@@ -0,0 +1,87 | |||||
|
1 | import numpy | |||
|
2 | import sys | |||
|
3 | import zmq | |||
|
4 | import time | |||
|
5 | import h5py | |||
|
6 | import os | |||
|
7 | ||||
|
8 | path="/home/alex/Downloads/pedestal" | |||
|
9 | ext=".hdf5" | |||
|
10 | ||||
|
11 | port ="5556" | |||
|
12 | if len(sys.argv)>1: | |||
|
13 | port = sys.argv[1] | |||
|
14 | int(port) | |||
|
15 | ||||
|
16 | if len(sys.argv)>2: | |||
|
17 | port1 = sys.argv[2] | |||
|
18 | int(port1) | |||
|
19 | ||||
|
20 | #Socket to talk to server | |||
|
21 | context = zmq.Context() | |||
|
22 | socket = context.socket(zmq.SUB) | |||
|
23 | ||||
|
24 | print("Collecting updates from weather server...") | |||
|
25 | socket.connect("tcp://localhost:%s"%port) | |||
|
26 | ||||
|
27 | if len(sys.argv)>2: | |||
|
28 | socket.connect("tcp://localhost:%s"%port1) | |||
|
29 | ||||
|
30 | #Subscribe to zipcode, default is NYC,10001 | |||
|
31 | topicfilter = "10001" | |||
|
32 | socket.setsockopt_string(zmq.SUBSCRIBE,topicfilter) | |||
|
33 | #Process 5 updates | |||
|
34 | total_value=0 | |||
|
35 | count= -1 | |||
|
36 | azi= [] | |||
|
37 | elev=[] | |||
|
38 | time0=[] | |||
|
39 | #for update_nbr in range(250): | |||
|
40 | while(True): | |||
|
41 | string= socket.recv() | |||
|
42 | topic,ang_elev,ang_elev_dec,ang_azi,ang_azi_dec,seconds,seconds_dec= string.split() | |||
|
43 | ang_azi =float(ang_azi)+1e-3*float(ang_azi_dec) | |||
|
44 | ang_elev =float(ang_elev)+1e-3*float(ang_elev_dec) | |||
|
45 | seconds =float(seconds) +1e-6*float(seconds_dec) | |||
|
46 | azi.append(ang_azi) | |||
|
47 | elev.append(ang_elev) | |||
|
48 | time0.append(seconds) | |||
|
49 | count +=1 | |||
|
50 | if count == 100: | |||
|
51 | timetuple=time.localtime() | |||
|
52 | epoc = time.mktime(timetuple) | |||
|
53 | #print(epoc) | |||
|
54 | fullpath = path + ("/" if path[-1]!="/" else "") | |||
|
55 | ||||
|
56 | if not os.path.exists(fullpath): | |||
|
57 | os.mkdir(fullpath) | |||
|
58 | ||||
|
59 | azi_array = numpy.array(azi) | |||
|
60 | elev_array = numpy.array(elev) | |||
|
61 | time0_array= numpy.array(time0) | |||
|
62 | pedestal_array=numpy.array([azi,elev,time0]) | |||
|
63 | count=0 | |||
|
64 | azi= [] | |||
|
65 | elev=[] | |||
|
66 | time0=[] | |||
|
67 | #print(pedestal_array[0]) | |||
|
68 | #print(pedestal_array[1]) | |||
|
69 | ||||
|
70 | meta='PE' | |||
|
71 | filex="%s%4.4d%3.3d%10.4d%s"%(meta,timetuple.tm_year,timetuple.tm_yday,epoc,ext) | |||
|
72 | filename = os.path.join(fullpath,filex) | |||
|
73 | fp = h5py.File(filename,'w') | |||
|
74 | #print("Escribiendo HDF5...",epoc) | |||
|
75 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DataΒ·....Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
|
76 | grp = fp.create_group("Data") | |||
|
77 | dset = grp.create_dataset("azimuth" , data=pedestal_array[0]) | |||
|
78 | dset = grp.create_dataset("elevacion", data=pedestal_array[1]) | |||
|
79 | dset = grp.create_dataset("utc" , data=pedestal_array[2]) | |||
|
80 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· MetadataΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
|
81 | grp = fp.create_group("Metadata") | |||
|
82 | dset = grp.create_dataset("utctimeInit", data=pedestal_array[2][0]) | |||
|
83 | timeInterval = pedestal_array[2][1]-pedestal_array[2][0] | |||
|
84 | dset = grp.create_dataset("timeInterval", data=timeInterval) | |||
|
85 | fp.close() | |||
|
86 | ||||
|
87 | #print ("Average messagedata value for topic '%s' was %dF" % ( topicfilter,total_value / update_nbr)) |
@@ -0,0 +1,48 | |||||
|
1 | ########################################################################### | |||
|
2 | ############################### SERVIDOR################################### | |||
|
3 | ######################### SIMULADOR DE PEDESTAL############################ | |||
|
4 | ########################################################################### | |||
|
5 | import time | |||
|
6 | import math | |||
|
7 | import numpy | |||
|
8 | import struct | |||
|
9 | from time import sleep | |||
|
10 | import zmq | |||
|
11 | import pickle | |||
|
12 | port="5556" | |||
|
13 | context = zmq.Context() | |||
|
14 | socket = context.socket(zmq.PUB) | |||
|
15 | socket.bind("tcp://*:%s"%port) | |||
|
16 | ###### PARAMETROS DE ENTRADA################################ | |||
|
17 | print("PEDESTAL RESOLUCION 0.01") | |||
|
18 | print("MAXIMA VELOCIDAD DEL PEDESTAL") | |||
|
19 | ang_elev = 4.12 | |||
|
20 | ang_azi = 30 | |||
|
21 | velocidad= input ("Ingresa velocidad:") | |||
|
22 | velocidad= float(velocidad) | |||
|
23 | print (velocidad) | |||
|
24 | ############################################################ | |||
|
25 | sleep(3) | |||
|
26 | print("Start program") | |||
|
27 | t1 = time.time() | |||
|
28 | count=0 | |||
|
29 | while(True): | |||
|
30 | tmp_vuelta = int(360/velocidad) | |||
|
31 | t1=t1+tmp_vuelta*count | |||
|
32 | count= count+1 | |||
|
33 | muestras_seg = 100 | |||
|
34 | t2 = time.time() | |||
|
35 | for i in range(tmp_vuelta): | |||
|
36 | for j in range(muestras_seg): | |||
|
37 | tmp_variable = (i+j/100.0) | |||
|
38 | ang_azi = (tmp_variable)*float(velocidad) | |||
|
39 | seconds = t1+ tmp_variable | |||
|
40 | topic=10001 | |||
|
41 | print ("AzimΒ°: ","%.4f"%ang_azi,"Time:" ,"%.5f"%seconds) | |||
|
42 | seconds_dec=(seconds-int(seconds))*1e6 | |||
|
43 | ang_azi_dec= (ang_azi-int(ang_azi))*1e3 | |||
|
44 | ang_elev_dec=(ang_elev-int(ang_elev))*1e3 | |||
|
45 | sleep(0.0088) | |||
|
46 | socket.send_string("%d %d %d %d %d %d %d"%(topic,ang_elev,ang_elev_dec,ang_azi,ang_azi_dec,seconds,seconds_dec)) | |||
|
47 | t3 = time.time() | |||
|
48 | print ("Total time for 1 vuelta in Seconds",t3-t2) |
@@ -0,0 +1,82 | |||||
|
1 | import os, sys | |||
|
2 | import datetime | |||
|
3 | import time | |||
|
4 | from schainpy.controller import Project | |||
|
5 | ||||
|
6 | desc = "USRP_test" | |||
|
7 | filename = "USRP_processing.xml" | |||
|
8 | controllerObj = Project() | |||
|
9 | controllerObj.setup(id = '191', name='Test_USRP', description=desc) | |||
|
10 | ||||
|
11 | ############## USED TO PLOT IQ VOLTAGE, POWER AND SPECTRA ############# | |||
|
12 | ######PATH DE LECTURA, ESCRITURA, GRAFICOS Y ENVIO WEB################# | |||
|
13 | path = '/home/alex/Downloads/test_rawdata' | |||
|
14 | figpath = '/home/alex/Downloads/hdf5_test' | |||
|
15 | ######################## UNIDAD DE LECTURA############################# | |||
|
16 | ''' | |||
|
17 | readUnitConfObj = controllerObj.addReadUnit(datatype='VoltageReader', | |||
|
18 | path=path, | |||
|
19 | startDate="2020/01/01", #"2020/01/01",#today, | |||
|
20 | endDate= "2020/12/01", #"2020/12/30",#today, | |||
|
21 | startTime='00:00:00', | |||
|
22 | endTime='23:59:59', | |||
|
23 | delay=0, | |||
|
24 | #set=0, | |||
|
25 | online=0, | |||
|
26 | walk=1) | |||
|
27 | ||||
|
28 | ''' | |||
|
29 | readUnitConfObj = controllerObj.addReadUnit(datatype='SimulatorReader', | |||
|
30 | frequency=9.345e9, | |||
|
31 | FixRCP_IPP= 60, | |||
|
32 | Tau_0 = 30, | |||
|
33 | AcqH0_0=0, | |||
|
34 | samples=330, | |||
|
35 | AcqDH_0=0.15, | |||
|
36 | FixRCP_TXA=0.15, | |||
|
37 | FixRCP_TXB=0.15, | |||
|
38 | Fdoppler=600.0, | |||
|
39 | Hdoppler=36, | |||
|
40 | Adoppler=300,#300 | |||
|
41 | delay=0, | |||
|
42 | online=0, | |||
|
43 | walk=0, | |||
|
44 | profilesPerBlock=625, | |||
|
45 | dataBlocksPerFile=100) | |||
|
46 | #nTotalReadFiles=2) | |||
|
47 | ||||
|
48 | ||||
|
49 | #opObj11 = readUnitConfObj.addOperation(name='printInfo') | |||
|
50 | ||||
|
51 | procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) | |||
|
52 | ||||
|
53 | procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) | |||
|
54 | procUnitConfObjB.addParameter(name='nFFTPoints', value=625, format='int') | |||
|
55 | procUnitConfObjB.addParameter(name='nProfiles', value=625, format='int') | |||
|
56 | ||||
|
57 | opObj11 = procUnitConfObjB.addOperation(name='removeDC') | |||
|
58 | opObj11.addParameter(name='mode', value=2) | |||
|
59 | #opObj11 = procUnitConfObjB.addOperation(name='SpectraPlot') | |||
|
60 | #opObj11 = procUnitConfObjB.addOperation(name='PowerProfilePlot') | |||
|
61 | ||||
|
62 | procUnitConfObjC= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjB.getId()) | |||
|
63 | procUnitConfObjC.addOperation(name='SpectralMoments') | |||
|
64 | #opObj11 = procUnitConfObjC.addOperation(name='PowerPlot') | |||
|
65 | ||||
|
66 | ''' | |||
|
67 | opObj11 = procUnitConfObjC.addOperation(name='SpectralMomentsPlot') | |||
|
68 | #opObj11.addParameter(name='xmin', value=14) | |||
|
69 | #opObj11.addParameter(name='xmax', value=15) | |||
|
70 | #opObj11.addParameter(name='save', value=figpath) | |||
|
71 | opObj11.addParameter(name='showprofile', value=1) | |||
|
72 | #opObj11.addParameter(name='save_period', value=10) | |||
|
73 | ''' | |||
|
74 | ||||
|
75 | opObj10 = procUnitConfObjC.addOperation(name='ParameterWriter') | |||
|
76 | opObj10.addParameter(name='path',value=figpath) | |||
|
77 | #opObj10.addParameter(name='mode',value=0) | |||
|
78 | opObj10.addParameter(name='blocksPerFile',value='100',format='int') | |||
|
79 | opObj10.addParameter(name='metadataList',value='utctimeInit,timeInterval',format='list') | |||
|
80 | opObj10.addParameter(name='dataList',value='data_POW,data_DOP,data_WIDTH,data_SNR')#,format='list' | |||
|
81 | ||||
|
82 | controllerObj.start() |
@@ -0,0 +1,162 | |||||
|
1 | import os,numpy,h5py | |||
|
2 | from shutil import copyfile | |||
|
3 | ||||
|
4 | def isNumber(str): | |||
|
5 | try: | |||
|
6 | float(str) | |||
|
7 | return True | |||
|
8 | except: | |||
|
9 | return False | |||
|
10 | ||||
|
11 | def getfirstFilefromPath(path,meta,ext): | |||
|
12 | validFilelist = [] | |||
|
13 | fileList = os.listdir(path) | |||
|
14 | if len(fileList)<1: | |||
|
15 | return None | |||
|
16 | # meta 1234 567 8-18 BCDE | |||
|
17 | # H,D,PE YYYY DDD EPOC .ext | |||
|
18 | ||||
|
19 | for thisFile in fileList: | |||
|
20 | if meta =="PE": | |||
|
21 | try: | |||
|
22 | number= int(thisFile[len(meta)+7:len(meta)+17]) | |||
|
23 | except: | |||
|
24 | print("There is a file or folder with different format") | |||
|
25 | if meta == "D": | |||
|
26 | try: | |||
|
27 | number= int(thisFile[8:11]) | |||
|
28 | except: | |||
|
29 | print("There is a file or folder with different format") | |||
|
30 | ||||
|
31 | if not isNumber(str=number): | |||
|
32 | continue | |||
|
33 | if (os.path.splitext(thisFile)[-1].lower() != ext.lower()): | |||
|
34 | continue | |||
|
35 | validFilelist.sort() | |||
|
36 | validFilelist.append(thisFile) | |||
|
37 | if len(validFilelist)>0: | |||
|
38 | validFilelist = sorted(validFilelist,key=str.lower) | |||
|
39 | return validFilelist | |||
|
40 | return None | |||
|
41 | ||||
|
42 | def gettimeutcfromDirFilename(path,file): | |||
|
43 | dir_file= path+"/"+file | |||
|
44 | fp = h5py.File(dir_file,'r') | |||
|
45 | epoc = fp['Metadata'].get('utctimeInit')[()] | |||
|
46 | fp.close() | |||
|
47 | return epoc | |||
|
48 | ||||
|
49 | def getDatavaluefromDirFilename(path,file,value): | |||
|
50 | dir_file= path+"/"+file | |||
|
51 | fp = h5py.File(dir_file,'r') | |||
|
52 | array = fp['Data'].get(value)[()] | |||
|
53 | fp.close() | |||
|
54 | return array | |||
|
55 | ||||
|
56 | ||||
|
57 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Velocidad de PedestalΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
|
58 | w = input ("Ingresa velocidad de Pedestal: ") | |||
|
59 | w = 4 | |||
|
60 | w = float(w) | |||
|
61 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Resolucion minimo en gradosΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
|
62 | alfa = input ("Ingresa resolucion minima en grados: ") | |||
|
63 | alfa = 1 | |||
|
64 | alfa = float(alfa) | |||
|
65 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· IPP del Experimento Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
|
66 | IPP = input ("Ingresa el IPP del experimento: ") | |||
|
67 | IPP = 0.0004 | |||
|
68 | IPP = float(IPP) | |||
|
69 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· MODE Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
|
70 | mode = input ("Ingresa el MODO del experimento T or F: ") | |||
|
71 | mode = "T" | |||
|
72 | mode = str(mode) | |||
|
73 | ||||
|
74 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Tiempo en generar la resolucion minΒ·Β·Β· | |||
|
75 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· MCU Β·Β· var_ang = w * (var_tiempo)Β·Β·Β· | |||
|
76 | var_tiempo = alfa/w | |||
|
77 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Tiempo Equivalente en perfilesΒ·Β·Β·Β·Β·Β·Β·Β· | |||
|
78 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· var_tiempo = IPP * ( num_perfiles )Β· | |||
|
79 | num_perfiles = int(var_tiempo/IPP) | |||
|
80 | ||||
|
81 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·DATA PEDESTALΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
|
82 | dir_pedestal = "/home/alex/Downloads/pedestal" | |||
|
83 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DATA ADQΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
|
84 | if mode=="T": | |||
|
85 | dir_adq = "/home/alex/Downloads/hdf5_testPP/d2020194" # Time domain | |||
|
86 | else: | |||
|
87 | dir_adq = "/home/alex/Downloads/hdf5_test/d2020194" # Frequency domain | |||
|
88 | ||||
|
89 | print( "Velocidad angular :", w) | |||
|
90 | print( "Resolucion minima en grados :", alfa) | |||
|
91 | print( "Numero de perfiles equivalente:", num_perfiles) | |||
|
92 | print( "Mode :", mode) | |||
|
93 | ||||
|
94 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· First FileΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
|
95 | list_pedestal = getfirstFilefromPath(path=dir_pedestal,meta="PE",ext=".hdf5") | |||
|
96 | list_adq = getfirstFilefromPath(path=dir_adq ,meta="D",ext=".hdf5") | |||
|
97 | ||||
|
98 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· utc time Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
|
99 | utc_pedestal= gettimeutcfromDirFilename(path=dir_pedestal,file=list_pedestal[0]) | |||
|
100 | utc_adq = gettimeutcfromDirFilename(path=dir_adq ,file=list_adq[0]) | |||
|
101 | ||||
|
102 | print("utc_pedestal :",utc_pedestal) | |||
|
103 | print("utc_adq :",utc_adq) | |||
|
104 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Relacion: utc_adq (+/-) var_tiempo*nro_file= utc_pedestal | |||
|
105 | time_Interval_p = 0.01 | |||
|
106 | n_perfiles_p = 100 | |||
|
107 | if utc_adq>utc_pedestal: | |||
|
108 | nro_file = int((int(utc_adq) - int(utc_pedestal))/(time_Interval_p*n_perfiles_p)) | |||
|
109 | ff_pedestal = list_pedestal[nro_file] | |||
|
110 | utc_pedestal = gettimeutcfromDirFilename(path=dir_pedestal,file=ff_pedestal) | |||
|
111 | nro_key_p = int((utc_adq-utc_pedestal)/time_Interval_p) | |||
|
112 | if utc_adq >utc_pedestal: | |||
|
113 | ff_pedestal = ff_pedestal | |||
|
114 | else: | |||
|
115 | nro_file = nro_file-1 | |||
|
116 | ff_pedestal = list_pedestal[nro_file] | |||
|
117 | angulo = getDatavaluefromDirFilename(path=dir_pedestal,file=ff_pedestal,value="azimuth") | |||
|
118 | nro_key_p = int((utc_adq-utc_pedestal)/time_Interval_p) | |||
|
119 | print("nro_file :",nro_file) | |||
|
120 | print("name_file :",ff_pedestal) | |||
|
121 | print("utc_pedestal_file :",utc_pedestal) | |||
|
122 | print("nro_key_p :",nro_key_p) | |||
|
123 | print("utc_pedestal_init :",utc_pedestal+nro_key_p*time_Interval_p) | |||
|
124 | print("angulo_array :",angulo[nro_key_p]) | |||
|
125 | #4+25+25+25+21 | |||
|
126 | #while True: | |||
|
127 | list_pedestal = getfirstFilefromPath(path=dir_pedestal,meta="PE",ext=".hdf5") | |||
|
128 | list_adq = getfirstFilefromPath(path=dir_adq ,meta="D",ext=".hdf5") | |||
|
129 | ||||
|
130 | nro_file = nro_file #10 | |||
|
131 | nro_key_perfil = nro_key_p | |||
|
132 | blocksPerFile = 100 | |||
|
133 | wr_path = "/home/alex/Downloads/hdf5_wr/" | |||
|
134 | # Lectura de archivos de adquisicion para adicion de azimuth | |||
|
135 | for thisFile in range(len(list_adq)): | |||
|
136 | print("thisFileAdq",thisFile) | |||
|
137 | angulo_adq = numpy.zeros(blocksPerFile) | |||
|
138 | tmp = 0 | |||
|
139 | for j in range(blocksPerFile): | |||
|
140 | iterador = nro_key_perfil + 25*(j-tmp) | |||
|
141 | if iterador < n_perfiles_p: | |||
|
142 | nro_file = nro_file | |||
|
143 | else: | |||
|
144 | nro_file = nro_file+1 | |||
|
145 | tmp = j | |||
|
146 | iterador = nro_key_perfil | |||
|
147 | ff_pedestal = list_pedestal[nro_file] | |||
|
148 | angulo = getDatavaluefromDirFilename(path=dir_pedestal,file=ff_pedestal,value="azimuth") | |||
|
149 | angulo_adq[j]= angulo[iterador] | |||
|
150 | copyfile(dir_adq+"/"+list_adq[thisFile],wr_path+list_adq[thisFile]) | |||
|
151 | fp = h5py.File(wr_path+list_adq[thisFile],'a') | |||
|
152 | grp = fp.create_group("Pedestal") | |||
|
153 | dset = grp.create_dataset("azimuth" , data=angulo_adq) | |||
|
154 | fp.close() | |||
|
155 | print("Angulo",angulo_adq) | |||
|
156 | print("Angulo",len(angulo_adq)) | |||
|
157 | nro_key_perfil=iterador + 25 | |||
|
158 | if nro_key_perfil< n_perfiles_p: | |||
|
159 | nro_file = nro_file | |||
|
160 | else: | |||
|
161 | nro_file = nro_file+1 | |||
|
162 | nro_key_perfil= nro_key_p |
@@ -360,9 +360,11 class Voltage(JROData): | |||||
360 |
|
360 | |||
361 | # data es un numpy array de 2 dmensiones (canales, alturas) |
|
361 | # data es un numpy array de 2 dmensiones (canales, alturas) | |
362 | data = None |
|
362 | data = None | |
363 |
data |
|
363 | dataPP_POW = None | |
364 |
data |
|
364 | dataPP_DOP = None | |
365 |
data |
|
365 | dataPP_WIDTH = None | |
|
366 | dataPP_SNR = None | |||
|
367 | ||||
366 | def __init__(self): |
|
368 | def __init__(self): | |
367 | ''' |
|
369 | ''' | |
368 | Constructor |
|
370 | Constructor | |
@@ -1208,7 +1210,7 class PlotterData(object): | |||||
1208 | ''' |
|
1210 | ''' | |
1209 | Update data object with new dataOut |
|
1211 | Update data object with new dataOut | |
1210 | ''' |
|
1212 | ''' | |
1211 |
|
1213 | |||
1212 | self.profileIndex = dataOut.profileIndex |
|
1214 | self.profileIndex = dataOut.profileIndex | |
1213 | self.tm = tm |
|
1215 | self.tm = tm | |
1214 | self.type = dataOut.type |
|
1216 | self.type = dataOut.type | |
@@ -1261,15 +1263,19 class PlotterData(object): | |||||
1261 | self.flagDataAsBlock = dataOut.flagDataAsBlock |
|
1263 | self.flagDataAsBlock = dataOut.flagDataAsBlock | |
1262 | self.nProfiles = dataOut.nProfiles |
|
1264 | self.nProfiles = dataOut.nProfiles | |
1263 | if plot == 'pp_power': |
|
1265 | if plot == 'pp_power': | |
1264 |
buffer = dataOut.data |
|
1266 | buffer = dataOut.dataPP_POWER | |
|
1267 | self.flagDataAsBlock = dataOut.flagDataAsBlock | |||
|
1268 | self.nProfiles = dataOut.nProfiles | |||
|
1269 | if plot == 'pp_signal': | |||
|
1270 | buffer = dataOut.dataPP_POW | |||
1265 | self.flagDataAsBlock = dataOut.flagDataAsBlock |
|
1271 | self.flagDataAsBlock = dataOut.flagDataAsBlock | |
1266 | self.nProfiles = dataOut.nProfiles |
|
1272 | self.nProfiles = dataOut.nProfiles | |
1267 | if plot == 'pp_velocity': |
|
1273 | if plot == 'pp_velocity': | |
1268 |
buffer = dataOut.data |
|
1274 | buffer = dataOut.dataPP_DOP | |
1269 | self.flagDataAsBlock = dataOut.flagDataAsBlock |
|
1275 | self.flagDataAsBlock = dataOut.flagDataAsBlock | |
1270 | self.nProfiles = dataOut.nProfiles |
|
1276 | self.nProfiles = dataOut.nProfiles | |
1271 | if plot == 'pp_specwidth': |
|
1277 | if plot == 'pp_specwidth': | |
1272 |
buffer = dataOut.data |
|
1278 | buffer = dataOut.dataPP_WIDTH | |
1273 | self.flagDataAsBlock = dataOut.flagDataAsBlock |
|
1279 | self.flagDataAsBlock = dataOut.flagDataAsBlock | |
1274 | self.nProfiles = dataOut.nProfiles |
|
1280 | self.nProfiles = dataOut.nProfiles | |
1275 |
|
1281 |
@@ -156,6 +156,8 class ScopePlot(Plot): | |||||
156 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]) |
|
156 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]) | |
157 | if self.CODE == "pp_power": |
|
157 | if self.CODE == "pp_power": | |
158 | scope = self.data['pp_power'] |
|
158 | scope = self.data['pp_power'] | |
|
159 | elif self.CODE == "pp_signal": | |||
|
160 | scope = self.data["pp_signal"] | |||
159 | elif self.CODE == "pp_velocity": |
|
161 | elif self.CODE == "pp_velocity": | |
160 | scope = self.data["pp_velocity"] |
|
162 | scope = self.data["pp_velocity"] | |
161 | elif self.CODE == "pp_specwidth": |
|
163 | elif self.CODE == "pp_specwidth": | |
@@ -191,6 +193,13 class ScopePlot(Plot): | |||||
191 | thisDatetime, |
|
193 | thisDatetime, | |
192 | wintitle |
|
194 | wintitle | |
193 | ) |
|
195 | ) | |
|
196 | if self.CODE=="pp_signal": | |||
|
197 | self.plot_weatherpower(self.data.heights, | |||
|
198 | scope[:,i,:], | |||
|
199 | channels, | |||
|
200 | thisDatetime, | |||
|
201 | wintitle | |||
|
202 | ) | |||
194 | if self.CODE=="pp_velocity": |
|
203 | if self.CODE=="pp_velocity": | |
195 | self.plot_weathervelocity(scope[:,i,:], |
|
204 | self.plot_weathervelocity(scope[:,i,:], | |
196 | self.data.heights, |
|
205 | self.data.heights, | |
@@ -230,6 +239,13 class ScopePlot(Plot): | |||||
230 | thisDatetime, |
|
239 | thisDatetime, | |
231 | wintitle |
|
240 | wintitle | |
232 | ) |
|
241 | ) | |
|
242 | if self.CODE=="pp_signal": | |||
|
243 | self.plot_weatherpower(self.data.heights, | |||
|
244 | scope, | |||
|
245 | channels, | |||
|
246 | thisDatetime, | |||
|
247 | wintitle | |||
|
248 | ) | |||
233 | if self.CODE=="pp_velocity": |
|
249 | if self.CODE=="pp_velocity": | |
234 | self.plot_weathervelocity(scope, |
|
250 | self.plot_weathervelocity(scope, | |
235 | self.data.heights, |
|
251 | self.data.heights, | |
@@ -249,7 +265,7 class ScopePlot(Plot): | |||||
249 |
|
265 | |||
250 | class PulsepairPowerPlot(ScopePlot): |
|
266 | class PulsepairPowerPlot(ScopePlot): | |
251 | ''' |
|
267 | ''' | |
252 | Plot for |
|
268 | Plot for P= S+N | |
253 | ''' |
|
269 | ''' | |
254 |
|
270 | |||
255 | CODE = 'pp_power' |
|
271 | CODE = 'pp_power' | |
@@ -259,7 +275,7 class PulsepairPowerPlot(ScopePlot): | |||||
259 |
|
275 | |||
260 | class PulsepairVelocityPlot(ScopePlot): |
|
276 | class PulsepairVelocityPlot(ScopePlot): | |
261 | ''' |
|
277 | ''' | |
262 | Plot for |
|
278 | Plot for VELOCITY | |
263 | ''' |
|
279 | ''' | |
264 | CODE = 'pp_velocity' |
|
280 | CODE = 'pp_velocity' | |
265 | plot_name = 'PulsepairVelocity' |
|
281 | plot_name = 'PulsepairVelocity' | |
@@ -268,9 +284,19 class PulsepairVelocityPlot(ScopePlot): | |||||
268 |
|
284 | |||
269 | class PulsepairSpecwidthPlot(ScopePlot): |
|
285 | class PulsepairSpecwidthPlot(ScopePlot): | |
270 | ''' |
|
286 | ''' | |
271 | Plot for |
|
287 | Plot for WIDTH | |
272 | ''' |
|
288 | ''' | |
273 | CODE = 'pp_specwidth' |
|
289 | CODE = 'pp_specwidth' | |
274 | plot_name = 'PulsepairSpecwidth' |
|
290 | plot_name = 'PulsepairSpecwidth' | |
275 | plot_type = 'scatter' |
|
291 | plot_type = 'scatter' | |
276 | buffering = False |
|
292 | buffering = False | |
|
293 | ||||
|
294 | class PulsepairSignalPlot(ScopePlot): | |||
|
295 | ''' | |||
|
296 | Plot for S | |||
|
297 | ''' | |||
|
298 | ||||
|
299 | CODE = 'pp_signal' | |||
|
300 | plot_name = 'PulsepairSignal' | |||
|
301 | plot_type = 'scatter' | |||
|
302 | buffering = False |
@@ -360,21 +360,27 class SimulatorReader(JRODataReader, ProcessingUnit): | |||||
360 | fd = Fdoppler #+(600.0/120)*self.nReadBlocks |
|
360 | fd = Fdoppler #+(600.0/120)*self.nReadBlocks | |
361 | d_signal = Adoppler*numpy.array(numpy.exp(1.0j*2.0*math.pi*fd*time_vec),dtype=numpy.complex64) |
|
361 | d_signal = Adoppler*numpy.array(numpy.exp(1.0j*2.0*math.pi*fd*time_vec),dtype=numpy.complex64) | |
362 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·SeΓ±al con ancho espectralΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· |
|
362 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·SeΓ±al con ancho espectralΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |
363 | #specw_sig = numpy.linspace(-149,150,300) |
|
363 | if prof_gen%2==0: | |
364 | #w = 8 |
|
364 | min = int(prof_gen/2.0-1.0) | |
365 | #A = 20 |
|
365 | max = int(prof_gen/2.0) | |
366 | #specw_sig = specw_sig/w |
|
366 | else: | |
367 | #specw_sig = numpy.sinc(specw_sig) |
|
367 | min = int(prof_gen/2.0) | |
368 | #specw_sig = A*numpy.array(specw_sig,dtype=numpy.complex64) |
|
368 | max = int(prof_gen/2.0) | |
|
369 | specw_sig = numpy.linspace(-min,max,prof_gen) | |||
|
370 | w = 4 | |||
|
371 | A = 20 | |||
|
372 | specw_sig = specw_sig/w | |||
|
373 | specw_sig = numpy.sinc(specw_sig) | |||
|
374 | specw_sig = A*numpy.array(specw_sig,dtype=numpy.complex64) | |||
369 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DATABLOCK + DOPPLERΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· |
|
375 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DATABLOCK + DOPPLERΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |
370 | HD=int(Hdoppler/self.AcqDH_0) |
|
376 | HD=int(Hdoppler/self.AcqDH_0) | |
371 | for i in range(12): |
|
377 | for i in range(12): | |
372 | self.datablock[0,:,HD+i]=self.datablock[0,:,HD+i]+ d_signal# RESULT |
|
378 | self.datablock[0,:,HD+i]=self.datablock[0,:,HD+i]+ d_signal# RESULT | |
373 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DATABLOCK + DOPPLER*Sinc(x)Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· |
|
379 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DATABLOCK + DOPPLER*Sinc(x)Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |
374 |
|
|
380 | HD=int(Hdoppler/self.AcqDH_0) | |
375 |
|
|
381 | HD=int(HD/2) | |
376 |
|
|
382 | for i in range(12): | |
377 |
|
|
383 | self.datablock[0,:,HD+i]=self.datablock[0,:,HD+i]+ specw_sig*d_signal# RESULT | |
378 |
|
384 | |||
379 | def readBlock(self): |
|
385 | def readBlock(self): | |
380 |
|
386 | |||
@@ -421,7 +427,8 class SimulatorReader(JRODataReader, ProcessingUnit): | |||||
421 | FixPP_CohInt= 1,Tau_0= 250,AcqH0_0 = 70 ,AcqDH_0=1.25, Bauds= 32, |
|
427 | FixPP_CohInt= 1,Tau_0= 250,AcqH0_0 = 70 ,AcqDH_0=1.25, Bauds= 32, | |
422 | FixRCP_TXA = 40, FixRCP_TXB = 50, fAngle = 2.0*math.pi*(1/16),DC_level= 50, |
|
428 | FixRCP_TXA = 40, FixRCP_TXB = 50, fAngle = 2.0*math.pi*(1/16),DC_level= 50, | |
423 | stdev= 8,Num_Codes = 1 , Dyn_snCode = None, samples=200, |
|
429 | stdev= 8,Num_Codes = 1 , Dyn_snCode = None, samples=200, | |
424 |
channels=2,Fdoppler=20,Hdoppler=36,Adoppler=500, |
|
430 | channels=2,Fdoppler=20,Hdoppler=36,Adoppler=500, | |
|
431 | profilesPerBlock=300,dataBlocksPerFile=120,nTotalReadFiles=10000, | |||
425 | **kwargs): |
|
432 | **kwargs): | |
426 |
|
433 | |||
427 | self.set_kwargs(**kwargs) |
|
434 | self.set_kwargs(**kwargs) | |
@@ -447,14 +454,14 class SimulatorReader(JRODataReader, ProcessingUnit): | |||||
447 | codeType=0, nCode=Num_Codes, nBaud=32, code=Dyn_snCode, |
|
454 | codeType=0, nCode=Num_Codes, nBaud=32, code=Dyn_snCode, | |
448 | flip1=0, flip2=0,Taus=Tau_0) |
|
455 | flip1=0, flip2=0,Taus=Tau_0) | |
449 |
|
456 | |||
450 |
self.set_PH(dtype=0, blockSize=0, profilesPerBlock= |
|
457 | self.set_PH(dtype=0, blockSize=0, profilesPerBlock=profilesPerBlock, | |
451 |
dataBlocksPerFile= |
|
458 | dataBlocksPerFile=dataBlocksPerFile, nWindows=1, processFlags=numpy.array([1024]), nCohInt=1, | |
452 | nIncohInt=1, totalSpectra=0, nHeights=samples, firstHeight=AcqH0_0, |
|
459 | nIncohInt=1, totalSpectra=0, nHeights=samples, firstHeight=AcqH0_0, | |
453 | deltaHeight=AcqDH_0, samplesWin=samples, spectraComb=0, nCode=0, |
|
460 | deltaHeight=AcqDH_0, samplesWin=samples, spectraComb=0, nCode=0, | |
454 | code=0, nBaud=None, shif_fft=False, flag_dc=False, |
|
461 | code=0, nBaud=None, shif_fft=False, flag_dc=False, | |
455 | flag_cspc=False, flag_decode=False, flag_deflip=False) |
|
462 | flag_cspc=False, flag_decode=False, flag_deflip=False) | |
456 |
|
463 | |||
457 |
self.set_SH(nSamples=samples, nProfiles= |
|
464 | self.set_SH(nSamples=samples, nProfiles=profilesPerBlock, nChannels=channels) | |
458 |
|
465 | |||
459 | self.readFirstHeader() |
|
466 | self.readFirstHeader() | |
460 |
|
467 |
This diff has been collapsed as it changes many lines, (2141 lines changed) Show them Hide them | |||||
@@ -8,12 +8,12 import copy | |||||
8 |
import sys |
|
8 | import sys | |
9 |
import importlib |
|
9 | import importlib | |
10 |
import itertools |
|
10 | import itertools | |
11 |
from multiprocessing import Pool, TimeoutError |
|
11 | from multiprocessing import Pool, TimeoutError | |
12 |
from multiprocessing.pool import ThreadPool |
|
12 | from multiprocessing.pool import ThreadPool | |
13 |
import time |
|
13 | import time | |
14 |
|
14 | |||
15 |
from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters |
|
15 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters | |
16 |
from .jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
16 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator | |
17 |
from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon |
|
17 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon | |
18 |
from scipy import asarray as ar,exp |
|
18 | from scipy import asarray as ar,exp | |
19 |
from scipy.optimize import curve_fit |
|
19 | from scipy.optimize import curve_fit | |
@@ -48,13 +48,13 def _unpickle_method(func_name, obj, cls): | |||||
48 |
|
48 | |||
49 |
|
49 | |||
50 |
class ParametersProc(ProcessingUnit): |
|
50 | class ParametersProc(ProcessingUnit): | |
51 |
|
51 | |||
52 |
METHODS = {} |
|
52 | METHODS = {} | |
53 |
nSeconds = None |
|
53 | nSeconds = None | |
54 |
|
54 | |||
55 |
def __init__(self): |
|
55 | def __init__(self): | |
56 |
ProcessingUnit.__init__(self) |
|
56 | ProcessingUnit.__init__(self) | |
57 |
|
57 | |||
58 |
# self.objectDict = {} |
|
58 | # self.objectDict = {} | |
59 |
self.buffer = None |
|
59 | self.buffer = None | |
60 |
self.firstdatatime = None |
|
60 | self.firstdatatime = None | |
@@ -63,14 +63,14 class ParametersProc(ProcessingUnit): | |||||
63 |
self.setupReq = False #Agregar a todas las unidades de proc |
|
63 | self.setupReq = False #Agregar a todas las unidades de proc | |
64 |
|
64 | |||
65 |
def __updateObjFromInput(self): |
|
65 | def __updateObjFromInput(self): | |
66 |
|
66 | |||
67 |
self.dataOut.inputUnit = self.dataIn.type |
|
67 | self.dataOut.inputUnit = self.dataIn.type | |
68 |
|
68 | |||
69 |
self.dataOut.timeZone = self.dataIn.timeZone |
|
69 | self.dataOut.timeZone = self.dataIn.timeZone | |
70 |
self.dataOut.dstFlag = self.dataIn.dstFlag |
|
70 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
71 |
self.dataOut.errorCount = self.dataIn.errorCount |
|
71 | self.dataOut.errorCount = self.dataIn.errorCount | |
72 |
self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
72 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
73 |
|
73 | |||
74 |
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
74 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
75 |
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
75 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
76 |
self.dataOut.channelList = self.dataIn.channelList |
|
76 | self.dataOut.channelList = self.dataIn.channelList | |
@@ -92,27 +92,41 class ParametersProc(ProcessingUnit): | |||||
92 |
self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
92 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
93 |
# self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
93 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
94 |
self.dataOut.timeInterval1 = self.dataIn.timeInterval |
|
94 | self.dataOut.timeInterval1 = self.dataIn.timeInterval | |
95 |
self.dataOut.heightList = self.dataIn.getHeiRange() |
|
95 | self.dataOut.heightList = self.dataIn.getHeiRange() | |
96 |
self.dataOut.frequency = self.dataIn.frequency |
|
96 | self.dataOut.frequency = self.dataIn.frequency | |
97 |
# self.dataOut.noise = self.dataIn.noise |
|
97 | # self.dataOut.noise = self.dataIn.noise | |
98 |
|
98 | |||
99 |
def run(self): |
|
99 | def run(self): | |
100 |
|
100 | |||
101 |
|
101 | |||
102 |
|
102 | |||
103 |
#---------------------- Voltage Data --------------------------- |
|
103 | #---------------------- Voltage Data --------------------------- | |
104 |
|
104 | |||
105 |
if self.dataIn.type == "Voltage": |
|
105 | if self.dataIn.type == "Voltage": | |
106 |
|
106 | |||
107 |
self.__updateObjFromInput() |
|
107 | self.__updateObjFromInput() | |
108 |
self.dataOut.data_pre = self.dataIn.data.copy() |
|
108 | self.dataOut.data_pre = self.dataIn.data.copy() | |
109 |
self.dataOut.flagNoData = False |
|
109 | self.dataOut.flagNoData = False | |
110 |
self.dataOut.utctimeInit = self.dataIn.utctime |
|
110 | self.dataOut.utctimeInit = self.dataIn.utctime | |
111 |
self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds |
|
111 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds | |
|
112 | if hasattr(self.dataIn, 'dataPP_POW'): | |||
|
113 | self.dataOut.dataPP_POW = self.dataIn.dataPP_POW | |||
|
114 | ||||
|
115 | if hasattr(self.dataIn, 'dataPP_POWER'): | |||
|
116 | self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER | |||
|
117 | ||||
|
118 | if hasattr(self.dataIn, 'dataPP_DOP'): | |||
|
119 | self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP | |||
|
120 | ||||
|
121 | if hasattr(self.dataIn, 'dataPP_SNR'): | |||
|
122 | self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR | |||
|
123 | ||||
|
124 | if hasattr(self.dataIn, 'dataPP_WIDTH'): | |||
|
125 | self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH | |||
112 |
return |
|
126 | return | |
113 |
|
127 | |||
114 |
#---------------------- Spectra Data --------------------------- |
|
128 | #---------------------- Spectra Data --------------------------- | |
115 |
|
129 | |||
116 |
if self.dataIn.type == "Spectra": |
|
130 | if self.dataIn.type == "Spectra": | |
117 |
|
131 | |||
118 |
self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc) |
|
132 | self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc) | |
@@ -126,243 +140,243 class ParametersProc(ProcessingUnit): | |||||
126 |
self.dataOut.spc_noise = self.dataIn.getNoise() |
|
140 | self.dataOut.spc_noise = self.dataIn.getNoise() | |
127 |
self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) |
|
141 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) | |
128 |
# self.dataOut.normFactor = self.dataIn.normFactor |
|
142 | # self.dataOut.normFactor = self.dataIn.normFactor | |
129 |
self.dataOut.pairsList = self.dataIn.pairsList |
|
143 | self.dataOut.pairsList = self.dataIn.pairsList | |
130 |
self.dataOut.groupList = self.dataIn.pairsList |
|
144 | self.dataOut.groupList = self.dataIn.pairsList | |
131 |
self.dataOut.flagNoData = False |
|
145 | self.dataOut.flagNoData = False | |
132 |
|
146 | |||
133 |
if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
147 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels | |
134 |
self.dataOut.ChanDist = self.dataIn.ChanDist |
|
148 | self.dataOut.ChanDist = self.dataIn.ChanDist | |
135 |
else: self.dataOut.ChanDist = None |
|
149 | else: self.dataOut.ChanDist = None | |
136 |
|
150 | |||
137 |
#if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
151 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range | |
138 |
# self.dataOut.VelRange = self.dataIn.VelRange |
|
152 | # self.dataOut.VelRange = self.dataIn.VelRange | |
139 |
#else: self.dataOut.VelRange = None |
|
153 | #else: self.dataOut.VelRange = None | |
140 |
|
154 | |||
141 |
if hasattr(self.dataIn, 'RadarConst'): #Radar Constant |
|
155 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant | |
142 |
self.dataOut.RadarConst = self.dataIn.RadarConst |
|
156 | self.dataOut.RadarConst = self.dataIn.RadarConst | |
143 |
|
157 | |||
144 |
if hasattr(self.dataIn, 'NPW'): #NPW |
|
158 | if hasattr(self.dataIn, 'NPW'): #NPW | |
145 |
self.dataOut.NPW = self.dataIn.NPW |
|
159 | self.dataOut.NPW = self.dataIn.NPW | |
146 |
|
160 | |||
147 |
if hasattr(self.dataIn, 'COFA'): #COFA |
|
161 | if hasattr(self.dataIn, 'COFA'): #COFA | |
148 |
self.dataOut.COFA = self.dataIn.COFA |
|
162 | self.dataOut.COFA = self.dataIn.COFA | |
149 |
|
163 | |||
150 |
|
164 | |||
151 |
|
165 | |||
152 |
#---------------------- Correlation Data --------------------------- |
|
166 | #---------------------- Correlation Data --------------------------- | |
153 |
|
167 | |||
154 |
if self.dataIn.type == "Correlation": |
|
168 | if self.dataIn.type == "Correlation": | |
155 |
acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() |
|
169 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() | |
156 |
|
170 | |||
157 |
self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) |
|
171 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) | |
158 |
self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) |
|
172 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) | |
159 |
self.dataOut.groupList = (acf_pairs, ccf_pairs) |
|
173 | self.dataOut.groupList = (acf_pairs, ccf_pairs) | |
160 |
|
174 | |||
161 |
self.dataOut.abscissaList = self.dataIn.lagRange |
|
175 | self.dataOut.abscissaList = self.dataIn.lagRange | |
162 |
self.dataOut.noise = self.dataIn.noise |
|
176 | self.dataOut.noise = self.dataIn.noise | |
163 |
self.dataOut.data_SNR = self.dataIn.SNR |
|
177 | self.dataOut.data_SNR = self.dataIn.SNR | |
164 |
self.dataOut.flagNoData = False |
|
178 | self.dataOut.flagNoData = False | |
165 |
self.dataOut.nAvg = self.dataIn.nAvg |
|
179 | self.dataOut.nAvg = self.dataIn.nAvg | |
166 |
|
180 | |||
167 |
#---------------------- Parameters Data --------------------------- |
|
181 | #---------------------- Parameters Data --------------------------- | |
168 |
|
182 | |||
169 |
if self.dataIn.type == "Parameters": |
|
183 | if self.dataIn.type == "Parameters": | |
170 |
self.dataOut.copy(self.dataIn) |
|
184 | self.dataOut.copy(self.dataIn) | |
171 |
self.dataOut.flagNoData = False |
|
185 | self.dataOut.flagNoData = False | |
172 |
|
186 | |||
173 |
return True |
|
187 | return True | |
174 |
|
188 | |||
175 |
self.__updateObjFromInput() |
|
189 | self.__updateObjFromInput() | |
176 |
self.dataOut.utctimeInit = self.dataIn.utctime |
|
190 | self.dataOut.utctimeInit = self.dataIn.utctime | |
177 |
self.dataOut.paramInterval = self.dataIn.timeInterval |
|
191 | self.dataOut.paramInterval = self.dataIn.timeInterval | |
178 |
|
192 | |||
179 |
return |
|
193 | return | |
180 |
|
194 | |||
181 |
|
195 | |||
182 |
def target(tups): |
|
196 | def target(tups): | |
183 |
|
197 | |||
184 |
obj, args = tups |
|
198 | obj, args = tups | |
185 |
|
199 | |||
186 |
return obj.FitGau(args) |
|
200 | return obj.FitGau(args) | |
187 |
|
201 | |||
188 |
|
202 | |||
189 |
class SpectralFilters(Operation): |
|
203 | class SpectralFilters(Operation): | |
190 |
|
204 | |||
191 |
'''This class allows the Rainfall / Wind Selection for CLAIRE RADAR |
|
205 | '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR | |
192 |
|
206 | |||
193 |
LimitR : It is the limit in m/s of Rainfall |
|
207 | LimitR : It is the limit in m/s of Rainfall | |
194 |
LimitW : It is the limit in m/s for Winds |
|
208 | LimitW : It is the limit in m/s for Winds | |
195 |
|
209 | |||
196 |
Input: |
|
210 | Input: | |
197 |
|
211 | |||
198 |
self.dataOut.data_pre : SPC and CSPC |
|
212 | self.dataOut.data_pre : SPC and CSPC | |
199 |
self.dataOut.spc_range : To select wind and rainfall velocities |
|
213 | self.dataOut.spc_range : To select wind and rainfall velocities | |
200 |
|
214 | |||
201 |
Affected: |
|
215 | Affected: | |
202 |
|
216 | |||
203 |
self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind |
|
217 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |
204 |
self.dataOut.spcparam_range : Used in SpcParamPlot |
|
218 | self.dataOut.spcparam_range : Used in SpcParamPlot | |
205 |
self.dataOut.SPCparam : Used in PrecipitationProc |
|
219 | self.dataOut.SPCparam : Used in PrecipitationProc | |
206 |
|
220 | |||
207 |
|
221 | |||
208 |
''' |
|
222 | ''' | |
209 |
|
223 | |||
210 |
def __init__(self): |
|
224 | def __init__(self): | |
211 |
Operation.__init__(self) |
|
225 | Operation.__init__(self) | |
212 |
self.i=0 |
|
226 | self.i=0 | |
213 |
|
227 | |||
214 |
def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5): |
|
228 | def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5): | |
215 |
|
229 | |||
216 |
|
230 | |||
217 |
#Limite de vientos |
|
231 | #Limite de vientos | |
218 |
LimitR = PositiveLimit |
|
232 | LimitR = PositiveLimit | |
219 |
LimitN = NegativeLimit |
|
233 | LimitN = NegativeLimit | |
220 |
|
234 | |||
221 |
self.spc = dataOut.data_pre[0].copy() |
|
235 | self.spc = dataOut.data_pre[0].copy() | |
222 |
self.cspc = dataOut.data_pre[1].copy() |
|
236 | self.cspc = dataOut.data_pre[1].copy() | |
223 |
|
237 | |||
224 |
self.Num_Hei = self.spc.shape[2] |
|
238 | self.Num_Hei = self.spc.shape[2] | |
225 |
self.Num_Bin = self.spc.shape[1] |
|
239 | self.Num_Bin = self.spc.shape[1] | |
226 |
self.Num_Chn = self.spc.shape[0] |
|
240 | self.Num_Chn = self.spc.shape[0] | |
227 |
|
241 | |||
228 |
VelRange = dataOut.spc_range[2] |
|
242 | VelRange = dataOut.spc_range[2] | |
229 |
TimeRange = dataOut.spc_range[1] |
|
243 | TimeRange = dataOut.spc_range[1] | |
230 |
FrecRange = dataOut.spc_range[0] |
|
244 | FrecRange = dataOut.spc_range[0] | |
231 |
|
245 | |||
232 |
Vmax= 2*numpy.max(dataOut.spc_range[2]) |
|
246 | Vmax= 2*numpy.max(dataOut.spc_range[2]) | |
233 |
Tmax= 2*numpy.max(dataOut.spc_range[1]) |
|
247 | Tmax= 2*numpy.max(dataOut.spc_range[1]) | |
234 |
Fmax= 2*numpy.max(dataOut.spc_range[0]) |
|
248 | Fmax= 2*numpy.max(dataOut.spc_range[0]) | |
235 |
|
249 | |||
236 |
Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()] |
|
250 | Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()] | |
237 |
Breaker1R=numpy.where(VelRange == Breaker1R) |
|
251 | Breaker1R=numpy.where(VelRange == Breaker1R) | |
238 |
|
252 | |||
239 |
Delta = self.Num_Bin/2 - Breaker1R[0] |
|
253 | Delta = self.Num_Bin/2 - Breaker1R[0] | |
240 |
|
254 | |||
241 |
|
255 | |||
242 |
'''Reacomodando SPCrange''' |
|
256 | '''Reacomodando SPCrange''' | |
243 |
|
257 | |||
244 |
VelRange=numpy.roll(VelRange,-(int(self.Num_Bin/2)) ,axis=0) |
|
258 | VelRange=numpy.roll(VelRange,-(int(self.Num_Bin/2)) ,axis=0) | |
245 |
|
259 | |||
246 |
VelRange[-(int(self.Num_Bin/2)):]+= Vmax |
|
260 | VelRange[-(int(self.Num_Bin/2)):]+= Vmax | |
247 |
|
261 | |||
248 |
FrecRange=numpy.roll(FrecRange,-(int(self.Num_Bin/2)),axis=0) |
|
262 | FrecRange=numpy.roll(FrecRange,-(int(self.Num_Bin/2)),axis=0) | |
249 |
|
263 | |||
250 |
FrecRange[-(int(self.Num_Bin/2)):]+= Fmax |
|
264 | FrecRange[-(int(self.Num_Bin/2)):]+= Fmax | |
251 |
|
265 | |||
252 |
TimeRange=numpy.roll(TimeRange,-(int(self.Num_Bin/2)),axis=0) |
|
266 | TimeRange=numpy.roll(TimeRange,-(int(self.Num_Bin/2)),axis=0) | |
253 |
|
267 | |||
254 |
TimeRange[-(int(self.Num_Bin/2)):]+= Tmax |
|
268 | TimeRange[-(int(self.Num_Bin/2)):]+= Tmax | |
255 |
|
269 | |||
256 |
''' ------------------ ''' |
|
270 | ''' ------------------ ''' | |
257 |
|
271 | |||
258 |
Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()] |
|
272 | Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()] | |
259 |
Breaker2R=numpy.where(VelRange == Breaker2R) |
|
273 | Breaker2R=numpy.where(VelRange == Breaker2R) | |
260 |
|
274 | |||
261 |
|
275 | |||
262 |
SPCroll = numpy.roll(self.spc,-(int(self.Num_Bin/2)) ,axis=1) |
|
276 | SPCroll = numpy.roll(self.spc,-(int(self.Num_Bin/2)) ,axis=1) | |
263 |
|
277 | |||
264 |
SPCcut = SPCroll.copy() |
|
278 | SPCcut = SPCroll.copy() | |
265 |
for i in range(self.Num_Chn): |
|
279 | for i in range(self.Num_Chn): | |
266 |
|
280 | |||
267 |
SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i] |
|
281 | SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i] | |
268 |
SPCcut[i,-int(Delta):,:] = dataOut.noise[i] |
|
282 | SPCcut[i,-int(Delta):,:] = dataOut.noise[i] | |
269 |
|
283 | |||
270 |
SPCcut[i]=SPCcut[i]- dataOut.noise[i] |
|
284 | SPCcut[i]=SPCcut[i]- dataOut.noise[i] | |
271 |
SPCcut[ numpy.where( SPCcut<0 ) ] = 1e-20 |
|
285 | SPCcut[ numpy.where( SPCcut<0 ) ] = 1e-20 | |
272 |
|
286 | |||
273 |
SPCroll[i]=SPCroll[i]-dataOut.noise[i] |
|
287 | SPCroll[i]=SPCroll[i]-dataOut.noise[i] | |
274 |
SPCroll[ numpy.where( SPCroll<0 ) ] = 1e-20 |
|
288 | SPCroll[ numpy.where( SPCroll<0 ) ] = 1e-20 | |
275 |
|
289 | |||
276 |
SPC_ch1 = SPCroll |
|
290 | SPC_ch1 = SPCroll | |
277 |
|
291 | |||
278 |
SPC_ch2 = SPCcut |
|
292 | SPC_ch2 = SPCcut | |
279 |
|
293 | |||
280 |
SPCparam = (SPC_ch1, SPC_ch2, self.spc) |
|
294 | SPCparam = (SPC_ch1, SPC_ch2, self.spc) | |
281 |
dataOut.SPCparam = numpy.asarray(SPCparam) |
|
295 | dataOut.SPCparam = numpy.asarray(SPCparam) | |
282 |
|
296 | |||
283 |
|
297 | |||
284 |
dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1]) |
|
298 | dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1]) | |
285 |
|
299 | |||
286 |
dataOut.spcparam_range[2]=VelRange |
|
300 | dataOut.spcparam_range[2]=VelRange | |
287 |
dataOut.spcparam_range[1]=TimeRange |
|
301 | dataOut.spcparam_range[1]=TimeRange | |
288 |
dataOut.spcparam_range[0]=FrecRange |
|
302 | dataOut.spcparam_range[0]=FrecRange | |
289 |
return dataOut |
|
303 | return dataOut | |
290 |
|
304 | |||
291 |
class GaussianFit(Operation): |
|
305 | class GaussianFit(Operation): | |
292 |
|
306 | |||
293 |
''' |
|
307 | ''' | |
294 |
Function that fit of one and two generalized gaussians (gg) based |
|
308 | Function that fit of one and two generalized gaussians (gg) based | |
295 |
on the PSD shape across an "power band" identified from a cumsum of |
|
309 | on the PSD shape across an "power band" identified from a cumsum of | |
296 |
the measured spectrum - noise. |
|
310 | the measured spectrum - noise. | |
297 |
|
311 | |||
298 |
Input: |
|
312 | Input: | |
299 |
self.dataOut.data_pre : SelfSpectra |
|
313 | self.dataOut.data_pre : SelfSpectra | |
300 |
|
314 | |||
301 |
Output: |
|
315 | Output: | |
302 |
self.dataOut.SPCparam : SPC_ch1, SPC_ch2 |
|
316 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 | |
303 |
|
317 | |||
304 |
''' |
|
318 | ''' | |
305 |
def __init__(self): |
|
319 | def __init__(self): | |
306 |
Operation.__init__(self) |
|
320 | Operation.__init__(self) | |
307 |
self.i=0 |
|
321 | self.i=0 | |
308 |
|
322 | |||
309 |
|
323 | |||
310 |
def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points |
|
324 | def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
311 |
"""This routine will find a couple of generalized Gaussians to a power spectrum |
|
325 | """This routine will find a couple of generalized Gaussians to a power spectrum | |
312 |
input: spc |
|
326 | input: spc | |
313 |
output: |
|
327 | output: | |
314 |
Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise |
|
328 | Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise | |
315 |
""" |
|
329 | """ | |
316 |
|
330 | |||
317 |
self.spc = dataOut.data_pre[0].copy() |
|
331 | self.spc = dataOut.data_pre[0].copy() | |
318 |
self.Num_Hei = self.spc.shape[2] |
|
332 | self.Num_Hei = self.spc.shape[2] | |
319 |
self.Num_Bin = self.spc.shape[1] |
|
333 | self.Num_Bin = self.spc.shape[1] | |
320 |
self.Num_Chn = self.spc.shape[0] |
|
334 | self.Num_Chn = self.spc.shape[0] | |
321 |
Vrange = dataOut.abscissaList |
|
335 | Vrange = dataOut.abscissaList | |
322 |
|
336 | |||
323 |
GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
337 | GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
324 |
SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
338 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
325 |
SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
339 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
326 |
SPC_ch1[:] = numpy.NaN |
|
340 | SPC_ch1[:] = numpy.NaN | |
327 |
SPC_ch2[:] = numpy.NaN |
|
341 | SPC_ch2[:] = numpy.NaN | |
328 |
|
342 | |||
329 |
|
343 | |||
330 |
start_time = time.time() |
|
344 | start_time = time.time() | |
331 |
|
345 | |||
332 |
noise_ = dataOut.spc_noise[0].copy() |
|
346 | noise_ = dataOut.spc_noise[0].copy() | |
333 |
|
347 | |||
334 |
|
348 | |||
335 |
pool = Pool(processes=self.Num_Chn) |
|
349 | pool = Pool(processes=self.Num_Chn) | |
336 |
args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] |
|
350 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] | |
337 |
objs = [self for __ in range(self.Num_Chn)] |
|
351 | objs = [self for __ in range(self.Num_Chn)] | |
338 |
attrs = list(zip(objs, args)) |
|
352 | attrs = list(zip(objs, args)) | |
339 |
gauSPC = pool.map(target, attrs) |
|
353 | gauSPC = pool.map(target, attrs) | |
340 |
dataOut.SPCparam = numpy.asarray(SPCparam) |
|
354 | dataOut.SPCparam = numpy.asarray(SPCparam) | |
341 |
|
355 | |||
342 |
''' Parameters: |
|
356 | ''' Parameters: | |
343 |
1. Amplitude |
|
357 | 1. Amplitude | |
344 |
2. Shift |
|
358 | 2. Shift | |
345 |
3. Width |
|
359 | 3. Width | |
346 |
4. Power |
|
360 | 4. Power | |
347 |
''' |
|
361 | ''' | |
348 |
|
362 | |||
349 |
def FitGau(self, X): |
|
363 | def FitGau(self, X): | |
350 |
|
364 | |||
351 |
Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X |
|
365 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X | |
352 |
|
366 | |||
353 |
SPCparam = [] |
|
367 | SPCparam = [] | |
354 |
SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
368 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
355 |
SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
369 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
356 |
SPC_ch1[:] = 0#numpy.NaN |
|
370 | SPC_ch1[:] = 0#numpy.NaN | |
357 |
SPC_ch2[:] = 0#numpy.NaN |
|
371 | SPC_ch2[:] = 0#numpy.NaN | |
358 |
|
372 | |||
359 |
|
373 | |||
360 |
|
374 | |||
361 |
for ht in range(self.Num_Hei): |
|
375 | for ht in range(self.Num_Hei): | |
362 |
|
376 | |||
363 |
|
377 | |||
364 |
spc = numpy.asarray(self.spc)[ch,:,ht] |
|
378 | spc = numpy.asarray(self.spc)[ch,:,ht] | |
365 |
|
379 | |||
366 |
############################################# |
|
380 | ############################################# | |
367 |
# normalizing spc and noise |
|
381 | # normalizing spc and noise | |
368 |
# This part differs from gg1 |
|
382 | # This part differs from gg1 | |
@@ -370,60 +384,60 class GaussianFit(Operation): | |||||
370 |
#spc = spc / spc_norm_max |
|
384 | #spc = spc / spc_norm_max | |
371 |
pnoise = pnoise #/ spc_norm_max |
|
385 | pnoise = pnoise #/ spc_norm_max | |
372 |
############################################# |
|
386 | ############################################# | |
373 |
|
387 | |||
374 |
fatspectra=1.0 |
|
388 | fatspectra=1.0 | |
375 |
|
389 | |||
376 |
wnoise = noise_ #/ spc_norm_max |
|
390 | wnoise = noise_ #/ spc_norm_max | |
377 |
#wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
391 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |
378 |
#if wnoise>1.1*pnoise: # to be tested later |
|
392 | #if wnoise>1.1*pnoise: # to be tested later | |
379 |
# wnoise=pnoise |
|
393 | # wnoise=pnoise | |
380 |
noisebl=wnoise*0.9; |
|
394 | noisebl=wnoise*0.9; | |
381 |
noisebh=wnoise*1.1 |
|
395 | noisebh=wnoise*1.1 | |
382 |
spc=spc-wnoise |
|
396 | spc=spc-wnoise | |
383 |
|
397 | |||
384 |
minx=numpy.argmin(spc) |
|
398 | minx=numpy.argmin(spc) | |
385 |
#spcs=spc.copy() |
|
399 | #spcs=spc.copy() | |
386 |
spcs=numpy.roll(spc,-minx) |
|
400 | spcs=numpy.roll(spc,-minx) | |
387 |
cum=numpy.cumsum(spcs) |
|
401 | cum=numpy.cumsum(spcs) | |
388 |
tot_noise=wnoise * self.Num_Bin #64; |
|
402 | tot_noise=wnoise * self.Num_Bin #64; | |
389 |
|
403 | |||
390 |
snr = sum(spcs)/tot_noise |
|
404 | snr = sum(spcs)/tot_noise | |
391 |
snrdB=10.*numpy.log10(snr) |
|
405 | snrdB=10.*numpy.log10(snr) | |
392 |
|
406 | |||
393 |
if snrdB < SNRlimit : |
|
407 | if snrdB < SNRlimit : | |
394 |
snr = numpy.NaN |
|
408 | snr = numpy.NaN | |
395 |
SPC_ch1[:,ht] = 0#numpy.NaN |
|
409 | SPC_ch1[:,ht] = 0#numpy.NaN | |
396 |
SPC_ch1[:,ht] = 0#numpy.NaN |
|
410 | SPC_ch1[:,ht] = 0#numpy.NaN | |
397 |
SPCparam = (SPC_ch1,SPC_ch2) |
|
411 | SPCparam = (SPC_ch1,SPC_ch2) | |
398 |
continue |
|
412 | continue | |
399 |
|
413 | |||
400 |
|
414 | |||
401 |
#if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
415 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |
402 |
# return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
416 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
403 |
|
417 | |||
404 |
cummax=max(cum); |
|
418 | cummax=max(cum); | |
405 |
epsi=0.08*fatspectra # cumsum to narrow down the energy region |
|
419 | epsi=0.08*fatspectra # cumsum to narrow down the energy region | |
406 |
cumlo=cummax*epsi; |
|
420 | cumlo=cummax*epsi; | |
407 |
cumhi=cummax*(1-epsi) |
|
421 | cumhi=cummax*(1-epsi) | |
408 |
powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
422 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
409 |
|
423 | |||
410 |
|
424 | |||
411 |
if len(powerindex) < 1:# case for powerindex 0 |
|
425 | if len(powerindex) < 1:# case for powerindex 0 | |
412 |
continue |
|
426 | continue | |
413 |
powerlo=powerindex[0] |
|
427 | powerlo=powerindex[0] | |
414 |
powerhi=powerindex[-1] |
|
428 | powerhi=powerindex[-1] | |
415 |
powerwidth=powerhi-powerlo |
|
429 | powerwidth=powerhi-powerlo | |
416 |
|
430 | |||
417 |
firstpeak=powerlo+powerwidth/10.# first gaussian energy location |
|
431 | firstpeak=powerlo+powerwidth/10.# first gaussian energy location | |
418 |
secondpeak=powerhi-powerwidth/10.#second gaussian energy location |
|
432 | secondpeak=powerhi-powerwidth/10.#second gaussian energy location | |
419 |
midpeak=(firstpeak+secondpeak)/2. |
|
433 | midpeak=(firstpeak+secondpeak)/2. | |
420 |
firstamp=spcs[int(firstpeak)] |
|
434 | firstamp=spcs[int(firstpeak)] | |
421 |
secondamp=spcs[int(secondpeak)] |
|
435 | secondamp=spcs[int(secondpeak)] | |
422 |
midamp=spcs[int(midpeak)] |
|
436 | midamp=spcs[int(midpeak)] | |
423 |
|
437 | |||
424 |
x=numpy.arange( self.Num_Bin ) |
|
438 | x=numpy.arange( self.Num_Bin ) | |
425 |
y_data=spc+wnoise |
|
439 | y_data=spc+wnoise | |
426 |
|
440 | |||
427 |
''' single Gaussian ''' |
|
441 | ''' single Gaussian ''' | |
428 |
shift0=numpy.mod(midpeak+minx, self.Num_Bin ) |
|
442 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) | |
429 |
width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 |
|
443 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
@@ -432,10 +446,10 class GaussianFit(Operation): | |||||
432 |
state0=[shift0,width0,amplitude0,power0,wnoise] |
|
446 | state0=[shift0,width0,amplitude0,power0,wnoise] | |
433 |
bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
447 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
434 |
lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
448 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |
435 |
|
||||
436 | chiSq1=lsq1[1]; |
|
|||
437 |
|
449 | |||
438 |
|
|
450 | chiSq1=lsq1[1]; | |
|
451 | ||||
|
452 | ||||
439 |
if fatspectra<1.0 and powerwidth<4: |
|
453 | if fatspectra<1.0 and powerwidth<4: | |
440 |
choice=0 |
|
454 | choice=0 | |
441 |
Amplitude0=lsq1[0][2] |
|
455 | Amplitude0=lsq1[0][2] | |
@@ -449,31 +463,31 class GaussianFit(Operation): | |||||
449 |
noise=lsq1[0][4] |
|
463 | noise=lsq1[0][4] | |
450 |
#return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
464 | #return (numpy.array([shift0,width0,Amplitude0,p0]), | |
451 |
# numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
465 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |
452 |
|
466 | |||
453 |
''' two gaussians ''' |
|
467 | ''' two gaussians ''' | |
454 |
#shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
468 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |
455 |
shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); |
|
469 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); | |
456 |
shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
470 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) | |
457 |
width0=powerwidth/6.; |
|
471 | width0=powerwidth/6.; | |
458 |
width1=width0 |
|
472 | width1=width0 | |
459 |
power0=2.; |
|
473 | power0=2.; | |
460 |
power1=power0 |
|
474 | power1=power0 | |
461 |
amplitude0=firstamp; |
|
475 | amplitude0=firstamp; | |
462 |
amplitude1=secondamp |
|
476 | amplitude1=secondamp | |
463 |
state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] |
|
477 | state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
464 |
#bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
478 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
465 |
bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
479 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
466 |
#bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
480 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |
467 |
|
481 | |||
468 |
lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) |
|
482 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) | |
469 |
|
483 | |||
470 |
|
484 | |||
471 |
chiSq2=lsq2[1]; |
|
485 | chiSq2=lsq2[1]; | |
472 |
|
486 | |||
473 |
|
487 | |||
474 |
|
488 | |||
475 |
oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
489 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
476 |
|
490 | |||
477 |
if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error |
|
491 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error | |
478 |
if oneG: |
|
492 | if oneG: | |
479 |
choice=0 |
|
493 | choice=0 | |
@@ -481,10 +495,10 class GaussianFit(Operation): | |||||
481 |
w1=lsq2[0][1]; w2=lsq2[0][5] |
|
495 | w1=lsq2[0][1]; w2=lsq2[0][5] | |
482 |
a1=lsq2[0][2]; a2=lsq2[0][6] |
|
496 | a1=lsq2[0][2]; a2=lsq2[0][6] | |
483 |
p1=lsq2[0][3]; p2=lsq2[0][7] |
|
497 | p1=lsq2[0][3]; p2=lsq2[0][7] | |
484 |
s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; |
|
498 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; | |
485 |
s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; |
|
499 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; | |
486 |
gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
500 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling | |
487 |
|
501 | |||
488 |
if gp1>gp2: |
|
502 | if gp1>gp2: | |
489 |
if a1>0.7*a2: |
|
503 | if a1>0.7*a2: | |
490 |
choice=1 |
|
504 | choice=1 | |
@@ -499,157 +513,157 class GaussianFit(Operation): | |||||
499 |
choice=numpy.argmax([a1,a2])+1 |
|
513 | choice=numpy.argmax([a1,a2])+1 | |
500 |
#else: |
|
514 | #else: | |
501 |
#choice=argmin([std2a,std2b])+1 |
|
515 | #choice=argmin([std2a,std2b])+1 | |
502 |
|
516 | |||
503 |
else: # with low SNR go to the most energetic peak |
|
517 | else: # with low SNR go to the most energetic peak | |
504 |
choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
518 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
505 |
|
519 | |||
506 |
|
520 | |||
507 |
shift0=lsq2[0][0]; |
|
521 | shift0=lsq2[0][0]; | |
508 |
vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) |
|
522 | vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) | |
509 |
shift1=lsq2[0][4]; |
|
523 | shift1=lsq2[0][4]; | |
510 |
vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) |
|
524 | vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) | |
511 |
|
525 | |||
512 |
max_vel = 1.0 |
|
526 | max_vel = 1.0 | |
513 |
|
527 | |||
514 |
#first peak will be 0, second peak will be 1 |
|
528 | #first peak will be 0, second peak will be 1 | |
515 |
if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range |
|
529 | if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range | |
516 |
shift0=lsq2[0][0] |
|
530 | shift0=lsq2[0][0] | |
517 |
width0=lsq2[0][1] |
|
531 | width0=lsq2[0][1] | |
518 |
Amplitude0=lsq2[0][2] |
|
532 | Amplitude0=lsq2[0][2] | |
519 |
p0=lsq2[0][3] |
|
533 | p0=lsq2[0][3] | |
520 |
|
534 | |||
521 |
shift1=lsq2[0][4] |
|
535 | shift1=lsq2[0][4] | |
522 |
width1=lsq2[0][5] |
|
536 | width1=lsq2[0][5] | |
523 |
Amplitude1=lsq2[0][6] |
|
537 | Amplitude1=lsq2[0][6] | |
524 |
p1=lsq2[0][7] |
|
538 | p1=lsq2[0][7] | |
525 |
noise=lsq2[0][8] |
|
539 | noise=lsq2[0][8] | |
526 |
else: |
|
540 | else: | |
527 |
shift1=lsq2[0][0] |
|
541 | shift1=lsq2[0][0] | |
528 |
width1=lsq2[0][1] |
|
542 | width1=lsq2[0][1] | |
529 |
Amplitude1=lsq2[0][2] |
|
543 | Amplitude1=lsq2[0][2] | |
530 |
p1=lsq2[0][3] |
|
544 | p1=lsq2[0][3] | |
531 |
|
545 | |||
532 |
shift0=lsq2[0][4] |
|
546 | shift0=lsq2[0][4] | |
533 |
width0=lsq2[0][5] |
|
547 | width0=lsq2[0][5] | |
534 |
Amplitude0=lsq2[0][6] |
|
548 | Amplitude0=lsq2[0][6] | |
535 |
p0=lsq2[0][7] |
|
549 | p0=lsq2[0][7] | |
536 |
noise=lsq2[0][8] |
|
550 | noise=lsq2[0][8] | |
537 |
|
551 | |||
538 |
if Amplitude0<0.05: # in case the peak is noise |
|
552 | if Amplitude0<0.05: # in case the peak is noise | |
539 |
shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN] |
|
553 | shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN] | |
540 |
if Amplitude1<0.05: |
|
554 | if Amplitude1<0.05: | |
541 |
shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN] |
|
555 | shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN] | |
542 |
|
556 | |||
543 |
|
557 | |||
544 |
SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 |
|
558 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 | |
545 |
SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 |
|
559 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 | |
546 |
SPCparam = (SPC_ch1,SPC_ch2) |
|
560 | SPCparam = (SPC_ch1,SPC_ch2) | |
547 |
|
561 | |||
548 |
|
562 | |||
549 |
return GauSPC |
|
563 | return GauSPC | |
550 |
|
564 | |||
551 |
def y_model1(self,x,state): |
|
565 | def y_model1(self,x,state): | |
552 |
shift0,width0,amplitude0,power0,noise=state |
|
566 | shift0,width0,amplitude0,power0,noise=state | |
553 |
model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
567 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
554 |
|
568 | |||
555 |
model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) |
|
569 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) | |
556 |
|
570 | |||
557 |
model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) |
|
571 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) | |
558 |
return model0+model0u+model0d+noise |
|
572 | return model0+model0u+model0d+noise | |
559 |
|
573 | |||
560 |
def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist |
|
574 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist | |
561 |
shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state |
|
575 | shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state | |
562 |
model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
576 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
563 |
|
577 | |||
564 |
model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) |
|
578 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) | |
565 |
|
579 | |||
566 |
model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) |
|
580 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) | |
567 |
model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1) |
|
581 | model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1) | |
568 |
|
582 | |||
569 |
model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) |
|
583 | model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) | |
570 |
|
584 | |||
571 |
model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) |
|
585 | model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) | |
572 |
return model0+model0u+model0d+model1+model1u+model1d+noise |
|
586 | return model0+model0u+model0d+model1+model1u+model1d+noise | |
573 |
|
587 | |||
574 |
def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. |
|
588 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. | |
575 |
|
589 | |||
576 |
return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented |
|
590 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented | |
577 |
|
591 | |||
578 |
def misfit2(self,state,y_data,x,num_intg): |
|
592 | def misfit2(self,state,y_data,x,num_intg): | |
579 |
return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) |
|
593 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) | |
580 |
|
594 | |||
581 |
|
595 | |||
582 |
|
596 | |||
583 |
class PrecipitationProc(Operation): |
|
597 | class PrecipitationProc(Operation): | |
584 |
|
598 | |||
585 |
''' |
|
599 | ''' | |
586 |
Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) |
|
600 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) | |
587 |
|
601 | |||
588 |
Input: |
|
602 | Input: | |
589 |
self.dataOut.data_pre : SelfSpectra |
|
603 | self.dataOut.data_pre : SelfSpectra | |
590 |
|
604 | |||
591 |
Output: |
|
605 | Output: | |
592 |
|
606 | |||
593 |
self.dataOut.data_output : Reflectivity factor, rainfall Rate |
|
607 | self.dataOut.data_output : Reflectivity factor, rainfall Rate | |
594 |
|
608 | |||
595 |
|
609 | |||
596 |
Parameters affected: |
|
610 | Parameters affected: | |
597 |
''' |
|
611 | ''' | |
598 |
|
612 | |||
599 |
def __init__(self): |
|
613 | def __init__(self): | |
600 |
Operation.__init__(self) |
|
614 | Operation.__init__(self) | |
601 |
self.i=0 |
|
615 | self.i=0 | |
602 |
|
616 | |||
603 |
|
617 | |||
604 |
def gaus(self,xSamples,Amp,Mu,Sigma): |
|
618 | def gaus(self,xSamples,Amp,Mu,Sigma): | |
605 |
return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) |
|
619 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) | |
606 |
|
620 | |||
607 |
|
621 | |||
608 |
|
622 | |||
609 |
def Moments(self, ySamples, xSamples): |
|
623 | def Moments(self, ySamples, xSamples): | |
610 |
Pot = numpy.nansum( ySamples ) # Potencia, momento 0 |
|
624 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 | |
611 |
yNorm = ySamples / Pot |
|
625 | yNorm = ySamples / Pot | |
612 |
|
626 | |||
613 |
Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento |
|
627 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento | |
614 |
Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento |
|
628 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento | |
615 |
Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral |
|
629 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral | |
616 |
|
630 | |||
617 |
return numpy.array([Pot, Vr, Desv]) |
|
631 | return numpy.array([Pot, Vr, Desv]) | |
618 |
|
632 | |||
619 |
def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, |
|
633 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, | |
620 |
tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km = 0.93, Altitude=3350): |
|
634 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km = 0.93, Altitude=3350): | |
621 |
|
635 | |||
622 |
|
636 | |||
623 |
Velrange = dataOut.spcparam_range[2] |
|
637 | Velrange = dataOut.spcparam_range[2] | |
624 |
FrecRange = dataOut.spcparam_range[0] |
|
638 | FrecRange = dataOut.spcparam_range[0] | |
625 |
|
639 | |||
626 |
dV= Velrange[1]-Velrange[0] |
|
640 | dV= Velrange[1]-Velrange[0] | |
627 |
dF= FrecRange[1]-FrecRange[0] |
|
641 | dF= FrecRange[1]-FrecRange[0] | |
628 |
|
642 | |||
629 |
if radar == "MIRA35C" : |
|
643 | if radar == "MIRA35C" : | |
630 |
|
644 | |||
631 |
self.spc = dataOut.data_pre[0].copy() |
|
645 | self.spc = dataOut.data_pre[0].copy() | |
632 |
self.Num_Hei = self.spc.shape[2] |
|
646 | self.Num_Hei = self.spc.shape[2] | |
633 |
self.Num_Bin = self.spc.shape[1] |
|
647 | self.Num_Bin = self.spc.shape[1] | |
634 |
self.Num_Chn = self.spc.shape[0] |
|
648 | self.Num_Chn = self.spc.shape[0] | |
635 |
Ze = self.dBZeMODE2(dataOut) |
|
649 | Ze = self.dBZeMODE2(dataOut) | |
636 |
|
650 | |||
637 |
else: |
|
651 | else: | |
638 |
|
652 | |||
639 |
self.spc = dataOut.SPCparam[1].copy() #dataOut.data_pre[0].copy() # |
|
653 | self.spc = dataOut.SPCparam[1].copy() #dataOut.data_pre[0].copy() # | |
640 |
|
654 | |||
641 |
"""NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX""" |
|
655 | """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX""" | |
642 |
|
656 | |||
643 |
self.spc[:,:,0:7]= numpy.NaN |
|
657 | self.spc[:,:,0:7]= numpy.NaN | |
644 |
|
658 | |||
645 |
"""##########################################""" |
|
659 | """##########################################""" | |
646 |
|
660 | |||
647 |
self.Num_Hei = self.spc.shape[2] |
|
661 | self.Num_Hei = self.spc.shape[2] | |
648 |
self.Num_Bin = self.spc.shape[1] |
|
662 | self.Num_Bin = self.spc.shape[1] | |
649 |
self.Num_Chn = self.spc.shape[0] |
|
663 | self.Num_Chn = self.spc.shape[0] | |
650 |
|
664 | |||
651 |
''' Se obtiene la constante del RADAR ''' |
|
665 | ''' Se obtiene la constante del RADAR ''' | |
652 |
|
666 | |||
653 |
self.Pt = Pt |
|
667 | self.Pt = Pt | |
654 |
self.Gt = Gt |
|
668 | self.Gt = Gt | |
655 |
self.Gr = Gr |
|
669 | self.Gr = Gr | |
@@ -658,30 +672,30 class PrecipitationProc(Operation): | |||||
658 |
self.tauW = tauW |
|
672 | self.tauW = tauW | |
659 |
self.ThetaT = ThetaT |
|
673 | self.ThetaT = ThetaT | |
660 |
self.ThetaR = ThetaR |
|
674 | self.ThetaR = ThetaR | |
661 |
|
675 | |||
662 |
Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
676 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
663 |
Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) |
|
677 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) | |
664 |
RadarConstant = 10e-26 * Numerator / Denominator # |
|
678 | RadarConstant = 10e-26 * Numerator / Denominator # | |
665 |
|
679 | |||
666 |
''' ============================= ''' |
|
680 | ''' ============================= ''' | |
667 |
|
681 | |||
668 |
self.spc[0] = (self.spc[0]-dataOut.noise[0]) |
|
682 | self.spc[0] = (self.spc[0]-dataOut.noise[0]) | |
669 |
self.spc[1] = (self.spc[1]-dataOut.noise[1]) |
|
683 | self.spc[1] = (self.spc[1]-dataOut.noise[1]) | |
670 |
self.spc[2] = (self.spc[2]-dataOut.noise[2]) |
|
684 | self.spc[2] = (self.spc[2]-dataOut.noise[2]) | |
671 |
|
685 | |||
672 |
self.spc[ numpy.where(self.spc < 0)] = 0 |
|
686 | self.spc[ numpy.where(self.spc < 0)] = 0 | |
673 |
|
687 | |||
674 |
SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise)) |
|
688 | SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise)) | |
675 |
SPCmean[ numpy.where(SPCmean < 0)] = 0 |
|
689 | SPCmean[ numpy.where(SPCmean < 0)] = 0 | |
676 |
|
690 | |||
677 |
ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
691 | ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
678 |
ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
692 | ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
679 |
ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
693 | ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
680 |
|
694 | |||
681 |
Pr = SPCmean[:,:] |
|
695 | Pr = SPCmean[:,:] | |
682 |
|
696 | |||
683 |
VelMeteoro = numpy.mean(SPCmean,axis=0) |
|
697 | VelMeteoro = numpy.mean(SPCmean,axis=0) | |
684 |
|
698 | |||
685 |
D_range = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
699 | D_range = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
686 |
SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
700 | SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
687 |
N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
701 | N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
@@ -690,102 +704,102 class PrecipitationProc(Operation): | |||||
690 |
Z = numpy.zeros(self.Num_Hei) |
|
704 | Z = numpy.zeros(self.Num_Hei) | |
691 |
Ze = numpy.zeros(self.Num_Hei) |
|
705 | Ze = numpy.zeros(self.Num_Hei) | |
692 |
RR = numpy.zeros(self.Num_Hei) |
|
706 | RR = numpy.zeros(self.Num_Hei) | |
693 |
|
707 | |||
694 |
Range = dataOut.heightList*1000. |
|
708 | Range = dataOut.heightList*1000. | |
695 |
|
709 | |||
696 |
for R in range(self.Num_Hei): |
|
710 | for R in range(self.Num_Hei): | |
697 |
|
711 | |||
698 |
h = Range[R] + Altitude #Range from ground to radar pulse altitude |
|
712 | h = Range[R] + Altitude #Range from ground to radar pulse altitude | |
699 |
del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity |
|
713 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity | |
700 |
|
714 | |||
701 |
D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3 |
|
715 | D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3 | |
702 |
|
716 | |||
703 |
'''NOTA: ETA(n) dn = ETA(f) df |
|
717 | '''NOTA: ETA(n) dn = ETA(f) df | |
704 |
|
718 | |||
705 |
dn = 1 Diferencial de muestreo |
|
719 | dn = 1 Diferencial de muestreo | |
706 |
df = ETA(n) / ETA(f) |
|
720 | df = ETA(n) / ETA(f) | |
707 |
|
721 | |||
708 |
''' |
|
722 | ''' | |
709 |
|
723 | |||
710 |
ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA) |
|
724 | ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA) | |
711 |
|
725 | |||
712 |
ETAv[:,R]=ETAn[:,R]/dV |
|
726 | ETAv[:,R]=ETAn[:,R]/dV | |
713 |
|
727 | |||
714 |
ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R]) |
|
728 | ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R]) | |
715 |
|
729 | |||
716 |
SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma) |
|
730 | SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma) | |
717 |
|
731 | |||
718 |
N_dist[:,R] = ETAn[:,R] / SIGMA[:,R] |
|
732 | N_dist[:,R] = ETAn[:,R] / SIGMA[:,R] | |
719 |
|
733 | |||
720 |
DMoments = self.Moments(Pr[:,R], Velrange[0:self.Num_Bin]) |
|
734 | DMoments = self.Moments(Pr[:,R], Velrange[0:self.Num_Bin]) | |
721 |
|
735 | |||
722 |
try: |
|
736 | try: | |
723 |
popt01,pcov = curve_fit(self.gaus, Velrange[0:self.Num_Bin] , Pr[:,R] , p0=DMoments) |
|
737 | popt01,pcov = curve_fit(self.gaus, Velrange[0:self.Num_Bin] , Pr[:,R] , p0=DMoments) | |
724 |
except: |
|
738 | except: | |
725 |
popt01=numpy.zeros(3) |
|
739 | popt01=numpy.zeros(3) | |
726 |
popt01[1]= DMoments[1] |
|
740 | popt01[1]= DMoments[1] | |
727 |
|
741 | |||
728 |
if popt01[1]<0 or popt01[1]>20: |
|
742 | if popt01[1]<0 or popt01[1]>20: | |
729 |
popt01[1]=numpy.NaN |
|
743 | popt01[1]=numpy.NaN | |
730 |
|
744 | |||
731 |
|
745 | |||
732 |
V_mean[R]=popt01[1] |
|
746 | V_mean[R]=popt01[1] | |
733 |
|
747 | |||
734 |
Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 )#*10**-18 |
|
748 | Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 )#*10**-18 | |
735 |
|
749 | |||
736 |
RR[R] = 0.0006*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate |
|
750 | RR[R] = 0.0006*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate | |
737 |
|
751 | |||
738 |
Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( 10**-18*numpy.pi**5 * Km) |
|
752 | Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( 10**-18*numpy.pi**5 * Km) | |
739 |
|
753 | |||
740 |
|
754 | |||
741 |
|
755 | |||
742 |
RR2 = (Z/200)**(1/1.6) |
|
756 | RR2 = (Z/200)**(1/1.6) | |
743 |
dBRR = 10*numpy.log10(RR) |
|
757 | dBRR = 10*numpy.log10(RR) | |
744 |
dBRR2 = 10*numpy.log10(RR2) |
|
758 | dBRR2 = 10*numpy.log10(RR2) | |
745 |
|
759 | |||
746 |
dBZe = 10*numpy.log10(Ze) |
|
760 | dBZe = 10*numpy.log10(Ze) | |
747 |
dBZ = 10*numpy.log10(Z) |
|
761 | dBZ = 10*numpy.log10(Z) | |
748 |
|
762 | |||
749 |
dataOut.data_output = RR[8] |
|
763 | dataOut.data_output = RR[8] | |
750 |
dataOut.data_param = numpy.ones([3,self.Num_Hei]) |
|
764 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) | |
751 |
dataOut.channelList = [0,1,2] |
|
765 | dataOut.channelList = [0,1,2] | |
752 |
|
766 | |||
753 |
dataOut.data_param[0]=dBZ |
|
767 | dataOut.data_param[0]=dBZ | |
754 |
dataOut.data_param[1]=V_mean |
|
768 | dataOut.data_param[1]=V_mean | |
755 |
dataOut.data_param[2]=RR |
|
769 | dataOut.data_param[2]=RR | |
756 |
|
770 | |||
757 |
return dataOut |
|
771 | return dataOut | |
758 |
|
772 | |||
759 |
def dBZeMODE2(self, dataOut): # Processing for MIRA35C |
|
773 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C | |
760 |
|
774 | |||
761 |
NPW = dataOut.NPW |
|
775 | NPW = dataOut.NPW | |
762 |
COFA = dataOut.COFA |
|
776 | COFA = dataOut.COFA | |
763 |
|
777 | |||
764 |
SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) |
|
778 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) | |
765 |
RadarConst = dataOut.RadarConst |
|
779 | RadarConst = dataOut.RadarConst | |
766 |
#frequency = 34.85*10**9 |
|
780 | #frequency = 34.85*10**9 | |
767 |
|
781 | |||
768 |
ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) |
|
782 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) | |
769 |
data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN |
|
783 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN | |
770 |
|
784 | |||
771 |
ETA = numpy.sum(SNR,1) |
|
785 | ETA = numpy.sum(SNR,1) | |
772 |
|
786 | |||
773 |
ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) |
|
787 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) | |
774 |
|
788 | |||
775 |
Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) |
|
789 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) | |
776 |
|
790 | |||
777 |
for r in range(self.Num_Hei): |
|
791 | for r in range(self.Num_Hei): | |
778 |
|
792 | |||
779 |
Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) |
|
793 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) | |
780 |
#Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) |
|
794 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) | |
781 |
|
795 | |||
782 |
return Ze |
|
796 | return Ze | |
783 |
|
797 | |||
784 |
# def GetRadarConstant(self): |
|
798 | # def GetRadarConstant(self): | |
785 | # |
|
799 | # | |
786 |
# """ |
|
800 | # """ | |
787 |
# Constants: |
|
801 | # Constants: | |
788 | # |
|
802 | # | |
789 |
# Pt: Transmission Power dB 5kW 5000 |
|
803 | # Pt: Transmission Power dB 5kW 5000 | |
790 |
# Gt: Transmission Gain dB 24.7 dB 295.1209 |
|
804 | # Gt: Transmission Gain dB 24.7 dB 295.1209 | |
791 |
# Gr: Reception Gain dB 18.5 dB 70.7945 |
|
805 | # Gr: Reception Gain dB 18.5 dB 70.7945 | |
@@ -794,55 +808,55 class PrecipitationProc(Operation): | |||||
794 |
# tauW: Width of transmission pulse s 4us 4e-6 |
|
808 | # tauW: Width of transmission pulse s 4us 4e-6 | |
795 |
# ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 |
|
809 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 | |
796 |
# ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 |
|
810 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 | |
797 | # |
|
811 | # | |
798 |
# """ |
|
812 | # """ | |
799 | # |
|
813 | # | |
800 |
# Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
814 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
801 |
# Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) |
|
815 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) | |
802 |
# RadarConstant = Numerator / Denominator |
|
816 | # RadarConstant = Numerator / Denominator | |
803 | # |
|
817 | # | |
804 |
# return RadarConstant |
|
818 | # return RadarConstant | |
805 |
|
819 | |||
806 |
|
820 | |||
807 |
|
821 | |||
808 |
class FullSpectralAnalysis(Operation): |
|
822 | class FullSpectralAnalysis(Operation): | |
809 |
|
823 | |||
810 |
""" |
|
824 | """ | |
811 |
Function that implements Full Spectral Analysis technique. |
|
825 | Function that implements Full Spectral Analysis technique. | |
812 |
|
826 | |||
813 |
Input: |
|
827 | Input: | |
814 |
self.dataOut.data_pre : SelfSpectra and CrossSpectra data |
|
828 | self.dataOut.data_pre : SelfSpectra and CrossSpectra data | |
815 |
self.dataOut.groupList : Pairlist of channels |
|
829 | self.dataOut.groupList : Pairlist of channels | |
816 |
self.dataOut.ChanDist : Physical distance between receivers |
|
830 | self.dataOut.ChanDist : Physical distance between receivers | |
817 |
|
831 | |||
818 |
|
832 | |||
819 |
Output: |
|
833 | Output: | |
820 |
|
834 | |||
821 |
self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind |
|
835 | self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind | |
822 |
|
836 | |||
823 |
|
837 | |||
824 |
Parameters affected: Winds, height range, SNR |
|
838 | Parameters affected: Winds, height range, SNR | |
825 |
|
839 | |||
826 |
""" |
|
840 | """ | |
827 |
def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRlimit=7, minheight=None, maxheight=None): |
|
841 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRlimit=7, minheight=None, maxheight=None): | |
828 |
|
842 | |||
829 |
self.indice=int(numpy.random.rand()*1000) |
|
843 | self.indice=int(numpy.random.rand()*1000) | |
830 |
|
844 | |||
831 |
spc = dataOut.data_pre[0].copy() |
|
845 | spc = dataOut.data_pre[0].copy() | |
832 |
cspc = dataOut.data_pre[1] |
|
846 | cspc = dataOut.data_pre[1] | |
833 |
|
847 | |||
834 |
"""Erick: NOTE THE RANGE OF THE PULSE TX MUST BE REMOVED""" |
|
848 | """Erick: NOTE THE RANGE OF THE PULSE TX MUST BE REMOVED""" | |
835 |
|
849 | |||
836 |
SNRspc = spc.copy() |
|
850 | SNRspc = spc.copy() | |
837 |
SNRspc[:,:,0:7]= numpy.NaN |
|
851 | SNRspc[:,:,0:7]= numpy.NaN | |
838 |
|
852 | |||
839 |
"""##########################################""" |
|
853 | """##########################################""" | |
840 |
|
854 | |||
841 |
|
855 | |||
842 |
nChannel = spc.shape[0] |
|
856 | nChannel = spc.shape[0] | |
843 |
nProfiles = spc.shape[1] |
|
857 | nProfiles = spc.shape[1] | |
844 |
nHeights = spc.shape[2] |
|
858 | nHeights = spc.shape[2] | |
845 |
|
859 | |||
846 |
# first_height = 0.75 #km (ref: data header 20170822) |
|
860 | # first_height = 0.75 #km (ref: data header 20170822) | |
847 |
# resolution_height = 0.075 #km |
|
861 | # resolution_height = 0.075 #km | |
848 |
''' |
|
862 | ''' | |
@@ -866,37 +880,37 class FullSpectralAnalysis(Operation): | |||||
866 |
ChanDist = dataOut.ChanDist |
|
880 | ChanDist = dataOut.ChanDist | |
867 |
else: |
|
881 | else: | |
868 |
ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) |
|
882 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) | |
869 |
|
883 | |||
870 |
FrecRange = dataOut.spc_range[0] |
|
884 | FrecRange = dataOut.spc_range[0] | |
871 |
|
885 | |||
872 |
data_SNR=numpy.zeros([nProfiles]) |
|
886 | data_SNR=numpy.zeros([nProfiles]) | |
873 |
noise = dataOut.noise |
|
887 | noise = dataOut.noise | |
874 |
|
888 | |||
875 |
dataOut.data_SNR = (numpy.mean(SNRspc,axis=1)- noise[0]) / noise[0] |
|
889 | dataOut.data_SNR = (numpy.mean(SNRspc,axis=1)- noise[0]) / noise[0] | |
876 |
|
890 | |||
877 |
dataOut.data_SNR[numpy.where( dataOut.data_SNR <0 )] = 1e-20 |
|
891 | dataOut.data_SNR[numpy.where( dataOut.data_SNR <0 )] = 1e-20 | |
878 |
|
892 | |||
879 |
|
893 | |||
880 |
data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN |
|
894 | data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN | |
881 |
|
895 | |||
882 |
velocityX=[] |
|
896 | velocityX=[] | |
883 |
velocityY=[] |
|
897 | velocityY=[] | |
884 |
velocityV=[] |
|
898 | velocityV=[] | |
885 |
|
899 | |||
886 |
dbSNR = 10*numpy.log10(dataOut.data_SNR) |
|
900 | dbSNR = 10*numpy.log10(dataOut.data_SNR) | |
887 |
dbSNR = numpy.average(dbSNR,0) |
|
901 | dbSNR = numpy.average(dbSNR,0) | |
888 |
|
902 | |||
889 |
'''***********************************************WIND ESTIMATION**************************************''' |
|
903 | '''***********************************************WIND ESTIMATION**************************************''' | |
890 |
|
904 | |||
891 |
for Height in range(nHeights): |
|
905 | for Height in range(nHeights): | |
892 |
|
906 | |||
893 |
if Height >= range_min and Height < range_max: |
|
907 | if Height >= range_min and Height < range_max: | |
894 |
# error_code unused, yet maybe useful for future analysis. |
|
908 | # error_code unused, yet maybe useful for future analysis. | |
895 |
[Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, ChanDist, Height, noise, dataOut.spc_range, dbSNR[Height], SNRlimit) |
|
909 | [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, ChanDist, Height, noise, dataOut.spc_range, dbSNR[Height], SNRlimit) | |
896 |
else: |
|
910 | else: | |
897 |
Vzon,Vmer,Vver = 0., 0., numpy.NaN |
|
911 | Vzon,Vmer,Vver = 0., 0., numpy.NaN | |
898 |
|
912 | |||
899 |
|
913 | |||
900 |
if abs(Vzon) < 100. and abs(Vzon) > 0. and abs(Vmer) < 100. and abs(Vmer) > 0.: |
|
914 | if abs(Vzon) < 100. and abs(Vzon) > 0. and abs(Vmer) < 100. and abs(Vmer) > 0.: | |
901 |
velocityX=numpy.append(velocityX, Vzon) |
|
915 | velocityX=numpy.append(velocityX, Vzon) | |
902 |
velocityY=numpy.append(velocityY, -Vmer) |
|
916 | velocityY=numpy.append(velocityY, -Vmer) | |
@@ -904,33 +918,33 class FullSpectralAnalysis(Operation): | |||||
904 |
else: |
|
918 | else: | |
905 |
velocityX=numpy.append(velocityX, numpy.NaN) |
|
919 | velocityX=numpy.append(velocityX, numpy.NaN) | |
906 |
velocityY=numpy.append(velocityY, numpy.NaN) |
|
920 | velocityY=numpy.append(velocityY, numpy.NaN) | |
907 |
|
921 | |||
908 |
if dbSNR[Height] > SNRlimit: |
|
922 | if dbSNR[Height] > SNRlimit: | |
909 |
velocityV=numpy.append(velocityV, -Vver) # reason for this minus sign -> convention? (taken from Ericks version) |
|
923 | velocityV=numpy.append(velocityV, -Vver) # reason for this minus sign -> convention? (taken from Ericks version) | |
910 |
else: |
|
924 | else: | |
911 |
velocityV=numpy.append(velocityV, numpy.NaN) |
|
925 | velocityV=numpy.append(velocityV, numpy.NaN) | |
912 |
|
926 | |||
913 |
|
927 | |||
914 |
'''Change the numpy.array (velocityX) sign when trying to process BLTR data (Erick)''' |
|
928 | '''Change the numpy.array (velocityX) sign when trying to process BLTR data (Erick)''' | |
915 |
data_output[0] = numpy.array(velocityX) |
|
929 | data_output[0] = numpy.array(velocityX) | |
916 |
data_output[1] = numpy.array(velocityY) |
|
930 | data_output[1] = numpy.array(velocityY) | |
917 |
data_output[2] = velocityV |
|
931 | data_output[2] = velocityV | |
918 |
|
932 | |||
919 |
|
933 | |||
920 |
dataOut.data_output = data_output |
|
934 | dataOut.data_output = data_output | |
921 |
|
935 | |||
922 |
return dataOut |
|
936 | return dataOut | |
923 |
|
937 | |||
924 |
|
938 | |||
925 |
def moving_average(self,x, N=2): |
|
939 | def moving_average(self,x, N=2): | |
926 |
""" convolution for smoothenig data. note that last N-1 values are convolution with zeroes """ |
|
940 | """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """ | |
927 |
return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] |
|
941 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |
928 |
|
942 | |||
929 |
def gaus(self,xSamples,Amp,Mu,Sigma): |
|
943 | def gaus(self,xSamples,Amp,Mu,Sigma): | |
930 |
return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) |
|
944 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) | |
931 |
|
945 | |||
932 |
def Moments(self, ySamples, xSamples): |
|
946 | def Moments(self, ySamples, xSamples): | |
933 |
'''*** |
|
947 | '''*** | |
934 |
Variables corresponding to moments of distribution. |
|
948 | Variables corresponding to moments of distribution. | |
935 |
Also used as initial coefficients for curve_fit. |
|
949 | Also used as initial coefficients for curve_fit. | |
936 |
Vr was corrected. Only a velocity when x is velocity, of course. |
|
950 | Vr was corrected. Only a velocity when x is velocity, of course. | |
@@ -939,9 +953,9 class FullSpectralAnalysis(Operation): | |||||
939 |
yNorm = ySamples / Pot |
|
953 | yNorm = ySamples / Pot | |
940 |
x_range = (numpy.max(xSamples)-numpy.min(xSamples)) |
|
954 | x_range = (numpy.max(xSamples)-numpy.min(xSamples)) | |
941 |
Vr = numpy.nansum( yNorm * xSamples )*x_range/len(xSamples) # Velocidad radial, mu, corrimiento doppler, primer momento |
|
955 | Vr = numpy.nansum( yNorm * xSamples )*x_range/len(xSamples) # Velocidad radial, mu, corrimiento doppler, primer momento | |
942 |
Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento |
|
956 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento | |
943 |
Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral |
|
957 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral | |
944 |
|
958 | |||
945 |
return numpy.array([Pot, Vr, Desv]) |
|
959 | return numpy.array([Pot, Vr, Desv]) | |
946 |
|
960 | |||
947 |
def StopWindEstimation(self, error_code): |
|
961 | def StopWindEstimation(self, error_code): | |
@@ -954,7 +968,7 class FullSpectralAnalysis(Operation): | |||||
954 |
return Vzon, Vmer, Vver, error_code |
|
968 | return Vzon, Vmer, Vver, error_code | |
955 |
|
969 | |||
956 |
def AntiAliasing(self, interval, maxstep): |
|
970 | def AntiAliasing(self, interval, maxstep): | |
957 |
""" |
|
971 | """ | |
958 |
function to prevent errors from aliased values when computing phaseslope |
|
972 | function to prevent errors from aliased values when computing phaseslope | |
959 |
""" |
|
973 | """ | |
960 |
antialiased = numpy.zeros(len(interval))*0.0 |
|
974 | antialiased = numpy.zeros(len(interval))*0.0 | |
@@ -964,8 +978,8 class FullSpectralAnalysis(Operation): | |||||
964 |
|
978 | |||
965 |
for i in range(1,len(antialiased)): |
|
979 | for i in range(1,len(antialiased)): | |
966 |
|
980 | |||
967 |
step = interval[i] - interval[i-1] |
|
981 | step = interval[i] - interval[i-1] | |
968 |
|
982 | |||
969 |
if step > maxstep: |
|
983 | if step > maxstep: | |
970 |
copyinterval -= 2*numpy.pi |
|
984 | copyinterval -= 2*numpy.pi | |
971 |
antialiased[i] = copyinterval[i] |
|
985 | antialiased[i] = copyinterval[i] | |
@@ -973,7 +987,7 class FullSpectralAnalysis(Operation): | |||||
973 |
elif step < maxstep*(-1): |
|
987 | elif step < maxstep*(-1): | |
974 |
copyinterval += 2*numpy.pi |
|
988 | copyinterval += 2*numpy.pi | |
975 |
antialiased[i] = copyinterval[i] |
|
989 | antialiased[i] = copyinterval[i] | |
976 |
|
990 | |||
977 |
else: |
|
991 | else: | |
978 |
antialiased[i] = copyinterval[i].copy() |
|
992 | antialiased[i] = copyinterval[i].copy() | |
979 |
|
993 | |||
@@ -1003,27 +1017,27 class FullSpectralAnalysis(Operation): | |||||
1003 |
3 : SNR to low or velocity to high -> prec. e.g. |
|
1017 | 3 : SNR to low or velocity to high -> prec. e.g. | |
1004 |
4 : at least one Gaussian of cspc exceeds widthlimit |
|
1018 | 4 : at least one Gaussian of cspc exceeds widthlimit | |
1005 |
5 : zero out of three cspc Gaussian fits converged |
|
1019 | 5 : zero out of three cspc Gaussian fits converged | |
1006 |
6 : phase slope fit could not be found |
|
1020 | 6 : phase slope fit could not be found | |
1007 |
7 : arrays used to fit phase have different length |
|
1021 | 7 : arrays used to fit phase have different length | |
1008 |
8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc) |
|
1022 | 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc) | |
1009 |
|
1023 | |||
1010 |
""" |
|
1024 | """ | |
1011 |
|
1025 | |||
1012 |
error_code = 0 |
|
1026 | error_code = 0 | |
1013 |
|
1027 | |||
1014 |
|
1028 | |||
1015 |
SPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]]) # for normalized spc values for one height |
|
1029 | SPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]]) # for normalized spc values for one height | |
1016 |
phase = numpy.ones([spc.shape[0],spc.shape[1]]) # phase between channels |
|
1030 | phase = numpy.ones([spc.shape[0],spc.shape[1]]) # phase between channels | |
1017 |
CSPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) # for normalized cspc values |
|
1031 | CSPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) # for normalized cspc values | |
1018 |
PhaseSlope = numpy.zeros(spc.shape[0]) # slope of the phases, channelwise |
|
1032 | PhaseSlope = numpy.zeros(spc.shape[0]) # slope of the phases, channelwise | |
1019 |
PhaseInter = numpy.ones(spc.shape[0]) # intercept to the slope of the phases, channelwise |
|
1033 | PhaseInter = numpy.ones(spc.shape[0]) # intercept to the slope of the phases, channelwise | |
1020 |
xFrec = AbbsisaRange[0][0:spc.shape[1]] # frequency range |
|
1034 | xFrec = AbbsisaRange[0][0:spc.shape[1]] # frequency range | |
1021 |
xVel = AbbsisaRange[2][0:spc.shape[1]] # velocity range |
|
1035 | xVel = AbbsisaRange[2][0:spc.shape[1]] # velocity range | |
1022 |
SPCav = numpy.average(spc, axis=0)-numpy.average(noise) # spc[0]-noise[0] |
|
1036 | SPCav = numpy.average(spc, axis=0)-numpy.average(noise) # spc[0]-noise[0] | |
1023 |
|
1037 | |||
1024 |
SPCmoments_vel = self.Moments(SPCav, xVel ) # SPCmoments_vel[1] corresponds to vertical velocity and is used to determine if signal corresponds to wind (if .. <3) |
|
1038 | SPCmoments_vel = self.Moments(SPCav, xVel ) # SPCmoments_vel[1] corresponds to vertical velocity and is used to determine if signal corresponds to wind (if .. <3) | |
1025 |
CSPCmoments = [] |
|
1039 | CSPCmoments = [] | |
1026 |
|
1040 | |||
1027 |
|
1041 | |||
1028 |
'''Getting Eij and Nij''' |
|
1042 | '''Getting Eij and Nij''' | |
1029 |
|
1043 | |||
@@ -1038,13 +1052,13 class FullSpectralAnalysis(Operation): | |||||
1038 |
spc_norm = spc.copy() # need copy() because untouched spc is needed for normalization of cspc below |
|
1052 | spc_norm = spc.copy() # need copy() because untouched spc is needed for normalization of cspc below | |
1039 |
spc_norm = numpy.where(numpy.isfinite(spc_norm), spc_norm, numpy.NAN) |
|
1053 | spc_norm = numpy.where(numpy.isfinite(spc_norm), spc_norm, numpy.NAN) | |
1040 |
|
1054 | |||
1041 |
for i in range(spc.shape[0]): |
|
1055 | for i in range(spc.shape[0]): | |
1042 |
|
1056 | |||
1043 |
spc_sub = spc_norm[i,:] - noise[i] # spc not smoothed here or in previous version. |
|
1057 | spc_sub = spc_norm[i,:] - noise[i] # spc not smoothed here or in previous version. | |
1044 |
|
1058 | |||
1045 |
Factor_Norm = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc_sub)) # usually = Freq range / nfft |
|
1059 | Factor_Norm = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc_sub)) # usually = Freq range / nfft | |
1046 |
normalized_spc = spc_sub / (numpy.nansum(numpy.abs(spc_sub)) * Factor_Norm) |
|
1060 | normalized_spc = spc_sub / (numpy.nansum(numpy.abs(spc_sub)) * Factor_Norm) | |
1047 |
|
1061 | |||
1048 |
xSamples = xFrec # the frequency range is taken |
|
1062 | xSamples = xFrec # the frequency range is taken | |
1049 |
SPC_Samples[i] = normalized_spc # Normalized SPC values are taken |
|
1063 | SPC_Samples[i] = normalized_spc # Normalized SPC values are taken | |
1050 |
|
1064 | |||
@@ -1055,49 +1069,49 class FullSpectralAnalysis(Operation): | |||||
1055 |
only for estimation of width. for normalization of cross spectra, you need initial, |
|
1069 | only for estimation of width. for normalization of cross spectra, you need initial, | |
1056 |
unnormalized self-spectra With noise. |
|
1070 | unnormalized self-spectra With noise. | |
1057 |
|
1071 | |||
1058 |
Technically, you don't even need to normalize the self-spectra, as you only need the |
|
1072 | Technically, you don't even need to normalize the self-spectra, as you only need the | |
1059 |
width of the peak. However, it was left this way. Note that the normalization has a flaw: |
|
1073 | width of the peak. However, it was left this way. Note that the normalization has a flaw: | |
1060 |
due to subtraction of the noise, some values are below zero. Raw "spc" values should be |
|
1074 | due to subtraction of the noise, some values are below zero. Raw "spc" values should be | |
1061 |
>= 0, as it is the modulus squared of the signals (complex * it's conjugate) |
|
1075 | >= 0, as it is the modulus squared of the signals (complex * it's conjugate) | |
1062 |
""" |
|
1076 | """ | |
1063 |
|
1077 | |||
1064 |
SPCMean = numpy.average(SPC_Samples, axis=0) |
|
1078 | SPCMean = numpy.average(SPC_Samples, axis=0) | |
1065 |
|
1079 | |||
1066 |
popt = [1e-10,0,1e-10] |
|
1080 | popt = [1e-10,0,1e-10] | |
1067 |
SPCMoments = self.Moments(SPCMean, xSamples) |
|
1081 | SPCMoments = self.Moments(SPCMean, xSamples) | |
1068 |
|
1082 | |||
1069 |
if dbSNR > SNRlimit and numpy.abs(SPCmoments_vel[1]) < 3: |
|
1083 | if dbSNR > SNRlimit and numpy.abs(SPCmoments_vel[1]) < 3: | |
1070 |
try: |
|
1084 | try: | |
1071 |
popt,pcov = curve_fit(self.gaus,xSamples,SPCMean,p0=SPCMoments)#, bounds=(-numpy.inf, [numpy.inf, numpy.inf, 10])). Setting bounds does not make the code faster but only keeps the fit from finding the minimum. |
|
1085 | popt,pcov = curve_fit(self.gaus,xSamples,SPCMean,p0=SPCMoments)#, bounds=(-numpy.inf, [numpy.inf, numpy.inf, 10])). Setting bounds does not make the code faster but only keeps the fit from finding the minimum. | |
1072 |
if popt[2] > widthlimit: # CONDITION |
|
1086 | if popt[2] > widthlimit: # CONDITION | |
1073 |
return self.StopWindEstimation(error_code = 1) |
|
1087 | return self.StopWindEstimation(error_code = 1) | |
1074 |
|
1088 | |||
1075 |
FitGauss = self.gaus(xSamples,*popt) |
|
1089 | FitGauss = self.gaus(xSamples,*popt) | |
1076 |
|
1090 | |||
1077 |
except :#RuntimeError: |
|
1091 | except :#RuntimeError: | |
1078 |
return self.StopWindEstimation(error_code = 2) |
|
1092 | return self.StopWindEstimation(error_code = 2) | |
1079 |
|
1093 | |||
1080 |
else: |
|
1094 | else: | |
1081 |
return self.StopWindEstimation(error_code = 3) |
|
1095 | return self.StopWindEstimation(error_code = 3) | |
1082 |
|
1096 | |||
1083 |
|
1097 | |||
1084 |
|
1098 | |||
1085 |
'''***************************** CSPC Normalization ************************* |
|
1099 | '''***************************** CSPC Normalization ************************* | |
1086 |
new section: |
|
1100 | new section: | |
1087 |
The Spc spectra are used to normalize the crossspectra. Peaks from precipitation |
|
1101 | The Spc spectra are used to normalize the crossspectra. Peaks from precipitation | |
1088 |
influence the norm which is not desired. First, a range is identified where the |
|
1102 | influence the norm which is not desired. First, a range is identified where the | |
1089 |
wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area |
|
1103 | wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area | |
1090 |
around it gets cut off and values replaced by mean determined by the boundary |
|
1104 | around it gets cut off and values replaced by mean determined by the boundary | |
1091 |
data -> sum_noise (spc is not normalized here, thats why the noise is important) |
|
1105 | data -> sum_noise (spc is not normalized here, thats why the noise is important) | |
1092 |
|
1106 | |||
1093 |
The sums are then added and multiplied by range/datapoints, because you need |
|
1107 | The sums are then added and multiplied by range/datapoints, because you need | |
1094 |
an integral and not a sum for normalization. |
|
1108 | an integral and not a sum for normalization. | |
1095 |
|
1109 | |||
1096 |
A norm is found according to Briggs 92. |
|
1110 | A norm is found according to Briggs 92. | |
1097 |
''' |
|
1111 | ''' | |
1098 |
|
1112 | |||
1099 |
radarWavelength = 0.6741 # meters |
|
1113 | radarWavelength = 0.6741 # meters | |
1100 |
count_limit_freq = numpy.abs(popt[1]) + widthlimit # Hz, m/s can be also used if velocity is desired abscissa. |
|
1114 | count_limit_freq = numpy.abs(popt[1]) + widthlimit # Hz, m/s can be also used if velocity is desired abscissa. | |
1101 |
# count_limit_freq = numpy.max(xFrec) |
|
1115 | # count_limit_freq = numpy.max(xFrec) | |
1102 |
|
1116 | |||
1103 |
channel_integrals = numpy.zeros(3) |
|
1117 | channel_integrals = numpy.zeros(3) | |
@@ -1108,11 +1122,11 class FullSpectralAnalysis(Operation): | |||||
1108 |
sum over all frequencies in the range around zero Hz @ math.ceil(N_freq/2) |
|
1122 | sum over all frequencies in the range around zero Hz @ math.ceil(N_freq/2) | |
1109 |
''' |
|
1123 | ''' | |
1110 |
N_freq = numpy.count_nonzero(~numpy.isnan(spc[i,:])) |
|
1124 | N_freq = numpy.count_nonzero(~numpy.isnan(spc[i,:])) | |
1111 |
count_limit_int = int(math.ceil( count_limit_freq / numpy.max(xFrec) * (N_freq / 2) )) # gives integer point |
|
1125 | count_limit_int = int(math.ceil( count_limit_freq / numpy.max(xFrec) * (N_freq / 2) )) # gives integer point | |
1112 |
sum_wind = numpy.nansum( spc[i, (math.ceil(N_freq/2) - count_limit_int) : (math.ceil(N_freq / 2) + count_limit_int)] ) #N_freq/2 is where frequency (velocity) is zero, i.e. middle of spectrum. |
|
1126 | sum_wind = numpy.nansum( spc[i, (math.ceil(N_freq/2) - count_limit_int) : (math.ceil(N_freq / 2) + count_limit_int)] ) #N_freq/2 is where frequency (velocity) is zero, i.e. middle of spectrum. | |
1113 |
sum_noise = (numpy.mean(spc[i, :4]) + numpy.mean(spc[i, -6:-2]))/2.0 * (N_freq - 2*count_limit_int) |
|
1127 | sum_noise = (numpy.mean(spc[i, :4]) + numpy.mean(spc[i, -6:-2]))/2.0 * (N_freq - 2*count_limit_int) | |
1114 |
channel_integrals[i] = (sum_noise + sum_wind) * (2*numpy.max(xFrec) / N_freq) |
|
1128 | channel_integrals[i] = (sum_noise + sum_wind) * (2*numpy.max(xFrec) / N_freq) | |
1115 |
|
1129 | |||
1116 |
|
1130 | |||
1117 |
cross_integrals_peak = numpy.zeros(3) |
|
1131 | cross_integrals_peak = numpy.zeros(3) | |
1118 |
# cross_integrals_totalrange = numpy.zeros(3) |
|
1132 | # cross_integrals_totalrange = numpy.zeros(3) | |
@@ -1125,45 +1139,45 class FullSpectralAnalysis(Operation): | |||||
1125 |
chan_index1 = pairsList[i][1] |
|
1139 | chan_index1 = pairsList[i][1] | |
1126 |
|
1140 | |||
1127 |
cross_integrals_peak[i] = channel_integrals[chan_index0]*channel_integrals[chan_index1] |
|
1141 | cross_integrals_peak[i] = channel_integrals[chan_index0]*channel_integrals[chan_index1] | |
1128 |
normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_peak[i]) |
|
1142 | normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_peak[i]) | |
1129 |
CSPC_Samples[i] = normalized_cspc |
|
1143 | CSPC_Samples[i] = normalized_cspc | |
1130 |
|
1144 | |||
1131 |
''' Finding cross integrals without subtracting any peaks:''' |
|
1145 | ''' Finding cross integrals without subtracting any peaks:''' | |
1132 |
# FactorNorm0 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index0,:])) |
|
1146 | # FactorNorm0 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index0,:])) | |
1133 |
# FactorNorm1 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index1,:])) |
|
1147 | # FactorNorm1 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index1,:])) | |
1134 |
# cross_integrals_totalrange[i] = (numpy.nansum(spc[chan_index0,:])) * FactorNorm0 * (numpy.nansum(spc[chan_index1,:])) * FactorNorm1 |
|
1148 | # cross_integrals_totalrange[i] = (numpy.nansum(spc[chan_index0,:])) * FactorNorm0 * (numpy.nansum(spc[chan_index1,:])) * FactorNorm1 | |
1135 |
# normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_totalrange[i]) |
|
1149 | # normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_totalrange[i]) | |
1136 |
# CSPC_Samples[i] = normalized_cspc |
|
1150 | # CSPC_Samples[i] = normalized_cspc | |
1137 |
|
1151 | |||
1138 |
|
1152 | |||
1139 |
phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real) |
|
1153 | phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real) | |
1140 |
|
1154 | |||
1141 |
|
1155 | |||
1142 |
CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0]), xSamples), |
|
1156 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0]), xSamples), | |
1143 |
self.Moments(numpy.abs(CSPC_Samples[1]), xSamples), |
|
1157 | self.Moments(numpy.abs(CSPC_Samples[1]), xSamples), | |
1144 |
self.Moments(numpy.abs(CSPC_Samples[2]), xSamples)]) |
|
1158 | self.Moments(numpy.abs(CSPC_Samples[2]), xSamples)]) | |
1145 |
|
1159 | |||
1146 |
|
1160 | |||
1147 |
'''***Sorting out NaN entries***''' |
|
1161 | '''***Sorting out NaN entries***''' | |
1148 |
CSPCMask01 = numpy.abs(CSPC_Samples[0]) |
|
1162 | CSPCMask01 = numpy.abs(CSPC_Samples[0]) | |
1149 |
CSPCMask02 = numpy.abs(CSPC_Samples[1]) |
|
1163 | CSPCMask02 = numpy.abs(CSPC_Samples[1]) | |
1150 |
CSPCMask12 = numpy.abs(CSPC_Samples[2]) |
|
1164 | CSPCMask12 = numpy.abs(CSPC_Samples[2]) | |
1151 |
|
1165 | |||
1152 |
mask01 = ~numpy.isnan(CSPCMask01) |
|
1166 | mask01 = ~numpy.isnan(CSPCMask01) | |
1153 |
mask02 = ~numpy.isnan(CSPCMask02) |
|
1167 | mask02 = ~numpy.isnan(CSPCMask02) | |
1154 |
mask12 = ~numpy.isnan(CSPCMask12) |
|
1168 | mask12 = ~numpy.isnan(CSPCMask12) | |
1155 |
|
1169 | |||
1156 |
CSPCMask01 = CSPCMask01[mask01] |
|
1170 | CSPCMask01 = CSPCMask01[mask01] | |
1157 |
CSPCMask02 = CSPCMask02[mask02] |
|
1171 | CSPCMask02 = CSPCMask02[mask02] | |
1158 |
CSPCMask12 = CSPCMask12[mask12] |
|
1172 | CSPCMask12 = CSPCMask12[mask12] | |
1159 |
|
1173 | |||
1160 |
|
1174 | |||
1161 |
popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10] |
|
1175 | popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10] | |
1162 |
FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0 |
|
1176 | FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0 | |
1163 |
|
1177 | |||
1164 |
'''*******************************FIT GAUSS CSPC************************************''' |
|
1178 | '''*******************************FIT GAUSS CSPC************************************''' | |
1165 |
|
1179 | |||
1166 |
try: |
|
1180 | try: | |
1167 |
popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0]) |
|
1181 | popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0]) | |
1168 |
if popt01[2] > widthlimit: # CONDITION |
|
1182 | if popt01[2] > widthlimit: # CONDITION | |
1169 |
return self.StopWindEstimation(error_code = 4) |
|
1183 | return self.StopWindEstimation(error_code = 4) | |
@@ -1186,53 +1200,53 class FullSpectralAnalysis(Operation): | |||||
1186 |
|
1200 | |||
1187 |
'''************* Getting Fij ***************''' |
|
1201 | '''************* Getting Fij ***************''' | |
1188 |
|
1202 | |||
1189 |
|
1203 | |||
1190 |
#Punto en Eje X de la Gaussiana donde se encuentra el centro -- x-axis point of the gaussian where the center is located |
|
1204 | #Punto en Eje X de la Gaussiana donde se encuentra el centro -- x-axis point of the gaussian where the center is located | |
1191 |
# -> PointGauCenter |
|
1205 | # -> PointGauCenter | |
1192 |
GaussCenter = popt[1] |
|
1206 | GaussCenter = popt[1] | |
1193 |
ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()] |
|
1207 | ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()] | |
1194 |
PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0] |
|
1208 | PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0] | |
1195 |
|
1209 | |||
1196 |
#Punto e^-1 hubicado en la Gaussiana -- point where e^-1 is located in the gaussian |
|
1210 | #Punto e^-1 hubicado en la Gaussiana -- point where e^-1 is located in the gaussian | |
1197 |
PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1) |
|
1211 | PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1) | |
1198 |
FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss" |
|
1212 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss" | |
1199 |
PointFij = numpy.where(FitGauss==FijClosest)[0][0] |
|
1213 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] | |
1200 |
|
1214 | |||
1201 |
Fij = numpy.abs(xSamples[PointFij] - xSamples[PointGauCenter]) |
|
1215 | Fij = numpy.abs(xSamples[PointFij] - xSamples[PointGauCenter]) | |
1202 |
|
1216 | |||
1203 |
'''********** Taking frequency ranges from mean SPCs **********''' |
|
1217 | '''********** Taking frequency ranges from mean SPCs **********''' | |
1204 |
|
1218 | |||
1205 |
#GaussCenter = popt[1] #Primer momento 01 |
|
1219 | #GaussCenter = popt[1] #Primer momento 01 | |
1206 |
GauWidth = popt[2] * 3/2 #Ancho de banda de Gau01 -- Bandwidth of Gau01 TODO why *3/2? |
|
1220 | GauWidth = popt[2] * 3/2 #Ancho de banda de Gau01 -- Bandwidth of Gau01 TODO why *3/2? | |
1207 |
Range = numpy.empty(2) |
|
1221 | Range = numpy.empty(2) | |
1208 |
Range[0] = GaussCenter - GauWidth |
|
1222 | Range[0] = GaussCenter - GauWidth | |
1209 |
Range[1] = GaussCenter + GauWidth |
|
1223 | Range[1] = GaussCenter + GauWidth | |
1210 |
#Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max) -- Point in x-axis where the bandwidth is located (min:max) |
|
1224 | #Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max) -- Point in x-axis where the bandwidth is located (min:max) | |
1211 |
ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()] |
|
1225 | ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()] | |
1212 |
ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()] |
|
1226 | ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()] | |
1213 |
|
1227 | |||
1214 |
PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0] |
|
1228 | PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0] | |
1215 |
PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0] |
|
1229 | PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0] | |
1216 |
|
1230 | |||
1217 |
Range = numpy.array([ PointRangeMin, PointRangeMax ]) |
|
1231 | Range = numpy.array([ PointRangeMin, PointRangeMax ]) | |
1218 |
|
1232 | |||
1219 |
FrecRange = xFrec[ Range[0] : Range[1] ] |
|
1233 | FrecRange = xFrec[ Range[0] : Range[1] ] | |
1220 |
|
1234 | |||
1221 |
|
1235 | |||
1222 |
'''************************** Getting Phase Slope ***************************''' |
|
1236 | '''************************** Getting Phase Slope ***************************''' | |
1223 |
|
1237 | |||
1224 |
for i in range(1,3): # Changed to only compute two |
|
1238 | for i in range(1,3): # Changed to only compute two | |
1225 |
|
1239 | |||
1226 |
if len(FrecRange) > 5 and len(FrecRange) < spc.shape[1] * 0.3: |
|
1240 | if len(FrecRange) > 5 and len(FrecRange) < spc.shape[1] * 0.3: | |
1227 |
# PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=1) #used before to smooth phase with N=3 |
|
1241 | # PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=1) #used before to smooth phase with N=3 | |
1228 |
PhaseRange = phase[i,Range[0]:Range[1]].copy() |
|
1242 | PhaseRange = phase[i,Range[0]:Range[1]].copy() | |
1229 |
|
1243 | |||
1230 |
mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) |
|
1244 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) | |
1231 |
|
1245 | |||
1232 |
|
1246 | |||
1233 |
if len(FrecRange) == len(PhaseRange): |
|
1247 | if len(FrecRange) == len(PhaseRange): | |
1234 |
|
1248 | |||
1235 |
try: |
|
1249 | try: | |
1236 |
slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5)) |
|
1250 | slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5)) | |
1237 |
PhaseSlope[i] = slope |
|
1251 | PhaseSlope[i] = slope | |
1238 |
PhaseInter[i] = intercept |
|
1252 | PhaseInter[i] = intercept | |
@@ -1242,49 +1256,49 class FullSpectralAnalysis(Operation): | |||||
1242 |
|
1256 | |||
1243 |
else: |
|
1257 | else: | |
1244 |
return self.StopWindEstimation(error_code = 7) |
|
1258 | return self.StopWindEstimation(error_code = 7) | |
1245 |
|
1259 | |||
1246 |
else: |
|
1260 | else: | |
1247 |
return self.StopWindEstimation(error_code = 8) |
|
1261 | return self.StopWindEstimation(error_code = 8) | |
1248 |
|
1262 | |||
1249 |
|
1263 | |||
1250 |
|
1264 | |||
1251 |
'''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***''' |
|
1265 | '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***''' | |
1252 |
|
1266 | |||
1253 |
'''Getting constant C''' |
|
1267 | '''Getting constant C''' | |
1254 |
cC=(Fij*numpy.pi)**2 |
|
1268 | cC=(Fij*numpy.pi)**2 | |
1255 |
|
1269 | |||
1256 |
'''****** Getting constants F and G ******''' |
|
1270 | '''****** Getting constants F and G ******''' | |
1257 |
MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) |
|
1271 | MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) | |
1258 |
MijResult0 = (-PhaseSlope[1] * cC) / (2*numpy.pi) |
|
1272 | MijResult0 = (-PhaseSlope[1] * cC) / (2*numpy.pi) | |
1259 |
MijResult1 = (-PhaseSlope[2] * cC) / (2*numpy.pi) |
|
1273 | MijResult1 = (-PhaseSlope[2] * cC) / (2*numpy.pi) | |
1260 |
MijResults = numpy.array([MijResult0,MijResult1]) |
|
1274 | MijResults = numpy.array([MijResult0,MijResult1]) | |
1261 |
(cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
1275 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |
1262 |
|
1276 | |||
1263 |
'''****** Getting constants A, B and H ******''' |
|
1277 | '''****** Getting constants A, B and H ******''' | |
1264 |
W01 = numpy.nanmax( FitGauss01 ) |
|
1278 | W01 = numpy.nanmax( FitGauss01 ) | |
1265 |
W02 = numpy.nanmax( FitGauss02 ) |
|
1279 | W02 = numpy.nanmax( FitGauss02 ) | |
1266 |
W12 = numpy.nanmax( FitGauss12 ) |
|
1280 | W12 = numpy.nanmax( FitGauss12 ) | |
1267 |
|
1281 | |||
1268 |
WijResult0 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) |
|
1282 | WijResult0 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) | |
1269 |
WijResult1 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC)) |
|
1283 | WijResult1 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC)) | |
1270 |
WijResult2 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) |
|
1284 | WijResult2 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) | |
1271 |
|
1285 | |||
1272 |
WijResults = numpy.array([WijResult0, WijResult1, WijResult2]) |
|
1286 | WijResults = numpy.array([WijResult0, WijResult1, WijResult2]) | |
1273 |
|
1287 | |||
1274 |
WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) |
|
1288 | WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) | |
1275 |
(cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
1289 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |
1276 |
|
1290 | |||
1277 |
VxVy = numpy.array([[cA,cH],[cH,cB]]) |
|
1291 | VxVy = numpy.array([[cA,cH],[cH,cB]]) | |
1278 |
VxVyResults = numpy.array([-cF,-cG]) |
|
1292 | VxVyResults = numpy.array([-cF,-cG]) | |
1279 |
(Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) |
|
1293 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) | |
1280 |
|
1294 | |||
1281 |
Vzon = Vy |
|
1295 | Vzon = Vy | |
1282 |
Vmer = Vx |
|
1296 | Vmer = Vx | |
1283 |
|
1297 | |||
1284 |
# Vmag=numpy.sqrt(Vzon**2+Vmer**2) # unused |
|
1298 | # Vmag=numpy.sqrt(Vzon**2+Vmer**2) # unused | |
1285 |
# Vang=numpy.arctan2(Vmer,Vzon) # unused |
|
1299 | # Vang=numpy.arctan2(Vmer,Vzon) # unused | |
1286 |
|
1300 | |||
1287 |
|
1301 | |||
1288 |
''' using frequency as abscissa. Due to three channels, the offzenith angle is zero |
|
1302 | ''' using frequency as abscissa. Due to three channels, the offzenith angle is zero | |
1289 |
and Vrad equal to Vver. formula taken from Briggs 92, figure 4. |
|
1303 | and Vrad equal to Vver. formula taken from Briggs 92, figure 4. | |
1290 |
''' |
|
1304 | ''' | |
@@ -1295,40 +1309,40 class FullSpectralAnalysis(Operation): | |||||
1295 |
|
1309 | |||
1296 |
error_code = 0 |
|
1310 | error_code = 0 | |
1297 |
|
1311 | |||
1298 |
return Vzon, Vmer, Vver, error_code |
|
1312 | return Vzon, Vmer, Vver, error_code | |
1299 |
|
1313 | |||
1300 |
|
1314 | |||
1301 |
class SpectralMoments(Operation): |
|
1315 | class SpectralMoments(Operation): | |
1302 |
|
1316 | |||
1303 |
''' |
|
1317 | ''' | |
1304 |
Function SpectralMoments() |
|
1318 | Function SpectralMoments() | |
1305 |
|
1319 | |||
1306 |
Calculates moments (power, mean, standard deviation) and SNR of the signal |
|
1320 | Calculates moments (power, mean, standard deviation) and SNR of the signal | |
1307 |
|
1321 | |||
1308 |
Type of dataIn: Spectra |
|
1322 | Type of dataIn: Spectra | |
1309 |
|
1323 | |||
1310 |
Configuration Parameters: |
|
1324 | Configuration Parameters: | |
1311 |
|
1325 | |||
1312 |
dirCosx : Cosine director in X axis |
|
1326 | dirCosx : Cosine director in X axis | |
1313 |
dirCosy : Cosine director in Y axis |
|
1327 | dirCosy : Cosine director in Y axis | |
1314 |
|
1328 | |||
1315 |
elevation : |
|
1329 | elevation : | |
1316 |
azimuth : |
|
1330 | azimuth : | |
1317 |
|
1331 | |||
1318 |
Input: |
|
1332 | Input: | |
1319 |
channelList : simple channel list to select e.g. [2,3,7] |
|
1333 | channelList : simple channel list to select e.g. [2,3,7] | |
1320 |
self.dataOut.data_pre : Spectral data |
|
1334 | self.dataOut.data_pre : Spectral data | |
1321 |
self.dataOut.abscissaList : List of frequencies |
|
1335 | self.dataOut.abscissaList : List of frequencies | |
1322 |
self.dataOut.noise : Noise level per channel |
|
1336 | self.dataOut.noise : Noise level per channel | |
1323 |
|
1337 | |||
1324 |
Affected: |
|
1338 | Affected: | |
1325 |
self.dataOut.moments : Parameters per channel |
|
1339 | self.dataOut.moments : Parameters per channel | |
1326 |
self.dataOut.data_SNR : SNR per channel |
|
1340 | self.dataOut.data_SNR : SNR per channel | |
1327 |
|
1341 | |||
1328 |
''' |
|
1342 | ''' | |
1329 |
|
1343 | |||
1330 |
def run(self, dataOut): |
|
1344 | def run(self, dataOut): | |
1331 |
|
1345 | |||
1332 |
data = dataOut.data_pre[0] |
|
1346 | data = dataOut.data_pre[0] | |
1333 |
absc = dataOut.abscissaList[:-1] |
|
1347 | absc = dataOut.abscissaList[:-1] | |
1334 |
noise = dataOut.noise |
|
1348 | noise = dataOut.noise | |
@@ -1337,7 +1351,7 class SpectralMoments(Operation): | |||||
1337 |
|
1351 | |||
1338 |
for ind in range(nChannel): |
|
1352 | for ind in range(nChannel): | |
1339 |
data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) |
|
1353 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) | |
1340 |
|
1354 | |||
1341 |
dataOut.moments = data_param[:,1:,:] |
|
1355 | dataOut.moments = data_param[:,1:,:] | |
1342 |
dataOut.data_SNR = data_param[:,0] |
|
1356 | dataOut.data_SNR = data_param[:,0] | |
1343 |
dataOut.data_POW = data_param[:,1] |
|
1357 | dataOut.data_POW = data_param[:,1] | |
@@ -1345,12 +1359,12 class SpectralMoments(Operation): | |||||
1345 |
dataOut.data_WIDTH = data_param[:,3] |
|
1359 | dataOut.data_WIDTH = data_param[:,3] | |
1346 |
|
1360 | |||
1347 |
return dataOut |
|
1361 | return dataOut | |
1348 |
|
1362 | |||
1349 |
def __calculateMoments(self, oldspec, oldfreq, n0, |
|
1363 | def __calculateMoments(self, oldspec, oldfreq, n0, | |
1350 |
nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
1364 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |
1351 |
|
1365 | |||
1352 |
if (nicoh is None): nicoh = 1 |
|
1366 | if (nicoh is None): nicoh = 1 | |
1353 |
if (graph is None): graph = 0 |
|
1367 | if (graph is None): graph = 0 | |
1354 |
if (smooth is None): smooth = 0 |
|
1368 | if (smooth is None): smooth = 0 | |
1355 |
elif (self.smooth < 3): smooth = 0 |
|
1369 | elif (self.smooth < 3): smooth = 0 | |
1356 |
|
1370 | |||
@@ -1361,102 +1375,102 class SpectralMoments(Operation): | |||||
1361 |
if (aliasing is None): aliasing = 0 |
|
1375 | if (aliasing is None): aliasing = 0 | |
1362 |
if (oldfd is None): oldfd = 0 |
|
1376 | if (oldfd is None): oldfd = 0 | |
1363 |
if (wwauto is None): wwauto = 0 |
|
1377 | if (wwauto is None): wwauto = 0 | |
1364 |
|
1378 | |||
1365 |
if (n0 < 1.e-20): n0 = 1.e-20 |
|
1379 | if (n0 < 1.e-20): n0 = 1.e-20 | |
1366 |
|
1380 | |||
1367 |
freq = oldfreq |
|
1381 | freq = oldfreq | |
1368 |
vec_power = numpy.zeros(oldspec.shape[1]) |
|
1382 | vec_power = numpy.zeros(oldspec.shape[1]) | |
1369 |
vec_fd = numpy.zeros(oldspec.shape[1]) |
|
1383 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
1370 |
vec_w = numpy.zeros(oldspec.shape[1]) |
|
1384 | vec_w = numpy.zeros(oldspec.shape[1]) | |
1371 |
vec_snr = numpy.zeros(oldspec.shape[1]) |
|
1385 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
1372 |
|
1386 | |||
1373 |
# oldspec = numpy.ma.masked_invalid(oldspec) |
|
1387 | # oldspec = numpy.ma.masked_invalid(oldspec) | |
1374 |
|
1388 | |||
1375 |
for ind in range(oldspec.shape[1]): |
|
1389 | for ind in range(oldspec.shape[1]): | |
1376 |
|
1390 | |||
1377 |
spec = oldspec[:,ind] |
|
1391 | spec = oldspec[:,ind] | |
1378 |
aux = spec*fwindow |
|
1392 | aux = spec*fwindow | |
1379 |
max_spec = aux.max() |
|
1393 | max_spec = aux.max() | |
1380 |
m = aux.tolist().index(max_spec) |
|
1394 | m = aux.tolist().index(max_spec) | |
1381 |
|
1395 | |||
1382 |
#Smooth |
|
1396 | #Smooth | |
1383 |
if (smooth == 0): |
|
1397 | if (smooth == 0): | |
1384 |
spec2 = spec |
|
1398 | spec2 = spec | |
1385 |
else: |
|
1399 | else: | |
1386 |
spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
1400 | spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
1387 |
|
1401 | |||
1388 |
# Calculo de Momentos |
|
1402 | # Calculo de Momentos | |
1389 |
bb = spec2[numpy.arange(m,spec2.size)] |
|
1403 | bb = spec2[numpy.arange(m,spec2.size)] | |
1390 |
bb = (bb<n0).nonzero() |
|
1404 | bb = (bb<n0).nonzero() | |
1391 |
bb = bb[0] |
|
1405 | bb = bb[0] | |
1392 |
|
1406 | |||
1393 |
ss = spec2[numpy.arange(0,m + 1)] |
|
1407 | ss = spec2[numpy.arange(0,m + 1)] | |
1394 |
ss = (ss<n0).nonzero() |
|
1408 | ss = (ss<n0).nonzero() | |
1395 |
ss = ss[0] |
|
1409 | ss = ss[0] | |
1396 |
|
1410 | |||
1397 |
if (bb.size == 0): |
|
1411 | if (bb.size == 0): | |
1398 |
bb0 = spec.size - 1 - m |
|
1412 | bb0 = spec.size - 1 - m | |
1399 |
else: |
|
1413 | else: | |
1400 |
bb0 = bb[0] - 1 |
|
1414 | bb0 = bb[0] - 1 | |
1401 |
if (bb0 < 0): |
|
1415 | if (bb0 < 0): | |
1402 |
bb0 = 0 |
|
1416 | bb0 = 0 | |
1403 |
|
1417 | |||
1404 |
if (ss.size == 0): |
|
1418 | if (ss.size == 0): | |
1405 |
ss1 = 1 |
|
1419 | ss1 = 1 | |
1406 |
else: |
|
1420 | else: | |
1407 |
ss1 = max(ss) + 1 |
|
1421 | ss1 = max(ss) + 1 | |
1408 |
|
1422 | |||
1409 |
if (ss1 > m): |
|
1423 | if (ss1 > m): | |
1410 |
ss1 = m |
|
1424 | ss1 = m | |
1411 |
|
1425 | |||
1412 |
valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1 |
|
1426 | valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1 | |
1413 |
|
1427 | |||
1414 |
power = ((spec2[valid] - n0) * fwindow[valid]).sum() |
|
1428 | power = ((spec2[valid] - n0) * fwindow[valid]).sum() | |
1415 |
fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power |
|
1429 | fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power | |
1416 |
w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power) |
|
1430 | w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power) | |
1417 |
snr = (spec2.mean()-n0)/n0 |
|
1431 | snr = (spec2.mean()-n0)/n0 | |
1418 |
if (snr < 1.e-20) : |
|
1432 | if (snr < 1.e-20) : | |
1419 |
snr = 1.e-20 |
|
1433 | snr = 1.e-20 | |
1420 |
|
1434 | |||
1421 |
vec_power[ind] = power |
|
1435 | vec_power[ind] = power | |
1422 |
vec_fd[ind] = fd |
|
1436 | vec_fd[ind] = fd | |
1423 |
vec_w[ind] = w |
|
1437 | vec_w[ind] = w | |
1424 |
vec_snr[ind] = snr |
|
1438 | vec_snr[ind] = snr | |
1425 |
|
1439 | |||
1426 |
return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
1440 | return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
1427 |
|
1441 | |||
1428 |
#------------------ Get SA Parameters -------------------------- |
|
1442 | #------------------ Get SA Parameters -------------------------- | |
1429 |
|
1443 | |||
1430 |
def GetSAParameters(self): |
|
1444 | def GetSAParameters(self): | |
1431 |
#SA en frecuencia |
|
1445 | #SA en frecuencia | |
1432 |
pairslist = self.dataOut.groupList |
|
1446 | pairslist = self.dataOut.groupList | |
1433 |
num_pairs = len(pairslist) |
|
1447 | num_pairs = len(pairslist) | |
1434 |
|
1448 | |||
1435 |
vel = self.dataOut.abscissaList |
|
1449 | vel = self.dataOut.abscissaList | |
1436 |
spectra = self.dataOut.data_pre |
|
1450 | spectra = self.dataOut.data_pre | |
1437 |
cspectra = self.dataIn.data_cspc |
|
1451 | cspectra = self.dataIn.data_cspc | |
1438 |
delta_v = vel[1] - vel[0] |
|
1452 | delta_v = vel[1] - vel[0] | |
1439 |
|
1453 | |||
1440 |
#Calculating the power spectrum |
|
1454 | #Calculating the power spectrum | |
1441 |
spc_pow = numpy.sum(spectra, 3)*delta_v |
|
1455 | spc_pow = numpy.sum(spectra, 3)*delta_v | |
1442 |
#Normalizing Spectra |
|
1456 | #Normalizing Spectra | |
1443 |
norm_spectra = spectra/spc_pow |
|
1457 | norm_spectra = spectra/spc_pow | |
1444 |
#Calculating the norm_spectra at peak |
|
1458 | #Calculating the norm_spectra at peak | |
1445 |
max_spectra = numpy.max(norm_spectra, 3) |
|
1459 | max_spectra = numpy.max(norm_spectra, 3) | |
1446 |
|
1460 | |||
1447 |
#Normalizing Cross Spectra |
|
1461 | #Normalizing Cross Spectra | |
1448 |
norm_cspectra = numpy.zeros(cspectra.shape) |
|
1462 | norm_cspectra = numpy.zeros(cspectra.shape) | |
1449 |
|
1463 | |||
1450 |
for i in range(num_chan): |
|
1464 | for i in range(num_chan): | |
1451 |
norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) |
|
1465 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) | |
1452 |
|
1466 | |||
1453 |
max_cspectra = numpy.max(norm_cspectra,2) |
|
1467 | max_cspectra = numpy.max(norm_cspectra,2) | |
1454 |
max_cspectra_index = numpy.argmax(norm_cspectra, 2) |
|
1468 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) | |
1455 |
|
1469 | |||
1456 |
for i in range(num_pairs): |
|
1470 | for i in range(num_pairs): | |
1457 |
cspc_par[i,:,:] = __calculateMoments(norm_cspectra) |
|
1471 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) | |
1458 |
#------------------- Get Lags ---------------------------------- |
|
1472 | #------------------- Get Lags ---------------------------------- | |
1459 |
|
1473 | |||
1460 |
class SALags(Operation): |
|
1474 | class SALags(Operation): | |
1461 |
''' |
|
1475 | ''' | |
1462 |
Function GetMoments() |
|
1476 | Function GetMoments() | |
@@ -1469,19 +1483,19 class SALags(Operation): | |||||
1469 |
self.dataOut.data_SNR |
|
1483 | self.dataOut.data_SNR | |
1470 |
self.dataOut.groupList |
|
1484 | self.dataOut.groupList | |
1471 |
self.dataOut.nChannels |
|
1485 | self.dataOut.nChannels | |
1472 |
|
1486 | |||
1473 |
Affected: |
|
1487 | Affected: | |
1474 |
self.dataOut.data_param |
|
1488 | self.dataOut.data_param | |
1475 |
|
1489 | |||
1476 |
''' |
|
1490 | ''' | |
1477 |
def run(self, dataOut): |
|
1491 | def run(self, dataOut): | |
1478 |
data_acf = dataOut.data_pre[0] |
|
1492 | data_acf = dataOut.data_pre[0] | |
1479 |
data_ccf = dataOut.data_pre[1] |
|
1493 | data_ccf = dataOut.data_pre[1] | |
1480 |
normFactor_acf = dataOut.normFactor[0] |
|
1494 | normFactor_acf = dataOut.normFactor[0] | |
1481 |
normFactor_ccf = dataOut.normFactor[1] |
|
1495 | normFactor_ccf = dataOut.normFactor[1] | |
1482 |
pairs_acf = dataOut.groupList[0] |
|
1496 | pairs_acf = dataOut.groupList[0] | |
1483 |
pairs_ccf = dataOut.groupList[1] |
|
1497 | pairs_ccf = dataOut.groupList[1] | |
1484 |
|
1498 | |||
1485 |
nHeights = dataOut.nHeights |
|
1499 | nHeights = dataOut.nHeights | |
1486 |
absc = dataOut.abscissaList |
|
1500 | absc = dataOut.abscissaList | |
1487 |
noise = dataOut.noise |
|
1501 | noise = dataOut.noise | |
@@ -1492,97 +1506,97 class SALags(Operation): | |||||
1492 |
|
1506 | |||
1493 |
for l in range(len(pairs_acf)): |
|
1507 | for l in range(len(pairs_acf)): | |
1494 |
data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] |
|
1508 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] | |
1495 |
|
1509 | |||
1496 |
for l in range(len(pairs_ccf)): |
|
1510 | for l in range(len(pairs_ccf)): | |
1497 |
data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] |
|
1511 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] | |
1498 |
|
1512 | |||
1499 |
dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) |
|
1513 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) | |
1500 |
dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) |
|
1514 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) | |
1501 |
dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) |
|
1515 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) | |
1502 |
return |
|
1516 | return | |
1503 |
|
1517 | |||
1504 |
# def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1518 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
1505 | # |
|
1519 | # | |
1506 |
# pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1520 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1507 | # |
|
1521 | # | |
1508 |
# for l in range(len(pairsList)): |
|
1522 | # for l in range(len(pairsList)): | |
1509 |
# firstChannel = pairsList[l][0] |
|
1523 | # firstChannel = pairsList[l][0] | |
1510 |
# secondChannel = pairsList[l][1] |
|
1524 | # secondChannel = pairsList[l][1] | |
1511 | # |
|
1525 | # | |
1512 |
# #Obteniendo pares de Autocorrelacion |
|
1526 | # #Obteniendo pares de Autocorrelacion | |
1513 |
# if firstChannel == secondChannel: |
|
1527 | # if firstChannel == secondChannel: | |
1514 |
# pairsAutoCorr[firstChannel] = int(l) |
|
1528 | # pairsAutoCorr[firstChannel] = int(l) | |
1515 | # |
|
1529 | # | |
1516 |
# pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1530 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
1517 | # |
|
1531 | # | |
1518 |
# pairsCrossCorr = range(len(pairsList)) |
|
1532 | # pairsCrossCorr = range(len(pairsList)) | |
1519 |
# pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1533 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1520 | # |
|
1534 | # | |
1521 |
# return pairsAutoCorr, pairsCrossCorr |
|
1535 | # return pairsAutoCorr, pairsCrossCorr | |
1522 |
|
1536 | |||
1523 |
def __calculateTaus(self, data_acf, data_ccf, lagRange): |
|
1537 | def __calculateTaus(self, data_acf, data_ccf, lagRange): | |
1524 |
|
1538 | |||
1525 |
lag0 = data_acf.shape[1]/2 |
|
1539 | lag0 = data_acf.shape[1]/2 | |
1526 |
#Funcion de Autocorrelacion |
|
1540 | #Funcion de Autocorrelacion | |
1527 |
mean_acf = stats.nanmean(data_acf, axis = 0) |
|
1541 | mean_acf = stats.nanmean(data_acf, axis = 0) | |
1528 |
|
1542 | |||
1529 |
#Obtencion Indice de TauCross |
|
1543 | #Obtencion Indice de TauCross | |
1530 |
ind_ccf = data_ccf.argmax(axis = 1) |
|
1544 | ind_ccf = data_ccf.argmax(axis = 1) | |
1531 |
#Obtencion Indice de TauAuto |
|
1545 | #Obtencion Indice de TauAuto | |
1532 |
ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') |
|
1546 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') | |
1533 |
ccf_lag0 = data_ccf[:,lag0,:] |
|
1547 | ccf_lag0 = data_ccf[:,lag0,:] | |
1534 |
|
1548 | |||
1535 |
for i in range(ccf_lag0.shape[0]): |
|
1549 | for i in range(ccf_lag0.shape[0]): | |
1536 |
ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) |
|
1550 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) | |
1537 |
|
1551 | |||
1538 |
#Obtencion de TauCross y TauAuto |
|
1552 | #Obtencion de TauCross y TauAuto | |
1539 |
tau_ccf = lagRange[ind_ccf] |
|
1553 | tau_ccf = lagRange[ind_ccf] | |
1540 |
tau_acf = lagRange[ind_acf] |
|
1554 | tau_acf = lagRange[ind_acf] | |
1541 |
|
1555 | |||
1542 |
Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) |
|
1556 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) | |
1543 |
|
1557 | |||
1544 |
tau_ccf[Nan1,Nan2] = numpy.nan |
|
1558 | tau_ccf[Nan1,Nan2] = numpy.nan | |
1545 |
tau_acf[Nan1,Nan2] = numpy.nan |
|
1559 | tau_acf[Nan1,Nan2] = numpy.nan | |
1546 |
tau = numpy.vstack((tau_ccf,tau_acf)) |
|
1560 | tau = numpy.vstack((tau_ccf,tau_acf)) | |
1547 |
|
1561 | |||
1548 |
return tau |
|
1562 | return tau | |
1549 |
|
1563 | |||
1550 |
def __calculateLag1Phase(self, data, lagTRange): |
|
1564 | def __calculateLag1Phase(self, data, lagTRange): | |
1551 |
data1 = stats.nanmean(data, axis = 0) |
|
1565 | data1 = stats.nanmean(data, axis = 0) | |
1552 |
lag1 = numpy.where(lagTRange == 0)[0][0] + 1 |
|
1566 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |
1553 |
|
1567 | |||
1554 |
phase = numpy.angle(data1[lag1,:]) |
|
1568 | phase = numpy.angle(data1[lag1,:]) | |
1555 |
|
1569 | |||
1556 |
return phase |
|
1570 | return phase | |
1557 |
|
1571 | |||
1558 |
class SpectralFitting(Operation): |
|
1572 | class SpectralFitting(Operation): | |
1559 |
''' |
|
1573 | ''' | |
1560 |
Function GetMoments() |
|
1574 | Function GetMoments() | |
1561 |
|
1575 | |||
1562 |
Input: |
|
1576 | Input: | |
1563 |
Output: |
|
1577 | Output: | |
1564 |
Variables modified: |
|
1578 | Variables modified: | |
1565 |
''' |
|
1579 | ''' | |
1566 |
|
1580 | |||
1567 |
def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): |
|
1581 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): | |
1568 |
|
1582 | |||
1569 |
|
1583 | |||
1570 |
if path != None: |
|
1584 | if path != None: | |
1571 |
sys.path.append(path) |
|
1585 | sys.path.append(path) | |
1572 |
self.dataOut.library = importlib.import_module(file) |
|
1586 | self.dataOut.library = importlib.import_module(file) | |
1573 |
|
1587 | |||
1574 |
#To be inserted as a parameter |
|
1588 | #To be inserted as a parameter | |
1575 |
groupArray = numpy.array(groupList) |
|
1589 | groupArray = numpy.array(groupList) | |
1576 |
# groupArray = numpy.array([[0,1],[2,3]]) |
|
1590 | # groupArray = numpy.array([[0,1],[2,3]]) | |
1577 |
self.dataOut.groupList = groupArray |
|
1591 | self.dataOut.groupList = groupArray | |
1578 |
|
1592 | |||
1579 |
nGroups = groupArray.shape[0] |
|
1593 | nGroups = groupArray.shape[0] | |
1580 |
nChannels = self.dataIn.nChannels |
|
1594 | nChannels = self.dataIn.nChannels | |
1581 |
nHeights=self.dataIn.heightList.size |
|
1595 | nHeights=self.dataIn.heightList.size | |
1582 |
|
1596 | |||
1583 |
#Parameters Array |
|
1597 | #Parameters Array | |
1584 |
self.dataOut.data_param = None |
|
1598 | self.dataOut.data_param = None | |
1585 |
|
1599 | |||
1586 |
#Set constants |
|
1600 | #Set constants | |
1587 |
constants = self.dataOut.library.setConstants(self.dataIn) |
|
1601 | constants = self.dataOut.library.setConstants(self.dataIn) | |
1588 |
self.dataOut.constants = constants |
|
1602 | self.dataOut.constants = constants | |
@@ -1591,24 +1605,24 class SpectralFitting(Operation): | |||||
1591 |
ippSeconds = self.dataIn.ippSeconds |
|
1605 | ippSeconds = self.dataIn.ippSeconds | |
1592 |
K = self.dataIn.nIncohInt |
|
1606 | K = self.dataIn.nIncohInt | |
1593 |
pairsArray = numpy.array(self.dataIn.pairsList) |
|
1607 | pairsArray = numpy.array(self.dataIn.pairsList) | |
1594 |
|
1608 | |||
1595 |
#List of possible combinations |
|
1609 | #List of possible combinations | |
1596 |
listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) |
|
1610 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |
1597 |
indCross = numpy.zeros(len(list(listComb)), dtype = 'int') |
|
1611 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |
1598 |
|
1612 | |||
1599 |
if getSNR: |
|
1613 | if getSNR: | |
1600 |
listChannels = groupArray.reshape((groupArray.size)) |
|
1614 | listChannels = groupArray.reshape((groupArray.size)) | |
1601 |
listChannels.sort() |
|
1615 | listChannels.sort() | |
1602 |
noise = self.dataIn.getNoise() |
|
1616 | noise = self.dataIn.getNoise() | |
1603 |
self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) |
|
1617 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) | |
1604 |
|
1618 | |||
1605 |
for i in range(nGroups): |
|
1619 | for i in range(nGroups): | |
1606 |
coord = groupArray[i,:] |
|
1620 | coord = groupArray[i,:] | |
1607 |
|
1621 | |||
1608 |
#Input data array |
|
1622 | #Input data array | |
1609 |
data = self.dataIn.data_spc[coord,:,:]/(M*N) |
|
1623 | data = self.dataIn.data_spc[coord,:,:]/(M*N) | |
1610 |
data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) |
|
1624 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |
1611 |
|
1625 | |||
1612 |
#Cross Spectra data array for Covariance Matrixes |
|
1626 | #Cross Spectra data array for Covariance Matrixes | |
1613 |
ind = 0 |
|
1627 | ind = 0 | |
1614 |
for pairs in listComb: |
|
1628 | for pairs in listComb: | |
@@ -1617,9 +1631,9 class SpectralFitting(Operation): | |||||
1617 |
ind += 1 |
|
1631 | ind += 1 | |
1618 |
dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) |
|
1632 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) | |
1619 |
dataCross = dataCross**2/K |
|
1633 | dataCross = dataCross**2/K | |
1620 |
|
1634 | |||
1621 |
for h in range(nHeights): |
|
1635 | for h in range(nHeights): | |
1622 |
|
1636 | |||
1623 |
#Input |
|
1637 | #Input | |
1624 |
d = data[:,h] |
|
1638 | d = data[:,h] | |
1625 |
|
1639 | |||
@@ -1628,7 +1642,7 class SpectralFitting(Operation): | |||||
1628 |
ind = 0 |
|
1642 | ind = 0 | |
1629 |
for pairs in listComb: |
|
1643 | for pairs in listComb: | |
1630 |
#Coordinates in Covariance Matrix |
|
1644 | #Coordinates in Covariance Matrix | |
1631 |
x = pairs[0] |
|
1645 | x = pairs[0] | |
1632 |
y = pairs[1] |
|
1646 | y = pairs[1] | |
1633 |
#Channel Index |
|
1647 | #Channel Index | |
1634 |
S12 = dataCross[ind,:,h] |
|
1648 | S12 = dataCross[ind,:,h] | |
@@ -1642,15 +1656,15 class SpectralFitting(Operation): | |||||
1642 |
LT=L.T |
|
1656 | LT=L.T | |
1643 |
|
1657 | |||
1644 |
dp = numpy.dot(LT,d) |
|
1658 | dp = numpy.dot(LT,d) | |
1645 |
|
1659 | |||
1646 |
#Initial values |
|
1660 | #Initial values | |
1647 |
data_spc = self.dataIn.data_spc[coord,:,h] |
|
1661 | data_spc = self.dataIn.data_spc[coord,:,h] | |
1648 |
|
1662 | |||
1649 |
if (h>0)and(error1[3]<5): |
|
1663 | if (h>0)and(error1[3]<5): | |
1650 |
p0 = self.dataOut.data_param[i,:,h-1] |
|
1664 | p0 = self.dataOut.data_param[i,:,h-1] | |
1651 |
else: |
|
1665 | else: | |
1652 |
p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) |
|
1666 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) | |
1653 |
|
1667 | |||
1654 |
try: |
|
1668 | try: | |
1655 |
#Least Squares |
|
1669 | #Least Squares | |
1656 |
minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) |
|
1670 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |
@@ -1663,30 +1677,30 class SpectralFitting(Operation): | |||||
1663 |
minp = p0*numpy.nan |
|
1677 | minp = p0*numpy.nan | |
1664 |
error0 = numpy.nan |
|
1678 | error0 = numpy.nan | |
1665 |
error1 = p0*numpy.nan |
|
1679 | error1 = p0*numpy.nan | |
1666 |
|
1680 | |||
1667 |
#Save |
|
1681 | #Save | |
1668 |
if self.dataOut.data_param is None: |
|
1682 | if self.dataOut.data_param is None: | |
1669 |
self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan |
|
1683 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |
1670 |
self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan |
|
1684 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |
1671 |
|
1685 | |||
1672 |
self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) |
|
1686 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |
1673 |
self.dataOut.data_param[i,:,h] = minp |
|
1687 | self.dataOut.data_param[i,:,h] = minp | |
1674 |
return |
|
1688 | return | |
1675 |
|
1689 | |||
1676 |
def __residFunction(self, p, dp, LT, constants): |
|
1690 | def __residFunction(self, p, dp, LT, constants): | |
1677 |
|
1691 | |||
1678 |
fm = self.dataOut.library.modelFunction(p, constants) |
|
1692 | fm = self.dataOut.library.modelFunction(p, constants) | |
1679 |
fmp=numpy.dot(LT,fm) |
|
1693 | fmp=numpy.dot(LT,fm) | |
1680 |
|
1694 | |||
1681 |
return dp-fmp |
|
1695 | return dp-fmp | |
1682 |
|
1696 | |||
1683 |
def __getSNR(self, z, noise): |
|
1697 | def __getSNR(self, z, noise): | |
1684 |
|
1698 | |||
1685 |
avg = numpy.average(z, axis=1) |
|
1699 | avg = numpy.average(z, axis=1) | |
1686 |
SNR = (avg.T-noise)/noise |
|
1700 | SNR = (avg.T-noise)/noise | |
1687 |
SNR = SNR.T |
|
1701 | SNR = SNR.T | |
1688 |
return SNR |
|
1702 | return SNR | |
1689 |
|
1703 | |||
1690 |
def __chisq(p,chindex,hindex): |
|
1704 | def __chisq(p,chindex,hindex): | |
1691 |
#similar to Resid but calculates CHI**2 |
|
1705 | #similar to Resid but calculates CHI**2 | |
1692 |
[LT,d,fm]=setupLTdfm(p,chindex,hindex) |
|
1706 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |
@@ -1694,53 +1708,53 class SpectralFitting(Operation): | |||||
1694 |
fmp=numpy.dot(LT,fm) |
|
1708 | fmp=numpy.dot(LT,fm) | |
1695 |
chisq=numpy.dot((dp-fmp).T,(dp-fmp)) |
|
1709 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |
1696 |
return chisq |
|
1710 | return chisq | |
1697 |
|
1711 | |||
1698 |
class WindProfiler(Operation): |
|
1712 | class WindProfiler(Operation): | |
1699 |
|
1713 | |||
1700 |
__isConfig = False |
|
1714 | __isConfig = False | |
1701 |
|
1715 | |||
1702 |
__initime = None |
|
1716 | __initime = None | |
1703 |
__lastdatatime = None |
|
1717 | __lastdatatime = None | |
1704 |
__integrationtime = None |
|
1718 | __integrationtime = None | |
1705 |
|
1719 | |||
1706 |
__buffer = None |
|
1720 | __buffer = None | |
1707 |
|
1721 | |||
1708 |
__dataReady = False |
|
1722 | __dataReady = False | |
1709 |
|
1723 | |||
1710 |
__firstdata = None |
|
1724 | __firstdata = None | |
1711 |
|
1725 | |||
1712 |
n = None |
|
1726 | n = None | |
1713 |
|
1727 | |||
1714 |
def __init__(self): |
|
1728 | def __init__(self): | |
1715 |
Operation.__init__(self) |
|
1729 | Operation.__init__(self) | |
1716 |
|
1730 | |||
1717 |
def __calculateCosDir(self, elev, azim): |
|
1731 | def __calculateCosDir(self, elev, azim): | |
1718 |
zen = (90 - elev)*numpy.pi/180 |
|
1732 | zen = (90 - elev)*numpy.pi/180 | |
1719 |
azim = azim*numpy.pi/180 |
|
1733 | azim = azim*numpy.pi/180 | |
1720 |
cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) |
|
1734 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |
1721 |
cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) |
|
1735 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |
1722 |
|
1736 | |||
1723 |
signX = numpy.sign(numpy.cos(azim)) |
|
1737 | signX = numpy.sign(numpy.cos(azim)) | |
1724 |
signY = numpy.sign(numpy.sin(azim)) |
|
1738 | signY = numpy.sign(numpy.sin(azim)) | |
1725 |
|
1739 | |||
1726 |
cosDirX = numpy.copysign(cosDirX, signX) |
|
1740 | cosDirX = numpy.copysign(cosDirX, signX) | |
1727 |
cosDirY = numpy.copysign(cosDirY, signY) |
|
1741 | cosDirY = numpy.copysign(cosDirY, signY) | |
1728 |
return cosDirX, cosDirY |
|
1742 | return cosDirX, cosDirY | |
1729 |
|
1743 | |||
1730 |
def __calculateAngles(self, theta_x, theta_y, azimuth): |
|
1744 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |
1731 |
|
1745 | |||
1732 |
dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) |
|
1746 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |
1733 |
zenith_arr = numpy.arccos(dir_cosw) |
|
1747 | zenith_arr = numpy.arccos(dir_cosw) | |
1734 |
azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 |
|
1748 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |
1735 |
|
1749 | |||
1736 |
dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) |
|
1750 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |
1737 |
dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) |
|
1751 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |
1738 |
|
1752 | |||
1739 |
return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw |
|
1753 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |
1740 |
|
1754 | |||
1741 |
def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): |
|
1755 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |
1742 |
|
1756 | |||
1743 | # |
|
1757 | # | |
1744 |
if horOnly: |
|
1758 | if horOnly: | |
1745 |
A = numpy.c_[dir_cosu,dir_cosv] |
|
1759 | A = numpy.c_[dir_cosu,dir_cosv] | |
1746 |
else: |
|
1760 | else: | |
@@ -1754,37 +1768,37 class WindProfiler(Operation): | |||||
1754 |
listPhi = phi.tolist() |
|
1768 | listPhi = phi.tolist() | |
1755 |
maxid = listPhi.index(max(listPhi)) |
|
1769 | maxid = listPhi.index(max(listPhi)) | |
1756 |
minid = listPhi.index(min(listPhi)) |
|
1770 | minid = listPhi.index(min(listPhi)) | |
1757 |
|
1771 | |||
1758 |
rango = list(range(len(phi))) |
|
1772 | rango = list(range(len(phi))) | |
1759 |
# rango = numpy.delete(rango,maxid) |
|
1773 | # rango = numpy.delete(rango,maxid) | |
1760 |
|
1774 | |||
1761 |
heiRang1 = heiRang*math.cos(phi[maxid]) |
|
1775 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
1762 |
heiRangAux = heiRang*math.cos(phi[minid]) |
|
1776 | heiRangAux = heiRang*math.cos(phi[minid]) | |
1763 |
indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
1777 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
1764 |
heiRang1 = numpy.delete(heiRang1,indOut) |
|
1778 | heiRang1 = numpy.delete(heiRang1,indOut) | |
1765 |
|
1779 | |||
1766 |
velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1780 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1767 |
SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1781 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1768 |
|
1782 | |||
1769 |
for i in rango: |
|
1783 | for i in rango: | |
1770 |
x = heiRang*math.cos(phi[i]) |
|
1784 | x = heiRang*math.cos(phi[i]) | |
1771 |
y1 = velRadial[i,:] |
|
1785 | y1 = velRadial[i,:] | |
1772 |
f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
1786 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
1773 |
|
1787 | |||
1774 |
x1 = heiRang1 |
|
1788 | x1 = heiRang1 | |
1775 |
y11 = f1(x1) |
|
1789 | y11 = f1(x1) | |
1776 |
|
1790 | |||
1777 |
y2 = SNR[i,:] |
|
1791 | y2 = SNR[i,:] | |
1778 |
f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
1792 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
1779 |
y21 = f2(x1) |
|
1793 | y21 = f2(x1) | |
1780 |
|
1794 | |||
1781 |
velRadial1[i,:] = y11 |
|
1795 | velRadial1[i,:] = y11 | |
1782 |
SNR1[i,:] = y21 |
|
1796 | SNR1[i,:] = y21 | |
1783 |
|
1797 | |||
1784 |
return heiRang1, velRadial1, SNR1 |
|
1798 | return heiRang1, velRadial1, SNR1 | |
1785 |
|
1799 | |||
1786 |
def __calculateVelUVW(self, A, velRadial): |
|
1800 | def __calculateVelUVW(self, A, velRadial): | |
1787 |
|
1801 | |||
1788 |
#Operacion Matricial |
|
1802 | #Operacion Matricial | |
1789 |
# velUVW = numpy.zeros((velRadial.shape[1],3)) |
|
1803 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |
1790 |
# for ind in range(velRadial.shape[1]): |
|
1804 | # for ind in range(velRadial.shape[1]): | |
@@ -1792,27 +1806,27 class WindProfiler(Operation): | |||||
1792 |
# velUVW = velUVW.transpose() |
|
1806 | # velUVW = velUVW.transpose() | |
1793 |
velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) |
|
1807 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |
1794 |
velUVW[:,:] = numpy.dot(A,velRadial) |
|
1808 | velUVW[:,:] = numpy.dot(A,velRadial) | |
1795 |
|
1809 | |||
1796 |
|
1810 | |||
1797 |
return velUVW |
|
1811 | return velUVW | |
1798 |
|
1812 | |||
1799 |
# def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): |
|
1813 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |
1800 |
|
1814 | |||
1801 |
def techniqueDBS(self, kwargs): |
|
1815 | def techniqueDBS(self, kwargs): | |
1802 |
""" |
|
1816 | """ | |
1803 |
Function that implements Doppler Beam Swinging (DBS) technique. |
|
1817 | Function that implements Doppler Beam Swinging (DBS) technique. | |
1804 |
|
1818 | |||
1805 |
Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1819 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1806 |
Direction correction (if necessary), Ranges and SNR |
|
1820 | Direction correction (if necessary), Ranges and SNR | |
1807 |
|
1821 | |||
1808 |
Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1822 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1809 |
|
1823 | |||
1810 |
Parameters affected: Winds, height range, SNR |
|
1824 | Parameters affected: Winds, height range, SNR | |
1811 |
""" |
|
1825 | """ | |
1812 |
velRadial0 = kwargs['velRadial'] |
|
1826 | velRadial0 = kwargs['velRadial'] | |
1813 |
heiRang = kwargs['heightList'] |
|
1827 | heiRang = kwargs['heightList'] | |
1814 |
SNR0 = kwargs['SNR'] |
|
1828 | SNR0 = kwargs['SNR'] | |
1815 |
|
1829 | |||
1816 |
if 'dirCosx' in kwargs and 'dirCosy' in kwargs: |
|
1830 | if 'dirCosx' in kwargs and 'dirCosy' in kwargs: | |
1817 |
theta_x = numpy.array(kwargs['dirCosx']) |
|
1831 | theta_x = numpy.array(kwargs['dirCosx']) | |
1818 |
theta_y = numpy.array(kwargs['dirCosy']) |
|
1832 | theta_y = numpy.array(kwargs['dirCosy']) | |
@@ -1820,7 +1834,7 class WindProfiler(Operation): | |||||
1820 |
elev = numpy.array(kwargs['elevation']) |
|
1834 | elev = numpy.array(kwargs['elevation']) | |
1821 |
azim = numpy.array(kwargs['azimuth']) |
|
1835 | azim = numpy.array(kwargs['azimuth']) | |
1822 |
theta_x, theta_y = self.__calculateCosDir(elev, azim) |
|
1836 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |
1823 |
azimuth = kwargs['correctAzimuth'] |
|
1837 | azimuth = kwargs['correctAzimuth'] | |
1824 |
if 'horizontalOnly' in kwargs: |
|
1838 | if 'horizontalOnly' in kwargs: | |
1825 |
horizontalOnly = kwargs['horizontalOnly'] |
|
1839 | horizontalOnly = kwargs['horizontalOnly'] | |
1826 |
else: horizontalOnly = False |
|
1840 | else: horizontalOnly = False | |
@@ -1835,22 +1849,22 class WindProfiler(Operation): | |||||
1835 |
param = param[arrayChannel,:,:] |
|
1849 | param = param[arrayChannel,:,:] | |
1836 |
theta_x = theta_x[arrayChannel] |
|
1850 | theta_x = theta_x[arrayChannel] | |
1837 |
theta_y = theta_y[arrayChannel] |
|
1851 | theta_y = theta_y[arrayChannel] | |
1838 |
|
1852 | |||
1839 |
azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
1853 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
1840 |
heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) |
|
1854 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) | |
1841 |
A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) |
|
1855 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |
1842 |
|
1856 | |||
1843 |
#Calculo de Componentes de la velocidad con DBS |
|
1857 | #Calculo de Componentes de la velocidad con DBS | |
1844 |
winds = self.__calculateVelUVW(A,velRadial1) |
|
1858 | winds = self.__calculateVelUVW(A,velRadial1) | |
1845 |
|
1859 | |||
1846 |
return winds, heiRang1, SNR1 |
|
1860 | return winds, heiRang1, SNR1 | |
1847 |
|
1861 | |||
1848 |
def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): |
|
1862 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): | |
1849 |
|
1863 | |||
1850 |
nPairs = len(pairs_ccf) |
|
1864 | nPairs = len(pairs_ccf) | |
1851 |
posx = numpy.asarray(posx) |
|
1865 | posx = numpy.asarray(posx) | |
1852 |
posy = numpy.asarray(posy) |
|
1866 | posy = numpy.asarray(posy) | |
1853 |
|
1867 | |||
1854 |
#Rotacion Inversa para alinear con el azimuth |
|
1868 | #Rotacion Inversa para alinear con el azimuth | |
1855 |
if azimuth!= None: |
|
1869 | if azimuth!= None: | |
1856 |
azimuth = azimuth*math.pi/180 |
|
1870 | azimuth = azimuth*math.pi/180 | |
@@ -1859,126 +1873,126 class WindProfiler(Operation): | |||||
1859 |
else: |
|
1873 | else: | |
1860 |
posx1 = posx |
|
1874 | posx1 = posx | |
1861 |
posy1 = posy |
|
1875 | posy1 = posy | |
1862 |
|
1876 | |||
1863 |
#Calculo de Distancias |
|
1877 | #Calculo de Distancias | |
1864 |
distx = numpy.zeros(nPairs) |
|
1878 | distx = numpy.zeros(nPairs) | |
1865 |
disty = numpy.zeros(nPairs) |
|
1879 | disty = numpy.zeros(nPairs) | |
1866 |
dist = numpy.zeros(nPairs) |
|
1880 | dist = numpy.zeros(nPairs) | |
1867 |
ang = numpy.zeros(nPairs) |
|
1881 | ang = numpy.zeros(nPairs) | |
1868 |
|
1882 | |||
1869 |
for i in range(nPairs): |
|
1883 | for i in range(nPairs): | |
1870 |
distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] |
|
1884 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] | |
1871 |
disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] |
|
1885 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] | |
1872 |
dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) |
|
1886 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |
1873 |
ang[i] = numpy.arctan2(disty[i],distx[i]) |
|
1887 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |
1874 |
|
1888 | |||
1875 |
return distx, disty, dist, ang |
|
1889 | return distx, disty, dist, ang | |
1876 |
#Calculo de Matrices |
|
1890 | #Calculo de Matrices | |
1877 |
# nPairs = len(pairs) |
|
1891 | # nPairs = len(pairs) | |
1878 |
# ang1 = numpy.zeros((nPairs, 2, 1)) |
|
1892 | # ang1 = numpy.zeros((nPairs, 2, 1)) | |
1879 |
# dist1 = numpy.zeros((nPairs, 2, 1)) |
|
1893 | # dist1 = numpy.zeros((nPairs, 2, 1)) | |
1880 | # |
|
1894 | # | |
1881 |
# for j in range(nPairs): |
|
1895 | # for j in range(nPairs): | |
1882 |
# dist1[j,0,0] = dist[pairs[j][0]] |
|
1896 | # dist1[j,0,0] = dist[pairs[j][0]] | |
1883 |
# dist1[j,1,0] = dist[pairs[j][1]] |
|
1897 | # dist1[j,1,0] = dist[pairs[j][1]] | |
1884 |
# ang1[j,0,0] = ang[pairs[j][0]] |
|
1898 | # ang1[j,0,0] = ang[pairs[j][0]] | |
1885 |
# ang1[j,1,0] = ang[pairs[j][1]] |
|
1899 | # ang1[j,1,0] = ang[pairs[j][1]] | |
1886 | # |
|
1900 | # | |
1887 |
# return distx,disty, dist1,ang1 |
|
1901 | # return distx,disty, dist1,ang1 | |
1888 |
|
1902 | |||
1889 |
|
1903 | |||
1890 |
def __calculateVelVer(self, phase, lagTRange, _lambda): |
|
1904 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |
1891 |
|
1905 | |||
1892 |
Ts = lagTRange[1] - lagTRange[0] |
|
1906 | Ts = lagTRange[1] - lagTRange[0] | |
1893 |
velW = -_lambda*phase/(4*math.pi*Ts) |
|
1907 | velW = -_lambda*phase/(4*math.pi*Ts) | |
1894 |
|
1908 | |||
1895 |
return velW |
|
1909 | return velW | |
1896 |
|
1910 | |||
1897 |
def __calculateVelHorDir(self, dist, tau1, tau2, ang): |
|
1911 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |
1898 |
nPairs = tau1.shape[0] |
|
1912 | nPairs = tau1.shape[0] | |
1899 |
nHeights = tau1.shape[1] |
|
1913 | nHeights = tau1.shape[1] | |
1900 |
vel = numpy.zeros((nPairs,3,nHeights)) |
|
1914 | vel = numpy.zeros((nPairs,3,nHeights)) | |
1901 |
dist1 = numpy.reshape(dist, (dist.size,1)) |
|
1915 | dist1 = numpy.reshape(dist, (dist.size,1)) | |
1902 |
|
1916 | |||
1903 |
angCos = numpy.cos(ang) |
|
1917 | angCos = numpy.cos(ang) | |
1904 |
angSin = numpy.sin(ang) |
|
1918 | angSin = numpy.sin(ang) | |
1905 |
|
1919 | |||
1906 |
vel0 = dist1*tau1/(2*tau2**2) |
|
1920 | vel0 = dist1*tau1/(2*tau2**2) | |
1907 |
vel[:,0,:] = (vel0*angCos).sum(axis = 1) |
|
1921 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |
1908 |
vel[:,1,:] = (vel0*angSin).sum(axis = 1) |
|
1922 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |
1909 |
|
1923 | |||
1910 |
ind = numpy.where(numpy.isinf(vel)) |
|
1924 | ind = numpy.where(numpy.isinf(vel)) | |
1911 |
vel[ind] = numpy.nan |
|
1925 | vel[ind] = numpy.nan | |
1912 |
|
1926 | |||
1913 |
return vel |
|
1927 | return vel | |
1914 |
|
1928 | |||
1915 |
# def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1929 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
1916 | # |
|
1930 | # | |
1917 |
# pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1931 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1918 | # |
|
1932 | # | |
1919 |
# for l in range(len(pairsList)): |
|
1933 | # for l in range(len(pairsList)): | |
1920 |
# firstChannel = pairsList[l][0] |
|
1934 | # firstChannel = pairsList[l][0] | |
1921 |
# secondChannel = pairsList[l][1] |
|
1935 | # secondChannel = pairsList[l][1] | |
1922 | # |
|
1936 | # | |
1923 |
# #Obteniendo pares de Autocorrelacion |
|
1937 | # #Obteniendo pares de Autocorrelacion | |
1924 |
# if firstChannel == secondChannel: |
|
1938 | # if firstChannel == secondChannel: | |
1925 |
# pairsAutoCorr[firstChannel] = int(l) |
|
1939 | # pairsAutoCorr[firstChannel] = int(l) | |
1926 | # |
|
1940 | # | |
1927 |
# pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1941 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
1928 | # |
|
1942 | # | |
1929 |
# pairsCrossCorr = range(len(pairsList)) |
|
1943 | # pairsCrossCorr = range(len(pairsList)) | |
1930 |
# pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1944 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1931 | # |
|
1945 | # | |
1932 |
# return pairsAutoCorr, pairsCrossCorr |
|
1946 | # return pairsAutoCorr, pairsCrossCorr | |
1933 |
|
1947 | |||
1934 |
# def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): |
|
1948 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |
1935 |
def techniqueSA(self, kwargs): |
|
1949 | def techniqueSA(self, kwargs): | |
1936 |
|
1950 | |||
1937 |
""" |
|
1951 | """ | |
1938 |
Function that implements Spaced Antenna (SA) technique. |
|
1952 | Function that implements Spaced Antenna (SA) technique. | |
1939 |
|
1953 | |||
1940 |
Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1954 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1941 |
Direction correction (if necessary), Ranges and SNR |
|
1955 | Direction correction (if necessary), Ranges and SNR | |
1942 |
|
1956 | |||
1943 |
Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1957 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1944 |
|
1958 | |||
1945 |
Parameters affected: Winds |
|
1959 | Parameters affected: Winds | |
1946 |
""" |
|
1960 | """ | |
1947 |
position_x = kwargs['positionX'] |
|
1961 | position_x = kwargs['positionX'] | |
1948 |
position_y = kwargs['positionY'] |
|
1962 | position_y = kwargs['positionY'] | |
1949 |
azimuth = kwargs['azimuth'] |
|
1963 | azimuth = kwargs['azimuth'] | |
1950 |
|
1964 | |||
1951 |
if 'correctFactor' in kwargs: |
|
1965 | if 'correctFactor' in kwargs: | |
1952 |
correctFactor = kwargs['correctFactor'] |
|
1966 | correctFactor = kwargs['correctFactor'] | |
1953 |
else: |
|
1967 | else: | |
1954 |
correctFactor = 1 |
|
1968 | correctFactor = 1 | |
1955 |
|
1969 | |||
1956 |
groupList = kwargs['groupList'] |
|
1970 | groupList = kwargs['groupList'] | |
1957 |
pairs_ccf = groupList[1] |
|
1971 | pairs_ccf = groupList[1] | |
1958 |
tau = kwargs['tau'] |
|
1972 | tau = kwargs['tau'] | |
1959 |
_lambda = kwargs['_lambda'] |
|
1973 | _lambda = kwargs['_lambda'] | |
1960 |
|
1974 | |||
1961 |
#Cross Correlation pairs obtained |
|
1975 | #Cross Correlation pairs obtained | |
1962 |
# pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) |
|
1976 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) | |
1963 |
# pairsArray = numpy.array(pairsList)[pairsCrossCorr] |
|
1977 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |
1964 |
# pairsSelArray = numpy.array(pairsSelected) |
|
1978 | # pairsSelArray = numpy.array(pairsSelected) | |
1965 |
# pairs = [] |
|
1979 | # pairs = [] | |
1966 | # |
|
1980 | # | |
1967 |
# #Wind estimation pairs obtained |
|
1981 | # #Wind estimation pairs obtained | |
1968 |
# for i in range(pairsSelArray.shape[0]/2): |
|
1982 | # for i in range(pairsSelArray.shape[0]/2): | |
1969 |
# ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] |
|
1983 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |
1970 |
# ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] |
|
1984 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |
1971 |
# pairs.append((ind1,ind2)) |
|
1985 | # pairs.append((ind1,ind2)) | |
1972 |
|
1986 | |||
1973 |
indtau = tau.shape[0]/2 |
|
1987 | indtau = tau.shape[0]/2 | |
1974 |
tau1 = tau[:indtau,:] |
|
1988 | tau1 = tau[:indtau,:] | |
1975 |
tau2 = tau[indtau:-1,:] |
|
1989 | tau2 = tau[indtau:-1,:] | |
1976 |
# tau1 = tau1[pairs,:] |
|
1990 | # tau1 = tau1[pairs,:] | |
1977 |
# tau2 = tau2[pairs,:] |
|
1991 | # tau2 = tau2[pairs,:] | |
1978 |
phase1 = tau[-1,:] |
|
1992 | phase1 = tau[-1,:] | |
1979 |
|
1993 | |||
1980 |
#--------------------------------------------------------------------- |
|
1994 | #--------------------------------------------------------------------- | |
1981 |
#Metodo Directo |
|
1995 | #Metodo Directo | |
1982 |
distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) |
|
1996 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) | |
1983 |
winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) |
|
1997 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |
1984 |
winds = stats.nanmean(winds, axis=0) |
|
1998 | winds = stats.nanmean(winds, axis=0) | |
@@ -1994,97 +2008,97 class WindProfiler(Operation): | |||||
1994 |
winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) |
|
2008 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |
1995 |
winds = correctFactor*winds |
|
2009 | winds = correctFactor*winds | |
1996 |
return winds |
|
2010 | return winds | |
1997 |
|
2011 | |||
1998 |
def __checkTime(self, currentTime, paramInterval, outputInterval): |
|
2012 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |
1999 |
|
2013 | |||
2000 |
dataTime = currentTime + paramInterval |
|
2014 | dataTime = currentTime + paramInterval | |
2001 |
deltaTime = dataTime - self.__initime |
|
2015 | deltaTime = dataTime - self.__initime | |
2002 |
|
2016 | |||
2003 |
if deltaTime >= outputInterval or deltaTime < 0: |
|
2017 | if deltaTime >= outputInterval or deltaTime < 0: | |
2004 |
self.__dataReady = True |
|
2018 | self.__dataReady = True | |
2005 |
return |
|
2019 | return | |
2006 |
|
2020 | |||
2007 |
def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): |
|
2021 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |
2008 |
''' |
|
2022 | ''' | |
2009 |
Function that implements winds estimation technique with detected meteors. |
|
2023 | Function that implements winds estimation technique with detected meteors. | |
2010 |
|
2024 | |||
2011 |
Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
2025 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |
2012 |
|
2026 | |||
2013 |
Output: Winds estimation (Zonal and Meridional) |
|
2027 | Output: Winds estimation (Zonal and Meridional) | |
2014 |
|
2028 | |||
2015 |
Parameters affected: Winds |
|
2029 | Parameters affected: Winds | |
2016 |
''' |
|
2030 | ''' | |
2017 |
#Settings |
|
2031 | #Settings | |
2018 |
nInt = (heightMax - heightMin)/2 |
|
2032 | nInt = (heightMax - heightMin)/2 | |
2019 |
nInt = int(nInt) |
|
2033 | nInt = int(nInt) | |
2020 |
winds = numpy.zeros((2,nInt))*numpy.nan |
|
2034 | winds = numpy.zeros((2,nInt))*numpy.nan | |
2021 |
|
2035 | |||
2022 |
#Filter errors |
|
2036 | #Filter errors | |
2023 |
error = numpy.where(arrayMeteor[:,-1] == 0)[0] |
|
2037 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] | |
2024 |
finalMeteor = arrayMeteor[error,:] |
|
2038 | finalMeteor = arrayMeteor[error,:] | |
2025 |
|
2039 | |||
2026 |
#Meteor Histogram |
|
2040 | #Meteor Histogram | |
2027 |
finalHeights = finalMeteor[:,2] |
|
2041 | finalHeights = finalMeteor[:,2] | |
2028 |
hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) |
|
2042 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |
2029 |
nMeteorsPerI = hist[0] |
|
2043 | nMeteorsPerI = hist[0] | |
2030 |
heightPerI = hist[1] |
|
2044 | heightPerI = hist[1] | |
2031 |
|
2045 | |||
2032 |
#Sort of meteors |
|
2046 | #Sort of meteors | |
2033 |
indSort = finalHeights.argsort() |
|
2047 | indSort = finalHeights.argsort() | |
2034 |
finalMeteor2 = finalMeteor[indSort,:] |
|
2048 | finalMeteor2 = finalMeteor[indSort,:] | |
2035 |
|
2049 | |||
2036 |
# Calculating winds |
|
2050 | # Calculating winds | |
2037 |
ind1 = 0 |
|
2051 | ind1 = 0 | |
2038 |
ind2 = 0 |
|
2052 | ind2 = 0 | |
2039 |
|
2053 | |||
2040 |
for i in range(nInt): |
|
2054 | for i in range(nInt): | |
2041 |
nMet = nMeteorsPerI[i] |
|
2055 | nMet = nMeteorsPerI[i] | |
2042 |
ind1 = ind2 |
|
2056 | ind1 = ind2 | |
2043 |
ind2 = ind1 + nMet |
|
2057 | ind2 = ind1 + nMet | |
2044 |
|
2058 | |||
2045 |
meteorAux = finalMeteor2[ind1:ind2,:] |
|
2059 | meteorAux = finalMeteor2[ind1:ind2,:] | |
2046 |
|
2060 | |||
2047 |
if meteorAux.shape[0] >= meteorThresh: |
|
2061 | if meteorAux.shape[0] >= meteorThresh: | |
2048 |
vel = meteorAux[:, 6] |
|
2062 | vel = meteorAux[:, 6] | |
2049 |
zen = meteorAux[:, 4]*numpy.pi/180 |
|
2063 | zen = meteorAux[:, 4]*numpy.pi/180 | |
2050 |
azim = meteorAux[:, 3]*numpy.pi/180 |
|
2064 | azim = meteorAux[:, 3]*numpy.pi/180 | |
2051 |
|
2065 | |||
2052 |
n = numpy.cos(zen) |
|
2066 | n = numpy.cos(zen) | |
2053 |
# m = (1 - n**2)/(1 - numpy.tan(azim)**2) |
|
2067 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |
2054 |
# l = m*numpy.tan(azim) |
|
2068 | # l = m*numpy.tan(azim) | |
2055 |
l = numpy.sin(zen)*numpy.sin(azim) |
|
2069 | l = numpy.sin(zen)*numpy.sin(azim) | |
2056 |
m = numpy.sin(zen)*numpy.cos(azim) |
|
2070 | m = numpy.sin(zen)*numpy.cos(azim) | |
2057 |
|
2071 | |||
2058 |
A = numpy.vstack((l, m)).transpose() |
|
2072 | A = numpy.vstack((l, m)).transpose() | |
2059 |
A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) |
|
2073 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |
2060 |
windsAux = numpy.dot(A1, vel) |
|
2074 | windsAux = numpy.dot(A1, vel) | |
2061 |
|
2075 | |||
2062 |
winds[0,i] = windsAux[0] |
|
2076 | winds[0,i] = windsAux[0] | |
2063 |
winds[1,i] = windsAux[1] |
|
2077 | winds[1,i] = windsAux[1] | |
2064 |
|
2078 | |||
2065 |
return winds, heightPerI[:-1] |
|
2079 | return winds, heightPerI[:-1] | |
2066 |
|
2080 | |||
2067 |
def techniqueNSM_SA(self, **kwargs): |
|
2081 | def techniqueNSM_SA(self, **kwargs): | |
2068 |
metArray = kwargs['metArray'] |
|
2082 | metArray = kwargs['metArray'] | |
2069 |
heightList = kwargs['heightList'] |
|
2083 | heightList = kwargs['heightList'] | |
2070 |
timeList = kwargs['timeList'] |
|
2084 | timeList = kwargs['timeList'] | |
2071 |
|
2085 | |||
2072 |
rx_location = kwargs['rx_location'] |
|
2086 | rx_location = kwargs['rx_location'] | |
2073 |
groupList = kwargs['groupList'] |
|
2087 | groupList = kwargs['groupList'] | |
2074 |
azimuth = kwargs['azimuth'] |
|
2088 | azimuth = kwargs['azimuth'] | |
2075 |
dfactor = kwargs['dfactor'] |
|
2089 | dfactor = kwargs['dfactor'] | |
2076 |
k = kwargs['k'] |
|
2090 | k = kwargs['k'] | |
2077 |
|
2091 | |||
2078 |
azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) |
|
2092 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) | |
2079 |
d = dist*dfactor |
|
2093 | d = dist*dfactor | |
2080 |
#Phase calculation |
|
2094 | #Phase calculation | |
2081 |
metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) |
|
2095 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) | |
2082 |
|
2096 | |||
2083 |
metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities |
|
2097 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities | |
2084 |
|
2098 | |||
2085 |
velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
2099 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
2086 |
azimuth1 = azimuth1*numpy.pi/180 |
|
2100 | azimuth1 = azimuth1*numpy.pi/180 | |
2087 |
|
2101 | |||
2088 |
for i in range(heightList.size): |
|
2102 | for i in range(heightList.size): | |
2089 |
h = heightList[i] |
|
2103 | h = heightList[i] | |
2090 |
indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] |
|
2104 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] | |
@@ -2097,71 +2111,71 class WindProfiler(Operation): | |||||
2097 |
A = numpy.asmatrix(A) |
|
2111 | A = numpy.asmatrix(A) | |
2098 |
A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() |
|
2112 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() | |
2099 |
velHor = numpy.dot(A1,velAux) |
|
2113 | velHor = numpy.dot(A1,velAux) | |
2100 |
|
2114 | |||
2101 |
velEst[i,:] = numpy.squeeze(velHor) |
|
2115 | velEst[i,:] = numpy.squeeze(velHor) | |
2102 |
return velEst |
|
2116 | return velEst | |
2103 |
|
2117 | |||
2104 |
def __getPhaseSlope(self, metArray, heightList, timeList): |
|
2118 | def __getPhaseSlope(self, metArray, heightList, timeList): | |
2105 |
meteorList = [] |
|
2119 | meteorList = [] | |
2106 |
#utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 |
|
2120 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 | |
2107 |
#Putting back together the meteor matrix |
|
2121 | #Putting back together the meteor matrix | |
2108 |
utctime = metArray[:,0] |
|
2122 | utctime = metArray[:,0] | |
2109 |
uniqueTime = numpy.unique(utctime) |
|
2123 | uniqueTime = numpy.unique(utctime) | |
2110 |
|
2124 | |||
2111 |
phaseDerThresh = 0.5 |
|
2125 | phaseDerThresh = 0.5 | |
2112 |
ippSeconds = timeList[1] - timeList[0] |
|
2126 | ippSeconds = timeList[1] - timeList[0] | |
2113 |
sec = numpy.where(timeList>1)[0][0] |
|
2127 | sec = numpy.where(timeList>1)[0][0] | |
2114 |
nPairs = metArray.shape[1] - 6 |
|
2128 | nPairs = metArray.shape[1] - 6 | |
2115 |
nHeights = len(heightList) |
|
2129 | nHeights = len(heightList) | |
2116 |
|
2130 | |||
2117 |
for t in uniqueTime: |
|
2131 | for t in uniqueTime: | |
2118 |
metArray1 = metArray[utctime==t,:] |
|
2132 | metArray1 = metArray[utctime==t,:] | |
2119 |
# phaseDerThresh = numpy.pi/4 #reducir Phase thresh |
|
2133 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh | |
2120 |
tmet = metArray1[:,1].astype(int) |
|
2134 | tmet = metArray1[:,1].astype(int) | |
2121 |
hmet = metArray1[:,2].astype(int) |
|
2135 | hmet = metArray1[:,2].astype(int) | |
2122 |
|
2136 | |||
2123 |
metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) |
|
2137 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) | |
2124 |
metPhase[:,:] = numpy.nan |
|
2138 | metPhase[:,:] = numpy.nan | |
2125 |
metPhase[:,hmet,tmet] = metArray1[:,6:].T |
|
2139 | metPhase[:,hmet,tmet] = metArray1[:,6:].T | |
2126 |
|
2140 | |||
2127 |
#Delete short trails |
|
2141 | #Delete short trails | |
2128 |
metBool = ~numpy.isnan(metPhase[0,:,:]) |
|
2142 | metBool = ~numpy.isnan(metPhase[0,:,:]) | |
2129 |
heightVect = numpy.sum(metBool, axis = 1) |
|
2143 | heightVect = numpy.sum(metBool, axis = 1) | |
2130 |
metBool[heightVect<sec,:] = False |
|
2144 | metBool[heightVect<sec,:] = False | |
2131 |
metPhase[:,heightVect<sec,:] = numpy.nan |
|
2145 | metPhase[:,heightVect<sec,:] = numpy.nan | |
2132 |
|
2146 | |||
2133 |
#Derivative |
|
2147 | #Derivative | |
2134 |
metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) |
|
2148 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) | |
2135 |
phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) |
|
2149 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) | |
2136 |
metPhase[phDerAux] = numpy.nan |
|
2150 | metPhase[phDerAux] = numpy.nan | |
2137 |
|
2151 | |||
2138 |
#--------------------------METEOR DETECTION ----------------------------------------- |
|
2152 | #--------------------------METEOR DETECTION ----------------------------------------- | |
2139 |
indMet = numpy.where(numpy.any(metBool,axis=1))[0] |
|
2153 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] | |
2140 |
|
2154 | |||
2141 |
for p in numpy.arange(nPairs): |
|
2155 | for p in numpy.arange(nPairs): | |
2142 |
phase = metPhase[p,:,:] |
|
2156 | phase = metPhase[p,:,:] | |
2143 |
phDer = metDer[p,:,:] |
|
2157 | phDer = metDer[p,:,:] | |
2144 |
|
2158 | |||
2145 |
for h in indMet: |
|
2159 | for h in indMet: | |
2146 |
height = heightList[h] |
|
2160 | height = heightList[h] | |
2147 |
phase1 = phase[h,:] #82 |
|
2161 | phase1 = phase[h,:] #82 | |
2148 |
phDer1 = phDer[h,:] |
|
2162 | phDer1 = phDer[h,:] | |
2149 |
|
2163 | |||
2150 |
phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap |
|
2164 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap | |
2151 |
|
2165 | |||
2152 |
indValid = numpy.where(~numpy.isnan(phase1))[0] |
|
2166 | indValid = numpy.where(~numpy.isnan(phase1))[0] | |
2153 |
initMet = indValid[0] |
|
2167 | initMet = indValid[0] | |
2154 |
endMet = 0 |
|
2168 | endMet = 0 | |
2155 |
|
2169 | |||
2156 |
for i in range(len(indValid)-1): |
|
2170 | for i in range(len(indValid)-1): | |
2157 |
|
2171 | |||
2158 |
#Time difference |
|
2172 | #Time difference | |
2159 |
inow = indValid[i] |
|
2173 | inow = indValid[i] | |
2160 |
inext = indValid[i+1] |
|
2174 | inext = indValid[i+1] | |
2161 |
idiff = inext - inow |
|
2175 | idiff = inext - inow | |
2162 |
#Phase difference |
|
2176 | #Phase difference | |
2163 |
phDiff = numpy.abs(phase1[inext] - phase1[inow]) |
|
2177 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) | |
2164 |
|
2178 | |||
2165 |
if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor |
|
2179 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor | |
2166 |
sizeTrail = inow - initMet + 1 |
|
2180 | sizeTrail = inow - initMet + 1 | |
2167 |
if sizeTrail>3*sec: #Too short meteors |
|
2181 | if sizeTrail>3*sec: #Too short meteors | |
@@ -2177,43 +2191,43 class WindProfiler(Operation): | |||||
2177 |
vel = slope#*height*1000/(k*d) |
|
2191 | vel = slope#*height*1000/(k*d) | |
2178 |
estAux = numpy.array([utctime,p,height, vel, rsq]) |
|
2192 | estAux = numpy.array([utctime,p,height, vel, rsq]) | |
2179 |
meteorList.append(estAux) |
|
2193 | meteorList.append(estAux) | |
2180 |
initMet = inext |
|
2194 | initMet = inext | |
2181 |
metArray2 = numpy.array(meteorList) |
|
2195 | metArray2 = numpy.array(meteorList) | |
2182 |
|
2196 | |||
2183 |
return metArray2 |
|
2197 | return metArray2 | |
2184 |
|
2198 | |||
2185 |
def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): |
|
2199 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): | |
2186 |
|
2200 | |||
2187 |
azimuth1 = numpy.zeros(len(pairslist)) |
|
2201 | azimuth1 = numpy.zeros(len(pairslist)) | |
2188 |
dist = numpy.zeros(len(pairslist)) |
|
2202 | dist = numpy.zeros(len(pairslist)) | |
2189 |
|
2203 | |||
2190 |
for i in range(len(rx_location)): |
|
2204 | for i in range(len(rx_location)): | |
2191 |
ch0 = pairslist[i][0] |
|
2205 | ch0 = pairslist[i][0] | |
2192 |
ch1 = pairslist[i][1] |
|
2206 | ch1 = pairslist[i][1] | |
2193 |
|
2207 | |||
2194 |
diffX = rx_location[ch0][0] - rx_location[ch1][0] |
|
2208 | diffX = rx_location[ch0][0] - rx_location[ch1][0] | |
2195 |
diffY = rx_location[ch0][1] - rx_location[ch1][1] |
|
2209 | diffY = rx_location[ch0][1] - rx_location[ch1][1] | |
2196 |
azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi |
|
2210 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi | |
2197 |
dist[i] = numpy.sqrt(diffX**2 + diffY**2) |
|
2211 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) | |
2198 |
|
2212 | |||
2199 |
azimuth1 -= azimuth0 |
|
2213 | azimuth1 -= azimuth0 | |
2200 |
return azimuth1, dist |
|
2214 | return azimuth1, dist | |
2201 |
|
2215 | |||
2202 |
def techniqueNSM_DBS(self, **kwargs): |
|
2216 | def techniqueNSM_DBS(self, **kwargs): | |
2203 |
metArray = kwargs['metArray'] |
|
2217 | metArray = kwargs['metArray'] | |
2204 |
heightList = kwargs['heightList'] |
|
2218 | heightList = kwargs['heightList'] | |
2205 |
timeList = kwargs['timeList'] |
|
2219 | timeList = kwargs['timeList'] | |
2206 |
azimuth = kwargs['azimuth'] |
|
2220 | azimuth = kwargs['azimuth'] | |
2207 |
theta_x = numpy.array(kwargs['theta_x']) |
|
2221 | theta_x = numpy.array(kwargs['theta_x']) | |
2208 |
theta_y = numpy.array(kwargs['theta_y']) |
|
2222 | theta_y = numpy.array(kwargs['theta_y']) | |
2209 |
|
2223 | |||
2210 |
utctime = metArray[:,0] |
|
2224 | utctime = metArray[:,0] | |
2211 |
cmet = metArray[:,1].astype(int) |
|
2225 | cmet = metArray[:,1].astype(int) | |
2212 |
hmet = metArray[:,3].astype(int) |
|
2226 | hmet = metArray[:,3].astype(int) | |
2213 |
SNRmet = metArray[:,4] |
|
2227 | SNRmet = metArray[:,4] | |
2214 |
vmet = metArray[:,5] |
|
2228 | vmet = metArray[:,5] | |
2215 |
spcmet = metArray[:,6] |
|
2229 | spcmet = metArray[:,6] | |
2216 |
|
2230 | |||
2217 |
nChan = numpy.max(cmet) + 1 |
|
2231 | nChan = numpy.max(cmet) + 1 | |
2218 |
nHeights = len(heightList) |
|
2232 | nHeights = len(heightList) | |
2219 |
|
2233 | |||
@@ -2229,20 +2243,20 class WindProfiler(Operation): | |||||
2229 |
|
2243 | |||
2230 |
thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) |
|
2244 | thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) | |
2231 |
indthisH = numpy.where(thisH) |
|
2245 | indthisH = numpy.where(thisH) | |
2232 |
|
2246 | |||
2233 |
if numpy.size(indthisH) > 3: |
|
2247 | if numpy.size(indthisH) > 3: | |
2234 |
|
2248 | |||
2235 |
vel_aux = vmet[thisH] |
|
2249 | vel_aux = vmet[thisH] | |
2236 |
chan_aux = cmet[thisH] |
|
2250 | chan_aux = cmet[thisH] | |
2237 |
cosu_aux = dir_cosu[chan_aux] |
|
2251 | cosu_aux = dir_cosu[chan_aux] | |
2238 |
cosv_aux = dir_cosv[chan_aux] |
|
2252 | cosv_aux = dir_cosv[chan_aux] | |
2239 |
cosw_aux = dir_cosw[chan_aux] |
|
2253 | cosw_aux = dir_cosw[chan_aux] | |
2240 |
|
2254 | |||
2241 |
nch = numpy.size(numpy.unique(chan_aux)) |
|
2255 | nch = numpy.size(numpy.unique(chan_aux)) | |
2242 |
if nch > 1: |
|
2256 | if nch > 1: | |
2243 |
A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) |
|
2257 | A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) | |
2244 |
velEst[i,:] = numpy.dot(A,vel_aux) |
|
2258 | velEst[i,:] = numpy.dot(A,vel_aux) | |
2245 |
|
2259 | |||
2246 |
return velEst |
|
2260 | return velEst | |
2247 |
|
2261 | |||
2248 |
def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): |
|
2262 | def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): | |
@@ -2253,39 +2267,39 class WindProfiler(Operation): | |||||
2253 |
# noise = dataOut.noise |
|
2267 | # noise = dataOut.noise | |
2254 |
heightList = dataOut.heightList |
|
2268 | heightList = dataOut.heightList | |
2255 |
SNR = dataOut.data_SNR |
|
2269 | SNR = dataOut.data_SNR | |
2256 |
|
2270 | |||
2257 |
if technique == 'DBS': |
|
2271 | if technique == 'DBS': | |
2258 |
|
2272 | |||
2259 |
kwargs['velRadial'] = param[:,1,:] #Radial velocity |
|
2273 | kwargs['velRadial'] = param[:,1,:] #Radial velocity | |
2260 |
kwargs['heightList'] = heightList |
|
2274 | kwargs['heightList'] = heightList | |
2261 |
kwargs['SNR'] = SNR |
|
2275 | kwargs['SNR'] = SNR | |
2262 |
|
2276 | |||
2263 |
dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function |
|
2277 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function | |
2264 |
dataOut.utctimeInit = dataOut.utctime |
|
2278 | dataOut.utctimeInit = dataOut.utctime | |
2265 |
dataOut.outputInterval = dataOut.paramInterval |
|
2279 | dataOut.outputInterval = dataOut.paramInterval | |
2266 |
|
2280 | |||
2267 |
elif technique == 'SA': |
|
2281 | elif technique == 'SA': | |
2268 |
|
2282 | |||
2269 |
#Parameters |
|
2283 | #Parameters | |
2270 |
# position_x = kwargs['positionX'] |
|
2284 | # position_x = kwargs['positionX'] | |
2271 |
# position_y = kwargs['positionY'] |
|
2285 | # position_y = kwargs['positionY'] | |
2272 |
# azimuth = kwargs['azimuth'] |
|
2286 | # azimuth = kwargs['azimuth'] | |
2273 | # |
|
2287 | # | |
2274 |
# if kwargs.has_key('crosspairsList'): |
|
2288 | # if kwargs.has_key('crosspairsList'): | |
2275 |
# pairs = kwargs['crosspairsList'] |
|
2289 | # pairs = kwargs['crosspairsList'] | |
2276 |
# else: |
|
2290 | # else: | |
2277 |
# pairs = None |
|
2291 | # pairs = None | |
2278 | # |
|
2292 | # | |
2279 |
# if kwargs.has_key('correctFactor'): |
|
2293 | # if kwargs.has_key('correctFactor'): | |
2280 |
# correctFactor = kwargs['correctFactor'] |
|
2294 | # correctFactor = kwargs['correctFactor'] | |
2281 |
# else: |
|
2295 | # else: | |
2282 |
# correctFactor = 1 |
|
2296 | # correctFactor = 1 | |
2283 |
|
2297 | |||
2284 |
# tau = dataOut.data_param |
|
2298 | # tau = dataOut.data_param | |
2285 |
# _lambda = dataOut.C/dataOut.frequency |
|
2299 | # _lambda = dataOut.C/dataOut.frequency | |
2286 |
# pairsList = dataOut.groupList |
|
2300 | # pairsList = dataOut.groupList | |
2287 |
# nChannels = dataOut.nChannels |
|
2301 | # nChannels = dataOut.nChannels | |
2288 |
|
2302 | |||
2289 |
kwargs['groupList'] = dataOut.groupList |
|
2303 | kwargs['groupList'] = dataOut.groupList | |
2290 |
kwargs['tau'] = dataOut.data_param |
|
2304 | kwargs['tau'] = dataOut.data_param | |
2291 |
kwargs['_lambda'] = dataOut.C/dataOut.frequency |
|
2305 | kwargs['_lambda'] = dataOut.C/dataOut.frequency | |
@@ -2293,30 +2307,30 class WindProfiler(Operation): | |||||
2293 |
dataOut.data_output = self.techniqueSA(kwargs) |
|
2307 | dataOut.data_output = self.techniqueSA(kwargs) | |
2294 |
dataOut.utctimeInit = dataOut.utctime |
|
2308 | dataOut.utctimeInit = dataOut.utctime | |
2295 |
dataOut.outputInterval = dataOut.timeInterval |
|
2309 | dataOut.outputInterval = dataOut.timeInterval | |
2296 |
|
2310 | |||
2297 |
elif technique == 'Meteors': |
|
2311 | elif technique == 'Meteors': | |
2298 |
dataOut.flagNoData = True |
|
2312 | dataOut.flagNoData = True | |
2299 |
self.__dataReady = False |
|
2313 | self.__dataReady = False | |
2300 |
|
2314 | |||
2301 |
if 'nHours' in kwargs: |
|
2315 | if 'nHours' in kwargs: | |
2302 |
nHours = kwargs['nHours'] |
|
2316 | nHours = kwargs['nHours'] | |
2303 |
else: |
|
2317 | else: | |
2304 |
nHours = 1 |
|
2318 | nHours = 1 | |
2305 |
|
2319 | |||
2306 |
if 'meteorsPerBin' in kwargs: |
|
2320 | if 'meteorsPerBin' in kwargs: | |
2307 |
meteorThresh = kwargs['meteorsPerBin'] |
|
2321 | meteorThresh = kwargs['meteorsPerBin'] | |
2308 |
else: |
|
2322 | else: | |
2309 |
meteorThresh = 6 |
|
2323 | meteorThresh = 6 | |
2310 |
|
2324 | |||
2311 |
if 'hmin' in kwargs: |
|
2325 | if 'hmin' in kwargs: | |
2312 |
hmin = kwargs['hmin'] |
|
2326 | hmin = kwargs['hmin'] | |
2313 |
else: hmin = 70 |
|
2327 | else: hmin = 70 | |
2314 |
if 'hmax' in kwargs: |
|
2328 | if 'hmax' in kwargs: | |
2315 |
hmax = kwargs['hmax'] |
|
2329 | hmax = kwargs['hmax'] | |
2316 |
else: hmax = 110 |
|
2330 | else: hmax = 110 | |
2317 |
|
2331 | |||
2318 |
dataOut.outputInterval = nHours*3600 |
|
2332 | dataOut.outputInterval = nHours*3600 | |
2319 |
|
2333 | |||
2320 |
if self.__isConfig == False: |
|
2334 | if self.__isConfig == False: | |
2321 |
# self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2335 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2322 |
#Get Initial LTC time |
|
2336 | #Get Initial LTC time | |
@@ -2324,29 +2338,29 class WindProfiler(Operation): | |||||
2324 |
self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2338 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2325 |
|
2339 | |||
2326 |
self.__isConfig = True |
|
2340 | self.__isConfig = True | |
2327 |
|
2341 | |||
2328 |
if self.__buffer is None: |
|
2342 | if self.__buffer is None: | |
2329 |
self.__buffer = dataOut.data_param |
|
2343 | self.__buffer = dataOut.data_param | |
2330 |
self.__firstdata = copy.copy(dataOut) |
|
2344 | self.__firstdata = copy.copy(dataOut) | |
2331 |
|
2345 | |||
2332 |
else: |
|
2346 | else: | |
2333 |
self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2347 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2334 |
|
2348 | |||
2335 |
self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2349 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2336 |
|
2350 | |||
2337 |
if self.__dataReady: |
|
2351 | if self.__dataReady: | |
2338 |
dataOut.utctimeInit = self.__initime |
|
2352 | dataOut.utctimeInit = self.__initime | |
2339 |
|
2353 | |||
2340 |
self.__initime += dataOut.outputInterval #to erase time offset |
|
2354 | self.__initime += dataOut.outputInterval #to erase time offset | |
2341 |
|
2355 | |||
2342 |
dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) |
|
2356 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |
2343 |
dataOut.flagNoData = False |
|
2357 | dataOut.flagNoData = False | |
2344 |
self.__buffer = None |
|
2358 | self.__buffer = None | |
2345 |
|
2359 | |||
2346 |
elif technique == 'Meteors1': |
|
2360 | elif technique == 'Meteors1': | |
2347 |
dataOut.flagNoData = True |
|
2361 | dataOut.flagNoData = True | |
2348 |
self.__dataReady = False |
|
2362 | self.__dataReady = False | |
2349 |
|
2363 | |||
2350 |
if 'nMins' in kwargs: |
|
2364 | if 'nMins' in kwargs: | |
2351 |
nMins = kwargs['nMins'] |
|
2365 | nMins = kwargs['nMins'] | |
2352 |
else: nMins = 20 |
|
2366 | else: nMins = 20 | |
@@ -2361,7 +2375,7 class WindProfiler(Operation): | |||||
2361 |
if 'mode' in kwargs: |
|
2375 | if 'mode' in kwargs: | |
2362 |
mode = kwargs['mode'] |
|
2376 | mode = kwargs['mode'] | |
2363 |
if 'theta_x' in kwargs: |
|
2377 | if 'theta_x' in kwargs: | |
2364 |
theta_x = kwargs['theta_x'] |
|
2378 | theta_x = kwargs['theta_x'] | |
2365 |
if 'theta_y' in kwargs: |
|
2379 | if 'theta_y' in kwargs: | |
2366 |
theta_y = kwargs['theta_y'] |
|
2380 | theta_y = kwargs['theta_y'] | |
2367 |
else: mode = 'SA' |
|
2381 | else: mode = 'SA' | |
@@ -2374,10 +2388,10 class WindProfiler(Operation): | |||||
2374 |
freq = 50e6 |
|
2388 | freq = 50e6 | |
2375 |
lamb = C/freq |
|
2389 | lamb = C/freq | |
2376 |
k = 2*numpy.pi/lamb |
|
2390 | k = 2*numpy.pi/lamb | |
2377 |
|
2391 | |||
2378 |
timeList = dataOut.abscissaList |
|
2392 | timeList = dataOut.abscissaList | |
2379 |
heightList = dataOut.heightList |
|
2393 | heightList = dataOut.heightList | |
2380 |
|
2394 | |||
2381 |
if self.__isConfig == False: |
|
2395 | if self.__isConfig == False: | |
2382 |
dataOut.outputInterval = nMins*60 |
|
2396 | dataOut.outputInterval = nMins*60 | |
2383 |
# self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2397 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
@@ -2388,20 +2402,20 class WindProfiler(Operation): | |||||
2388 |
self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2402 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2389 |
|
2403 | |||
2390 |
self.__isConfig = True |
|
2404 | self.__isConfig = True | |
2391 |
|
2405 | |||
2392 |
if self.__buffer is None: |
|
2406 | if self.__buffer is None: | |
2393 |
self.__buffer = dataOut.data_param |
|
2407 | self.__buffer = dataOut.data_param | |
2394 |
self.__firstdata = copy.copy(dataOut) |
|
2408 | self.__firstdata = copy.copy(dataOut) | |
2395 |
|
2409 | |||
2396 |
else: |
|
2410 | else: | |
2397 |
self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2411 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2398 |
|
2412 | |||
2399 |
self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2413 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2400 |
|
2414 | |||
2401 |
if self.__dataReady: |
|
2415 | if self.__dataReady: | |
2402 |
dataOut.utctimeInit = self.__initime |
|
2416 | dataOut.utctimeInit = self.__initime | |
2403 |
self.__initime += dataOut.outputInterval #to erase time offset |
|
2417 | self.__initime += dataOut.outputInterval #to erase time offset | |
2404 |
|
2418 | |||
2405 |
metArray = self.__buffer |
|
2419 | metArray = self.__buffer | |
2406 |
if mode == 'SA': |
|
2420 | if mode == 'SA': | |
2407 |
dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) |
|
2421 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) | |
@@ -2412,71 +2426,71 class WindProfiler(Operation): | |||||
2412 |
self.__buffer = None |
|
2426 | self.__buffer = None | |
2413 |
|
2427 | |||
2414 |
return |
|
2428 | return | |
2415 |
|
2429 | |||
2416 |
class EWDriftsEstimation(Operation): |
|
2430 | class EWDriftsEstimation(Operation): | |
2417 |
|
2431 | |||
2418 |
def __init__(self): |
|
2432 | def __init__(self): | |
2419 |
Operation.__init__(self) |
|
2433 | Operation.__init__(self) | |
2420 |
|
2434 | |||
2421 |
def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
2435 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
2422 |
listPhi = phi.tolist() |
|
2436 | listPhi = phi.tolist() | |
2423 |
maxid = listPhi.index(max(listPhi)) |
|
2437 | maxid = listPhi.index(max(listPhi)) | |
2424 |
minid = listPhi.index(min(listPhi)) |
|
2438 | minid = listPhi.index(min(listPhi)) | |
2425 |
|
2439 | |||
2426 |
rango = list(range(len(phi))) |
|
2440 | rango = list(range(len(phi))) | |
2427 |
# rango = numpy.delete(rango,maxid) |
|
2441 | # rango = numpy.delete(rango,maxid) | |
2428 |
|
2442 | |||
2429 |
heiRang1 = heiRang*math.cos(phi[maxid]) |
|
2443 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
2430 |
heiRangAux = heiRang*math.cos(phi[minid]) |
|
2444 | heiRangAux = heiRang*math.cos(phi[minid]) | |
2431 |
indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
2445 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
2432 |
heiRang1 = numpy.delete(heiRang1,indOut) |
|
2446 | heiRang1 = numpy.delete(heiRang1,indOut) | |
2433 |
|
2447 | |||
2434 |
velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2448 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2435 |
SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2449 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2436 |
|
2450 | |||
2437 |
for i in rango: |
|
2451 | for i in rango: | |
2438 |
x = heiRang*math.cos(phi[i]) |
|
2452 | x = heiRang*math.cos(phi[i]) | |
2439 |
y1 = velRadial[i,:] |
|
2453 | y1 = velRadial[i,:] | |
2440 |
f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
2454 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
2441 |
|
2455 | |||
2442 |
x1 = heiRang1 |
|
2456 | x1 = heiRang1 | |
2443 |
y11 = f1(x1) |
|
2457 | y11 = f1(x1) | |
2444 |
|
2458 | |||
2445 |
y2 = SNR[i,:] |
|
2459 | y2 = SNR[i,:] | |
2446 |
f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
2460 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
2447 |
y21 = f2(x1) |
|
2461 | y21 = f2(x1) | |
2448 |
|
2462 | |||
2449 |
velRadial1[i,:] = y11 |
|
2463 | velRadial1[i,:] = y11 | |
2450 |
SNR1[i,:] = y21 |
|
2464 | SNR1[i,:] = y21 | |
2451 |
|
2465 | |||
2452 |
return heiRang1, velRadial1, SNR1 |
|
2466 | return heiRang1, velRadial1, SNR1 | |
2453 |
|
2467 | |||
2454 |
def run(self, dataOut, zenith, zenithCorrection): |
|
2468 | def run(self, dataOut, zenith, zenithCorrection): | |
2455 |
heiRang = dataOut.heightList |
|
2469 | heiRang = dataOut.heightList | |
2456 |
velRadial = dataOut.data_param[:,3,:] |
|
2470 | velRadial = dataOut.data_param[:,3,:] | |
2457 |
SNR = dataOut.data_SNR |
|
2471 | SNR = dataOut.data_SNR | |
2458 |
|
2472 | |||
2459 |
zenith = numpy.array(zenith) |
|
2473 | zenith = numpy.array(zenith) | |
2460 |
zenith -= zenithCorrection |
|
2474 | zenith -= zenithCorrection | |
2461 |
zenith *= numpy.pi/180 |
|
2475 | zenith *= numpy.pi/180 | |
2462 |
|
2476 | |||
2463 |
heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) |
|
2477 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |
2464 |
|
2478 | |||
2465 |
alp = zenith[0] |
|
2479 | alp = zenith[0] | |
2466 |
bet = zenith[1] |
|
2480 | bet = zenith[1] | |
2467 |
|
2481 | |||
2468 |
w_w = velRadial1[0,:] |
|
2482 | w_w = velRadial1[0,:] | |
2469 |
w_e = velRadial1[1,:] |
|
2483 | w_e = velRadial1[1,:] | |
2470 |
|
2484 | |||
2471 |
w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) |
|
2485 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |
2472 |
u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) |
|
2486 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |
2473 |
|
2487 | |||
2474 |
winds = numpy.vstack((u,w)) |
|
2488 | winds = numpy.vstack((u,w)) | |
2475 |
|
2489 | |||
2476 |
dataOut.heightList = heiRang1 |
|
2490 | dataOut.heightList = heiRang1 | |
2477 |
dataOut.data_output = winds |
|
2491 | dataOut.data_output = winds | |
2478 |
dataOut.data_SNR = SNR1 |
|
2492 | dataOut.data_SNR = SNR1 | |
2479 |
|
2493 | |||
2480 |
dataOut.utctimeInit = dataOut.utctime |
|
2494 | dataOut.utctimeInit = dataOut.utctime | |
2481 |
dataOut.outputInterval = dataOut.timeInterval |
|
2495 | dataOut.outputInterval = dataOut.timeInterval | |
2482 |
return |
|
2496 | return | |
@@ -2489,11 +2503,11 class NonSpecularMeteorDetection(Operation): | |||||
2489 |
data_acf = dataOut.data_pre[0] |
|
2503 | data_acf = dataOut.data_pre[0] | |
2490 |
data_ccf = dataOut.data_pre[1] |
|
2504 | data_ccf = dataOut.data_pre[1] | |
2491 |
pairsList = dataOut.groupList[1] |
|
2505 | pairsList = dataOut.groupList[1] | |
2492 |
|
2506 | |||
2493 |
lamb = dataOut.C/dataOut.frequency |
|
2507 | lamb = dataOut.C/dataOut.frequency | |
2494 |
tSamp = dataOut.ippSeconds*dataOut.nCohInt |
|
2508 | tSamp = dataOut.ippSeconds*dataOut.nCohInt | |
2495 |
paramInterval = dataOut.paramInterval |
|
2509 | paramInterval = dataOut.paramInterval | |
2496 |
|
2510 | |||
2497 |
nChannels = data_acf.shape[0] |
|
2511 | nChannels = data_acf.shape[0] | |
2498 |
nLags = data_acf.shape[1] |
|
2512 | nLags = data_acf.shape[1] | |
2499 |
nProfiles = data_acf.shape[2] |
|
2513 | nProfiles = data_acf.shape[2] | |
@@ -2503,7 +2517,7 class NonSpecularMeteorDetection(Operation): | |||||
2503 |
heightList = dataOut.heightList |
|
2517 | heightList = dataOut.heightList | |
2504 |
ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg |
|
2518 | ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg | |
2505 |
utctime = dataOut.utctime |
|
2519 | utctime = dataOut.utctime | |
2506 |
|
2520 | |||
2507 |
dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) |
|
2521 | dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) | |
2508 |
|
2522 | |||
2509 |
#------------------------ SNR -------------------------------------- |
|
2523 | #------------------------ SNR -------------------------------------- | |
@@ -2515,7 +2529,7 class NonSpecularMeteorDetection(Operation): | |||||
2515 |
SNR[i] = (power[i]-noise[i])/noise[i] |
|
2529 | SNR[i] = (power[i]-noise[i])/noise[i] | |
2516 |
SNRm = numpy.nanmean(SNR, axis = 0) |
|
2530 | SNRm = numpy.nanmean(SNR, axis = 0) | |
2517 |
SNRdB = 10*numpy.log10(SNR) |
|
2531 | SNRdB = 10*numpy.log10(SNR) | |
2518 |
|
2532 | |||
2519 |
if mode == 'SA': |
|
2533 | if mode == 'SA': | |
2520 |
dataOut.groupList = dataOut.groupList[1] |
|
2534 | dataOut.groupList = dataOut.groupList[1] | |
2521 |
nPairs = data_ccf.shape[0] |
|
2535 | nPairs = data_ccf.shape[0] | |
@@ -2523,22 +2537,22 class NonSpecularMeteorDetection(Operation): | |||||
2523 |
phase = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2537 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) | |
2524 |
# phase1 = numpy.copy(phase) |
|
2538 | # phase1 = numpy.copy(phase) | |
2525 |
coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2539 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) | |
2526 |
|
2540 | |||
2527 |
for p in range(nPairs): |
|
2541 | for p in range(nPairs): | |
2528 |
ch0 = pairsList[p][0] |
|
2542 | ch0 = pairsList[p][0] | |
2529 |
ch1 = pairsList[p][1] |
|
2543 | ch1 = pairsList[p][1] | |
2530 |
ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) |
|
2544 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) | |
2531 |
phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter |
|
2545 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter | |
2532 |
# phase1[p,:,:] = numpy.angle(ccf) #median filter |
|
2546 | # phase1[p,:,:] = numpy.angle(ccf) #median filter | |
2533 |
coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter |
|
2547 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter | |
2534 |
# coh1[p,:,:] = numpy.abs(ccf) #median filter |
|
2548 | # coh1[p,:,:] = numpy.abs(ccf) #median filter | |
2535 |
coh = numpy.nanmax(coh1, axis = 0) |
|
2549 | coh = numpy.nanmax(coh1, axis = 0) | |
2536 |
# struc = numpy.ones((5,1)) |
|
2550 | # struc = numpy.ones((5,1)) | |
2537 |
# coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) |
|
2551 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) | |
2538 |
#---------------------- Radial Velocity ---------------------------- |
|
2552 | #---------------------- Radial Velocity ---------------------------- | |
2539 |
phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) |
|
2553 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) | |
2540 |
velRad = phaseAux*lamb/(4*numpy.pi*tSamp) |
|
2554 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) | |
2541 |
|
2555 | |||
2542 |
if allData: |
|
2556 | if allData: | |
2543 |
boolMetFin = ~numpy.isnan(SNRm) |
|
2557 | boolMetFin = ~numpy.isnan(SNRm) | |
2544 |
# coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2558 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
@@ -2546,31 +2560,31 class NonSpecularMeteorDetection(Operation): | |||||
2546 |
#------------------------ Meteor mask --------------------------------- |
|
2560 | #------------------------ Meteor mask --------------------------------- | |
2547 |
# #SNR mask |
|
2561 | # #SNR mask | |
2548 |
# boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) |
|
2562 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) | |
2549 | # |
|
2563 | # | |
2550 |
# #Erase small objects |
|
2564 | # #Erase small objects | |
2551 |
# boolMet1 = self.__erase_small(boolMet, 2*sec, 5) |
|
2565 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) | |
2552 | # |
|
2566 | # | |
2553 |
# auxEEJ = numpy.sum(boolMet1,axis=0) |
|
2567 | # auxEEJ = numpy.sum(boolMet1,axis=0) | |
2554 |
# indOver = auxEEJ>nProfiles*0.8 #Use this later |
|
2568 | # indOver = auxEEJ>nProfiles*0.8 #Use this later | |
2555 |
# indEEJ = numpy.where(indOver)[0] |
|
2569 | # indEEJ = numpy.where(indOver)[0] | |
2556 |
# indNEEJ = numpy.where(~indOver)[0] |
|
2570 | # indNEEJ = numpy.where(~indOver)[0] | |
2557 | # |
|
2571 | # | |
2558 |
# boolMetFin = boolMet1 |
|
2572 | # boolMetFin = boolMet1 | |
2559 | # |
|
2573 | # | |
2560 |
# if indEEJ.size > 0: |
|
2574 | # if indEEJ.size > 0: | |
2561 |
# boolMet1[:,indEEJ] = False #Erase heights with EEJ |
|
2575 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ | |
2562 | # |
|
2576 | # | |
2563 |
# boolMet2 = coh > cohThresh |
|
2577 | # boolMet2 = coh > cohThresh | |
2564 |
# boolMet2 = self.__erase_small(boolMet2, 2*sec,5) |
|
2578 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) | |
2565 | # |
|
2579 | # | |
2566 |
# #Final Meteor mask |
|
2580 | # #Final Meteor mask | |
2567 |
# boolMetFin = boolMet1|boolMet2 |
|
2581 | # boolMetFin = boolMet1|boolMet2 | |
2568 |
|
2582 | |||
2569 |
#Coherence mask |
|
2583 | #Coherence mask | |
2570 |
boolMet1 = coh > 0.75 |
|
2584 | boolMet1 = coh > 0.75 | |
2571 |
struc = numpy.ones((30,1)) |
|
2585 | struc = numpy.ones((30,1)) | |
2572 |
boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) |
|
2586 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) | |
2573 |
|
2587 | |||
2574 |
#Derivative mask |
|
2588 | #Derivative mask | |
2575 |
derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2589 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
2576 |
boolMet2 = derPhase < 0.2 |
|
2590 | boolMet2 = derPhase < 0.2 | |
@@ -2587,7 +2601,7 class NonSpecularMeteorDetection(Operation): | |||||
2587 |
|
2601 | |||
2588 |
tmet = coordMet[0] |
|
2602 | tmet = coordMet[0] | |
2589 |
hmet = coordMet[1] |
|
2603 | hmet = coordMet[1] | |
2590 |
|
2604 | |||
2591 |
data_param = numpy.zeros((tmet.size, 6 + nPairs)) |
|
2605 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) | |
2592 |
data_param[:,0] = utctime |
|
2606 | data_param[:,0] = utctime | |
2593 |
data_param[:,1] = tmet |
|
2607 | data_param[:,1] = tmet | |
@@ -2596,7 +2610,7 class NonSpecularMeteorDetection(Operation): | |||||
2596 |
data_param[:,4] = velRad[tmet,hmet] |
|
2610 | data_param[:,4] = velRad[tmet,hmet] | |
2597 |
data_param[:,5] = coh[tmet,hmet] |
|
2611 | data_param[:,5] = coh[tmet,hmet] | |
2598 |
data_param[:,6:] = phase[:,tmet,hmet].T |
|
2612 | data_param[:,6:] = phase[:,tmet,hmet].T | |
2599 |
|
2613 | |||
2600 |
elif mode == 'DBS': |
|
2614 | elif mode == 'DBS': | |
2601 |
dataOut.groupList = numpy.arange(nChannels) |
|
2615 | dataOut.groupList = numpy.arange(nChannels) | |
2602 |
|
2616 | |||
@@ -2604,7 +2618,7 class NonSpecularMeteorDetection(Operation): | |||||
2604 |
phase = numpy.angle(data_acf[:,1,:,:]) |
|
2618 | phase = numpy.angle(data_acf[:,1,:,:]) | |
2605 |
# phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2619 | # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) | |
2606 |
velRad = phase*lamb/(4*numpy.pi*tSamp) |
|
2620 | velRad = phase*lamb/(4*numpy.pi*tSamp) | |
2607 |
|
2621 | |||
2608 |
#Spectral width |
|
2622 | #Spectral width | |
2609 |
# acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2623 | # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) | |
2610 |
# acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) |
|
2624 | # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) | |
@@ -2619,24 +2633,24 class NonSpecularMeteorDetection(Operation): | |||||
2619 |
#SNR |
|
2633 | #SNR | |
2620 |
boolMet1 = (SNRdB>SNRthresh) #SNR mask |
|
2634 | boolMet1 = (SNRdB>SNRthresh) #SNR mask | |
2621 |
boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) |
|
2635 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) | |
2622 |
|
2636 | |||
2623 |
#Radial velocity |
|
2637 | #Radial velocity | |
2624 |
boolMet2 = numpy.abs(velRad) < 20 |
|
2638 | boolMet2 = numpy.abs(velRad) < 20 | |
2625 |
boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) |
|
2639 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) | |
2626 |
|
2640 | |||
2627 |
#Spectral Width |
|
2641 | #Spectral Width | |
2628 |
boolMet3 = spcWidth < 30 |
|
2642 | boolMet3 = spcWidth < 30 | |
2629 |
boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) |
|
2643 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) | |
2630 |
# boolMetFin = self.__erase_small(boolMet1, 10,5) |
|
2644 | # boolMetFin = self.__erase_small(boolMet1, 10,5) | |
2631 |
boolMetFin = boolMet1&boolMet2&boolMet3 |
|
2645 | boolMetFin = boolMet1&boolMet2&boolMet3 | |
2632 |
|
2646 | |||
2633 |
#Creating data_param |
|
2647 | #Creating data_param | |
2634 |
coordMet = numpy.where(boolMetFin) |
|
2648 | coordMet = numpy.where(boolMetFin) | |
2635 |
|
2649 | |||
2636 |
cmet = coordMet[0] |
|
2650 | cmet = coordMet[0] | |
2637 |
tmet = coordMet[1] |
|
2651 | tmet = coordMet[1] | |
2638 |
hmet = coordMet[2] |
|
2652 | hmet = coordMet[2] | |
2639 |
|
2653 | |||
2640 |
data_param = numpy.zeros((tmet.size, 7)) |
|
2654 | data_param = numpy.zeros((tmet.size, 7)) | |
2641 |
data_param[:,0] = utctime |
|
2655 | data_param[:,0] = utctime | |
2642 |
data_param[:,1] = cmet |
|
2656 | data_param[:,1] = cmet | |
@@ -2645,7 +2659,7 class NonSpecularMeteorDetection(Operation): | |||||
2645 |
data_param[:,4] = SNR[cmet,tmet,hmet].T |
|
2659 | data_param[:,4] = SNR[cmet,tmet,hmet].T | |
2646 |
data_param[:,5] = velRad[cmet,tmet,hmet].T |
|
2660 | data_param[:,5] = velRad[cmet,tmet,hmet].T | |
2647 |
data_param[:,6] = spcWidth[cmet,tmet,hmet].T |
|
2661 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T | |
2648 |
|
2662 | |||
2649 |
# self.dataOut.data_param = data_int |
|
2663 | # self.dataOut.data_param = data_int | |
2650 |
if len(data_param) == 0: |
|
2664 | if len(data_param) == 0: | |
2651 |
dataOut.flagNoData = True |
|
2665 | dataOut.flagNoData = True | |
@@ -2655,21 +2669,21 class NonSpecularMeteorDetection(Operation): | |||||
2655 |
def __erase_small(self, binArray, threshX, threshY): |
|
2669 | def __erase_small(self, binArray, threshX, threshY): | |
2656 |
labarray, numfeat = ndimage.measurements.label(binArray) |
|
2670 | labarray, numfeat = ndimage.measurements.label(binArray) | |
2657 |
binArray1 = numpy.copy(binArray) |
|
2671 | binArray1 = numpy.copy(binArray) | |
2658 |
|
2672 | |||
2659 |
for i in range(1,numfeat + 1): |
|
2673 | for i in range(1,numfeat + 1): | |
2660 |
auxBin = (labarray==i) |
|
2674 | auxBin = (labarray==i) | |
2661 |
auxSize = auxBin.sum() |
|
2675 | auxSize = auxBin.sum() | |
2662 |
|
2676 | |||
2663 |
x,y = numpy.where(auxBin) |
|
2677 | x,y = numpy.where(auxBin) | |
2664 |
widthX = x.max() - x.min() |
|
2678 | widthX = x.max() - x.min() | |
2665 |
widthY = y.max() - y.min() |
|
2679 | widthY = y.max() - y.min() | |
2666 |
|
2680 | |||
2667 |
#width X: 3 seg -> 12.5*3 |
|
2681 | #width X: 3 seg -> 12.5*3 | |
2668 |
#width Y: |
|
2682 | #width Y: | |
2669 |
|
2683 | |||
2670 |
if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): |
|
2684 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): | |
2671 |
binArray1[auxBin] = False |
|
2685 | binArray1[auxBin] = False | |
2672 |
|
2686 | |||
2673 |
return binArray1 |
|
2687 | return binArray1 | |
2674 |
|
2688 | |||
2675 |
#--------------- Specular Meteor ---------------- |
|
2689 | #--------------- Specular Meteor ---------------- | |
@@ -2679,36 +2693,36 class SMDetection(Operation): | |||||
2679 |
Function DetectMeteors() |
|
2693 | Function DetectMeteors() | |
2680 |
Project developed with paper: |
|
2694 | Project developed with paper: | |
2681 |
HOLDSWORTH ET AL. 2004 |
|
2695 | HOLDSWORTH ET AL. 2004 | |
2682 |
|
2696 | |||
2683 |
Input: |
|
2697 | Input: | |
2684 |
self.dataOut.data_pre |
|
2698 | self.dataOut.data_pre | |
2685 |
|
2699 | |||
2686 |
centerReceiverIndex: From the channels, which is the center receiver |
|
2700 | centerReceiverIndex: From the channels, which is the center receiver | |
2687 |
|
2701 | |||
2688 |
hei_ref: Height reference for the Beacon signal extraction |
|
2702 | hei_ref: Height reference for the Beacon signal extraction | |
2689 |
tauindex: |
|
2703 | tauindex: | |
2690 |
predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
2704 | predefinedPhaseShifts: Predefined phase offset for the voltge signals | |
2691 |
|
2705 | |||
2692 |
cohDetection: Whether to user Coherent detection or not |
|
2706 | cohDetection: Whether to user Coherent detection or not | |
2693 |
cohDet_timeStep: Coherent Detection calculation time step |
|
2707 | cohDet_timeStep: Coherent Detection calculation time step | |
2694 |
cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
2708 | cohDet_thresh: Coherent Detection phase threshold to correct phases | |
2695 |
|
2709 | |||
2696 |
noise_timeStep: Noise calculation time step |
|
2710 | noise_timeStep: Noise calculation time step | |
2697 |
noise_multiple: Noise multiple to define signal threshold |
|
2711 | noise_multiple: Noise multiple to define signal threshold | |
2698 |
|
2712 | |||
2699 |
multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
2713 | multDet_timeLimit: Multiple Detection Removal time limit in seconds | |
2700 |
multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
2714 | multDet_rangeLimit: Multiple Detection Removal range limit in km | |
2701 |
|
2715 | |||
2702 |
phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
2716 | phaseThresh: Maximum phase difference between receiver to be consider a meteor | |
2703 |
SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
2717 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |
2704 |
|
2718 | |||
2705 |
hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
2719 | hmin: Minimum Height of the meteor to use it in the further wind estimations | |
2706 |
hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
2720 | hmax: Maximum Height of the meteor to use it in the further wind estimations | |
2707 |
azimuth: Azimuth angle correction |
|
2721 | azimuth: Azimuth angle correction | |
2708 |
|
2722 | |||
2709 |
Affected: |
|
2723 | Affected: | |
2710 |
self.dataOut.data_param |
|
2724 | self.dataOut.data_param | |
2711 |
|
2725 | |||
2712 |
Rejection Criteria (Errors): |
|
2726 | Rejection Criteria (Errors): | |
2713 |
0: No error; analysis OK |
|
2727 | 0: No error; analysis OK | |
2714 |
1: SNR < SNR threshold |
|
2728 | 1: SNR < SNR threshold | |
@@ -2727,9 +2741,9 class SMDetection(Operation): | |||||
2727 |
14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
2741 | 14: height ambiguous echo: more then one possible height within 70 to 110 km | |
2728 |
15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
2742 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |
2729 |
16: oscilatory echo, indicating event most likely not an underdense echo |
|
2743 | 16: oscilatory echo, indicating event most likely not an underdense echo | |
2730 |
|
2744 | |||
2731 |
17: phase difference in meteor Reestimation |
|
2745 | 17: phase difference in meteor Reestimation | |
2732 |
|
2746 | |||
2733 |
Data Storage: |
|
2747 | Data Storage: | |
2734 |
Meteors for Wind Estimation (8): |
|
2748 | Meteors for Wind Estimation (8): | |
2735 |
Utc Time | Range Height |
|
2749 | Utc Time | Range Height | |
@@ -2737,19 +2751,19 class SMDetection(Operation): | |||||
2737 |
VelRad errorVelRad |
|
2751 | VelRad errorVelRad | |
2738 |
Phase0 Phase1 Phase2 Phase3 |
|
2752 | Phase0 Phase1 Phase2 Phase3 | |
2739 |
TypeError |
|
2753 | TypeError | |
2740 |
|
2754 | |||
2741 |
''' |
|
2755 | ''' | |
2742 |
|
2756 | |||
2743 |
def run(self, dataOut, hei_ref = None, tauindex = 0, |
|
2757 | def run(self, dataOut, hei_ref = None, tauindex = 0, | |
2744 |
phaseOffsets = None, |
|
2758 | phaseOffsets = None, | |
2745 |
cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, |
|
2759 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |
2746 |
noise_timeStep = 4, noise_multiple = 4, |
|
2760 | noise_timeStep = 4, noise_multiple = 4, | |
2747 |
multDet_timeLimit = 1, multDet_rangeLimit = 3, |
|
2761 | multDet_timeLimit = 1, multDet_rangeLimit = 3, | |
2748 |
phaseThresh = 20, SNRThresh = 5, |
|
2762 | phaseThresh = 20, SNRThresh = 5, | |
2749 |
hmin = 50, hmax=150, azimuth = 0, |
|
2763 | hmin = 50, hmax=150, azimuth = 0, | |
2750 |
channelPositions = None) : |
|
2764 | channelPositions = None) : | |
2751 |
|
2765 | |||
2752 |
|
2766 | |||
2753 |
#Getting Pairslist |
|
2767 | #Getting Pairslist | |
2754 |
if channelPositions is None: |
|
2768 | if channelPositions is None: | |
2755 |
# channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
2769 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
@@ -2759,53 +2773,53 class SMDetection(Operation): | |||||
2759 |
heiRang = dataOut.getHeiRange() |
|
2773 | heiRang = dataOut.getHeiRange() | |
2760 |
#Get Beacon signal - No Beacon signal anymore |
|
2774 | #Get Beacon signal - No Beacon signal anymore | |
2761 |
# newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
2775 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
2762 | # |
|
2776 | # | |
2763 |
# if hei_ref != None: |
|
2777 | # if hei_ref != None: | |
2764 |
# newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
2778 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
2765 | # |
|
2779 | # | |
2766 |
|
2780 | |||
2767 |
|
2781 | |||
2768 |
#****************REMOVING HARDWARE PHASE DIFFERENCES*************** |
|
2782 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |
2769 |
# see if the user put in pre defined phase shifts |
|
2783 | # see if the user put in pre defined phase shifts | |
2770 |
voltsPShift = dataOut.data_pre.copy() |
|
2784 | voltsPShift = dataOut.data_pre.copy() | |
2771 |
|
2785 | |||
2772 |
# if predefinedPhaseShifts != None: |
|
2786 | # if predefinedPhaseShifts != None: | |
2773 |
# hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 |
|
2787 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |
2774 | # |
|
2788 | # | |
2775 |
# # elif beaconPhaseShifts: |
|
2789 | # # elif beaconPhaseShifts: | |
2776 |
# # #get hardware phase shifts using beacon signal |
|
2790 | # # #get hardware phase shifts using beacon signal | |
2777 |
# # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) |
|
2791 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |
2778 |
# # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) |
|
2792 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |
2779 | # |
|
2793 | # | |
2780 |
# else: |
|
2794 | # else: | |
2781 |
# hardwarePhaseShifts = numpy.zeros(5) |
|
2795 | # hardwarePhaseShifts = numpy.zeros(5) | |
2782 | # |
|
2796 | # | |
2783 |
# voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') |
|
2797 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |
2784 |
# for i in range(self.dataOut.data_pre.shape[0]): |
|
2798 | # for i in range(self.dataOut.data_pre.shape[0]): | |
2785 |
# voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) |
|
2799 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |
2786 |
|
2800 | |||
2787 |
#******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* |
|
2801 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |
2788 |
|
2802 | |||
2789 |
#Remove DC |
|
2803 | #Remove DC | |
2790 |
voltsDC = numpy.mean(voltsPShift,1) |
|
2804 | voltsDC = numpy.mean(voltsPShift,1) | |
2791 |
voltsDC = numpy.mean(voltsDC,1) |
|
2805 | voltsDC = numpy.mean(voltsDC,1) | |
2792 |
for i in range(voltsDC.shape[0]): |
|
2806 | for i in range(voltsDC.shape[0]): | |
2793 |
voltsPShift[i] = voltsPShift[i] - voltsDC[i] |
|
2807 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |
2794 |
|
2808 | |||
2795 |
#Don't considerate last heights, theyre used to calculate Hardware Phase Shift |
|
2809 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |
2796 |
# voltsPShift = voltsPShift[:,:,:newheis[0][0]] |
|
2810 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |
2797 |
|
2811 | |||
2798 |
#************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** |
|
2812 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |
2799 |
#Coherent Detection |
|
2813 | #Coherent Detection | |
2800 |
if cohDetection: |
|
2814 | if cohDetection: | |
2801 |
#use coherent detection to get the net power |
|
2815 | #use coherent detection to get the net power | |
2802 |
cohDet_thresh = cohDet_thresh*numpy.pi/180 |
|
2816 | cohDet_thresh = cohDet_thresh*numpy.pi/180 | |
2803 |
voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) |
|
2817 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) | |
2804 |
|
2818 | |||
2805 |
#Non-coherent detection! |
|
2819 | #Non-coherent detection! | |
2806 |
powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) |
|
2820 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |
2807 |
#********** END OF COH/NON-COH POWER CALCULATION********************** |
|
2821 | #********** END OF COH/NON-COH POWER CALCULATION********************** | |
2808 |
|
2822 | |||
2809 |
#********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** |
|
2823 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |
2810 |
#Get noise |
|
2824 | #Get noise | |
2811 |
noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) |
|
2825 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) | |
@@ -2815,7 +2829,7 class SMDetection(Operation): | |||||
2815 |
#Meteor echoes detection |
|
2829 | #Meteor echoes detection | |
2816 |
listMeteors = self.__findMeteors(powerNet, signalThresh) |
|
2830 | listMeteors = self.__findMeteors(powerNet, signalThresh) | |
2817 |
#******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** |
|
2831 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |
2818 |
|
2832 | |||
2819 |
#************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** |
|
2833 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |
2820 |
#Parameters |
|
2834 | #Parameters | |
2821 |
heiRange = dataOut.getHeiRange() |
|
2835 | heiRange = dataOut.getHeiRange() | |
@@ -2825,7 +2839,7 class SMDetection(Operation): | |||||
2825 |
#Multiple detection removals |
|
2839 | #Multiple detection removals | |
2826 |
listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) |
|
2840 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |
2827 |
#************ END OF REMOVE MULTIPLE DETECTIONS ********************** |
|
2841 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |
2828 |
|
2842 | |||
2829 |
#********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** |
|
2843 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |
2830 |
#Parameters |
|
2844 | #Parameters | |
2831 |
phaseThresh = phaseThresh*numpy.pi/180 |
|
2845 | phaseThresh = phaseThresh*numpy.pi/180 | |
@@ -2836,40 +2850,40 class SMDetection(Operation): | |||||
2836 |
#Estimation of decay times (Errors N 7, 8, 11) |
|
2850 | #Estimation of decay times (Errors N 7, 8, 11) | |
2837 |
listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) |
|
2851 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) | |
2838 |
#******************* END OF METEOR REESTIMATION ******************* |
|
2852 | #******************* END OF METEOR REESTIMATION ******************* | |
2839 |
|
2853 | |||
2840 |
#********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** |
|
2854 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |
2841 |
#Calculating Radial Velocity (Error N 15) |
|
2855 | #Calculating Radial Velocity (Error N 15) | |
2842 |
radialStdThresh = 10 |
|
2856 | radialStdThresh = 10 | |
2843 |
listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) |
|
2857 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) | |
2844 |
|
2858 | |||
2845 |
if len(listMeteors4) > 0: |
|
2859 | if len(listMeteors4) > 0: | |
2846 |
#Setting New Array |
|
2860 | #Setting New Array | |
2847 |
date = dataOut.utctime |
|
2861 | date = dataOut.utctime | |
2848 |
arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) |
|
2862 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |
2849 |
|
2863 | |||
2850 |
#Correcting phase offset |
|
2864 | #Correcting phase offset | |
2851 |
if phaseOffsets != None: |
|
2865 | if phaseOffsets != None: | |
2852 |
phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
2866 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
2853 |
arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
2867 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
2854 |
|
2868 | |||
2855 |
#Second Pairslist |
|
2869 | #Second Pairslist | |
2856 |
pairsList = [] |
|
2870 | pairsList = [] | |
2857 |
pairx = (0,1) |
|
2871 | pairx = (0,1) | |
2858 |
pairy = (2,3) |
|
2872 | pairy = (2,3) | |
2859 |
pairsList.append(pairx) |
|
2873 | pairsList.append(pairx) | |
2860 |
pairsList.append(pairy) |
|
2874 | pairsList.append(pairy) | |
2861 |
|
2875 | |||
2862 |
jph = numpy.array([0,0,0,0]) |
|
2876 | jph = numpy.array([0,0,0,0]) | |
2863 |
h = (hmin,hmax) |
|
2877 | h = (hmin,hmax) | |
2864 |
arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
2878 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
2865 |
|
2879 | |||
2866 |
# #Calculate AOA (Error N 3, 4) |
|
2880 | # #Calculate AOA (Error N 3, 4) | |
2867 |
# #JONES ET AL. 1998 |
|
2881 | # #JONES ET AL. 1998 | |
2868 |
# error = arrayParameters[:,-1] |
|
2882 | # error = arrayParameters[:,-1] | |
2869 |
# AOAthresh = numpy.pi/8 |
|
2883 | # AOAthresh = numpy.pi/8 | |
2870 |
# phases = -arrayParameters[:,9:13] |
|
2884 | # phases = -arrayParameters[:,9:13] | |
2871 |
# arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
2885 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |
2872 | # |
|
2886 | # | |
2873 |
# #Calculate Heights (Error N 13 and 14) |
|
2887 | # #Calculate Heights (Error N 13 and 14) | |
2874 |
# error = arrayParameters[:,-1] |
|
2888 | # error = arrayParameters[:,-1] | |
2875 |
# Ranges = arrayParameters[:,2] |
|
2889 | # Ranges = arrayParameters[:,2] | |
@@ -2877,73 +2891,73 class SMDetection(Operation): | |||||
2877 |
# arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) |
|
2891 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) | |
2878 |
# error = arrayParameters[:,-1] |
|
2892 | # error = arrayParameters[:,-1] | |
2879 |
#********************* END OF PARAMETERS CALCULATION ************************** |
|
2893 | #********************* END OF PARAMETERS CALCULATION ************************** | |
2880 |
|
2894 | |||
2881 |
#***************************+ PASS DATA TO NEXT STEP ********************** |
|
2895 | #***************************+ PASS DATA TO NEXT STEP ********************** | |
2882 |
# arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) |
|
2896 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) | |
2883 |
dataOut.data_param = arrayParameters |
|
2897 | dataOut.data_param = arrayParameters | |
2884 |
|
2898 | |||
2885 |
if arrayParameters is None: |
|
2899 | if arrayParameters is None: | |
2886 |
dataOut.flagNoData = True |
|
2900 | dataOut.flagNoData = True | |
2887 |
else: |
|
2901 | else: | |
2888 |
dataOut.flagNoData = True |
|
2902 | dataOut.flagNoData = True | |
2889 |
|
2903 | |||
2890 |
return |
|
2904 | return | |
2891 |
|
2905 | |||
2892 |
def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): |
|
2906 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |
2893 |
|
2907 | |||
2894 |
minIndex = min(newheis[0]) |
|
2908 | minIndex = min(newheis[0]) | |
2895 |
maxIndex = max(newheis[0]) |
|
2909 | maxIndex = max(newheis[0]) | |
2896 |
|
2910 | |||
2897 |
voltage = voltage0[:,:,minIndex:maxIndex+1] |
|
2911 | voltage = voltage0[:,:,minIndex:maxIndex+1] | |
2898 |
nLength = voltage.shape[1]/n |
|
2912 | nLength = voltage.shape[1]/n | |
2899 |
nMin = 0 |
|
2913 | nMin = 0 | |
2900 |
nMax = 0 |
|
2914 | nMax = 0 | |
2901 |
phaseOffset = numpy.zeros((len(pairslist),n)) |
|
2915 | phaseOffset = numpy.zeros((len(pairslist),n)) | |
2902 |
|
2916 | |||
2903 |
for i in range(n): |
|
2917 | for i in range(n): | |
2904 |
nMax += nLength |
|
2918 | nMax += nLength | |
2905 |
phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) |
|
2919 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |
2906 |
phaseCCF = numpy.mean(phaseCCF, axis = 2) |
|
2920 | phaseCCF = numpy.mean(phaseCCF, axis = 2) | |
2907 |
phaseOffset[:,i] = phaseCCF.transpose() |
|
2921 | phaseOffset[:,i] = phaseCCF.transpose() | |
2908 |
nMin = nMax |
|
2922 | nMin = nMax | |
2909 |
# phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) |
|
2923 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |
2910 |
|
2924 | |||
2911 |
#Remove Outliers |
|
2925 | #Remove Outliers | |
2912 |
factor = 2 |
|
2926 | factor = 2 | |
2913 |
wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) |
|
2927 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |
2914 |
dw = numpy.std(wt,axis = 1) |
|
2928 | dw = numpy.std(wt,axis = 1) | |
2915 |
dw = dw.reshape((dw.size,1)) |
|
2929 | dw = dw.reshape((dw.size,1)) | |
2916 |
ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) |
|
2930 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |
2917 |
phaseOffset[ind] = numpy.nan |
|
2931 | phaseOffset[ind] = numpy.nan | |
2918 |
phaseOffset = stats.nanmean(phaseOffset, axis=1) |
|
2932 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |
2919 |
|
2933 | |||
2920 |
return phaseOffset |
|
2934 | return phaseOffset | |
2921 |
|
2935 | |||
2922 |
def __shiftPhase(self, data, phaseShift): |
|
2936 | def __shiftPhase(self, data, phaseShift): | |
2923 |
#this will shift the phase of a complex number |
|
2937 | #this will shift the phase of a complex number | |
2924 |
dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) |
|
2938 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |
2925 |
return dataShifted |
|
2939 | return dataShifted | |
2926 |
|
2940 | |||
2927 |
def __estimatePhaseDifference(self, array, pairslist): |
|
2941 | def __estimatePhaseDifference(self, array, pairslist): | |
2928 |
nChannel = array.shape[0] |
|
2942 | nChannel = array.shape[0] | |
2929 |
nHeights = array.shape[2] |
|
2943 | nHeights = array.shape[2] | |
2930 |
numPairs = len(pairslist) |
|
2944 | numPairs = len(pairslist) | |
2931 |
# phaseCCF = numpy.zeros((nChannel, 5, nHeights)) |
|
2945 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |
2932 |
phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) |
|
2946 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |
2933 |
|
2947 | |||
2934 |
#Correct phases |
|
2948 | #Correct phases | |
2935 |
derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] |
|
2949 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |
2936 |
indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
2950 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
2937 |
|
2951 | |||
2938 |
if indDer[0].shape[0] > 0: |
|
2952 | if indDer[0].shape[0] > 0: | |
2939 |
for i in range(indDer[0].shape[0]): |
|
2953 | for i in range(indDer[0].shape[0]): | |
2940 |
signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) |
|
2954 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |
2941 |
phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi |
|
2955 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |
2942 |
|
2956 | |||
2943 |
# for j in range(numSides): |
|
2957 | # for j in range(numSides): | |
2944 |
# phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) |
|
2958 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |
2945 |
# phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) |
|
2959 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |
2946 | # |
|
2960 | # | |
2947 |
#Linear |
|
2961 | #Linear | |
2948 |
phaseInt = numpy.zeros((numPairs,1)) |
|
2962 | phaseInt = numpy.zeros((numPairs,1)) | |
2949 |
angAllCCF = phaseCCF[:,[0,1,3,4],0] |
|
2963 | angAllCCF = phaseCCF[:,[0,1,3,4],0] | |
@@ -2953,16 +2967,16 class SMDetection(Operation): | |||||
2953 |
#Phase Differences |
|
2967 | #Phase Differences | |
2954 |
phaseDiff = phaseInt - phaseCCF[:,2,:] |
|
2968 | phaseDiff = phaseInt - phaseCCF[:,2,:] | |
2955 |
phaseArrival = phaseInt.reshape(phaseInt.size) |
|
2969 | phaseArrival = phaseInt.reshape(phaseInt.size) | |
2956 |
|
2970 | |||
2957 |
#Dealias |
|
2971 | #Dealias | |
2958 |
phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) |
|
2972 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) | |
2959 |
# indAlias = numpy.where(phaseArrival > numpy.pi) |
|
2973 | # indAlias = numpy.where(phaseArrival > numpy.pi) | |
2960 |
# phaseArrival[indAlias] -= 2*numpy.pi |
|
2974 | # phaseArrival[indAlias] -= 2*numpy.pi | |
2961 |
# indAlias = numpy.where(phaseArrival < -numpy.pi) |
|
2975 | # indAlias = numpy.where(phaseArrival < -numpy.pi) | |
2962 |
# phaseArrival[indAlias] += 2*numpy.pi |
|
2976 | # phaseArrival[indAlias] += 2*numpy.pi | |
2963 |
|
2977 | |||
2964 |
return phaseDiff, phaseArrival |
|
2978 | return phaseDiff, phaseArrival | |
2965 |
|
2979 | |||
2966 |
def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): |
|
2980 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |
2967 |
#this function will run the coherent detection used in Holdworth et al. 2004 and return the net power |
|
2981 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |
2968 |
#find the phase shifts of each channel over 1 second intervals |
|
2982 | #find the phase shifts of each channel over 1 second intervals | |
@@ -2972,25 +2986,25 class SMDetection(Operation): | |||||
2972 |
numHeights = volts.shape[2] |
|
2986 | numHeights = volts.shape[2] | |
2973 |
nChannel = volts.shape[0] |
|
2987 | nChannel = volts.shape[0] | |
2974 |
voltsCohDet = volts.copy() |
|
2988 | voltsCohDet = volts.copy() | |
2975 |
|
2989 | |||
2976 |
pairsarray = numpy.array(pairslist) |
|
2990 | pairsarray = numpy.array(pairslist) | |
2977 |
indSides = pairsarray[:,1] |
|
2991 | indSides = pairsarray[:,1] | |
2978 |
# indSides = numpy.array(range(nChannel)) |
|
2992 | # indSides = numpy.array(range(nChannel)) | |
2979 |
# indSides = numpy.delete(indSides, indCenter) |
|
2993 | # indSides = numpy.delete(indSides, indCenter) | |
2980 | # |
|
2994 | # | |
2981 |
# listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) |
|
2995 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |
2982 |
listBlocks = numpy.array_split(volts, numBlocks, 1) |
|
2996 | listBlocks = numpy.array_split(volts, numBlocks, 1) | |
2983 |
|
2997 | |||
2984 |
startInd = 0 |
|
2998 | startInd = 0 | |
2985 |
endInd = 0 |
|
2999 | endInd = 0 | |
2986 |
|
3000 | |||
2987 |
for i in range(numBlocks): |
|
3001 | for i in range(numBlocks): | |
2988 |
startInd = endInd |
|
3002 | startInd = endInd | |
2989 |
endInd = endInd + listBlocks[i].shape[1] |
|
3003 | endInd = endInd + listBlocks[i].shape[1] | |
2990 |
|
3004 | |||
2991 |
arrayBlock = listBlocks[i] |
|
3005 | arrayBlock = listBlocks[i] | |
2992 |
# arrayBlockCenter = listCenter[i] |
|
3006 | # arrayBlockCenter = listCenter[i] | |
2993 |
|
3007 | |||
2994 |
#Estimate the Phase Difference |
|
3008 | #Estimate the Phase Difference | |
2995 |
phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) |
|
3009 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |
2996 |
#Phase Difference RMS |
|
3010 | #Phase Difference RMS | |
@@ -3002,21 +3016,21 class SMDetection(Operation): | |||||
3002 |
for j in range(indSides.size): |
|
3016 | for j in range(indSides.size): | |
3003 |
arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) |
|
3017 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |
3004 |
voltsCohDet[:,startInd:endInd,:] = arrayBlock |
|
3018 | voltsCohDet[:,startInd:endInd,:] = arrayBlock | |
3005 |
|
3019 | |||
3006 |
return voltsCohDet |
|
3020 | return voltsCohDet | |
3007 |
|
3021 | |||
3008 |
def __calculateCCF(self, volts, pairslist ,laglist): |
|
3022 | def __calculateCCF(self, volts, pairslist ,laglist): | |
3009 |
|
3023 | |||
3010 |
nHeights = volts.shape[2] |
|
3024 | nHeights = volts.shape[2] | |
3011 |
nPoints = volts.shape[1] |
|
3025 | nPoints = volts.shape[1] | |
3012 |
voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') |
|
3026 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |
3013 |
|
3027 | |||
3014 |
for i in range(len(pairslist)): |
|
3028 | for i in range(len(pairslist)): | |
3015 |
volts1 = volts[pairslist[i][0]] |
|
3029 | volts1 = volts[pairslist[i][0]] | |
3016 |
volts2 = volts[pairslist[i][1]] |
|
3030 | volts2 = volts[pairslist[i][1]] | |
3017 |
|
3031 | |||
3018 |
for t in range(len(laglist)): |
|
3032 | for t in range(len(laglist)): | |
3019 |
idxT = laglist[t] |
|
3033 | idxT = laglist[t] | |
3020 |
if idxT >= 0: |
|
3034 | if idxT >= 0: | |
3021 |
vStacked = numpy.vstack((volts2[idxT:,:], |
|
3035 | vStacked = numpy.vstack((volts2[idxT:,:], | |
3022 |
numpy.zeros((idxT, nHeights),dtype='complex'))) |
|
3036 | numpy.zeros((idxT, nHeights),dtype='complex'))) | |
@@ -3024,10 +3038,10 class SMDetection(Operation): | |||||
3024 |
vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), |
|
3038 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |
3025 |
volts2[:(nPoints + idxT),:])) |
|
3039 | volts2[:(nPoints + idxT),:])) | |
3026 |
voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) |
|
3040 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |
3027 |
|
3041 | |||
3028 |
vStacked = None |
|
3042 | vStacked = None | |
3029 |
return voltsCCF |
|
3043 | return voltsCCF | |
3030 |
|
3044 | |||
3031 |
def __getNoise(self, power, timeSegment, timeInterval): |
|
3045 | def __getNoise(self, power, timeSegment, timeInterval): | |
3032 |
numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
3046 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
3033 |
numBlocks = int(power.shape[0]/numProfPerBlock) |
|
3047 | numBlocks = int(power.shape[0]/numProfPerBlock) | |
@@ -3036,100 +3050,100 class SMDetection(Operation): | |||||
3036 |
listPower = numpy.array_split(power, numBlocks, 0) |
|
3050 | listPower = numpy.array_split(power, numBlocks, 0) | |
3037 |
noise = numpy.zeros((power.shape[0], power.shape[1])) |
|
3051 | noise = numpy.zeros((power.shape[0], power.shape[1])) | |
3038 |
noise1 = numpy.zeros((power.shape[0], power.shape[1])) |
|
3052 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |
3039 |
|
3053 | |||
3040 |
startInd = 0 |
|
3054 | startInd = 0 | |
3041 |
endInd = 0 |
|
3055 | endInd = 0 | |
3042 |
|
3056 | |||
3043 |
for i in range(numBlocks): #split por canal |
|
3057 | for i in range(numBlocks): #split por canal | |
3044 |
startInd = endInd |
|
3058 | startInd = endInd | |
3045 |
endInd = endInd + listPower[i].shape[0] |
|
3059 | endInd = endInd + listPower[i].shape[0] | |
3046 |
|
3060 | |||
3047 |
arrayBlock = listPower[i] |
|
3061 | arrayBlock = listPower[i] | |
3048 |
noiseAux = numpy.mean(arrayBlock, 0) |
|
3062 | noiseAux = numpy.mean(arrayBlock, 0) | |
3049 |
# noiseAux = numpy.median(noiseAux) |
|
3063 | # noiseAux = numpy.median(noiseAux) | |
3050 |
# noiseAux = numpy.mean(arrayBlock) |
|
3064 | # noiseAux = numpy.mean(arrayBlock) | |
3051 |
noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux |
|
3065 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |
3052 |
|
3066 | |||
3053 |
noiseAux1 = numpy.mean(arrayBlock) |
|
3067 | noiseAux1 = numpy.mean(arrayBlock) | |
3054 |
noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 |
|
3068 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |
3055 |
|
3069 | |||
3056 |
return noise, noise1 |
|
3070 | return noise, noise1 | |
3057 |
|
3071 | |||
3058 |
def __findMeteors(self, power, thresh): |
|
3072 | def __findMeteors(self, power, thresh): | |
3059 |
nProf = power.shape[0] |
|
3073 | nProf = power.shape[0] | |
3060 |
nHeights = power.shape[1] |
|
3074 | nHeights = power.shape[1] | |
3061 |
listMeteors = [] |
|
3075 | listMeteors = [] | |
3062 |
|
3076 | |||
3063 |
for i in range(nHeights): |
|
3077 | for i in range(nHeights): | |
3064 |
powerAux = power[:,i] |
|
3078 | powerAux = power[:,i] | |
3065 |
threshAux = thresh[:,i] |
|
3079 | threshAux = thresh[:,i] | |
3066 |
|
3080 | |||
3067 |
indUPthresh = numpy.where(powerAux > threshAux)[0] |
|
3081 | indUPthresh = numpy.where(powerAux > threshAux)[0] | |
3068 |
indDNthresh = numpy.where(powerAux <= threshAux)[0] |
|
3082 | indDNthresh = numpy.where(powerAux <= threshAux)[0] | |
3069 |
|
3083 | |||
3070 |
j = 0 |
|
3084 | j = 0 | |
3071 |
|
3085 | |||
3072 |
while (j < indUPthresh.size - 2): |
|
3086 | while (j < indUPthresh.size - 2): | |
3073 |
if (indUPthresh[j + 2] == indUPthresh[j] + 2): |
|
3087 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |
3074 |
indDNAux = numpy.where(indDNthresh > indUPthresh[j]) |
|
3088 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |
3075 |
indDNthresh = indDNthresh[indDNAux] |
|
3089 | indDNthresh = indDNthresh[indDNAux] | |
3076 |
|
3090 | |||
3077 |
if (indDNthresh.size > 0): |
|
3091 | if (indDNthresh.size > 0): | |
3078 |
indEnd = indDNthresh[0] - 1 |
|
3092 | indEnd = indDNthresh[0] - 1 | |
3079 |
indInit = indUPthresh[j] |
|
3093 | indInit = indUPthresh[j] | |
3080 |
|
3094 | |||
3081 |
meteor = powerAux[indInit:indEnd + 1] |
|
3095 | meteor = powerAux[indInit:indEnd + 1] | |
3082 |
indPeak = meteor.argmax() + indInit |
|
3096 | indPeak = meteor.argmax() + indInit | |
3083 |
FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) |
|
3097 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |
3084 |
|
3098 | |||
3085 |
listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! |
|
3099 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |
3086 |
j = numpy.where(indUPthresh == indEnd)[0] + 1 |
|
3100 | j = numpy.where(indUPthresh == indEnd)[0] + 1 | |
3087 |
else: j+=1 |
|
3101 | else: j+=1 | |
3088 |
else: j+=1 |
|
3102 | else: j+=1 | |
3089 |
|
3103 | |||
3090 |
return listMeteors |
|
3104 | return listMeteors | |
3091 |
|
3105 | |||
3092 |
def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): |
|
3106 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |
3093 |
|
3107 | |||
3094 |
arrayMeteors = numpy.asarray(listMeteors) |
|
3108 | arrayMeteors = numpy.asarray(listMeteors) | |
3095 |
listMeteors1 = [] |
|
3109 | listMeteors1 = [] | |
3096 |
|
3110 | |||
3097 |
while arrayMeteors.shape[0] > 0: |
|
3111 | while arrayMeteors.shape[0] > 0: | |
3098 |
FLAs = arrayMeteors[:,4] |
|
3112 | FLAs = arrayMeteors[:,4] | |
3099 |
maxFLA = FLAs.argmax() |
|
3113 | maxFLA = FLAs.argmax() | |
3100 |
listMeteors1.append(arrayMeteors[maxFLA,:]) |
|
3114 | listMeteors1.append(arrayMeteors[maxFLA,:]) | |
3101 |
|
3115 | |||
3102 |
MeteorInitTime = arrayMeteors[maxFLA,1] |
|
3116 | MeteorInitTime = arrayMeteors[maxFLA,1] | |
3103 |
MeteorEndTime = arrayMeteors[maxFLA,3] |
|
3117 | MeteorEndTime = arrayMeteors[maxFLA,3] | |
3104 |
MeteorHeight = arrayMeteors[maxFLA,0] |
|
3118 | MeteorHeight = arrayMeteors[maxFLA,0] | |
3105 |
|
3119 | |||
3106 |
#Check neighborhood |
|
3120 | #Check neighborhood | |
3107 |
maxHeightIndex = MeteorHeight + rangeLimit |
|
3121 | maxHeightIndex = MeteorHeight + rangeLimit | |
3108 |
minHeightIndex = MeteorHeight - rangeLimit |
|
3122 | minHeightIndex = MeteorHeight - rangeLimit | |
3109 |
minTimeIndex = MeteorInitTime - timeLimit |
|
3123 | minTimeIndex = MeteorInitTime - timeLimit | |
3110 |
maxTimeIndex = MeteorEndTime + timeLimit |
|
3124 | maxTimeIndex = MeteorEndTime + timeLimit | |
3111 |
|
3125 | |||
3112 |
#Check Heights |
|
3126 | #Check Heights | |
3113 |
indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) |
|
3127 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |
3114 |
indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) |
|
3128 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |
3115 |
indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) |
|
3129 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |
3116 |
|
3130 | |||
3117 |
arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) |
|
3131 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |
3118 |
|
3132 | |||
3119 |
return listMeteors1 |
|
3133 | return listMeteors1 | |
3120 |
|
3134 | |||
3121 |
def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): |
|
3135 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |
3122 |
numHeights = volts.shape[2] |
|
3136 | numHeights = volts.shape[2] | |
3123 |
nChannel = volts.shape[0] |
|
3137 | nChannel = volts.shape[0] | |
3124 |
|
3138 | |||
3125 |
thresholdPhase = thresh[0] |
|
3139 | thresholdPhase = thresh[0] | |
3126 |
thresholdNoise = thresh[1] |
|
3140 | thresholdNoise = thresh[1] | |
3127 |
thresholdDB = float(thresh[2]) |
|
3141 | thresholdDB = float(thresh[2]) | |
3128 |
|
3142 | |||
3129 |
thresholdDB1 = 10**(thresholdDB/10) |
|
3143 | thresholdDB1 = 10**(thresholdDB/10) | |
3130 |
pairsarray = numpy.array(pairslist) |
|
3144 | pairsarray = numpy.array(pairslist) | |
3131 |
indSides = pairsarray[:,1] |
|
3145 | indSides = pairsarray[:,1] | |
3132 |
|
3146 | |||
3133 |
pairslist1 = list(pairslist) |
|
3147 | pairslist1 = list(pairslist) | |
3134 |
pairslist1.append((0,1)) |
|
3148 | pairslist1.append((0,1)) | |
3135 |
pairslist1.append((3,4)) |
|
3149 | pairslist1.append((3,4)) | |
@@ -3138,31 +3152,31 class SMDetection(Operation): | |||||
3138 |
listPowerSeries = [] |
|
3152 | listPowerSeries = [] | |
3139 |
listVoltageSeries = [] |
|
3153 | listVoltageSeries = [] | |
3140 |
#volts has the war data |
|
3154 | #volts has the war data | |
3141 |
|
3155 | |||
3142 |
if frequency == 30e6: |
|
3156 | if frequency == 30e6: | |
3143 |
timeLag = 45*10**-3 |
|
3157 | timeLag = 45*10**-3 | |
3144 |
else: |
|
3158 | else: | |
3145 |
timeLag = 15*10**-3 |
|
3159 | timeLag = 15*10**-3 | |
3146 |
lag = numpy.ceil(timeLag/timeInterval) |
|
3160 | lag = numpy.ceil(timeLag/timeInterval) | |
3147 |
|
3161 | |||
3148 |
for i in range(len(listMeteors)): |
|
3162 | for i in range(len(listMeteors)): | |
3149 |
|
3163 | |||
3150 |
###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### |
|
3164 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |
3151 |
meteorAux = numpy.zeros(16) |
|
3165 | meteorAux = numpy.zeros(16) | |
3152 |
|
3166 | |||
3153 |
#Loading meteor Data (mHeight, mStart, mPeak, mEnd) |
|
3167 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |
3154 |
mHeight = listMeteors[i][0] |
|
3168 | mHeight = listMeteors[i][0] | |
3155 |
mStart = listMeteors[i][1] |
|
3169 | mStart = listMeteors[i][1] | |
3156 |
mPeak = listMeteors[i][2] |
|
3170 | mPeak = listMeteors[i][2] | |
3157 |
mEnd = listMeteors[i][3] |
|
3171 | mEnd = listMeteors[i][3] | |
3158 |
|
3172 | |||
3159 |
#get the volt data between the start and end times of the meteor |
|
3173 | #get the volt data between the start and end times of the meteor | |
3160 |
meteorVolts = volts[:,mStart:mEnd+1,mHeight] |
|
3174 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |
3161 |
meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3175 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
3162 |
|
3176 | |||
3163 |
#3.6. Phase Difference estimation |
|
3177 | #3.6. Phase Difference estimation | |
3164 |
phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) |
|
3178 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |
3165 |
|
3179 | |||
3166 |
#3.7. Phase difference removal & meteor start, peak and end times reestimated |
|
3180 | #3.7. Phase difference removal & meteor start, peak and end times reestimated | |
3167 |
#meteorVolts0.- all Channels, all Profiles |
|
3181 | #meteorVolts0.- all Channels, all Profiles | |
3168 |
meteorVolts0 = volts[:,:,mHeight] |
|
3182 | meteorVolts0 = volts[:,:,mHeight] | |
@@ -3170,15 +3184,15 class SMDetection(Operation): | |||||
3170 |
meteorNoise = noise[:,mHeight] |
|
3184 | meteorNoise = noise[:,mHeight] | |
3171 |
meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting |
|
3185 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |
3172 |
powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power |
|
3186 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |
3173 |
|
3187 | |||
3174 |
#Times reestimation |
|
3188 | #Times reestimation | |
3175 |
mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] |
|
3189 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |
3176 |
if mStart1.size > 0: |
|
3190 | if mStart1.size > 0: | |
3177 |
mStart1 = mStart1[-1] + 1 |
|
3191 | mStart1 = mStart1[-1] + 1 | |
3178 |
|
3192 | |||
3179 |
else: |
|
3193 | else: | |
3180 |
mStart1 = mPeak |
|
3194 | mStart1 = mPeak | |
3181 |
|
3195 | |||
3182 |
mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 |
|
3196 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |
3183 |
mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] |
|
3197 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |
3184 |
if mEndDecayTime1.size == 0: |
|
3198 | if mEndDecayTime1.size == 0: | |
@@ -3186,7 +3200,7 class SMDetection(Operation): | |||||
3186 |
else: |
|
3200 | else: | |
3187 |
mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 |
|
3201 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |
3188 |
# mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() |
|
3202 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |
3189 |
|
3203 | |||
3190 |
#meteorVolts1.- all Channels, from start to end |
|
3204 | #meteorVolts1.- all Channels, from start to end | |
3191 |
meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] |
|
3205 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |
3192 |
meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] |
|
3206 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |
@@ -3195,17 +3209,17 class SMDetection(Operation): | |||||
3195 |
meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) |
|
3209 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |
3196 |
meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) |
|
3210 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |
3197 |
##################### END PARAMETERS REESTIMATION ######################### |
|
3211 | ##################### END PARAMETERS REESTIMATION ######################### | |
3198 |
|
3212 | |||
3199 |
##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## |
|
3213 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |
3200 |
# if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3214 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |
3201 |
if meteorVolts2.shape[1] > 0: |
|
3215 | if meteorVolts2.shape[1] > 0: | |
3202 |
#Phase Difference re-estimation |
|
3216 | #Phase Difference re-estimation | |
3203 |
phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation |
|
3217 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |
3204 |
# phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) |
|
3218 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |
3205 |
meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) |
|
3219 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |
3206 |
phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) |
|
3220 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |
3207 |
meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting |
|
3221 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |
3208 |
|
3222 | |||
3209 |
#Phase Difference RMS |
|
3223 | #Phase Difference RMS | |
3210 |
phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) |
|
3224 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |
3211 |
powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) |
|
3225 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |
@@ -3220,27 +3234,27 class SMDetection(Operation): | |||||
3220 |
#Vectorize |
|
3234 | #Vectorize | |
3221 |
meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] |
|
3235 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |
3222 |
meteorAux[7:11] = phaseDiffint[0:4] |
|
3236 | meteorAux[7:11] = phaseDiffint[0:4] | |
3223 |
|
3237 | |||
3224 |
#Rejection Criterions |
|
3238 | #Rejection Criterions | |
3225 |
if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation |
|
3239 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |
3226 |
meteorAux[-1] = 17 |
|
3240 | meteorAux[-1] = 17 | |
3227 |
elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB |
|
3241 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |
3228 |
meteorAux[-1] = 1 |
|
3242 | meteorAux[-1] = 1 | |
3229 |
|
3243 | |||
3230 |
|
3244 | |||
3231 |
else: |
|
3245 | else: | |
3232 |
meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] |
|
3246 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |
3233 |
meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3247 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |
3234 |
PowerSeries = 0 |
|
3248 | PowerSeries = 0 | |
3235 |
|
3249 | |||
3236 |
listMeteors1.append(meteorAux) |
|
3250 | listMeteors1.append(meteorAux) | |
3237 |
listPowerSeries.append(PowerSeries) |
|
3251 | listPowerSeries.append(PowerSeries) | |
3238 |
listVoltageSeries.append(meteorVolts1) |
|
3252 | listVoltageSeries.append(meteorVolts1) | |
3239 |
|
3253 | |||
3240 |
return listMeteors1, listPowerSeries, listVoltageSeries |
|
3254 | return listMeteors1, listPowerSeries, listVoltageSeries | |
3241 |
|
3255 | |||
3242 |
def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): |
|
3256 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |
3243 |
|
3257 | |||
3244 |
threshError = 10 |
|
3258 | threshError = 10 | |
3245 |
#Depending if it is 30 or 50 MHz |
|
3259 | #Depending if it is 30 or 50 MHz | |
3246 |
if frequency == 30e6: |
|
3260 | if frequency == 30e6: | |
@@ -3248,22 +3262,22 class SMDetection(Operation): | |||||
3248 |
else: |
|
3262 | else: | |
3249 |
timeLag = 15*10**-3 |
|
3263 | timeLag = 15*10**-3 | |
3250 |
lag = numpy.ceil(timeLag/timeInterval) |
|
3264 | lag = numpy.ceil(timeLag/timeInterval) | |
3251 |
|
3265 | |||
3252 |
listMeteors1 = [] |
|
3266 | listMeteors1 = [] | |
3253 |
|
3267 | |||
3254 |
for i in range(len(listMeteors)): |
|
3268 | for i in range(len(listMeteors)): | |
3255 |
meteorPower = listPower[i] |
|
3269 | meteorPower = listPower[i] | |
3256 |
meteorAux = listMeteors[i] |
|
3270 | meteorAux = listMeteors[i] | |
3257 |
|
3271 | |||
3258 |
if meteorAux[-1] == 0: |
|
3272 | if meteorAux[-1] == 0: | |
3259 |
|
3273 | |||
3260 |
try: |
|
3274 | try: | |
3261 |
indmax = meteorPower.argmax() |
|
3275 | indmax = meteorPower.argmax() | |
3262 |
indlag = indmax + lag |
|
3276 | indlag = indmax + lag | |
3263 |
|
3277 | |||
3264 |
y = meteorPower[indlag:] |
|
3278 | y = meteorPower[indlag:] | |
3265 |
x = numpy.arange(0, y.size)*timeLag |
|
3279 | x = numpy.arange(0, y.size)*timeLag | |
3266 |
|
3280 | |||
3267 |
#first guess |
|
3281 | #first guess | |
3268 |
a = y[0] |
|
3282 | a = y[0] | |
3269 |
tau = timeLag |
|
3283 | tau = timeLag | |
@@ -3272,26 +3286,26 class SMDetection(Operation): | |||||
3272 |
y1 = self.__exponential_function(x, *popt) |
|
3286 | y1 = self.__exponential_function(x, *popt) | |
3273 |
#error estimation |
|
3287 | #error estimation | |
3274 |
error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) |
|
3288 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |
3275 |
|
3289 | |||
3276 |
decayTime = popt[1] |
|
3290 | decayTime = popt[1] | |
3277 |
riseTime = indmax*timeInterval |
|
3291 | riseTime = indmax*timeInterval | |
3278 |
meteorAux[11:13] = [decayTime, error] |
|
3292 | meteorAux[11:13] = [decayTime, error] | |
3279 |
|
3293 | |||
3280 |
#Table items 7, 8 and 11 |
|
3294 | #Table items 7, 8 and 11 | |
3281 |
if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s |
|
3295 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |
3282 |
meteorAux[-1] = 7 |
|
3296 | meteorAux[-1] = 7 | |
3283 |
elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time |
|
3297 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |
3284 |
meteorAux[-1] = 8 |
|
3298 | meteorAux[-1] = 8 | |
3285 |
if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time |
|
3299 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |
3286 |
meteorAux[-1] = 11 |
|
3300 | meteorAux[-1] = 11 | |
3287 |
|
3301 | |||
3288 |
|
3302 | |||
3289 |
except: |
|
3303 | except: | |
3290 |
meteorAux[-1] = 11 |
|
3304 | meteorAux[-1] = 11 | |
3291 |
|
3305 | |||
3292 |
|
3306 | |||
3293 |
listMeteors1.append(meteorAux) |
|
3307 | listMeteors1.append(meteorAux) | |
3294 |
|
3308 | |||
3295 |
return listMeteors1 |
|
3309 | return listMeteors1 | |
3296 |
|
3310 | |||
3297 |
#Exponential Function |
|
3311 | #Exponential Function | |
@@ -3299,9 +3313,9 class SMDetection(Operation): | |||||
3299 |
def __exponential_function(self, x, a, tau): |
|
3313 | def __exponential_function(self, x, a, tau): | |
3300 |
y = a*numpy.exp(-x/tau) |
|
3314 | y = a*numpy.exp(-x/tau) | |
3301 |
return y |
|
3315 | return y | |
3302 |
|
3316 | |||
3303 |
def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): |
|
3317 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |
3304 |
|
3318 | |||
3305 |
pairslist1 = list(pairslist) |
|
3319 | pairslist1 = list(pairslist) | |
3306 |
pairslist1.append((0,1)) |
|
3320 | pairslist1.append((0,1)) | |
3307 |
pairslist1.append((3,4)) |
|
3321 | pairslist1.append((3,4)) | |
@@ -3311,33 +3325,33 class SMDetection(Operation): | |||||
3311 |
c = 3e8 |
|
3325 | c = 3e8 | |
3312 |
lag = numpy.ceil(timeLag/timeInterval) |
|
3326 | lag = numpy.ceil(timeLag/timeInterval) | |
3313 |
freq = 30e6 |
|
3327 | freq = 30e6 | |
3314 |
|
3328 | |||
3315 |
listMeteors1 = [] |
|
3329 | listMeteors1 = [] | |
3316 |
|
3330 | |||
3317 |
for i in range(len(listMeteors)): |
|
3331 | for i in range(len(listMeteors)): | |
3318 |
meteorAux = listMeteors[i] |
|
3332 | meteorAux = listMeteors[i] | |
3319 |
if meteorAux[-1] == 0: |
|
3333 | if meteorAux[-1] == 0: | |
3320 |
mStart = listMeteors[i][1] |
|
3334 | mStart = listMeteors[i][1] | |
3321 |
mPeak = listMeteors[i][2] |
|
3335 | mPeak = listMeteors[i][2] | |
3322 |
mLag = mPeak - mStart + lag |
|
3336 | mLag = mPeak - mStart + lag | |
3323 |
|
3337 | |||
3324 |
#get the volt data between the start and end times of the meteor |
|
3338 | #get the volt data between the start and end times of the meteor | |
3325 |
meteorVolts = listVolts[i] |
|
3339 | meteorVolts = listVolts[i] | |
3326 |
meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3340 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
3327 |
|
3341 | |||
3328 |
#Get CCF |
|
3342 | #Get CCF | |
3329 |
allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) |
|
3343 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |
3330 |
|
3344 | |||
3331 |
#Method 2 |
|
3345 | #Method 2 | |
3332 |
slopes = numpy.zeros(numPairs) |
|
3346 | slopes = numpy.zeros(numPairs) | |
3333 |
time = numpy.array([-2,-1,1,2])*timeInterval |
|
3347 | time = numpy.array([-2,-1,1,2])*timeInterval | |
3334 |
angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) |
|
3348 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) | |
3335 |
|
3349 | |||
3336 |
#Correct phases |
|
3350 | #Correct phases | |
3337 |
derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] |
|
3351 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |
3338 |
indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
3352 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
3339 |
|
3353 | |||
3340 |
if indDer[0].shape[0] > 0: |
|
3354 | if indDer[0].shape[0] > 0: | |
3341 |
for i in range(indDer[0].shape[0]): |
|
3355 | for i in range(indDer[0].shape[0]): | |
3342 |
signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) |
|
3356 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |
3343 |
angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi |
|
3357 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |
@@ -3346,51 +3360,51 class SMDetection(Operation): | |||||
3346 |
for j in range(numPairs): |
|
3360 | for j in range(numPairs): | |
3347 |
fit = stats.linregress(time, angAllCCF[j,:]) |
|
3361 | fit = stats.linregress(time, angAllCCF[j,:]) | |
3348 |
slopes[j] = fit[0] |
|
3362 | slopes[j] = fit[0] | |
3349 |
|
3363 | |||
3350 |
#Remove Outlier |
|
3364 | #Remove Outlier | |
3351 |
# indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3365 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
3352 |
# slopes = numpy.delete(slopes,indOut) |
|
3366 | # slopes = numpy.delete(slopes,indOut) | |
3353 |
# indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3367 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
3354 |
# slopes = numpy.delete(slopes,indOut) |
|
3368 | # slopes = numpy.delete(slopes,indOut) | |
3355 |
|
3369 | |||
3356 |
radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3370 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |
3357 |
radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3371 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |
3358 |
meteorAux[-2] = radialError |
|
3372 | meteorAux[-2] = radialError | |
3359 |
meteorAux[-3] = radialVelocity |
|
3373 | meteorAux[-3] = radialVelocity | |
3360 |
|
3374 | |||
3361 |
#Setting Error |
|
3375 | #Setting Error | |
3362 |
#Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s |
|
3376 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |
3363 |
if numpy.abs(radialVelocity) > 200: |
|
3377 | if numpy.abs(radialVelocity) > 200: | |
3364 |
meteorAux[-1] = 15 |
|
3378 | meteorAux[-1] = 15 | |
3365 |
#Number 12: Poor fit to CCF variation for estimation of radial drift velocity |
|
3379 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |
3366 |
elif radialError > radialStdThresh: |
|
3380 | elif radialError > radialStdThresh: | |
3367 |
meteorAux[-1] = 12 |
|
3381 | meteorAux[-1] = 12 | |
3368 |
|
3382 | |||
3369 |
listMeteors1.append(meteorAux) |
|
3383 | listMeteors1.append(meteorAux) | |
3370 |
return listMeteors1 |
|
3384 | return listMeteors1 | |
3371 |
|
3385 | |||
3372 |
def __setNewArrays(self, listMeteors, date, heiRang): |
|
3386 | def __setNewArrays(self, listMeteors, date, heiRang): | |
3373 |
|
3387 | |||
3374 |
#New arrays |
|
3388 | #New arrays | |
3375 |
arrayMeteors = numpy.array(listMeteors) |
|
3389 | arrayMeteors = numpy.array(listMeteors) | |
3376 |
arrayParameters = numpy.zeros((len(listMeteors), 13)) |
|
3390 | arrayParameters = numpy.zeros((len(listMeteors), 13)) | |
3377 |
|
3391 | |||
3378 |
#Date inclusion |
|
3392 | #Date inclusion | |
3379 |
# date = re.findall(r'\((.*?)\)', date) |
|
3393 | # date = re.findall(r'\((.*?)\)', date) | |
3380 |
# date = date[0].split(',') |
|
3394 | # date = date[0].split(',') | |
3381 |
# date = map(int, date) |
|
3395 | # date = map(int, date) | |
3382 | # |
|
3396 | # | |
3383 |
# if len(date)<6: |
|
3397 | # if len(date)<6: | |
3384 |
# date.append(0) |
|
3398 | # date.append(0) | |
3385 | # |
|
3399 | # | |
3386 |
# date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] |
|
3400 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |
3387 |
# arrayDate = numpy.tile(date, (len(listMeteors), 1)) |
|
3401 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |
3388 |
arrayDate = numpy.tile(date, (len(listMeteors))) |
|
3402 | arrayDate = numpy.tile(date, (len(listMeteors))) | |
3389 |
|
3403 | |||
3390 |
#Meteor array |
|
3404 | #Meteor array | |
3391 |
# arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] |
|
3405 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |
3392 |
# arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) |
|
3406 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |
3393 |
|
3407 | |||
3394 |
#Parameters Array |
|
3408 | #Parameters Array | |
3395 |
arrayParameters[:,0] = arrayDate #Date |
|
3409 | arrayParameters[:,0] = arrayDate #Date | |
3396 |
arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range |
|
3410 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range | |
@@ -3398,13 +3412,13 class SMDetection(Operation): | |||||
3398 |
arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases |
|
3412 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases | |
3399 |
arrayParameters[:,-1] = arrayMeteors[:,-1] #Error |
|
3413 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error | |
3400 |
|
3414 | |||
3401 |
|
3415 | |||
3402 |
return arrayParameters |
|
3416 | return arrayParameters | |
3403 |
|
3417 | |||
3404 |
class CorrectSMPhases(Operation): |
|
3418 | class CorrectSMPhases(Operation): | |
3405 |
|
3419 | |||
3406 |
def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): |
|
3420 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): | |
3407 |
|
3421 | |||
3408 |
arrayParameters = dataOut.data_param |
|
3422 | arrayParameters = dataOut.data_param | |
3409 |
pairsList = [] |
|
3423 | pairsList = [] | |
3410 |
pairx = (0,1) |
|
3424 | pairx = (0,1) | |
@@ -3412,49 +3426,49 class CorrectSMPhases(Operation): | |||||
3412 |
pairsList.append(pairx) |
|
3426 | pairsList.append(pairx) | |
3413 |
pairsList.append(pairy) |
|
3427 | pairsList.append(pairy) | |
3414 |
jph = numpy.zeros(4) |
|
3428 | jph = numpy.zeros(4) | |
3415 |
|
3429 | |||
3416 |
phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
3430 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
3417 |
# arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
3431 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
3418 |
arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) |
|
3432 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) | |
3419 |
|
3433 | |||
3420 |
meteorOps = SMOperations() |
|
3434 | meteorOps = SMOperations() | |
3421 |
if channelPositions is None: |
|
3435 | if channelPositions is None: | |
3422 |
# channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3436 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
3423 |
channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3437 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
3424 |
|
3438 | |||
3425 |
pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3439 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
3426 |
h = (hmin,hmax) |
|
3440 | h = (hmin,hmax) | |
3427 |
|
3441 | |||
3428 |
arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
3442 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
3429 |
|
3443 | |||
3430 |
dataOut.data_param = arrayParameters |
|
3444 | dataOut.data_param = arrayParameters | |
3431 |
return |
|
3445 | return | |
3432 |
|
3446 | |||
3433 |
class SMPhaseCalibration(Operation): |
|
3447 | class SMPhaseCalibration(Operation): | |
3434 |
|
3448 | |||
3435 |
__buffer = None |
|
3449 | __buffer = None | |
3436 |
|
3450 | |||
3437 |
__initime = None |
|
3451 | __initime = None | |
3438 |
|
3452 | |||
3439 |
__dataReady = False |
|
3453 | __dataReady = False | |
3440 |
|
3454 | |||
3441 |
__isConfig = False |
|
3455 | __isConfig = False | |
3442 |
|
3456 | |||
3443 |
def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): |
|
3457 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): | |
3444 |
|
3458 | |||
3445 |
dataTime = currentTime + paramInterval |
|
3459 | dataTime = currentTime + paramInterval | |
3446 |
deltaTime = dataTime - initTime |
|
3460 | deltaTime = dataTime - initTime | |
3447 |
|
3461 | |||
3448 |
if deltaTime >= outputInterval or deltaTime < 0: |
|
3462 | if deltaTime >= outputInterval or deltaTime < 0: | |
3449 |
return True |
|
3463 | return True | |
3450 |
|
3464 | |||
3451 |
return False |
|
3465 | return False | |
3452 |
|
3466 | |||
3453 |
def __getGammas(self, pairs, d, phases): |
|
3467 | def __getGammas(self, pairs, d, phases): | |
3454 |
gammas = numpy.zeros(2) |
|
3468 | gammas = numpy.zeros(2) | |
3455 |
|
3469 | |||
3456 |
for i in range(len(pairs)): |
|
3470 | for i in range(len(pairs)): | |
3457 |
|
3471 | |||
3458 |
pairi = pairs[i] |
|
3472 | pairi = pairs[i] | |
3459 |
|
3473 | |||
3460 |
phip3 = phases[:,pairi[0]] |
|
3474 | phip3 = phases[:,pairi[0]] | |
@@ -3468,7 +3482,7 class SMPhaseCalibration(Operation): | |||||
3468 |
jgamma = numpy.angle(numpy.exp(1j*jgamma)) |
|
3482 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) | |
3469 |
# jgamma[jgamma>numpy.pi] -= 2*numpy.pi |
|
3483 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi | |
3470 |
# jgamma[jgamma<-numpy.pi] += 2*numpy.pi |
|
3484 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi | |
3471 |
|
3485 | |||
3472 |
#Revised distribution |
|
3486 | #Revised distribution | |
3473 |
jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) |
|
3487 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) | |
3474 |
|
3488 | |||
@@ -3477,39 +3491,39 class SMPhaseCalibration(Operation): | |||||
3477 |
rmin = -0.5*numpy.pi |
|
3491 | rmin = -0.5*numpy.pi | |
3478 |
rmax = 0.5*numpy.pi |
|
3492 | rmax = 0.5*numpy.pi | |
3479 |
phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) |
|
3493 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) | |
3480 |
|
3494 | |||
3481 |
meteorsY = phaseHisto[0] |
|
3495 | meteorsY = phaseHisto[0] | |
3482 |
phasesX = phaseHisto[1][:-1] |
|
3496 | phasesX = phaseHisto[1][:-1] | |
3483 |
width = phasesX[1] - phasesX[0] |
|
3497 | width = phasesX[1] - phasesX[0] | |
3484 |
phasesX += width/2 |
|
3498 | phasesX += width/2 | |
3485 |
|
3499 | |||
3486 |
#Gaussian aproximation |
|
3500 | #Gaussian aproximation | |
3487 |
bpeak = meteorsY.argmax() |
|
3501 | bpeak = meteorsY.argmax() | |
3488 |
peak = meteorsY.max() |
|
3502 | peak = meteorsY.max() | |
3489 |
jmin = bpeak - 5 |
|
3503 | jmin = bpeak - 5 | |
3490 |
jmax = bpeak + 5 + 1 |
|
3504 | jmax = bpeak + 5 + 1 | |
3491 |
|
3505 | |||
3492 |
if jmin<0: |
|
3506 | if jmin<0: | |
3493 |
jmin = 0 |
|
3507 | jmin = 0 | |
3494 |
jmax = 6 |
|
3508 | jmax = 6 | |
3495 |
elif jmax > meteorsY.size: |
|
3509 | elif jmax > meteorsY.size: | |
3496 |
jmin = meteorsY.size - 6 |
|
3510 | jmin = meteorsY.size - 6 | |
3497 |
jmax = meteorsY.size |
|
3511 | jmax = meteorsY.size | |
3498 |
|
3512 | |||
3499 |
x0 = numpy.array([peak,bpeak,50]) |
|
3513 | x0 = numpy.array([peak,bpeak,50]) | |
3500 |
coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) |
|
3514 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) | |
3501 |
|
3515 | |||
3502 |
#Gammas |
|
3516 | #Gammas | |
3503 |
gammas[i] = coeff[0][1] |
|
3517 | gammas[i] = coeff[0][1] | |
3504 |
|
3518 | |||
3505 |
return gammas |
|
3519 | return gammas | |
3506 |
|
3520 | |||
3507 |
def __residualFunction(self, coeffs, y, t): |
|
3521 | def __residualFunction(self, coeffs, y, t): | |
3508 |
|
3522 | |||
3509 |
return y - self.__gauss_function(t, coeffs) |
|
3523 | return y - self.__gauss_function(t, coeffs) | |
3510 |
|
3524 | |||
3511 |
def __gauss_function(self, t, coeffs): |
|
3525 | def __gauss_function(self, t, coeffs): | |
3512 |
|
3526 | |||
3513 |
return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) |
|
3527 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) | |
3514 |
|
3528 | |||
3515 |
def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): |
|
3529 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): | |
@@ -3530,16 +3544,16 class SMPhaseCalibration(Operation): | |||||
3530 |
max_xangle = range_angle[iz]/2 + center_xangle |
|
3544 | max_xangle = range_angle[iz]/2 + center_xangle | |
3531 |
min_yangle = -range_angle[iz]/2 + center_yangle |
|
3545 | min_yangle = -range_angle[iz]/2 + center_yangle | |
3532 |
max_yangle = range_angle[iz]/2 + center_yangle |
|
3546 | max_yangle = range_angle[iz]/2 + center_yangle | |
3533 |
|
3547 | |||
3534 |
inc_x = (max_xangle-min_xangle)/nstepsx |
|
3548 | inc_x = (max_xangle-min_xangle)/nstepsx | |
3535 |
inc_y = (max_yangle-min_yangle)/nstepsy |
|
3549 | inc_y = (max_yangle-min_yangle)/nstepsy | |
3536 |
|
3550 | |||
3537 |
alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle |
|
3551 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle | |
3538 |
alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle |
|
3552 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle | |
3539 |
penalty = numpy.zeros((nstepsx,nstepsy)) |
|
3553 | penalty = numpy.zeros((nstepsx,nstepsy)) | |
3540 |
jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) |
|
3554 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) | |
3541 |
jph = numpy.zeros(nchan) |
|
3555 | jph = numpy.zeros(nchan) | |
3542 |
|
3556 | |||
3543 |
# Iterations looking for the offset |
|
3557 | # Iterations looking for the offset | |
3544 |
for iy in range(int(nstepsy)): |
|
3558 | for iy in range(int(nstepsy)): | |
3545 |
for ix in range(int(nstepsx)): |
|
3559 | for ix in range(int(nstepsx)): | |
@@ -3547,46 +3561,46 class SMPhaseCalibration(Operation): | |||||
3547 |
d2 = d[pairsList[1][1]] |
|
3561 | d2 = d[pairsList[1][1]] | |
3548 |
d5 = d[pairsList[0][0]] |
|
3562 | d5 = d[pairsList[0][0]] | |
3549 |
d4 = d[pairsList[0][1]] |
|
3563 | d4 = d[pairsList[0][1]] | |
3550 |
|
3564 | |||
3551 |
alp2 = alpha_y[iy] #gamma 1 |
|
3565 | alp2 = alpha_y[iy] #gamma 1 | |
3552 |
alp4 = alpha_x[ix] #gamma 0 |
|
3566 | alp4 = alpha_x[ix] #gamma 0 | |
3553 |
|
3567 | |||
3554 |
alp3 = -alp2*d3/d2 - gammas[1] |
|
3568 | alp3 = -alp2*d3/d2 - gammas[1] | |
3555 |
alp5 = -alp4*d5/d4 - gammas[0] |
|
3569 | alp5 = -alp4*d5/d4 - gammas[0] | |
3556 |
# jph[pairy[1]] = alpha_y[iy] |
|
3570 | # jph[pairy[1]] = alpha_y[iy] | |
3557 |
# jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] |
|
3571 | # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] | |
3558 |
|
3572 | |||
3559 |
# jph[pairx[1]] = alpha_x[ix] |
|
3573 | # jph[pairx[1]] = alpha_x[ix] | |
3560 |
# jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] |
|
3574 | # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] | |
3561 |
jph[pairsList[0][1]] = alp4 |
|
3575 | jph[pairsList[0][1]] = alp4 | |
3562 |
jph[pairsList[0][0]] = alp5 |
|
3576 | jph[pairsList[0][0]] = alp5 | |
3563 |
jph[pairsList[1][0]] = alp3 |
|
3577 | jph[pairsList[1][0]] = alp3 | |
3564 |
jph[pairsList[1][1]] = alp2 |
|
3578 | jph[pairsList[1][1]] = alp2 | |
3565 |
jph_array[:,ix,iy] = jph |
|
3579 | jph_array[:,ix,iy] = jph | |
3566 |
# d = [2.0,2.5,2.5,2.0] |
|
3580 | # d = [2.0,2.5,2.5,2.0] | |
3567 |
#falta chequear si va a leer bien los meteoros |
|
3581 | #falta chequear si va a leer bien los meteoros | |
3568 |
meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) |
|
3582 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) | |
3569 |
error = meteorsArray1[:,-1] |
|
3583 | error = meteorsArray1[:,-1] | |
3570 |
ind1 = numpy.where(error==0)[0] |
|
3584 | ind1 = numpy.where(error==0)[0] | |
3571 |
penalty[ix,iy] = ind1.size |
|
3585 | penalty[ix,iy] = ind1.size | |
3572 |
|
3586 | |||
3573 |
i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) |
|
3587 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) | |
3574 |
phOffset = jph_array[:,i,j] |
|
3588 | phOffset = jph_array[:,i,j] | |
3575 |
|
3589 | |||
3576 |
center_xangle = phOffset[pairx[1]] |
|
3590 | center_xangle = phOffset[pairx[1]] | |
3577 |
center_yangle = phOffset[pairy[1]] |
|
3591 | center_yangle = phOffset[pairy[1]] | |
3578 |
|
3592 | |||
3579 |
phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) |
|
3593 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) | |
3580 |
phOffset = phOffset*180/numpy.pi |
|
3594 | phOffset = phOffset*180/numpy.pi | |
3581 |
return phOffset |
|
3595 | return phOffset | |
3582 |
|
3596 | |||
3583 |
|
3597 | |||
3584 |
def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): |
|
3598 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): | |
3585 |
|
3599 | |||
3586 |
dataOut.flagNoData = True |
|
3600 | dataOut.flagNoData = True | |
3587 |
self.__dataReady = False |
|
3601 | self.__dataReady = False | |
3588 |
dataOut.outputInterval = nHours*3600 |
|
3602 | dataOut.outputInterval = nHours*3600 | |
3589 |
|
3603 | |||
3590 |
if self.__isConfig == False: |
|
3604 | if self.__isConfig == False: | |
3591 |
# self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
3605 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
3592 |
#Get Initial LTC time |
|
3606 | #Get Initial LTC time | |
@@ -3594,19 +3608,19 class SMPhaseCalibration(Operation): | |||||
3594 |
self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
3608 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
3595 |
|
3609 | |||
3596 |
self.__isConfig = True |
|
3610 | self.__isConfig = True | |
3597 |
|
3611 | |||
3598 |
if self.__buffer is None: |
|
3612 | if self.__buffer is None: | |
3599 |
self.__buffer = dataOut.data_param.copy() |
|
3613 | self.__buffer = dataOut.data_param.copy() | |
3600 |
|
3614 | |||
3601 |
else: |
|
3615 | else: | |
3602 |
self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
3616 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
3603 |
|
3617 | |||
3604 |
self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
3618 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
3605 |
|
3619 | |||
3606 |
if self.__dataReady: |
|
3620 | if self.__dataReady: | |
3607 |
dataOut.utctimeInit = self.__initime |
|
3621 | dataOut.utctimeInit = self.__initime | |
3608 |
self.__initime += dataOut.outputInterval #to erase time offset |
|
3622 | self.__initime += dataOut.outputInterval #to erase time offset | |
3609 |
|
3623 | |||
3610 |
freq = dataOut.frequency |
|
3624 | freq = dataOut.frequency | |
3611 |
c = dataOut.C #m/s |
|
3625 | c = dataOut.C #m/s | |
3612 |
lamb = c/freq |
|
3626 | lamb = c/freq | |
@@ -3628,13 +3642,13 class SMPhaseCalibration(Operation): | |||||
3628 |
pairs.append((1,0)) |
|
3642 | pairs.append((1,0)) | |
3629 |
else: |
|
3643 | else: | |
3630 |
pairs.append((0,1)) |
|
3644 | pairs.append((0,1)) | |
3631 |
|
3645 | |||
3632 |
if distances[3] > distances[2]: |
|
3646 | if distances[3] > distances[2]: | |
3633 |
pairs.append((3,2)) |
|
3647 | pairs.append((3,2)) | |
3634 |
else: |
|
3648 | else: | |
3635 |
pairs.append((2,3)) |
|
3649 | pairs.append((2,3)) | |
3636 |
# distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] |
|
3650 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] | |
3637 |
|
3651 | |||
3638 |
meteorsArray = self.__buffer |
|
3652 | meteorsArray = self.__buffer | |
3639 |
error = meteorsArray[:,-1] |
|
3653 | error = meteorsArray[:,-1] | |
3640 |
boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) |
|
3654 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) | |
@@ -3642,7 +3656,7 class SMPhaseCalibration(Operation): | |||||
3642 |
meteorsArray = meteorsArray[ind1,:] |
|
3656 | meteorsArray = meteorsArray[ind1,:] | |
3643 |
meteorsArray[:,-1] = 0 |
|
3657 | meteorsArray[:,-1] = 0 | |
3644 |
phases = meteorsArray[:,8:12] |
|
3658 | phases = meteorsArray[:,8:12] | |
3645 |
|
3659 | |||
3646 |
#Calculate Gammas |
|
3660 | #Calculate Gammas | |
3647 |
gammas = self.__getGammas(pairs, distances, phases) |
|
3661 | gammas = self.__getGammas(pairs, distances, phases) | |
3648 |
# gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 |
|
3662 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 | |
@@ -3652,22 +3666,22 class SMPhaseCalibration(Operation): | |||||
3652 |
dataOut.data_output = -phasesOff |
|
3666 | dataOut.data_output = -phasesOff | |
3653 |
dataOut.flagNoData = False |
|
3667 | dataOut.flagNoData = False | |
3654 |
self.__buffer = None |
|
3668 | self.__buffer = None | |
3655 |
|
3669 | |||
3656 |
|
3670 | |||
3657 |
return |
|
3671 | return | |
3658 |
|
3672 | |||
3659 |
class SMOperations(): |
|
3673 | class SMOperations(): | |
3660 |
|
3674 | |||
3661 |
def __init__(self): |
|
3675 | def __init__(self): | |
3662 |
|
3676 | |||
3663 |
return |
|
3677 | return | |
3664 |
|
3678 | |||
3665 |
def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): |
|
3679 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): | |
3666 |
|
3680 | |||
3667 |
arrayParameters = arrayParameters0.copy() |
|
3681 | arrayParameters = arrayParameters0.copy() | |
3668 |
hmin = h[0] |
|
3682 | hmin = h[0] | |
3669 |
hmax = h[1] |
|
3683 | hmax = h[1] | |
3670 |
|
3684 | |||
3671 |
#Calculate AOA (Error N 3, 4) |
|
3685 | #Calculate AOA (Error N 3, 4) | |
3672 |
#JONES ET AL. 1998 |
|
3686 | #JONES ET AL. 1998 | |
3673 |
AOAthresh = numpy.pi/8 |
|
3687 | AOAthresh = numpy.pi/8 | |
@@ -3675,72 +3689,72 class SMOperations(): | |||||
3675 |
phases = -arrayParameters[:,8:12] + jph |
|
3689 | phases = -arrayParameters[:,8:12] + jph | |
3676 |
# phases = numpy.unwrap(phases) |
|
3690 | # phases = numpy.unwrap(phases) | |
3677 |
arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) |
|
3691 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) | |
3678 |
|
3692 | |||
3679 |
#Calculate Heights (Error N 13 and 14) |
|
3693 | #Calculate Heights (Error N 13 and 14) | |
3680 |
error = arrayParameters[:,-1] |
|
3694 | error = arrayParameters[:,-1] | |
3681 |
Ranges = arrayParameters[:,1] |
|
3695 | Ranges = arrayParameters[:,1] | |
3682 |
zenith = arrayParameters[:,4] |
|
3696 | zenith = arrayParameters[:,4] | |
3683 |
arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) |
|
3697 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |
3684 |
|
3698 | |||
3685 |
#----------------------- Get Final data ------------------------------------ |
|
3699 | #----------------------- Get Final data ------------------------------------ | |
3686 |
# error = arrayParameters[:,-1] |
|
3700 | # error = arrayParameters[:,-1] | |
3687 |
# ind1 = numpy.where(error==0)[0] |
|
3701 | # ind1 = numpy.where(error==0)[0] | |
3688 |
# arrayParameters = arrayParameters[ind1,:] |
|
3702 | # arrayParameters = arrayParameters[ind1,:] | |
3689 |
|
3703 | |||
3690 |
return arrayParameters |
|
3704 | return arrayParameters | |
3691 |
|
3705 | |||
3692 |
def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): |
|
3706 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): | |
3693 |
|
3707 | |||
3694 |
arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3708 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |
3695 |
cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) |
|
3709 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) | |
3696 |
|
3710 | |||
3697 |
arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3711 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
3698 |
cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3712 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
3699 |
arrayAOA[:,2] = cosDirError |
|
3713 | arrayAOA[:,2] = cosDirError | |
3700 |
|
3714 | |||
3701 |
azimuthAngle = arrayAOA[:,0] |
|
3715 | azimuthAngle = arrayAOA[:,0] | |
3702 |
zenithAngle = arrayAOA[:,1] |
|
3716 | zenithAngle = arrayAOA[:,1] | |
3703 |
|
3717 | |||
3704 |
#Setting Error |
|
3718 | #Setting Error | |
3705 |
indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] |
|
3719 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] | |
3706 |
error[indError] = 0 |
|
3720 | error[indError] = 0 | |
3707 |
#Number 3: AOA not fesible |
|
3721 | #Number 3: AOA not fesible | |
3708 |
indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3722 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
3709 |
error[indInvalid] = 3 |
|
3723 | error[indInvalid] = 3 | |
3710 |
#Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3724 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |
3711 |
indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3725 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
3712 |
error[indInvalid] = 4 |
|
3726 | error[indInvalid] = 4 | |
3713 |
return arrayAOA, error |
|
3727 | return arrayAOA, error | |
3714 |
|
3728 | |||
3715 |
def __getDirectionCosines(self, arrayPhase, pairsList, distances): |
|
3729 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): | |
3716 |
|
3730 | |||
3717 |
#Initializing some variables |
|
3731 | #Initializing some variables | |
3718 |
ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3732 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
3719 |
ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3733 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |
3720 |
|
3734 | |||
3721 |
cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3735 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
3722 |
cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3736 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
3723 |
|
3737 | |||
3724 |
|
3738 | |||
3725 |
for i in range(2): |
|
3739 | for i in range(2): | |
3726 |
ph0 = arrayPhase[:,pairsList[i][0]] |
|
3740 | ph0 = arrayPhase[:,pairsList[i][0]] | |
3727 |
ph1 = arrayPhase[:,pairsList[i][1]] |
|
3741 | ph1 = arrayPhase[:,pairsList[i][1]] | |
3728 |
d0 = distances[pairsList[i][0]] |
|
3742 | d0 = distances[pairsList[i][0]] | |
3729 |
d1 = distances[pairsList[i][1]] |
|
3743 | d1 = distances[pairsList[i][1]] | |
3730 |
|
3744 | |||
3731 |
ph0_aux = ph0 + ph1 |
|
3745 | ph0_aux = ph0 + ph1 | |
3732 |
ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) |
|
3746 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) | |
3733 |
# ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi |
|
3747 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi | |
3734 |
# ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi |
|
3748 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi | |
3735 |
#First Estimation |
|
3749 | #First Estimation | |
3736 |
cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) |
|
3750 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) | |
3737 |
|
3751 | |||
3738 |
#Most-Accurate Second Estimation |
|
3752 | #Most-Accurate Second Estimation | |
3739 |
phi1_aux = ph0 - ph1 |
|
3753 | phi1_aux = ph0 - ph1 | |
3740 |
phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3754 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
3741 |
#Direction Cosine 1 |
|
3755 | #Direction Cosine 1 | |
3742 |
cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) |
|
3756 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) | |
3743 |
|
3757 | |||
3744 |
#Searching the correct Direction Cosine |
|
3758 | #Searching the correct Direction Cosine | |
3745 |
cosdir0_aux = cosdir0[:,i] |
|
3759 | cosdir0_aux = cosdir0[:,i] | |
3746 |
cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
3760 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
@@ -3749,59 +3763,59 class SMOperations(): | |||||
3749 |
indcos = cosDiff.argmin(axis = 1) |
|
3763 | indcos = cosDiff.argmin(axis = 1) | |
3750 |
#Saving Value obtained |
|
3764 | #Saving Value obtained | |
3751 |
cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
3765 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
3752 |
|
3766 | |||
3753 |
return cosdir0, cosdir |
|
3767 | return cosdir0, cosdir | |
3754 |
|
3768 | |||
3755 |
def __calculateAOA(self, cosdir, azimuth): |
|
3769 | def __calculateAOA(self, cosdir, azimuth): | |
3756 |
cosdirX = cosdir[:,0] |
|
3770 | cosdirX = cosdir[:,0] | |
3757 |
cosdirY = cosdir[:,1] |
|
3771 | cosdirY = cosdir[:,1] | |
3758 |
|
3772 | |||
3759 |
zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
3773 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
3760 |
azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east |
|
3774 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east | |
3761 |
angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
3775 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
3762 |
|
3776 | |||
3763 |
return angles |
|
3777 | return angles | |
3764 |
|
3778 | |||
3765 |
def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
3779 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
3766 |
|
3780 | |||
3767 |
Ramb = 375 #Ramb = c/(2*PRF) |
|
3781 | Ramb = 375 #Ramb = c/(2*PRF) | |
3768 |
Re = 6371 #Earth Radius |
|
3782 | Re = 6371 #Earth Radius | |
3769 |
heights = numpy.zeros(Ranges.shape) |
|
3783 | heights = numpy.zeros(Ranges.shape) | |
3770 |
|
3784 | |||
3771 |
R_aux = numpy.array([0,1,2])*Ramb |
|
3785 | R_aux = numpy.array([0,1,2])*Ramb | |
3772 |
R_aux = R_aux.reshape(1,R_aux.size) |
|
3786 | R_aux = R_aux.reshape(1,R_aux.size) | |
3773 |
|
3787 | |||
3774 |
Ranges = Ranges.reshape(Ranges.size,1) |
|
3788 | Ranges = Ranges.reshape(Ranges.size,1) | |
3775 |
|
3789 | |||
3776 |
Ri = Ranges + R_aux |
|
3790 | Ri = Ranges + R_aux | |
3777 |
hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
3791 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
3778 |
|
3792 | |||
3779 |
#Check if there is a height between 70 and 110 km |
|
3793 | #Check if there is a height between 70 and 110 km | |
3780 |
h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
3794 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
3781 |
ind_h = numpy.where(h_bool == 1)[0] |
|
3795 | ind_h = numpy.where(h_bool == 1)[0] | |
3782 |
|
3796 | |||
3783 |
hCorr = hi[ind_h, :] |
|
3797 | hCorr = hi[ind_h, :] | |
3784 |
ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
3798 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
3785 |
|
3799 | |||
3786 |
hCorr = hi[ind_hCorr][:len(ind_h)] |
|
3800 | hCorr = hi[ind_hCorr][:len(ind_h)] | |
3787 |
heights[ind_h] = hCorr |
|
3801 | heights[ind_h] = hCorr | |
3788 |
|
3802 | |||
3789 |
#Setting Error |
|
3803 | #Setting Error | |
3790 |
#Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
3804 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
3791 |
#Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
3805 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
3792 |
indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] |
|
3806 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] | |
3793 |
error[indError] = 0 |
|
3807 | error[indError] = 0 | |
3794 |
indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
3808 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
3795 |
error[indInvalid2] = 14 |
|
3809 | error[indInvalid2] = 14 | |
3796 |
indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
3810 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
3797 |
error[indInvalid1] = 13 |
|
3811 | error[indInvalid1] = 13 | |
3798 |
|
3812 | |||
3799 |
return heights, error |
|
3813 | return heights, error | |
3800 |
|
3814 | |||
3801 |
def getPhasePairs(self, channelPositions): |
|
3815 | def getPhasePairs(self, channelPositions): | |
3802 |
chanPos = numpy.array(channelPositions) |
|
3816 | chanPos = numpy.array(channelPositions) | |
3803 |
listOper = list(itertools.combinations(list(range(5)),2)) |
|
3817 | listOper = list(itertools.combinations(list(range(5)),2)) | |
3804 |
|
3818 | |||
3805 |
distances = numpy.zeros(4) |
|
3819 | distances = numpy.zeros(4) | |
3806 |
axisX = [] |
|
3820 | axisX = [] | |
3807 |
axisY = [] |
|
3821 | axisY = [] | |
@@ -3809,15 +3823,15 class SMOperations(): | |||||
3809 |
distY = numpy.zeros(3) |
|
3823 | distY = numpy.zeros(3) | |
3810 |
ix = 0 |
|
3824 | ix = 0 | |
3811 |
iy = 0 |
|
3825 | iy = 0 | |
3812 |
|
3826 | |||
3813 |
pairX = numpy.zeros((2,2)) |
|
3827 | pairX = numpy.zeros((2,2)) | |
3814 |
pairY = numpy.zeros((2,2)) |
|
3828 | pairY = numpy.zeros((2,2)) | |
3815 |
|
3829 | |||
3816 |
for i in range(len(listOper)): |
|
3830 | for i in range(len(listOper)): | |
3817 |
pairi = listOper[i] |
|
3831 | pairi = listOper[i] | |
3818 |
|
3832 | |||
3819 |
posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) |
|
3833 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) | |
3820 |
|
3834 | |||
3821 |
if posDif[0] == 0: |
|
3835 | if posDif[0] == 0: | |
3822 |
axisY.append(pairi) |
|
3836 | axisY.append(pairi) | |
3823 |
distY[iy] = posDif[1] |
|
3837 | distY[iy] = posDif[1] | |
@@ -3826,7 +3840,7 class SMOperations(): | |||||
3826 |
axisX.append(pairi) |
|
3840 | axisX.append(pairi) | |
3827 |
distX[ix] = posDif[0] |
|
3841 | distX[ix] = posDif[0] | |
3828 |
ix += 1 |
|
3842 | ix += 1 | |
3829 |
|
3843 | |||
3830 |
for i in range(2): |
|
3844 | for i in range(2): | |
3831 |
if i==0: |
|
3845 | if i==0: | |
3832 |
dist0 = distX |
|
3846 | dist0 = distX | |
@@ -3834,7 +3848,7 class SMOperations(): | |||||
3834 |
else: |
|
3848 | else: | |
3835 |
dist0 = distY |
|
3849 | dist0 = distY | |
3836 |
axis0 = axisY |
|
3850 | axis0 = axisY | |
3837 |
|
3851 | |||
3838 |
side = numpy.argsort(dist0)[:-1] |
|
3852 | side = numpy.argsort(dist0)[:-1] | |
3839 |
axis0 = numpy.array(axis0)[side,:] |
|
3853 | axis0 = numpy.array(axis0)[side,:] | |
3840 |
chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) |
|
3854 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) | |
@@ -3842,7 +3856,7 class SMOperations(): | |||||
3842 |
side = axis1[axis1 != chanC] |
|
3856 | side = axis1[axis1 != chanC] | |
3843 |
diff1 = chanPos[chanC,i] - chanPos[side[0],i] |
|
3857 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] | |
3844 |
diff2 = chanPos[chanC,i] - chanPos[side[1],i] |
|
3858 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] | |
3845 |
if diff1<0: |
|
3859 | if diff1<0: | |
3846 |
chan2 = side[0] |
|
3860 | chan2 = side[0] | |
3847 |
d2 = numpy.abs(diff1) |
|
3861 | d2 = numpy.abs(diff1) | |
3848 |
chan1 = side[1] |
|
3862 | chan1 = side[1] | |
@@ -3852,7 +3866,7 class SMOperations(): | |||||
3852 |
d2 = numpy.abs(diff2) |
|
3866 | d2 = numpy.abs(diff2) | |
3853 |
chan1 = side[0] |
|
3867 | chan1 = side[0] | |
3854 |
d1 = numpy.abs(diff1) |
|
3868 | d1 = numpy.abs(diff1) | |
3855 |
|
3869 | |||
3856 |
if i==0: |
|
3870 | if i==0: | |
3857 |
chanCX = chanC |
|
3871 | chanCX = chanC | |
3858 |
chan1X = chan1 |
|
3872 | chan1X = chan1 | |
@@ -3864,10 +3878,10 class SMOperations(): | |||||
3864 |
chan2Y = chan2 |
|
3878 | chan2Y = chan2 | |
3865 |
distances[2:4] = numpy.array([d1,d2]) |
|
3879 | distances[2:4] = numpy.array([d1,d2]) | |
3866 |
# axisXsides = numpy.reshape(axisX[ix,:],4) |
|
3880 | # axisXsides = numpy.reshape(axisX[ix,:],4) | |
3867 | # |
|
3881 | # | |
3868 |
# channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) |
|
3882 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) | |
3869 |
# channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) |
|
3883 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) | |
3870 | # |
|
3884 | # | |
3871 |
# ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] |
|
3885 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] | |
3872 |
# ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] |
|
3886 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] | |
3873 |
# channel25X = int(pairX[0,ind25X]) |
|
3887 | # channel25X = int(pairX[0,ind25X]) | |
@@ -3876,59 +3890,59 class SMOperations(): | |||||
3876 |
# ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] |
|
3890 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] | |
3877 |
# channel25Y = int(pairY[0,ind25Y]) |
|
3891 | # channel25Y = int(pairY[0,ind25Y]) | |
3878 |
# channel20Y = int(pairY[1,ind20Y]) |
|
3892 | # channel20Y = int(pairY[1,ind20Y]) | |
3879 |
|
3893 | |||
3880 |
# pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] |
|
3894 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] | |
3881 |
pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] |
|
3895 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] | |
3882 |
|
3896 | |||
3883 |
return pairslist, distances |
|
3897 | return pairslist, distances | |
3884 |
# def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
3898 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |
3885 | # |
|
3899 | # | |
3886 |
# arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3900 | # arrayAOA = numpy.zeros((phases.shape[0],3)) | |
3887 |
# cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
3901 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |
3888 | # |
|
3902 | # | |
3889 |
# arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3903 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
3890 |
# cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3904 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
3891 |
# arrayAOA[:,2] = cosDirError |
|
3905 | # arrayAOA[:,2] = cosDirError | |
3892 | # |
|
3906 | # | |
3893 |
# azimuthAngle = arrayAOA[:,0] |
|
3907 | # azimuthAngle = arrayAOA[:,0] | |
3894 |
# zenithAngle = arrayAOA[:,1] |
|
3908 | # zenithAngle = arrayAOA[:,1] | |
3895 | # |
|
3909 | # | |
3896 |
# #Setting Error |
|
3910 | # #Setting Error | |
3897 |
# #Number 3: AOA not fesible |
|
3911 | # #Number 3: AOA not fesible | |
3898 |
# indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3912 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
3899 |
# error[indInvalid] = 3 |
|
3913 | # error[indInvalid] = 3 | |
3900 |
# #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3914 | # #Number 4: Large difference in AOAs obtained from different antenna baselines | |
3901 |
# indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3915 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
3902 |
# error[indInvalid] = 4 |
|
3916 | # error[indInvalid] = 4 | |
3903 |
# return arrayAOA, error |
|
3917 | # return arrayAOA, error | |
3904 | # |
|
3918 | # | |
3905 |
# def __getDirectionCosines(self, arrayPhase, pairsList): |
|
3919 | # def __getDirectionCosines(self, arrayPhase, pairsList): | |
3906 | # |
|
3920 | # | |
3907 |
# #Initializing some variables |
|
3921 | # #Initializing some variables | |
3908 |
# ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3922 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
3909 |
# ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3923 | # ang_aux = ang_aux.reshape(1,ang_aux.size) | |
3910 | # |
|
3924 | # | |
3911 |
# cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3925 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
3912 |
# cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3926 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
3913 | # |
|
3927 | # | |
3914 | # |
|
3928 | # | |
3915 |
# for i in range(2): |
|
3929 | # for i in range(2): | |
3916 |
# #First Estimation |
|
3930 | # #First Estimation | |
3917 |
# phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
3931 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |
3918 |
# #Dealias |
|
3932 | # #Dealias | |
3919 |
# indcsi = numpy.where(phi0_aux > numpy.pi) |
|
3933 | # indcsi = numpy.where(phi0_aux > numpy.pi) | |
3920 |
# phi0_aux[indcsi] -= 2*numpy.pi |
|
3934 | # phi0_aux[indcsi] -= 2*numpy.pi | |
3921 |
# indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
3935 | # indcsi = numpy.where(phi0_aux < -numpy.pi) | |
3922 |
# phi0_aux[indcsi] += 2*numpy.pi |
|
3936 | # phi0_aux[indcsi] += 2*numpy.pi | |
3923 |
# #Direction Cosine 0 |
|
3937 | # #Direction Cosine 0 | |
3924 |
# cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
3938 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |
3925 | # |
|
3939 | # | |
3926 |
# #Most-Accurate Second Estimation |
|
3940 | # #Most-Accurate Second Estimation | |
3927 |
# phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
3941 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |
3928 |
# phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3942 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
3929 |
# #Direction Cosine 1 |
|
3943 | # #Direction Cosine 1 | |
3930 |
# cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) |
|
3944 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |
3931 | # |
|
3945 | # | |
3932 |
# #Searching the correct Direction Cosine |
|
3946 | # #Searching the correct Direction Cosine | |
3933 |
# cosdir0_aux = cosdir0[:,i] |
|
3947 | # cosdir0_aux = cosdir0[:,i] | |
3934 |
# cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
3948 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
@@ -3937,51 +3951,50 class SMOperations(): | |||||
3937 |
# indcos = cosDiff.argmin(axis = 1) |
|
3951 | # indcos = cosDiff.argmin(axis = 1) | |
3938 |
# #Saving Value obtained |
|
3952 | # #Saving Value obtained | |
3939 |
# cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
3953 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
3940 | # |
|
3954 | # | |
3941 |
# return cosdir0, cosdir |
|
3955 | # return cosdir0, cosdir | |
3942 | # |
|
3956 | # | |
3943 |
# def __calculateAOA(self, cosdir, azimuth): |
|
3957 | # def __calculateAOA(self, cosdir, azimuth): | |
3944 |
# cosdirX = cosdir[:,0] |
|
3958 | # cosdirX = cosdir[:,0] | |
3945 |
# cosdirY = cosdir[:,1] |
|
3959 | # cosdirY = cosdir[:,1] | |
3946 | # |
|
3960 | # | |
3947 |
# zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
3961 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
3948 |
# azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east |
|
3962 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |
3949 |
# angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
3963 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
3950 | # |
|
3964 | # | |
3951 |
# return angles |
|
3965 | # return angles | |
3952 | # |
|
3966 | # | |
3953 |
# def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
3967 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
3954 | # |
|
3968 | # | |
3955 |
# Ramb = 375 #Ramb = c/(2*PRF) |
|
3969 | # Ramb = 375 #Ramb = c/(2*PRF) | |
3956 |
# Re = 6371 #Earth Radius |
|
3970 | # Re = 6371 #Earth Radius | |
3957 |
# heights = numpy.zeros(Ranges.shape) |
|
3971 | # heights = numpy.zeros(Ranges.shape) | |
3958 | # |
|
3972 | # | |
3959 |
# R_aux = numpy.array([0,1,2])*Ramb |
|
3973 | # R_aux = numpy.array([0,1,2])*Ramb | |
3960 |
# R_aux = R_aux.reshape(1,R_aux.size) |
|
3974 | # R_aux = R_aux.reshape(1,R_aux.size) | |
3961 | # |
|
3975 | # | |
3962 |
# Ranges = Ranges.reshape(Ranges.size,1) |
|
3976 | # Ranges = Ranges.reshape(Ranges.size,1) | |
3963 | # |
|
3977 | # | |
3964 |
# Ri = Ranges + R_aux |
|
3978 | # Ri = Ranges + R_aux | |
3965 |
# hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
3979 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
3966 | # |
|
3980 | # | |
3967 |
# #Check if there is a height between 70 and 110 km |
|
3981 | # #Check if there is a height between 70 and 110 km | |
3968 |
# h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
3982 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
3969 |
# ind_h = numpy.where(h_bool == 1)[0] |
|
3983 | # ind_h = numpy.where(h_bool == 1)[0] | |
3970 | # |
|
3984 | # | |
3971 |
# hCorr = hi[ind_h, :] |
|
3985 | # hCorr = hi[ind_h, :] | |
3972 |
# ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
3986 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
3973 | # |
|
3987 | # | |
3974 |
# hCorr = hi[ind_hCorr] |
|
3988 | # hCorr = hi[ind_hCorr] | |
3975 |
# heights[ind_h] = hCorr |
|
3989 | # heights[ind_h] = hCorr | |
3976 | # |
|
3990 | # | |
3977 |
# #Setting Error |
|
3991 | # #Setting Error | |
3978 |
# #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
3992 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
3979 |
# #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
3993 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
3980 | # |
|
3994 | # | |
3981 |
# indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
3995 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
3982 |
# error[indInvalid2] = 14 |
|
3996 | # error[indInvalid2] = 14 | |
3983 |
# indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
3997 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
3984 |
# error[indInvalid1] = 13 |
|
3998 | # error[indInvalid1] = 13 | |
3985 | # |
|
3999 | # | |
3986 |
# return heights, error |
|
4000 | # return heights, error | |
3987 | No newline at end of file |
|
@@ -2,7 +2,7 import sys | |||||
2 | import numpy,math |
|
2 | import numpy,math | |
3 | from scipy import interpolate |
|
3 | from scipy import interpolate | |
4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
5 | from schainpy.model.data.jrodata import Voltage |
|
5 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon | |
6 | from schainpy.utils import log |
|
6 | from schainpy.utils import log | |
7 | from time import time |
|
7 | from time import time | |
8 |
|
8 | |||
@@ -1355,9 +1355,6 class PulsePairVoltage(Operation): | |||||
1355 | n, |
|
1355 | n, | |
1356 | dataOut.nHeights), |
|
1356 | dataOut.nHeights), | |
1357 | dtype='complex') |
|
1357 | dtype='complex') | |
1358 | #self.noise = numpy.zeros([self.__nch,self.__nHeis]) |
|
|||
1359 | #for i in range(self.__nch): |
|
|||
1360 | # self.noise[i]=dataOut.getNoise(channel=i) |
|
|||
1361 |
|
1358 | |||
1362 | def putData(self,data): |
|
1359 | def putData(self,data): | |
1363 | ''' |
|
1360 | ''' | |
@@ -1372,101 +1369,127 class PulsePairVoltage(Operation): | |||||
1372 | Return the PULSEPAIR and the profiles used in the operation |
|
1369 | Return the PULSEPAIR and the profiles used in the operation | |
1373 | Affected : self.__profileIndex |
|
1370 | Affected : self.__profileIndex | |
1374 | ''' |
|
1371 | ''' | |
|
1372 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
1375 | if self.removeDC==True: |
|
1373 | if self.removeDC==True: | |
1376 | mean = numpy.mean(self.__buffer,1) |
|
1374 | mean = numpy.mean(self.__buffer,1) | |
1377 | tmp = mean.reshape(self.__nch,1,self.__nHeis) |
|
1375 | tmp = mean.reshape(self.__nch,1,self.__nHeis) | |
1378 | dc= numpy.tile(tmp,[1,self.__nProf,1]) |
|
1376 | dc= numpy.tile(tmp,[1,self.__nProf,1]) | |
1379 | self.__buffer = self.__buffer - dc |
|
1377 | self.__buffer = self.__buffer - dc | |
|
1378 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Calculo de Potencia Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
|
1379 | pair0 = self.__buffer*numpy.conj(self.__buffer) | |||
|
1380 | pair0 = pair0.real | |||
|
1381 | lag_0 = numpy.sum(pair0,1) | |||
|
1382 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Calculo de Ruido x canalΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
|
1383 | self.noise = numpy.zeros(self.__nch) | |||
|
1384 | for i in range(self.__nch): | |||
|
1385 | daux = numpy.sort(pair0[i,:,:],axis= None) | |||
|
1386 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) | |||
|
1387 | ||||
|
1388 | self.noise = self.noise.reshape(self.__nch,1) | |||
|
1389 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) | |||
|
1390 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) | |||
|
1391 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) | |||
|
1392 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Potencia recibida= P , Potencia senal = S , Ruido= NΒ·Β· | |||
|
1393 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· P= S+N ,P=lag_0/N Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
|
1394 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Power Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
|
1395 | data_power = lag_0/(self.n*self.nCohInt) | |||
|
1396 | #------------------ Senal Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
|
1397 | data_intensity = pair0 - noise_buffer | |||
|
1398 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) | |||
|
1399 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) | |||
|
1400 | for i in range(self.__nch): | |||
|
1401 | for j in range(self.__nHeis): | |||
|
1402 | if data_intensity[i][j] < 0: | |||
|
1403 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) | |||
1380 |
|
1404 | |||
1381 | lag_0 = numpy.sum(self.__buffer*numpy.conj(self.__buffer),1) |
|
1405 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Calculo de Frecuencia y Velocidad dopplerΒ·Β·Β·Β·Β·Β·Β·Β· | |
1382 | data_intensity = lag_0/(self.n*self.nCohInt)#*self.nCohInt) |
|
|||
1383 |
|
||||
1384 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) |
|
1406 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) | |
1385 | lag_1 = numpy.sum(pair1,1) |
|
1407 | lag_1 = numpy.sum(pair1,1) | |
1386 | #angle = numpy.angle(numpy.sum(pair1,1))*180/(math.pi) |
|
1408 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) | |
1387 | data_velocity = (-1.0*self.lambda_/(4*math.pi*self.ippSec))*numpy.angle(lag_1)#self.ippSec*self.nCohInt |
|
1409 | data_velocity = (self.lambda_/2.0)*data_freq | |
1388 |
|
1410 | |||
1389 | self.noise = numpy.zeros([self.__nch,self.__nHeis]) |
|
1411 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Potencia promedio estimada de la SenalΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |
1390 | for i in range(self.__nch): |
|
1412 | lag_0 = lag_0/self.n | |
1391 | self.noise[i]=dataOut.getNoise(channel=i) |
|
1413 | S = lag_0-self.noise | |
1392 |
|
1414 | |||
1393 | lag_0 = lag_0.real/(self.n) |
|
1415 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Frecuencia Doppler promedio Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |
1394 | lag_1 = lag_1/(self.n-1) |
|
1416 | lag_1 = lag_1/(self.n-1) | |
1395 | R1 = numpy.abs(lag_1) |
|
1417 | R1 = numpy.abs(lag_1) | |
1396 | S = (lag_0-self.noise) |
|
|||
1397 |
|
1418 | |||
|
1419 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Calculo del SNRΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
1398 | data_snrPP = S/self.noise |
|
1420 | data_snrPP = S/self.noise | |
1399 | data_snrPP = numpy.where(data_snrPP<0,1,data_snrPP) |
|
1421 | for i in range(self.__nch): | |
|
1422 | for j in range(self.__nHeis): | |||
|
1423 | if data_snrPP[i][j] < 1.e-20: | |||
|
1424 | data_snrPP[i][j] = 1.e-20 | |||
1400 |
|
1425 | |||
|
1426 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Calculo del ancho espectral Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |||
1401 | L = S/R1 |
|
1427 | L = S/R1 | |
1402 | L = numpy.where(L<0,1,L) |
|
1428 | L = numpy.where(L<0,1,L) | |
1403 | L = numpy.log(L) |
|
1429 | L = numpy.log(L) | |
1404 |
|
||||
1405 | tmp = numpy.sqrt(numpy.absolute(L)) |
|
1430 | tmp = numpy.sqrt(numpy.absolute(L)) | |
1406 |
|
1431 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) | ||
1407 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec))*tmp*numpy.sign(L) |
|
|||
1408 | #data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec))*k |
|
|||
1409 | n = self.__profIndex |
|
1432 | n = self.__profIndex | |
1410 |
|
1433 | |||
1411 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') |
|
1434 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') | |
1412 | self.__profIndex = 0 |
|
1435 | self.__profIndex = 0 | |
1413 | return data_intensity,data_velocity,data_snrPP,data_specwidth,n |
|
1436 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n | |
|
1437 | ||||
1414 |
|
1438 | |||
1415 | def pulsePairbyProfiles(self,dataOut): |
|
1439 | def pulsePairbyProfiles(self,dataOut): | |
1416 |
|
1440 | |||
1417 | self.__dataReady = False |
|
1441 | self.__dataReady = False | |
|
1442 | data_power = None | |||
1418 | data_intensity = None |
|
1443 | data_intensity = None | |
1419 | data_velocity = None |
|
1444 | data_velocity = None | |
1420 | data_specwidth = None |
|
1445 | data_specwidth = None | |
1421 | data_snrPP = None |
|
1446 | data_snrPP = None | |
1422 | self.putData(data=dataOut.data) |
|
1447 | self.putData(data=dataOut.data) | |
1423 | if self.__profIndex == self.n: |
|
1448 | if self.__profIndex == self.n: | |
1424 | #self.noise = numpy.zeros([self.__nch,self.__nHeis]) |
|
1449 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) | |
1425 | #for i in range(self.__nch): |
|
|||
1426 | # self.noise[i]=data.getNoise(channel=i) |
|
|||
1427 | #print(self.noise.shape) |
|
|||
1428 | data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) |
|
|||
1429 | self.__dataReady = True |
|
1450 | self.__dataReady = True | |
1430 |
|
1451 | |||
1431 | return data_intensity, data_velocity,data_snrPP,data_specwidth |
|
1452 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth | |
|
1453 | ||||
1432 |
|
1454 | |||
1433 | def pulsePairOp(self, dataOut, datatime= None): |
|
1455 | def pulsePairOp(self, dataOut, datatime= None): | |
1434 |
|
1456 | |||
1435 | if self.__initime == None: |
|
1457 | if self.__initime == None: | |
1436 | self.__initime = datatime |
|
1458 | self.__initime = datatime | |
1437 | #print("hola") |
|
1459 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) | |
1438 | data_intensity, data_velocity,data_snrPP,data_specwidth = self.pulsePairbyProfiles(dataOut) |
|
|||
1439 | self.__lastdatatime = datatime |
|
1460 | self.__lastdatatime = datatime | |
1440 |
|
1461 | |||
1441 |
if data_ |
|
1462 | if data_power is None: | |
1442 | return None, None,None,None,None |
|
1463 | return None, None, None,None,None,None | |
1443 |
|
1464 | |||
1444 | avgdatatime = self.__initime |
|
1465 | avgdatatime = self.__initime | |
1445 | deltatime = datatime - self.__lastdatatime |
|
1466 | deltatime = datatime - self.__lastdatatime | |
1446 | self.__initime = datatime |
|
1467 | self.__initime = datatime | |
1447 |
|
1468 | |||
1448 | return data_intensity, data_velocity,data_snrPP,data_specwidth,avgdatatime |
|
1469 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime | |
1449 |
|
1470 | |||
1450 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): |
|
1471 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): | |
1451 |
|
1472 | |||
1452 | if not self.isConfig: |
|
1473 | if not self.isConfig: | |
1453 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) |
|
1474 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) | |
1454 | self.isConfig = True |
|
1475 | self.isConfig = True | |
1455 | data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) |
|
1476 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) | |
1456 | dataOut.flagNoData = True |
|
1477 | dataOut.flagNoData = True | |
1457 |
|
1478 | |||
1458 | if self.__dataReady: |
|
1479 | if self.__dataReady: | |
1459 | dataOut.nCohInt *= self.n |
|
1480 | dataOut.nCohInt *= self.n | |
1460 |
dataOut.data |
|
1481 | dataOut.dataPP_POW = data_intensity # S | |
1461 |
dataOut.data |
|
1482 | dataOut.dataPP_POWER = data_power # P | |
1462 |
dataOut.data |
|
1483 | dataOut.dataPP_DOP = data_velocity | |
1463 |
dataOut.data |
|
1484 | dataOut.dataPP_SNR = data_snrPP | |
|
1485 | dataOut.dataPP_WIDTH = data_specwidth | |||
1464 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. |
|
1486 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. | |
1465 | dataOut.utctime = avgdatatime |
|
1487 | dataOut.utctime = avgdatatime | |
1466 | dataOut.flagNoData = False |
|
1488 | dataOut.flagNoData = False | |
1467 | return dataOut |
|
1489 | return dataOut | |
1468 |
|
1490 | |||
1469 |
|
1491 | |||
|
1492 | ||||
1470 | # import collections |
|
1493 | # import collections | |
1471 | # from scipy.stats import mode |
|
1494 | # from scipy.stats import mode | |
1472 | # |
|
1495 | # |
@@ -25,8 +25,20 readUnitConfObj = controllerObj.addReadUnit(datatype='SimulatorReader', | |||||
25 | delay=0, |
|
25 | delay=0, | |
26 | online=0, |
|
26 | online=0, | |
27 | walk=0, |
|
27 | walk=0, | |
28 |
|
|
28 | profilesPerBlock=625, | |
29 |
|
29 | dataBlocksPerFile=100)#,#nTotalReadFiles=2) | ||
|
30 | ''' | |||
|
31 | readUnitConfObj = controllerObj.addReadUnit(datatype='VoltageReader', | |||
|
32 | path=path, | |||
|
33 | startDate="2020/01/01", #"2020/01/01",#today, | |||
|
34 | endDate= "2020/12/01", #"2020/12/30",#today, | |||
|
35 | startTime='00:00:00', | |||
|
36 | endTime='23:59:59', | |||
|
37 | delay=0, | |||
|
38 | #set=0, | |||
|
39 | online=0, | |||
|
40 | walk=1) | |||
|
41 | ''' | |||
30 | opObj11 = readUnitConfObj.addOperation(name='printInfo') |
|
42 | opObj11 = readUnitConfObj.addOperation(name='printInfo') | |
31 |
|
43 | |||
32 | procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) |
|
44 | procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) | |
@@ -36,14 +48,26 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=rea | |||||
36 | #opObj10 = procUnitConfObjA.addOperation(name='selectChannels') |
|
48 | #opObj10 = procUnitConfObjA.addOperation(name='selectChannels') | |
37 | #opObj10.addParameter(name='channelList', value=[0]) |
|
49 | #opObj10.addParameter(name='channelList', value=[0]) | |
38 | opObj11 = procUnitConfObjA.addOperation(name='PulsePairVoltage', optype='other') |
|
50 | opObj11 = procUnitConfObjA.addOperation(name='PulsePairVoltage', optype='other') | |
39 |
opObj11.addParameter(name='n', value=' |
|
51 | opObj11.addParameter(name='n', value='625', format='int')#10 | |
40 | opObj11.addParameter(name='removeDC', value=1, format='int') |
|
52 | opObj11.addParameter(name='removeDC', value=1, format='int') | |
41 |
|
53 | |||
42 | #opObj11 = procUnitConfObjA.addOperation(name='PulsepairPowerPlot', optype='other') |
|
54 | #opObj11 = procUnitConfObjA.addOperation(name='PulsepairPowerPlot', optype='other') | |
|
55 | #opObj11 = procUnitConfObjA.addOperation(name='PulsepairSignalPlot', optype='other') | |||
|
56 | ||||
43 |
|
57 | |||
44 | opObj11 = procUnitConfObjA.addOperation(name='PulsepairVelocityPlot', optype='other') |
|
58 | #opObj11 = procUnitConfObjA.addOperation(name='PulsepairVelocityPlot', optype='other') | |
45 | #opObj11.addParameter(name='xmax', value=8) |
|
59 | #opObj11.addParameter(name='xmax', value=8) | |
46 |
|
60 | |||
47 | opObj11 = procUnitConfObjA.addOperation(name='PulsepairSpecwidthPlot', optype='other') |
|
61 | #opObj11 = procUnitConfObjA.addOperation(name='PulsepairSpecwidthPlot', optype='other') | |
|
62 | ||||
|
63 | procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId()) | |||
|
64 | ||||
|
65 | ||||
|
66 | opObj10 = procUnitConfObjB.addOperation(name='ParameterWriter') | |||
|
67 | opObj10.addParameter(name='path',value=figpath) | |||
|
68 | #opObj10.addParameter(name='mode',value=0) | |||
|
69 | opObj10.addParameter(name='blocksPerFile',value='100',format='int') | |||
|
70 | opObj10.addParameter(name='metadataList',value='utctimeInit,timeInterval',format='list') | |||
|
71 | opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,dataPP_SNR,dataPP_WIDTH')#,format='list' | |||
48 |
|
72 | |||
49 | controllerObj.start() |
|
73 | controllerObj.start() |
General Comments 0
You need to be logged in to leave comments.
Login now