
147 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
134 self.dataOut.ChanDist = self.dataIn.ChanDist
148 self.dataOut.ChanDist = self.dataIn.ChanDist
135 else: self.dataOut.ChanDist = None
149 else: self.dataOut.ChanDist = None
136
150
137 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
151 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
138 # self.dataOut.VelRange = self.dataIn.VelRange
152 # self.dataOut.VelRange = self.dataIn.VelRange
139 #else: self.dataOut.VelRange = None
153 #else: self.dataOut.VelRange = None
140
154
141 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
155 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
142 self.dataOut.RadarConst = self.dataIn.RadarConst
156 self.dataOut.RadarConst = self.dataIn.RadarConst
143
157
144 if hasattr(self.dataIn, 'NPW'): #NPW
158 if hasattr(self.dataIn, 'NPW'): #NPW
145 self.dataOut.NPW = self.dataIn.NPW
159 self.dataOut.NPW = self.dataIn.NPW
146
160
147 if hasattr(self.dataIn, 'COFA'): #COFA
161 if hasattr(self.dataIn, 'COFA'): #COFA
148 self.dataOut.COFA = self.dataIn.COFA
162 self.dataOut.COFA = self.dataIn.COFA
149
163
150
164
151
165
152 #---------------------- Correlation Data ---------------------------
166 #---------------------- Correlation Data ---------------------------
153
167
154 if self.dataIn.type == "Correlation":
168 if self.dataIn.type == "Correlation":
155 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
169 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
156
170
157 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
171 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
158 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
172 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
159 self.dataOut.groupList = (acf_pairs, ccf_pairs)
173 self.dataOut.groupList = (acf_pairs, ccf_pairs)
160
174
161 self.dataOut.abscissaList = self.dataIn.lagRange
175 self.dataOut.abscissaList = self.dataIn.lagRange
162 self.dataOut.noise = self.dataIn.noise
176 self.dataOut.noise = self.dataIn.noise
163 self.dataOut.data_SNR = self.dataIn.SNR
177 self.dataOut.data_SNR = self.dataIn.SNR
164 self.dataOut.flagNoData = False
178 self.dataOut.flagNoData = False
165 self.dataOut.nAvg = self.dataIn.nAvg
179 self.dataOut.nAvg = self.dataIn.nAvg
166
180
167 #---------------------- Parameters Data ---------------------------
181 #---------------------- Parameters Data ---------------------------
168
182
169 if self.dataIn.type == "Parameters":
183 if self.dataIn.type == "Parameters":
170 self.dataOut.copy(self.dataIn)
184 self.dataOut.copy(self.dataIn)
171 self.dataOut.flagNoData = False
185 self.dataOut.flagNoData = False
172
186
173 return True
187 return True
174
188
175 self.__updateObjFromInput()
189 self.__updateObjFromInput()
176 self.dataOut.utctimeInit = self.dataIn.utctime
190 self.dataOut.utctimeInit = self.dataIn.utctime
177 self.dataOut.paramInterval = self.dataIn.timeInterval
191 self.dataOut.paramInterval = self.dataIn.timeInterval
178
192
179 return
193 return
180
194
181
195
182 def target(tups):
196 def target(tups):
183
197
184 obj, args = tups
198 obj, args = tups
185
199
186 return obj.FitGau(args)
200 return obj.FitGau(args)
187
201
188
202
189 class SpectralFilters(Operation):
203 class SpectralFilters(Operation):
190
204
191 '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR
205 '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR
192
206
193 LimitR : It is the limit in m/s of Rainfall
207 LimitR : It is the limit in m/s of Rainfall
194 LimitW : It is the limit in m/s for Winds
208 LimitW : It is the limit in m/s for Winds
195
209
196 Input:
210 Input:
197
211
198 self.dataOut.data_pre : SPC and CSPC
212 self.dataOut.data_pre : SPC and CSPC
199 self.dataOut.spc_range : To select wind and rainfall velocities
213 self.dataOut.spc_range : To select wind and rainfall velocities
200
214
201 Affected:
215 Affected:
202
216
203 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
217 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
204 self.dataOut.spcparam_range : Used in SpcParamPlot
218 self.dataOut.spcparam_range : Used in SpcParamPlot
205 self.dataOut.SPCparam : Used in PrecipitationProc
219 self.dataOut.SPCparam : Used in PrecipitationProc
206
220
207
221
208 '''
222 '''
209
223
210 def __init__(self):
224 def __init__(self):
211 Operation.__init__(self)
225 Operation.__init__(self)
212 self.i=0
226 self.i=0
213
227
214 def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5):
228 def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5):
215
229
216
230
217 #Limite de vientos
231 #Limite de vientos
218 LimitR = PositiveLimit
232 LimitR = PositiveLimit
219 LimitN = NegativeLimit
233 LimitN = NegativeLimit
220
234
221 self.spc = dataOut.data_pre[0].copy()
235 self.spc = dataOut.data_pre[0].copy()
222 self.cspc = dataOut.data_pre[1].copy()
236 self.cspc = dataOut.data_pre[1].copy()
223
237
224 self.Num_Hei = self.spc.shape[2]
238 self.Num_Hei = self.spc.shape[2]
225 self.Num_Bin = self.spc.shape[1]
239 self.Num_Bin = self.spc.shape[1]
226 self.Num_Chn = self.spc.shape[0]
240 self.Num_Chn = self.spc.shape[0]
227
241
228 VelRange = dataOut.spc_range[2]
242 VelRange = dataOut.spc_range[2]
229 TimeRange = dataOut.spc_range[1]
243 TimeRange = dataOut.spc_range[1]
230 FrecRange = dataOut.spc_range[0]
244 FrecRange = dataOut.spc_range[0]
231
245
232 Vmax= 2*numpy.max(dataOut.spc_range[2])
246 Vmax= 2*numpy.max(dataOut.spc_range[2])
233 Tmax= 2*numpy.max(dataOut.spc_range[1])
247 Tmax= 2*numpy.max(dataOut.spc_range[1])
234 Fmax= 2*numpy.max(dataOut.spc_range[0])
248 Fmax= 2*numpy.max(dataOut.spc_range[0])
235
249
236 Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()]
250 Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()]
237 Breaker1R=numpy.where(VelRange == Breaker1R)
251 Breaker1R=numpy.where(VelRange == Breaker1R)
238
252
239 Delta = self.Num_Bin/2 - Breaker1R[0]
253 Delta = self.Num_Bin/2 - Breaker1R[0]
240
254
241
255
242 '''Reacomodando SPCrange'''
256 '''Reacomodando SPCrange'''
243
257
244 VelRange=numpy.roll(VelRange,-(int(self.Num_Bin/2)) ,axis=0)
258 VelRange=numpy.roll(VelRange,-(int(self.Num_Bin/2)) ,axis=0)
245
259
246 VelRange[-(int(self.Num_Bin/2)):]+= Vmax
260 VelRange[-(int(self.Num_Bin/2)):]+= Vmax
247
261
248 FrecRange=numpy.roll(FrecRange,-(int(self.Num_Bin/2)),axis=0)
262 FrecRange=numpy.roll(FrecRange,-(int(self.Num_Bin/2)),axis=0)
249
263
250 FrecRange[-(int(self.Num_Bin/2)):]+= Fmax
264 FrecRange[-(int(self.Num_Bin/2)):]+= Fmax
251
265
252 TimeRange=numpy.roll(TimeRange,-(int(self.Num_Bin/2)),axis=0)
266 TimeRange=numpy.roll(TimeRange,-(int(self.Num_Bin/2)),axis=0)
253
267
254 TimeRange[-(int(self.Num_Bin/2)):]+= Tmax
268 TimeRange[-(int(self.Num_Bin/2)):]+= Tmax
255
269
256 ''' ------------------ '''
270 ''' ------------------ '''
257
271
258 Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()]
272 Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()]
259 Breaker2R=numpy.where(VelRange == Breaker2R)
273 Breaker2R=numpy.where(VelRange == Breaker2R)
260
274
261
275
262 SPCroll = numpy.roll(self.spc,-(int(self.Num_Bin/2)) ,axis=1)
276 SPCroll = numpy.roll(self.spc,-(int(self.Num_Bin/2)) ,axis=1)
263
277
264 SPCcut = SPCroll.copy()
278 SPCcut = SPCroll.copy()
265 for i in range(self.Num_Chn):
279 for i in range(self.Num_Chn):
266
280
267 SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i]
281 SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i]
268 SPCcut[i,-int(Delta):,:] = dataOut.noise[i]
282 SPCcut[i,-int(Delta):,:] = dataOut.noise[i]
269
283
270 SPCcut[i]=SPCcut[i]- dataOut.noise[i]
284 SPCcut[i]=SPCcut[i]- dataOut.noise[i]
271 SPCcut[ numpy.where( SPCcut<0 ) ] = 1e-20
285 SPCcut[ numpy.where( SPCcut<0 ) ] = 1e-20
272
286
273 SPCroll[i]=SPCroll[i]-dataOut.noise[i]
287 SPCroll[i]=SPCroll[i]-dataOut.noise[i]
274 SPCroll[ numpy.where( SPCroll<0 ) ] = 1e-20
288 SPCroll[ numpy.where( SPCroll<0 ) ] = 1e-20
275
289
276 SPC_ch1 = SPCroll
290 SPC_ch1 = SPCroll
277
291
278 SPC_ch2 = SPCcut
292 SPC_ch2 = SPCcut
279
293
280 SPCparam = (SPC_ch1, SPC_ch2, self.spc)
294 SPCparam = (SPC_ch1, SPC_ch2, self.spc)
281 dataOut.SPCparam = numpy.asarray(SPCparam)
295 dataOut.SPCparam = numpy.asarray(SPCparam)
282
296
283
297
284 dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1])
298 dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1])
285
299
286 dataOut.spcparam_range[2]=VelRange
300 dataOut.spcparam_range[2]=VelRange
287 dataOut.spcparam_range[1]=TimeRange
301 dataOut.spcparam_range[1]=TimeRange
288 dataOut.spcparam_range[0]=FrecRange
302 dataOut.spcparam_range[0]=FrecRange
289 return dataOut
303 return dataOut
290
304
291 class GaussianFit(Operation):
305 class GaussianFit(Operation):
292
306
293 '''
307 '''
294 Function that fit of one and two generalized gaussians (gg) based
308 Function that fit of one and two generalized gaussians (gg) based
295 on the PSD shape across an "power band" identified from a cumsum of
309 on the PSD shape across an "power band" identified from a cumsum of
296 the measured spectrum - noise.
310 the measured spectrum - noise.
297
311
298 Input:
312 Input:
299 self.dataOut.data_pre : SelfSpectra
313 self.dataOut.data_pre : SelfSpectra
300
314
301 Output:
315 Output:
302 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
316 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
303
317
304 '''
318 '''
305 def __init__(self):
319 def __init__(self):
306 Operation.__init__(self)
320 Operation.__init__(self)
307 self.i=0
321 self.i=0
308
322
309
323
310 def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
324 def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
311 """This routine will find a couple of generalized Gaussians to a power spectrum
325 """This routine will find a couple of generalized Gaussians to a power spectrum
312 input: spc
326 input: spc
313 output:
327 output:
314 Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise
328 Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise
315 """
329 """
316
330
317 self.spc = dataOut.data_pre[0].copy()
331 self.spc = dataOut.data_pre[0].copy()
318 self.Num_Hei = self.spc.shape[2]
332 self.Num_Hei = self.spc.shape[2]
319 self.Num_Bin = self.spc.shape[1]
333 self.Num_Bin = self.spc.shape[1]
320 self.Num_Chn = self.spc.shape[0]
334 self.Num_Chn = self.spc.shape[0]
321 Vrange = dataOut.abscissaList
335 Vrange = dataOut.abscissaList
322
336
323 GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei])
337 GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei])
324 SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei])
338 SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei])
325 SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei])
339 SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei])
326 SPC_ch1[:] = numpy.NaN
340 SPC_ch1[:] = numpy.NaN
327 SPC_ch2[:] = numpy.NaN
341 SPC_ch2[:] = numpy.NaN
328
342
329
343
330 start_time = time.time()
344 start_time = time.time()
331
345
332 noise_ = dataOut.spc_noise[0].copy()
346 noise_ = dataOut.spc_noise[0].copy()
333
347
334
348
335 pool = Pool(processes=self.Num_Chn)
349 pool = Pool(processes=self.Num_Chn)
336 args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)]
350 args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)]
337 objs = [self for __ in range(self.Num_Chn)]
351 objs = [self for __ in range(self.Num_Chn)]
338 attrs = list(zip(objs, args))
352 attrs = list(zip(objs, args))
339 gauSPC = pool.map(target, attrs)
353 gauSPC = pool.map(target, attrs)
340 dataOut.SPCparam = numpy.asarray(SPCparam)
354 dataOut.SPCparam = numpy.asarray(SPCparam)
341
355
342 ''' Parameters:
356 ''' Parameters:
343 1. Amplitude
357 1. Amplitude
344 2. Shift
358 2. Shift
345 3. Width
359 3. Width
346 4. Power
360 4. Power
347 '''
361 '''
348
362
349 def FitGau(self, X):
363 def FitGau(self, X):
350
364
351 Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X
365 Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X
352
366
353 SPCparam = []
367 SPCparam = []
354 SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei])
368 SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei])
355 SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei])
369 SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei])
356 SPC_ch1[:] = 0#numpy.NaN
370 SPC_ch1[:] = 0#numpy.NaN
357 SPC_ch2[:] = 0#numpy.NaN
371 SPC_ch2[:] = 0#numpy.NaN
358
372
359
373
360
374
361 for ht in range(self.Num_Hei):
375 for ht in range(self.Num_Hei):
362
376
363
377
364 spc = numpy.asarray(self.spc)[ch,:,ht]
378 spc = numpy.asarray(self.spc)[ch,:,ht]
365
379
366 #############################################
380 #############################################
367 # normalizing spc and noise
381 # normalizing spc and noise
368 # This part differs from gg1
382 # This part differs from gg1
@@ -370,60 +384,60 class GaussianFit(Operation):
370 #spc = spc / spc_norm_max
384 #spc = spc / spc_norm_max
371 pnoise = pnoise #/ spc_norm_max
385 pnoise = pnoise #/ spc_norm_max
372 #############################################
386 #############################################
373
387
374 fatspectra=1.0
388 fatspectra=1.0
375
389
376 wnoise = noise_ #/ spc_norm_max
390 wnoise = noise_ #/ spc_norm_max
377 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
391 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
378 #if wnoise>1.1*pnoise: # to be tested later
392 #if wnoise>1.1*pnoise: # to be tested later
379 # wnoise=pnoise
393 # wnoise=pnoise
380 noisebl=wnoise*0.9;
394 noisebl=wnoise*0.9;
381 noisebh=wnoise*1.1
395 noisebh=wnoise*1.1
382 spc=spc-wnoise
396 spc=spc-wnoise
383
397
384 minx=numpy.argmin(spc)
398 minx=numpy.argmin(spc)
385 #spcs=spc.copy()
399 #spcs=spc.copy()
386 spcs=numpy.roll(spc,-minx)
400 spcs=numpy.roll(spc,-minx)
387 cum=numpy.cumsum(spcs)
401 cum=numpy.cumsum(spcs)
388 tot_noise=wnoise * self.Num_Bin #64;
402 tot_noise=wnoise * self.Num_Bin #64;
389
403
390 snr = sum(spcs)/tot_noise
404 snr = sum(spcs)/tot_noise
391 snrdB=10.*numpy.log10(snr)
405 snrdB=10.*numpy.log10(snr)
392
406
393 if snrdB < SNRlimit :
407 if snrdB < SNRlimit :
394 snr = numpy.NaN
408 snr = numpy.NaN
395 SPC_ch1[:,ht] = 0#numpy.NaN
409 SPC_ch1[:,ht] = 0#numpy.NaN
396 SPC_ch1[:,ht] = 0#numpy.NaN
410 SPC_ch1[:,ht] = 0#numpy.NaN
397 SPCparam = (SPC_ch1,SPC_ch2)
411 SPCparam = (SPC_ch1,SPC_ch2)
398 continue
412 continue
399
413
400
414
401 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
415 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
402 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
416 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
403
417
404 cummax=max(cum);
418 cummax=max(cum);
405 epsi=0.08*fatspectra # cumsum to narrow down the energy region
419 epsi=0.08*fatspectra # cumsum to narrow down the energy region
406 cumlo=cummax*epsi;
420 cumlo=cummax*epsi;
407 cumhi=cummax*(1-epsi)
421 cumhi=cummax*(1-epsi)
408 powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
422 powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
409
423
410
424
411 if len(powerindex) < 1:# case for powerindex 0
425 if len(powerindex) < 1:# case for powerindex 0
412 continue
426 continue
413 powerlo=powerindex[0]
427 powerlo=powerindex[0]
414 powerhi=powerindex[-1]
428 powerhi=powerindex[-1]
415 powerwidth=powerhi-powerlo
429 powerwidth=powerhi-powerlo
416
430
417 firstpeak=powerlo+powerwidth/10.# first gaussian energy location
431 firstpeak=powerlo+powerwidth/10.# first gaussian energy location
418 secondpeak=powerhi-powerwidth/10.#second gaussian energy location
432 secondpeak=powerhi-powerwidth/10.#second gaussian energy location
419 midpeak=(firstpeak+secondpeak)/2.
433 midpeak=(firstpeak+secondpeak)/2.
420 firstamp=spcs[int(firstpeak)]
434 firstamp=spcs[int(firstpeak)]
421 secondamp=spcs[int(secondpeak)]
435 secondamp=spcs[int(secondpeak)]
422 midamp=spcs[int(midpeak)]
436 midamp=spcs[int(midpeak)]
423
437
424 x=numpy.arange( self.Num_Bin )
438 x=numpy.arange( self.Num_Bin )
425 y_data=spc+wnoise
439 y_data=spc+wnoise
426
440
427 ''' single Gaussian '''
441 ''' single Gaussian '''
428 shift0=numpy.mod(midpeak+minx, self.Num_Bin )
442 shift0=numpy.mod(midpeak+minx, self.Num_Bin )
429 width0=powerwidth/4.#Initialization entire power of spectrum divided by 4
443 width0=powerwidth/4.#Initialization entire power of spectrum divided by 4
@@ -432,10 +446,10 class GaussianFit(Operation):
432 state0=[shift0,width0,amplitude0,power0,wnoise]
446 state0=[shift0,width0,amplitude0,power0,wnoise]
433 bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
447 bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
434 lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True)
448 lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True)
435
436 chiSq1=lsq1[1];
437
449
438
450 chiSq1=lsq1[1];
451
452
439 if fatspectra<1.0 and powerwidth<4:
453 if fatspectra<1.0 and powerwidth<4:
440 choice=0
454 choice=0
441 Amplitude0=lsq1[0][2]
455 Amplitude0=lsq1[0][2]
@@ -449,31 +463,31 class GaussianFit(Operation):
449 noise=lsq1[0][4]
463 noise=lsq1[0][4]
450 #return (numpy.array([shift0,width0,Amplitude0,p0]),
464 #return (numpy.array([shift0,width0,Amplitude0,p0]),
451 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
465 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
452
466
453 ''' two gaussians '''
467 ''' two gaussians '''
454 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
468 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
455 shift0=numpy.mod(firstpeak+minx, self.Num_Bin );
469 shift0=numpy.mod(firstpeak+minx, self.Num_Bin );
456 shift1=numpy.mod(secondpeak+minx, self.Num_Bin )
470 shift1=numpy.mod(secondpeak+minx, self.Num_Bin )
457 width0=powerwidth/6.;
471 width0=powerwidth/6.;
458 width1=width0
472 width1=width0
459 power0=2.;
473 power0=2.;
460 power1=power0
474 power1=power0
461 amplitude0=firstamp;
475 amplitude0=firstamp;
462 amplitude1=secondamp
476 amplitude1=secondamp
463 state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
477 state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
464 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
478 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
465 bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
479 bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
466 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
480 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
467
481
468 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
482 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
469
483
470
484
471 chiSq2=lsq2[1];
485 chiSq2=lsq2[1];
472
486
473
487
474
488
475 oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
489 oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
476
490
477 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
491 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
478 if oneG:
492 if oneG:
479 choice=0
493 choice=0
@@ -481,10 +495,10 class GaussianFit(Operation):
481 w1=lsq2[0][1]; w2=lsq2[0][5]
495 w1=lsq2[0][1]; w2=lsq2[0][5]
482 a1=lsq2[0][2]; a2=lsq2[0][6]
496 a1=lsq2[0][2]; a2=lsq2[0][6]
483 p1=lsq2[0][3]; p2=lsq2[0][7]
497 p1=lsq2[0][3]; p2=lsq2[0][7]
484 s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1;
498 s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1;
485 s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2;
499 s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2;
486 gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling
500 gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling
487
501
488 if gp1>gp2:
502 if gp1>gp2:
489 if a1>0.7*a2:
503 if a1>0.7*a2:
490 choice=1
504 choice=1
@@ -499,157 +513,157 class GaussianFit(Operation):
499 choice=numpy.argmax([a1,a2])+1
513 choice=numpy.argmax([a1,a2])+1
500 #else:
514 #else:
501 #choice=argmin([std2a,std2b])+1
515 #choice=argmin([std2a,std2b])+1
502
516
503 else: # with low SNR go to the most energetic peak
517 else: # with low SNR go to the most energetic peak
504 choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
518 choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
505
519
506
520
507 shift0=lsq2[0][0];
521 shift0=lsq2[0][0];
508 vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0])
522 vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0])
509 shift1=lsq2[0][4];
523 shift1=lsq2[0][4];
510 vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0])
524 vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0])
511
525
512 max_vel = 1.0
526 max_vel = 1.0
513
527
514 #first peak will be 0, second peak will be 1
528 #first peak will be 0, second peak will be 1
515 if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range
529 if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range
516 shift0=lsq2[0][0]
530 shift0=lsq2[0][0]
517 width0=lsq2[0][1]
531 width0=lsq2[0][1]
518 Amplitude0=lsq2[0][2]
532 Amplitude0=lsq2[0][2]
519 p0=lsq2[0][3]
533 p0=lsq2[0][3]
520
534
521 shift1=lsq2[0][4]
535 shift1=lsq2[0][4]
522 width1=lsq2[0][5]
536 width1=lsq2[0][5]
523 Amplitude1=lsq2[0][6]
537 Amplitude1=lsq2[0][6]
524 p1=lsq2[0][7]
538 p1=lsq2[0][7]
525 noise=lsq2[0][8]
539 noise=lsq2[0][8]
526 else:
540 else:
527 shift1=lsq2[0][0]
541 shift1=lsq2[0][0]
528 width1=lsq2[0][1]
542 width1=lsq2[0][1]
529 Amplitude1=lsq2[0][2]
543 Amplitude1=lsq2[0][2]
530 p1=lsq2[0][3]
544 p1=lsq2[0][3]
531
545
532 shift0=lsq2[0][4]
546 shift0=lsq2[0][4]
533 width0=lsq2[0][5]
547 width0=lsq2[0][5]
534 Amplitude0=lsq2[0][6]
548 Amplitude0=lsq2[0][6]
535 p0=lsq2[0][7]
549 p0=lsq2[0][7]
536 noise=lsq2[0][8]
550 noise=lsq2[0][8]
537
551
538 if Amplitude0<0.05: # in case the peak is noise
552 if Amplitude0<0.05: # in case the peak is noise
539 shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN]
553 shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN]
540 if Amplitude1<0.05:
554 if Amplitude1<0.05:
541 shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN]
555 shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN]
542
556
543
557
544 SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0
558 SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0
545 SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1
559 SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1
546 SPCparam = (SPC_ch1,SPC_ch2)
560 SPCparam = (SPC_ch1,SPC_ch2)
547
561
548
562
549 return GauSPC
563 return GauSPC
550
564
551 def y_model1(self,x,state):
565 def y_model1(self,x,state):
552 shift0,width0,amplitude0,power0,noise=state
566 shift0,width0,amplitude0,power0,noise=state
553 model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
567 model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
554
568
555 model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0)
569 model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0)
556
570
557 model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0)
571 model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0)
558 return model0+model0u+model0d+noise
572 return model0+model0u+model0d+noise
559
573
560 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
574 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
561 shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state
575 shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state
562 model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
576 model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
563
577
564 model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0)
578 model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0)
565
579
566 model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0)
580 model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0)
567 model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1)
581 model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1)
568
582
569 model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1)
583 model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1)
570
584
571 model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1)
585 model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1)
572 return model0+model0u+model0d+model1+model1u+model1d+noise
586 return model0+model0u+model0d+model1+model1u+model1d+noise
573
587
574 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
588 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
575
589
576 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
590 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
577
591
578 def misfit2(self,state,y_data,x,num_intg):
592 def misfit2(self,state,y_data,x,num_intg):
579 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
593 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
580
594
581
595
582
596
583 class PrecipitationProc(Operation):
597 class PrecipitationProc(Operation):
584
598
585 '''
599 '''
586 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
600 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
587
601
588 Input:
602 Input:
589 self.dataOut.data_pre : SelfSpectra
603 self.dataOut.data_pre : SelfSpectra
590
604
591 Output:
605 Output:
592
606
593 self.dataOut.data_output : Reflectivity factor, rainfall Rate
607 self.dataOut.data_output : Reflectivity factor, rainfall Rate
594
608
595
609
596 Parameters affected:
610 Parameters affected:
597 '''
611 '''
598
612
599 def __init__(self):
613 def __init__(self):
600 Operation.__init__(self)
614 Operation.__init__(self)
601 self.i=0
615 self.i=0
602
616
603
617
604 def gaus(self,xSamples,Amp,Mu,Sigma):
618 def gaus(self,xSamples,Amp,Mu,Sigma):
605 return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) ))
619 return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) ))
606
620
607
621
608
622
609 def Moments(self, ySamples, xSamples):
623 def Moments(self, ySamples, xSamples):
610 Pot = numpy.nansum( ySamples ) # Potencia, momento 0
624 Pot = numpy.nansum( ySamples ) # Potencia, momento 0
611 yNorm = ySamples / Pot
625 yNorm = ySamples / Pot
612
626
613 Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento
627 Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento
614 Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento
628 Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento
615 Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral
629 Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral
616
630
617 return numpy.array([Pot, Vr, Desv])
631 return numpy.array([Pot, Vr, Desv])
618
632
619 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
633 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
620 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km = 0.93, Altitude=3350):
634 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km = 0.93, Altitude=3350):
621
635
622
636
623 Velrange = dataOut.spcparam_range[2]
637 Velrange = dataOut.spcparam_range[2]
624 FrecRange = dataOut.spcparam_range[0]
638 FrecRange = dataOut.spcparam_range[0]
625
639
626 dV= Velrange[1]-Velrange[0]
640 dV= Velrange[1]-Velrange[0]
627 dF= FrecRange[1]-FrecRange[0]
641 dF= FrecRange[1]-FrecRange[0]
628
642
629 if radar == "MIRA35C" :
643 if radar == "MIRA35C" :
630
644
631 self.spc = dataOut.data_pre[0].copy()
645 self.spc = dataOut.data_pre[0].copy()
632 self.Num_Hei = self.spc.shape[2]
646 self.Num_Hei = self.spc.shape[2]
633 self.Num_Bin = self.spc.shape[1]
647 self.Num_Bin = self.spc.shape[1]
634 self.Num_Chn = self.spc.shape[0]
648 self.Num_Chn = self.spc.shape[0]
635 Ze = self.dBZeMODE2(dataOut)
649 Ze = self.dBZeMODE2(dataOut)
636
650
637 else:
651 else:
638
652
639 self.spc = dataOut.SPCparam[1].copy() #dataOut.data_pre[0].copy() #
653 self.spc = dataOut.SPCparam[1].copy() #dataOut.data_pre[0].copy() #
640
654
641 """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX"""
655 """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX"""
642
656
643 self.spc[:,:,0:7]= numpy.NaN
657 self.spc[:,:,0:7]= numpy.NaN
644
658
645 """##########################################"""
659 """##########################################"""
646
660
647 self.Num_Hei = self.spc.shape[2]
661 self.Num_Hei = self.spc.shape[2]
648 self.Num_Bin = self.spc.shape[1]
662 self.Num_Bin = self.spc.shape[1]
649 self.Num_Chn = self.spc.shape[0]
663 self.Num_Chn = self.spc.shape[0]
650
664
651 ''' Se obtiene la constante del RADAR '''
665 ''' Se obtiene la constante del RADAR '''
652
666
653 self.Pt = Pt
667 self.Pt = Pt
654 self.Gt = Gt
668 self.Gt = Gt
655 self.Gr = Gr
669 self.Gr = Gr
@@ -658,30 +672,30 class PrecipitationProc(Operation):
658 self.tauW = tauW
672 self.tauW = tauW
659 self.ThetaT = ThetaT
673 self.ThetaT = ThetaT
660 self.ThetaR = ThetaR
674 self.ThetaR = ThetaR
661
675
662 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
676 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
663 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
677 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
664 RadarConstant = 10e-26 * Numerator / Denominator #
678 RadarConstant = 10e-26 * Numerator / Denominator #
665
679
666 ''' ============================= '''
680 ''' ============================= '''
667
681
668 self.spc[0] = (self.spc[0]-dataOut.noise[0])
682 self.spc[0] = (self.spc[0]-dataOut.noise[0])
669 self.spc[1] = (self.spc[1]-dataOut.noise[1])
683 self.spc[1] = (self.spc[1]-dataOut.noise[1])
670 self.spc[2] = (self.spc[2]-dataOut.noise[2])
684 self.spc[2] = (self.spc[2]-dataOut.noise[2])
671
685
672 self.spc[ numpy.where(self.spc < 0)] = 0
686 self.spc[ numpy.where(self.spc < 0)] = 0
673
687
674 SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise))
688 SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise))
675 SPCmean[ numpy.where(SPCmean < 0)] = 0
689 SPCmean[ numpy.where(SPCmean < 0)] = 0
676
690
677 ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei])
691 ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei])
678 ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei])
692 ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei])
679 ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei])
693 ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei])
680
694
681 Pr = SPCmean[:,:]
695 Pr = SPCmean[:,:]
682
696
683 VelMeteoro = numpy.mean(SPCmean,axis=0)
697 VelMeteoro = numpy.mean(SPCmean,axis=0)
684
698
685 D_range = numpy.zeros([self.Num_Bin,self.Num_Hei])
699 D_range = numpy.zeros([self.Num_Bin,self.Num_Hei])
686 SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei])
700 SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei])
687 N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei])
701 N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei])
@@ -690,102 +704,102 class PrecipitationProc(Operation):
690 Z = numpy.zeros(self.Num_Hei)
704 Z = numpy.zeros(self.Num_Hei)
691 Ze = numpy.zeros(self.Num_Hei)
705 Ze = numpy.zeros(self.Num_Hei)
692 RR = numpy.zeros(self.Num_Hei)
706 RR = numpy.zeros(self.Num_Hei)
693
707
694 Range = dataOut.heightList*1000.
708 Range = dataOut.heightList*1000.
695
709
696 for R in range(self.Num_Hei):
710 for R in range(self.Num_Hei):
697
711
698 h = Range[R] + Altitude #Range from ground to radar pulse altitude
712 h = Range[R] + Altitude #Range from ground to radar pulse altitude
699 del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity
713 del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity
700
714
701 D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3
715 D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3
702
716
703 '''NOTA: ETA(n) dn = ETA(f) df
717 '''NOTA: ETA(n) dn = ETA(f) df
704
718
705 dn = 1 Diferencial de muestreo
719 dn = 1 Diferencial de muestreo
706 df = ETA(n) / ETA(f)
720 df = ETA(n) / ETA(f)
707
721
708 '''
722 '''
709
723
710 ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA)
724 ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA)
711
725
712 ETAv[:,R]=ETAn[:,R]/dV
726 ETAv[:,R]=ETAn[:,R]/dV
713
727
714 ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R])
728 ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R])
715
729
716 SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma)
730 SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma)
717
731
718 N_dist[:,R] = ETAn[:,R] / SIGMA[:,R]
732 N_dist[:,R] = ETAn[:,R] / SIGMA[:,R]
719
733
720 DMoments = self.Moments(Pr[:,R], Velrange[0:self.Num_Bin])
734 DMoments = self.Moments(Pr[:,R], Velrange[0:self.Num_Bin])
721
735
722 try:
736 try:
723 popt01,pcov = curve_fit(self.gaus, Velrange[0:self.Num_Bin] , Pr[:,R] , p0=DMoments)
737 popt01,pcov = curve_fit(self.gaus, Velrange[0:self.Num_Bin] , Pr[:,R] , p0=DMoments)
724 except:
738 except:
725 popt01=numpy.zeros(3)
739 popt01=numpy.zeros(3)
726 popt01[1]= DMoments[1]
740 popt01[1]= DMoments[1]
727
741
728 if popt01[1]<0 or popt01[1]>20:
742 if popt01[1]<0 or popt01[1]>20:
729 popt01[1]=numpy.NaN
743 popt01[1]=numpy.NaN
730
744
731
745
732 V_mean[R]=popt01[1]
746 V_mean[R]=popt01[1]
733
747
734 Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 )#*10**-18
748 Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 )#*10**-18
735
749
736 RR[R] = 0.0006*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate
750 RR[R] = 0.0006*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate
737
751
738 Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( 10**-18*numpy.pi**5 * Km)
752 Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( 10**-18*numpy.pi**5 * Km)
739
753
740
754
741
755
742 RR2 = (Z/200)**(1/1.6)
756 RR2 = (Z/200)**(1/1.6)
743 dBRR = 10*numpy.log10(RR)
757 dBRR = 10*numpy.log10(RR)
744 dBRR2 = 10*numpy.log10(RR2)
758 dBRR2 = 10*numpy.log10(RR2)
745
759
746 dBZe = 10*numpy.log10(Ze)
760 dBZe = 10*numpy.log10(Ze)
747 dBZ = 10*numpy.log10(Z)
761 dBZ = 10*numpy.log10(Z)
748
762
749 dataOut.data_output = RR[8]
763 dataOut.data_output = RR[8]
750 dataOut.data_param = numpy.ones([3,self.Num_Hei])
764 dataOut.data_param = numpy.ones([3,self.Num_Hei])
751 dataOut.channelList = [0,1,2]
765 dataOut.channelList = [0,1,2]
752
766
753 dataOut.data_param[0]=dBZ
767 dataOut.data_param[0]=dBZ
754 dataOut.data_param[1]=V_mean
768 dataOut.data_param[1]=V_mean
755 dataOut.data_param[2]=RR
769 dataOut.data_param[2]=RR
756
770
757 return dataOut
771 return dataOut
758
772
759 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
773 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
760
774
761 NPW = dataOut.NPW
775 NPW = dataOut.NPW
762 COFA = dataOut.COFA
776 COFA = dataOut.COFA
763
777
764 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
778 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
765 RadarConst = dataOut.RadarConst
779 RadarConst = dataOut.RadarConst
766 #frequency = 34.85*10**9
780 #frequency = 34.85*10**9
767
781
768 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
782 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
769 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
783 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
770
784
771 ETA = numpy.sum(SNR,1)
785 ETA = numpy.sum(SNR,1)
772
786
773 ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN)
787 ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN)
774
788
775 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
789 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
776
790
777 for r in range(self.Num_Hei):
791 for r in range(self.Num_Hei):
778
792
779 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
793 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
780 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
794 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
781
795
782 return Ze
796 return Ze
783
797
784 # def GetRadarConstant(self):
798 # def GetRadarConstant(self):
785 #
799 #
786 # """
800 # """
787 # Constants:
801 # Constants:
788 #
802 #
789 # Pt: Transmission Power dB 5kW 5000
803 # Pt: Transmission Power dB 5kW 5000
790 # Gt: Transmission Gain dB 24.7 dB 295.1209
804 # Gt: Transmission Gain dB 24.7 dB 295.1209
791 # Gr: Reception Gain dB 18.5 dB 70.7945
805 # Gr: Reception Gain dB 18.5 dB 70.7945
@@ -794,55 +808,55 class PrecipitationProc(Operation):
794 # tauW: Width of transmission pulse s 4us 4e-6
808 # tauW: Width of transmission pulse s 4us 4e-6
795 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
809 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
796 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
810 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
797 #
811 #
798 # """
812 # """
799 #
813 #
800 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
814 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
801 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
815 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
802 # RadarConstant = Numerator / Denominator
816 # RadarConstant = Numerator / Denominator
803 #
817 #
804 # return RadarConstant
818 # return RadarConstant
805
819
806
820
807
821
808 class FullSpectralAnalysis(Operation):
822 class FullSpectralAnalysis(Operation):
809
823
810 """
824 """
811 Function that implements Full Spectral Analysis technique.
825 Function that implements Full Spectral Analysis technique.
812
826
813 Input:
827 Input:
814 self.dataOut.data_pre : SelfSpectra and CrossSpectra data
828 self.dataOut.data_pre : SelfSpectra and CrossSpectra data
815 self.dataOut.groupList : Pairlist of channels
829 self.dataOut.groupList : Pairlist of channels
816 self.dataOut.ChanDist : Physical distance between receivers
830 self.dataOut.ChanDist : Physical distance between receivers
817
831
818
832
819 Output:
833 Output:
820
834
821 self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind
835 self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind
822
836
823
837
824 Parameters affected: Winds, height range, SNR
838 Parameters affected: Winds, height range, SNR
825
839
826 """
840 """
827 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRlimit=7, minheight=None, maxheight=None):
841 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRlimit=7, minheight=None, maxheight=None):
828
842
829 self.indice=int(numpy.random.rand()*1000)
843 self.indice=int(numpy.random.rand()*1000)
830
844
831 spc = dataOut.data_pre[0].copy()
845 spc = dataOut.data_pre[0].copy()
832 cspc = dataOut.data_pre[1]
846 cspc = dataOut.data_pre[1]
833
847
834 """Erick: NOTE THE RANGE OF THE PULSE TX MUST BE REMOVED"""
848 """Erick: NOTE THE RANGE OF THE PULSE TX MUST BE REMOVED"""
835
849
836 SNRspc = spc.copy()
850 SNRspc = spc.copy()
837 SNRspc[:,:,0:7]= numpy.NaN
851 SNRspc[:,:,0:7]= numpy.NaN
838
852
839 """##########################################"""
853 """##########################################"""
840
854
841
855
842 nChannel = spc.shape[0]
856 nChannel = spc.shape[0]
843 nProfiles = spc.shape[1]
857 nProfiles = spc.shape[1]
844 nHeights = spc.shape[2]
858 nHeights = spc.shape[2]
845
859
846 # first_height = 0.75 #km (ref: data header 20170822)
860 # first_height = 0.75 #km (ref: data header 20170822)
847 # resolution_height = 0.075 #km
861 # resolution_height = 0.075 #km
848 '''
862 '''
@@ -866,37 +880,37 class FullSpectralAnalysis(Operation):
866 ChanDist = dataOut.ChanDist
880 ChanDist = dataOut.ChanDist
867 else:
881 else:
868 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
882 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
869
883
870 FrecRange = dataOut.spc_range[0]
884 FrecRange = dataOut.spc_range[0]
871
885
872 data_SNR=numpy.zeros([nProfiles])
886 data_SNR=numpy.zeros([nProfiles])
873 noise = dataOut.noise
887 noise = dataOut.noise
874
888
875 dataOut.data_SNR = (numpy.mean(SNRspc,axis=1)- noise[0]) / noise[0]
889 dataOut.data_SNR = (numpy.mean(SNRspc,axis=1)- noise[0]) / noise[0]
876
890
877 dataOut.data_SNR[numpy.where( dataOut.data_SNR <0 )] = 1e-20
891 dataOut.data_SNR[numpy.where( dataOut.data_SNR <0 )] = 1e-20
878
892
879
893
880 data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN
894 data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN
881
895
882 velocityX=[]
896 velocityX=[]
883 velocityY=[]
897 velocityY=[]
884 velocityV=[]
898 velocityV=[]
885
899
886 dbSNR = 10*numpy.log10(dataOut.data_SNR)
900 dbSNR = 10*numpy.log10(dataOut.data_SNR)
887 dbSNR = numpy.average(dbSNR,0)
901 dbSNR = numpy.average(dbSNR,0)
888
902
889 '''***********************************************WIND ESTIMATION**************************************'''
903 '''***********************************************WIND ESTIMATION**************************************'''
890
904
891 for Height in range(nHeights):
905 for Height in range(nHeights):
892
906
893 if Height >= range_min and Height < range_max:
907 if Height >= range_min and Height < range_max:
894 # error_code unused, yet maybe useful for future analysis.
908 # error_code unused, yet maybe useful for future analysis.
895 [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, ChanDist, Height, noise, dataOut.spc_range, dbSNR[Height], SNRlimit)
909 [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, ChanDist, Height, noise, dataOut.spc_range, dbSNR[Height], SNRlimit)
896 else:
910 else:
897 Vzon,Vmer,Vver = 0., 0., numpy.NaN
911 Vzon,Vmer,Vver = 0., 0., numpy.NaN
898
912
899
913
900 if abs(Vzon) < 100. and abs(Vzon) > 0. and abs(Vmer) < 100. and abs(Vmer) > 0.:
914 if abs(Vzon) < 100. and abs(Vzon) > 0. and abs(Vmer) < 100. and abs(Vmer) > 0.:
901 velocityX=numpy.append(velocityX, Vzon)
915 velocityX=numpy.append(velocityX, Vzon)
902 velocityY=numpy.append(velocityY, -Vmer)
916 velocityY=numpy.append(velocityY, -Vmer)
@@ -904,33 +918,33 class FullSpectralAnalysis(Operation):
904 else:
918 else:
905 velocityX=numpy.append(velocityX, numpy.NaN)
919 velocityX=numpy.append(velocityX, numpy.NaN)
906 velocityY=numpy.append(velocityY, numpy.NaN)
920 velocityY=numpy.append(velocityY, numpy.NaN)
907
921
908 if dbSNR[Height] > SNRlimit:
922 if dbSNR[Height] > SNRlimit:
909 velocityV=numpy.append(velocityV, -Vver) # reason for this minus sign -> convention? (taken from Ericks version)
923 velocityV=numpy.append(velocityV, -Vver) # reason for this minus sign -> convention? (taken from Ericks version)
910 else:
924 else:
911 velocityV=numpy.append(velocityV, numpy.NaN)
925 velocityV=numpy.append(velocityV, numpy.NaN)
912
926
913
927
914 '''Change the numpy.array (velocityX) sign when trying to process BLTR data (Erick)'''
928 '''Change the numpy.array (velocityX) sign when trying to process BLTR data (Erick)'''
915 data_output[0] = numpy.array(velocityX)
929 data_output[0] = numpy.array(velocityX)
916 data_output[1] = numpy.array(velocityY)
930 data_output[1] = numpy.array(velocityY)
917 data_output[2] = velocityV
931 data_output[2] = velocityV
918
932
919
933
920 dataOut.data_output = data_output
934 dataOut.data_output = data_output
921
935
922 return dataOut
936 return dataOut
923
937
924
938
925 def moving_average(self,x, N=2):
939 def moving_average(self,x, N=2):
926 """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """
940 """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """
927 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
941 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
928
942
929 def gaus(self,xSamples,Amp,Mu,Sigma):
943 def gaus(self,xSamples,Amp,Mu,Sigma):
930 return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) ))
944 return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) ))
931
945
932 def Moments(self, ySamples, xSamples):
946 def Moments(self, ySamples, xSamples):
933 '''***
947 '''***
934 Variables corresponding to moments of distribution.
948 Variables corresponding to moments of distribution.
935 Also used as initial coefficients for curve_fit.
949 Also used as initial coefficients for curve_fit.
936 Vr was corrected. Only a velocity when x is velocity, of course.
950 Vr was corrected. Only a velocity when x is velocity, of course.
@@ -939,9 +953,9 class FullSpectralAnalysis(Operation):
939 yNorm = ySamples / Pot
953 yNorm = ySamples / Pot
940 x_range = (numpy.max(xSamples)-numpy.min(xSamples))
954 x_range = (numpy.max(xSamples)-numpy.min(xSamples))
941 Vr = numpy.nansum( yNorm * xSamples )*x_range/len(xSamples) # Velocidad radial, mu, corrimiento doppler, primer momento
955 Vr = numpy.nansum( yNorm * xSamples )*x_range/len(xSamples) # Velocidad radial, mu, corrimiento doppler, primer momento
942 Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento
956 Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento
943 Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral
957 Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral
944
958
945 return numpy.array([Pot, Vr, Desv])
959 return numpy.array([Pot, Vr, Desv])
946
960
947 def StopWindEstimation(self, error_code):
961 def StopWindEstimation(self, error_code):
@@ -954,7 +968,7 class FullSpectralAnalysis(Operation):
954 return Vzon, Vmer, Vver, error_code
968 return Vzon, Vmer, Vver, error_code
955
969
956 def AntiAliasing(self, interval, maxstep):
970 def AntiAliasing(self, interval, maxstep):
957 """
971 """
958 function to prevent errors from aliased values when computing phaseslope
972 function to prevent errors from aliased values when computing phaseslope
959 """
973 """
960 antialiased = numpy.zeros(len(interval))*0.0
974 antialiased = numpy.zeros(len(interval))*0.0
@@ -964,8 +978,8 class FullSpectralAnalysis(Operation):
964
978
965 for i in range(1,len(antialiased)):
979 for i in range(1,len(antialiased)):
966
980
967 step = interval[i] - interval[i-1]
981 step = interval[i] - interval[i-1]
968
982
969 if step > maxstep:
983 if step > maxstep:
970 copyinterval -= 2*numpy.pi
984 copyinterval -= 2*numpy.pi
971 antialiased[i] = copyinterval[i]
985 antialiased[i] = copyinterval[i]
@@ -973,7 +987,7 class FullSpectralAnalysis(Operation):
973 elif step < maxstep*(-1):
987 elif step < maxstep*(-1):
974 copyinterval += 2*numpy.pi
988 copyinterval += 2*numpy.pi
975 antialiased[i] = copyinterval[i]
989 antialiased[i] = copyinterval[i]
976
990
977 else:
991 else:
978 antialiased[i] = copyinterval[i].copy()
992 antialiased[i] = copyinterval[i].copy()
979
993
@@ -1003,27 +1017,27 class FullSpectralAnalysis(Operation):
1003 3 : SNR to low or velocity to high -> prec. e.g.
1017 3 : SNR to low or velocity to high -> prec. e.g.
1004 4 : at least one Gaussian of cspc exceeds widthlimit
1018 4 : at least one Gaussian of cspc exceeds widthlimit
1005 5 : zero out of three cspc Gaussian fits converged
1019 5 : zero out of three cspc Gaussian fits converged
1006 6 : phase slope fit could not be found
1020 6 : phase slope fit could not be found
1007 7 : arrays used to fit phase have different length
1021 7 : arrays used to fit phase have different length
1008 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc)
1022 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc)
1009
1023
1010 """
1024 """
1011
1025
1012 error_code = 0
1026 error_code = 0
1013
1027
1014
1028
1015 SPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]]) # for normalized spc values for one height
1029 SPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]]) # for normalized spc values for one height
1016 phase = numpy.ones([spc.shape[0],spc.shape[1]]) # phase between channels
1030 phase = numpy.ones([spc.shape[0],spc.shape[1]]) # phase between channels
1017 CSPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) # for normalized cspc values
1031 CSPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) # for normalized cspc values
1018 PhaseSlope = numpy.zeros(spc.shape[0]) # slope of the phases, channelwise
1032 PhaseSlope = numpy.zeros(spc.shape[0]) # slope of the phases, channelwise
1019 PhaseInter = numpy.ones(spc.shape[0]) # intercept to the slope of the phases, channelwise
1033 PhaseInter = numpy.ones(spc.shape[0]) # intercept to the slope of the phases, channelwise
1020 xFrec = AbbsisaRange[0][0:spc.shape[1]] # frequency range
1034 xFrec = AbbsisaRange[0][0:spc.shape[1]] # frequency range
1021 xVel = AbbsisaRange[2][0:spc.shape[1]] # velocity range
1035 xVel = AbbsisaRange[2][0:spc.shape[1]] # velocity range
1022 SPCav = numpy.average(spc, axis=0)-numpy.average(noise) # spc[0]-noise[0]
1036 SPCav = numpy.average(spc, axis=0)-numpy.average(noise) # spc[0]-noise[0]
1023
1037
1024 SPCmoments_vel = self.Moments(SPCav, xVel ) # SPCmoments_vel[1] corresponds to vertical velocity and is used to determine if signal corresponds to wind (if .. <3)
1038 SPCmoments_vel = self.Moments(SPCav, xVel ) # SPCmoments_vel[1] corresponds to vertical velocity and is used to determine if signal corresponds to wind (if .. <3)
1025 CSPCmoments = []
1039 CSPCmoments = []
1026
1040
1027
1041
1028 '''Getting Eij and Nij'''
1042 '''Getting Eij and Nij'''
1029
1043
@@ -1038,13 +1052,13 class FullSpectralAnalysis(Operation):
1038 spc_norm = spc.copy() # need copy() because untouched spc is needed for normalization of cspc below
1052 spc_norm = spc.copy() # need copy() because untouched spc is needed for normalization of cspc below
1039 spc_norm = numpy.where(numpy.isfinite(spc_norm), spc_norm, numpy.NAN)
1053 spc_norm = numpy.where(numpy.isfinite(spc_norm), spc_norm, numpy.NAN)
1040
1054
1041 for i in range(spc.shape[0]):
1055 for i in range(spc.shape[0]):
1042
1056
1043 spc_sub = spc_norm[i,:] - noise[i] # spc not smoothed here or in previous version.
1057 spc_sub = spc_norm[i,:] - noise[i] # spc not smoothed here or in previous version.
1044
1058
1045 Factor_Norm = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc_sub)) # usually = Freq range / nfft
1059 Factor_Norm = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc_sub)) # usually = Freq range / nfft
1046 normalized_spc = spc_sub / (numpy.nansum(numpy.abs(spc_sub)) * Factor_Norm)
1060 normalized_spc = spc_sub / (numpy.nansum(numpy.abs(spc_sub)) * Factor_Norm)
1047
1061
1048 xSamples = xFrec # the frequency range is taken
1062 xSamples = xFrec # the frequency range is taken
1049 SPC_Samples[i] = normalized_spc # Normalized SPC values are taken
1063 SPC_Samples[i] = normalized_spc # Normalized SPC values are taken
1050
1064
@@ -1055,49 +1069,49 class FullSpectralAnalysis(Operation):
1055 only for estimation of width. for normalization of cross spectra, you need initial,
1069 only for estimation of width. for normalization of cross spectra, you need initial,
1056 unnormalized self-spectra With noise.
1070 unnormalized self-spectra With noise.
1057
1071
1058 Technically, you don't even need to normalize the self-spectra, as you only need the
1072 Technically, you don't even need to normalize the self-spectra, as you only need the
1059 width of the peak. However, it was left this way. Note that the normalization has a flaw:
1073 width of the peak. However, it was left this way. Note that the normalization has a flaw:
1060 due to subtraction of the noise, some values are below zero. Raw "spc" values should be
1074 due to subtraction of the noise, some values are below zero. Raw "spc" values should be
1061 >= 0, as it is the modulus squared of the signals (complex * it's conjugate)
1075 >= 0, as it is the modulus squared of the signals (complex * it's conjugate)
1062 """
1076 """
1063
1077
1064 SPCMean = numpy.average(SPC_Samples, axis=0)
1078 SPCMean = numpy.average(SPC_Samples, axis=0)
1065
1079
1066 popt = [1e-10,0,1e-10]
1080 popt = [1e-10,0,1e-10]
1067 SPCMoments = self.Moments(SPCMean, xSamples)
1081 SPCMoments = self.Moments(SPCMean, xSamples)
1068
1082
1069 if dbSNR > SNRlimit and numpy.abs(SPCmoments_vel[1]) < 3:
1083 if dbSNR > SNRlimit and numpy.abs(SPCmoments_vel[1]) < 3:
1070 try:
1084 try:
1071 popt,pcov = curve_fit(self.gaus,xSamples,SPCMean,p0=SPCMoments)#, bounds=(-numpy.inf, [numpy.inf, numpy.inf, 10])). Setting bounds does not make the code faster but only keeps the fit from finding the minimum.
1085 popt,pcov = curve_fit(self.gaus,xSamples,SPCMean,p0=SPCMoments)#, bounds=(-numpy.inf, [numpy.inf, numpy.inf, 10])). Setting bounds does not make the code faster but only keeps the fit from finding the minimum.
1072 if popt[2] > widthlimit: # CONDITION
1086 if popt[2] > widthlimit: # CONDITION
1073 return self.StopWindEstimation(error_code = 1)
1087 return self.StopWindEstimation(error_code = 1)
1074
1088
1075 FitGauss = self.gaus(xSamples,*popt)
1089 FitGauss = self.gaus(xSamples,*popt)
1076
1090
1077 except :#RuntimeError:
1091 except :#RuntimeError:
1078 return self.StopWindEstimation(error_code = 2)
1092 return self.StopWindEstimation(error_code = 2)
1079
1093
1080 else:
1094 else:
1081 return self.StopWindEstimation(error_code = 3)
1095 return self.StopWindEstimation(error_code = 3)
1082
1096
1083
1097
1084
1098
1085 '''***************************** CSPC Normalization *************************
1099 '''***************************** CSPC Normalization *************************
1086 new section:
1100 new section:
1087 The Spc spectra are used to normalize the crossspectra. Peaks from precipitation
1101 The Spc spectra are used to normalize the crossspectra. Peaks from precipitation
1088 influence the norm which is not desired. First, a range is identified where the
1102 influence the norm which is not desired. First, a range is identified where the
1089 wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area
1103 wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area
1090 around it gets cut off and values replaced by mean determined by the boundary
1104 around it gets cut off and values replaced by mean determined by the boundary
1091 data -> sum_noise (spc is not normalized here, thats why the noise is important)
1105 data -> sum_noise (spc is not normalized here, thats why the noise is important)
1092
1106
1093 The sums are then added and multiplied by range/datapoints, because you need
1107 The sums are then added and multiplied by range/datapoints, because you need
1094 an integral and not a sum for normalization.
1108 an integral and not a sum for normalization.
1095
1109
1096 A norm is found according to Briggs 92.
1110 A norm is found according to Briggs 92.
1097 '''
1111 '''
1098
1112
1099 radarWavelength = 0.6741 # meters
1113 radarWavelength = 0.6741 # meters
1100 count_limit_freq = numpy.abs(popt[1]) + widthlimit # Hz, m/s can be also used if velocity is desired abscissa.
1114 count_limit_freq = numpy.abs(popt[1]) + widthlimit # Hz, m/s can be also used if velocity is desired abscissa.
1101 # count_limit_freq = numpy.max(xFrec)
1115 # count_limit_freq = numpy.max(xFrec)
1102
1116
1103 channel_integrals = numpy.zeros(3)
1117 channel_integrals = numpy.zeros(3)
@@ -1108,11 +1122,11 class FullSpectralAnalysis(Operation):
1108 sum over all frequencies in the range around zero Hz @ math.ceil(N_freq/2)
1122 sum over all frequencies in the range around zero Hz @ math.ceil(N_freq/2)
1109 '''
1123 '''
1110 N_freq = numpy.count_nonzero(~numpy.isnan(spc[i,:]))
1124 N_freq = numpy.count_nonzero(~numpy.isnan(spc[i,:]))
1111 count_limit_int = int(math.ceil( count_limit_freq / numpy.max(xFrec) * (N_freq / 2) )) # gives integer point
1125 count_limit_int = int(math.ceil( count_limit_freq / numpy.max(xFrec) * (N_freq / 2) )) # gives integer point
1112 sum_wind = numpy.nansum( spc[i, (math.ceil(N_freq/2) - count_limit_int) : (math.ceil(N_freq / 2) + count_limit_int)] ) #N_freq/2 is where frequency (velocity) is zero, i.e. middle of spectrum.
1126 sum_wind = numpy.nansum( spc[i, (math.ceil(N_freq/2) - count_limit_int) : (math.ceil(N_freq / 2) + count_limit_int)] ) #N_freq/2 is where frequency (velocity) is zero, i.e. middle of spectrum.
1113 sum_noise = (numpy.mean(spc[i, :4]) + numpy.mean(spc[i, -6:-2]))/2.0 * (N_freq - 2*count_limit_int)
1127 sum_noise = (numpy.mean(spc[i, :4]) + numpy.mean(spc[i, -6:-2]))/2.0 * (N_freq - 2*count_limit_int)
1114 channel_integrals[i] = (sum_noise + sum_wind) * (2*numpy.max(xFrec) / N_freq)
1128 channel_integrals[i] = (sum_noise + sum_wind) * (2*numpy.max(xFrec) / N_freq)
1115
1129
1116
1130
1117 cross_integrals_peak = numpy.zeros(3)
1131 cross_integrals_peak = numpy.zeros(3)
1118 # cross_integrals_totalrange = numpy.zeros(3)
1132 # cross_integrals_totalrange = numpy.zeros(3)
@@ -1125,45 +1139,45 class FullSpectralAnalysis(Operation):
1125 chan_index1 = pairsList[i][1]
1139 chan_index1 = pairsList[i][1]
1126
1140
1127 cross_integrals_peak[i] = channel_integrals[chan_index0]*channel_integrals[chan_index1]
1141 cross_integrals_peak[i] = channel_integrals[chan_index0]*channel_integrals[chan_index1]
1128 normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_peak[i])
1142 normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_peak[i])
1129 CSPC_Samples[i] = normalized_cspc
1143 CSPC_Samples[i] = normalized_cspc
1130
1144
1131 ''' Finding cross integrals without subtracting any peaks:'''
1145 ''' Finding cross integrals without subtracting any peaks:'''
1132 # FactorNorm0 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index0,:]))
1146 # FactorNorm0 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index0,:]))
1133 # FactorNorm1 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index1,:]))
1147 # FactorNorm1 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index1,:]))
1134 # cross_integrals_totalrange[i] = (numpy.nansum(spc[chan_index0,:])) * FactorNorm0 * (numpy.nansum(spc[chan_index1,:])) * FactorNorm1
1148 # cross_integrals_totalrange[i] = (numpy.nansum(spc[chan_index0,:])) * FactorNorm0 * (numpy.nansum(spc[chan_index1,:])) * FactorNorm1
1135 # normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_totalrange[i])
1149 # normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_totalrange[i])
1136 # CSPC_Samples[i] = normalized_cspc
1150 # CSPC_Samples[i] = normalized_cspc
1137
1151
1138
1152
1139 phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real)
1153 phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real)
1140
1154
1141
1155
1142 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0]), xSamples),
1156 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0]), xSamples),
1143 self.Moments(numpy.abs(CSPC_Samples[1]), xSamples),
1157 self.Moments(numpy.abs(CSPC_Samples[1]), xSamples),
1144 self.Moments(numpy.abs(CSPC_Samples[2]), xSamples)])
1158 self.Moments(numpy.abs(CSPC_Samples[2]), xSamples)])
1145
1159
1146
1160
1147 '''***Sorting out NaN entries***'''
1161 '''***Sorting out NaN entries***'''
1148 CSPCMask01 = numpy.abs(CSPC_Samples[0])
1162 CSPCMask01 = numpy.abs(CSPC_Samples[0])
1149 CSPCMask02 = numpy.abs(CSPC_Samples[1])
1163 CSPCMask02 = numpy.abs(CSPC_Samples[1])
1150 CSPCMask12 = numpy.abs(CSPC_Samples[2])
1164 CSPCMask12 = numpy.abs(CSPC_Samples[2])
1151
1165
1152 mask01 = ~numpy.isnan(CSPCMask01)
1166 mask01 = ~numpy.isnan(CSPCMask01)
1153 mask02 = ~numpy.isnan(CSPCMask02)
1167 mask02 = ~numpy.isnan(CSPCMask02)
1154 mask12 = ~numpy.isnan(CSPCMask12)
1168 mask12 = ~numpy.isnan(CSPCMask12)
1155
1169
1156 CSPCMask01 = CSPCMask01[mask01]
1170 CSPCMask01 = CSPCMask01[mask01]
1157 CSPCMask02 = CSPCMask02[mask02]
1171 CSPCMask02 = CSPCMask02[mask02]
1158 CSPCMask12 = CSPCMask12[mask12]
1172 CSPCMask12 = CSPCMask12[mask12]
1159
1173
1160
1174
1161 popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10]
1175 popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10]
1162 FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0
1176 FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0
1163
1177
1164 '''*******************************FIT GAUSS CSPC************************************'''
1178 '''*******************************FIT GAUSS CSPC************************************'''
1165
1179
1166 try:
1180 try:
1167 popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0])
1181 popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0])
1168 if popt01[2] > widthlimit: # CONDITION
1182 if popt01[2] > widthlimit: # CONDITION
1169 return self.StopWindEstimation(error_code = 4)
1183 return self.StopWindEstimation(error_code = 4)
@@ -1186,53 +1200,53 class FullSpectralAnalysis(Operation):
1186
1200
1187 '''************* Getting Fij ***************'''
1201 '''************* Getting Fij ***************'''
1188
1202
1189
1203
1190 #Punto en Eje X de la Gaussiana donde se encuentra el centro -- x-axis point of the gaussian where the center is located
1204 #Punto en Eje X de la Gaussiana donde se encuentra el centro -- x-axis point of the gaussian where the center is located
1191 # -> PointGauCenter
1205 # -> PointGauCenter
1192 GaussCenter = popt[1]
1206 GaussCenter = popt[1]
1193 ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()]
1207 ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()]
1194 PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0]
1208 PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0]
1195
1209
1196 #Punto e^-1 hubicado en la Gaussiana -- point where e^-1 is located in the gaussian
1210 #Punto e^-1 hubicado en la Gaussiana -- point where e^-1 is located in the gaussian
1197 PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1)
1211 PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1)
1198 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss"
1212 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss"
1199 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1213 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1200
1214
1201 Fij = numpy.abs(xSamples[PointFij] - xSamples[PointGauCenter])
1215 Fij = numpy.abs(xSamples[PointFij] - xSamples[PointGauCenter])
1202
1216
1203 '''********** Taking frequency ranges from mean SPCs **********'''
1217 '''********** Taking frequency ranges from mean SPCs **********'''
1204
1218
1205 #GaussCenter = popt[1] #Primer momento 01
1219 #GaussCenter = popt[1] #Primer momento 01
1206 GauWidth = popt[2] * 3/2 #Ancho de banda de Gau01 -- Bandwidth of Gau01 TODO why *3/2?
1220 GauWidth = popt[2] * 3/2 #Ancho de banda de Gau01 -- Bandwidth of Gau01 TODO why *3/2?
1207 Range = numpy.empty(2)
1221 Range = numpy.empty(2)
1208 Range[0] = GaussCenter - GauWidth
1222 Range[0] = GaussCenter - GauWidth
1209 Range[1] = GaussCenter + GauWidth
1223 Range[1] = GaussCenter + GauWidth
1210 #Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max) -- Point in x-axis where the bandwidth is located (min:max)
1224 #Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max) -- Point in x-axis where the bandwidth is located (min:max)
1211 ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()]
1225 ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()]
1212 ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()]
1226 ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()]
1213
1227
1214 PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0]
1228 PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0]
1215 PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0]
1229 PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0]
1216
1230
1217 Range = numpy.array([ PointRangeMin, PointRangeMax ])
1231 Range = numpy.array([ PointRangeMin, PointRangeMax ])
1218
1232
1219 FrecRange = xFrec[ Range[0] : Range[1] ]
1233 FrecRange = xFrec[ Range[0] : Range[1] ]
1220
1234
1221
1235
1222 '''************************** Getting Phase Slope ***************************'''
1236 '''************************** Getting Phase Slope ***************************'''
1223
1237
1224 for i in range(1,3): # Changed to only compute two
1238 for i in range(1,3): # Changed to only compute two
1225
1239
1226 if len(FrecRange) > 5 and len(FrecRange) < spc.shape[1] * 0.3:
1240 if len(FrecRange) > 5 and len(FrecRange) < spc.shape[1] * 0.3:
1227 # PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=1) #used before to smooth phase with N=3
1241 # PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=1) #used before to smooth phase with N=3
1228 PhaseRange = phase[i,Range[0]:Range[1]].copy()
1242 PhaseRange = phase[i,Range[0]:Range[1]].copy()
1229
1243
1230 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1244 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1231
1245
1232
1246
1233 if len(FrecRange) == len(PhaseRange):
1247 if len(FrecRange) == len(PhaseRange):
1234
1248
1235 try:
1249 try:
1236 slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5))
1250 slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5))
1237 PhaseSlope[i] = slope
1251 PhaseSlope[i] = slope
1238 PhaseInter[i] = intercept
1252 PhaseInter[i] = intercept
@@ -1242,49 +1256,49 class FullSpectralAnalysis(Operation):
1242
1256
1243 else:
1257 else:
1244 return self.StopWindEstimation(error_code = 7)
1258 return self.StopWindEstimation(error_code = 7)
1245
1259
1246 else:
1260 else:
1247 return self.StopWindEstimation(error_code = 8)
1261 return self.StopWindEstimation(error_code = 8)
1248
1262
1249
1263
1250
1264
1251 '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***'''
1265 '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***'''
1252
1266
1253 '''Getting constant C'''
1267 '''Getting constant C'''
1254 cC=(Fij*numpy.pi)**2
1268 cC=(Fij*numpy.pi)**2
1255
1269
1256 '''****** Getting constants F and G ******'''
1270 '''****** Getting constants F and G ******'''
1257 MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1271 MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1258 MijResult0 = (-PhaseSlope[1] * cC) / (2*numpy.pi)
1272 MijResult0 = (-PhaseSlope[1] * cC) / (2*numpy.pi)
1259 MijResult1 = (-PhaseSlope[2] * cC) / (2*numpy.pi)
1273 MijResult1 = (-PhaseSlope[2] * cC) / (2*numpy.pi)
1260 MijResults = numpy.array([MijResult0,MijResult1])
1274 MijResults = numpy.array([MijResult0,MijResult1])
1261 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1275 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1262
1276
1263 '''****** Getting constants A, B and H ******'''
1277 '''****** Getting constants A, B and H ******'''
1264 W01 = numpy.nanmax( FitGauss01 )
1278 W01 = numpy.nanmax( FitGauss01 )
1265 W02 = numpy.nanmax( FitGauss02 )
1279 W02 = numpy.nanmax( FitGauss02 )
1266 W12 = numpy.nanmax( FitGauss12 )
1280 W12 = numpy.nanmax( FitGauss12 )
1267
1281
1268 WijResult0 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC))
1282 WijResult0 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC))
1269 WijResult1 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC))
1283 WijResult1 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC))
1270 WijResult2 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC))
1284 WijResult2 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC))
1271
1285
1272 WijResults = numpy.array([WijResult0, WijResult1, WijResult2])
1286 WijResults = numpy.array([WijResult0, WijResult1, WijResult2])
1273
1287
1274 WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1288 WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1275 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1289 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1276
1290
1277 VxVy = numpy.array([[cA,cH],[cH,cB]])
1291 VxVy = numpy.array([[cA,cH],[cH,cB]])
1278 VxVyResults = numpy.array([-cF,-cG])
1292 VxVyResults = numpy.array([-cF,-cG])
1279 (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults)
1293 (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults)
1280
1294
1281 Vzon = Vy
1295 Vzon = Vy
1282 Vmer = Vx
1296 Vmer = Vx
1283
1297
1284 # Vmag=numpy.sqrt(Vzon**2+Vmer**2) # unused
1298 # Vmag=numpy.sqrt(Vzon**2+Vmer**2) # unused
1285 # Vang=numpy.arctan2(Vmer,Vzon) # unused
1299 # Vang=numpy.arctan2(Vmer,Vzon) # unused
1286
1300
1287
1301
1288 ''' using frequency as abscissa. Due to three channels, the offzenith angle is zero
1302 ''' using frequency as abscissa. Due to three channels, the offzenith angle is zero
1289 and Vrad equal to Vver. formula taken from Briggs 92, figure 4.
1303 and Vrad equal to Vver. formula taken from Briggs 92, figure 4.
1290 '''
1304 '''
@@ -1295,40 +1309,40 class FullSpectralAnalysis(Operation):
1295
1309
1296 error_code = 0
1310 error_code = 0
1297
1311
1298 return Vzon, Vmer, Vver, error_code
1312 return Vzon, Vmer, Vver, error_code
1299
1313
1300
1314
1301 class SpectralMoments(Operation):
1315 class SpectralMoments(Operation):
1302
1316
1303 '''
1317 '''
1304 Function SpectralMoments()
1318 Function SpectralMoments()
1305
1319
1306 Calculates moments (power, mean, standard deviation) and SNR of the signal
1320 Calculates moments (power, mean, standard deviation) and SNR of the signal
1307
1321
1308 Type of dataIn: Spectra
1322 Type of dataIn: Spectra
1309
1323
1310 Configuration Parameters:
1324 Configuration Parameters:
1311
1325
1312 dirCosx : Cosine director in X axis
1326 dirCosx : Cosine director in X axis
1313 dirCosy : Cosine director in Y axis
1327 dirCosy : Cosine director in Y axis
1314
1328
1315 elevation :
1329 elevation :
1316 azimuth :
1330 azimuth :
1317
1331
1318 Input:
1332 Input:
1319 channelList : simple channel list to select e.g. [2,3,7]
1333 channelList : simple channel list to select e.g. [2,3,7]
1320 self.dataOut.data_pre : Spectral data
1334 self.dataOut.data_pre : Spectral data
1321 self.dataOut.abscissaList : List of frequencies
1335 self.dataOut.abscissaList : List of frequencies
1322 self.dataOut.noise : Noise level per channel
1336 self.dataOut.noise : Noise level per channel
1323
1337
1324 Affected:
1338 Affected:
1325 self.dataOut.moments : Parameters per channel
1339 self.dataOut.moments : Parameters per channel
1326 self.dataOut.data_SNR : SNR per channel
1340 self.dataOut.data_SNR : SNR per channel
1327
1341
1328 '''
1342 '''
1329
1343
1330 def run(self, dataOut):
1344 def run(self, dataOut):
1331
1345
1332 data = dataOut.data_pre[0]
1346 data = dataOut.data_pre[0]
1333 absc = dataOut.abscissaList[:-1]
1347 absc = dataOut.abscissaList[:-1]
1334 noise = dataOut.noise
1348 noise = dataOut.noise
@@ -1337,7 +1351,7 class SpectralMoments(Operation):
1337
1351
1338 for ind in range(nChannel):
1352 for ind in range(nChannel):
1339 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1353 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1340
1354
1341 dataOut.moments = data_param[:,1:,:]
1355 dataOut.moments = data_param[:,1:,:]
1342 dataOut.data_SNR = data_param[:,0]
1356 dataOut.data_SNR = data_param[:,0]
1343 dataOut.data_POW = data_param[:,1]
1357 dataOut.data_POW = data_param[:,1]
@@ -1345,12 +1359,12 class SpectralMoments(Operation):
1345 dataOut.data_WIDTH = data_param[:,3]
1359 dataOut.data_WIDTH = data_param[:,3]
1346
1360
1347 return dataOut
1361 return dataOut
1348
1362
1349 def __calculateMoments(self, oldspec, oldfreq, n0,
1363 def __calculateMoments(self, oldspec, oldfreq, n0,
1350 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1364 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1351
1365
1352 if (nicoh is None): nicoh = 1
1366 if (nicoh is None): nicoh = 1
1353 if (graph is None): graph = 0
1367 if (graph is None): graph = 0
1354 if (smooth is None): smooth = 0
1368 if (smooth is None): smooth = 0
1355 elif (self.smooth < 3): smooth = 0
1369 elif (self.smooth < 3): smooth = 0
1356
1370
@@ -1361,102 +1375,102 class SpectralMoments(Operation):
1361 if (aliasing is None): aliasing = 0
1375 if (aliasing is None): aliasing = 0
1362 if (oldfd is None): oldfd = 0
1376 if (oldfd is None): oldfd = 0
1363 if (wwauto is None): wwauto = 0
1377 if (wwauto is None): wwauto = 0
1364
1378
1365 if (n0 < 1.e-20): n0 = 1.e-20
1379 if (n0 < 1.e-20): n0 = 1.e-20
1366
1380
1367 freq = oldfreq
1381 freq = oldfreq
1368 vec_power = numpy.zeros(oldspec.shape[1])
1382 vec_power = numpy.zeros(oldspec.shape[1])
1369 vec_fd = numpy.zeros(oldspec.shape[1])
1383 vec_fd = numpy.zeros(oldspec.shape[1])
1370 vec_w = numpy.zeros(oldspec.shape[1])
1384 vec_w = numpy.zeros(oldspec.shape[1])
1371 vec_snr = numpy.zeros(oldspec.shape[1])
1385 vec_snr = numpy.zeros(oldspec.shape[1])
1372
1386
1373 # oldspec = numpy.ma.masked_invalid(oldspec)
1387 # oldspec = numpy.ma.masked_invalid(oldspec)
1374
1388
1375 for ind in range(oldspec.shape[1]):
1389 for ind in range(oldspec.shape[1]):
1376
1390
1377 spec = oldspec[:,ind]
1391 spec = oldspec[:,ind]
1378 aux = spec*fwindow
1392 aux = spec*fwindow
1379 max_spec = aux.max()
1393 max_spec = aux.max()
1380 m = aux.tolist().index(max_spec)
1394 m = aux.tolist().index(max_spec)
1381
1395
1382 #Smooth
1396 #Smooth
1383 if (smooth == 0):
1397 if (smooth == 0):
1384 spec2 = spec
1398 spec2 = spec
1385 else:
1399 else:
1386 spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1400 spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1387
1401
1388 # Calculo de Momentos
1402 # Calculo de Momentos
1389 bb = spec2[numpy.arange(m,spec2.size)]
1403 bb = spec2[numpy.arange(m,spec2.size)]
1390 bb = (bb<n0).nonzero()
1404 bb = (bb<n0).nonzero()
1391 bb = bb[0]
1405 bb = bb[0]
1392
1406
1393 ss = spec2[numpy.arange(0,m + 1)]
1407 ss = spec2[numpy.arange(0,m + 1)]
1394 ss = (ss<n0).nonzero()
1408 ss = (ss<n0).nonzero()
1395 ss = ss[0]
1409 ss = ss[0]
1396
1410
1397 if (bb.size == 0):
1411 if (bb.size == 0):
1398 bb0 = spec.size - 1 - m
1412 bb0 = spec.size - 1 - m
1399 else:
1413 else:
1400 bb0 = bb[0] - 1
1414 bb0 = bb[0] - 1
1401 if (bb0 < 0):
1415 if (bb0 < 0):
1402 bb0 = 0
1416 bb0 = 0
1403
1417
1404 if (ss.size == 0):
1418 if (ss.size == 0):
1405 ss1 = 1
1419 ss1 = 1
1406 else:
1420 else:
1407 ss1 = max(ss) + 1
1421 ss1 = max(ss) + 1
1408
1422
1409 if (ss1 > m):
1423 if (ss1 > m):
1410 ss1 = m
1424 ss1 = m
1411
1425
1412 valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1
1426 valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1
1413
1427
1414 power = ((spec2[valid] - n0) * fwindow[valid]).sum()
1428 power = ((spec2[valid] - n0) * fwindow[valid]).sum()
1415 fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power
1429 fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power
1416 w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power)
1430 w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power)
1417 snr = (spec2.mean()-n0)/n0
1431 snr = (spec2.mean()-n0)/n0
1418 if (snr < 1.e-20) :
1432 if (snr < 1.e-20) :
1419 snr = 1.e-20
1433 snr = 1.e-20
1420
1434
1421 vec_power[ind] = power
1435 vec_power[ind] = power
1422 vec_fd[ind] = fd
1436 vec_fd[ind] = fd
1423 vec_w[ind] = w
1437 vec_w[ind] = w
1424 vec_snr[ind] = snr
1438 vec_snr[ind] = snr
1425
1439
1426 return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1440 return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1427
1441
1428 #------------------ Get SA Parameters --------------------------
1442 #------------------ Get SA Parameters --------------------------
1429
1443
1430 def GetSAParameters(self):
1444 def GetSAParameters(self):
1431 #SA en frecuencia
1445 #SA en frecuencia
1432 pairslist = self.dataOut.groupList
1446 pairslist = self.dataOut.groupList
1433 num_pairs = len(pairslist)
1447 num_pairs = len(pairslist)
1434
1448
1435 vel = self.dataOut.abscissaList
1449 vel = self.dataOut.abscissaList
1436 spectra = self.dataOut.data_pre
1450 spectra = self.dataOut.data_pre
1437 cspectra = self.dataIn.data_cspc
1451 cspectra = self.dataIn.data_cspc
1438 delta_v = vel[1] - vel[0]
1452 delta_v = vel[1] - vel[0]
1439
1453
1440 #Calculating the power spectrum
1454 #Calculating the power spectrum
1441 spc_pow = numpy.sum(spectra, 3)*delta_v
1455 spc_pow = numpy.sum(spectra, 3)*delta_v
1442 #Normalizing Spectra
1456 #Normalizing Spectra
1443 norm_spectra = spectra/spc_pow
1457 norm_spectra = spectra/spc_pow
1444 #Calculating the norm_spectra at peak
1458 #Calculating the norm_spectra at peak
1445 max_spectra = numpy.max(norm_spectra, 3)
1459 max_spectra = numpy.max(norm_spectra, 3)
1446
1460
1447 #Normalizing Cross Spectra
1461 #Normalizing Cross Spectra
1448 norm_cspectra = numpy.zeros(cspectra.shape)
1462 norm_cspectra = numpy.zeros(cspectra.shape)
1449
1463
1450 for i in range(num_chan):
1464 for i in range(num_chan):
1451 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1465 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1452
1466
1453 max_cspectra = numpy.max(norm_cspectra,2)
1467 max_cspectra = numpy.max(norm_cspectra,2)
1454 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1468 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1455
1469
1456 for i in range(num_pairs):
1470 for i in range(num_pairs):
1457 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1471 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1458 #------------------- Get Lags ----------------------------------
1472 #------------------- Get Lags ----------------------------------
1459
1473
1460 class SALags(Operation):
1474 class SALags(Operation):
1461 '''
1475 '''
1462 Function GetMoments()
1476 Function GetMoments()
@@ -1469,19 +1483,19 class SALags(Operation):
1469 self.dataOut.data_SNR
1483 self.dataOut.data_SNR
1470 self.dataOut.groupList
1484 self.dataOut.groupList
1471 self.dataOut.nChannels
1485 self.dataOut.nChannels
1472
1486
1473 Affected:
1487 Affected:
1474 self.dataOut.data_param
1488 self.dataOut.data_param
1475
1489
1476 '''
1490 '''
1477 def run(self, dataOut):
1491 def run(self, dataOut):
1478 data_acf = dataOut.data_pre[0]
1492 data_acf = dataOut.data_pre[0]
1479 data_ccf = dataOut.data_pre[1]
1493 data_ccf = dataOut.data_pre[1]
1480 normFactor_acf = dataOut.normFactor[0]
1494 normFactor_acf = dataOut.normFactor[0]
1481 normFactor_ccf = dataOut.normFactor[1]
1495 normFactor_ccf = dataOut.normFactor[1]
1482 pairs_acf = dataOut.groupList[0]
1496 pairs_acf = dataOut.groupList[0]
1483 pairs_ccf = dataOut.groupList[1]
1497 pairs_ccf = dataOut.groupList[1]
1484
1498
1485 nHeights = dataOut.nHeights
1499 nHeights = dataOut.nHeights
1486 absc = dataOut.abscissaList
1500 absc = dataOut.abscissaList
1487 noise = dataOut.noise
1501 noise = dataOut.noise
@@ -1492,97 +1506,97 class SALags(Operation):
1492
1506
1493 for l in range(len(pairs_acf)):
1507 for l in range(len(pairs_acf)):
1494 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1508 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1495
1509
1496 for l in range(len(pairs_ccf)):
1510 for l in range(len(pairs_ccf)):
1497 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1511 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1498
1512
1499 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1513 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1500 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1514 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1501 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1515 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1502 return
1516 return
1503
1517
1504 # def __getPairsAutoCorr(self, pairsList, nChannels):
1518 # def __getPairsAutoCorr(self, pairsList, nChannels):
1505 #
1519 #
1506 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1520 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1507 #
1521 #
1508 # for l in range(len(pairsList)):
1522 # for l in range(len(pairsList)):
1509 # firstChannel = pairsList[l][0]
1523 # firstChannel = pairsList[l][0]
1510 # secondChannel = pairsList[l][1]
1524 # secondChannel = pairsList[l][1]
1511 #
1525 #
1512 # #Obteniendo pares de Autocorrelacion
1526 # #Obteniendo pares de Autocorrelacion
1513 # if firstChannel == secondChannel:
1527 # if firstChannel == secondChannel:
1514 # pairsAutoCorr[firstChannel] = int(l)
1528 # pairsAutoCorr[firstChannel] = int(l)
1515 #
1529 #
1516 # pairsAutoCorr = pairsAutoCorr.astype(int)
1530 # pairsAutoCorr = pairsAutoCorr.astype(int)
1517 #
1531 #
1518 # pairsCrossCorr = range(len(pairsList))
1532 # pairsCrossCorr = range(len(pairsList))
1519 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1533 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1520 #
1534 #
1521 # return pairsAutoCorr, pairsCrossCorr
1535 # return pairsAutoCorr, pairsCrossCorr
1522
1536
1523 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1537 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1524
1538
1525 lag0 = data_acf.shape[1]/2
1539 lag0 = data_acf.shape[1]/2
1526 #Funcion de Autocorrelacion
1540 #Funcion de Autocorrelacion
1527 mean_acf = stats.nanmean(data_acf, axis = 0)
1541 mean_acf = stats.nanmean(data_acf, axis = 0)
1528
1542
1529 #Obtencion Indice de TauCross
1543 #Obtencion Indice de TauCross
1530 ind_ccf = data_ccf.argmax(axis = 1)
1544 ind_ccf = data_ccf.argmax(axis = 1)
1531 #Obtencion Indice de TauAuto
1545 #Obtencion Indice de TauAuto
1532 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1546 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1533 ccf_lag0 = data_ccf[:,lag0,:]
1547 ccf_lag0 = data_ccf[:,lag0,:]
1534
1548
1535 for i in range(ccf_lag0.shape[0]):
1549 for i in range(ccf_lag0.shape[0]):
1536 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1550 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1537
1551
1538 #Obtencion de TauCross y TauAuto
1552 #Obtencion de TauCross y TauAuto
1539 tau_ccf = lagRange[ind_ccf]
1553 tau_ccf = lagRange[ind_ccf]
1540 tau_acf = lagRange[ind_acf]
1554 tau_acf = lagRange[ind_acf]
1541
1555
1542 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1556 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1543
1557
1544 tau_ccf[Nan1,Nan2] = numpy.nan
1558 tau_ccf[Nan1,Nan2] = numpy.nan
1545 tau_acf[Nan1,Nan2] = numpy.nan
1559 tau_acf[Nan1,Nan2] = numpy.nan
1546 tau = numpy.vstack((tau_ccf,tau_acf))
1560 tau = numpy.vstack((tau_ccf,tau_acf))
1547
1561
1548 return tau
1562 return tau
1549
1563
1550 def __calculateLag1Phase(self, data, lagTRange):
1564 def __calculateLag1Phase(self, data, lagTRange):
1551 data1 = stats.nanmean(data, axis = 0)
1565 data1 = stats.nanmean(data, axis = 0)
1552 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1566 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1553
1567
1554 phase = numpy.angle(data1[lag1,:])
1568 phase = numpy.angle(data1[lag1,:])
1555
1569
1556 return phase
1570 return phase
1557
1571
1558 class SpectralFitting(Operation):
1572 class SpectralFitting(Operation):
1559 '''
1573 '''
1560 Function GetMoments()
1574 Function GetMoments()
1561
1575
1562 Input:
1576 Input:
1563 Output:
1577 Output:
1564 Variables modified:
1578 Variables modified:
1565 '''
1579 '''
1566
1580
1567 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1581 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1568
1582
1569
1583
1570 if path != None:
1584 if path != None:
1571 sys.path.append(path)
1585 sys.path.append(path)
1572 self.dataOut.library = importlib.import_module(file)
1586 self.dataOut.library = importlib.import_module(file)
1573
1587
1574 #To be inserted as a parameter
1588 #To be inserted as a parameter
1575 groupArray = numpy.array(groupList)
1589 groupArray = numpy.array(groupList)
1576 # groupArray = numpy.array([[0,1],[2,3]])
1590 # groupArray = numpy.array([[0,1],[2,3]])
1577 self.dataOut.groupList = groupArray
1591 self.dataOut.groupList = groupArray
1578
1592
1579 nGroups = groupArray.shape[0]
1593 nGroups = groupArray.shape[0]
1580 nChannels = self.dataIn.nChannels
1594 nChannels = self.dataIn.nChannels
1581 nHeights=self.dataIn.heightList.size
1595 nHeights=self.dataIn.heightList.size
1582
1596
1583 #Parameters Array
1597 #Parameters Array
1584 self.dataOut.data_param = None
1598 self.dataOut.data_param = None
1585
1599
1586 #Set constants
1600 #Set constants
1587 constants = self.dataOut.library.setConstants(self.dataIn)
1601 constants = self.dataOut.library.setConstants(self.dataIn)
1588 self.dataOut.constants = constants
1602 self.dataOut.constants = constants
@@ -1591,24 +1605,24 class SpectralFitting(Operation):
1591 ippSeconds = self.dataIn.ippSeconds
1605 ippSeconds = self.dataIn.ippSeconds
1592 K = self.dataIn.nIncohInt
1606 K = self.dataIn.nIncohInt
1593 pairsArray = numpy.array(self.dataIn.pairsList)
1607 pairsArray = numpy.array(self.dataIn.pairsList)
1594
1608
1595 #List of possible combinations
1609 #List of possible combinations
1596 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1610 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1597 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1611 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1598
1612
1599 if getSNR:
1613 if getSNR:
1600 listChannels = groupArray.reshape((groupArray.size))
1614 listChannels = groupArray.reshape((groupArray.size))
1601 listChannels.sort()
1615 listChannels.sort()
1602 noise = self.dataIn.getNoise()
1616 noise = self.dataIn.getNoise()
1603 self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1617 self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1604
1618
1605 for i in range(nGroups):
1619 for i in range(nGroups):
1606 coord = groupArray[i,:]
1620 coord = groupArray[i,:]
1607
1621
1608 #Input data array
1622 #Input data array
1609 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1623 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1610 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1624 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1611
1625
1612 #Cross Spectra data array for Covariance Matrixes
1626 #Cross Spectra data array for Covariance Matrixes
1613 ind = 0
1627 ind = 0
1614 for pairs in listComb:
1628 for pairs in listComb:
@@ -1617,9 +1631,9 class SpectralFitting(Operation):
1617 ind += 1
1631 ind += 1
1618 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1632 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1619 dataCross = dataCross**2/K
1633 dataCross = dataCross**2/K
1620
1634
1621 for h in range(nHeights):
1635 for h in range(nHeights):
1622
1636
1623 #Input
1637 #Input
1624 d = data[:,h]
1638 d = data[:,h]
1625
1639
@@ -1628,7 +1642,7 class SpectralFitting(Operation):
1628 ind = 0
1642 ind = 0
1629 for pairs in listComb:
1643 for pairs in listComb:
1630 #Coordinates in Covariance Matrix
1644 #Coordinates in Covariance Matrix
1631 x = pairs[0]
1645 x = pairs[0]
1632 y = pairs[1]
1646 y = pairs[1]
1633 #Channel Index
1647 #Channel Index
1634 S12 = dataCross[ind,:,h]
1648 S12 = dataCross[ind,:,h]
@@ -1642,15 +1656,15 class SpectralFitting(Operation):
1642 LT=L.T
1656 LT=L.T
1643
1657
1644 dp = numpy.dot(LT,d)
1658 dp = numpy.dot(LT,d)
1645
1659
1646 #Initial values
1660 #Initial values
1647 data_spc = self.dataIn.data_spc[coord,:,h]
1661 data_spc = self.dataIn.data_spc[coord,:,h]
1648
1662
1649 if (h>0)and(error1[3]<5):
1663 if (h>0)and(error1[3]<5):
1650 p0 = self.dataOut.data_param[i,:,h-1]
1664 p0 = self.dataOut.data_param[i,:,h-1]
1651 else:
1665 else:
1652 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1666 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1653
1667
1654 try:
1668 try:
1655 #Least Squares
1669 #Least Squares
1656 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
1670 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
@@ -1663,30 +1677,30 class SpectralFitting(Operation):
1663 minp = p0*numpy.nan
1677 minp = p0*numpy.nan
1664 error0 = numpy.nan
1678 error0 = numpy.nan
1665 error1 = p0*numpy.nan
1679 error1 = p0*numpy.nan
1666
1680
1667 #Save
1681 #Save
1668 if self.dataOut.data_param is None:
1682 if self.dataOut.data_param is None:
1669 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1683 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1670 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1684 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1671
1685
1672 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1686 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1673 self.dataOut.data_param[i,:,h] = minp
1687 self.dataOut.data_param[i,:,h] = minp
1674 return
1688 return
1675
1689
1676 def __residFunction(self, p, dp, LT, constants):
1690 def __residFunction(self, p, dp, LT, constants):
1677
1691
1678 fm = self.dataOut.library.modelFunction(p, constants)
1692 fm = self.dataOut.library.modelFunction(p, constants)
1679 fmp=numpy.dot(LT,fm)
1693 fmp=numpy.dot(LT,fm)
1680
1694
1681 return dp-fmp
1695 return dp-fmp
1682
1696
1683 def __getSNR(self, z, noise):
1697 def __getSNR(self, z, noise):
1684
1698
1685 avg = numpy.average(z, axis=1)
1699 avg = numpy.average(z, axis=1)
1686 SNR = (avg.T-noise)/noise
1700 SNR = (avg.T-noise)/noise
1687 SNR = SNR.T
1701 SNR = SNR.T
1688 return SNR
1702 return SNR
1689
1703
1690 def __chisq(p,chindex,hindex):
1704 def __chisq(p,chindex,hindex):
1691 #similar to Resid but calculates CHI**2
1705 #similar to Resid but calculates CHI**2
1692 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
1706 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
@@ -1694,53 +1708,53 class SpectralFitting(Operation):
1694 fmp=numpy.dot(LT,fm)
1708 fmp=numpy.dot(LT,fm)
1695 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1709 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1696 return chisq
1710 return chisq
1697
1711
1698 class WindProfiler(Operation):
1712 class WindProfiler(Operation):
1699
1713
1700 __isConfig = False
1714 __isConfig = False
1701
1715
1702 __initime = None
1716 __initime = None
1703 __lastdatatime = None
1717 __lastdatatime = None
1704 __integrationtime = None
1718 __integrationtime = None
1705
1719
1706 __buffer = None
1720 __buffer = None
1707
1721
1708 __dataReady = False
1722 __dataReady = False
1709
1723
1710 __firstdata = None
1724 __firstdata = None
1711
1725
1712 n = None
1726 n = None
1713
1727
1714 def __init__(self):
1728 def __init__(self):
1715 Operation.__init__(self)
1729 Operation.__init__(self)
1716
1730
1717 def __calculateCosDir(self, elev, azim):
1731 def __calculateCosDir(self, elev, azim):
1718 zen = (90 - elev)*numpy.pi/180
1732 zen = (90 - elev)*numpy.pi/180
1719 azim = azim*numpy.pi/180
1733 azim = azim*numpy.pi/180
1720 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1734 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1721 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1735 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1722
1736
1723 signX = numpy.sign(numpy.cos(azim))
1737 signX = numpy.sign(numpy.cos(azim))
1724 signY = numpy.sign(numpy.sin(azim))
1738 signY = numpy.sign(numpy.sin(azim))
1725
1739
1726 cosDirX = numpy.copysign(cosDirX, signX)
1740 cosDirX = numpy.copysign(cosDirX, signX)
1727 cosDirY = numpy.copysign(cosDirY, signY)
1741 cosDirY = numpy.copysign(cosDirY, signY)
1728 return cosDirX, cosDirY
1742 return cosDirX, cosDirY
1729
1743
1730 def __calculateAngles(self, theta_x, theta_y, azimuth):
1744 def __calculateAngles(self, theta_x, theta_y, azimuth):
1731
1745
1732 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1746 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1733 zenith_arr = numpy.arccos(dir_cosw)
1747 zenith_arr = numpy.arccos(dir_cosw)
1734 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1748 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1735
1749
1736 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1750 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1737 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1751 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1738
1752
1739 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1753 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1740
1754
1741 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1755 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1742
1756
1743 #
1757 #
1744 if horOnly:
1758 if horOnly:
1745 A = numpy.c_[dir_cosu,dir_cosv]
1759 A = numpy.c_[dir_cosu,dir_cosv]
1746 else:
1760 else:
@@ -1754,37 +1768,37 class WindProfiler(Operation):
1754 listPhi = phi.tolist()
1768 listPhi = phi.tolist()
1755 maxid = listPhi.index(max(listPhi))
1769 maxid = listPhi.index(max(listPhi))
1756 minid = listPhi.index(min(listPhi))
1770 minid = listPhi.index(min(listPhi))
1757
1771
1758 rango = list(range(len(phi)))
1772 rango = list(range(len(phi)))
1759 # rango = numpy.delete(rango,maxid)
1773 # rango = numpy.delete(rango,maxid)
1760
1774
1761 heiRang1 = heiRang*math.cos(phi[maxid])
1775 heiRang1 = heiRang*math.cos(phi[maxid])
1762 heiRangAux = heiRang*math.cos(phi[minid])
1776 heiRangAux = heiRang*math.cos(phi[minid])
1763 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1777 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1764 heiRang1 = numpy.delete(heiRang1,indOut)
1778 heiRang1 = numpy.delete(heiRang1,indOut)
1765
1779
1766 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1780 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1767 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1781 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1768
1782
1769 for i in rango:
1783 for i in rango:
1770 x = heiRang*math.cos(phi[i])
1784 x = heiRang*math.cos(phi[i])
1771 y1 = velRadial[i,:]
1785 y1 = velRadial[i,:]
1772 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1786 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1773
1787
1774 x1 = heiRang1
1788 x1 = heiRang1
1775 y11 = f1(x1)
1789 y11 = f1(x1)
1776
1790
1777 y2 = SNR[i,:]
1791 y2 = SNR[i,:]
1778 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1792 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1779 y21 = f2(x1)
1793 y21 = f2(x1)
1780
1794
1781 velRadial1[i,:] = y11
1795 velRadial1[i,:] = y11
1782 SNR1[i,:] = y21
1796 SNR1[i,:] = y21
1783
1797
1784 return heiRang1, velRadial1, SNR1
1798 return heiRang1, velRadial1, SNR1
1785
1799
1786 def __calculateVelUVW(self, A, velRadial):
1800 def __calculateVelUVW(self, A, velRadial):
1787
1801
1788 #Operacion Matricial
1802 #Operacion Matricial
1789 # velUVW = numpy.zeros((velRadial.shape[1],3))
1803 # velUVW = numpy.zeros((velRadial.shape[1],3))
1790 # for ind in range(velRadial.shape[1]):
1804 # for ind in range(velRadial.shape[1]):
@@ -1792,27 +1806,27 class WindProfiler(Operation):
1792 # velUVW = velUVW.transpose()
1806 # velUVW = velUVW.transpose()
1793 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1807 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1794 velUVW[:,:] = numpy.dot(A,velRadial)
1808 velUVW[:,:] = numpy.dot(A,velRadial)
1795
1809
1796
1810
1797 return velUVW
1811 return velUVW
1798
1812
1799 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1813 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1800
1814
1801 def techniqueDBS(self, kwargs):
1815 def techniqueDBS(self, kwargs):
1802 """
1816 """
1803 Function that implements Doppler Beam Swinging (DBS) technique.
1817 Function that implements Doppler Beam Swinging (DBS) technique.
1804
1818
1805 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1819 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1806 Direction correction (if necessary), Ranges and SNR
1820 Direction correction (if necessary), Ranges and SNR
1807
1821
1808 Output: Winds estimation (Zonal, Meridional and Vertical)
1822 Output: Winds estimation (Zonal, Meridional and Vertical)
1809
1823
1810 Parameters affected: Winds, height range, SNR
1824 Parameters affected: Winds, height range, SNR
1811 """
1825 """
1812 velRadial0 = kwargs['velRadial']
1826 velRadial0 = kwargs['velRadial']
1813 heiRang = kwargs['heightList']
1827 heiRang = kwargs['heightList']
1814 SNR0 = kwargs['SNR']
1828 SNR0 = kwargs['SNR']
1815
1829
1816 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1830 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1817 theta_x = numpy.array(kwargs['dirCosx'])
1831 theta_x = numpy.array(kwargs['dirCosx'])
1818 theta_y = numpy.array(kwargs['dirCosy'])
1832 theta_y = numpy.array(kwargs['dirCosy'])
@@ -1820,7 +1834,7 class WindProfiler(Operation):
1820 elev = numpy.array(kwargs['elevation'])
1834 elev = numpy.array(kwargs['elevation'])
1821 azim = numpy.array(kwargs['azimuth'])
1835 azim = numpy.array(kwargs['azimuth'])
1822 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1836 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1823 azimuth = kwargs['correctAzimuth']
1837 azimuth = kwargs['correctAzimuth']
1824 if 'horizontalOnly' in kwargs:
1838 if 'horizontalOnly' in kwargs:
1825 horizontalOnly = kwargs['horizontalOnly']
1839 horizontalOnly = kwargs['horizontalOnly']
1826 else: horizontalOnly = False
1840 else: horizontalOnly = False
@@ -1835,22 +1849,22 class WindProfiler(Operation):
1835 param = param[arrayChannel,:,:]
1849 param = param[arrayChannel,:,:]
1836 theta_x = theta_x[arrayChannel]
1850 theta_x = theta_x[arrayChannel]
1837 theta_y = theta_y[arrayChannel]
1851 theta_y = theta_y[arrayChannel]
1838
1852
1839 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1853 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1840 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1854 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1841 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1855 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1842
1856
1843 #Calculo de Componentes de la velocidad con DBS
1857 #Calculo de Componentes de la velocidad con DBS
1844 winds = self.__calculateVelUVW(A,velRadial1)
1858 winds = self.__calculateVelUVW(A,velRadial1)
1845
1859
1846 return winds, heiRang1, SNR1
1860 return winds, heiRang1, SNR1
1847
1861
1848 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1862 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1849
1863
1850 nPairs = len(pairs_ccf)
1864 nPairs = len(pairs_ccf)
1851 posx = numpy.asarray(posx)
1865 posx = numpy.asarray(posx)
1852 posy = numpy.asarray(posy)
1866 posy = numpy.asarray(posy)
1853
1867
1854 #Rotacion Inversa para alinear con el azimuth
1868 #Rotacion Inversa para alinear con el azimuth
1855 if azimuth!= None:
1869 if azimuth!= None:
1856 azimuth = azimuth*math.pi/180
1870 azimuth = azimuth*math.pi/180
@@ -1859,126 +1873,126 class WindProfiler(Operation):
1859 else:
1873 else:
1860 posx1 = posx
1874 posx1 = posx
1861 posy1 = posy
1875 posy1 = posy
1862
1876
1863 #Calculo de Distancias
1877 #Calculo de Distancias
1864 distx = numpy.zeros(nPairs)
1878 distx = numpy.zeros(nPairs)
1865 disty = numpy.zeros(nPairs)
1879 disty = numpy.zeros(nPairs)
1866 dist = numpy.zeros(nPairs)
1880 dist = numpy.zeros(nPairs)
1867 ang = numpy.zeros(nPairs)
1881 ang = numpy.zeros(nPairs)
1868
1882
1869 for i in range(nPairs):
1883 for i in range(nPairs):
1870 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1884 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1871 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1885 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1872 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1886 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1873 ang[i] = numpy.arctan2(disty[i],distx[i])
1887 ang[i] = numpy.arctan2(disty[i],distx[i])
1874
1888
1875 return distx, disty, dist, ang
1889 return distx, disty, dist, ang
1876 #Calculo de Matrices
1890 #Calculo de Matrices
1877 # nPairs = len(pairs)
1891 # nPairs = len(pairs)
1878 # ang1 = numpy.zeros((nPairs, 2, 1))
1892 # ang1 = numpy.zeros((nPairs, 2, 1))
1879 # dist1 = numpy.zeros((nPairs, 2, 1))
1893 # dist1 = numpy.zeros((nPairs, 2, 1))
1880 #
1894 #
1881 # for j in range(nPairs):
1895 # for j in range(nPairs):
1882 # dist1[j,0,0] = dist[pairs[j][0]]
1896 # dist1[j,0,0] = dist[pairs[j][0]]
1883 # dist1[j,1,0] = dist[pairs[j][1]]
1897 # dist1[j,1,0] = dist[pairs[j][1]]
1884 # ang1[j,0,0] = ang[pairs[j][0]]
1898 # ang1[j,0,0] = ang[pairs[j][0]]
1885 # ang1[j,1,0] = ang[pairs[j][1]]
1899 # ang1[j,1,0] = ang[pairs[j][1]]
1886 #
1900 #
1887 # return distx,disty, dist1,ang1
1901 # return distx,disty, dist1,ang1
1888
1902
1889
1903
1890 def __calculateVelVer(self, phase, lagTRange, _lambda):
1904 def __calculateVelVer(self, phase, lagTRange, _lambda):
1891
1905
1892 Ts = lagTRange[1] - lagTRange[0]
1906 Ts = lagTRange[1] - lagTRange[0]
1893 velW = -_lambda*phase/(4*math.pi*Ts)
1907 velW = -_lambda*phase/(4*math.pi*Ts)
1894
1908
1895 return velW
1909 return velW
1896
1910
1897 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1911 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1898 nPairs = tau1.shape[0]
1912 nPairs = tau1.shape[0]
1899 nHeights = tau1.shape[1]
1913 nHeights = tau1.shape[1]
1900 vel = numpy.zeros((nPairs,3,nHeights))
1914 vel = numpy.zeros((nPairs,3,nHeights))
1901 dist1 = numpy.reshape(dist, (dist.size,1))
1915 dist1 = numpy.reshape(dist, (dist.size,1))
1902
1916
1903 angCos = numpy.cos(ang)
1917 angCos = numpy.cos(ang)
1904 angSin = numpy.sin(ang)
1918 angSin = numpy.sin(ang)
1905
1919
1906 vel0 = dist1*tau1/(2*tau2**2)
1920 vel0 = dist1*tau1/(2*tau2**2)
1907 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1921 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1908 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1922 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1909
1923
1910 ind = numpy.where(numpy.isinf(vel))
1924 ind = numpy.where(numpy.isinf(vel))
1911 vel[ind] = numpy.nan
1925 vel[ind] = numpy.nan
1912
1926
1913 return vel
1927 return vel
1914
1928
1915 # def __getPairsAutoCorr(self, pairsList, nChannels):
1929 # def __getPairsAutoCorr(self, pairsList, nChannels):
1916 #
1930 #
1917 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1931 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1918 #
1932 #
1919 # for l in range(len(pairsList)):
1933 # for l in range(len(pairsList)):
1920 # firstChannel = pairsList[l][0]
1934 # firstChannel = pairsList[l][0]
1921 # secondChannel = pairsList[l][1]
1935 # secondChannel = pairsList[l][1]
1922 #
1936 #
1923 # #Obteniendo pares de Autocorrelacion
1937 # #Obteniendo pares de Autocorrelacion
1924 # if firstChannel == secondChannel:
1938 # if firstChannel == secondChannel:
1925 # pairsAutoCorr[firstChannel] = int(l)
1939 # pairsAutoCorr[firstChannel] = int(l)
1926 #
1940 #
1927 # pairsAutoCorr = pairsAutoCorr.astype(int)
1941 # pairsAutoCorr = pairsAutoCorr.astype(int)
1928 #
1942 #
1929 # pairsCrossCorr = range(len(pairsList))
1943 # pairsCrossCorr = range(len(pairsList))
1930 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1944 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1931 #
1945 #
1932 # return pairsAutoCorr, pairsCrossCorr
1946 # return pairsAutoCorr, pairsCrossCorr
1933
1947
1934 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1948 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1935 def techniqueSA(self, kwargs):
1949 def techniqueSA(self, kwargs):
1936
1950
1937 """
1951 """
1938 Function that implements Spaced Antenna (SA) technique.
1952 Function that implements Spaced Antenna (SA) technique.
1939
1953
1940 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1954 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1941 Direction correction (if necessary), Ranges and SNR
1955 Direction correction (if necessary), Ranges and SNR
1942
1956
1943 Output: Winds estimation (Zonal, Meridional and Vertical)
1957 Output: Winds estimation (Zonal, Meridional and Vertical)
1944
1958
1945 Parameters affected: Winds
1959 Parameters affected: Winds
1946 """
1960 """
1947 position_x = kwargs['positionX']
1961 position_x = kwargs['positionX']
1948 position_y = kwargs['positionY']
1962 position_y = kwargs['positionY']
1949 azimuth = kwargs['azimuth']
1963 azimuth = kwargs['azimuth']
1950
1964
1951 if 'correctFactor' in kwargs:
1965 if 'correctFactor' in kwargs:
1952 correctFactor = kwargs['correctFactor']
1966 correctFactor = kwargs['correctFactor']
1953 else:
1967 else:
1954 correctFactor = 1
1968 correctFactor = 1
1955
1969
1956 groupList = kwargs['groupList']
1970 groupList = kwargs['groupList']
1957 pairs_ccf = groupList[1]
1971 pairs_ccf = groupList[1]
1958 tau = kwargs['tau']
1972 tau = kwargs['tau']
1959 _lambda = kwargs['_lambda']
1973 _lambda = kwargs['_lambda']
1960
1974
1961 #Cross Correlation pairs obtained
1975 #Cross Correlation pairs obtained
1962 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1976 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1963 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1977 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1964 # pairsSelArray = numpy.array(pairsSelected)
1978 # pairsSelArray = numpy.array(pairsSelected)
1965 # pairs = []
1979 # pairs = []
1966 #
1980 #
1967 # #Wind estimation pairs obtained
1981 # #Wind estimation pairs obtained
1968 # for i in range(pairsSelArray.shape[0]/2):
1982 # for i in range(pairsSelArray.shape[0]/2):
1969 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1983 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1970 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1984 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1971 # pairs.append((ind1,ind2))
1985 # pairs.append((ind1,ind2))
1972
1986
1973 indtau = tau.shape[0]/2
1987 indtau = tau.shape[0]/2
1974 tau1 = tau[:indtau,:]
1988 tau1 = tau[:indtau,:]
1975 tau2 = tau[indtau:-1,:]
1989 tau2 = tau[indtau:-1,:]
1976 # tau1 = tau1[pairs,:]
1990 # tau1 = tau1[pairs,:]
1977 # tau2 = tau2[pairs,:]
1991 # tau2 = tau2[pairs,:]
1978 phase1 = tau[-1,:]
1992 phase1 = tau[-1,:]
1979
1993
1980 #---------------------------------------------------------------------
1994 #---------------------------------------------------------------------
1981 #Metodo Directo
1995 #Metodo Directo
1982 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1996 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1983 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1997 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1984 winds = stats.nanmean(winds, axis=0)
1998 winds = stats.nanmean(winds, axis=0)
@@ -1994,97 +2008,97 class WindProfiler(Operation):
1994 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
2008 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
1995 winds = correctFactor*winds
2009 winds = correctFactor*winds
1996 return winds
2010 return winds
1997
2011
1998 def __checkTime(self, currentTime, paramInterval, outputInterval):
2012 def __checkTime(self, currentTime, paramInterval, outputInterval):
1999
2013
2000 dataTime = currentTime + paramInterval
2014 dataTime = currentTime + paramInterval
2001 deltaTime = dataTime - self.__initime
2015 deltaTime = dataTime - self.__initime
2002
2016
2003 if deltaTime >= outputInterval or deltaTime < 0:
2017 if deltaTime >= outputInterval or deltaTime < 0:
2004 self.__dataReady = True
2018 self.__dataReady = True
2005 return
2019 return
2006
2020
2007 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
2021 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
2008 '''
2022 '''
2009 Function that implements winds estimation technique with detected meteors.
2023 Function that implements winds estimation technique with detected meteors.
2010
2024
2011 Input: Detected meteors, Minimum meteor quantity to wind estimation
2025 Input: Detected meteors, Minimum meteor quantity to wind estimation
2012
2026
2013 Output: Winds estimation (Zonal and Meridional)
2027 Output: Winds estimation (Zonal and Meridional)
2014
2028
2015 Parameters affected: Winds
2029 Parameters affected: Winds
2016 '''
2030 '''
2017 #Settings
2031 #Settings
2018 nInt = (heightMax - heightMin)/2
2032 nInt = (heightMax - heightMin)/2
2019 nInt = int(nInt)
2033 nInt = int(nInt)
2020 winds = numpy.zeros((2,nInt))*numpy.nan
2034 winds = numpy.zeros((2,nInt))*numpy.nan
2021
2035
2022 #Filter errors
2036 #Filter errors
2023 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
2037 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
2024 finalMeteor = arrayMeteor[error,:]
2038 finalMeteor = arrayMeteor[error,:]
2025
2039
2026 #Meteor Histogram
2040 #Meteor Histogram
2027 finalHeights = finalMeteor[:,2]
2041 finalHeights = finalMeteor[:,2]
2028 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
2042 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
2029 nMeteorsPerI = hist[0]
2043 nMeteorsPerI = hist[0]
2030 heightPerI = hist[1]
2044 heightPerI = hist[1]
2031
2045
2032 #Sort of meteors
2046 #Sort of meteors
2033 indSort = finalHeights.argsort()
2047 indSort = finalHeights.argsort()
2034 finalMeteor2 = finalMeteor[indSort,:]
2048 finalMeteor2 = finalMeteor[indSort,:]
2035
2049
2036 # Calculating winds
2050 # Calculating winds
2037 ind1 = 0
2051 ind1 = 0
2038 ind2 = 0
2052 ind2 = 0
2039
2053
2040 for i in range(nInt):
2054 for i in range(nInt):
2041 nMet = nMeteorsPerI[i]
2055 nMet = nMeteorsPerI[i]
2042 ind1 = ind2
2056 ind1 = ind2
2043 ind2 = ind1 + nMet
2057 ind2 = ind1 + nMet
2044
2058
2045 meteorAux = finalMeteor2[ind1:ind2,:]
2059 meteorAux = finalMeteor2[ind1:ind2,:]
2046
2060
2047 if meteorAux.shape[0] >= meteorThresh:
2061 if meteorAux.shape[0] >= meteorThresh:
2048 vel = meteorAux[:, 6]
2062 vel = meteorAux[:, 6]
2049 zen = meteorAux[:, 4]*numpy.pi/180
2063 zen = meteorAux[:, 4]*numpy.pi/180
2050 azim = meteorAux[:, 3]*numpy.pi/180
2064 azim = meteorAux[:, 3]*numpy.pi/180
2051
2065
2052 n = numpy.cos(zen)
2066 n = numpy.cos(zen)
2053 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
2067 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
2054 # l = m*numpy.tan(azim)
2068 # l = m*numpy.tan(azim)
2055 l = numpy.sin(zen)*numpy.sin(azim)
2069 l = numpy.sin(zen)*numpy.sin(azim)
2056 m = numpy.sin(zen)*numpy.cos(azim)
2070 m = numpy.sin(zen)*numpy.cos(azim)
2057
2071
2058 A = numpy.vstack((l, m)).transpose()
2072 A = numpy.vstack((l, m)).transpose()
2059 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
2073 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
2060 windsAux = numpy.dot(A1, vel)
2074 windsAux = numpy.dot(A1, vel)
2061
2075
2062 winds[0,i] = windsAux[0]
2076 winds[0,i] = windsAux[0]
2063 winds[1,i] = windsAux[1]
2077 winds[1,i] = windsAux[1]
2064
2078
2065 return winds, heightPerI[:-1]
2079 return winds, heightPerI[:-1]
2066
2080
2067 def techniqueNSM_SA(self, **kwargs):
2081 def techniqueNSM_SA(self, **kwargs):
2068 metArray = kwargs['metArray']
2082 metArray = kwargs['metArray']
2069 heightList = kwargs['heightList']
2083 heightList = kwargs['heightList']
2070 timeList = kwargs['timeList']
2084 timeList = kwargs['timeList']
2071
2085
2072 rx_location = kwargs['rx_location']
2086 rx_location = kwargs['rx_location']
2073 groupList = kwargs['groupList']
2087 groupList = kwargs['groupList']
2074 azimuth = kwargs['azimuth']
2088 azimuth = kwargs['azimuth']
2075 dfactor = kwargs['dfactor']
2089 dfactor = kwargs['dfactor']
2076 k = kwargs['k']
2090 k = kwargs['k']
2077
2091
2078 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
2092 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
2079 d = dist*dfactor
2093 d = dist*dfactor
2080 #Phase calculation
2094 #Phase calculation
2081 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
2095 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
2082
2096
2083 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
2097 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
2084
2098
2085 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2099 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2086 azimuth1 = azimuth1*numpy.pi/180
2100 azimuth1 = azimuth1*numpy.pi/180
2087
2101
2088 for i in range(heightList.size):
2102 for i in range(heightList.size):
2089 h = heightList[i]
2103 h = heightList[i]
2090 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
2104 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
@@ -2097,71 +2111,71 class WindProfiler(Operation):
2097 A = numpy.asmatrix(A)
2111 A = numpy.asmatrix(A)
2098 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
2112 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
2099 velHor = numpy.dot(A1,velAux)
2113 velHor = numpy.dot(A1,velAux)
2100
2114
2101 velEst[i,:] = numpy.squeeze(velHor)
2115 velEst[i,:] = numpy.squeeze(velHor)
2102 return velEst
2116 return velEst
2103
2117
2104 def __getPhaseSlope(self, metArray, heightList, timeList):
2118 def __getPhaseSlope(self, metArray, heightList, timeList):
2105 meteorList = []
2119 meteorList = []
2106 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
2120 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
2107 #Putting back together the meteor matrix
2121 #Putting back together the meteor matrix
2108 utctime = metArray[:,0]
2122 utctime = metArray[:,0]
2109 uniqueTime = numpy.unique(utctime)
2123 uniqueTime = numpy.unique(utctime)
2110
2124
2111 phaseDerThresh = 0.5
2125 phaseDerThresh = 0.5
2112 ippSeconds = timeList[1] - timeList[0]
2126 ippSeconds = timeList[1] - timeList[0]
2113 sec = numpy.where(timeList>1)[0][0]
2127 sec = numpy.where(timeList>1)[0][0]
2114 nPairs = metArray.shape[1] - 6
2128 nPairs = metArray.shape[1] - 6
2115 nHeights = len(heightList)
2129 nHeights = len(heightList)
2116
2130
2117 for t in uniqueTime:
2131 for t in uniqueTime:
2118 metArray1 = metArray[utctime==t,:]
2132 metArray1 = metArray[utctime==t,:]
2119 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
2133 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
2120 tmet = metArray1[:,1].astype(int)
2134 tmet = metArray1[:,1].astype(int)
2121 hmet = metArray1[:,2].astype(int)
2135 hmet = metArray1[:,2].astype(int)
2122
2136
2123 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
2137 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
2124 metPhase[:,:] = numpy.nan
2138 metPhase[:,:] = numpy.nan
2125 metPhase[:,hmet,tmet] = metArray1[:,6:].T
2139 metPhase[:,hmet,tmet] = metArray1[:,6:].T
2126
2140
2127 #Delete short trails
2141 #Delete short trails
2128 metBool = ~numpy.isnan(metPhase[0,:,:])
2142 metBool = ~numpy.isnan(metPhase[0,:,:])
2129 heightVect = numpy.sum(metBool, axis = 1)
2143 heightVect = numpy.sum(metBool, axis = 1)
2130 metBool[heightVect<sec,:] = False
2144 metBool[heightVect<sec,:] = False
2131 metPhase[:,heightVect<sec,:] = numpy.nan
2145 metPhase[:,heightVect<sec,:] = numpy.nan
2132
2146
2133 #Derivative
2147 #Derivative
2134 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2148 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2135 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2149 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2136 metPhase[phDerAux] = numpy.nan
2150 metPhase[phDerAux] = numpy.nan
2137
2151
2138 #--------------------------METEOR DETECTION -----------------------------------------
2152 #--------------------------METEOR DETECTION -----------------------------------------
2139 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2153 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2140
2154
2141 for p in numpy.arange(nPairs):
2155 for p in numpy.arange(nPairs):
2142 phase = metPhase[p,:,:]
2156 phase = metPhase[p,:,:]
2143 phDer = metDer[p,:,:]
2157 phDer = metDer[p,:,:]
2144
2158
2145 for h in indMet:
2159 for h in indMet:
2146 height = heightList[h]
2160 height = heightList[h]
2147 phase1 = phase[h,:] #82
2161 phase1 = phase[h,:] #82
2148 phDer1 = phDer[h,:]
2162 phDer1 = phDer[h,:]
2149
2163
2150 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2164 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2151
2165
2152 indValid = numpy.where(~numpy.isnan(phase1))[0]
2166 indValid = numpy.where(~numpy.isnan(phase1))[0]
2153 initMet = indValid[0]
2167 initMet = indValid[0]
2154 endMet = 0
2168 endMet = 0
2155
2169
2156 for i in range(len(indValid)-1):
2170 for i in range(len(indValid)-1):
2157
2171
2158 #Time difference
2172 #Time difference
2159 inow = indValid[i]
2173 inow = indValid[i]
2160 inext = indValid[i+1]
2174 inext = indValid[i+1]
2161 idiff = inext - inow
2175 idiff = inext - inow
2162 #Phase difference
2176 #Phase difference
2163 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2177 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2164
2178
2165 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2179 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2166 sizeTrail = inow - initMet + 1
2180 sizeTrail = inow - initMet + 1
2167 if sizeTrail>3*sec: #Too short meteors
2181 if sizeTrail>3*sec: #Too short meteors
@@ -2177,43 +2191,43 class WindProfiler(Operation):
2177 vel = slope#*height*1000/(k*d)
2191 vel = slope#*height*1000/(k*d)
2178 estAux = numpy.array([utctime,p,height, vel, rsq])
2192 estAux = numpy.array([utctime,p,height, vel, rsq])
2179 meteorList.append(estAux)
2193 meteorList.append(estAux)
2180 initMet = inext
2194 initMet = inext
2181 metArray2 = numpy.array(meteorList)
2195 metArray2 = numpy.array(meteorList)
2182
2196
2183 return metArray2
2197 return metArray2
2184
2198
2185 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2199 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2186
2200
2187 azimuth1 = numpy.zeros(len(pairslist))
2201 azimuth1 = numpy.zeros(len(pairslist))
2188 dist = numpy.zeros(len(pairslist))
2202 dist = numpy.zeros(len(pairslist))
2189
2203
2190 for i in range(len(rx_location)):
2204 for i in range(len(rx_location)):
2191 ch0 = pairslist[i][0]
2205 ch0 = pairslist[i][0]
2192 ch1 = pairslist[i][1]
2206 ch1 = pairslist[i][1]
2193
2207
2194 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2208 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2195 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2209 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2196 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2210 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2197 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2211 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2198
2212
2199 azimuth1 -= azimuth0
2213 azimuth1 -= azimuth0
2200 return azimuth1, dist
2214 return azimuth1, dist
2201
2215
2202 def techniqueNSM_DBS(self, **kwargs):
2216 def techniqueNSM_DBS(self, **kwargs):
2203 metArray = kwargs['metArray']
2217 metArray = kwargs['metArray']
2204 heightList = kwargs['heightList']
2218 heightList = kwargs['heightList']
2205 timeList = kwargs['timeList']
2219 timeList = kwargs['timeList']
2206 azimuth = kwargs['azimuth']
2220 azimuth = kwargs['azimuth']
2207 theta_x = numpy.array(kwargs['theta_x'])
2221 theta_x = numpy.array(kwargs['theta_x'])
2208 theta_y = numpy.array(kwargs['theta_y'])
2222 theta_y = numpy.array(kwargs['theta_y'])
2209
2223
2210 utctime = metArray[:,0]
2224 utctime = metArray[:,0]
2211 cmet = metArray[:,1].astype(int)
2225 cmet = metArray[:,1].astype(int)
2212 hmet = metArray[:,3].astype(int)
2226 hmet = metArray[:,3].astype(int)
2213 SNRmet = metArray[:,4]
2227 SNRmet = metArray[:,4]
2214 vmet = metArray[:,5]
2228 vmet = metArray[:,5]
2215 spcmet = metArray[:,6]
2229 spcmet = metArray[:,6]
2216
2230
2217 nChan = numpy.max(cmet) + 1
2231 nChan = numpy.max(cmet) + 1
2218 nHeights = len(heightList)
2232 nHeights = len(heightList)
2219
2233
@@ -2229,20 +2243,20 class WindProfiler(Operation):
2229
2243
2230 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2244 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2231 indthisH = numpy.where(thisH)
2245 indthisH = numpy.where(thisH)
2232
2246
2233 if numpy.size(indthisH) > 3:
2247 if numpy.size(indthisH) > 3:
2234
2248
2235 vel_aux = vmet[thisH]
2249 vel_aux = vmet[thisH]
2236 chan_aux = cmet[thisH]
2250 chan_aux = cmet[thisH]
2237 cosu_aux = dir_cosu[chan_aux]
2251 cosu_aux = dir_cosu[chan_aux]
2238 cosv_aux = dir_cosv[chan_aux]
2252 cosv_aux = dir_cosv[chan_aux]
2239 cosw_aux = dir_cosw[chan_aux]
2253 cosw_aux = dir_cosw[chan_aux]
2240
2254
2241 nch = numpy.size(numpy.unique(chan_aux))
2255 nch = numpy.size(numpy.unique(chan_aux))
2242 if nch > 1:
2256 if nch > 1:
2243 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2257 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2244 velEst[i,:] = numpy.dot(A,vel_aux)
2258 velEst[i,:] = numpy.dot(A,vel_aux)
2245
2259
2246 return velEst
2260 return velEst
2247
2261
2248 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
2262 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
@@ -2253,39 +2267,39 class WindProfiler(Operation):
2253 # noise = dataOut.noise
2267 # noise = dataOut.noise
2254 heightList = dataOut.heightList
2268 heightList = dataOut.heightList
2255 SNR = dataOut.data_SNR
2269 SNR = dataOut.data_SNR
2256
2270
2257 if technique == 'DBS':
2271 if technique == 'DBS':
2258
2272
2259 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2273 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2260 kwargs['heightList'] = heightList
2274 kwargs['heightList'] = heightList
2261 kwargs['SNR'] = SNR
2275 kwargs['SNR'] = SNR
2262
2276
2263 dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function
2277 dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function
2264 dataOut.utctimeInit = dataOut.utctime
2278 dataOut.utctimeInit = dataOut.utctime
2265 dataOut.outputInterval = dataOut.paramInterval
2279 dataOut.outputInterval = dataOut.paramInterval
2266
2280
2267 elif technique == 'SA':
2281 elif technique == 'SA':
2268
2282
2269 #Parameters
2283 #Parameters
2270 # position_x = kwargs['positionX']
2284 # position_x = kwargs['positionX']
2271 # position_y = kwargs['positionY']
2285 # position_y = kwargs['positionY']
2272 # azimuth = kwargs['azimuth']
2286 # azimuth = kwargs['azimuth']
2273 #
2287 #
2274 # if kwargs.has_key('crosspairsList'):
2288 # if kwargs.has_key('crosspairsList'):
2275 # pairs = kwargs['crosspairsList']
2289 # pairs = kwargs['crosspairsList']
2276 # else:
2290 # else:
2277 # pairs = None
2291 # pairs = None
2278 #
2292 #
2279 # if kwargs.has_key('correctFactor'):
2293 # if kwargs.has_key('correctFactor'):
2280 # correctFactor = kwargs['correctFactor']
2294 # correctFactor = kwargs['correctFactor']
2281 # else:
2295 # else:
2282 # correctFactor = 1
2296 # correctFactor = 1
2283
2297
2284 # tau = dataOut.data_param
2298 # tau = dataOut.data_param
2285 # _lambda = dataOut.C/dataOut.frequency
2299 # _lambda = dataOut.C/dataOut.frequency
2286 # pairsList = dataOut.groupList
2300 # pairsList = dataOut.groupList
2287 # nChannels = dataOut.nChannels
2301 # nChannels = dataOut.nChannels
2288
2302
2289 kwargs['groupList'] = dataOut.groupList
2303 kwargs['groupList'] = dataOut.groupList
2290 kwargs['tau'] = dataOut.data_param
2304 kwargs['tau'] = dataOut.data_param
2291 kwargs['_lambda'] = dataOut.C/dataOut.frequency
2305 kwargs['_lambda'] = dataOut.C/dataOut.frequency
@@ -2293,30 +2307,30 class WindProfiler(Operation):
2293 dataOut.data_output = self.techniqueSA(kwargs)
2307 dataOut.data_output = self.techniqueSA(kwargs)
2294 dataOut.utctimeInit = dataOut.utctime
2308 dataOut.utctimeInit = dataOut.utctime
2295 dataOut.outputInterval = dataOut.timeInterval
2309 dataOut.outputInterval = dataOut.timeInterval
2296
2310
2297 elif technique == 'Meteors':
2311 elif technique == 'Meteors':
2298 dataOut.flagNoData = True
2312 dataOut.flagNoData = True
2299 self.__dataReady = False
2313 self.__dataReady = False
2300
2314
2301 if 'nHours' in kwargs:
2315 if 'nHours' in kwargs:
2302 nHours = kwargs['nHours']
2316 nHours = kwargs['nHours']
2303 else:
2317 else:
2304 nHours = 1
2318 nHours = 1
2305
2319
2306 if 'meteorsPerBin' in kwargs:
2320 if 'meteorsPerBin' in kwargs:
2307 meteorThresh = kwargs['meteorsPerBin']
2321 meteorThresh = kwargs['meteorsPerBin']
2308 else:
2322 else:
2309 meteorThresh = 6
2323 meteorThresh = 6
2310
2324
2311 if 'hmin' in kwargs:
2325 if 'hmin' in kwargs:
2312 hmin = kwargs['hmin']
2326 hmin = kwargs['hmin']
2313 else: hmin = 70
2327 else: hmin = 70
2314 if 'hmax' in kwargs:
2328 if 'hmax' in kwargs:
2315 hmax = kwargs['hmax']
2329 hmax = kwargs['hmax']
2316 else: hmax = 110
2330 else: hmax = 110
2317
2331
2318 dataOut.outputInterval = nHours*3600
2332 dataOut.outputInterval = nHours*3600
2319
2333
2320 if self.__isConfig == False:
2334 if self.__isConfig == False:
2321 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2335 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2322 #Get Initial LTC time
2336 #Get Initial LTC time
@@ -2324,29 +2338,29 class WindProfiler(Operation):
2324 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2338 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2325
2339
2326 self.__isConfig = True
2340 self.__isConfig = True
2327
2341
2328 if self.__buffer is None:
2342 if self.__buffer is None:
2329 self.__buffer = dataOut.data_param
2343 self.__buffer = dataOut.data_param
2330 self.__firstdata = copy.copy(dataOut)
2344 self.__firstdata = copy.copy(dataOut)
2331
2345
2332 else:
2346 else:
2333 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2347 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2334
2348
2335 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2349 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2336
2350
2337 if self.__dataReady:
2351 if self.__dataReady:
2338 dataOut.utctimeInit = self.__initime
2352 dataOut.utctimeInit = self.__initime
2339
2353
2340 self.__initime += dataOut.outputInterval #to erase time offset
2354 self.__initime += dataOut.outputInterval #to erase time offset
2341
2355
2342 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2356 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2343 dataOut.flagNoData = False
2357 dataOut.flagNoData = False
2344 self.__buffer = None
2358 self.__buffer = None
2345
2359
2346 elif technique == 'Meteors1':
2360 elif technique == 'Meteors1':
2347 dataOut.flagNoData = True
2361 dataOut.flagNoData = True
2348 self.__dataReady = False
2362 self.__dataReady = False
2349
2363
2350 if 'nMins' in kwargs:
2364 if 'nMins' in kwargs:
2351 nMins = kwargs['nMins']
2365 nMins = kwargs['nMins']
2352 else: nMins = 20
2366 else: nMins = 20
@@ -2361,7 +2375,7 class WindProfiler(Operation):
2361 if 'mode' in kwargs:
2375 if 'mode' in kwargs:
2362 mode = kwargs['mode']
2376 mode = kwargs['mode']
2363 if 'theta_x' in kwargs:
2377 if 'theta_x' in kwargs:
2364 theta_x = kwargs['theta_x']
2378 theta_x = kwargs['theta_x']
2365 if 'theta_y' in kwargs:
2379 if 'theta_y' in kwargs:
2366 theta_y = kwargs['theta_y']
2380 theta_y = kwargs['theta_y']
2367 else: mode = 'SA'
2381 else: mode = 'SA'
@@ -2374,10 +2388,10 class WindProfiler(Operation):
2374 freq = 50e6
2388 freq = 50e6
2375 lamb = C/freq
2389 lamb = C/freq
2376 k = 2*numpy.pi/lamb
2390 k = 2*numpy.pi/lamb
2377
2391
2378 timeList = dataOut.abscissaList
2392 timeList = dataOut.abscissaList
2379 heightList = dataOut.heightList
2393 heightList = dataOut.heightList
2380
2394
2381 if self.__isConfig == False:
2395 if self.__isConfig == False:
2382 dataOut.outputInterval = nMins*60
2396 dataOut.outputInterval = nMins*60
2383 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2397 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
@@ -2388,20 +2402,20 class WindProfiler(Operation):
2388 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2402 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2389
2403
2390 self.__isConfig = True
2404 self.__isConfig = True
2391
2405
2392 if self.__buffer is None:
2406 if self.__buffer is None:
2393 self.__buffer = dataOut.data_param
2407 self.__buffer = dataOut.data_param
2394 self.__firstdata = copy.copy(dataOut)
2408 self.__firstdata = copy.copy(dataOut)
2395
2409
2396 else:
2410 else:
2397 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2411 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2398
2412
2399 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2413 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2400
2414
2401 if self.__dataReady:
2415 if self.__dataReady:
2402 dataOut.utctimeInit = self.__initime
2416 dataOut.utctimeInit = self.__initime
2403 self.__initime += dataOut.outputInterval #to erase time offset
2417 self.__initime += dataOut.outputInterval #to erase time offset
2404
2418
2405 metArray = self.__buffer
2419 metArray = self.__buffer
2406 if mode == 'SA':
2420 if mode == 'SA':
2407 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
2421 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
@@ -2412,71 +2426,71 class WindProfiler(Operation):
2412 self.__buffer = None
2426 self.__buffer = None
2413
2427
2414 return
2428 return
2415
2429
2416 class EWDriftsEstimation(Operation):
2430 class EWDriftsEstimation(Operation):
2417
2431
2418 def __init__(self):
2432 def __init__(self):
2419 Operation.__init__(self)
2433 Operation.__init__(self)
2420
2434
2421 def __correctValues(self, heiRang, phi, velRadial, SNR):
2435 def __correctValues(self, heiRang, phi, velRadial, SNR):
2422 listPhi = phi.tolist()
2436 listPhi = phi.tolist()
2423 maxid = listPhi.index(max(listPhi))
2437 maxid = listPhi.index(max(listPhi))
2424 minid = listPhi.index(min(listPhi))
2438 minid = listPhi.index(min(listPhi))
2425
2439
2426 rango = list(range(len(phi)))
2440 rango = list(range(len(phi)))
2427 # rango = numpy.delete(rango,maxid)
2441 # rango = numpy.delete(rango,maxid)
2428
2442
2429 heiRang1 = heiRang*math.cos(phi[maxid])
2443 heiRang1 = heiRang*math.cos(phi[maxid])
2430 heiRangAux = heiRang*math.cos(phi[minid])
2444 heiRangAux = heiRang*math.cos(phi[minid])
2431 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2445 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2432 heiRang1 = numpy.delete(heiRang1,indOut)
2446 heiRang1 = numpy.delete(heiRang1,indOut)
2433
2447
2434 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2448 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2435 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2449 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2436
2450
2437 for i in rango:
2451 for i in rango:
2438 x = heiRang*math.cos(phi[i])
2452 x = heiRang*math.cos(phi[i])
2439 y1 = velRadial[i,:]
2453 y1 = velRadial[i,:]
2440 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2454 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2441
2455
2442 x1 = heiRang1
2456 x1 = heiRang1
2443 y11 = f1(x1)
2457 y11 = f1(x1)
2444
2458
2445 y2 = SNR[i,:]
2459 y2 = SNR[i,:]
2446 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2460 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2447 y21 = f2(x1)
2461 y21 = f2(x1)
2448
2462
2449 velRadial1[i,:] = y11
2463 velRadial1[i,:] = y11
2450 SNR1[i,:] = y21
2464 SNR1[i,:] = y21
2451
2465
2452 return heiRang1, velRadial1, SNR1
2466 return heiRang1, velRadial1, SNR1
2453
2467
2454 def run(self, dataOut, zenith, zenithCorrection):
2468 def run(self, dataOut, zenith, zenithCorrection):
2455 heiRang = dataOut.heightList
2469 heiRang = dataOut.heightList
2456 velRadial = dataOut.data_param[:,3,:]
2470 velRadial = dataOut.data_param[:,3,:]
2457 SNR = dataOut.data_SNR
2471 SNR = dataOut.data_SNR
2458
2472
2459 zenith = numpy.array(zenith)
2473 zenith = numpy.array(zenith)
2460 zenith -= zenithCorrection
2474 zenith -= zenithCorrection
2461 zenith *= numpy.pi/180
2475 zenith *= numpy.pi/180
2462
2476
2463 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2477 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2464
2478
2465 alp = zenith[0]
2479 alp = zenith[0]
2466 bet = zenith[1]
2480 bet = zenith[1]
2467
2481
2468 w_w = velRadial1[0,:]
2482 w_w = velRadial1[0,:]
2469 w_e = velRadial1[1,:]
2483 w_e = velRadial1[1,:]
2470
2484
2471 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2485 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2472 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2486 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2473
2487
2474 winds = numpy.vstack((u,w))
2488 winds = numpy.vstack((u,w))
2475
2489
2476 dataOut.heightList = heiRang1
2490 dataOut.heightList = heiRang1
2477 dataOut.data_output = winds
2491 dataOut.data_output = winds
2478 dataOut.data_SNR = SNR1
2492 dataOut.data_SNR = SNR1
2479
2493
2480 dataOut.utctimeInit = dataOut.utctime
2494 dataOut.utctimeInit = dataOut.utctime
2481 dataOut.outputInterval = dataOut.timeInterval
2495 dataOut.outputInterval = dataOut.timeInterval
2482 return
2496 return
@@ -2489,11 +2503,11 class NonSpecularMeteorDetection(Operation):
2489 data_acf = dataOut.data_pre[0]
2503 data_acf = dataOut.data_pre[0]
2490 data_ccf = dataOut.data_pre[1]
2504 data_ccf = dataOut.data_pre[1]
2491 pairsList = dataOut.groupList[1]
2505 pairsList = dataOut.groupList[1]
2492
2506
2493 lamb = dataOut.C/dataOut.frequency
2507 lamb = dataOut.C/dataOut.frequency
2494 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2508 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2495 paramInterval = dataOut.paramInterval
2509 paramInterval = dataOut.paramInterval
2496
2510
2497 nChannels = data_acf.shape[0]
2511 nChannels = data_acf.shape[0]
2498 nLags = data_acf.shape[1]
2512 nLags = data_acf.shape[1]
2499 nProfiles = data_acf.shape[2]
2513 nProfiles = data_acf.shape[2]
@@ -2503,7 +2517,7 class NonSpecularMeteorDetection(Operation):
2503 heightList = dataOut.heightList
2517 heightList = dataOut.heightList
2504 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2518 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2505 utctime = dataOut.utctime
2519 utctime = dataOut.utctime
2506
2520
2507 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2521 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2508
2522
2509 #------------------------ SNR --------------------------------------
2523 #------------------------ SNR --------------------------------------
@@ -2515,7 +2529,7 class NonSpecularMeteorDetection(Operation):
2515 SNR[i] = (power[i]-noise[i])/noise[i]
2529 SNR[i] = (power[i]-noise[i])/noise[i]
2516 SNRm = numpy.nanmean(SNR, axis = 0)
2530 SNRm = numpy.nanmean(SNR, axis = 0)
2517 SNRdB = 10*numpy.log10(SNR)
2531 SNRdB = 10*numpy.log10(SNR)
2518
2532
2519 if mode == 'SA':
2533 if mode == 'SA':
2520 dataOut.groupList = dataOut.groupList[1]
2534 dataOut.groupList = dataOut.groupList[1]
2521 nPairs = data_ccf.shape[0]
2535 nPairs = data_ccf.shape[0]
@@ -2523,22 +2537,22 class NonSpecularMeteorDetection(Operation):
2523 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2537 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2524 # phase1 = numpy.copy(phase)
2538 # phase1 = numpy.copy(phase)
2525 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2539 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2526
2540
2527 for p in range(nPairs):
2541 for p in range(nPairs):
2528 ch0 = pairsList[p][0]
2542 ch0 = pairsList[p][0]
2529 ch1 = pairsList[p][1]
2543 ch1 = pairsList[p][1]
2530 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2544 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2531 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2545 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2532 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2546 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2533 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2547 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2534 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2548 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2535 coh = numpy.nanmax(coh1, axis = 0)
2549 coh = numpy.nanmax(coh1, axis = 0)
2536 # struc = numpy.ones((5,1))
2550 # struc = numpy.ones((5,1))
2537 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2551 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2538 #---------------------- Radial Velocity ----------------------------
2552 #---------------------- Radial Velocity ----------------------------
2539 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2553 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2540 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2554 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2541
2555
2542 if allData:
2556 if allData:
2543 boolMetFin = ~numpy.isnan(SNRm)
2557 boolMetFin = ~numpy.isnan(SNRm)
2544 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2558 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
@@ -2546,31 +2560,31 class NonSpecularMeteorDetection(Operation):
2546 #------------------------ Meteor mask ---------------------------------
2560 #------------------------ Meteor mask ---------------------------------
2547 # #SNR mask
2561 # #SNR mask
2548 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2562 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2549 #
2563 #
2550 # #Erase small objects
2564 # #Erase small objects
2551 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2565 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2552 #
2566 #
2553 # auxEEJ = numpy.sum(boolMet1,axis=0)
2567 # auxEEJ = numpy.sum(boolMet1,axis=0)
2554 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2568 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2555 # indEEJ = numpy.where(indOver)[0]
2569 # indEEJ = numpy.where(indOver)[0]
2556 # indNEEJ = numpy.where(~indOver)[0]
2570 # indNEEJ = numpy.where(~indOver)[0]
2557 #
2571 #
2558 # boolMetFin = boolMet1
2572 # boolMetFin = boolMet1
2559 #
2573 #
2560 # if indEEJ.size > 0:
2574 # if indEEJ.size > 0:
2561 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2575 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2562 #
2576 #
2563 # boolMet2 = coh > cohThresh
2577 # boolMet2 = coh > cohThresh
2564 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2578 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2565 #
2579 #
2566 # #Final Meteor mask
2580 # #Final Meteor mask
2567 # boolMetFin = boolMet1|boolMet2
2581 # boolMetFin = boolMet1|boolMet2
2568
2582
2569 #Coherence mask
2583 #Coherence mask
2570 boolMet1 = coh > 0.75
2584 boolMet1 = coh > 0.75
2571 struc = numpy.ones((30,1))
2585 struc = numpy.ones((30,1))
2572 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2586 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2573
2587
2574 #Derivative mask
2588 #Derivative mask
2575 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2589 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2576 boolMet2 = derPhase < 0.2
2590 boolMet2 = derPhase < 0.2
@@ -2587,7 +2601,7 class NonSpecularMeteorDetection(Operation):
2587
2601
2588 tmet = coordMet[0]
2602 tmet = coordMet[0]
2589 hmet = coordMet[1]
2603 hmet = coordMet[1]
2590
2604
2591 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2605 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2592 data_param[:,0] = utctime
2606 data_param[:,0] = utctime
2593 data_param[:,1] = tmet
2607 data_param[:,1] = tmet
@@ -2596,7 +2610,7 class NonSpecularMeteorDetection(Operation):
2596 data_param[:,4] = velRad[tmet,hmet]
2610 data_param[:,4] = velRad[tmet,hmet]
2597 data_param[:,5] = coh[tmet,hmet]
2611 data_param[:,5] = coh[tmet,hmet]
2598 data_param[:,6:] = phase[:,tmet,hmet].T
2612 data_param[:,6:] = phase[:,tmet,hmet].T
2599
2613
2600 elif mode == 'DBS':
2614 elif mode == 'DBS':
2601 dataOut.groupList = numpy.arange(nChannels)
2615 dataOut.groupList = numpy.arange(nChannels)
2602
2616
@@ -2604,7 +2618,7 class NonSpecularMeteorDetection(Operation):
2604 phase = numpy.angle(data_acf[:,1,:,:])
2618 phase = numpy.angle(data_acf[:,1,:,:])
2605 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2619 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2606 velRad = phase*lamb/(4*numpy.pi*tSamp)
2620 velRad = phase*lamb/(4*numpy.pi*tSamp)
2607
2621
2608 #Spectral width
2622 #Spectral width
2609 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2623 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2610 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
2624 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
@@ -2619,24 +2633,24 class NonSpecularMeteorDetection(Operation):
2619 #SNR
2633 #SNR
2620 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2634 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2621 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2635 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2622
2636
2623 #Radial velocity
2637 #Radial velocity
2624 boolMet2 = numpy.abs(velRad) < 20
2638 boolMet2 = numpy.abs(velRad) < 20
2625 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2639 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2626
2640
2627 #Spectral Width
2641 #Spectral Width
2628 boolMet3 = spcWidth < 30
2642 boolMet3 = spcWidth < 30
2629 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2643 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2630 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2644 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2631 boolMetFin = boolMet1&boolMet2&boolMet3
2645 boolMetFin = boolMet1&boolMet2&boolMet3
2632
2646
2633 #Creating data_param
2647 #Creating data_param
2634 coordMet = numpy.where(boolMetFin)
2648 coordMet = numpy.where(boolMetFin)
2635
2649
2636 cmet = coordMet[0]
2650 cmet = coordMet[0]
2637 tmet = coordMet[1]
2651 tmet = coordMet[1]
2638 hmet = coordMet[2]
2652 hmet = coordMet[2]
2639
2653
2640 data_param = numpy.zeros((tmet.size, 7))
2654 data_param = numpy.zeros((tmet.size, 7))
2641 data_param[:,0] = utctime
2655 data_param[:,0] = utctime
2642 data_param[:,1] = cmet
2656 data_param[:,1] = cmet
@@ -2645,7 +2659,7 class NonSpecularMeteorDetection(Operation):
2645 data_param[:,4] = SNR[cmet,tmet,hmet].T
2659 data_param[:,4] = SNR[cmet,tmet,hmet].T
2646 data_param[:,5] = velRad[cmet,tmet,hmet].T
2660 data_param[:,5] = velRad[cmet,tmet,hmet].T
2647 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2661 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2648
2662
2649 # self.dataOut.data_param = data_int
2663 # self.dataOut.data_param = data_int
2650 if len(data_param) == 0:
2664 if len(data_param) == 0:
2651 dataOut.flagNoData = True
2665 dataOut.flagNoData = True
@@ -2655,21 +2669,21 class NonSpecularMeteorDetection(Operation):
2655 def __erase_small(self, binArray, threshX, threshY):
2669 def __erase_small(self, binArray, threshX, threshY):
2656 labarray, numfeat = ndimage.measurements.label(binArray)
2670 labarray, numfeat = ndimage.measurements.label(binArray)
2657 binArray1 = numpy.copy(binArray)
2671 binArray1 = numpy.copy(binArray)
2658
2672
2659 for i in range(1,numfeat + 1):
2673 for i in range(1,numfeat + 1):
2660 auxBin = (labarray==i)
2674 auxBin = (labarray==i)
2661 auxSize = auxBin.sum()
2675 auxSize = auxBin.sum()
2662
2676
2663 x,y = numpy.where(auxBin)
2677 x,y = numpy.where(auxBin)
2664 widthX = x.max() - x.min()
2678 widthX = x.max() - x.min()
2665 widthY = y.max() - y.min()
2679 widthY = y.max() - y.min()
2666
2680
2667 #width X: 3 seg -> 12.5*3
2681 #width X: 3 seg -> 12.5*3
2668 #width Y:
2682 #width Y:
2669
2683
2670 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2684 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2671 binArray1[auxBin] = False
2685 binArray1[auxBin] = False
2672
2686
2673 return binArray1
2687 return binArray1
2674
2688
2675 #--------------- Specular Meteor ----------------
2689 #--------------- Specular Meteor ----------------
@@ -2679,36 +2693,36 class SMDetection(Operation):
2679 Function DetectMeteors()
2693 Function DetectMeteors()
2680 Project developed with paper:
2694 Project developed with paper:
2681 HOLDSWORTH ET AL. 2004
2695 HOLDSWORTH ET AL. 2004
2682
2696
2683 Input:
2697 Input:
2684 self.dataOut.data_pre
2698 self.dataOut.data_pre
2685
2699
2686 centerReceiverIndex: From the channels, which is the center receiver
2700 centerReceiverIndex: From the channels, which is the center receiver
2687
2701
2688 hei_ref: Height reference for the Beacon signal extraction
2702 hei_ref: Height reference for the Beacon signal extraction
2689 tauindex:
2703 tauindex:
2690 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2704 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2691
2705
2692 cohDetection: Whether to user Coherent detection or not
2706 cohDetection: Whether to user Coherent detection or not
2693 cohDet_timeStep: Coherent Detection calculation time step
2707 cohDet_timeStep: Coherent Detection calculation time step
2694 cohDet_thresh: Coherent Detection phase threshold to correct phases
2708 cohDet_thresh: Coherent Detection phase threshold to correct phases
2695
2709
2696 noise_timeStep: Noise calculation time step
2710 noise_timeStep: Noise calculation time step
2697 noise_multiple: Noise multiple to define signal threshold
2711 noise_multiple: Noise multiple to define signal threshold
2698
2712
2699 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2713 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2700 multDet_rangeLimit: Multiple Detection Removal range limit in km
2714 multDet_rangeLimit: Multiple Detection Removal range limit in km
2701
2715
2702 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2716 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2703 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2717 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2704
2718
2705 hmin: Minimum Height of the meteor to use it in the further wind estimations
2719 hmin: Minimum Height of the meteor to use it in the further wind estimations
2706 hmax: Maximum Height of the meteor to use it in the further wind estimations
2720 hmax: Maximum Height of the meteor to use it in the further wind estimations
2707 azimuth: Azimuth angle correction
2721 azimuth: Azimuth angle correction
2708
2722
2709 Affected:
2723 Affected:
2710 self.dataOut.data_param
2724 self.dataOut.data_param
2711
2725
2712 Rejection Criteria (Errors):
2726 Rejection Criteria (Errors):
2713 0: No error; analysis OK
2727 0: No error; analysis OK
2714 1: SNR < SNR threshold
2728 1: SNR < SNR threshold
@@ -2727,9 +2741,9 class SMDetection(Operation):
2727 14: height ambiguous echo: more then one possible height within 70 to 110 km
2741 14: height ambiguous echo: more then one possible height within 70 to 110 km
2728 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2742 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2729 16: oscilatory echo, indicating event most likely not an underdense echo
2743 16: oscilatory echo, indicating event most likely not an underdense echo
2730
2744
2731 17: phase difference in meteor Reestimation
2745 17: phase difference in meteor Reestimation
2732
2746
2733 Data Storage:
2747 Data Storage:
2734 Meteors for Wind Estimation (8):
2748 Meteors for Wind Estimation (8):
2735 Utc Time | Range Height
2749 Utc Time | Range Height
@@ -2737,19 +2751,19 class SMDetection(Operation):
2737 VelRad errorVelRad
2751 VelRad errorVelRad
2738 Phase0 Phase1 Phase2 Phase3
2752 Phase0 Phase1 Phase2 Phase3
2739 TypeError
2753 TypeError
2740
2754
2741 '''
2755 '''
2742
2756
2743 def run(self, dataOut, hei_ref = None, tauindex = 0,
2757 def run(self, dataOut, hei_ref = None, tauindex = 0,
2744 phaseOffsets = None,
2758 phaseOffsets = None,
2745 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2759 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2746 noise_timeStep = 4, noise_multiple = 4,
2760 noise_timeStep = 4, noise_multiple = 4,
2747 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2761 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2748 phaseThresh = 20, SNRThresh = 5,
2762 phaseThresh = 20, SNRThresh = 5,
2749 hmin = 50, hmax=150, azimuth = 0,
2763 hmin = 50, hmax=150, azimuth = 0,
2750 channelPositions = None) :
2764 channelPositions = None) :
2751
2765
2752
2766
2753 #Getting Pairslist
2767 #Getting Pairslist
2754 if channelPositions is None:
2768 if channelPositions is None:
2755 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2769 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
@@ -2759,53 +2773,53 class SMDetection(Operation):
2759 heiRang = dataOut.getHeiRange()
2773 heiRang = dataOut.getHeiRange()
2760 #Get Beacon signal - No Beacon signal anymore
2774 #Get Beacon signal - No Beacon signal anymore
2761 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2775 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2762 #
2776 #
2763 # if hei_ref != None:
2777 # if hei_ref != None:
2764 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2778 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2765 #
2779 #
2766
2780
2767
2781
2768 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2782 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2769 # see if the user put in pre defined phase shifts
2783 # see if the user put in pre defined phase shifts
2770 voltsPShift = dataOut.data_pre.copy()
2784 voltsPShift = dataOut.data_pre.copy()
2771
2785
2772 # if predefinedPhaseShifts != None:
2786 # if predefinedPhaseShifts != None:
2773 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2787 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2774 #
2788 #
2775 # # elif beaconPhaseShifts:
2789 # # elif beaconPhaseShifts:
2776 # # #get hardware phase shifts using beacon signal
2790 # # #get hardware phase shifts using beacon signal
2777 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2791 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2778 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2792 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2779 #
2793 #
2780 # else:
2794 # else:
2781 # hardwarePhaseShifts = numpy.zeros(5)
2795 # hardwarePhaseShifts = numpy.zeros(5)
2782 #
2796 #
2783 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2797 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2784 # for i in range(self.dataOut.data_pre.shape[0]):
2798 # for i in range(self.dataOut.data_pre.shape[0]):
2785 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2799 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2786
2800
2787 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2801 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2788
2802
2789 #Remove DC
2803 #Remove DC
2790 voltsDC = numpy.mean(voltsPShift,1)
2804 voltsDC = numpy.mean(voltsPShift,1)
2791 voltsDC = numpy.mean(voltsDC,1)
2805 voltsDC = numpy.mean(voltsDC,1)
2792 for i in range(voltsDC.shape[0]):
2806 for i in range(voltsDC.shape[0]):
2793 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2807 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2794
2808
2795 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2809 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2796 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2810 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2797
2811
2798 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2812 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2799 #Coherent Detection
2813 #Coherent Detection
2800 if cohDetection:
2814 if cohDetection:
2801 #use coherent detection to get the net power
2815 #use coherent detection to get the net power
2802 cohDet_thresh = cohDet_thresh*numpy.pi/180
2816 cohDet_thresh = cohDet_thresh*numpy.pi/180
2803 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2817 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2804
2818
2805 #Non-coherent detection!
2819 #Non-coherent detection!
2806 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2820 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2807 #********** END OF COH/NON-COH POWER CALCULATION**********************
2821 #********** END OF COH/NON-COH POWER CALCULATION**********************
2808
2822
2809 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2823 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2810 #Get noise
2824 #Get noise
2811 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
2825 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
@@ -2815,7 +2829,7 class SMDetection(Operation):
2815 #Meteor echoes detection
2829 #Meteor echoes detection
2816 listMeteors = self.__findMeteors(powerNet, signalThresh)
2830 listMeteors = self.__findMeteors(powerNet, signalThresh)
2817 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2831 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2818
2832
2819 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2833 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2820 #Parameters
2834 #Parameters
2821 heiRange = dataOut.getHeiRange()
2835 heiRange = dataOut.getHeiRange()
@@ -2825,7 +2839,7 class SMDetection(Operation):
2825 #Multiple detection removals
2839 #Multiple detection removals
2826 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2840 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2827 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2841 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2828
2842
2829 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2843 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2830 #Parameters
2844 #Parameters
2831 phaseThresh = phaseThresh*numpy.pi/180
2845 phaseThresh = phaseThresh*numpy.pi/180
@@ -2836,40 +2850,40 class SMDetection(Operation):
2836 #Estimation of decay times (Errors N 7, 8, 11)
2850 #Estimation of decay times (Errors N 7, 8, 11)
2837 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2851 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2838 #******************* END OF METEOR REESTIMATION *******************
2852 #******************* END OF METEOR REESTIMATION *******************
2839
2853
2840 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2854 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2841 #Calculating Radial Velocity (Error N 15)
2855 #Calculating Radial Velocity (Error N 15)
2842 radialStdThresh = 10
2856 radialStdThresh = 10
2843 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2857 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2844
2858
2845 if len(listMeteors4) > 0:
2859 if len(listMeteors4) > 0:
2846 #Setting New Array
2860 #Setting New Array
2847 date = dataOut.utctime
2861 date = dataOut.utctime
2848 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2862 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2849
2863
2850 #Correcting phase offset
2864 #Correcting phase offset
2851 if phaseOffsets != None:
2865 if phaseOffsets != None:
2852 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2866 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2853 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2867 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2854
2868
2855 #Second Pairslist
2869 #Second Pairslist
2856 pairsList = []
2870 pairsList = []
2857 pairx = (0,1)
2871 pairx = (0,1)
2858 pairy = (2,3)
2872 pairy = (2,3)
2859 pairsList.append(pairx)
2873 pairsList.append(pairx)
2860 pairsList.append(pairy)
2874 pairsList.append(pairy)
2861
2875
2862 jph = numpy.array([0,0,0,0])
2876 jph = numpy.array([0,0,0,0])
2863 h = (hmin,hmax)
2877 h = (hmin,hmax)
2864 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2878 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2865
2879
2866 # #Calculate AOA (Error N 3, 4)
2880 # #Calculate AOA (Error N 3, 4)
2867 # #JONES ET AL. 1998
2881 # #JONES ET AL. 1998
2868 # error = arrayParameters[:,-1]
2882 # error = arrayParameters[:,-1]
2869 # AOAthresh = numpy.pi/8
2883 # AOAthresh = numpy.pi/8
2870 # phases = -arrayParameters[:,9:13]
2884 # phases = -arrayParameters[:,9:13]
2871 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2885 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2872 #
2886 #
2873 # #Calculate Heights (Error N 13 and 14)
2887 # #Calculate Heights (Error N 13 and 14)
2874 # error = arrayParameters[:,-1]
2888 # error = arrayParameters[:,-1]
2875 # Ranges = arrayParameters[:,2]
2889 # Ranges = arrayParameters[:,2]
@@ -2877,73 +2891,73 class SMDetection(Operation):
2877 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2891 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2878 # error = arrayParameters[:,-1]
2892 # error = arrayParameters[:,-1]
2879 #********************* END OF PARAMETERS CALCULATION **************************
2893 #********************* END OF PARAMETERS CALCULATION **************************
2880
2894
2881 #***************************+ PASS DATA TO NEXT STEP **********************
2895 #***************************+ PASS DATA TO NEXT STEP **********************
2882 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2896 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2883 dataOut.data_param = arrayParameters
2897 dataOut.data_param = arrayParameters
2884
2898
2885 if arrayParameters is None:
2899 if arrayParameters is None:
2886 dataOut.flagNoData = True
2900 dataOut.flagNoData = True
2887 else:
2901 else:
2888 dataOut.flagNoData = True
2902 dataOut.flagNoData = True
2889
2903
2890 return
2904 return
2891
2905
2892 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2906 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2893
2907
2894 minIndex = min(newheis[0])
2908 minIndex = min(newheis[0])
2895 maxIndex = max(newheis[0])
2909 maxIndex = max(newheis[0])
2896
2910
2897 voltage = voltage0[:,:,minIndex:maxIndex+1]
2911 voltage = voltage0[:,:,minIndex:maxIndex+1]
2898 nLength = voltage.shape[1]/n
2912 nLength = voltage.shape[1]/n
2899 nMin = 0
2913 nMin = 0
2900 nMax = 0
2914 nMax = 0
2901 phaseOffset = numpy.zeros((len(pairslist),n))
2915 phaseOffset = numpy.zeros((len(pairslist),n))
2902
2916
2903 for i in range(n):
2917 for i in range(n):
2904 nMax += nLength
2918 nMax += nLength
2905 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2919 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2906 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2920 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2907 phaseOffset[:,i] = phaseCCF.transpose()
2921 phaseOffset[:,i] = phaseCCF.transpose()
2908 nMin = nMax
2922 nMin = nMax
2909 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2923 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2910
2924
2911 #Remove Outliers
2925 #Remove Outliers
2912 factor = 2
2926 factor = 2
2913 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2927 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2914 dw = numpy.std(wt,axis = 1)
2928 dw = numpy.std(wt,axis = 1)
2915 dw = dw.reshape((dw.size,1))
2929 dw = dw.reshape((dw.size,1))
2916 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2930 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2917 phaseOffset[ind] = numpy.nan
2931 phaseOffset[ind] = numpy.nan
2918 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2932 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2919
2933
2920 return phaseOffset
2934 return phaseOffset
2921
2935
2922 def __shiftPhase(self, data, phaseShift):
2936 def __shiftPhase(self, data, phaseShift):
2923 #this will shift the phase of a complex number
2937 #this will shift the phase of a complex number
2924 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2938 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2925 return dataShifted
2939 return dataShifted
2926
2940
2927 def __estimatePhaseDifference(self, array, pairslist):
2941 def __estimatePhaseDifference(self, array, pairslist):
2928 nChannel = array.shape[0]
2942 nChannel = array.shape[0]
2929 nHeights = array.shape[2]
2943 nHeights = array.shape[2]
2930 numPairs = len(pairslist)
2944 numPairs = len(pairslist)
2931 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2945 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2932 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2946 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2933
2947
2934 #Correct phases
2948 #Correct phases
2935 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2949 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2936 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2950 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2937
2951
2938 if indDer[0].shape[0] > 0:
2952 if indDer[0].shape[0] > 0:
2939 for i in range(indDer[0].shape[0]):
2953 for i in range(indDer[0].shape[0]):
2940 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2954 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2941 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2955 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2942
2956
2943 # for j in range(numSides):
2957 # for j in range(numSides):
2944 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2958 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2945 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2959 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2946 #
2960 #
2947 #Linear
2961 #Linear
2948 phaseInt = numpy.zeros((numPairs,1))
2962 phaseInt = numpy.zeros((numPairs,1))
2949 angAllCCF = phaseCCF[:,[0,1,3,4],0]
2963 angAllCCF = phaseCCF[:,[0,1,3,4],0]
@@ -2953,16 +2967,16 class SMDetection(Operation):
2953 #Phase Differences
2967 #Phase Differences
2954 phaseDiff = phaseInt - phaseCCF[:,2,:]
2968 phaseDiff = phaseInt - phaseCCF[:,2,:]
2955 phaseArrival = phaseInt.reshape(phaseInt.size)
2969 phaseArrival = phaseInt.reshape(phaseInt.size)
2956
2970
2957 #Dealias
2971 #Dealias
2958 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2972 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2959 # indAlias = numpy.where(phaseArrival > numpy.pi)
2973 # indAlias = numpy.where(phaseArrival > numpy.pi)
2960 # phaseArrival[indAlias] -= 2*numpy.pi
2974 # phaseArrival[indAlias] -= 2*numpy.pi
2961 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2975 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2962 # phaseArrival[indAlias] += 2*numpy.pi
2976 # phaseArrival[indAlias] += 2*numpy.pi
2963
2977
2964 return phaseDiff, phaseArrival
2978 return phaseDiff, phaseArrival
2965
2979
2966 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2980 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2967 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2981 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2968 #find the phase shifts of each channel over 1 second intervals
2982 #find the phase shifts of each channel over 1 second intervals
@@ -2972,25 +2986,25 class SMDetection(Operation):
2972 numHeights = volts.shape[2]
2986 numHeights = volts.shape[2]
2973 nChannel = volts.shape[0]
2987 nChannel = volts.shape[0]
2974 voltsCohDet = volts.copy()
2988 voltsCohDet = volts.copy()
2975
2989
2976 pairsarray = numpy.array(pairslist)
2990 pairsarray = numpy.array(pairslist)
2977 indSides = pairsarray[:,1]
2991 indSides = pairsarray[:,1]
2978 # indSides = numpy.array(range(nChannel))
2992 # indSides = numpy.array(range(nChannel))
2979 # indSides = numpy.delete(indSides, indCenter)
2993 # indSides = numpy.delete(indSides, indCenter)
2980 #
2994 #
2981 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2995 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2982 listBlocks = numpy.array_split(volts, numBlocks, 1)
2996 listBlocks = numpy.array_split(volts, numBlocks, 1)
2983
2997
2984 startInd = 0
2998 startInd = 0
2985 endInd = 0
2999 endInd = 0
2986
3000
2987 for i in range(numBlocks):
3001 for i in range(numBlocks):
2988 startInd = endInd
3002 startInd = endInd
2989 endInd = endInd + listBlocks[i].shape[1]
3003 endInd = endInd + listBlocks[i].shape[1]
2990
3004
2991 arrayBlock = listBlocks[i]
3005 arrayBlock = listBlocks[i]
2992 # arrayBlockCenter = listCenter[i]
3006 # arrayBlockCenter = listCenter[i]
2993
3007
2994 #Estimate the Phase Difference
3008 #Estimate the Phase Difference
2995 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
3009 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
2996 #Phase Difference RMS
3010 #Phase Difference RMS
@@ -3002,21 +3016,21 class SMDetection(Operation):
3002 for j in range(indSides.size):
3016 for j in range(indSides.size):
3003 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
3017 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
3004 voltsCohDet[:,startInd:endInd,:] = arrayBlock
3018 voltsCohDet[:,startInd:endInd,:] = arrayBlock
3005
3019
3006 return voltsCohDet
3020 return voltsCohDet
3007
3021
3008 def __calculateCCF(self, volts, pairslist ,laglist):
3022 def __calculateCCF(self, volts, pairslist ,laglist):
3009
3023
3010 nHeights = volts.shape[2]
3024 nHeights = volts.shape[2]
3011 nPoints = volts.shape[1]
3025 nPoints = volts.shape[1]
3012 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
3026 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
3013
3027
3014 for i in range(len(pairslist)):
3028 for i in range(len(pairslist)):
3015 volts1 = volts[pairslist[i][0]]
3029 volts1 = volts[pairslist[i][0]]
3016 volts2 = volts[pairslist[i][1]]
3030 volts2 = volts[pairslist[i][1]]
3017
3031
3018 for t in range(len(laglist)):
3032 for t in range(len(laglist)):
3019 idxT = laglist[t]
3033 idxT = laglist[t]
3020 if idxT >= 0:
3034 if idxT >= 0:
3021 vStacked = numpy.vstack((volts2[idxT:,:],
3035 vStacked = numpy.vstack((volts2[idxT:,:],
3022 numpy.zeros((idxT, nHeights),dtype='complex')))
3036 numpy.zeros((idxT, nHeights),dtype='complex')))
@@ -3024,10 +3038,10 class SMDetection(Operation):
3024 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
3038 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
3025 volts2[:(nPoints + idxT),:]))
3039 volts2[:(nPoints + idxT),:]))
3026 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
3040 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
3027
3041
3028 vStacked = None
3042 vStacked = None
3029 return voltsCCF
3043 return voltsCCF
3030
3044
3031 def __getNoise(self, power, timeSegment, timeInterval):
3045 def __getNoise(self, power, timeSegment, timeInterval):
3032 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
3046 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
3033 numBlocks = int(power.shape[0]/numProfPerBlock)
3047 numBlocks = int(power.shape[0]/numProfPerBlock)
@@ -3036,100 +3050,100 class SMDetection(Operation):
3036 listPower = numpy.array_split(power, numBlocks, 0)
3050 listPower = numpy.array_split(power, numBlocks, 0)
3037 noise = numpy.zeros((power.shape[0], power.shape[1]))
3051 noise = numpy.zeros((power.shape[0], power.shape[1]))
3038 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
3052 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
3039
3053
3040 startInd = 0
3054 startInd = 0
3041 endInd = 0
3055 endInd = 0
3042
3056
3043 for i in range(numBlocks): #split por canal
3057 for i in range(numBlocks): #split por canal
3044 startInd = endInd
3058 startInd = endInd
3045 endInd = endInd + listPower[i].shape[0]
3059 endInd = endInd + listPower[i].shape[0]
3046
3060
3047 arrayBlock = listPower[i]
3061 arrayBlock = listPower[i]
3048 noiseAux = numpy.mean(arrayBlock, 0)
3062 noiseAux = numpy.mean(arrayBlock, 0)
3049 # noiseAux = numpy.median(noiseAux)
3063 # noiseAux = numpy.median(noiseAux)
3050 # noiseAux = numpy.mean(arrayBlock)
3064 # noiseAux = numpy.mean(arrayBlock)
3051 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
3065 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
3052
3066
3053 noiseAux1 = numpy.mean(arrayBlock)
3067 noiseAux1 = numpy.mean(arrayBlock)
3054 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
3068 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
3055
3069
3056 return noise, noise1
3070 return noise, noise1
3057
3071
3058 def __findMeteors(self, power, thresh):
3072 def __findMeteors(self, power, thresh):
3059 nProf = power.shape[0]
3073 nProf = power.shape[0]
3060 nHeights = power.shape[1]
3074 nHeights = power.shape[1]
3061 listMeteors = []
3075 listMeteors = []
3062
3076
3063 for i in range(nHeights):
3077 for i in range(nHeights):
3064 powerAux = power[:,i]
3078 powerAux = power[:,i]
3065 threshAux = thresh[:,i]
3079 threshAux = thresh[:,i]
3066
3080
3067 indUPthresh = numpy.where(powerAux > threshAux)[0]
3081 indUPthresh = numpy.where(powerAux > threshAux)[0]
3068 indDNthresh = numpy.where(powerAux <= threshAux)[0]
3082 indDNthresh = numpy.where(powerAux <= threshAux)[0]
3069
3083
3070 j = 0
3084 j = 0
3071
3085
3072 while (j < indUPthresh.size - 2):
3086 while (j < indUPthresh.size - 2):
3073 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
3087 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
3074 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
3088 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
3075 indDNthresh = indDNthresh[indDNAux]
3089 indDNthresh = indDNthresh[indDNAux]
3076
3090
3077 if (indDNthresh.size > 0):
3091 if (indDNthresh.size > 0):
3078 indEnd = indDNthresh[0] - 1
3092 indEnd = indDNthresh[0] - 1
3079 indInit = indUPthresh[j]
3093 indInit = indUPthresh[j]
3080
3094
3081 meteor = powerAux[indInit:indEnd + 1]
3095 meteor = powerAux[indInit:indEnd + 1]
3082 indPeak = meteor.argmax() + indInit
3096 indPeak = meteor.argmax() + indInit
3083 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
3097 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
3084
3098
3085 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
3099 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
3086 j = numpy.where(indUPthresh == indEnd)[0] + 1
3100 j = numpy.where(indUPthresh == indEnd)[0] + 1
3087 else: j+=1
3101 else: j+=1
3088 else: j+=1
3102 else: j+=1
3089
3103
3090 return listMeteors
3104 return listMeteors
3091
3105
3092 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
3106 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
3093
3107
3094 arrayMeteors = numpy.asarray(listMeteors)
3108 arrayMeteors = numpy.asarray(listMeteors)
3095 listMeteors1 = []
3109 listMeteors1 = []
3096
3110
3097 while arrayMeteors.shape[0] > 0:
3111 while arrayMeteors.shape[0] > 0:
3098 FLAs = arrayMeteors[:,4]
3112 FLAs = arrayMeteors[:,4]
3099 maxFLA = FLAs.argmax()
3113 maxFLA = FLAs.argmax()
3100 listMeteors1.append(arrayMeteors[maxFLA,:])
3114 listMeteors1.append(arrayMeteors[maxFLA,:])
3101
3115
3102 MeteorInitTime = arrayMeteors[maxFLA,1]
3116 MeteorInitTime = arrayMeteors[maxFLA,1]
3103 MeteorEndTime = arrayMeteors[maxFLA,3]
3117 MeteorEndTime = arrayMeteors[maxFLA,3]
3104 MeteorHeight = arrayMeteors[maxFLA,0]
3118 MeteorHeight = arrayMeteors[maxFLA,0]
3105
3119
3106 #Check neighborhood
3120 #Check neighborhood
3107 maxHeightIndex = MeteorHeight + rangeLimit
3121 maxHeightIndex = MeteorHeight + rangeLimit
3108 minHeightIndex = MeteorHeight - rangeLimit
3122 minHeightIndex = MeteorHeight - rangeLimit
3109 minTimeIndex = MeteorInitTime - timeLimit
3123 minTimeIndex = MeteorInitTime - timeLimit
3110 maxTimeIndex = MeteorEndTime + timeLimit
3124 maxTimeIndex = MeteorEndTime + timeLimit
3111
3125
3112 #Check Heights
3126 #Check Heights
3113 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
3127 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
3114 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
3128 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
3115 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
3129 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
3116
3130
3117 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
3131 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
3118
3132
3119 return listMeteors1
3133 return listMeteors1
3120
3134
3121 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
3135 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
3122 numHeights = volts.shape[2]
3136 numHeights = volts.shape[2]
3123 nChannel = volts.shape[0]
3137 nChannel = volts.shape[0]
3124
3138
3125 thresholdPhase = thresh[0]
3139 thresholdPhase = thresh[0]
3126 thresholdNoise = thresh[1]
3140 thresholdNoise = thresh[1]
3127 thresholdDB = float(thresh[2])
3141 thresholdDB = float(thresh[2])
3128
3142
3129 thresholdDB1 = 10**(thresholdDB/10)
3143 thresholdDB1 = 10**(thresholdDB/10)
3130 pairsarray = numpy.array(pairslist)
3144 pairsarray = numpy.array(pairslist)
3131 indSides = pairsarray[:,1]
3145 indSides = pairsarray[:,1]
3132
3146
3133 pairslist1 = list(pairslist)
3147 pairslist1 = list(pairslist)
3134 pairslist1.append((0,1))
3148 pairslist1.append((0,1))
3135 pairslist1.append((3,4))
3149 pairslist1.append((3,4))
@@ -3138,31 +3152,31 class SMDetection(Operation):
3138 listPowerSeries = []
3152 listPowerSeries = []
3139 listVoltageSeries = []
3153 listVoltageSeries = []
3140 #volts has the war data
3154 #volts has the war data
3141
3155
3142 if frequency == 30e6:
3156 if frequency == 30e6:
3143 timeLag = 45*10**-3
3157 timeLag = 45*10**-3
3144 else:
3158 else:
3145 timeLag = 15*10**-3
3159 timeLag = 15*10**-3
3146 lag = numpy.ceil(timeLag/timeInterval)
3160 lag = numpy.ceil(timeLag/timeInterval)
3147
3161
3148 for i in range(len(listMeteors)):
3162 for i in range(len(listMeteors)):
3149
3163
3150 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3164 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3151 meteorAux = numpy.zeros(16)
3165 meteorAux = numpy.zeros(16)
3152
3166
3153 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3167 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3154 mHeight = listMeteors[i][0]
3168 mHeight = listMeteors[i][0]
3155 mStart = listMeteors[i][1]
3169 mStart = listMeteors[i][1]
3156 mPeak = listMeteors[i][2]
3170 mPeak = listMeteors[i][2]
3157 mEnd = listMeteors[i][3]
3171 mEnd = listMeteors[i][3]
3158
3172
3159 #get the volt data between the start and end times of the meteor
3173 #get the volt data between the start and end times of the meteor
3160 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3174 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3161 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3175 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3162
3176
3163 #3.6. Phase Difference estimation
3177 #3.6. Phase Difference estimation
3164 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3178 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3165
3179
3166 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3180 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3167 #meteorVolts0.- all Channels, all Profiles
3181 #meteorVolts0.- all Channels, all Profiles
3168 meteorVolts0 = volts[:,:,mHeight]
3182 meteorVolts0 = volts[:,:,mHeight]
@@ -3170,15 +3184,15 class SMDetection(Operation):
3170 meteorNoise = noise[:,mHeight]
3184 meteorNoise = noise[:,mHeight]
3171 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3185 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3172 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3186 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3173
3187
3174 #Times reestimation
3188 #Times reestimation
3175 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3189 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3176 if mStart1.size > 0:
3190 if mStart1.size > 0:
3177 mStart1 = mStart1[-1] + 1
3191 mStart1 = mStart1[-1] + 1
3178
3192
3179 else:
3193 else:
3180 mStart1 = mPeak
3194 mStart1 = mPeak
3181
3195
3182 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3196 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3183 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3197 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3184 if mEndDecayTime1.size == 0:
3198 if mEndDecayTime1.size == 0:
@@ -3186,7 +3200,7 class SMDetection(Operation):
3186 else:
3200 else:
3187 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3201 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3188 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3202 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3189
3203
3190 #meteorVolts1.- all Channels, from start to end
3204 #meteorVolts1.- all Channels, from start to end
3191 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3205 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3192 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
3206 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
@@ -3195,17 +3209,17 class SMDetection(Operation):
3195 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3209 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3196 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3210 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3197 ##################### END PARAMETERS REESTIMATION #########################
3211 ##################### END PARAMETERS REESTIMATION #########################
3198
3212
3199 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3213 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3200 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3214 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3201 if meteorVolts2.shape[1] > 0:
3215 if meteorVolts2.shape[1] > 0:
3202 #Phase Difference re-estimation
3216 #Phase Difference re-estimation
3203 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3217 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3204 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3218 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3205 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3219 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3206 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3220 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3207 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3221 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3208
3222
3209 #Phase Difference RMS
3223 #Phase Difference RMS
3210 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3224 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3211 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
3225 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
@@ -3220,27 +3234,27 class SMDetection(Operation):
3220 #Vectorize
3234 #Vectorize
3221 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3235 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3222 meteorAux[7:11] = phaseDiffint[0:4]
3236 meteorAux[7:11] = phaseDiffint[0:4]
3223
3237
3224 #Rejection Criterions
3238 #Rejection Criterions
3225 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3239 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3226 meteorAux[-1] = 17
3240 meteorAux[-1] = 17
3227 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3241 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3228 meteorAux[-1] = 1
3242 meteorAux[-1] = 1
3229
3243
3230
3244
3231 else:
3245 else:
3232 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3246 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3233 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3247 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3234 PowerSeries = 0
3248 PowerSeries = 0
3235
3249
3236 listMeteors1.append(meteorAux)
3250 listMeteors1.append(meteorAux)
3237 listPowerSeries.append(PowerSeries)
3251 listPowerSeries.append(PowerSeries)
3238 listVoltageSeries.append(meteorVolts1)
3252 listVoltageSeries.append(meteorVolts1)
3239
3253
3240 return listMeteors1, listPowerSeries, listVoltageSeries
3254 return listMeteors1, listPowerSeries, listVoltageSeries
3241
3255
3242 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3256 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3243
3257
3244 threshError = 10
3258 threshError = 10
3245 #Depending if it is 30 or 50 MHz
3259 #Depending if it is 30 or 50 MHz
3246 if frequency == 30e6:
3260 if frequency == 30e6:
@@ -3248,22 +3262,22 class SMDetection(Operation):
3248 else:
3262 else:
3249 timeLag = 15*10**-3
3263 timeLag = 15*10**-3
3250 lag = numpy.ceil(timeLag/timeInterval)
3264 lag = numpy.ceil(timeLag/timeInterval)
3251
3265
3252 listMeteors1 = []
3266 listMeteors1 = []
3253
3267
3254 for i in range(len(listMeteors)):
3268 for i in range(len(listMeteors)):
3255 meteorPower = listPower[i]
3269 meteorPower = listPower[i]
3256 meteorAux = listMeteors[i]
3270 meteorAux = listMeteors[i]
3257
3271
3258 if meteorAux[-1] == 0:
3272 if meteorAux[-1] == 0:
3259
3273
3260 try:
3274 try:
3261 indmax = meteorPower.argmax()
3275 indmax = meteorPower.argmax()
3262 indlag = indmax + lag
3276 indlag = indmax + lag
3263
3277
3264 y = meteorPower[indlag:]
3278 y = meteorPower[indlag:]
3265 x = numpy.arange(0, y.size)*timeLag
3279 x = numpy.arange(0, y.size)*timeLag
3266
3280
3267 #first guess
3281 #first guess
3268 a = y[0]
3282 a = y[0]
3269 tau = timeLag
3283 tau = timeLag
@@ -3272,26 +3286,26 class SMDetection(Operation):
3272 y1 = self.__exponential_function(x, *popt)
3286 y1 = self.__exponential_function(x, *popt)
3273 #error estimation
3287 #error estimation
3274 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3288 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3275
3289
3276 decayTime = popt[1]
3290 decayTime = popt[1]
3277 riseTime = indmax*timeInterval
3291 riseTime = indmax*timeInterval
3278 meteorAux[11:13] = [decayTime, error]
3292 meteorAux[11:13] = [decayTime, error]
3279
3293
3280 #Table items 7, 8 and 11
3294 #Table items 7, 8 and 11
3281 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3295 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3282 meteorAux[-1] = 7
3296 meteorAux[-1] = 7
3283 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3297 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3284 meteorAux[-1] = 8
3298 meteorAux[-1] = 8
3285 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3299 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3286 meteorAux[-1] = 11
3300 meteorAux[-1] = 11
3287
3301
3288
3302
3289 except:
3303 except:
3290 meteorAux[-1] = 11
3304 meteorAux[-1] = 11
3291
3305
3292
3306
3293 listMeteors1.append(meteorAux)
3307 listMeteors1.append(meteorAux)
3294
3308
3295 return listMeteors1
3309 return listMeteors1
3296
3310
3297 #Exponential Function
3311 #Exponential Function
@@ -3299,9 +3313,9 class SMDetection(Operation):
3299 def __exponential_function(self, x, a, tau):
3313 def __exponential_function(self, x, a, tau):
3300 y = a*numpy.exp(-x/tau)
3314 y = a*numpy.exp(-x/tau)
3301 return y
3315 return y
3302
3316
3303 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3317 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3304
3318
3305 pairslist1 = list(pairslist)
3319 pairslist1 = list(pairslist)
3306 pairslist1.append((0,1))
3320 pairslist1.append((0,1))
3307 pairslist1.append((3,4))
3321 pairslist1.append((3,4))
@@ -3311,33 +3325,33 class SMDetection(Operation):
3311 c = 3e8
3325 c = 3e8
3312 lag = numpy.ceil(timeLag/timeInterval)
3326 lag = numpy.ceil(timeLag/timeInterval)
3313 freq = 30e6
3327 freq = 30e6
3314
3328
3315 listMeteors1 = []
3329 listMeteors1 = []
3316
3330
3317 for i in range(len(listMeteors)):
3331 for i in range(len(listMeteors)):
3318 meteorAux = listMeteors[i]
3332 meteorAux = listMeteors[i]
3319 if meteorAux[-1] == 0:
3333 if meteorAux[-1] == 0:
3320 mStart = listMeteors[i][1]
3334 mStart = listMeteors[i][1]
3321 mPeak = listMeteors[i][2]
3335 mPeak = listMeteors[i][2]
3322 mLag = mPeak - mStart + lag
3336 mLag = mPeak - mStart + lag
3323
3337
3324 #get the volt data between the start and end times of the meteor
3338 #get the volt data between the start and end times of the meteor
3325 meteorVolts = listVolts[i]
3339 meteorVolts = listVolts[i]
3326 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3340 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3327
3341
3328 #Get CCF
3342 #Get CCF
3329 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3343 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3330
3344
3331 #Method 2
3345 #Method 2
3332 slopes = numpy.zeros(numPairs)
3346 slopes = numpy.zeros(numPairs)
3333 time = numpy.array([-2,-1,1,2])*timeInterval
3347 time = numpy.array([-2,-1,1,2])*timeInterval
3334 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3348 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3335
3349
3336 #Correct phases
3350 #Correct phases
3337 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3351 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3338 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3352 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3339
3353
3340 if indDer[0].shape[0] > 0:
3354 if indDer[0].shape[0] > 0:
3341 for i in range(indDer[0].shape[0]):
3355 for i in range(indDer[0].shape[0]):
3342 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3356 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3343 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
3357 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
@@ -3346,51 +3360,51 class SMDetection(Operation):
3346 for j in range(numPairs):
3360 for j in range(numPairs):
3347 fit = stats.linregress(time, angAllCCF[j,:])
3361 fit = stats.linregress(time, angAllCCF[j,:])
3348 slopes[j] = fit[0]
3362 slopes[j] = fit[0]
3349
3363
3350 #Remove Outlier
3364 #Remove Outlier
3351 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3365 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3352 # slopes = numpy.delete(slopes,indOut)
3366 # slopes = numpy.delete(slopes,indOut)
3353 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3367 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3354 # slopes = numpy.delete(slopes,indOut)
3368 # slopes = numpy.delete(slopes,indOut)
3355
3369
3356 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3370 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3357 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3371 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3358 meteorAux[-2] = radialError
3372 meteorAux[-2] = radialError
3359 meteorAux[-3] = radialVelocity
3373 meteorAux[-3] = radialVelocity
3360
3374
3361 #Setting Error
3375 #Setting Error
3362 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3376 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3363 if numpy.abs(radialVelocity) > 200:
3377 if numpy.abs(radialVelocity) > 200:
3364 meteorAux[-1] = 15
3378 meteorAux[-1] = 15
3365 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3379 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3366 elif radialError > radialStdThresh:
3380 elif radialError > radialStdThresh:
3367 meteorAux[-1] = 12
3381 meteorAux[-1] = 12
3368
3382
3369 listMeteors1.append(meteorAux)
3383 listMeteors1.append(meteorAux)
3370 return listMeteors1
3384 return listMeteors1
3371
3385
3372 def __setNewArrays(self, listMeteors, date, heiRang):
3386 def __setNewArrays(self, listMeteors, date, heiRang):
3373
3387
3374 #New arrays
3388 #New arrays
3375 arrayMeteors = numpy.array(listMeteors)
3389 arrayMeteors = numpy.array(listMeteors)
3376 arrayParameters = numpy.zeros((len(listMeteors), 13))
3390 arrayParameters = numpy.zeros((len(listMeteors), 13))
3377
3391
3378 #Date inclusion
3392 #Date inclusion
3379 # date = re.findall(r'\((.*?)\)', date)
3393 # date = re.findall(r'\((.*?)\)', date)
3380 # date = date[0].split(',')
3394 # date = date[0].split(',')
3381 # date = map(int, date)
3395 # date = map(int, date)
3382 #
3396 #
3383 # if len(date)<6:
3397 # if len(date)<6:
3384 # date.append(0)
3398 # date.append(0)
3385 #
3399 #
3386 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3400 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3387 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3401 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3388 arrayDate = numpy.tile(date, (len(listMeteors)))
3402 arrayDate = numpy.tile(date, (len(listMeteors)))
3389
3403
3390 #Meteor array
3404 #Meteor array
3391 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3405 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3392 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3406 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3393
3407
3394 #Parameters Array
3408 #Parameters Array
3395 arrayParameters[:,0] = arrayDate #Date
3409 arrayParameters[:,0] = arrayDate #Date
3396 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
3410 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
@@ -3398,13 +3412,13 class SMDetection(Operation):
3398 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3412 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3399 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3413 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3400
3414
3401
3415
3402 return arrayParameters
3416 return arrayParameters
3403
3417
3404 class CorrectSMPhases(Operation):
3418 class CorrectSMPhases(Operation):
3405
3419
3406 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3420 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3407
3421
3408 arrayParameters = dataOut.data_param
3422 arrayParameters = dataOut.data_param
3409 pairsList = []
3423 pairsList = []
3410 pairx = (0,1)
3424 pairx = (0,1)
@@ -3412,49 +3426,49 class CorrectSMPhases(Operation):
3412 pairsList.append(pairx)
3426 pairsList.append(pairx)
3413 pairsList.append(pairy)
3427 pairsList.append(pairy)
3414 jph = numpy.zeros(4)
3428 jph = numpy.zeros(4)
3415
3429
3416 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3430 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3417 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3431 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3418 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3432 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3419
3433
3420 meteorOps = SMOperations()
3434 meteorOps = SMOperations()
3421 if channelPositions is None:
3435 if channelPositions is None:
3422 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3436 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3423 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3437 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3424
3438
3425 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3439 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3426 h = (hmin,hmax)
3440 h = (hmin,hmax)
3427
3441
3428 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3442 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3429
3443
3430 dataOut.data_param = arrayParameters
3444 dataOut.data_param = arrayParameters
3431 return
3445 return
3432
3446
3433 class SMPhaseCalibration(Operation):
3447 class SMPhaseCalibration(Operation):
3434
3448
3435 __buffer = None
3449 __buffer = None
3436
3450
3437 __initime = None
3451 __initime = None
3438
3452
3439 __dataReady = False
3453 __dataReady = False
3440
3454
3441 __isConfig = False
3455 __isConfig = False
3442
3456
3443 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3457 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3444
3458
3445 dataTime = currentTime + paramInterval
3459 dataTime = currentTime + paramInterval
3446 deltaTime = dataTime - initTime
3460 deltaTime = dataTime - initTime
3447
3461
3448 if deltaTime >= outputInterval or deltaTime < 0:
3462 if deltaTime >= outputInterval or deltaTime < 0:
3449 return True
3463 return True
3450
3464
3451 return False
3465 return False
3452
3466
3453 def __getGammas(self, pairs, d, phases):
3467 def __getGammas(self, pairs, d, phases):
3454 gammas = numpy.zeros(2)
3468 gammas = numpy.zeros(2)
3455
3469
3456 for i in range(len(pairs)):
3470 for i in range(len(pairs)):
3457
3471
3458 pairi = pairs[i]
3472 pairi = pairs[i]
3459
3473
3460 phip3 = phases[:,pairi[0]]
3474 phip3 = phases[:,pairi[0]]
@@ -3468,7 +3482,7 class SMPhaseCalibration(Operation):
3468 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3482 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3469 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3483 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3470 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3484 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3471
3485
3472 #Revised distribution
3486 #Revised distribution
3473 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3487 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3474
3488
@@ -3477,39 +3491,39 class SMPhaseCalibration(Operation):
3477 rmin = -0.5*numpy.pi
3491 rmin = -0.5*numpy.pi
3478 rmax = 0.5*numpy.pi
3492 rmax = 0.5*numpy.pi
3479 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3493 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3480
3494
3481 meteorsY = phaseHisto[0]
3495 meteorsY = phaseHisto[0]
3482 phasesX = phaseHisto[1][:-1]
3496 phasesX = phaseHisto[1][:-1]
3483 width = phasesX[1] - phasesX[0]
3497 width = phasesX[1] - phasesX[0]
3484 phasesX += width/2
3498 phasesX += width/2
3485
3499
3486 #Gaussian aproximation
3500 #Gaussian aproximation
3487 bpeak = meteorsY.argmax()
3501 bpeak = meteorsY.argmax()
3488 peak = meteorsY.max()
3502 peak = meteorsY.max()
3489 jmin = bpeak - 5
3503 jmin = bpeak - 5
3490 jmax = bpeak + 5 + 1
3504 jmax = bpeak + 5 + 1
3491
3505
3492 if jmin<0:
3506 if jmin<0:
3493 jmin = 0
3507 jmin = 0
3494 jmax = 6
3508 jmax = 6
3495 elif jmax > meteorsY.size:
3509 elif jmax > meteorsY.size:
3496 jmin = meteorsY.size - 6
3510 jmin = meteorsY.size - 6
3497 jmax = meteorsY.size
3511 jmax = meteorsY.size
3498
3512
3499 x0 = numpy.array([peak,bpeak,50])
3513 x0 = numpy.array([peak,bpeak,50])
3500 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3514 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3501
3515
3502 #Gammas
3516 #Gammas
3503 gammas[i] = coeff[0][1]
3517 gammas[i] = coeff[0][1]
3504
3518
3505 return gammas
3519 return gammas
3506
3520
3507 def __residualFunction(self, coeffs, y, t):
3521 def __residualFunction(self, coeffs, y, t):
3508
3522
3509 return y - self.__gauss_function(t, coeffs)
3523 return y - self.__gauss_function(t, coeffs)
3510
3524
3511 def __gauss_function(self, t, coeffs):
3525 def __gauss_function(self, t, coeffs):
3512
3526
3513 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3527 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3514
3528
3515 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
3529 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
@@ -3530,16 +3544,16 class SMPhaseCalibration(Operation):
3530 max_xangle = range_angle[iz]/2 + center_xangle
3544 max_xangle = range_angle[iz]/2 + center_xangle
3531 min_yangle = -range_angle[iz]/2 + center_yangle
3545 min_yangle = -range_angle[iz]/2 + center_yangle
3532 max_yangle = range_angle[iz]/2 + center_yangle
3546 max_yangle = range_angle[iz]/2 + center_yangle
3533
3547
3534 inc_x = (max_xangle-min_xangle)/nstepsx
3548 inc_x = (max_xangle-min_xangle)/nstepsx
3535 inc_y = (max_yangle-min_yangle)/nstepsy
3549 inc_y = (max_yangle-min_yangle)/nstepsy
3536
3550
3537 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3551 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3538 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3552 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3539 penalty = numpy.zeros((nstepsx,nstepsy))
3553 penalty = numpy.zeros((nstepsx,nstepsy))
3540 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3554 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3541 jph = numpy.zeros(nchan)
3555 jph = numpy.zeros(nchan)
3542
3556
3543 # Iterations looking for the offset
3557 # Iterations looking for the offset
3544 for iy in range(int(nstepsy)):
3558 for iy in range(int(nstepsy)):
3545 for ix in range(int(nstepsx)):
3559 for ix in range(int(nstepsx)):
@@ -3547,46 +3561,46 class SMPhaseCalibration(Operation):
3547 d2 = d[pairsList[1][1]]
3561 d2 = d[pairsList[1][1]]
3548 d5 = d[pairsList[0][0]]
3562 d5 = d[pairsList[0][0]]
3549 d4 = d[pairsList[0][1]]
3563 d4 = d[pairsList[0][1]]
3550
3564
3551 alp2 = alpha_y[iy] #gamma 1
3565 alp2 = alpha_y[iy] #gamma 1
3552 alp4 = alpha_x[ix] #gamma 0
3566 alp4 = alpha_x[ix] #gamma 0
3553
3567
3554 alp3 = -alp2*d3/d2 - gammas[1]
3568 alp3 = -alp2*d3/d2 - gammas[1]
3555 alp5 = -alp4*d5/d4 - gammas[0]
3569 alp5 = -alp4*d5/d4 - gammas[0]
3556 # jph[pairy[1]] = alpha_y[iy]
3570 # jph[pairy[1]] = alpha_y[iy]
3557 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3571 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3558
3572
3559 # jph[pairx[1]] = alpha_x[ix]
3573 # jph[pairx[1]] = alpha_x[ix]
3560 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3574 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3561 jph[pairsList[0][1]] = alp4
3575 jph[pairsList[0][1]] = alp4
3562 jph[pairsList[0][0]] = alp5
3576 jph[pairsList[0][0]] = alp5
3563 jph[pairsList[1][0]] = alp3
3577 jph[pairsList[1][0]] = alp3
3564 jph[pairsList[1][1]] = alp2
3578 jph[pairsList[1][1]] = alp2
3565 jph_array[:,ix,iy] = jph
3579 jph_array[:,ix,iy] = jph
3566 # d = [2.0,2.5,2.5,2.0]
3580 # d = [2.0,2.5,2.5,2.0]
3567 #falta chequear si va a leer bien los meteoros
3581 #falta chequear si va a leer bien los meteoros
3568 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3582 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3569 error = meteorsArray1[:,-1]
3583 error = meteorsArray1[:,-1]
3570 ind1 = numpy.where(error==0)[0]
3584 ind1 = numpy.where(error==0)[0]
3571 penalty[ix,iy] = ind1.size
3585 penalty[ix,iy] = ind1.size
3572
3586
3573 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3587 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3574 phOffset = jph_array[:,i,j]
3588 phOffset = jph_array[:,i,j]
3575
3589
3576 center_xangle = phOffset[pairx[1]]
3590 center_xangle = phOffset[pairx[1]]
3577 center_yangle = phOffset[pairy[1]]
3591 center_yangle = phOffset[pairy[1]]
3578
3592
3579 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3593 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3580 phOffset = phOffset*180/numpy.pi
3594 phOffset = phOffset*180/numpy.pi
3581 return phOffset
3595 return phOffset
3582
3596
3583
3597
3584 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3598 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3585
3599
3586 dataOut.flagNoData = True
3600 dataOut.flagNoData = True
3587 self.__dataReady = False
3601 self.__dataReady = False
3588 dataOut.outputInterval = nHours*3600
3602 dataOut.outputInterval = nHours*3600
3589
3603
3590 if self.__isConfig == False:
3604 if self.__isConfig == False:
3591 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3605 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3592 #Get Initial LTC time
3606 #Get Initial LTC time
@@ -3594,19 +3608,19 class SMPhaseCalibration(Operation):
3594 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3608 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3595
3609
3596 self.__isConfig = True
3610 self.__isConfig = True
3597
3611
3598 if self.__buffer is None:
3612 if self.__buffer is None:
3599 self.__buffer = dataOut.data_param.copy()
3613 self.__buffer = dataOut.data_param.copy()
3600
3614
3601 else:
3615 else:
3602 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3616 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3603
3617
3604 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3618 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3605
3619
3606 if self.__dataReady:
3620 if self.__dataReady:
3607 dataOut.utctimeInit = self.__initime
3621 dataOut.utctimeInit = self.__initime
3608 self.__initime += dataOut.outputInterval #to erase time offset
3622 self.__initime += dataOut.outputInterval #to erase time offset
3609
3623
3610 freq = dataOut.frequency
3624 freq = dataOut.frequency
3611 c = dataOut.C #m/s
3625 c = dataOut.C #m/s
3612 lamb = c/freq
3626 lamb = c/freq
@@ -3628,13 +3642,13 class SMPhaseCalibration(Operation):
3628 pairs.append((1,0))
3642 pairs.append((1,0))
3629 else:
3643 else:
3630 pairs.append((0,1))
3644 pairs.append((0,1))
3631
3645
3632 if distances[3] > distances[2]:
3646 if distances[3] > distances[2]:
3633 pairs.append((3,2))
3647 pairs.append((3,2))
3634 else:
3648 else:
3635 pairs.append((2,3))
3649 pairs.append((2,3))
3636 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3650 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3637
3651
3638 meteorsArray = self.__buffer
3652 meteorsArray = self.__buffer
3639 error = meteorsArray[:,-1]
3653 error = meteorsArray[:,-1]
3640 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
3654 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
@@ -3642,7 +3656,7 class SMPhaseCalibration(Operation):
3642 meteorsArray = meteorsArray[ind1,:]
3656 meteorsArray = meteorsArray[ind1,:]
3643 meteorsArray[:,-1] = 0
3657 meteorsArray[:,-1] = 0
3644 phases = meteorsArray[:,8:12]
3658 phases = meteorsArray[:,8:12]
3645
3659
3646 #Calculate Gammas
3660 #Calculate Gammas
3647 gammas = self.__getGammas(pairs, distances, phases)
3661 gammas = self.__getGammas(pairs, distances, phases)
3648 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
3662 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
@@ -3652,22 +3666,22 class SMPhaseCalibration(Operation):
3652 dataOut.data_output = -phasesOff
3666 dataOut.data_output = -phasesOff
3653 dataOut.flagNoData = False
3667 dataOut.flagNoData = False
3654 self.__buffer = None
3668 self.__buffer = None
3655
3669
3656
3670
3657 return
3671 return
3658
3672
3659 class SMOperations():
3673 class SMOperations():
3660
3674
3661 def __init__(self):
3675 def __init__(self):
3662
3676
3663 return
3677 return
3664
3678
3665 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3679 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3666
3680
3667 arrayParameters = arrayParameters0.copy()
3681 arrayParameters = arrayParameters0.copy()
3668 hmin = h[0]
3682 hmin = h[0]
3669 hmax = h[1]
3683 hmax = h[1]
3670
3684
3671 #Calculate AOA (Error N 3, 4)
3685 #Calculate AOA (Error N 3, 4)
3672 #JONES ET AL. 1998
3686 #JONES ET AL. 1998
3673 AOAthresh = numpy.pi/8
3687 AOAthresh = numpy.pi/8
@@ -3675,72 +3689,72 class SMOperations():
3675 phases = -arrayParameters[:,8:12] + jph
3689 phases = -arrayParameters[:,8:12] + jph
3676 # phases = numpy.unwrap(phases)
3690 # phases = numpy.unwrap(phases)
3677 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3691 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3678
3692
3679 #Calculate Heights (Error N 13 and 14)
3693 #Calculate Heights (Error N 13 and 14)
3680 error = arrayParameters[:,-1]
3694 error = arrayParameters[:,-1]
3681 Ranges = arrayParameters[:,1]
3695 Ranges = arrayParameters[:,1]
3682 zenith = arrayParameters[:,4]
3696 zenith = arrayParameters[:,4]
3683 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3697 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3684
3698
3685 #----------------------- Get Final data ------------------------------------
3699 #----------------------- Get Final data ------------------------------------
3686 # error = arrayParameters[:,-1]
3700 # error = arrayParameters[:,-1]
3687 # ind1 = numpy.where(error==0)[0]
3701 # ind1 = numpy.where(error==0)[0]
3688 # arrayParameters = arrayParameters[ind1,:]
3702 # arrayParameters = arrayParameters[ind1,:]
3689
3703
3690 return arrayParameters
3704 return arrayParameters
3691
3705
3692 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3706 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3693
3707
3694 arrayAOA = numpy.zeros((phases.shape[0],3))
3708 arrayAOA = numpy.zeros((phases.shape[0],3))
3695 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3709 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3696
3710
3697 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3711 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3698 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3712 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3699 arrayAOA[:,2] = cosDirError
3713 arrayAOA[:,2] = cosDirError
3700
3714
3701 azimuthAngle = arrayAOA[:,0]
3715 azimuthAngle = arrayAOA[:,0]
3702 zenithAngle = arrayAOA[:,1]
3716 zenithAngle = arrayAOA[:,1]
3703
3717
3704 #Setting Error
3718 #Setting Error
3705 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3719 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3706 error[indError] = 0
3720 error[indError] = 0
3707 #Number 3: AOA not fesible
3721 #Number 3: AOA not fesible
3708 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3722 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3709 error[indInvalid] = 3
3723 error[indInvalid] = 3
3710 #Number 4: Large difference in AOAs obtained from different antenna baselines
3724 #Number 4: Large difference in AOAs obtained from different antenna baselines
3711 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3725 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3712 error[indInvalid] = 4
3726 error[indInvalid] = 4
3713 return arrayAOA, error
3727 return arrayAOA, error
3714
3728
3715 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3729 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3716
3730
3717 #Initializing some variables
3731 #Initializing some variables
3718 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3732 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3719 ang_aux = ang_aux.reshape(1,ang_aux.size)
3733 ang_aux = ang_aux.reshape(1,ang_aux.size)
3720
3734
3721 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3735 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3722 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3736 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3723
3737
3724
3738
3725 for i in range(2):
3739 for i in range(2):
3726 ph0 = arrayPhase[:,pairsList[i][0]]
3740 ph0 = arrayPhase[:,pairsList[i][0]]
3727 ph1 = arrayPhase[:,pairsList[i][1]]
3741 ph1 = arrayPhase[:,pairsList[i][1]]
3728 d0 = distances[pairsList[i][0]]
3742 d0 = distances[pairsList[i][0]]
3729 d1 = distances[pairsList[i][1]]
3743 d1 = distances[pairsList[i][1]]
3730
3744
3731 ph0_aux = ph0 + ph1
3745 ph0_aux = ph0 + ph1
3732 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3746 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3733 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3747 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3734 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3748 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3735 #First Estimation
3749 #First Estimation
3736 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3750 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3737
3751
3738 #Most-Accurate Second Estimation
3752 #Most-Accurate Second Estimation
3739 phi1_aux = ph0 - ph1
3753 phi1_aux = ph0 - ph1
3740 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3754 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3741 #Direction Cosine 1
3755 #Direction Cosine 1
3742 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3756 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3743
3757
3744 #Searching the correct Direction Cosine
3758 #Searching the correct Direction Cosine
3745 cosdir0_aux = cosdir0[:,i]
3759 cosdir0_aux = cosdir0[:,i]
3746 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3760 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
@@ -3749,59 +3763,59 class SMOperations():
3749 indcos = cosDiff.argmin(axis = 1)
3763 indcos = cosDiff.argmin(axis = 1)
3750 #Saving Value obtained
3764 #Saving Value obtained
3751 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3765 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3752
3766
3753 return cosdir0, cosdir
3767 return cosdir0, cosdir
3754
3768
3755 def __calculateAOA(self, cosdir, azimuth):
3769 def __calculateAOA(self, cosdir, azimuth):
3756 cosdirX = cosdir[:,0]
3770 cosdirX = cosdir[:,0]
3757 cosdirY = cosdir[:,1]
3771 cosdirY = cosdir[:,1]
3758
3772
3759 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3773 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3760 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3774 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3761 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3775 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3762
3776
3763 return angles
3777 return angles
3764
3778
3765 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3779 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3766
3780
3767 Ramb = 375 #Ramb = c/(2*PRF)
3781 Ramb = 375 #Ramb = c/(2*PRF)
3768 Re = 6371 #Earth Radius
3782 Re = 6371 #Earth Radius
3769 heights = numpy.zeros(Ranges.shape)
3783 heights = numpy.zeros(Ranges.shape)
3770
3784
3771 R_aux = numpy.array([0,1,2])*Ramb
3785 R_aux = numpy.array([0,1,2])*Ramb
3772 R_aux = R_aux.reshape(1,R_aux.size)
3786 R_aux = R_aux.reshape(1,R_aux.size)
3773
3787
3774 Ranges = Ranges.reshape(Ranges.size,1)
3788 Ranges = Ranges.reshape(Ranges.size,1)
3775
3789
3776 Ri = Ranges + R_aux
3790 Ri = Ranges + R_aux
3777 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3791 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3778
3792
3779 #Check if there is a height between 70 and 110 km
3793 #Check if there is a height between 70 and 110 km
3780 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3794 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3781 ind_h = numpy.where(h_bool == 1)[0]
3795 ind_h = numpy.where(h_bool == 1)[0]
3782
3796
3783 hCorr = hi[ind_h, :]
3797 hCorr = hi[ind_h, :]
3784 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3798 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3785
3799
3786 hCorr = hi[ind_hCorr][:len(ind_h)]
3800 hCorr = hi[ind_hCorr][:len(ind_h)]
3787 heights[ind_h] = hCorr
3801 heights[ind_h] = hCorr
3788
3802
3789 #Setting Error
3803 #Setting Error
3790 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3804 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3791 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3805 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3792 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3806 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3793 error[indError] = 0
3807 error[indError] = 0
3794 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3808 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3795 error[indInvalid2] = 14
3809 error[indInvalid2] = 14
3796 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3810 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3797 error[indInvalid1] = 13
3811 error[indInvalid1] = 13
3798
3812
3799 return heights, error
3813 return heights, error
3800
3814
3801 def getPhasePairs(self, channelPositions):
3815 def getPhasePairs(self, channelPositions):
3802 chanPos = numpy.array(channelPositions)
3816 chanPos = numpy.array(channelPositions)
3803 listOper = list(itertools.combinations(list(range(5)),2))
3817 listOper = list(itertools.combinations(list(range(5)),2))
3804
3818
3805 distances = numpy.zeros(4)
3819 distances = numpy.zeros(4)
3806 axisX = []
3820 axisX = []
3807 axisY = []
3821 axisY = []
@@ -3809,15 +3823,15 class SMOperations():
3809 distY = numpy.zeros(3)
3823 distY = numpy.zeros(3)
3810 ix = 0
3824 ix = 0
3811 iy = 0
3825 iy = 0
3812
3826
3813 pairX = numpy.zeros((2,2))
3827 pairX = numpy.zeros((2,2))
3814 pairY = numpy.zeros((2,2))
3828 pairY = numpy.zeros((2,2))
3815
3829
3816 for i in range(len(listOper)):
3830 for i in range(len(listOper)):
3817 pairi = listOper[i]
3831 pairi = listOper[i]
3818
3832
3819 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3833 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3820
3834
3821 if posDif[0] == 0:
3835 if posDif[0] == 0:
3822 axisY.append(pairi)
3836 axisY.append(pairi)
3823 distY[iy] = posDif[1]
3837 distY[iy] = posDif[1]
@@ -3826,7 +3840,7 class SMOperations():
3826 axisX.append(pairi)
3840 axisX.append(pairi)
3827 distX[ix] = posDif[0]
3841 distX[ix] = posDif[0]
3828 ix += 1
3842 ix += 1
3829
3843
3830 for i in range(2):
3844 for i in range(2):
3831 if i==0:
3845 if i==0:
3832 dist0 = distX
3846 dist0 = distX
@@ -3834,7 +3848,7 class SMOperations():
3834 else:
3848 else:
3835 dist0 = distY
3849 dist0 = distY
3836 axis0 = axisY
3850 axis0 = axisY
3837
3851
3838 side = numpy.argsort(dist0)[:-1]
3852 side = numpy.argsort(dist0)[:-1]
3839 axis0 = numpy.array(axis0)[side,:]
3853 axis0 = numpy.array(axis0)[side,:]
3840 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
3854 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
@@ -3842,7 +3856,7 class SMOperations():
3842 side = axis1[axis1 != chanC]
3856 side = axis1[axis1 != chanC]
3843 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3857 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3844 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3858 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3845 if diff1<0:
3859 if diff1<0:
3846 chan2 = side[0]
3860 chan2 = side[0]
3847 d2 = numpy.abs(diff1)
3861 d2 = numpy.abs(diff1)
3848 chan1 = side[1]
3862 chan1 = side[1]
@@ -3852,7 +3866,7 class SMOperations():
3852 d2 = numpy.abs(diff2)
3866 d2 = numpy.abs(diff2)
3853 chan1 = side[0]
3867 chan1 = side[0]
3854 d1 = numpy.abs(diff1)
3868 d1 = numpy.abs(diff1)
3855
3869
3856 if i==0:
3870 if i==0:
3857 chanCX = chanC
3871 chanCX = chanC
3858 chan1X = chan1
3872 chan1X = chan1
@@ -3864,10 +3878,10 class SMOperations():
3864 chan2Y = chan2
3878 chan2Y = chan2
3865 distances[2:4] = numpy.array([d1,d2])
3879 distances[2:4] = numpy.array([d1,d2])
3866 # axisXsides = numpy.reshape(axisX[ix,:],4)
3880 # axisXsides = numpy.reshape(axisX[ix,:],4)
3867 #
3881 #
3868 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3882 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3869 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3883 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3870 #
3884 #
3871 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3885 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3872 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3886 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3873 # channel25X = int(pairX[0,ind25X])
3887 # channel25X = int(pairX[0,ind25X])
@@ -3876,59 +3890,59 class SMOperations():
3876 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3890 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3877 # channel25Y = int(pairY[0,ind25Y])
3891 # channel25Y = int(pairY[0,ind25Y])
3878 # channel20Y = int(pairY[1,ind20Y])
3892 # channel20Y = int(pairY[1,ind20Y])
3879
3893
3880 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3894 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3881 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3895 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3882
3896
3883 return pairslist, distances
3897 return pairslist, distances
3884 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3898 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3885 #
3899 #
3886 # arrayAOA = numpy.zeros((phases.shape[0],3))
3900 # arrayAOA = numpy.zeros((phases.shape[0],3))
3887 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3901 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3888 #
3902 #
3889 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3903 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3890 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3904 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3891 # arrayAOA[:,2] = cosDirError
3905 # arrayAOA[:,2] = cosDirError
3892 #
3906 #
3893 # azimuthAngle = arrayAOA[:,0]
3907 # azimuthAngle = arrayAOA[:,0]
3894 # zenithAngle = arrayAOA[:,1]
3908 # zenithAngle = arrayAOA[:,1]
3895 #
3909 #
3896 # #Setting Error
3910 # #Setting Error
3897 # #Number 3: AOA not fesible
3911 # #Number 3: AOA not fesible
3898 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3912 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3899 # error[indInvalid] = 3
3913 # error[indInvalid] = 3
3900 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3914 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3901 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3915 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3902 # error[indInvalid] = 4
3916 # error[indInvalid] = 4
3903 # return arrayAOA, error
3917 # return arrayAOA, error
3904 #
3918 #
3905 # def __getDirectionCosines(self, arrayPhase, pairsList):
3919 # def __getDirectionCosines(self, arrayPhase, pairsList):
3906 #
3920 #
3907 # #Initializing some variables
3921 # #Initializing some variables
3908 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3922 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3909 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3923 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3910 #
3924 #
3911 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3925 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3912 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3926 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3913 #
3927 #
3914 #
3928 #
3915 # for i in range(2):
3929 # for i in range(2):
3916 # #First Estimation
3930 # #First Estimation
3917 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3931 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3918 # #Dealias
3932 # #Dealias
3919 # indcsi = numpy.where(phi0_aux > numpy.pi)
3933 # indcsi = numpy.where(phi0_aux > numpy.pi)
3920 # phi0_aux[indcsi] -= 2*numpy.pi
3934 # phi0_aux[indcsi] -= 2*numpy.pi
3921 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3935 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3922 # phi0_aux[indcsi] += 2*numpy.pi
3936 # phi0_aux[indcsi] += 2*numpy.pi
3923 # #Direction Cosine 0
3937 # #Direction Cosine 0
3924 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3938 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3925 #
3939 #
3926 # #Most-Accurate Second Estimation
3940 # #Most-Accurate Second Estimation
3927 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3941 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3928 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3942 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3929 # #Direction Cosine 1
3943 # #Direction Cosine 1
3930 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3944 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3931 #
3945 #
3932 # #Searching the correct Direction Cosine
3946 # #Searching the correct Direction Cosine
3933 # cosdir0_aux = cosdir0[:,i]
3947 # cosdir0_aux = cosdir0[:,i]
3934 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3948 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
@@ -3937,51 +3951,50 class SMOperations():
3937 # indcos = cosDiff.argmin(axis = 1)
3951 # indcos = cosDiff.argmin(axis = 1)
3938 # #Saving Value obtained
3952 # #Saving Value obtained
3939 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3953 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3940 #
3954 #
3941 # return cosdir0, cosdir
3955 # return cosdir0, cosdir
3942 #
3956 #
3943 # def __calculateAOA(self, cosdir, azimuth):
3957 # def __calculateAOA(self, cosdir, azimuth):
3944 # cosdirX = cosdir[:,0]
3958 # cosdirX = cosdir[:,0]
3945 # cosdirY = cosdir[:,1]
3959 # cosdirY = cosdir[:,1]
3946 #
3960 #
3947 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3961 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3948 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3962 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3949 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3963 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3950 #
3964 #
3951 # return angles
3965 # return angles
3952 #
3966 #
3953 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3967 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3954 #
3968 #
3955 # Ramb = 375 #Ramb = c/(2*PRF)
3969 # Ramb = 375 #Ramb = c/(2*PRF)
3956 # Re = 6371 #Earth Radius
3970 # Re = 6371 #Earth Radius
3957 # heights = numpy.zeros(Ranges.shape)
3971 # heights = numpy.zeros(Ranges.shape)
3958 #
3972 #
3959 # R_aux = numpy.array([0,1,2])*Ramb
3973 # R_aux = numpy.array([0,1,2])*Ramb
3960 # R_aux = R_aux.reshape(1,R_aux.size)
3974 # R_aux = R_aux.reshape(1,R_aux.size)
3961 #
3975 #
3962 # Ranges = Ranges.reshape(Ranges.size,1)
3976 # Ranges = Ranges.reshape(Ranges.size,1)
3963 #
3977 #
3964 # Ri = Ranges + R_aux
3978 # Ri = Ranges + R_aux
3965 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3979 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3966 #
3980 #
3967 # #Check if there is a height between 70 and 110 km
3981 # #Check if there is a height between 70 and 110 km
3968 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3982 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3969 # ind_h = numpy.where(h_bool == 1)[0]
3983 # ind_h = numpy.where(h_bool == 1)[0]
3970 #
3984 #
3971 # hCorr = hi[ind_h, :]
3985 # hCorr = hi[ind_h, :]
3972 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3986 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3973 #
3987 #
3974 # hCorr = hi[ind_hCorr]
3988 # hCorr = hi[ind_hCorr]
3975 # heights[ind_h] = hCorr
3989 # heights[ind_h] = hCorr
3976 #
3990 #
3977 # #Setting Error
3991 # #Setting Error
3978 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3992 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3979 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3993 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3980 #
3994 #
3981 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3995 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3982 # error[indInvalid2] = 14
3996 # error[indInvalid2] = 14
3983 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3997 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3984 # error[indInvalid1] = 13
3998 # error[indInvalid1] = 13
3985 #
3999 #
3986 # return heights, error
4000 # return heights, error
3987 No newline at end of file
@@ -2,7 +2,7 import sys
2 import numpy,math
2 import numpy,math
3 from scipy import interpolate
3 from scipy import interpolate
4 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
4 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
5 from schainpy.model.data.jrodata import Voltage
5 from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon
6 from schainpy.utils import log
6 from schainpy.utils import log
7 from time import time
7 from time import time
8
8
@@ -1355,9 +1355,6 class PulsePairVoltage(Operation):
1355 n,
1355 n,
1356 dataOut.nHeights),
1356 dataOut.nHeights),
1357 dtype='complex')
1357 dtype='complex')
1358 #self.noise = numpy.zeros([self.__nch,self.__nHeis])
1359 #for i in range(self.__nch):
1360 # self.noise[i]=dataOut.getNoise(channel=i)
1361
1358
1362 def putData(self,data):
1359 def putData(self,data):
1363 '''
1360 '''
@@ -1372,101 +1369,127 class PulsePairVoltage(Operation):
1372 Return the PULSEPAIR and the profiles used in the operation
1369 Return the PULSEPAIR and the profiles used in the operation
1373 Affected : self.__profileIndex
1370 Affected : self.__profileIndex
1374 '''
1371 '''
1372 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1375 if self.removeDC==True:
1373 if self.removeDC==True:
1376 mean = numpy.mean(self.__buffer,1)
1374 mean = numpy.mean(self.__buffer,1)
1377 tmp = mean.reshape(self.__nch,1,self.__nHeis)
1375 tmp = mean.reshape(self.__nch,1,self.__nHeis)
1378 dc= numpy.tile(tmp,[1,self.__nProf,1])
1376 dc= numpy.tile(tmp,[1,self.__nProf,1])
1379 self.__buffer = self.__buffer - dc
1377 self.__buffer = self.__buffer - dc
1378 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Calculo de Potencia Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1379 pair0 = self.__buffer*numpy.conj(self.__buffer)
1380 pair0 = pair0.real
1381 lag_0 = numpy.sum(pair0,1)
1382 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Calculo de Ruido x canalΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1383 self.noise = numpy.zeros(self.__nch)
1384 for i in range(self.__nch):
1385 daux = numpy.sort(pair0[i,:,:],axis= None)
1386 self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt)
1387
1388 self.noise = self.noise.reshape(self.__nch,1)
1389 self.noise = numpy.tile(self.noise,[1,self.__nHeis])
1390 noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis)
1391 noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1])
1392 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Potencia recibida= P , Potencia senal = S , Ruido= NΒ·Β·
1393 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· P= S+N ,P=lag_0/N Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1394 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Power Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1395 data_power = lag_0/(self.n*self.nCohInt)
1396 #------------------ Senal Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1397 data_intensity = pair0 - noise_buffer
1398 data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt)
1399 #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt)
1400 for i in range(self.__nch):
1401 for j in range(self.__nHeis):
1402 if data_intensity[i][j] < 0:
1403 data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j]))
1380
1404
1381 lag_0 = numpy.sum(self.__buffer*numpy.conj(self.__buffer),1)
1405 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Calculo de Frecuencia y Velocidad dopplerΒ·Β·Β·Β·Β·Β·Β·Β·
1382 data_intensity = lag_0/(self.n*self.nCohInt)#*self.nCohInt)
1383
1384 pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:])
1406 pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:])
1385 lag_1 = numpy.sum(pair1,1)
1407 lag_1 = numpy.sum(pair1,1)
1386 #angle = numpy.angle(numpy.sum(pair1,1))*180/(math.pi)
1408 data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1)
1387 data_velocity = (-1.0*self.lambda_/(4*math.pi*self.ippSec))*numpy.angle(lag_1)#self.ippSec*self.nCohInt
1409 data_velocity = (self.lambda_/2.0)*data_freq
1388
1410
1389 self.noise = numpy.zeros([self.__nch,self.__nHeis])
1411 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Potencia promedio estimada de la SenalΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1390 for i in range(self.__nch):
1412 lag_0 = lag_0/self.n
1391 self.noise[i]=dataOut.getNoise(channel=i)
1413 S = lag_0-self.noise
1392
1414
1393 lag_0 = lag_0.real/(self.n)
1415 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Frecuencia Doppler promedio Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1394 lag_1 = lag_1/(self.n-1)
1416 lag_1 = lag_1/(self.n-1)
1395 R1 = numpy.abs(lag_1)
1417 R1 = numpy.abs(lag_1)
1396 S = (lag_0-self.noise)
1397
1418
1419 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Calculo del SNRΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1398 data_snrPP = S/self.noise
1420 data_snrPP = S/self.noise
1399 data_snrPP = numpy.where(data_snrPP<0,1,data_snrPP)
1421 for i in range(self.__nch):
1422 for j in range(self.__nHeis):
1423 if data_snrPP[i][j] < 1.e-20:
1424 data_snrPP[i][j] = 1.e-20
1400
1425
1426 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Calculo del ancho espectral Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1401 L = S/R1
1427 L = S/R1
1402 L = numpy.where(L<0,1,L)
1428 L = numpy.where(L<0,1,L)
1403 L = numpy.log(L)
1429 L = numpy.log(L)
1404
1405 tmp = numpy.sqrt(numpy.absolute(L))
1430 tmp = numpy.sqrt(numpy.absolute(L))
1406
1431 data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L)
1407 data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec))*tmp*numpy.sign(L)
1408 #data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec))*k
1409 n = self.__profIndex
1432 n = self.__profIndex
1410
1433
1411 self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex')
1434 self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex')
1412 self.__profIndex = 0
1435 self.__profIndex = 0
1413 return data_intensity,data_velocity,data_snrPP,data_specwidth,n
1436 return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n
1437
1414
1438
1415 def pulsePairbyProfiles(self,dataOut):
1439 def pulsePairbyProfiles(self,dataOut):
1416
1440
1417 self.__dataReady = False
1441 self.__dataReady = False
1442 data_power = None
1418 data_intensity = None
1443 data_intensity = None
1419 data_velocity = None
1444 data_velocity = None
1420 data_specwidth = None
1445 data_specwidth = None
1421 data_snrPP = None
1446 data_snrPP = None
1422 self.putData(data=dataOut.data)
1447 self.putData(data=dataOut.data)
1423 if self.__profIndex == self.n:
1448 if self.__profIndex == self.n:
1424 #self.noise = numpy.zeros([self.__nch,self.__nHeis])
1449 data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut)
1425 #for i in range(self.__nch):
1426 # self.noise[i]=data.getNoise(channel=i)
1427 #print(self.noise.shape)
1428 data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut)
1429 self.__dataReady = True
1450 self.__dataReady = True
1430
1451
1431 return data_intensity, data_velocity,data_snrPP,data_specwidth
1452 return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth
1453
1432
1454
1433 def pulsePairOp(self, dataOut, datatime= None):
1455 def pulsePairOp(self, dataOut, datatime= None):
1434
1456
1435 if self.__initime == None:
1457 if self.__initime == None:
1436 self.__initime = datatime
1458 self.__initime = datatime
1437 #print("hola")
1459 data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut)
1438 data_intensity, data_velocity,data_snrPP,data_specwidth = self.pulsePairbyProfiles(dataOut)
1439 self.__lastdatatime = datatime
1460 self.__lastdatatime = datatime
1440
1461
1441 if data_intensity is None:
1462 if data_power is None:
1442 return None, None,None,None,None
1463 return None, None, None,None,None,None
1443
1464
1444 avgdatatime = self.__initime
1465 avgdatatime = self.__initime
1445 deltatime = datatime - self.__lastdatatime
1466 deltatime = datatime - self.__lastdatatime
1446 self.__initime = datatime
1467 self.__initime = datatime
1447
1468
1448 return data_intensity, data_velocity,data_snrPP,data_specwidth,avgdatatime
1469 return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime
1449
1470
1450 def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs):
1471 def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs):
1451
1472
1452 if not self.isConfig:
1473 if not self.isConfig:
1453 self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs)
1474 self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs)
1454 self.isConfig = True
1475 self.isConfig = True
1455 data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime)
1476 data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime)
1456 dataOut.flagNoData = True
1477 dataOut.flagNoData = True
1457
1478
1458 if self.__dataReady:
1479 if self.__dataReady:
1459 dataOut.nCohInt *= self.n
1480 dataOut.nCohInt *= self.n
1460 dataOut.data_intensity = data_intensity #valor para intensidad
1481 dataOut.dataPP_POW = data_intensity # S
1461 dataOut.data_velocity = data_velocity #valor para velocidad
1482 dataOut.dataPP_POWER = data_power # P
1462 dataOut.data_snrPP = data_snrPP # valor para snr
1483 dataOut.dataPP_DOP = data_velocity
1463 dataOut.data_specwidth = data_specwidth
1484 dataOut.dataPP_SNR = data_snrPP
1485 dataOut.dataPP_WIDTH = data_specwidth
1464 dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo.
1486 dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo.
1465 dataOut.utctime = avgdatatime
1487 dataOut.utctime = avgdatatime
1466 dataOut.flagNoData = False
1488 dataOut.flagNoData = False
1467 return dataOut
1489 return dataOut
1468
1490
1469
1491
1492
1470 # import collections
1493 # import collections
1471 # from scipy.stats import mode
1494 # from scipy.stats import mode
1472 #
1495 #
@@ -25,8 +25,20 readUnitConfObj = controllerObj.addReadUnit(datatype='SimulatorReader',
25 delay=0,
25 delay=0,
26 online=0,
26 online=0,
27 walk=0,
27 walk=0,
28 nTotalReadFiles=3)
28 profilesPerBlock=625,
29
29 dataBlocksPerFile=100)#,#nTotalReadFiles=2)
30 '''
31 readUnitConfObj = controllerObj.addReadUnit(datatype='VoltageReader',
32 path=path,
33 startDate="2020/01/01", #"2020/01/01",#today,
34 endDate= "2020/12/01", #"2020/12/30",#today,
35 startTime='00:00:00',
36 endTime='23:59:59',
37 delay=0,
38 #set=0,
39 online=0,
40 walk=1)
41 '''
30 opObj11 = readUnitConfObj.addOperation(name='printInfo')
42 opObj11 = readUnitConfObj.addOperation(name='printInfo')
31
43
32 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
44 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
@@ -36,14 +48,26 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=rea
36 #opObj10 = procUnitConfObjA.addOperation(name='selectChannels')
48 #opObj10 = procUnitConfObjA.addOperation(name='selectChannels')
37 #opObj10.addParameter(name='channelList', value=[0])
49 #opObj10.addParameter(name='channelList', value=[0])
38 opObj11 = procUnitConfObjA.addOperation(name='PulsePairVoltage', optype='other')
50 opObj11 = procUnitConfObjA.addOperation(name='PulsePairVoltage', optype='other')
39 opObj11.addParameter(name='n', value='300', format='int')#10
51 opObj11.addParameter(name='n', value='625', format='int')#10
40 opObj11.addParameter(name='removeDC', value=1, format='int')
52 opObj11.addParameter(name='removeDC', value=1, format='int')
41
53
42 #opObj11 = procUnitConfObjA.addOperation(name='PulsepairPowerPlot', optype='other')
54 #opObj11 = procUnitConfObjA.addOperation(name='PulsepairPowerPlot', optype='other')
55 #opObj11 = procUnitConfObjA.addOperation(name='PulsepairSignalPlot', optype='other')
56
43
57
44 opObj11 = procUnitConfObjA.addOperation(name='PulsepairVelocityPlot', optype='other')
58 #opObj11 = procUnitConfObjA.addOperation(name='PulsepairVelocityPlot', optype='other')
45 #opObj11.addParameter(name='xmax', value=8)
59 #opObj11.addParameter(name='xmax', value=8)
46
60
47 opObj11 = procUnitConfObjA.addOperation(name='PulsepairSpecwidthPlot', optype='other')
61 #opObj11 = procUnitConfObjA.addOperation(name='PulsepairSpecwidthPlot', optype='other')
62
63 procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId())
64
65
66 opObj10 = procUnitConfObjB.addOperation(name='ParameterWriter')
67 opObj10.addParameter(name='path',value=figpath)
68 #opObj10.addParameter(name='mode',value=0)
69 opObj10.addParameter(name='blocksPerFile',value='100',format='int')
70 opObj10.addParameter(name='metadataList',value='utctimeInit,timeInterval',format='list')
71 opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,dataPP_SNR,dataPP_WIDTH')#,format='list'
48
72
49 controllerObj.start()
73 controllerObj.start()
General Comments 0
You need to be logged in to leave comments. Login now