@@ -1,130 +1,130 | |||||
1 | #include <Python.h> |
|
1 | #include <Python.h> | |
2 | #include <numpy/arrayobject.h> |
|
2 | #include <numpy/arrayobject.h> | |
3 | #include <math.h> |
|
3 | #include <math.h> | |
4 |
|
4 | |||
5 |
|
5 | |||
6 | static PyObject *hildebrand_sekhon(PyObject *self, PyObject *args) { |
|
6 | static PyObject *hildebrand_sekhon(PyObject *self, PyObject *args) { | |
7 | double navg; |
|
7 | double navg; | |
8 | PyObject *data_obj, *data_array; |
|
8 | PyObject *data_obj, *data_array; | |
9 |
|
9 | |||
10 | if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg)) { |
|
10 | if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg)) { | |
11 | return NULL; |
|
11 | return NULL; | |
12 | } |
|
12 | } | |
13 |
|
13 | |||
14 | data_array = PyArray_FROM_OTF(data_obj, NPY_FLOAT64, NPY_IN_ARRAY); |
|
14 | data_array = PyArray_FROM_OTF(data_obj, NPY_FLOAT64, NPY_IN_ARRAY); | |
15 |
|
15 | |||
16 | if (data_array == NULL) { |
|
16 | if (data_array == NULL) { | |
17 | Py_XDECREF(data_array); |
|
17 | Py_XDECREF(data_array); | |
18 | Py_XDECREF(data_obj); |
|
18 | Py_XDECREF(data_obj); | |
19 | return NULL; |
|
19 | return NULL; | |
20 | } |
|
20 | } | |
21 | double *sortdata = (double*)PyArray_DATA(data_array); |
|
21 | double *sortdata = (double*)PyArray_DATA(data_array); | |
22 | int lenOfData = (int)PyArray_SIZE(data_array) ; |
|
22 | int lenOfData = (int)PyArray_SIZE(data_array) ; | |
23 | double nums_min = lenOfData*0.2; |
|
23 | double nums_min = lenOfData*0.2; | |
24 | if (nums_min <= 5) nums_min = 5; |
|
24 | if (nums_min <= 5) nums_min = 5; | |
25 | double sump = 0; |
|
25 | double sump = 0; | |
26 | double sumq = 0; |
|
26 | double sumq = 0; | |
27 | long j = 0; |
|
27 | long j = 0; | |
28 | int cont = 1; |
|
28 | int cont = 1; | |
29 | double rtest = 0; |
|
29 | double rtest = 0; | |
30 | while ((cont == 1) && (j < lenOfData)) { |
|
30 | while ((cont == 1) && (j < lenOfData)) { | |
31 | sump = sump + sortdata[j]; |
|
31 | sump = sump + sortdata[j]; | |
32 | sumq = sumq + pow(sortdata[j], 2); |
|
32 | sumq = sumq + pow(sortdata[j], 2); | |
33 | if (j > nums_min) { |
|
33 | if (j > nums_min) { | |
34 | rtest = (double)j/(j-1) + 1/navg; |
|
34 | rtest = (double)j/(j-1) + 1/navg; | |
35 | if ((sumq*j) > (rtest*pow(sump, 2))) { |
|
35 | if ((sumq*j) > (rtest*pow(sump, 2))) { | |
36 | j = j - 1; |
|
36 | j = j - 1; | |
37 | sump = sump - sortdata[j]; |
|
37 | sump = sump - sortdata[j]; | |
38 | sumq = sumq - pow(sortdata[j],2); |
|
38 | sumq = sumq - pow(sortdata[j],2); | |
39 | cont = 0; |
|
39 | cont = 0; | |
40 | } |
|
40 | } | |
41 | } |
|
41 | } | |
42 | j = j + 1; |
|
42 | j = j + 1; | |
43 | } |
|
43 | } | |
44 |
|
44 | |||
45 | double lnoise = sump / j; |
|
45 | double lnoise = sump / j; | |
46 |
|
46 | |||
47 | Py_DECREF(data_array); |
|
47 | Py_DECREF(data_array); | |
48 |
|
48 | |||
49 | // return PyLong_FromLong(lnoise); |
|
49 | // return PyLong_FromLong(lnoise); | |
50 | return PyFloat_FromDouble(lnoise); |
|
50 | return PyFloat_FromDouble(lnoise); | |
51 | } |
|
51 | } | |
52 | /* |
|
52 | ||
53 | static PyObject *hildebrand_sekhon2(PyObject *self, PyObject *args) { |
|
53 | static PyObject *hildebrand_sekhon2(PyObject *self, PyObject *args) { | |
54 | double navg; |
|
54 | double navg; | |
55 | double th; |
|
|||
56 | PyObject *data_obj, *data_array; |
|
55 | PyObject *data_obj, *data_array; | |
57 |
|
56 | |||
58 |
if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg |
|
57 | if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg)) { | |
59 | return NULL; |
|
58 | return NULL; | |
60 | } |
|
59 | } | |
61 |
|
60 | |||
62 | data_array = PyArray_FROM_OTF(data_obj, NPY_FLOAT64, NPY_IN_ARRAY); |
|
61 | data_array = PyArray_FROM_OTF(data_obj, NPY_FLOAT64, NPY_IN_ARRAY); | |
63 |
|
62 | |||
64 | if (data_array == NULL) { |
|
63 | if (data_array == NULL) { | |
65 | Py_XDECREF(data_array); |
|
64 | Py_XDECREF(data_array); | |
66 | Py_XDECREF(data_obj); |
|
65 | Py_XDECREF(data_obj); | |
67 | return NULL; |
|
66 | return NULL; | |
68 | } |
|
67 | } | |
69 | double *sortdata = (double*)PyArray_DATA(data_array); |
|
68 | double *sortdata = (double*)PyArray_DATA(data_array); | |
70 | int lenOfData = (int)PyArray_SIZE(data_array) ; |
|
69 | int lenOfData = (int)PyArray_SIZE(data_array) ; | |
71 |
double nums_min = lenOfData* |
|
70 | double nums_min = lenOfData*0.75; | |
72 | if (nums_min <= 5) nums_min = 5; |
|
71 | if (nums_min <= 5) nums_min = 5; | |
73 | double sump = 0; |
|
72 | double sump = 0; | |
74 | double sumq = 0; |
|
73 | double sumq = 0; | |
75 | long j = 0; |
|
74 | long j = 0; | |
76 | int cont = 1; |
|
75 | int cont = 1; | |
77 | double rtest = 0; |
|
76 | double rtest = 0; | |
78 | while ((cont == 1) && (j < lenOfData)) { |
|
77 | while ((cont == 1) && (j < lenOfData)) { | |
79 | sump = sump + sortdata[j]; |
|
78 | sump = sump + sortdata[j]; | |
80 | sumq = sumq + pow(sortdata[j], 2); |
|
79 | sumq = sumq + pow(sortdata[j], 2); | |
81 | if (j > nums_min) { |
|
80 | if (j > nums_min) { | |
82 | rtest = (double)j/(j-1) + 1/navg; |
|
81 | rtest = (double)j/(j-1) + 1/navg; | |
83 | if ((sumq*j) > (rtest*pow(sump, 2))) { |
|
82 | if ((sumq*j) > (rtest*pow(sump, 2))) { | |
84 | j = j - 1; |
|
83 | j = j - 1; | |
85 | sump = sump - sortdata[j]; |
|
84 | sump = sump - sortdata[j]; | |
86 | sumq = sumq - pow(sortdata[j],2); |
|
85 | sumq = sumq - pow(sortdata[j],2); | |
87 | cont = 0; |
|
86 | cont = 0; | |
88 | } |
|
87 | } | |
89 | } |
|
88 | } | |
90 | j = j + 1; |
|
89 | j = j + 1; | |
91 | } |
|
90 | } | |
92 |
|
91 | |||
93 | //double lnoise = sump / j; |
|
92 | //double lnoise = sump / j; | |
94 |
|
93 | |||
95 | Py_DECREF(data_array); |
|
94 | Py_DECREF(data_array); | |
96 |
|
95 | |||
97 |
|
|
96 | return PyLong_FromLong(j); | |
98 | return PyFloat_FromDouble(j,sortID); |
|
97 | ||
99 | } |
|
98 | } | |
100 | */ |
|
99 | ||
101 |
|
100 | |||
102 | static PyMethodDef noiseMethods[] = { |
|
101 | static PyMethodDef noiseMethods[] = { | |
103 | { "hildebrand_sekhon", hildebrand_sekhon, METH_VARARGS, "Get noise with hildebrand_sekhon algorithm" }, |
|
102 | { "hildebrand_sekhon", hildebrand_sekhon, METH_VARARGS, "Get noise with hildebrand_sekhon algorithm" }, | |
|
103 | { "hildebrand_sekhon2", hildebrand_sekhon2, METH_VARARGS, "Get index for satellite cleaning" }, | |||
104 | { NULL, NULL, 0, NULL } |
|
104 | { NULL, NULL, 0, NULL } | |
105 | }; |
|
105 | }; | |
106 |
|
106 | |||
107 | #if PY_MAJOR_VERSION >= 3 |
|
107 | #if PY_MAJOR_VERSION >= 3 | |
108 |
|
108 | |||
109 | static struct PyModuleDef noisemodule = { |
|
109 | static struct PyModuleDef noisemodule = { | |
110 | PyModuleDef_HEAD_INIT, |
|
110 | PyModuleDef_HEAD_INIT, | |
111 | "_noise", |
|
111 | "_noise", | |
112 | "Get noise with hildebrand_sekhon algorithm", |
|
112 | "Get noise with hildebrand_sekhon algorithm", | |
113 | -1, |
|
113 | -1, | |
114 | noiseMethods |
|
114 | noiseMethods | |
115 | }; |
|
115 | }; | |
116 |
|
116 | |||
117 | #endif |
|
117 | #endif | |
118 |
|
118 | |||
119 | #if PY_MAJOR_VERSION >= 3 |
|
119 | #if PY_MAJOR_VERSION >= 3 | |
120 | PyMODINIT_FUNC PyInit__noise(void) { |
|
120 | PyMODINIT_FUNC PyInit__noise(void) { | |
121 | Py_Initialize(); |
|
121 | Py_Initialize(); | |
122 | import_array(); |
|
122 | import_array(); | |
123 | return PyModule_Create(&noisemodule); |
|
123 | return PyModule_Create(&noisemodule); | |
124 | } |
|
124 | } | |
125 | #else |
|
125 | #else | |
126 | PyMODINIT_FUNC init_noise() { |
|
126 | PyMODINIT_FUNC init_noise() { | |
127 | Py_InitModule("_noise", noiseMethods); |
|
127 | Py_InitModule("_noise", noiseMethods); | |
128 | import_array(); |
|
128 | import_array(); | |
129 | } |
|
129 | } | |
130 | #endif |
|
130 | #endif |
@@ -1,1076 +1,1076 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Definition of diferent Data objects for different types of data |
|
5 | """Definition of diferent Data objects for different types of data | |
6 |
|
6 | |||
7 | Here you will find the diferent data objects for the different types |
|
7 | Here you will find the diferent data objects for the different types | |
8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
8 | of data, this data objects must be used as dataIn or dataOut objects in | |
9 | processing units and operations. Currently the supported data objects are: |
|
9 | processing units and operations. Currently the supported data objects are: | |
10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters | |
11 | """ |
|
11 | """ | |
12 |
|
12 | |||
13 | import copy |
|
13 | import copy | |
14 | import numpy |
|
14 | import numpy | |
15 | import datetime |
|
15 | import datetime | |
16 | import json |
|
16 | import json | |
17 |
|
17 | |||
18 | import schainpy.admin |
|
18 | import schainpy.admin | |
19 | from schainpy.utils import log |
|
19 | from schainpy.utils import log | |
20 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
20 | from .jroheaderIO import SystemHeader, RadarControllerHeader | |
21 | from schainpy.model.data import _noise |
|
21 | from schainpy.model.data import _noise | |
22 |
|
22 | |||
23 |
|
23 | |||
24 | def getNumpyDtype(dataTypeCode): |
|
24 | def getNumpyDtype(dataTypeCode): | |
25 |
|
25 | |||
26 | if dataTypeCode == 0: |
|
26 | if dataTypeCode == 0: | |
27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) | |
28 | elif dataTypeCode == 1: |
|
28 | elif dataTypeCode == 1: | |
29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) | |
30 | elif dataTypeCode == 2: |
|
30 | elif dataTypeCode == 2: | |
31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) | |
32 | elif dataTypeCode == 3: |
|
32 | elif dataTypeCode == 3: | |
33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) | |
34 | elif dataTypeCode == 4: |
|
34 | elif dataTypeCode == 4: | |
35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
36 | elif dataTypeCode == 5: |
|
36 | elif dataTypeCode == 5: | |
37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) | |
38 | else: |
|
38 | else: | |
39 | raise ValueError('dataTypeCode was not defined') |
|
39 | raise ValueError('dataTypeCode was not defined') | |
40 |
|
40 | |||
41 | return numpyDtype |
|
41 | return numpyDtype | |
42 |
|
42 | |||
43 |
|
43 | |||
44 | def getDataTypeCode(numpyDtype): |
|
44 | def getDataTypeCode(numpyDtype): | |
45 |
|
45 | |||
46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): | |
47 | datatype = 0 |
|
47 | datatype = 0 | |
48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): | |
49 | datatype = 1 |
|
49 | datatype = 1 | |
50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): | |
51 | datatype = 2 |
|
51 | datatype = 2 | |
52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): | |
53 | datatype = 3 |
|
53 | datatype = 3 | |
54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): | |
55 | datatype = 4 |
|
55 | datatype = 4 | |
56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): | |
57 | datatype = 5 |
|
57 | datatype = 5 | |
58 | else: |
|
58 | else: | |
59 | datatype = None |
|
59 | datatype = None | |
60 |
|
60 | |||
61 | return datatype |
|
61 | return datatype | |
62 |
|
62 | |||
63 |
|
63 | |||
64 | def hildebrand_sekhon(data, navg): |
|
64 | def hildebrand_sekhon(data, navg): | |
65 | """ |
|
65 | """ | |
66 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
66 | This method is for the objective determination of the noise level in Doppler spectra. This | |
67 | implementation technique is based on the fact that the standard deviation of the spectral |
|
67 | implementation technique is based on the fact that the standard deviation of the spectral | |
68 | densities is equal to the mean spectral density for white Gaussian noise |
|
68 | densities is equal to the mean spectral density for white Gaussian noise | |
69 |
|
69 | |||
70 | Inputs: |
|
70 | Inputs: | |
71 | Data : heights |
|
71 | Data : heights | |
72 | navg : numbers of averages |
|
72 | navg : numbers of averages | |
73 |
|
73 | |||
74 | Return: |
|
74 | Return: | |
75 | mean : noise's level |
|
75 | mean : noise's level | |
76 | """ |
|
76 | """ | |
77 |
|
77 | |||
78 | sortdata = numpy.sort(data, axis=None) |
|
78 | sortdata = numpy.sort(data, axis=None) | |
79 | ''' |
|
79 | ''' | |
80 | lenOfData = len(sortdata) |
|
80 | lenOfData = len(sortdata) | |
81 | nums_min = lenOfData*0.2 |
|
81 | nums_min = lenOfData*0.2 | |
82 |
|
82 | |||
83 | if nums_min <= 5: |
|
83 | if nums_min <= 5: | |
84 |
|
84 | |||
85 | nums_min = 5 |
|
85 | nums_min = 5 | |
86 |
|
86 | |||
87 | sump = 0. |
|
87 | sump = 0. | |
88 | sumq = 0. |
|
88 | sumq = 0. | |
89 |
|
89 | |||
90 | j = 0 |
|
90 | j = 0 | |
91 | cont = 1 |
|
91 | cont = 1 | |
92 |
|
92 | |||
93 | while((cont == 1)and(j < lenOfData)): |
|
93 | while((cont == 1)and(j < lenOfData)): | |
94 |
|
94 | |||
95 | sump += sortdata[j] |
|
95 | sump += sortdata[j] | |
96 | sumq += sortdata[j]**2 |
|
96 | sumq += sortdata[j]**2 | |
97 |
|
97 | |||
98 | if j > nums_min: |
|
98 | if j > nums_min: | |
99 | rtest = float(j)/(j-1) + 1.0/navg |
|
99 | rtest = float(j)/(j-1) + 1.0/navg | |
100 | if ((sumq*j) > (rtest*sump**2)): |
|
100 | if ((sumq*j) > (rtest*sump**2)): | |
101 | j = j - 1 |
|
101 | j = j - 1 | |
102 | sump = sump - sortdata[j] |
|
102 | sump = sump - sortdata[j] | |
103 | sumq = sumq - sortdata[j]**2 |
|
103 | sumq = sumq - sortdata[j]**2 | |
104 | cont = 0 |
|
104 | cont = 0 | |
105 |
|
105 | |||
106 | j += 1 |
|
106 | j += 1 | |
107 |
|
107 | |||
108 | lnoise = sump / j |
|
108 | lnoise = sump / j | |
109 | ''' |
|
109 | ''' | |
110 | return _noise.hildebrand_sekhon(sortdata, navg) |
|
110 | return _noise.hildebrand_sekhon(sortdata, navg) | |
111 |
|
111 | |||
112 |
|
112 | |||
113 | class Beam: |
|
113 | class Beam: | |
114 |
|
114 | |||
115 | def __init__(self): |
|
115 | def __init__(self): | |
116 | self.codeList = [] |
|
116 | self.codeList = [] | |
117 | self.azimuthList = [] |
|
117 | self.azimuthList = [] | |
118 | self.zenithList = [] |
|
118 | self.zenithList = [] | |
119 |
|
119 | |||
120 |
|
120 | |||
121 |
|
121 | |||
122 | class GenericData(object): |
|
122 | class GenericData(object): | |
123 |
|
123 | |||
124 | flagNoData = True |
|
124 | flagNoData = True | |
125 |
|
125 | |||
126 | def copy(self, inputObj=None): |
|
126 | def copy(self, inputObj=None): | |
127 |
|
127 | |||
128 | if inputObj == None: |
|
128 | if inputObj == None: | |
129 | return copy.deepcopy(self) |
|
129 | return copy.deepcopy(self) | |
130 |
|
130 | |||
131 | for key in list(inputObj.__dict__.keys()): |
|
131 | for key in list(inputObj.__dict__.keys()): | |
132 |
|
132 | |||
133 | attribute = inputObj.__dict__[key] |
|
133 | attribute = inputObj.__dict__[key] | |
134 |
|
134 | |||
135 | # If this attribute is a tuple or list |
|
135 | # If this attribute is a tuple or list | |
136 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
136 | if type(inputObj.__dict__[key]) in (tuple, list): | |
137 | self.__dict__[key] = attribute[:] |
|
137 | self.__dict__[key] = attribute[:] | |
138 | continue |
|
138 | continue | |
139 |
|
139 | |||
140 | # If this attribute is another object or instance |
|
140 | # If this attribute is another object or instance | |
141 | if hasattr(attribute, '__dict__'): |
|
141 | if hasattr(attribute, '__dict__'): | |
142 | self.__dict__[key] = attribute.copy() |
|
142 | self.__dict__[key] = attribute.copy() | |
143 | continue |
|
143 | continue | |
144 |
|
144 | |||
145 | self.__dict__[key] = inputObj.__dict__[key] |
|
145 | self.__dict__[key] = inputObj.__dict__[key] | |
146 |
|
146 | |||
147 | def deepcopy(self): |
|
147 | def deepcopy(self): | |
148 |
|
148 | |||
149 | return copy.deepcopy(self) |
|
149 | return copy.deepcopy(self) | |
150 |
|
150 | |||
151 | def isEmpty(self): |
|
151 | def isEmpty(self): | |
152 |
|
152 | |||
153 | return self.flagNoData |
|
153 | return self.flagNoData | |
154 |
|
154 | |||
155 | def isReady(self): |
|
155 | def isReady(self): | |
156 |
|
156 | |||
157 | return not self.flagNoData |
|
157 | return not self.flagNoData | |
158 |
|
158 | |||
159 |
|
159 | |||
160 | class JROData(GenericData): |
|
160 | class JROData(GenericData): | |
161 |
|
161 | |||
162 | systemHeaderObj = SystemHeader() |
|
162 | systemHeaderObj = SystemHeader() | |
163 | radarControllerHeaderObj = RadarControllerHeader() |
|
163 | radarControllerHeaderObj = RadarControllerHeader() | |
164 | type = None |
|
164 | type = None | |
165 | datatype = None # dtype but in string |
|
165 | datatype = None # dtype but in string | |
166 | nProfiles = None |
|
166 | nProfiles = None | |
167 | heightList = None |
|
167 | heightList = None | |
168 | channelList = None |
|
168 | channelList = None | |
169 | flagDiscontinuousBlock = False |
|
169 | flagDiscontinuousBlock = False | |
170 | useLocalTime = False |
|
170 | useLocalTime = False | |
171 | utctime = None |
|
171 | utctime = None | |
172 | timeZone = None |
|
172 | timeZone = None | |
173 | dstFlag = None |
|
173 | dstFlag = None | |
174 | errorCount = None |
|
174 | errorCount = None | |
175 | blocksize = None |
|
175 | blocksize = None | |
176 | flagDecodeData = False # asumo q la data no esta decodificada |
|
176 | flagDecodeData = False # asumo q la data no esta decodificada | |
177 | flagDeflipData = False # asumo q la data no esta sin flip |
|
177 | flagDeflipData = False # asumo q la data no esta sin flip | |
178 | flagShiftFFT = False |
|
178 | flagShiftFFT = False | |
179 | nCohInt = None |
|
179 | nCohInt = None | |
180 | windowOfFilter = 1 |
|
180 | windowOfFilter = 1 | |
181 | C = 3e8 |
|
181 | C = 3e8 | |
182 | frequency = 49.92e6 |
|
182 | frequency = 49.92e6 | |
183 | realtime = False |
|
183 | realtime = False | |
184 | beacon_heiIndexList = None |
|
184 | beacon_heiIndexList = None | |
185 | last_block = None |
|
185 | last_block = None | |
186 | blocknow = None |
|
186 | blocknow = None | |
187 | azimuth = None |
|
187 | azimuth = None | |
188 | zenith = None |
|
188 | zenith = None | |
189 | beam = Beam() |
|
189 | beam = Beam() | |
190 | profileIndex = None |
|
190 | profileIndex = None | |
191 | error = None |
|
191 | error = None | |
192 | data = None |
|
192 | data = None | |
193 | nmodes = None |
|
193 | nmodes = None | |
194 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
194 | metadata_list = ['heightList', 'timeZone', 'type'] | |
195 |
codeList = |
|
195 | codeList = [] | |
196 |
azimuthList = |
|
196 | azimuthList = [] | |
197 |
elevationList = |
|
197 | elevationList = [] | |
198 |
|
198 | |||
199 | def __str__(self): |
|
199 | def __str__(self): | |
200 |
|
200 | |||
201 | return '{} - {}'.format(self.type, self.datatime()) |
|
201 | return '{} - {}'.format(self.type, self.datatime()) | |
202 |
|
202 | |||
203 | def getNoise(self): |
|
203 | def getNoise(self): | |
204 |
|
204 | |||
205 | raise NotImplementedError |
|
205 | raise NotImplementedError | |
206 |
|
206 | |||
207 | @property |
|
207 | @property | |
208 | def nChannels(self): |
|
208 | def nChannels(self): | |
209 |
|
209 | |||
210 | return len(self.channelList) |
|
210 | return len(self.channelList) | |
211 |
|
211 | |||
212 | @property |
|
212 | @property | |
213 | def channelIndexList(self): |
|
213 | def channelIndexList(self): | |
214 |
|
214 | |||
215 | return list(range(self.nChannels)) |
|
215 | return list(range(self.nChannels)) | |
216 |
|
216 | |||
217 | @property |
|
217 | @property | |
218 | def nHeights(self): |
|
218 | def nHeights(self): | |
219 |
|
219 | |||
220 | return len(self.heightList) |
|
220 | return len(self.heightList) | |
221 |
|
221 | |||
222 | def getDeltaH(self): |
|
222 | def getDeltaH(self): | |
223 |
|
223 | |||
224 | return self.heightList[1] - self.heightList[0] |
|
224 | return self.heightList[1] - self.heightList[0] | |
225 |
|
225 | |||
226 | @property |
|
226 | @property | |
227 | def ltctime(self): |
|
227 | def ltctime(self): | |
228 |
|
228 | |||
229 | if self.useLocalTime: |
|
229 | if self.useLocalTime: | |
230 | return self.utctime - self.timeZone * 60 |
|
230 | return self.utctime - self.timeZone * 60 | |
231 |
|
231 | |||
232 | return self.utctime |
|
232 | return self.utctime | |
233 |
|
233 | |||
234 | @property |
|
234 | @property | |
235 | def datatime(self): |
|
235 | def datatime(self): | |
236 |
|
236 | |||
237 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
237 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) | |
238 | return datatimeValue |
|
238 | return datatimeValue | |
239 |
|
239 | |||
240 | def getTimeRange(self): |
|
240 | def getTimeRange(self): | |
241 |
|
241 | |||
242 | datatime = [] |
|
242 | datatime = [] | |
243 |
|
243 | |||
244 | datatime.append(self.ltctime) |
|
244 | datatime.append(self.ltctime) | |
245 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
245 | datatime.append(self.ltctime + self.timeInterval + 1) | |
246 |
|
246 | |||
247 | datatime = numpy.array(datatime) |
|
247 | datatime = numpy.array(datatime) | |
248 |
|
248 | |||
249 | return datatime |
|
249 | return datatime | |
250 |
|
250 | |||
251 | def getFmaxTimeResponse(self): |
|
251 | def getFmaxTimeResponse(self): | |
252 |
|
252 | |||
253 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
253 | period = (10**-6) * self.getDeltaH() / (0.15) | |
254 |
|
254 | |||
255 | PRF = 1. / (period * self.nCohInt) |
|
255 | PRF = 1. / (period * self.nCohInt) | |
256 |
|
256 | |||
257 | fmax = PRF |
|
257 | fmax = PRF | |
258 |
|
258 | |||
259 | return fmax |
|
259 | return fmax | |
260 |
|
260 | |||
261 | def getFmax(self): |
|
261 | def getFmax(self): | |
262 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
262 | PRF = 1. / (self.ippSeconds * self.nCohInt) | |
263 |
|
263 | |||
264 | fmax = PRF |
|
264 | fmax = PRF | |
265 | return fmax |
|
265 | return fmax | |
266 |
|
266 | |||
267 | def getVmax(self): |
|
267 | def getVmax(self): | |
268 |
|
268 | |||
269 | _lambda = self.C / self.frequency |
|
269 | _lambda = self.C / self.frequency | |
270 |
|
270 | |||
271 | vmax = self.getFmax() * _lambda / 2 |
|
271 | vmax = self.getFmax() * _lambda / 2 | |
272 |
|
272 | |||
273 | return vmax |
|
273 | return vmax | |
274 |
|
274 | |||
275 | @property |
|
275 | @property | |
276 | def ippSeconds(self): |
|
276 | def ippSeconds(self): | |
277 | ''' |
|
277 | ''' | |
278 | ''' |
|
278 | ''' | |
279 | return self.radarControllerHeaderObj.ippSeconds |
|
279 | return self.radarControllerHeaderObj.ippSeconds | |
280 |
|
280 | |||
281 | @ippSeconds.setter |
|
281 | @ippSeconds.setter | |
282 | def ippSeconds(self, ippSeconds): |
|
282 | def ippSeconds(self, ippSeconds): | |
283 | ''' |
|
283 | ''' | |
284 | ''' |
|
284 | ''' | |
285 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
285 | self.radarControllerHeaderObj.ippSeconds = ippSeconds | |
286 |
|
286 | |||
287 | @property |
|
287 | @property | |
288 | def code(self): |
|
288 | def code(self): | |
289 | ''' |
|
289 | ''' | |
290 | ''' |
|
290 | ''' | |
291 | return self.radarControllerHeaderObj.code |
|
291 | return self.radarControllerHeaderObj.code | |
292 |
|
292 | |||
293 | @code.setter |
|
293 | @code.setter | |
294 | def code(self, code): |
|
294 | def code(self, code): | |
295 | ''' |
|
295 | ''' | |
296 | ''' |
|
296 | ''' | |
297 | self.radarControllerHeaderObj.code = code |
|
297 | self.radarControllerHeaderObj.code = code | |
298 |
|
298 | |||
299 | @property |
|
299 | @property | |
300 | def nCode(self): |
|
300 | def nCode(self): | |
301 | ''' |
|
301 | ''' | |
302 | ''' |
|
302 | ''' | |
303 | return self.radarControllerHeaderObj.nCode |
|
303 | return self.radarControllerHeaderObj.nCode | |
304 |
|
304 | |||
305 | @nCode.setter |
|
305 | @nCode.setter | |
306 | def nCode(self, ncode): |
|
306 | def nCode(self, ncode): | |
307 | ''' |
|
307 | ''' | |
308 | ''' |
|
308 | ''' | |
309 | self.radarControllerHeaderObj.nCode = ncode |
|
309 | self.radarControllerHeaderObj.nCode = ncode | |
310 |
|
310 | |||
311 | @property |
|
311 | @property | |
312 | def nBaud(self): |
|
312 | def nBaud(self): | |
313 | ''' |
|
313 | ''' | |
314 | ''' |
|
314 | ''' | |
315 | return self.radarControllerHeaderObj.nBaud |
|
315 | return self.radarControllerHeaderObj.nBaud | |
316 |
|
316 | |||
317 | @nBaud.setter |
|
317 | @nBaud.setter | |
318 | def nBaud(self, nbaud): |
|
318 | def nBaud(self, nbaud): | |
319 | ''' |
|
319 | ''' | |
320 | ''' |
|
320 | ''' | |
321 | self.radarControllerHeaderObj.nBaud = nbaud |
|
321 | self.radarControllerHeaderObj.nBaud = nbaud | |
322 |
|
322 | |||
323 | @property |
|
323 | @property | |
324 | def ipp(self): |
|
324 | def ipp(self): | |
325 | ''' |
|
325 | ''' | |
326 | ''' |
|
326 | ''' | |
327 | return self.radarControllerHeaderObj.ipp |
|
327 | return self.radarControllerHeaderObj.ipp | |
328 |
|
328 | |||
329 | @ipp.setter |
|
329 | @ipp.setter | |
330 | def ipp(self, ipp): |
|
330 | def ipp(self, ipp): | |
331 | ''' |
|
331 | ''' | |
332 | ''' |
|
332 | ''' | |
333 | self.radarControllerHeaderObj.ipp = ipp |
|
333 | self.radarControllerHeaderObj.ipp = ipp | |
334 |
|
334 | |||
335 | @property |
|
335 | @property | |
336 | def metadata(self): |
|
336 | def metadata(self): | |
337 | ''' |
|
337 | ''' | |
338 | ''' |
|
338 | ''' | |
339 |
|
339 | |||
340 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
340 | return {attr: getattr(self, attr) for attr in self.metadata_list} | |
341 |
|
341 | |||
342 |
|
342 | |||
343 | class Voltage(JROData): |
|
343 | class Voltage(JROData): | |
344 |
|
344 | |||
345 | dataPP_POW = None |
|
345 | dataPP_POW = None | |
346 | dataPP_DOP = None |
|
346 | dataPP_DOP = None | |
347 | dataPP_WIDTH = None |
|
347 | dataPP_WIDTH = None | |
348 | dataPP_SNR = None |
|
348 | dataPP_SNR = None | |
349 |
|
349 | |||
350 | def __init__(self): |
|
350 | def __init__(self): | |
351 | ''' |
|
351 | ''' | |
352 | Constructor |
|
352 | Constructor | |
353 | ''' |
|
353 | ''' | |
354 |
|
354 | |||
355 | self.useLocalTime = True |
|
355 | self.useLocalTime = True | |
356 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
356 | self.radarControllerHeaderObj = RadarControllerHeader() | |
357 | self.systemHeaderObj = SystemHeader() |
|
357 | self.systemHeaderObj = SystemHeader() | |
358 | self.type = "Voltage" |
|
358 | self.type = "Voltage" | |
359 | self.data = None |
|
359 | self.data = None | |
360 | self.nProfiles = None |
|
360 | self.nProfiles = None | |
361 | self.heightList = None |
|
361 | self.heightList = None | |
362 | self.channelList = None |
|
362 | self.channelList = None | |
363 | self.flagNoData = True |
|
363 | self.flagNoData = True | |
364 | self.flagDiscontinuousBlock = False |
|
364 | self.flagDiscontinuousBlock = False | |
365 | self.utctime = None |
|
365 | self.utctime = None | |
366 | self.timeZone = 0 |
|
366 | self.timeZone = 0 | |
367 | self.dstFlag = None |
|
367 | self.dstFlag = None | |
368 | self.errorCount = None |
|
368 | self.errorCount = None | |
369 | self.nCohInt = None |
|
369 | self.nCohInt = None | |
370 | self.blocksize = None |
|
370 | self.blocksize = None | |
371 | self.flagCohInt = False |
|
371 | self.flagCohInt = False | |
372 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
372 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
373 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
373 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
374 | self.flagShiftFFT = False |
|
374 | self.flagShiftFFT = False | |
375 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
375 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil | |
376 | self.profileIndex = 0 |
|
376 | self.profileIndex = 0 | |
377 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
377 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', | |
378 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
378 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] | |
379 |
|
379 | |||
380 | def getNoisebyHildebrand(self, channel=None): |
|
380 | def getNoisebyHildebrand(self, channel=None): | |
381 | """ |
|
381 | """ | |
382 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
382 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
383 |
|
383 | |||
384 | Return: |
|
384 | Return: | |
385 | noiselevel |
|
385 | noiselevel | |
386 | """ |
|
386 | """ | |
387 |
|
387 | |||
388 | if channel != None: |
|
388 | if channel != None: | |
389 | data = self.data[channel] |
|
389 | data = self.data[channel] | |
390 | nChannels = 1 |
|
390 | nChannels = 1 | |
391 | else: |
|
391 | else: | |
392 | data = self.data |
|
392 | data = self.data | |
393 | nChannels = self.nChannels |
|
393 | nChannels = self.nChannels | |
394 |
|
394 | |||
395 | noise = numpy.zeros(nChannels) |
|
395 | noise = numpy.zeros(nChannels) | |
396 | power = data * numpy.conjugate(data) |
|
396 | power = data * numpy.conjugate(data) | |
397 |
|
397 | |||
398 | for thisChannel in range(nChannels): |
|
398 | for thisChannel in range(nChannels): | |
399 | if nChannels == 1: |
|
399 | if nChannels == 1: | |
400 | daux = power[:].real |
|
400 | daux = power[:].real | |
401 | else: |
|
401 | else: | |
402 | daux = power[thisChannel, :].real |
|
402 | daux = power[thisChannel, :].real | |
403 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
403 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) | |
404 |
|
404 | |||
405 | return noise |
|
405 | return noise | |
406 |
|
406 | |||
407 | def getNoise(self, type=1, channel=None): |
|
407 | def getNoise(self, type=1, channel=None): | |
408 |
|
408 | |||
409 | if type == 1: |
|
409 | if type == 1: | |
410 | noise = self.getNoisebyHildebrand(channel) |
|
410 | noise = self.getNoisebyHildebrand(channel) | |
411 |
|
411 | |||
412 | return noise |
|
412 | return noise | |
413 |
|
413 | |||
414 | def getPower(self, channel=None): |
|
414 | def getPower(self, channel=None): | |
415 |
|
415 | |||
416 | if channel != None: |
|
416 | if channel != None: | |
417 | data = self.data[channel] |
|
417 | data = self.data[channel] | |
418 | else: |
|
418 | else: | |
419 | data = self.data |
|
419 | data = self.data | |
420 |
|
420 | |||
421 | power = data * numpy.conjugate(data) |
|
421 | power = data * numpy.conjugate(data) | |
422 | powerdB = 10 * numpy.log10(power.real) |
|
422 | powerdB = 10 * numpy.log10(power.real) | |
423 | powerdB = numpy.squeeze(powerdB) |
|
423 | powerdB = numpy.squeeze(powerdB) | |
424 |
|
424 | |||
425 | return powerdB |
|
425 | return powerdB | |
426 |
|
426 | |||
427 | @property |
|
427 | @property | |
428 | def timeInterval(self): |
|
428 | def timeInterval(self): | |
429 |
|
429 | |||
430 | return self.ippSeconds * self.nCohInt |
|
430 | return self.ippSeconds * self.nCohInt | |
431 |
|
431 | |||
432 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
432 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
433 |
|
433 | |||
434 |
|
434 | |||
435 | class Spectra(JROData): |
|
435 | class Spectra(JROData): | |
436 |
|
436 | |||
437 | def __init__(self): |
|
437 | def __init__(self): | |
438 | ''' |
|
438 | ''' | |
439 | Constructor |
|
439 | Constructor | |
440 | ''' |
|
440 | ''' | |
441 |
|
441 | |||
442 | self.data_dc = None |
|
442 | self.data_dc = None | |
443 | self.data_spc = None |
|
443 | self.data_spc = None | |
444 | self.data_cspc = None |
|
444 | self.data_cspc = None | |
445 | self.useLocalTime = True |
|
445 | self.useLocalTime = True | |
446 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
446 | self.radarControllerHeaderObj = RadarControllerHeader() | |
447 | self.systemHeaderObj = SystemHeader() |
|
447 | self.systemHeaderObj = SystemHeader() | |
448 | self.type = "Spectra" |
|
448 | self.type = "Spectra" | |
449 | self.timeZone = 0 |
|
449 | self.timeZone = 0 | |
450 | self.nProfiles = None |
|
450 | self.nProfiles = None | |
451 | self.heightList = None |
|
451 | self.heightList = None | |
452 | self.channelList = None |
|
452 | self.channelList = None | |
453 | self.pairsList = None |
|
453 | self.pairsList = None | |
454 | self.flagNoData = True |
|
454 | self.flagNoData = True | |
455 | self.flagDiscontinuousBlock = False |
|
455 | self.flagDiscontinuousBlock = False | |
456 | self.utctime = None |
|
456 | self.utctime = None | |
457 | self.nCohInt = None |
|
457 | self.nCohInt = None | |
458 | self.nIncohInt = None |
|
458 | self.nIncohInt = None | |
459 | self.blocksize = None |
|
459 | self.blocksize = None | |
460 | self.nFFTPoints = None |
|
460 | self.nFFTPoints = None | |
461 | self.wavelength = None |
|
461 | self.wavelength = None | |
462 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
462 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
463 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
463 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
464 | self.flagShiftFFT = False |
|
464 | self.flagShiftFFT = False | |
465 | self.ippFactor = 1 |
|
465 | self.ippFactor = 1 | |
466 | self.beacon_heiIndexList = [] |
|
466 | self.beacon_heiIndexList = [] | |
467 | self.noise_estimation = None |
|
467 | self.noise_estimation = None | |
468 | self.codeList = [] |
|
468 | self.codeList = [] | |
469 | self.azimuthList = [] |
|
469 | self.azimuthList = [] | |
470 | self.elevationList = [] |
|
470 | self.elevationList = [] | |
471 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
471 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', | |
472 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] |
|
472 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] | |
473 |
|
473 | |||
474 |
|
474 | |||
475 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
475 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
476 | """ |
|
476 | """ | |
477 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
477 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
478 |
|
478 | |||
479 | Return: |
|
479 | Return: | |
480 | noiselevel |
|
480 | noiselevel | |
481 | """ |
|
481 | """ | |
482 |
|
482 | |||
483 | noise = numpy.zeros(self.nChannels) |
|
483 | noise = numpy.zeros(self.nChannels) | |
484 | for channel in range(self.nChannels): |
|
484 | for channel in range(self.nChannels): | |
485 | daux = self.data_spc[channel, |
|
485 | daux = self.data_spc[channel, | |
486 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
486 | xmin_index:xmax_index, ymin_index:ymax_index] | |
487 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
487 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) | |
488 |
|
488 | |||
489 | return noise |
|
489 | return noise | |
490 |
|
490 | |||
491 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
491 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
492 |
|
492 | |||
493 | if self.noise_estimation is not None: |
|
493 | if self.noise_estimation is not None: | |
494 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
494 | # this was estimated by getNoise Operation defined in jroproc_spectra.py | |
495 | return self.noise_estimation |
|
495 | return self.noise_estimation | |
496 | else: |
|
496 | else: | |
497 | noise = self.getNoisebyHildebrand( |
|
497 | noise = self.getNoisebyHildebrand( | |
498 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
498 | xmin_index, xmax_index, ymin_index, ymax_index) | |
499 | return noise |
|
499 | return noise | |
500 |
|
500 | |||
501 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
501 | def getFreqRangeTimeResponse(self, extrapoints=0): | |
502 |
|
502 | |||
503 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
503 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) | |
504 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
504 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 | |
505 |
|
505 | |||
506 | return freqrange |
|
506 | return freqrange | |
507 |
|
507 | |||
508 | def getAcfRange(self, extrapoints=0): |
|
508 | def getAcfRange(self, extrapoints=0): | |
509 |
|
509 | |||
510 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
510 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) | |
511 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
511 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 | |
512 |
|
512 | |||
513 | return freqrange |
|
513 | return freqrange | |
514 |
|
514 | |||
515 | def getFreqRange(self, extrapoints=0): |
|
515 | def getFreqRange(self, extrapoints=0): | |
516 |
|
516 | |||
517 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
517 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) | |
518 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
518 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 | |
519 |
|
519 | |||
520 | return freqrange |
|
520 | return freqrange | |
521 |
|
521 | |||
522 | def getVelRange(self, extrapoints=0): |
|
522 | def getVelRange(self, extrapoints=0): | |
523 |
|
523 | |||
524 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
524 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) | |
525 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
525 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) | |
526 |
|
526 | |||
527 | if self.nmodes: |
|
527 | if self.nmodes: | |
528 | return velrange/self.nmodes |
|
528 | return velrange/self.nmodes | |
529 | else: |
|
529 | else: | |
530 | return velrange |
|
530 | return velrange | |
531 |
|
531 | |||
532 | @property |
|
532 | @property | |
533 | def nPairs(self): |
|
533 | def nPairs(self): | |
534 |
|
534 | |||
535 | return len(self.pairsList) |
|
535 | return len(self.pairsList) | |
536 |
|
536 | |||
537 | @property |
|
537 | @property | |
538 | def pairsIndexList(self): |
|
538 | def pairsIndexList(self): | |
539 |
|
539 | |||
540 | return list(range(self.nPairs)) |
|
540 | return list(range(self.nPairs)) | |
541 |
|
541 | |||
542 | @property |
|
542 | @property | |
543 | def normFactor(self): |
|
543 | def normFactor(self): | |
544 |
|
544 | |||
545 | pwcode = 1 |
|
545 | pwcode = 1 | |
546 |
|
546 | |||
547 | if self.flagDecodeData: |
|
547 | if self.flagDecodeData: | |
548 | pwcode = numpy.sum(self.code[0]**2) |
|
548 | pwcode = numpy.sum(self.code[0]**2) | |
549 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
549 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter | |
550 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
550 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter | |
551 |
|
551 | |||
552 | return normFactor |
|
552 | return normFactor | |
553 |
|
553 | |||
554 | @property |
|
554 | @property | |
555 | def flag_cspc(self): |
|
555 | def flag_cspc(self): | |
556 |
|
556 | |||
557 | if self.data_cspc is None: |
|
557 | if self.data_cspc is None: | |
558 | return True |
|
558 | return True | |
559 |
|
559 | |||
560 | return False |
|
560 | return False | |
561 |
|
561 | |||
562 | @property |
|
562 | @property | |
563 | def flag_dc(self): |
|
563 | def flag_dc(self): | |
564 |
|
564 | |||
565 | if self.data_dc is None: |
|
565 | if self.data_dc is None: | |
566 | return True |
|
566 | return True | |
567 |
|
567 | |||
568 | return False |
|
568 | return False | |
569 |
|
569 | |||
570 | @property |
|
570 | @property | |
571 | def timeInterval(self): |
|
571 | def timeInterval(self): | |
572 |
|
572 | |||
573 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
573 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor | |
574 | if self.nmodes: |
|
574 | if self.nmodes: | |
575 | return self.nmodes*timeInterval |
|
575 | return self.nmodes*timeInterval | |
576 | else: |
|
576 | else: | |
577 | return timeInterval |
|
577 | return timeInterval | |
578 |
|
578 | |||
579 | def getPower(self): |
|
579 | def getPower(self): | |
580 |
|
580 | |||
581 | factor = self.normFactor |
|
581 | factor = self.normFactor | |
582 | z = self.data_spc / factor |
|
582 | z = self.data_spc / factor | |
583 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
583 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
584 | avg = numpy.average(z, axis=1) |
|
584 | avg = numpy.average(z, axis=1) | |
585 |
|
585 | |||
586 | return 10 * numpy.log10(avg) |
|
586 | return 10 * numpy.log10(avg) | |
587 |
|
587 | |||
588 | def getCoherence(self, pairsList=None, phase=False): |
|
588 | def getCoherence(self, pairsList=None, phase=False): | |
589 |
|
589 | |||
590 | z = [] |
|
590 | z = [] | |
591 | if pairsList is None: |
|
591 | if pairsList is None: | |
592 | pairsIndexList = self.pairsIndexList |
|
592 | pairsIndexList = self.pairsIndexList | |
593 | else: |
|
593 | else: | |
594 | pairsIndexList = [] |
|
594 | pairsIndexList = [] | |
595 | for pair in pairsList: |
|
595 | for pair in pairsList: | |
596 | if pair not in self.pairsList: |
|
596 | if pair not in self.pairsList: | |
597 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
597 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( | |
598 | pair)) |
|
598 | pair)) | |
599 | pairsIndexList.append(self.pairsList.index(pair)) |
|
599 | pairsIndexList.append(self.pairsList.index(pair)) | |
600 | for i in range(len(pairsIndexList)): |
|
600 | for i in range(len(pairsIndexList)): | |
601 | pair = self.pairsList[pairsIndexList[i]] |
|
601 | pair = self.pairsList[pairsIndexList[i]] | |
602 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
602 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) | |
603 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
603 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) | |
604 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
604 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) | |
605 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
605 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) | |
606 | if phase: |
|
606 | if phase: | |
607 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
607 | data = numpy.arctan2(avgcoherenceComplex.imag, | |
608 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
608 | avgcoherenceComplex.real) * 180 / numpy.pi | |
609 | else: |
|
609 | else: | |
610 | data = numpy.abs(avgcoherenceComplex) |
|
610 | data = numpy.abs(avgcoherenceComplex) | |
611 |
|
611 | |||
612 | z.append(data) |
|
612 | z.append(data) | |
613 |
|
613 | |||
614 | return numpy.array(z) |
|
614 | return numpy.array(z) | |
615 |
|
615 | |||
616 | def setValue(self, value): |
|
616 | def setValue(self, value): | |
617 |
|
617 | |||
618 | print("This property should not be initialized") |
|
618 | print("This property should not be initialized") | |
619 |
|
619 | |||
620 | return |
|
620 | return | |
621 |
|
621 | |||
622 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
622 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") | |
623 |
|
623 | |||
624 |
|
624 | |||
625 | class SpectraHeis(Spectra): |
|
625 | class SpectraHeis(Spectra): | |
626 |
|
626 | |||
627 | def __init__(self): |
|
627 | def __init__(self): | |
628 |
|
628 | |||
629 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
629 | self.radarControllerHeaderObj = RadarControllerHeader() | |
630 | self.systemHeaderObj = SystemHeader() |
|
630 | self.systemHeaderObj = SystemHeader() | |
631 | self.type = "SpectraHeis" |
|
631 | self.type = "SpectraHeis" | |
632 | self.nProfiles = None |
|
632 | self.nProfiles = None | |
633 | self.heightList = None |
|
633 | self.heightList = None | |
634 | self.channelList = None |
|
634 | self.channelList = None | |
635 | self.flagNoData = True |
|
635 | self.flagNoData = True | |
636 | self.flagDiscontinuousBlock = False |
|
636 | self.flagDiscontinuousBlock = False | |
637 | self.utctime = None |
|
637 | self.utctime = None | |
638 | self.blocksize = None |
|
638 | self.blocksize = None | |
639 | self.profileIndex = 0 |
|
639 | self.profileIndex = 0 | |
640 | self.nCohInt = 1 |
|
640 | self.nCohInt = 1 | |
641 | self.nIncohInt = 1 |
|
641 | self.nIncohInt = 1 | |
642 |
|
642 | |||
643 | @property |
|
643 | @property | |
644 | def normFactor(self): |
|
644 | def normFactor(self): | |
645 | pwcode = 1 |
|
645 | pwcode = 1 | |
646 | if self.flagDecodeData: |
|
646 | if self.flagDecodeData: | |
647 | pwcode = numpy.sum(self.code[0]**2) |
|
647 | pwcode = numpy.sum(self.code[0]**2) | |
648 |
|
648 | |||
649 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
649 | normFactor = self.nIncohInt * self.nCohInt * pwcode | |
650 |
|
650 | |||
651 | return normFactor |
|
651 | return normFactor | |
652 |
|
652 | |||
653 | @property |
|
653 | @property | |
654 | def timeInterval(self): |
|
654 | def timeInterval(self): | |
655 |
|
655 | |||
656 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
656 | return self.ippSeconds * self.nCohInt * self.nIncohInt | |
657 |
|
657 | |||
658 |
|
658 | |||
659 | class Fits(JROData): |
|
659 | class Fits(JROData): | |
660 |
|
660 | |||
661 | def __init__(self): |
|
661 | def __init__(self): | |
662 |
|
662 | |||
663 | self.type = "Fits" |
|
663 | self.type = "Fits" | |
664 | self.nProfiles = None |
|
664 | self.nProfiles = None | |
665 | self.heightList = None |
|
665 | self.heightList = None | |
666 | self.channelList = None |
|
666 | self.channelList = None | |
667 | self.flagNoData = True |
|
667 | self.flagNoData = True | |
668 | self.utctime = None |
|
668 | self.utctime = None | |
669 | self.nCohInt = 1 |
|
669 | self.nCohInt = 1 | |
670 | self.nIncohInt = 1 |
|
670 | self.nIncohInt = 1 | |
671 | self.useLocalTime = True |
|
671 | self.useLocalTime = True | |
672 | self.profileIndex = 0 |
|
672 | self.profileIndex = 0 | |
673 | self.timeZone = 0 |
|
673 | self.timeZone = 0 | |
674 |
|
674 | |||
675 | def getTimeRange(self): |
|
675 | def getTimeRange(self): | |
676 |
|
676 | |||
677 | datatime = [] |
|
677 | datatime = [] | |
678 |
|
678 | |||
679 | datatime.append(self.ltctime) |
|
679 | datatime.append(self.ltctime) | |
680 | datatime.append(self.ltctime + self.timeInterval) |
|
680 | datatime.append(self.ltctime + self.timeInterval) | |
681 |
|
681 | |||
682 | datatime = numpy.array(datatime) |
|
682 | datatime = numpy.array(datatime) | |
683 |
|
683 | |||
684 | return datatime |
|
684 | return datatime | |
685 |
|
685 | |||
686 | def getChannelIndexList(self): |
|
686 | def getChannelIndexList(self): | |
687 |
|
687 | |||
688 | return list(range(self.nChannels)) |
|
688 | return list(range(self.nChannels)) | |
689 |
|
689 | |||
690 | def getNoise(self, type=1): |
|
690 | def getNoise(self, type=1): | |
691 |
|
691 | |||
692 |
|
692 | |||
693 | if type == 1: |
|
693 | if type == 1: | |
694 | noise = self.getNoisebyHildebrand() |
|
694 | noise = self.getNoisebyHildebrand() | |
695 |
|
695 | |||
696 | if type == 2: |
|
696 | if type == 2: | |
697 | noise = self.getNoisebySort() |
|
697 | noise = self.getNoisebySort() | |
698 |
|
698 | |||
699 | if type == 3: |
|
699 | if type == 3: | |
700 | noise = self.getNoisebyWindow() |
|
700 | noise = self.getNoisebyWindow() | |
701 |
|
701 | |||
702 | return noise |
|
702 | return noise | |
703 |
|
703 | |||
704 | @property |
|
704 | @property | |
705 | def timeInterval(self): |
|
705 | def timeInterval(self): | |
706 |
|
706 | |||
707 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
707 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt | |
708 |
|
708 | |||
709 | return timeInterval |
|
709 | return timeInterval | |
710 |
|
710 | |||
711 | @property |
|
711 | @property | |
712 | def ippSeconds(self): |
|
712 | def ippSeconds(self): | |
713 | ''' |
|
713 | ''' | |
714 | ''' |
|
714 | ''' | |
715 | return self.ipp_sec |
|
715 | return self.ipp_sec | |
716 |
|
716 | |||
717 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
717 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
718 |
|
718 | |||
719 |
|
719 | |||
720 | class Correlation(JROData): |
|
720 | class Correlation(JROData): | |
721 |
|
721 | |||
722 | def __init__(self): |
|
722 | def __init__(self): | |
723 | ''' |
|
723 | ''' | |
724 | Constructor |
|
724 | Constructor | |
725 | ''' |
|
725 | ''' | |
726 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
726 | self.radarControllerHeaderObj = RadarControllerHeader() | |
727 | self.systemHeaderObj = SystemHeader() |
|
727 | self.systemHeaderObj = SystemHeader() | |
728 | self.type = "Correlation" |
|
728 | self.type = "Correlation" | |
729 | self.data = None |
|
729 | self.data = None | |
730 | self.dtype = None |
|
730 | self.dtype = None | |
731 | self.nProfiles = None |
|
731 | self.nProfiles = None | |
732 | self.heightList = None |
|
732 | self.heightList = None | |
733 | self.channelList = None |
|
733 | self.channelList = None | |
734 | self.flagNoData = True |
|
734 | self.flagNoData = True | |
735 | self.flagDiscontinuousBlock = False |
|
735 | self.flagDiscontinuousBlock = False | |
736 | self.utctime = None |
|
736 | self.utctime = None | |
737 | self.timeZone = 0 |
|
737 | self.timeZone = 0 | |
738 | self.dstFlag = None |
|
738 | self.dstFlag = None | |
739 | self.errorCount = None |
|
739 | self.errorCount = None | |
740 | self.blocksize = None |
|
740 | self.blocksize = None | |
741 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
741 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
742 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
742 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
743 | self.pairsList = None |
|
743 | self.pairsList = None | |
744 | self.nPoints = None |
|
744 | self.nPoints = None | |
745 |
|
745 | |||
746 | def getPairsList(self): |
|
746 | def getPairsList(self): | |
747 |
|
747 | |||
748 | return self.pairsList |
|
748 | return self.pairsList | |
749 |
|
749 | |||
750 | def getNoise(self, mode=2): |
|
750 | def getNoise(self, mode=2): | |
751 |
|
751 | |||
752 | indR = numpy.where(self.lagR == 0)[0][0] |
|
752 | indR = numpy.where(self.lagR == 0)[0][0] | |
753 | indT = numpy.where(self.lagT == 0)[0][0] |
|
753 | indT = numpy.where(self.lagT == 0)[0][0] | |
754 |
|
754 | |||
755 | jspectra0 = self.data_corr[:, :, indR, :] |
|
755 | jspectra0 = self.data_corr[:, :, indR, :] | |
756 | jspectra = copy.copy(jspectra0) |
|
756 | jspectra = copy.copy(jspectra0) | |
757 |
|
757 | |||
758 | num_chan = jspectra.shape[0] |
|
758 | num_chan = jspectra.shape[0] | |
759 | num_hei = jspectra.shape[2] |
|
759 | num_hei = jspectra.shape[2] | |
760 |
|
760 | |||
761 | freq_dc = jspectra.shape[1] / 2 |
|
761 | freq_dc = jspectra.shape[1] / 2 | |
762 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
762 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
763 |
|
763 | |||
764 | if ind_vel[0] < 0: |
|
764 | if ind_vel[0] < 0: | |
765 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
765 | ind_vel[list(range(0, 1))] = ind_vel[list( | |
766 | range(0, 1))] + self.num_prof |
|
766 | range(0, 1))] + self.num_prof | |
767 |
|
767 | |||
768 | if mode == 1: |
|
768 | if mode == 1: | |
769 | jspectra[:, freq_dc, :] = ( |
|
769 | jspectra[:, freq_dc, :] = ( | |
770 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
770 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
771 |
|
771 | |||
772 | if mode == 2: |
|
772 | if mode == 2: | |
773 |
|
773 | |||
774 | vel = numpy.array([-2, -1, 1, 2]) |
|
774 | vel = numpy.array([-2, -1, 1, 2]) | |
775 | xx = numpy.zeros([4, 4]) |
|
775 | xx = numpy.zeros([4, 4]) | |
776 |
|
776 | |||
777 | for fil in range(4): |
|
777 | for fil in range(4): | |
778 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
778 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
779 |
|
779 | |||
780 | xx_inv = numpy.linalg.inv(xx) |
|
780 | xx_inv = numpy.linalg.inv(xx) | |
781 | xx_aux = xx_inv[0, :] |
|
781 | xx_aux = xx_inv[0, :] | |
782 |
|
782 | |||
783 | for ich in range(num_chan): |
|
783 | for ich in range(num_chan): | |
784 | yy = jspectra[ich, ind_vel, :] |
|
784 | yy = jspectra[ich, ind_vel, :] | |
785 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
785 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
786 |
|
786 | |||
787 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
787 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
788 | cjunkid = sum(junkid) |
|
788 | cjunkid = sum(junkid) | |
789 |
|
789 | |||
790 | if cjunkid.any(): |
|
790 | if cjunkid.any(): | |
791 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
791 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
792 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
792 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
793 |
|
793 | |||
794 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
794 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] | |
795 |
|
795 | |||
796 | return noise |
|
796 | return noise | |
797 |
|
797 | |||
798 | @property |
|
798 | @property | |
799 | def timeInterval(self): |
|
799 | def timeInterval(self): | |
800 |
|
800 | |||
801 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
801 | return self.ippSeconds * self.nCohInt * self.nProfiles | |
802 |
|
802 | |||
803 | def splitFunctions(self): |
|
803 | def splitFunctions(self): | |
804 |
|
804 | |||
805 | pairsList = self.pairsList |
|
805 | pairsList = self.pairsList | |
806 | ccf_pairs = [] |
|
806 | ccf_pairs = [] | |
807 | acf_pairs = [] |
|
807 | acf_pairs = [] | |
808 | ccf_ind = [] |
|
808 | ccf_ind = [] | |
809 | acf_ind = [] |
|
809 | acf_ind = [] | |
810 | for l in range(len(pairsList)): |
|
810 | for l in range(len(pairsList)): | |
811 | chan0 = pairsList[l][0] |
|
811 | chan0 = pairsList[l][0] | |
812 | chan1 = pairsList[l][1] |
|
812 | chan1 = pairsList[l][1] | |
813 |
|
813 | |||
814 | # Obteniendo pares de Autocorrelacion |
|
814 | # Obteniendo pares de Autocorrelacion | |
815 | if chan0 == chan1: |
|
815 | if chan0 == chan1: | |
816 | acf_pairs.append(chan0) |
|
816 | acf_pairs.append(chan0) | |
817 | acf_ind.append(l) |
|
817 | acf_ind.append(l) | |
818 | else: |
|
818 | else: | |
819 | ccf_pairs.append(pairsList[l]) |
|
819 | ccf_pairs.append(pairsList[l]) | |
820 | ccf_ind.append(l) |
|
820 | ccf_ind.append(l) | |
821 |
|
821 | |||
822 | data_acf = self.data_cf[acf_ind] |
|
822 | data_acf = self.data_cf[acf_ind] | |
823 | data_ccf = self.data_cf[ccf_ind] |
|
823 | data_ccf = self.data_cf[ccf_ind] | |
824 |
|
824 | |||
825 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
825 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf | |
826 |
|
826 | |||
827 | @property |
|
827 | @property | |
828 | def normFactor(self): |
|
828 | def normFactor(self): | |
829 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
829 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() | |
830 | acf_pairs = numpy.array(acf_pairs) |
|
830 | acf_pairs = numpy.array(acf_pairs) | |
831 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
831 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) | |
832 |
|
832 | |||
833 | for p in range(self.nPairs): |
|
833 | for p in range(self.nPairs): | |
834 | pair = self.pairsList[p] |
|
834 | pair = self.pairsList[p] | |
835 |
|
835 | |||
836 | ch0 = pair[0] |
|
836 | ch0 = pair[0] | |
837 | ch1 = pair[1] |
|
837 | ch1 = pair[1] | |
838 |
|
838 | |||
839 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
839 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) | |
840 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
840 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) | |
841 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
841 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) | |
842 |
|
842 | |||
843 | return normFactor |
|
843 | return normFactor | |
844 |
|
844 | |||
845 |
|
845 | |||
846 | class Parameters(Spectra): |
|
846 | class Parameters(Spectra): | |
847 |
|
847 | |||
848 | groupList = None # List of Pairs, Groups, etc |
|
848 | groupList = None # List of Pairs, Groups, etc | |
849 | data_param = None # Parameters obtained |
|
849 | data_param = None # Parameters obtained | |
850 | data_pre = None # Data Pre Parametrization |
|
850 | data_pre = None # Data Pre Parametrization | |
851 | data_SNR = None # Signal to Noise Ratio |
|
851 | data_SNR = None # Signal to Noise Ratio | |
852 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
852 | abscissaList = None # Abscissa, can be velocities, lags or time | |
853 | utctimeInit = None # Initial UTC time |
|
853 | utctimeInit = None # Initial UTC time | |
854 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
854 | paramInterval = None # Time interval to calculate Parameters in seconds | |
855 | useLocalTime = True |
|
855 | useLocalTime = True | |
856 | # Fitting |
|
856 | # Fitting | |
857 | data_error = None # Error of the estimation |
|
857 | data_error = None # Error of the estimation | |
858 | constants = None |
|
858 | constants = None | |
859 | library = None |
|
859 | library = None | |
860 | # Output signal |
|
860 | # Output signal | |
861 | outputInterval = None # Time interval to calculate output signal in seconds |
|
861 | outputInterval = None # Time interval to calculate output signal in seconds | |
862 | data_output = None # Out signal |
|
862 | data_output = None # Out signal | |
863 | nAvg = None |
|
863 | nAvg = None | |
864 | noise_estimation = None |
|
864 | noise_estimation = None | |
865 | GauSPC = None # Fit gaussian SPC |
|
865 | GauSPC = None # Fit gaussian SPC | |
866 |
|
866 | |||
867 | def __init__(self): |
|
867 | def __init__(self): | |
868 | ''' |
|
868 | ''' | |
869 | Constructor |
|
869 | Constructor | |
870 | ''' |
|
870 | ''' | |
871 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
871 | self.radarControllerHeaderObj = RadarControllerHeader() | |
872 | self.systemHeaderObj = SystemHeader() |
|
872 | self.systemHeaderObj = SystemHeader() | |
873 | self.type = "Parameters" |
|
873 | self.type = "Parameters" | |
874 | self.timeZone = 0 |
|
874 | self.timeZone = 0 | |
875 |
|
875 | |||
876 | def getTimeRange1(self, interval): |
|
876 | def getTimeRange1(self, interval): | |
877 |
|
877 | |||
878 | datatime = [] |
|
878 | datatime = [] | |
879 |
|
879 | |||
880 | if self.useLocalTime: |
|
880 | if self.useLocalTime: | |
881 | time1 = self.utctimeInit - self.timeZone * 60 |
|
881 | time1 = self.utctimeInit - self.timeZone * 60 | |
882 | else: |
|
882 | else: | |
883 | time1 = self.utctimeInit |
|
883 | time1 = self.utctimeInit | |
884 |
|
884 | |||
885 | datatime.append(time1) |
|
885 | datatime.append(time1) | |
886 | datatime.append(time1 + interval) |
|
886 | datatime.append(time1 + interval) | |
887 | datatime = numpy.array(datatime) |
|
887 | datatime = numpy.array(datatime) | |
888 |
|
888 | |||
889 | return datatime |
|
889 | return datatime | |
890 |
|
890 | |||
891 | @property |
|
891 | @property | |
892 | def timeInterval(self): |
|
892 | def timeInterval(self): | |
893 |
|
893 | |||
894 | if hasattr(self, 'timeInterval1'): |
|
894 | if hasattr(self, 'timeInterval1'): | |
895 | return self.timeInterval1 |
|
895 | return self.timeInterval1 | |
896 | else: |
|
896 | else: | |
897 | return self.paramInterval |
|
897 | return self.paramInterval | |
898 |
|
898 | |||
899 | def setValue(self, value): |
|
899 | def setValue(self, value): | |
900 |
|
900 | |||
901 | print("This property should not be initialized") |
|
901 | print("This property should not be initialized") | |
902 |
|
902 | |||
903 | return |
|
903 | return | |
904 |
|
904 | |||
905 | def getNoise(self): |
|
905 | def getNoise(self): | |
906 |
|
906 | |||
907 | return self.spc_noise |
|
907 | return self.spc_noise | |
908 |
|
908 | |||
909 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
909 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") | |
910 |
|
910 | |||
911 |
|
911 | |||
912 | class PlotterData(object): |
|
912 | class PlotterData(object): | |
913 | ''' |
|
913 | ''' | |
914 | Object to hold data to be plotted |
|
914 | Object to hold data to be plotted | |
915 | ''' |
|
915 | ''' | |
916 |
|
916 | |||
917 | MAXNUMX = 200 |
|
917 | MAXNUMX = 200 | |
918 | MAXNUMY = 200 |
|
918 | MAXNUMY = 200 | |
919 |
|
919 | |||
920 | def __init__(self, code, exp_code, localtime=True): |
|
920 | def __init__(self, code, exp_code, localtime=True): | |
921 |
|
921 | |||
922 | self.key = code |
|
922 | self.key = code | |
923 | self.exp_code = exp_code |
|
923 | self.exp_code = exp_code | |
924 | self.ready = False |
|
924 | self.ready = False | |
925 | self.flagNoData = False |
|
925 | self.flagNoData = False | |
926 | self.localtime = localtime |
|
926 | self.localtime = localtime | |
927 | self.data = {} |
|
927 | self.data = {} | |
928 | self.meta = {} |
|
928 | self.meta = {} | |
929 | self.__heights = [] |
|
929 | self.__heights = [] | |
930 |
|
930 | |||
931 | def __str__(self): |
|
931 | def __str__(self): | |
932 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
932 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] | |
933 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
933 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) | |
934 |
|
934 | |||
935 | def __len__(self): |
|
935 | def __len__(self): | |
936 | return len(self.data) |
|
936 | return len(self.data) | |
937 |
|
937 | |||
938 | def __getitem__(self, key): |
|
938 | def __getitem__(self, key): | |
939 | if isinstance(key, int): |
|
939 | if isinstance(key, int): | |
940 | return self.data[self.times[key]] |
|
940 | return self.data[self.times[key]] | |
941 | elif isinstance(key, str): |
|
941 | elif isinstance(key, str): | |
942 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
942 | ret = numpy.array([self.data[x][key] for x in self.times]) | |
943 | if ret.ndim > 1: |
|
943 | if ret.ndim > 1: | |
944 | ret = numpy.swapaxes(ret, 0, 1) |
|
944 | ret = numpy.swapaxes(ret, 0, 1) | |
945 | return ret |
|
945 | return ret | |
946 |
|
946 | |||
947 | def __contains__(self, key): |
|
947 | def __contains__(self, key): | |
948 | return key in self.data[self.min_time] |
|
948 | return key in self.data[self.min_time] | |
949 |
|
949 | |||
950 | def setup(self): |
|
950 | def setup(self): | |
951 | ''' |
|
951 | ''' | |
952 | Configure object |
|
952 | Configure object | |
953 | ''' |
|
953 | ''' | |
954 | self.type = '' |
|
954 | self.type = '' | |
955 | self.ready = False |
|
955 | self.ready = False | |
956 | del self.data |
|
956 | del self.data | |
957 | self.data = {} |
|
957 | self.data = {} | |
958 | self.__heights = [] |
|
958 | self.__heights = [] | |
959 | self.__all_heights = set() |
|
959 | self.__all_heights = set() | |
960 |
|
960 | |||
961 | def shape(self, key): |
|
961 | def shape(self, key): | |
962 | ''' |
|
962 | ''' | |
963 | Get the shape of the one-element data for the given key |
|
963 | Get the shape of the one-element data for the given key | |
964 | ''' |
|
964 | ''' | |
965 |
|
965 | |||
966 | if len(self.data[self.min_time][key]): |
|
966 | if len(self.data[self.min_time][key]): | |
967 | return self.data[self.min_time][key].shape |
|
967 | return self.data[self.min_time][key].shape | |
968 | return (0,) |
|
968 | return (0,) | |
969 |
|
969 | |||
970 | def update(self, data, tm, meta={}): |
|
970 | def update(self, data, tm, meta={}): | |
971 | ''' |
|
971 | ''' | |
972 | Update data object with new dataOut |
|
972 | Update data object with new dataOut | |
973 | ''' |
|
973 | ''' | |
974 |
|
974 | |||
975 | self.data[tm] = data |
|
975 | self.data[tm] = data | |
976 |
|
976 | |||
977 | for key, value in meta.items(): |
|
977 | for key, value in meta.items(): | |
978 | setattr(self, key, value) |
|
978 | setattr(self, key, value) | |
979 |
|
979 | |||
980 | def normalize_heights(self): |
|
980 | def normalize_heights(self): | |
981 | ''' |
|
981 | ''' | |
982 | Ensure same-dimension of the data for different heighList |
|
982 | Ensure same-dimension of the data for different heighList | |
983 | ''' |
|
983 | ''' | |
984 |
|
984 | |||
985 | H = numpy.array(list(self.__all_heights)) |
|
985 | H = numpy.array(list(self.__all_heights)) | |
986 | H.sort() |
|
986 | H.sort() | |
987 | for key in self.data: |
|
987 | for key in self.data: | |
988 | shape = self.shape(key)[:-1] + H.shape |
|
988 | shape = self.shape(key)[:-1] + H.shape | |
989 | for tm, obj in list(self.data[key].items()): |
|
989 | for tm, obj in list(self.data[key].items()): | |
990 | h = self.__heights[self.times.tolist().index(tm)] |
|
990 | h = self.__heights[self.times.tolist().index(tm)] | |
991 | if H.size == h.size: |
|
991 | if H.size == h.size: | |
992 | continue |
|
992 | continue | |
993 | index = numpy.where(numpy.in1d(H, h))[0] |
|
993 | index = numpy.where(numpy.in1d(H, h))[0] | |
994 | dummy = numpy.zeros(shape) + numpy.nan |
|
994 | dummy = numpy.zeros(shape) + numpy.nan | |
995 | if len(shape) == 2: |
|
995 | if len(shape) == 2: | |
996 | dummy[:, index] = obj |
|
996 | dummy[:, index] = obj | |
997 | else: |
|
997 | else: | |
998 | dummy[index] = obj |
|
998 | dummy[index] = obj | |
999 | self.data[key][tm] = dummy |
|
999 | self.data[key][tm] = dummy | |
1000 |
|
1000 | |||
1001 | self.__heights = [H for tm in self.times] |
|
1001 | self.__heights = [H for tm in self.times] | |
1002 |
|
1002 | |||
1003 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
1003 | def jsonify(self, tm, plot_name, plot_type, decimate=False): | |
1004 | ''' |
|
1004 | ''' | |
1005 | Convert data to json |
|
1005 | Convert data to json | |
1006 | ''' |
|
1006 | ''' | |
1007 |
|
1007 | |||
1008 | meta = {} |
|
1008 | meta = {} | |
1009 | meta['xrange'] = [] |
|
1009 | meta['xrange'] = [] | |
1010 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 |
|
1010 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 | |
1011 | tmp = self.data[tm][self.key] |
|
1011 | tmp = self.data[tm][self.key] | |
1012 | shape = tmp.shape |
|
1012 | shape = tmp.shape | |
1013 | if len(shape) == 2: |
|
1013 | if len(shape) == 2: | |
1014 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1014 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) | |
1015 | elif len(shape) == 3: |
|
1015 | elif len(shape) == 3: | |
1016 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 |
|
1016 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 | |
1017 | data = self.roundFloats( |
|
1017 | data = self.roundFloats( | |
1018 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1018 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) | |
1019 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1019 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) | |
1020 | else: |
|
1020 | else: | |
1021 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1021 | data = self.roundFloats(self.data[tm][self.key].tolist()) | |
1022 |
|
1022 | |||
1023 | ret = { |
|
1023 | ret = { | |
1024 | 'plot': plot_name, |
|
1024 | 'plot': plot_name, | |
1025 | 'code': self.exp_code, |
|
1025 | 'code': self.exp_code, | |
1026 | 'time': float(tm), |
|
1026 | 'time': float(tm), | |
1027 | 'data': data, |
|
1027 | 'data': data, | |
1028 | } |
|
1028 | } | |
1029 | meta['type'] = plot_type |
|
1029 | meta['type'] = plot_type | |
1030 | meta['interval'] = float(self.interval) |
|
1030 | meta['interval'] = float(self.interval) | |
1031 | meta['localtime'] = self.localtime |
|
1031 | meta['localtime'] = self.localtime | |
1032 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1032 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) | |
1033 | meta.update(self.meta) |
|
1033 | meta.update(self.meta) | |
1034 | ret['metadata'] = meta |
|
1034 | ret['metadata'] = meta | |
1035 | return json.dumps(ret) |
|
1035 | return json.dumps(ret) | |
1036 |
|
1036 | |||
1037 | @property |
|
1037 | @property | |
1038 | def times(self): |
|
1038 | def times(self): | |
1039 | ''' |
|
1039 | ''' | |
1040 | Return the list of times of the current data |
|
1040 | Return the list of times of the current data | |
1041 | ''' |
|
1041 | ''' | |
1042 |
|
1042 | |||
1043 | ret = [t for t in self.data] |
|
1043 | ret = [t for t in self.data] | |
1044 | ret.sort() |
|
1044 | ret.sort() | |
1045 | return numpy.array(ret) |
|
1045 | return numpy.array(ret) | |
1046 |
|
1046 | |||
1047 | @property |
|
1047 | @property | |
1048 | def min_time(self): |
|
1048 | def min_time(self): | |
1049 | ''' |
|
1049 | ''' | |
1050 | Return the minimun time value |
|
1050 | Return the minimun time value | |
1051 | ''' |
|
1051 | ''' | |
1052 |
|
1052 | |||
1053 | return self.times[0] |
|
1053 | return self.times[0] | |
1054 |
|
1054 | |||
1055 | @property |
|
1055 | @property | |
1056 | def max_time(self): |
|
1056 | def max_time(self): | |
1057 | ''' |
|
1057 | ''' | |
1058 | Return the maximun time value |
|
1058 | Return the maximun time value | |
1059 | ''' |
|
1059 | ''' | |
1060 |
|
1060 | |||
1061 | return self.times[-1] |
|
1061 | return self.times[-1] | |
1062 |
|
1062 | |||
1063 | # @property |
|
1063 | # @property | |
1064 | # def heights(self): |
|
1064 | # def heights(self): | |
1065 | # ''' |
|
1065 | # ''' | |
1066 | # Return the list of heights of the current data |
|
1066 | # Return the list of heights of the current data | |
1067 | # ''' |
|
1067 | # ''' | |
1068 |
|
1068 | |||
1069 | # return numpy.array(self.__heights[-1]) |
|
1069 | # return numpy.array(self.__heights[-1]) | |
1070 |
|
1070 | |||
1071 | @staticmethod |
|
1071 | @staticmethod | |
1072 | def roundFloats(obj): |
|
1072 | def roundFloats(obj): | |
1073 | if isinstance(obj, list): |
|
1073 | if isinstance(obj, list): | |
1074 | return list(map(PlotterData.roundFloats, obj)) |
|
1074 | return list(map(PlotterData.roundFloats, obj)) | |
1075 | elif isinstance(obj, float): |
|
1075 | elif isinstance(obj, float): | |
1076 | return round(obj, 2) |
|
1076 | return round(obj, 2) |
@@ -1,359 +1,362 | |||||
1 | import os |
|
1 | import os | |
2 | import datetime |
|
2 | import datetime | |
3 | import numpy |
|
3 | import numpy | |
4 |
|
4 | |||
5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
5 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot |
|
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot | |
7 | from schainpy.utils import log |
|
7 | from schainpy.utils import log | |
8 |
|
8 | |||
9 | EARTH_RADIUS = 6.3710e3 |
|
9 | EARTH_RADIUS = 6.3710e3 | |
10 |
|
10 | |||
11 |
|
11 | |||
12 | def ll2xy(lat1, lon1, lat2, lon2): |
|
12 | def ll2xy(lat1, lon1, lat2, lon2): | |
13 |
|
13 | |||
14 | p = 0.017453292519943295 |
|
14 | p = 0.017453292519943295 | |
15 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
15 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
18 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
18 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
19 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
19 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
20 | theta = -theta + numpy.pi/2 |
|
20 | theta = -theta + numpy.pi/2 | |
21 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
21 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
22 |
|
22 | |||
23 |
|
23 | |||
24 | def km2deg(km): |
|
24 | def km2deg(km): | |
25 | ''' |
|
25 | ''' | |
26 | Convert distance in km to degrees |
|
26 | Convert distance in km to degrees | |
27 | ''' |
|
27 | ''' | |
28 |
|
28 | |||
29 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
29 | return numpy.rad2deg(km/EARTH_RADIUS) | |
30 |
|
30 | |||
31 |
|
31 | |||
32 |
|
32 | |||
33 | class SpectralMomentsPlot(SpectraPlot): |
|
33 | class SpectralMomentsPlot(SpectraPlot): | |
34 | ''' |
|
34 | ''' | |
35 | Plot for Spectral Moments |
|
35 | Plot for Spectral Moments | |
36 | ''' |
|
36 | ''' | |
37 | CODE = 'spc_moments' |
|
37 | CODE = 'spc_moments' | |
38 | colormap = 'jet' |
|
38 | colormap = 'jet' | |
39 | plot_type = 'pcolor' |
|
39 | plot_type = 'pcolor' | |
40 |
|
40 | |||
41 |
|
41 | |||
42 | class SnrPlot(RTIPlot): |
|
42 | class SnrPlot(RTIPlot): | |
43 | ''' |
|
43 | ''' | |
44 | Plot for SNR Data |
|
44 | Plot for SNR Data | |
45 | ''' |
|
45 | ''' | |
46 |
|
46 | |||
47 | CODE = 'snr' |
|
47 | CODE = 'snr' | |
48 | colormap = 'jet' |
|
48 | colormap = 'jet' | |
49 |
|
49 | |||
50 | def update(self, dataOut): |
|
50 | def update(self, dataOut): | |
51 | if len(self.channelList) == 0: |
|
51 | if len(self.channelList) == 0: | |
52 | self.update_list(dataOut) |
|
52 | self.update_list(dataOut) | |
53 |
|
53 | |||
54 | meta = {} |
|
54 | meta = {} | |
55 | data = { |
|
55 | data = { | |
56 | 'snr': 10 * numpy.log10(dataOut.data_snr) |
|
56 | 'snr': 10 * numpy.log10(dataOut.data_snr) | |
57 | } |
|
57 | } | |
58 | #print(data['snr']) |
|
58 | #print(data['snr']) | |
59 | return data, meta |
|
59 | return data, meta | |
60 |
|
60 | |||
61 | class DopplerPlot(RTIPlot): |
|
61 | class DopplerPlot(RTIPlot): | |
62 | ''' |
|
62 | ''' | |
63 | Plot for DOPPLER Data (1st moment) |
|
63 | Plot for DOPPLER Data (1st moment) | |
64 | ''' |
|
64 | ''' | |
65 |
|
65 | |||
66 | CODE = 'dop' |
|
66 | CODE = 'dop' | |
67 | colormap = 'jet' |
|
67 | colormap = 'jet' | |
68 |
|
68 | |||
69 | def update(self, dataOut): |
|
69 | def update(self, dataOut): | |
70 | self.update_list(dataOut) |
|
70 | self.update_list(dataOut) | |
71 | data = { |
|
71 | data = { | |
72 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
72 | 'dop': 10*numpy.log10(dataOut.data_dop) | |
73 | } |
|
73 | } | |
74 |
|
74 | |||
75 | return data, {} |
|
75 | return data, {} | |
76 |
|
76 | |||
77 | class PowerPlot(RTIPlot): |
|
77 | class PowerPlot(RTIPlot): | |
78 | ''' |
|
78 | ''' | |
79 | Plot for Power Data (0 moment) |
|
79 | Plot for Power Data (0 moment) | |
80 | ''' |
|
80 | ''' | |
81 |
|
81 | |||
82 | CODE = 'pow' |
|
82 | CODE = 'pow' | |
83 | colormap = 'jet' |
|
83 | colormap = 'jet' | |
84 |
|
84 | |||
85 | def update(self, dataOut): |
|
85 | def update(self, dataOut): | |
86 | self.update_list(dataOut) |
|
86 | self.update_list(dataOut) | |
87 | data = { |
|
87 | data = { | |
88 | 'pow': 10*numpy.log10(dataOut.data_pow) |
|
88 | 'pow': 10*numpy.log10(dataOut.data_pow) | |
89 | } |
|
89 | } | |
90 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
90 | try: | |
|
91 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |||
|
92 | except: | |||
|
93 | pass | |||
91 | return data, {} |
|
94 | return data, {} | |
92 |
|
95 | |||
93 | class SpectralWidthPlot(RTIPlot): |
|
96 | class SpectralWidthPlot(RTIPlot): | |
94 | ''' |
|
97 | ''' | |
95 | Plot for Spectral Width Data (2nd moment) |
|
98 | Plot for Spectral Width Data (2nd moment) | |
96 | ''' |
|
99 | ''' | |
97 |
|
100 | |||
98 | CODE = 'width' |
|
101 | CODE = 'width' | |
99 | colormap = 'jet' |
|
102 | colormap = 'jet' | |
100 |
|
103 | |||
101 | def update(self, dataOut): |
|
104 | def update(self, dataOut): | |
102 | self.update_list(dataOut) |
|
105 | self.update_list(dataOut) | |
103 | data = { |
|
106 | data = { | |
104 | 'width': dataOut.data_width |
|
107 | 'width': dataOut.data_width | |
105 | } |
|
108 | } | |
106 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
109 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
107 | return data, {} |
|
110 | return data, {} | |
108 |
|
111 | |||
109 | class SkyMapPlot(Plot): |
|
112 | class SkyMapPlot(Plot): | |
110 | ''' |
|
113 | ''' | |
111 | Plot for meteors detection data |
|
114 | Plot for meteors detection data | |
112 | ''' |
|
115 | ''' | |
113 |
|
116 | |||
114 | CODE = 'param' |
|
117 | CODE = 'param' | |
115 |
|
118 | |||
116 | def setup(self): |
|
119 | def setup(self): | |
117 |
|
120 | |||
118 | self.ncols = 1 |
|
121 | self.ncols = 1 | |
119 | self.nrows = 1 |
|
122 | self.nrows = 1 | |
120 | self.width = 7.2 |
|
123 | self.width = 7.2 | |
121 | self.height = 7.2 |
|
124 | self.height = 7.2 | |
122 | self.nplots = 1 |
|
125 | self.nplots = 1 | |
123 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
126 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
124 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
127 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
125 | self.polar = True |
|
128 | self.polar = True | |
126 | self.ymin = -180 |
|
129 | self.ymin = -180 | |
127 | self.ymax = 180 |
|
130 | self.ymax = 180 | |
128 | self.colorbar = False |
|
131 | self.colorbar = False | |
129 |
|
132 | |||
130 | def plot(self): |
|
133 | def plot(self): | |
131 |
|
134 | |||
132 | arrayParameters = numpy.concatenate(self.data['param']) |
|
135 | arrayParameters = numpy.concatenate(self.data['param']) | |
133 | error = arrayParameters[:, -1] |
|
136 | error = arrayParameters[:, -1] | |
134 | indValid = numpy.where(error == 0)[0] |
|
137 | indValid = numpy.where(error == 0)[0] | |
135 | finalMeteor = arrayParameters[indValid, :] |
|
138 | finalMeteor = arrayParameters[indValid, :] | |
136 | finalAzimuth = finalMeteor[:, 3] |
|
139 | finalAzimuth = finalMeteor[:, 3] | |
137 | finalZenith = finalMeteor[:, 4] |
|
140 | finalZenith = finalMeteor[:, 4] | |
138 |
|
141 | |||
139 | x = finalAzimuth * numpy.pi / 180 |
|
142 | x = finalAzimuth * numpy.pi / 180 | |
140 | y = finalZenith |
|
143 | y = finalZenith | |
141 |
|
144 | |||
142 | ax = self.axes[0] |
|
145 | ax = self.axes[0] | |
143 |
|
146 | |||
144 | if ax.firsttime: |
|
147 | if ax.firsttime: | |
145 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
148 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] | |
146 | else: |
|
149 | else: | |
147 | ax.plot.set_data(x, y) |
|
150 | ax.plot.set_data(x, y) | |
148 |
|
151 | |||
149 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
152 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | |
150 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
153 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | |
151 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
154 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
152 | dt2, |
|
155 | dt2, | |
153 | len(x)) |
|
156 | len(x)) | |
154 | self.titles[0] = title |
|
157 | self.titles[0] = title | |
155 |
|
158 | |||
156 |
|
159 | |||
157 | class GenericRTIPlot(Plot): |
|
160 | class GenericRTIPlot(Plot): | |
158 | ''' |
|
161 | ''' | |
159 | Plot for data_xxxx object |
|
162 | Plot for data_xxxx object | |
160 | ''' |
|
163 | ''' | |
161 |
|
164 | |||
162 | CODE = 'param' |
|
165 | CODE = 'param' | |
163 | colormap = 'viridis' |
|
166 | colormap = 'viridis' | |
164 | plot_type = 'pcolorbuffer' |
|
167 | plot_type = 'pcolorbuffer' | |
165 |
|
168 | |||
166 | def setup(self): |
|
169 | def setup(self): | |
167 | self.xaxis = 'time' |
|
170 | self.xaxis = 'time' | |
168 | self.ncols = 1 |
|
171 | self.ncols = 1 | |
169 | self.nrows = self.data.shape('param')[0] |
|
172 | self.nrows = self.data.shape('param')[0] | |
170 | self.nplots = self.nrows |
|
173 | self.nplots = self.nrows | |
171 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
174 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) | |
172 |
|
175 | |||
173 | if not self.xlabel: |
|
176 | if not self.xlabel: | |
174 | self.xlabel = 'Time' |
|
177 | self.xlabel = 'Time' | |
175 |
|
178 | |||
176 | self.ylabel = 'Height [km]' |
|
179 | self.ylabel = 'Height [km]' | |
177 | if not self.titles: |
|
180 | if not self.titles: | |
178 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
181 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] | |
179 |
|
182 | |||
180 | def update(self, dataOut): |
|
183 | def update(self, dataOut): | |
181 |
|
184 | |||
182 | data = { |
|
185 | data = { | |
183 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
186 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) | |
184 | } |
|
187 | } | |
185 |
|
188 | |||
186 | meta = {} |
|
189 | meta = {} | |
187 |
|
190 | |||
188 | return data, meta |
|
191 | return data, meta | |
189 |
|
192 | |||
190 | def plot(self): |
|
193 | def plot(self): | |
191 | # self.data.normalize_heights() |
|
194 | # self.data.normalize_heights() | |
192 | self.x = self.data.times |
|
195 | self.x = self.data.times | |
193 | self.y = self.data.yrange |
|
196 | self.y = self.data.yrange | |
194 | self.z = self.data['param'] |
|
197 | self.z = self.data['param'] | |
195 |
|
198 | |||
196 | self.z = numpy.ma.masked_invalid(self.z) |
|
199 | self.z = numpy.ma.masked_invalid(self.z) | |
197 |
|
200 | |||
198 | if self.decimation is None: |
|
201 | if self.decimation is None: | |
199 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
202 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
200 | else: |
|
203 | else: | |
201 | x, y, z = self.fill_gaps(*self.decimate()) |
|
204 | x, y, z = self.fill_gaps(*self.decimate()) | |
202 |
|
205 | |||
203 | for n, ax in enumerate(self.axes): |
|
206 | for n, ax in enumerate(self.axes): | |
204 |
|
207 | |||
205 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
208 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
206 | self.z[n]) |
|
209 | self.z[n]) | |
207 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
210 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
208 | self.z[n]) |
|
211 | self.z[n]) | |
209 |
|
212 | |||
210 | if ax.firsttime: |
|
213 | if ax.firsttime: | |
211 | if self.zlimits is not None: |
|
214 | if self.zlimits is not None: | |
212 | self.zmin, self.zmax = self.zlimits[n] |
|
215 | self.zmin, self.zmax = self.zlimits[n] | |
213 |
|
216 | |||
214 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
217 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
215 | vmin=self.zmin, |
|
218 | vmin=self.zmin, | |
216 | vmax=self.zmax, |
|
219 | vmax=self.zmax, | |
217 | cmap=self.cmaps[n] |
|
220 | cmap=self.cmaps[n] | |
218 | ) |
|
221 | ) | |
219 | else: |
|
222 | else: | |
220 | if self.zlimits is not None: |
|
223 | if self.zlimits is not None: | |
221 | self.zmin, self.zmax = self.zlimits[n] |
|
224 | self.zmin, self.zmax = self.zlimits[n] | |
222 | ax.collections.remove(ax.collections[0]) |
|
225 | ax.collections.remove(ax.collections[0]) | |
223 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
226 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
224 | vmin=self.zmin, |
|
227 | vmin=self.zmin, | |
225 | vmax=self.zmax, |
|
228 | vmax=self.zmax, | |
226 | cmap=self.cmaps[n] |
|
229 | cmap=self.cmaps[n] | |
227 | ) |
|
230 | ) | |
228 |
|
231 | |||
229 |
|
232 | |||
230 | class PolarMapPlot(Plot): |
|
233 | class PolarMapPlot(Plot): | |
231 | ''' |
|
234 | ''' | |
232 | Plot for weather radar |
|
235 | Plot for weather radar | |
233 | ''' |
|
236 | ''' | |
234 |
|
237 | |||
235 | CODE = 'param' |
|
238 | CODE = 'param' | |
236 | colormap = 'seismic' |
|
239 | colormap = 'seismic' | |
237 |
|
240 | |||
238 | def setup(self): |
|
241 | def setup(self): | |
239 | self.ncols = 1 |
|
242 | self.ncols = 1 | |
240 | self.nrows = 1 |
|
243 | self.nrows = 1 | |
241 | self.width = 9 |
|
244 | self.width = 9 | |
242 | self.height = 8 |
|
245 | self.height = 8 | |
243 | self.mode = self.data.meta['mode'] |
|
246 | self.mode = self.data.meta['mode'] | |
244 | if self.channels is not None: |
|
247 | if self.channels is not None: | |
245 | self.nplots = len(self.channels) |
|
248 | self.nplots = len(self.channels) | |
246 | self.nrows = len(self.channels) |
|
249 | self.nrows = len(self.channels) | |
247 | else: |
|
250 | else: | |
248 | self.nplots = self.data.shape(self.CODE)[0] |
|
251 | self.nplots = self.data.shape(self.CODE)[0] | |
249 | self.nrows = self.nplots |
|
252 | self.nrows = self.nplots | |
250 | self.channels = list(range(self.nplots)) |
|
253 | self.channels = list(range(self.nplots)) | |
251 | if self.mode == 'E': |
|
254 | if self.mode == 'E': | |
252 | self.xlabel = 'Longitude' |
|
255 | self.xlabel = 'Longitude' | |
253 | self.ylabel = 'Latitude' |
|
256 | self.ylabel = 'Latitude' | |
254 | else: |
|
257 | else: | |
255 | self.xlabel = 'Range (km)' |
|
258 | self.xlabel = 'Range (km)' | |
256 | self.ylabel = 'Height (km)' |
|
259 | self.ylabel = 'Height (km)' | |
257 | self.bgcolor = 'white' |
|
260 | self.bgcolor = 'white' | |
258 | self.cb_labels = self.data.meta['units'] |
|
261 | self.cb_labels = self.data.meta['units'] | |
259 | self.lat = self.data.meta['latitude'] |
|
262 | self.lat = self.data.meta['latitude'] | |
260 | self.lon = self.data.meta['longitude'] |
|
263 | self.lon = self.data.meta['longitude'] | |
261 | self.xmin, self.xmax = float( |
|
264 | self.xmin, self.xmax = float( | |
262 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
265 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | |
263 | self.ymin, self.ymax = float( |
|
266 | self.ymin, self.ymax = float( | |
264 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
267 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | |
265 | # self.polar = True |
|
268 | # self.polar = True | |
266 |
|
269 | |||
267 | def plot(self): |
|
270 | def plot(self): | |
268 |
|
271 | |||
269 | for n, ax in enumerate(self.axes): |
|
272 | for n, ax in enumerate(self.axes): | |
270 | data = self.data['param'][self.channels[n]] |
|
273 | data = self.data['param'][self.channels[n]] | |
271 |
|
274 | |||
272 | zeniths = numpy.linspace( |
|
275 | zeniths = numpy.linspace( | |
273 | 0, self.data.meta['max_range'], data.shape[1]) |
|
276 | 0, self.data.meta['max_range'], data.shape[1]) | |
274 | if self.mode == 'E': |
|
277 | if self.mode == 'E': | |
275 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
278 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 | |
276 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
279 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
277 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
280 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | |
278 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
281 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | |
279 | x = km2deg(x) + self.lon |
|
282 | x = km2deg(x) + self.lon | |
280 | y = km2deg(y) + self.lat |
|
283 | y = km2deg(y) + self.lat | |
281 | else: |
|
284 | else: | |
282 | azimuths = numpy.radians(self.data.yrange) |
|
285 | azimuths = numpy.radians(self.data.yrange) | |
283 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
286 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
284 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
287 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
285 | self.y = zeniths |
|
288 | self.y = zeniths | |
286 |
|
289 | |||
287 | if ax.firsttime: |
|
290 | if ax.firsttime: | |
288 | if self.zlimits is not None: |
|
291 | if self.zlimits is not None: | |
289 | self.zmin, self.zmax = self.zlimits[n] |
|
292 | self.zmin, self.zmax = self.zlimits[n] | |
290 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
293 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
291 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
294 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
292 | vmin=self.zmin, |
|
295 | vmin=self.zmin, | |
293 | vmax=self.zmax, |
|
296 | vmax=self.zmax, | |
294 | cmap=self.cmaps[n]) |
|
297 | cmap=self.cmaps[n]) | |
295 | else: |
|
298 | else: | |
296 | if self.zlimits is not None: |
|
299 | if self.zlimits is not None: | |
297 | self.zmin, self.zmax = self.zlimits[n] |
|
300 | self.zmin, self.zmax = self.zlimits[n] | |
298 | ax.collections.remove(ax.collections[0]) |
|
301 | ax.collections.remove(ax.collections[0]) | |
299 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
302 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
300 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
303 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
301 | vmin=self.zmin, |
|
304 | vmin=self.zmin, | |
302 | vmax=self.zmax, |
|
305 | vmax=self.zmax, | |
303 | cmap=self.cmaps[n]) |
|
306 | cmap=self.cmaps[n]) | |
304 |
|
307 | |||
305 | if self.mode == 'A': |
|
308 | if self.mode == 'A': | |
306 | continue |
|
309 | continue | |
307 |
|
310 | |||
308 | # plot district names |
|
311 | # plot district names | |
309 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
312 | f = open('/data/workspace/schain_scripts/distrito.csv') | |
310 | for line in f: |
|
313 | for line in f: | |
311 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
314 | label, lon, lat = [s.strip() for s in line.split(',') if s] | |
312 | lat = float(lat) |
|
315 | lat = float(lat) | |
313 | lon = float(lon) |
|
316 | lon = float(lon) | |
314 | # ax.plot(lon, lat, '.b', ms=2) |
|
317 | # ax.plot(lon, lat, '.b', ms=2) | |
315 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
318 | ax.text(lon, lat, label.decode('utf8'), ha='center', | |
316 | va='bottom', size='8', color='black') |
|
319 | va='bottom', size='8', color='black') | |
317 |
|
320 | |||
318 | # plot limites |
|
321 | # plot limites | |
319 | limites = [] |
|
322 | limites = [] | |
320 | tmp = [] |
|
323 | tmp = [] | |
321 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
324 | for line in open('/data/workspace/schain_scripts/lima.csv'): | |
322 | if '#' in line: |
|
325 | if '#' in line: | |
323 | if tmp: |
|
326 | if tmp: | |
324 | limites.append(tmp) |
|
327 | limites.append(tmp) | |
325 | tmp = [] |
|
328 | tmp = [] | |
326 | continue |
|
329 | continue | |
327 | values = line.strip().split(',') |
|
330 | values = line.strip().split(',') | |
328 | tmp.append((float(values[0]), float(values[1]))) |
|
331 | tmp.append((float(values[0]), float(values[1]))) | |
329 | for points in limites: |
|
332 | for points in limites: | |
330 | ax.add_patch( |
|
333 | ax.add_patch( | |
331 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
334 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | |
332 |
|
335 | |||
333 | # plot Cuencas |
|
336 | # plot Cuencas | |
334 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
337 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | |
335 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
338 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) | |
336 | values = [line.strip().split(',') for line in f] |
|
339 | values = [line.strip().split(',') for line in f] | |
337 | points = [(float(s[0]), float(s[1])) for s in values] |
|
340 | points = [(float(s[0]), float(s[1])) for s in values] | |
338 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
341 | ax.add_patch(Polygon(points, ec='b', fc='none')) | |
339 |
|
342 | |||
340 | # plot grid |
|
343 | # plot grid | |
341 | for r in (15, 30, 45, 60): |
|
344 | for r in (15, 30, 45, 60): | |
342 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
345 | ax.add_artist(plt.Circle((self.lon, self.lat), | |
343 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
346 | km2deg(r), color='0.6', fill=False, lw=0.2)) | |
344 | ax.text( |
|
347 | ax.text( | |
345 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
348 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), | |
346 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
349 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), | |
347 | '{}km'.format(r), |
|
350 | '{}km'.format(r), | |
348 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
351 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') | |
349 |
|
352 | |||
350 | if self.mode == 'E': |
|
353 | if self.mode == 'E': | |
351 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
354 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | |
352 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
355 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | |
353 | else: |
|
356 | else: | |
354 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
357 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | |
355 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
358 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | |
356 |
|
359 | |||
357 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
360 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
358 | self.titles = ['{} {}'.format( |
|
361 | self.titles = ['{} {}'.format( | |
359 | self.data.parameters[x], title) for x in self.channels] |
|
362 | self.data.parameters[x], title) for x in self.channels] |
@@ -1,964 +1,1002 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Classes to plot Spectra data |
|
5 | """Classes to plot Spectra data | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import numpy |
|
10 | import numpy | |
11 |
|
11 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
13 | from itertools import combinations |
|
13 | from itertools import combinations | |
14 |
|
14 | |||
15 |
|
15 | |||
16 | class SpectraPlot(Plot): |
|
16 | class SpectraPlot(Plot): | |
17 | ''' |
|
17 | ''' | |
18 | Plot for Spectra data |
|
18 | Plot for Spectra data | |
19 | ''' |
|
19 | ''' | |
20 |
|
20 | |||
21 | CODE = 'spc' |
|
21 | CODE = 'spc' | |
22 | colormap = 'jet' |
|
22 | colormap = 'jet' | |
23 | plot_type = 'pcolor' |
|
23 | plot_type = 'pcolor' | |
24 | buffering = False |
|
24 | buffering = False | |
25 | channelList = [] |
|
25 | channelList = [] | |
|
26 | elevationList = [] | |||
|
27 | azimuthList = [] | |||
26 |
|
28 | |||
27 | def setup(self): |
|
29 | def setup(self): | |
28 |
|
30 | |||
29 | self.nplots = len(self.data.channels) |
|
31 | self.nplots = len(self.data.channels) | |
30 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
32 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
31 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
33 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
32 | self.height = 3.4 * self.nrows |
|
34 | self.height = 3.4 * self.nrows | |
33 |
|
35 | |||
34 | self.cb_label = 'dB' |
|
36 | self.cb_label = 'dB' | |
35 | if self.showprofile: |
|
37 | if self.showprofile: | |
36 | self.width = 5.2 * self.ncols |
|
38 | self.width = 5.2 * self.ncols | |
37 | else: |
|
39 | else: | |
38 | self.width = 4.2* self.ncols |
|
40 | self.width = 4.2* self.ncols | |
39 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.12}) |
|
41 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.12}) | |
40 | self.ylabel = 'Range [km]' |
|
42 | self.ylabel = 'Range [km]' | |
41 |
|
43 | |||
42 |
|
44 | |||
43 | def update_list(self,dataOut): |
|
45 | def update_list(self,dataOut): | |
44 | if len(self.channelList) == 0: |
|
46 | if len(self.channelList) == 0: | |
45 | self.channelList = dataOut.channelList |
|
47 | self.channelList = dataOut.channelList | |
|
48 | if len(self.elevationList) == 0: | |||
|
49 | self.elevationList = dataOut.elevationList | |||
|
50 | if len(self.azimuthList) == 0: | |||
|
51 | self.azimuthList = dataOut.azimuthList | |||
46 |
|
52 | |||
47 | def update(self, dataOut): |
|
53 | def update(self, dataOut): | |
48 |
|
54 | |||
49 | self.update_list(dataOut) |
|
55 | self.update_list(dataOut) | |
50 | data = {} |
|
56 | data = {} | |
51 | meta = {} |
|
57 | meta = {} | |
52 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
58 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
53 | data['spc'] = spc |
|
59 | data['spc'] = spc | |
54 | data['rti'] = dataOut.getPower() |
|
60 | data['rti'] = dataOut.getPower() | |
55 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
61 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
56 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
62 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
57 | if self.CODE == 'spc_moments': |
|
63 | if self.CODE == 'spc_moments': | |
58 | data['moments'] = dataOut.moments |
|
64 | data['moments'] = dataOut.moments | |
59 |
|
65 | |||
60 | return data, meta |
|
66 | return data, meta | |
61 |
|
67 | |||
62 | def plot(self): |
|
68 | def plot(self): | |
63 | if self.xaxis == "frequency": |
|
69 | if self.xaxis == "frequency": | |
64 | x = self.data.xrange[0] |
|
70 | x = self.data.xrange[0] | |
65 | self.xlabel = "Frequency (kHz)" |
|
71 | self.xlabel = "Frequency (kHz)" | |
66 | elif self.xaxis == "time": |
|
72 | elif self.xaxis == "time": | |
67 | x = self.data.xrange[1] |
|
73 | x = self.data.xrange[1] | |
68 | self.xlabel = "Time (ms)" |
|
74 | self.xlabel = "Time (ms)" | |
69 | else: |
|
75 | else: | |
70 | x = self.data.xrange[2] |
|
76 | x = self.data.xrange[2] | |
71 | self.xlabel = "Velocity (m/s)" |
|
77 | self.xlabel = "Velocity (m/s)" | |
72 |
|
78 | |||
73 | if self.CODE == 'spc_moments': |
|
79 | if self.CODE == 'spc_moments': | |
74 | x = self.data.xrange[2] |
|
80 | x = self.data.xrange[2] | |
75 | self.xlabel = "Velocity (m/s)" |
|
81 | self.xlabel = "Velocity (m/s)" | |
76 |
|
82 | |||
77 | self.titles = [] |
|
83 | self.titles = [] | |
78 | y = self.data.yrange |
|
84 | y = self.data.yrange | |
79 | self.y = y |
|
85 | self.y = y | |
80 |
|
86 | |||
81 | data = self.data[-1] |
|
87 | data = self.data[-1] | |
82 | z = data['spc'] |
|
88 | z = data['spc'] | |
83 |
|
89 | |||
84 | for n, ax in enumerate(self.axes): |
|
90 | for n, ax in enumerate(self.axes): | |
85 | noise = data['noise'][n] |
|
91 | noise = data['noise'][n] | |
86 | if self.CODE == 'spc_moments': |
|
92 | if self.CODE == 'spc_moments': | |
87 | mean = data['moments'][n, 1] |
|
93 | mean = data['moments'][n, 1] | |
88 | if ax.firsttime: |
|
94 | if ax.firsttime: | |
89 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
95 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
90 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
96 | self.xmin = self.xmin if self.xmin else -self.xmax | |
91 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
97 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
92 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
98 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
93 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
99 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
94 | vmin=self.zmin, |
|
100 | vmin=self.zmin, | |
95 | vmax=self.zmax, |
|
101 | vmax=self.zmax, | |
96 | cmap=plt.get_cmap(self.colormap) |
|
102 | cmap=plt.get_cmap(self.colormap) | |
97 | ) |
|
103 | ) | |
98 |
|
104 | |||
99 | if self.showprofile: |
|
105 | if self.showprofile: | |
100 | ax.plt_profile = self.pf_axes[n].plot( |
|
106 | ax.plt_profile = self.pf_axes[n].plot( | |
101 | data['rti'][n], y)[0] |
|
107 | data['rti'][n], y)[0] | |
102 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
108 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
103 | color="k", linestyle="dashed", lw=1)[0] |
|
109 | color="k", linestyle="dashed", lw=1)[0] | |
104 | if self.CODE == 'spc_moments': |
|
110 | if self.CODE == 'spc_moments': | |
105 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
111 | ax.plt_mean = ax.plot(mean, y, color='k')[0] | |
106 | else: |
|
112 | else: | |
107 | ax.plt.set_array(z[n].T.ravel()) |
|
113 | ax.plt.set_array(z[n].T.ravel()) | |
108 | if self.showprofile: |
|
114 | if self.showprofile: | |
109 | ax.plt_profile.set_data(data['rti'][n], y) |
|
115 | ax.plt_profile.set_data(data['rti'][n], y) | |
110 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
116 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
111 | if self.CODE == 'spc_moments': |
|
117 | if self.CODE == 'spc_moments': | |
112 | ax.plt_mean.set_data(mean, y) |
|
118 | ax.plt_mean.set_data(mean, y) | |
113 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
119 | if len(self.azimuthList) > 0 and len(self.elevationList) > 0: | |
|
120 | self.titles.append('CH {}: {:2.1f}elv {:2.1f}az {:3.2f}dB'.format(self.channelList[n], noise, self.elevationList[n], self.azimuthList[n])) | |||
|
121 | else: | |||
|
122 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) | |||
114 |
|
123 | |||
115 |
|
124 | |||
116 | class CrossSpectraPlot(Plot): |
|
125 | class CrossSpectraPlot(Plot): | |
117 |
|
126 | |||
118 | CODE = 'cspc' |
|
127 | CODE = 'cspc' | |
119 | colormap = 'jet' |
|
128 | colormap = 'jet' | |
120 | plot_type = 'pcolor' |
|
129 | plot_type = 'pcolor' | |
121 | zmin_coh = None |
|
130 | zmin_coh = None | |
122 | zmax_coh = None |
|
131 | zmax_coh = None | |
123 | zmin_phase = None |
|
132 | zmin_phase = None | |
124 | zmax_phase = None |
|
133 | zmax_phase = None | |
125 | realChannels = None |
|
134 | realChannels = None | |
126 | crossPairs = None |
|
135 | crossPairs = None | |
127 |
|
136 | |||
128 | def setup(self): |
|
137 | def setup(self): | |
129 |
|
138 | |||
130 | self.ncols = 4 |
|
139 | self.ncols = 4 | |
131 | self.nplots = len(self.data.pairs) * 2 |
|
140 | self.nplots = len(self.data.pairs) * 2 | |
132 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
141 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
133 | self.width = 3.1 * self.ncols |
|
142 | self.width = 3.1 * self.ncols | |
134 | self.height = 2.6 * self.nrows |
|
143 | self.height = 2.6 * self.nrows | |
135 | self.ylabel = 'Range [km]' |
|
144 | self.ylabel = 'Range [km]' | |
136 | self.showprofile = False |
|
145 | self.showprofile = False | |
137 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
146 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
138 |
|
147 | |||
139 | def update(self, dataOut): |
|
148 | def update(self, dataOut): | |
140 |
|
149 | |||
141 | data = {} |
|
150 | data = {} | |
142 | meta = {} |
|
151 | meta = {} | |
143 |
|
152 | |||
144 | spc = dataOut.data_spc |
|
153 | spc = dataOut.data_spc | |
145 | cspc = dataOut.data_cspc |
|
154 | cspc = dataOut.data_cspc | |
146 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
155 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
147 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) |
|
156 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) | |
148 | meta['pairs'] = rawPairs |
|
157 | meta['pairs'] = rawPairs | |
149 |
|
158 | |||
150 | if self.crossPairs == None: |
|
159 | if self.crossPairs == None: | |
151 | self.crossPairs = dataOut.pairsList |
|
160 | self.crossPairs = dataOut.pairsList | |
152 |
|
161 | |||
153 | tmp = [] |
|
162 | tmp = [] | |
154 |
|
163 | |||
155 | for n, pair in enumerate(meta['pairs']): |
|
164 | for n, pair in enumerate(meta['pairs']): | |
156 |
|
165 | |||
157 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
166 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
158 | coh = numpy.abs(out) |
|
167 | coh = numpy.abs(out) | |
159 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
168 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
160 | tmp.append(coh) |
|
169 | tmp.append(coh) | |
161 | tmp.append(phase) |
|
170 | tmp.append(phase) | |
162 |
|
171 | |||
163 | data['cspc'] = numpy.array(tmp) |
|
172 | data['cspc'] = numpy.array(tmp) | |
164 |
|
173 | |||
165 | return data, meta |
|
174 | return data, meta | |
166 |
|
175 | |||
167 | def plot(self): |
|
176 | def plot(self): | |
168 |
|
177 | |||
169 | if self.xaxis == "frequency": |
|
178 | if self.xaxis == "frequency": | |
170 | x = self.data.xrange[0] |
|
179 | x = self.data.xrange[0] | |
171 | self.xlabel = "Frequency (kHz)" |
|
180 | self.xlabel = "Frequency (kHz)" | |
172 | elif self.xaxis == "time": |
|
181 | elif self.xaxis == "time": | |
173 | x = self.data.xrange[1] |
|
182 | x = self.data.xrange[1] | |
174 | self.xlabel = "Time (ms)" |
|
183 | self.xlabel = "Time (ms)" | |
175 | else: |
|
184 | else: | |
176 | x = self.data.xrange[2] |
|
185 | x = self.data.xrange[2] | |
177 | self.xlabel = "Velocity (m/s)" |
|
186 | self.xlabel = "Velocity (m/s)" | |
178 |
|
187 | |||
179 | self.titles = [] |
|
188 | self.titles = [] | |
180 |
|
189 | |||
181 | y = self.data.yrange |
|
190 | y = self.data.yrange | |
182 | self.y = y |
|
191 | self.y = y | |
183 |
|
192 | |||
184 | data = self.data[-1] |
|
193 | data = self.data[-1] | |
185 | cspc = data['cspc'] |
|
194 | cspc = data['cspc'] | |
186 |
|
195 | |||
187 | for n in range(len(self.data.pairs)): |
|
196 | for n in range(len(self.data.pairs)): | |
188 |
|
197 | |||
189 | pair = self.crossPairs[n] |
|
198 | pair = self.crossPairs[n] | |
190 |
|
199 | |||
191 | coh = cspc[n*2] |
|
200 | coh = cspc[n*2] | |
192 | phase = cspc[n*2+1] |
|
201 | phase = cspc[n*2+1] | |
193 | ax = self.axes[2 * n] |
|
202 | ax = self.axes[2 * n] | |
194 |
|
203 | |||
195 | if ax.firsttime: |
|
204 | if ax.firsttime: | |
196 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
205 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
197 | vmin=self.zmin_coh, |
|
206 | vmin=self.zmin_coh, | |
198 | vmax=self.zmax_coh, |
|
207 | vmax=self.zmax_coh, | |
199 | cmap=plt.get_cmap(self.colormap_coh) |
|
208 | cmap=plt.get_cmap(self.colormap_coh) | |
200 | ) |
|
209 | ) | |
201 | else: |
|
210 | else: | |
202 | ax.plt.set_array(coh.T.ravel()) |
|
211 | ax.plt.set_array(coh.T.ravel()) | |
203 | self.titles.append( |
|
212 | self.titles.append( | |
204 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
213 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
205 |
|
214 | |||
206 | ax = self.axes[2 * n + 1] |
|
215 | ax = self.axes[2 * n + 1] | |
207 | if ax.firsttime: |
|
216 | if ax.firsttime: | |
208 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
217 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
209 | vmin=-180, |
|
218 | vmin=-180, | |
210 | vmax=180, |
|
219 | vmax=180, | |
211 | cmap=plt.get_cmap(self.colormap_phase) |
|
220 | cmap=plt.get_cmap(self.colormap_phase) | |
212 | ) |
|
221 | ) | |
213 | else: |
|
222 | else: | |
214 | ax.plt.set_array(phase.T.ravel()) |
|
223 | ax.plt.set_array(phase.T.ravel()) | |
215 |
|
224 | |||
216 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
225 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
217 |
|
226 | |||
218 |
|
227 | |||
219 | class RTIPlot(Plot): |
|
228 | class RTIPlot(Plot): | |
220 | ''' |
|
229 | ''' | |
221 | Plot for RTI data |
|
230 | Plot for RTI data | |
222 | ''' |
|
231 | ''' | |
223 |
|
232 | |||
224 | CODE = 'rti' |
|
233 | CODE = 'rti' | |
225 | colormap = 'jet' |
|
234 | colormap = 'jet' | |
226 | plot_type = 'pcolorbuffer' |
|
235 | plot_type = 'pcolorbuffer' | |
227 | titles = None |
|
236 | titles = None | |
228 | channelList = [] |
|
237 | channelList = [] | |
|
238 | elevationList = [] | |||
|
239 | azimuthList = [] | |||
229 |
|
240 | |||
230 | def setup(self): |
|
241 | def setup(self): | |
231 | self.xaxis = 'time' |
|
242 | self.xaxis = 'time' | |
232 | self.ncols = 1 |
|
243 | self.ncols = 1 | |
233 | #print("dataChannels ",self.data.channels) |
|
244 | #print("dataChannels ",self.data.channels) | |
234 | self.nrows = len(self.data.channels) |
|
245 | self.nrows = len(self.data.channels) | |
235 | self.nplots = len(self.data.channels) |
|
246 | self.nplots = len(self.data.channels) | |
236 | self.ylabel = 'Range [km]' |
|
247 | self.ylabel = 'Range [km]' | |
237 | self.xlabel = 'Time' |
|
248 | self.xlabel = 'Time' | |
238 | self.cb_label = 'dB' |
|
249 | self.cb_label = 'dB' | |
239 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
250 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) | |
240 | self.titles = ['{} Channel {}'.format( |
|
251 | self.titles = ['{} Channel {}'.format( | |
241 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
252 | self.CODE.upper(), x) for x in range(self.nplots)] | |
242 |
|
253 | |||
243 | def update_list(self,dataOut): |
|
254 | def update_list(self,dataOut): | |
244 |
|
255 | |||
245 |
self.channelList = |
|
256 | if len(self.channelList) == 0: | |
|
257 | self.channelList = dataOut.channelList | |||
|
258 | if len(self.elevationList) == 0: | |||
|
259 | self.elevationList = dataOut.elevationList | |||
|
260 | if len(self.azimuthList) == 0: | |||
|
261 | self.azimuthList = dataOut.azimuthList | |||
246 |
|
262 | |||
247 |
|
263 | |||
248 | def update(self, dataOut): |
|
264 | def update(self, dataOut): | |
249 | if len(self.channelList) == 0: |
|
265 | if len(self.channelList) == 0: | |
250 | self.update_list(dataOut) |
|
266 | self.update_list(dataOut) | |
251 | data = {} |
|
267 | data = {} | |
252 | meta = {} |
|
268 | meta = {} | |
253 | data['rti'] = dataOut.getPower() |
|
269 | data['rti'] = dataOut.getPower() | |
254 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
270 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
255 | return data, meta |
|
271 | return data, meta | |
256 |
|
272 | |||
257 | def plot(self): |
|
273 | def plot(self): | |
258 |
|
274 | |||
259 | self.x = self.data.times |
|
275 | self.x = self.data.times | |
260 | self.y = self.data.yrange |
|
276 | self.y = self.data.yrange | |
261 |
|
277 | |||
262 | self.z = self.data[self.CODE] |
|
278 | self.z = self.data[self.CODE] | |
263 | self.z = numpy.array(self.z, dtype=float) |
|
279 | self.z = numpy.array(self.z, dtype=float) | |
264 | self.z = numpy.ma.masked_invalid(self.z) |
|
280 | self.z = numpy.ma.masked_invalid(self.z) | |
265 |
|
281 | |||
266 | try: |
|
282 | try: | |
267 | if self.channelList != None: |
|
283 | if self.channelList != None: | |
268 | self.titles = ['{} Channel {}'.format( |
|
284 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: | |
269 | self.CODE.upper(), x) for x in self.channelList] |
|
285 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( | |
|
286 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] | |||
|
287 | else: | |||
|
288 | self.titles = ['{} Channel {}'.format( | |||
|
289 | self.CODE.upper(), x) for x in self.channelList] | |||
270 | except: |
|
290 | except: | |
271 | if self.channelList.any() != None: |
|
291 | if self.channelList.any() != None: | |
|
292 | ||||
272 | self.titles = ['{} Channel {}'.format( |
|
293 | self.titles = ['{} Channel {}'.format( | |
273 | self.CODE.upper(), x) for x in self.channelList] |
|
294 | self.CODE.upper(), x) for x in self.channelList] | |
|
295 | ||||
274 | if self.decimation is None: |
|
296 | if self.decimation is None: | |
275 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
297 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
276 | else: |
|
298 | else: | |
277 | x, y, z = self.fill_gaps(*self.decimate()) |
|
299 | x, y, z = self.fill_gaps(*self.decimate()) | |
278 |
|
300 | |||
279 | #dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes |
|
301 | #dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes | |
280 | for n, ax in enumerate(self.axes): |
|
302 | for n, ax in enumerate(self.axes): | |
281 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
303 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
282 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
304 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
283 | data = self.data[-1] |
|
305 | data = self.data[-1] | |
284 |
|
306 | |||
285 | if ax.firsttime: |
|
307 | if ax.firsttime: | |
286 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
308 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
287 | vmin=self.zmin, |
|
309 | vmin=self.zmin, | |
288 | vmax=self.zmax, |
|
310 | vmax=self.zmax, | |
289 | cmap=plt.get_cmap(self.colormap) |
|
311 | cmap=plt.get_cmap(self.colormap) | |
290 | ) |
|
312 | ) | |
291 | if self.showprofile: |
|
313 | if self.showprofile: | |
292 | ax.plot_profile = self.pf_axes[n].plot(data[self.CODE][n], self.y)[0] |
|
314 | ax.plot_profile = self.pf_axes[n].plot(data[self.CODE][n], self.y)[0] | |
293 | if "noise" in self.data: |
|
315 | if "noise" in self.data: | |
294 |
|
316 | |||
295 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
317 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, | |
296 | color="k", linestyle="dashed", lw=1)[0] |
|
318 | color="k", linestyle="dashed", lw=1)[0] | |
297 | else: |
|
319 | else: | |
298 | ax.collections.remove(ax.collections[0]) |
|
320 | ax.collections.remove(ax.collections[0]) | |
299 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
321 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
300 | vmin=self.zmin, |
|
322 | vmin=self.zmin, | |
301 | vmax=self.zmax, |
|
323 | vmax=self.zmax, | |
302 | cmap=plt.get_cmap(self.colormap) |
|
324 | cmap=plt.get_cmap(self.colormap) | |
303 | ) |
|
325 | ) | |
304 | if self.showprofile: |
|
326 | if self.showprofile: | |
305 | ax.plot_profile.set_data(data[self.CODE][n], self.y) |
|
327 | ax.plot_profile.set_data(data[self.CODE][n], self.y) | |
306 | if "noise" in self.data: |
|
328 | if "noise" in self.data: | |
307 |
|
329 | |||
308 | ax.plot_noise.set_data(numpy.repeat( |
|
330 | ax.plot_noise.set_data(numpy.repeat( | |
309 | data['noise'][n], len(self.y)), self.y) |
|
331 | data['noise'][n], len(self.y)), self.y) | |
310 |
|
332 | |||
311 |
|
333 | |||
312 | class CoherencePlot(RTIPlot): |
|
334 | class CoherencePlot(RTIPlot): | |
313 | ''' |
|
335 | ''' | |
314 | Plot for Coherence data |
|
336 | Plot for Coherence data | |
315 | ''' |
|
337 | ''' | |
316 |
|
338 | |||
317 | CODE = 'coh' |
|
339 | CODE = 'coh' | |
318 |
|
340 | |||
319 | def setup(self): |
|
341 | def setup(self): | |
320 | self.xaxis = 'time' |
|
342 | self.xaxis = 'time' | |
321 | self.ncols = 1 |
|
343 | self.ncols = 1 | |
322 | self.nrows = len(self.data.pairs) |
|
344 | self.nrows = len(self.data.pairs) | |
323 | self.nplots = len(self.data.pairs) |
|
345 | self.nplots = len(self.data.pairs) | |
324 | self.ylabel = 'Range [km]' |
|
346 | self.ylabel = 'Range [km]' | |
325 | self.xlabel = 'Time' |
|
347 | self.xlabel = 'Time' | |
326 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
348 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) | |
327 | if self.CODE == 'coh': |
|
349 | if self.CODE == 'coh': | |
328 | self.cb_label = '' |
|
350 | self.cb_label = '' | |
329 | self.titles = [ |
|
351 | self.titles = [ | |
330 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
352 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
331 | else: |
|
353 | else: | |
332 | self.cb_label = 'Degrees' |
|
354 | self.cb_label = 'Degrees' | |
333 | self.titles = [ |
|
355 | self.titles = [ | |
334 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
356 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
335 |
|
357 | |||
336 | def update(self, dataOut): |
|
358 | def update(self, dataOut): | |
337 | self.update_list(dataOut) |
|
359 | self.update_list(dataOut) | |
338 | data = {} |
|
360 | data = {} | |
339 | meta = {} |
|
361 | meta = {} | |
340 | data['coh'] = dataOut.getCoherence() |
|
362 | data['coh'] = dataOut.getCoherence() | |
341 | meta['pairs'] = dataOut.pairsList |
|
363 | meta['pairs'] = dataOut.pairsList | |
342 |
|
364 | |||
343 |
|
365 | |||
344 | return data, meta |
|
366 | return data, meta | |
345 |
|
367 | |||
346 | class PhasePlot(CoherencePlot): |
|
368 | class PhasePlot(CoherencePlot): | |
347 | ''' |
|
369 | ''' | |
348 | Plot for Phase map data |
|
370 | Plot for Phase map data | |
349 | ''' |
|
371 | ''' | |
350 |
|
372 | |||
351 | CODE = 'phase' |
|
373 | CODE = 'phase' | |
352 | colormap = 'seismic' |
|
374 | colormap = 'seismic' | |
353 |
|
375 | |||
354 | def update(self, dataOut): |
|
376 | def update(self, dataOut): | |
355 |
|
377 | |||
356 | data = {} |
|
378 | data = {} | |
357 | meta = {} |
|
379 | meta = {} | |
358 | data['phase'] = dataOut.getCoherence(phase=True) |
|
380 | data['phase'] = dataOut.getCoherence(phase=True) | |
359 | meta['pairs'] = dataOut.pairsList |
|
381 | meta['pairs'] = dataOut.pairsList | |
360 |
|
382 | |||
361 | return data, meta |
|
383 | return data, meta | |
362 |
|
384 | |||
363 | class NoisePlot(Plot): |
|
385 | class NoisePlot(Plot): | |
364 | ''' |
|
386 | ''' | |
365 | Plot for noise |
|
387 | Plot for noise | |
366 | ''' |
|
388 | ''' | |
367 |
|
389 | |||
368 | CODE = 'noise' |
|
390 | CODE = 'noise' | |
369 | plot_type = 'scatterbuffer' |
|
391 | plot_type = 'scatterbuffer' | |
370 |
|
392 | |||
371 | def setup(self): |
|
393 | def setup(self): | |
372 | self.xaxis = 'time' |
|
394 | self.xaxis = 'time' | |
373 | self.ncols = 1 |
|
395 | self.ncols = 1 | |
374 | self.nrows = 1 |
|
396 | self.nrows = 1 | |
375 | self.nplots = 1 |
|
397 | self.nplots = 1 | |
376 | self.ylabel = 'Intensity [dB]' |
|
398 | self.ylabel = 'Intensity [dB]' | |
377 | self.xlabel = 'Time' |
|
399 | self.xlabel = 'Time' | |
378 | self.titles = ['Noise'] |
|
400 | self.titles = ['Noise'] | |
379 | self.colorbar = False |
|
401 | self.colorbar = False | |
380 | self.plots_adjust.update({'right': 0.85 }) |
|
402 | self.plots_adjust.update({'right': 0.85 }) | |
381 |
|
403 | |||
382 | def update(self, dataOut): |
|
404 | def update(self, dataOut): | |
383 |
|
405 | |||
384 | data = {} |
|
406 | data = {} | |
385 | meta = {} |
|
407 | meta = {} | |
386 | noise = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
408 | noise = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) | |
387 | data['noise'] = noise |
|
409 | data['noise'] = noise | |
388 | meta['yrange'] = numpy.array([]) |
|
410 | meta['yrange'] = numpy.array([]) | |
389 |
|
411 | |||
390 | return data, meta |
|
412 | return data, meta | |
391 |
|
413 | |||
392 | def plot(self): |
|
414 | def plot(self): | |
393 |
|
415 | |||
394 | x = self.data.times |
|
416 | x = self.data.times | |
395 | xmin = self.data.min_time |
|
417 | xmin = self.data.min_time | |
396 | xmax = xmin + self.xrange * 60 * 60 |
|
418 | xmax = xmin + self.xrange * 60 * 60 | |
397 | Y = self.data['noise'] |
|
419 | Y = self.data['noise'] | |
398 |
|
420 | |||
399 | if self.axes[0].firsttime: |
|
421 | if self.axes[0].firsttime: | |
400 | if self.ymin is None: self.ymin = numpy.nanmin(Y) - 5 |
|
422 | if self.ymin is None: self.ymin = numpy.nanmin(Y) - 5 | |
401 | if self.ymax is None: self.ymax = numpy.nanmax(Y) + 5 |
|
423 | if self.ymax is None: self.ymax = numpy.nanmax(Y) + 5 | |
402 | for ch in self.data.channels: |
|
424 | for ch in self.data.channels: | |
403 | y = Y[ch] |
|
425 | y = Y[ch] | |
404 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
426 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
405 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
427 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
406 | else: |
|
428 | else: | |
407 | for ch in self.data.channels: |
|
429 | for ch in self.data.channels: | |
408 | y = Y[ch] |
|
430 | y = Y[ch] | |
409 | self.axes[0].lines[ch].set_data(x, y) |
|
431 | self.axes[0].lines[ch].set_data(x, y) | |
410 |
|
432 | |||
411 |
|
433 | |||
412 | class PowerProfilePlot(Plot): |
|
434 | class PowerProfilePlot(Plot): | |
413 |
|
435 | |||
414 | CODE = 'pow_profile' |
|
436 | CODE = 'pow_profile' | |
415 | plot_type = 'scatter' |
|
437 | plot_type = 'scatter' | |
416 |
|
438 | |||
417 | def setup(self): |
|
439 | def setup(self): | |
418 |
|
440 | |||
419 | self.ncols = 1 |
|
441 | self.ncols = 1 | |
420 | self.nrows = 1 |
|
442 | self.nrows = 1 | |
421 | self.nplots = 1 |
|
443 | self.nplots = 1 | |
422 | self.height = 4 |
|
444 | self.height = 4 | |
423 | self.width = 3 |
|
445 | self.width = 3 | |
424 | self.ylabel = 'Range [km]' |
|
446 | self.ylabel = 'Range [km]' | |
425 | self.xlabel = 'Intensity [dB]' |
|
447 | self.xlabel = 'Intensity [dB]' | |
426 | self.titles = ['Power Profile'] |
|
448 | self.titles = ['Power Profile'] | |
427 | self.colorbar = False |
|
449 | self.colorbar = False | |
428 |
|
450 | |||
429 | def update(self, dataOut): |
|
451 | def update(self, dataOut): | |
430 |
|
452 | |||
431 | data = {} |
|
453 | data = {} | |
432 | meta = {} |
|
454 | meta = {} | |
433 | data[self.CODE] = dataOut.getPower() |
|
455 | data[self.CODE] = dataOut.getPower() | |
434 |
|
456 | |||
435 | return data, meta |
|
457 | return data, meta | |
436 |
|
458 | |||
437 | def plot(self): |
|
459 | def plot(self): | |
438 |
|
460 | |||
439 | y = self.data.yrange |
|
461 | y = self.data.yrange | |
440 | self.y = y |
|
462 | self.y = y | |
441 |
|
463 | |||
442 | x = self.data[-1][self.CODE] |
|
464 | x = self.data[-1][self.CODE] | |
443 |
|
465 | |||
444 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
466 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 | |
445 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
467 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 | |
446 |
|
468 | |||
447 | if self.axes[0].firsttime: |
|
469 | if self.axes[0].firsttime: | |
448 | for ch in self.data.channels: |
|
470 | for ch in self.data.channels: | |
449 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
471 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) | |
450 | plt.legend() |
|
472 | plt.legend() | |
451 | else: |
|
473 | else: | |
452 | for ch in self.data.channels: |
|
474 | for ch in self.data.channels: | |
453 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
475 | self.axes[0].lines[ch].set_data(x[ch], y) | |
454 |
|
476 | |||
455 |
|
477 | |||
456 | class SpectraCutPlot(Plot): |
|
478 | class SpectraCutPlot(Plot): | |
457 |
|
479 | |||
458 | CODE = 'spc_cut' |
|
480 | CODE = 'spc_cut' | |
459 | plot_type = 'scatter' |
|
481 | plot_type = 'scatter' | |
460 | buffering = False |
|
482 | buffering = False | |
461 | heights = [] |
|
483 | heights = [] | |
462 | channelList = [] |
|
484 | channelList = [] | |
463 | maintitle = "Spectra Cuts" |
|
485 | maintitle = "Spectra Cuts" | |
464 | flag_setIndex = False |
|
486 | flag_setIndex = False | |
465 |
|
487 | |||
466 | def setup(self): |
|
488 | def setup(self): | |
467 |
|
489 | |||
468 | self.nplots = len(self.data.channels) |
|
490 | self.nplots = len(self.data.channels) | |
469 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
491 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
470 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
492 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
471 | self.width = 4.2 * self.ncols + 2.5 |
|
493 | self.width = 4.2 * self.ncols + 2.5 | |
472 | self.height = 4.8 * self.nrows |
|
494 | self.height = 4.8 * self.nrows | |
473 | self.ylabel = 'Power [dB]' |
|
495 | self.ylabel = 'Power [dB]' | |
474 | self.colorbar = False |
|
496 | self.colorbar = False | |
475 | self.plots_adjust.update({'left':0.15, 'hspace':0.3, 'right': 0.85, 'bottom':0.08}) |
|
497 | self.plots_adjust.update({'left':0.15, 'hspace':0.3, 'right': 0.85, 'bottom':0.08}) | |
476 |
|
498 | |||
477 | if len(self.selectedHeightsList) > 0: |
|
499 | if len(self.selectedHeightsList) > 0: | |
478 | self.maintitle = "Spectra Cut"# for %d km " %(int(self.selectedHeight)) |
|
500 | self.maintitle = "Spectra Cut"# for %d km " %(int(self.selectedHeight)) | |
479 |
|
501 | |||
480 | def update(self, dataOut): |
|
502 | def update(self, dataOut): | |
481 | if len(self.channelList) == 0: |
|
503 | if len(self.channelList) == 0: | |
482 | self.channelList = dataOut.channelList |
|
504 | self.channelList = dataOut.channelList | |
483 |
|
505 | |||
484 | self.heights = dataOut.heightList |
|
506 | self.heights = dataOut.heightList | |
485 | #print("sels: ",self.selectedHeightsList) |
|
507 | #print("sels: ",self.selectedHeightsList) | |
486 | if len(self.selectedHeightsList)>0 and not self.flag_setIndex: |
|
508 | if len(self.selectedHeightsList)>0 and not self.flag_setIndex: | |
487 |
|
509 | |||
488 | for sel_height in self.selectedHeightsList: |
|
510 | for sel_height in self.selectedHeightsList: | |
489 | index_list = numpy.where(self.heights >= sel_height) |
|
511 | index_list = numpy.where(self.heights >= sel_height) | |
490 | index_list = index_list[0] |
|
512 | index_list = index_list[0] | |
491 | self.height_index.append(index_list[0]) |
|
513 | self.height_index.append(index_list[0]) | |
492 | #print("sels i:"", self.height_index) |
|
514 | #print("sels i:"", self.height_index) | |
493 | self.flag_setIndex = True |
|
515 | self.flag_setIndex = True | |
494 | #print(self.height_index) |
|
516 | #print(self.height_index) | |
495 | data = {} |
|
517 | data = {} | |
496 | meta = {} |
|
518 | meta = {} | |
497 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
519 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
498 |
|
520 | |||
499 | data['spc'] = spc |
|
521 | data['spc'] = spc | |
500 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
522 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
501 |
|
523 | |||
502 | return data, meta |
|
524 | return data, meta | |
503 |
|
525 | |||
504 | def plot(self): |
|
526 | def plot(self): | |
505 | if self.xaxis == "frequency": |
|
527 | if self.xaxis == "frequency": | |
506 | x = self.data.xrange[0][1:] |
|
528 | x = self.data.xrange[0][1:] | |
507 | self.xlabel = "Frequency (kHz)" |
|
529 | self.xlabel = "Frequency (kHz)" | |
508 | elif self.xaxis == "time": |
|
530 | elif self.xaxis == "time": | |
509 | x = self.data.xrange[1] |
|
531 | x = self.data.xrange[1] | |
510 | self.xlabel = "Time (ms)" |
|
532 | self.xlabel = "Time (ms)" | |
511 | else: |
|
533 | else: | |
512 | x = self.data.xrange[2] |
|
534 | x = self.data.xrange[2] | |
513 | self.xlabel = "Velocity (m/s)" |
|
535 | self.xlabel = "Velocity (m/s)" | |
514 |
|
536 | |||
515 | self.titles = [] |
|
537 | self.titles = [] | |
516 |
|
538 | |||
517 | y = self.data.yrange |
|
539 | y = self.data.yrange | |
518 | z = self.data[-1]['spc'] |
|
540 | z = self.data[-1]['spc'] | |
519 | #print(z.shape) |
|
541 | #print(z.shape) | |
520 | if len(self.height_index) > 0: |
|
542 | if len(self.height_index) > 0: | |
521 | index = self.height_index |
|
543 | index = self.height_index | |
522 | else: |
|
544 | else: | |
523 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
545 | index = numpy.arange(0, len(y), int((len(y))/9)) | |
524 | #print("inde x ", index, self.axes) |
|
546 | #print("inde x ", index, self.axes) | |
525 | for n, ax in enumerate(self.axes): |
|
547 | for n, ax in enumerate(self.axes): | |
526 | if ax.firsttime: |
|
548 | if ax.firsttime: | |
527 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
549 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
528 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
550 | self.xmin = self.xmin if self.xmin else -self.xmax | |
529 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
551 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) | |
530 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
552 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) | |
531 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
553 | ax.plt = ax.plot(x, z[n, :, index].T) | |
532 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
554 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] | |
533 | self.figures[0].legend(ax.plt, labels, loc='center right', prop={'size': 8}) |
|
555 | self.figures[0].legend(ax.plt, labels, loc='center right', prop={'size': 8}) | |
534 | else: |
|
556 | else: | |
535 |
for i, line in enumerate(ax.plt): |
|
557 | for i, line in enumerate(ax.plt): | |
536 | line.set_data(x, z[n, :, index[i]]) |
|
558 | line.set_data(x, z[n, :, index[i]]) | |
537 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
559 | self.titles.append('CH {}'.format(self.channelList[n])) | |
538 | plt.suptitle(self.maintitle, fontsize=10) |
|
560 | plt.suptitle(self.maintitle, fontsize=10) | |
539 |
|
561 | |||
540 | class BeaconPhase(Plot): |
|
562 | class BeaconPhase(Plot): | |
541 |
|
563 | |||
542 | __isConfig = None |
|
564 | __isConfig = None | |
543 | __nsubplots = None |
|
565 | __nsubplots = None | |
544 |
|
566 | |||
545 | PREFIX = 'beacon_phase' |
|
567 | PREFIX = 'beacon_phase' | |
546 |
|
568 | |||
547 | def __init__(self): |
|
569 | def __init__(self): | |
548 | Plot.__init__(self) |
|
570 | Plot.__init__(self) | |
549 | self.timerange = 24*60*60 |
|
571 | self.timerange = 24*60*60 | |
550 | self.isConfig = False |
|
572 | self.isConfig = False | |
551 | self.__nsubplots = 1 |
|
573 | self.__nsubplots = 1 | |
552 | self.counter_imagwr = 0 |
|
574 | self.counter_imagwr = 0 | |
553 | self.WIDTH = 800 |
|
575 | self.WIDTH = 800 | |
554 | self.HEIGHT = 400 |
|
576 | self.HEIGHT = 400 | |
555 | self.WIDTHPROF = 120 |
|
577 | self.WIDTHPROF = 120 | |
556 | self.HEIGHTPROF = 0 |
|
578 | self.HEIGHTPROF = 0 | |
557 | self.xdata = None |
|
579 | self.xdata = None | |
558 | self.ydata = None |
|
580 | self.ydata = None | |
559 |
|
581 | |||
560 | self.PLOT_CODE = BEACON_CODE |
|
582 | self.PLOT_CODE = BEACON_CODE | |
561 |
|
583 | |||
562 | self.FTP_WEI = None |
|
584 | self.FTP_WEI = None | |
563 | self.EXP_CODE = None |
|
585 | self.EXP_CODE = None | |
564 | self.SUB_EXP_CODE = None |
|
586 | self.SUB_EXP_CODE = None | |
565 | self.PLOT_POS = None |
|
587 | self.PLOT_POS = None | |
566 |
|
588 | |||
567 | self.filename_phase = None |
|
589 | self.filename_phase = None | |
568 |
|
590 | |||
569 | self.figfile = None |
|
591 | self.figfile = None | |
570 |
|
592 | |||
571 | self.xmin = None |
|
593 | self.xmin = None | |
572 | self.xmax = None |
|
594 | self.xmax = None | |
573 |
|
595 | |||
574 | def getSubplots(self): |
|
596 | def getSubplots(self): | |
575 |
|
597 | |||
576 | ncol = 1 |
|
598 | ncol = 1 | |
577 | nrow = 1 |
|
599 | nrow = 1 | |
578 |
|
600 | |||
579 | return nrow, ncol |
|
601 | return nrow, ncol | |
580 |
|
602 | |||
581 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
603 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
582 |
|
604 | |||
583 | self.__showprofile = showprofile |
|
605 | self.__showprofile = showprofile | |
584 | self.nplots = nplots |
|
606 | self.nplots = nplots | |
585 |
|
607 | |||
586 | ncolspan = 7 |
|
608 | ncolspan = 7 | |
587 | colspan = 6 |
|
609 | colspan = 6 | |
588 | self.__nsubplots = 2 |
|
610 | self.__nsubplots = 2 | |
589 |
|
611 | |||
590 | self.createFigure(id = id, |
|
612 | self.createFigure(id = id, | |
591 | wintitle = wintitle, |
|
613 | wintitle = wintitle, | |
592 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
614 | widthplot = self.WIDTH+self.WIDTHPROF, | |
593 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
615 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
594 | show=show) |
|
616 | show=show) | |
595 |
|
617 | |||
596 | nrow, ncol = self.getSubplots() |
|
618 | nrow, ncol = self.getSubplots() | |
597 |
|
619 | |||
598 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
620 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
599 |
|
621 | |||
600 | def save_phase(self, filename_phase): |
|
622 | def save_phase(self, filename_phase): | |
601 | f = open(filename_phase,'w+') |
|
623 | f = open(filename_phase,'w+') | |
602 | f.write('\n\n') |
|
624 | f.write('\n\n') | |
603 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
625 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
604 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
626 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
605 | f.close() |
|
627 | f.close() | |
606 |
|
628 | |||
607 | def save_data(self, filename_phase, data, data_datetime): |
|
629 | def save_data(self, filename_phase, data, data_datetime): | |
608 | f=open(filename_phase,'a') |
|
630 | f=open(filename_phase,'a') | |
609 | timetuple_data = data_datetime.timetuple() |
|
631 | timetuple_data = data_datetime.timetuple() | |
610 | day = str(timetuple_data.tm_mday) |
|
632 | day = str(timetuple_data.tm_mday) | |
611 | month = str(timetuple_data.tm_mon) |
|
633 | month = str(timetuple_data.tm_mon) | |
612 | year = str(timetuple_data.tm_year) |
|
634 | year = str(timetuple_data.tm_year) | |
613 | hour = str(timetuple_data.tm_hour) |
|
635 | hour = str(timetuple_data.tm_hour) | |
614 | minute = str(timetuple_data.tm_min) |
|
636 | minute = str(timetuple_data.tm_min) | |
615 | second = str(timetuple_data.tm_sec) |
|
637 | second = str(timetuple_data.tm_sec) | |
616 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
638 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
617 | f.close() |
|
639 | f.close() | |
618 |
|
640 | |||
619 | def plot(self): |
|
641 | def plot(self): | |
620 | log.warning('TODO: Not yet implemented...') |
|
642 | log.warning('TODO: Not yet implemented...') | |
621 |
|
643 | |||
622 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
644 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
623 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
645 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
624 | timerange=None, |
|
646 | timerange=None, | |
625 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
647 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
626 | server=None, folder=None, username=None, password=None, |
|
648 | server=None, folder=None, username=None, password=None, | |
627 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
649 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
628 |
|
650 | |||
629 | if dataOut.flagNoData: |
|
651 | if dataOut.flagNoData: | |
630 | return dataOut |
|
652 | return dataOut | |
631 |
|
653 | |||
632 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
654 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
633 | return |
|
655 | return | |
634 |
|
656 | |||
635 | if pairsList == None: |
|
657 | if pairsList == None: | |
636 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
658 | pairsIndexList = dataOut.pairsIndexList[:10] | |
637 | else: |
|
659 | else: | |
638 | pairsIndexList = [] |
|
660 | pairsIndexList = [] | |
639 | for pair in pairsList: |
|
661 | for pair in pairsList: | |
640 | if pair not in dataOut.pairsList: |
|
662 | if pair not in dataOut.pairsList: | |
641 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
663 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) | |
642 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
664 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
643 |
|
665 | |||
644 | if pairsIndexList == []: |
|
666 | if pairsIndexList == []: | |
645 | return |
|
667 | return | |
646 |
|
668 | |||
647 | # if len(pairsIndexList) > 4: |
|
669 | # if len(pairsIndexList) > 4: | |
648 | # pairsIndexList = pairsIndexList[0:4] |
|
670 | # pairsIndexList = pairsIndexList[0:4] | |
649 |
|
671 | |||
650 | hmin_index = None |
|
672 | hmin_index = None | |
651 | hmax_index = None |
|
673 | hmax_index = None | |
652 |
|
674 | |||
653 | if hmin != None and hmax != None: |
|
675 | if hmin != None and hmax != None: | |
654 | indexes = numpy.arange(dataOut.nHeights) |
|
676 | indexes = numpy.arange(dataOut.nHeights) | |
655 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
677 | hmin_list = indexes[dataOut.heightList >= hmin] | |
656 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
678 | hmax_list = indexes[dataOut.heightList <= hmax] | |
657 |
|
679 | |||
658 | if hmin_list.any(): |
|
680 | if hmin_list.any(): | |
659 | hmin_index = hmin_list[0] |
|
681 | hmin_index = hmin_list[0] | |
660 |
|
682 | |||
661 | if hmax_list.any(): |
|
683 | if hmax_list.any(): | |
662 | hmax_index = hmax_list[-1]+1 |
|
684 | hmax_index = hmax_list[-1]+1 | |
663 |
|
685 | |||
664 | x = dataOut.getTimeRange() |
|
686 | x = dataOut.getTimeRange() | |
665 |
|
687 | |||
666 | thisDatetime = dataOut.datatime |
|
688 | thisDatetime = dataOut.datatime | |
667 |
|
689 | |||
668 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
690 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
669 | xlabel = "Local Time" |
|
691 | xlabel = "Local Time" | |
670 | ylabel = "Phase (degrees)" |
|
692 | ylabel = "Phase (degrees)" | |
671 |
|
693 | |||
672 | update_figfile = False |
|
694 | update_figfile = False | |
673 |
|
695 | |||
674 | nplots = len(pairsIndexList) |
|
696 | nplots = len(pairsIndexList) | |
675 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
697 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
676 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
698 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
677 | for i in range(nplots): |
|
699 | for i in range(nplots): | |
678 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
700 | pair = dataOut.pairsList[pairsIndexList[i]] | |
679 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
701 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
680 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
702 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
681 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
703 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
682 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
704 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
683 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
705 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
684 |
|
706 | |||
685 | if dataOut.beacon_heiIndexList: |
|
707 | if dataOut.beacon_heiIndexList: | |
686 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
708 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
687 | else: |
|
709 | else: | |
688 | phase_beacon[i] = numpy.average(phase) |
|
710 | phase_beacon[i] = numpy.average(phase) | |
689 |
|
711 | |||
690 | if not self.isConfig: |
|
712 | if not self.isConfig: | |
691 |
|
713 | |||
692 | nplots = len(pairsIndexList) |
|
714 | nplots = len(pairsIndexList) | |
693 |
|
715 | |||
694 | self.setup(id=id, |
|
716 | self.setup(id=id, | |
695 | nplots=nplots, |
|
717 | nplots=nplots, | |
696 | wintitle=wintitle, |
|
718 | wintitle=wintitle, | |
697 | showprofile=showprofile, |
|
719 | showprofile=showprofile, | |
698 | show=show) |
|
720 | show=show) | |
699 |
|
721 | |||
700 | if timerange != None: |
|
722 | if timerange != None: | |
701 | self.timerange = timerange |
|
723 | self.timerange = timerange | |
702 |
|
724 | |||
703 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
725 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
704 |
|
726 | |||
705 | if ymin == None: ymin = 0 |
|
727 | if ymin == None: ymin = 0 | |
706 | if ymax == None: ymax = 360 |
|
728 | if ymax == None: ymax = 360 | |
707 |
|
729 | |||
708 | self.FTP_WEI = ftp_wei |
|
730 | self.FTP_WEI = ftp_wei | |
709 | self.EXP_CODE = exp_code |
|
731 | self.EXP_CODE = exp_code | |
710 | self.SUB_EXP_CODE = sub_exp_code |
|
732 | self.SUB_EXP_CODE = sub_exp_code | |
711 | self.PLOT_POS = plot_pos |
|
733 | self.PLOT_POS = plot_pos | |
712 |
|
734 | |||
713 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
735 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
714 | self.isConfig = True |
|
736 | self.isConfig = True | |
715 | self.figfile = figfile |
|
737 | self.figfile = figfile | |
716 | self.xdata = numpy.array([]) |
|
738 | self.xdata = numpy.array([]) | |
717 | self.ydata = numpy.array([]) |
|
739 | self.ydata = numpy.array([]) | |
718 |
|
740 | |||
719 | update_figfile = True |
|
741 | update_figfile = True | |
720 |
|
742 | |||
721 | #open file beacon phase |
|
743 | #open file beacon phase | |
722 | path = '%s%03d' %(self.PREFIX, self.id) |
|
744 | path = '%s%03d' %(self.PREFIX, self.id) | |
723 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
745 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
724 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
746 | self.filename_phase = os.path.join(figpath,beacon_file) | |
725 | #self.save_phase(self.filename_phase) |
|
747 | #self.save_phase(self.filename_phase) | |
726 |
|
748 | |||
727 |
|
749 | |||
728 | #store data beacon phase |
|
750 | #store data beacon phase | |
729 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
751 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
730 |
|
752 | |||
731 | self.setWinTitle(title) |
|
753 | self.setWinTitle(title) | |
732 |
|
754 | |||
733 |
|
755 | |||
734 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
756 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
735 |
|
757 | |||
736 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
758 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
737 |
|
759 | |||
738 | axes = self.axesList[0] |
|
760 | axes = self.axesList[0] | |
739 |
|
761 | |||
740 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
762 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
741 |
|
763 | |||
742 | if len(self.ydata)==0: |
|
764 | if len(self.ydata)==0: | |
743 | self.ydata = phase_beacon.reshape(-1,1) |
|
765 | self.ydata = phase_beacon.reshape(-1,1) | |
744 | else: |
|
766 | else: | |
745 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
767 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
746 |
|
768 | |||
747 |
|
769 | |||
748 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
770 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
749 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
771 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
750 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
772 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
751 | XAxisAsTime=True, grid='both' |
|
773 | XAxisAsTime=True, grid='both' | |
752 | ) |
|
774 | ) | |
753 |
|
775 | |||
754 | self.draw() |
|
776 | self.draw() | |
755 |
|
777 | |||
756 | if dataOut.ltctime >= self.xmax: |
|
778 | if dataOut.ltctime >= self.xmax: | |
757 | self.counter_imagwr = wr_period |
|
779 | self.counter_imagwr = wr_period | |
758 | self.isConfig = False |
|
780 | self.isConfig = False | |
759 | update_figfile = True |
|
781 | update_figfile = True | |
760 |
|
782 | |||
761 | self.save(figpath=figpath, |
|
783 | self.save(figpath=figpath, | |
762 | figfile=figfile, |
|
784 | figfile=figfile, | |
763 | save=save, |
|
785 | save=save, | |
764 | ftp=ftp, |
|
786 | ftp=ftp, | |
765 | wr_period=wr_period, |
|
787 | wr_period=wr_period, | |
766 | thisDatetime=thisDatetime, |
|
788 | thisDatetime=thisDatetime, | |
767 | update_figfile=update_figfile) |
|
789 | update_figfile=update_figfile) | |
768 |
|
790 | |||
769 | return dataOut |
|
791 | return dataOut | |
770 |
|
792 | |||
771 | class NoiselessSpectraPlot(Plot): |
|
793 | class NoiselessSpectraPlot(Plot): | |
772 | ''' |
|
794 | ''' | |
773 | Plot for Spectra data, subtracting |
|
795 | Plot for Spectra data, subtracting | |
774 | the noise in all channels, using for |
|
796 | the noise in all channels, using for | |
775 | amisr-14 data |
|
797 | amisr-14 data | |
776 | ''' |
|
798 | ''' | |
777 |
|
799 | |||
778 | CODE = 'noiseless_spc' |
|
800 | CODE = 'noiseless_spc' | |
779 | colormap = 'nipy_spectral' |
|
801 | colormap = 'nipy_spectral' | |
780 | plot_type = 'pcolor' |
|
802 | plot_type = 'pcolor' | |
781 | buffering = False |
|
803 | buffering = False | |
782 | channelList = [] |
|
804 | channelList = [] | |
783 |
|
805 | |||
784 | def setup(self): |
|
806 | def setup(self): | |
785 |
|
807 | |||
786 | self.nplots = len(self.data.channels) |
|
808 | self.nplots = len(self.data.channels) | |
787 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
809 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
788 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
810 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
789 | self.height = 2.6 * self.nrows |
|
811 | self.height = 2.6 * self.nrows | |
790 |
|
812 | |||
791 | self.cb_label = 'dB' |
|
813 | self.cb_label = 'dB' | |
792 | if self.showprofile: |
|
814 | if self.showprofile: | |
793 | self.width = 4 * self.ncols |
|
815 | self.width = 4 * self.ncols | |
794 | else: |
|
816 | else: | |
795 | self.width = 3.5 * self.ncols |
|
817 | self.width = 3.5 * self.ncols | |
796 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
818 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
797 | self.ylabel = 'Range [km]' |
|
819 | self.ylabel = 'Range [km]' | |
798 |
|
820 | |||
799 |
|
821 | |||
800 | def update_list(self,dataOut): |
|
822 | def update_list(self,dataOut): | |
801 | if len(self.channelList) == 0: |
|
823 | if len(self.channelList) == 0: | |
802 | self.channelList = dataOut.channelList |
|
824 | self.channelList = dataOut.channelList | |
803 |
|
825 | |||
804 | def update(self, dataOut): |
|
826 | def update(self, dataOut): | |
805 |
|
827 | |||
806 | self.update_list(dataOut) |
|
828 | self.update_list(dataOut) | |
807 | data = {} |
|
829 | data = {} | |
808 | meta = {} |
|
830 | meta = {} | |
809 | n0 = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
831 | n0 = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
810 | (nch, nff, nh) = dataOut.data_spc.shape |
|
832 | (nch, nff, nh) = dataOut.data_spc.shape | |
811 | n1 = numpy.repeat(n0,nh, axis=0).reshape((nch,nh)) |
|
833 | n1 = numpy.repeat(n0,nh, axis=0).reshape((nch,nh)) | |
812 | noise = numpy.repeat(n1,nff, axis=1).reshape((nch,nff,nh)) |
|
834 | noise = numpy.repeat(n1,nff, axis=1).reshape((nch,nff,nh)) | |
813 | #print(noise.shape, "noise", noise) |
|
835 | #print(noise.shape, "noise", noise) | |
814 |
|
836 | |||
815 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) - noise |
|
837 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) - noise | |
816 |
|
838 | |||
817 | data['spc'] = spc |
|
839 | data['spc'] = spc | |
818 | data['rti'] = dataOut.getPower() - n1 |
|
840 | data['rti'] = dataOut.getPower() - n1 | |
819 |
|
841 | |||
820 | data['noise'] = n0 |
|
842 | data['noise'] = n0 | |
821 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
843 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
822 |
|
844 | |||
823 | return data, meta |
|
845 | return data, meta | |
824 |
|
846 | |||
825 | def plot(self): |
|
847 | def plot(self): | |
826 | if self.xaxis == "frequency": |
|
848 | if self.xaxis == "frequency": | |
827 | x = self.data.xrange[0] |
|
849 | x = self.data.xrange[0] | |
828 | self.xlabel = "Frequency (kHz)" |
|
850 | self.xlabel = "Frequency (kHz)" | |
829 | elif self.xaxis == "time": |
|
851 | elif self.xaxis == "time": | |
830 | x = self.data.xrange[1] |
|
852 | x = self.data.xrange[1] | |
831 | self.xlabel = "Time (ms)" |
|
853 | self.xlabel = "Time (ms)" | |
832 | else: |
|
854 | else: | |
833 | x = self.data.xrange[2] |
|
855 | x = self.data.xrange[2] | |
834 | self.xlabel = "Velocity (m/s)" |
|
856 | self.xlabel = "Velocity (m/s)" | |
835 |
|
857 | |||
836 | self.titles = [] |
|
858 | self.titles = [] | |
837 | y = self.data.yrange |
|
859 | y = self.data.yrange | |
838 | self.y = y |
|
860 | self.y = y | |
839 |
|
861 | |||
840 | data = self.data[-1] |
|
862 | data = self.data[-1] | |
841 | z = data['spc'] |
|
863 | z = data['spc'] | |
842 |
|
864 | |||
843 | for n, ax in enumerate(self.axes): |
|
865 | for n, ax in enumerate(self.axes): | |
844 | noise = data['noise'][n] |
|
866 | noise = data['noise'][n] | |
845 |
|
867 | |||
846 | if ax.firsttime: |
|
868 | if ax.firsttime: | |
847 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
869 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
848 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
870 | self.xmin = self.xmin if self.xmin else -self.xmax | |
849 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
871 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
850 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
872 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
851 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
873 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
852 | vmin=self.zmin, |
|
874 | vmin=self.zmin, | |
853 | vmax=self.zmax, |
|
875 | vmax=self.zmax, | |
854 | cmap=plt.get_cmap(self.colormap) |
|
876 | cmap=plt.get_cmap(self.colormap) | |
855 | ) |
|
877 | ) | |
856 |
|
878 | |||
857 | if self.showprofile: |
|
879 | if self.showprofile: | |
858 | ax.plt_profile = self.pf_axes[n].plot( |
|
880 | ax.plt_profile = self.pf_axes[n].plot( | |
859 | data['rti'][n], y)[0] |
|
881 | data['rti'][n], y)[0] | |
860 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
882 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
861 | color="k", linestyle="dashed", lw=1)[0] |
|
883 | color="k", linestyle="dashed", lw=1)[0] | |
862 |
|
884 | |||
863 | else: |
|
885 | else: | |
864 | ax.plt.set_array(z[n].T.ravel()) |
|
886 | ax.plt.set_array(z[n].T.ravel()) | |
865 | if self.showprofile: |
|
887 | if self.showprofile: | |
866 | ax.plt_profile.set_data(data['rti'][n], y) |
|
888 | ax.plt_profile.set_data(data['rti'][n], y) | |
867 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
889 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
868 |
|
890 | |||
869 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
891 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) | |
870 |
|
892 | |||
871 |
|
893 | |||
872 | class NoiselessRTIPlot(Plot): |
|
894 | class NoiselessRTIPlot(Plot): | |
873 | ''' |
|
895 | ''' | |
874 | Plot for RTI data |
|
896 | Plot for RTI data | |
875 | ''' |
|
897 | ''' | |
876 |
|
898 | |||
877 | CODE = 'noiseless_rti' |
|
899 | CODE = 'noiseless_rti' | |
878 | colormap = 'jet' |
|
900 | colormap = 'jet' | |
879 | plot_type = 'pcolorbuffer' |
|
901 | plot_type = 'pcolorbuffer' | |
880 | titles = None |
|
902 | titles = None | |
881 | channelList = [] |
|
903 | channelList = [] | |
|
904 | elevationList = [] | |||
|
905 | azimuthList = [] | |||
882 |
|
906 | |||
883 | def setup(self): |
|
907 | def setup(self): | |
884 | self.xaxis = 'time' |
|
908 | self.xaxis = 'time' | |
885 | self.ncols = 1 |
|
909 | self.ncols = 1 | |
886 | #print("dataChannels ",self.data.channels) |
|
910 | #print("dataChannels ",self.data.channels) | |
887 | self.nrows = len(self.data.channels) |
|
911 | self.nrows = len(self.data.channels) | |
888 | self.nplots = len(self.data.channels) |
|
912 | self.nplots = len(self.data.channels) | |
889 | self.ylabel = 'Range [km]' |
|
913 | self.ylabel = 'Range [km]' | |
890 | self.xlabel = 'Time' |
|
914 | self.xlabel = 'Time' | |
891 | self.cb_label = 'dB' |
|
915 | self.cb_label = 'dB' | |
892 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
916 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) | |
893 | self.titles = ['{} Channel {}'.format( |
|
917 | self.titles = ['{} Channel {}'.format( | |
894 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
918 | self.CODE.upper(), x) for x in range(self.nplots)] | |
895 |
|
919 | |||
896 | def update_list(self,dataOut): |
|
920 | def update_list(self,dataOut): | |
897 |
|
921 | if len(self.channelList) == 0: | ||
898 | self.channelList = dataOut.channelList |
|
922 | self.channelList = dataOut.channelList | |
899 |
|
923 | if len(self.elevationList) == 0: | ||
|
924 | self.elevationList = dataOut.elevationList | |||
|
925 | if len(self.azimuthList) == 0: | |||
|
926 | self.azimuthList = dataOut.azimuthList | |||
900 |
|
927 | |||
901 | def update(self, dataOut): |
|
928 | def update(self, dataOut): | |
902 | if len(self.channelList) == 0: |
|
929 | if len(self.channelList) == 0: | |
903 | self.update_list(dataOut) |
|
930 | self.update_list(dataOut) | |
904 | data = {} |
|
931 | data = {} | |
905 | meta = {} |
|
932 | meta = {} | |
906 |
|
933 | |||
907 | n0 = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
934 | n0 = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
908 | (nch, nff, nh) = dataOut.data_spc.shape |
|
935 | (nch, nff, nh) = dataOut.data_spc.shape | |
|
936 | #print(nch, nff, nh) | |||
|
937 | if nch != 1: | |||
|
938 | aux = [] | |||
|
939 | for c in self.channelList: | |||
|
940 | aux.append(n0[c]) | |||
|
941 | n0 = numpy.asarray(aux) | |||
909 | noise = numpy.repeat(n0,nh, axis=0).reshape((nch,nh)) |
|
942 | noise = numpy.repeat(n0,nh, axis=0).reshape((nch,nh)) | |
910 |
|
943 | #print(dataOut.elevationList, dataOut.azimuthList) | ||
911 |
|
944 | #print(dataOut.channelList) | ||
912 | data['noiseless_rti'] = dataOut.getPower() - noise |
|
945 | data['noiseless_rti'] = dataOut.getPower() - noise | |
913 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
946 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
914 | return data, meta |
|
947 | return data, meta | |
915 |
|
948 | |||
916 | def plot(self): |
|
949 | def plot(self): | |
917 |
|
950 | |||
918 | self.x = self.data.times |
|
951 | self.x = self.data.times | |
919 | self.y = self.data.yrange |
|
952 | self.y = self.data.yrange | |
920 | self.z = self.data['noiseless_rti'] |
|
953 | self.z = self.data['noiseless_rti'] | |
921 | self.z = numpy.array(self.z, dtype=float) |
|
954 | self.z = numpy.array(self.z, dtype=float) | |
922 | self.z = numpy.ma.masked_invalid(self.z) |
|
955 | self.z = numpy.ma.masked_invalid(self.z) | |
923 |
|
956 | |||
924 | try: |
|
957 | try: | |
925 | if self.channelList != None: |
|
958 | if self.channelList != None: | |
926 | self.titles = ['{} Channel {}'.format( |
|
959 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: | |
927 | self.CODE.upper(), x) for x in self.channelList] |
|
960 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( | |
|
961 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] | |||
|
962 | else: | |||
|
963 | self.titles = ['{} Channel {}'.format( | |||
|
964 | self.CODE.upper(), x) for x in self.channelList] | |||
928 | except: |
|
965 | except: | |
929 | if self.channelList.any() != None: |
|
966 | if self.channelList.any() != None: | |
|
967 | ||||
930 | self.titles = ['{} Channel {}'.format( |
|
968 | self.titles = ['{} Channel {}'.format( | |
931 | self.CODE.upper(), x) for x in self.channelList] |
|
969 | self.CODE.upper(), x) for x in self.channelList] | |
932 | if self.decimation is None: |
|
970 | if self.decimation is None: | |
933 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
971 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
934 | else: |
|
972 | else: | |
935 | x, y, z = self.fill_gaps(*self.decimate()) |
|
973 | x, y, z = self.fill_gaps(*self.decimate()) | |
936 | dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes |
|
974 | dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes | |
937 | for n, ax in enumerate(self.axes): |
|
975 | for n, ax in enumerate(self.axes): | |
938 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
976 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
939 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
977 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
940 | data = self.data[-1] |
|
978 | data = self.data[-1] | |
941 | if ax.firsttime: |
|
979 | if ax.firsttime: | |
942 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
980 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
943 | vmin=self.zmin, |
|
981 | vmin=self.zmin, | |
944 | vmax=self.zmax, |
|
982 | vmax=self.zmax, | |
945 | cmap=plt.get_cmap(self.colormap) |
|
983 | cmap=plt.get_cmap(self.colormap) | |
946 | ) |
|
984 | ) | |
947 | if self.showprofile: |
|
985 | if self.showprofile: | |
948 | ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0] |
|
986 | ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0] | |
949 |
|
987 | |||
950 | if "noise" in self.data: |
|
988 | if "noise" in self.data: | |
951 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
989 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, | |
952 | color="k", linestyle="dashed", lw=1)[0] |
|
990 | color="k", linestyle="dashed", lw=1)[0] | |
953 | else: |
|
991 | else: | |
954 | ax.collections.remove(ax.collections[0]) |
|
992 | ax.collections.remove(ax.collections[0]) | |
955 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
993 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
956 | vmin=self.zmin, |
|
994 | vmin=self.zmin, | |
957 | vmax=self.zmax, |
|
995 | vmax=self.zmax, | |
958 | cmap=plt.get_cmap(self.colormap) |
|
996 | cmap=plt.get_cmap(self.colormap) | |
959 | ) |
|
997 | ) | |
960 | if self.showprofile: |
|
998 | if self.showprofile: | |
961 | ax.plot_profile.set_data(data['noiseless_rti'][n], self.y) |
|
999 | ax.plot_profile.set_data(data['noiseless_rti'][n], self.y) | |
962 | if "noise" in self.data: |
|
1000 | if "noise" in self.data: | |
963 | ax.plot_noise.set_data(numpy.repeat( |
|
1001 | ax.plot_noise.set_data(numpy.repeat( | |
964 | data['noise'][n], len(self.y)), self.y) |
|
1002 | data['noise'][n], len(self.y)), self.y) |
@@ -1,1870 +1,1879 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Spectra processing Unit and operations |
|
5 | """Spectra processing Unit and operations | |
6 |
|
6 | |||
7 | Here you will find the processing unit `SpectraProc` and several operations |
|
7 | Here you will find the processing unit `SpectraProc` and several operations | |
8 | to work with Spectra data type |
|
8 | to work with Spectra data type | |
9 | """ |
|
9 | """ | |
10 |
|
10 | |||
11 | import time |
|
11 | import time | |
12 | import itertools |
|
12 | import itertools | |
13 |
|
13 | |||
14 | import numpy |
|
14 | import numpy | |
15 | import math |
|
15 | import math | |
16 |
|
16 | |||
17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation | |
18 | from schainpy.model.data.jrodata import Spectra |
|
18 | from schainpy.model.data.jrodata import Spectra | |
19 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
19 | from schainpy.model.data.jrodata import hildebrand_sekhon | |
|
20 | from schainpy.model.data import _noise | |||
|
21 | ||||
20 | from schainpy.utils import log |
|
22 | from schainpy.utils import log | |
21 |
|
23 | |||
22 | from scipy.optimize import curve_fit |
|
24 | from scipy.optimize import curve_fit | |
23 |
|
25 | |||
24 | class SpectraProc(ProcessingUnit): |
|
26 | class SpectraProc(ProcessingUnit): | |
25 |
|
27 | |||
26 | def __init__(self): |
|
28 | def __init__(self): | |
27 |
|
29 | |||
28 | ProcessingUnit.__init__(self) |
|
30 | ProcessingUnit.__init__(self) | |
29 |
|
31 | |||
30 | self.buffer = None |
|
32 | self.buffer = None | |
31 | self.firstdatatime = None |
|
33 | self.firstdatatime = None | |
32 | self.profIndex = 0 |
|
34 | self.profIndex = 0 | |
33 | self.dataOut = Spectra() |
|
35 | self.dataOut = Spectra() | |
34 | self.id_min = None |
|
36 | self.id_min = None | |
35 | self.id_max = None |
|
37 | self.id_max = None | |
36 | self.setupReq = False #Agregar a todas las unidades de proc |
|
38 | self.setupReq = False #Agregar a todas las unidades de proc | |
37 |
|
39 | |||
38 | def __updateSpecFromVoltage(self): |
|
40 | def __updateSpecFromVoltage(self): | |
39 |
|
41 | |||
40 | self.dataOut.timeZone = self.dataIn.timeZone |
|
42 | self.dataOut.timeZone = self.dataIn.timeZone | |
41 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
43 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
42 | self.dataOut.errorCount = self.dataIn.errorCount |
|
44 | self.dataOut.errorCount = self.dataIn.errorCount | |
43 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
45 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
44 | try: |
|
46 | try: | |
45 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
47 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
46 | except: |
|
48 | except: | |
47 | pass |
|
49 | pass | |
48 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
50 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
49 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
51 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
50 | self.dataOut.channelList = self.dataIn.channelList |
|
52 | self.dataOut.channelList = self.dataIn.channelList | |
51 | self.dataOut.heightList = self.dataIn.heightList |
|
53 | self.dataOut.heightList = self.dataIn.heightList | |
52 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
54 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
53 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
55 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
54 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
56 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
55 | self.dataOut.utctime = self.firstdatatime |
|
57 | self.dataOut.utctime = self.firstdatatime | |
56 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
58 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData | |
57 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
59 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData | |
58 | self.dataOut.flagShiftFFT = False |
|
60 | self.dataOut.flagShiftFFT = False | |
59 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
61 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
60 | self.dataOut.nIncohInt = 1 |
|
62 | self.dataOut.nIncohInt = 1 | |
61 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
63 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
62 | self.dataOut.frequency = self.dataIn.frequency |
|
64 | self.dataOut.frequency = self.dataIn.frequency | |
63 | self.dataOut.realtime = self.dataIn.realtime |
|
65 | self.dataOut.realtime = self.dataIn.realtime | |
64 | self.dataOut.azimuth = self.dataIn.azimuth |
|
66 | self.dataOut.azimuth = self.dataIn.azimuth | |
65 | self.dataOut.zenith = self.dataIn.zenith |
|
67 | self.dataOut.zenith = self.dataIn.zenith | |
66 | self.dataOut.codeList = self.dataIn.codeList |
|
68 | self.dataOut.codeList = self.dataIn.codeList | |
67 | self.dataOut.azimuthList = self.dataIn.azimuthList |
|
69 | self.dataOut.azimuthList = self.dataIn.azimuthList | |
68 | self.dataOut.elevationList = self.dataIn.elevationList |
|
70 | self.dataOut.elevationList = self.dataIn.elevationList | |
69 |
|
71 | |||
70 |
|
72 | |||
71 | def __getFft(self): |
|
73 | def __getFft(self): | |
72 | """ |
|
74 | """ | |
73 | Convierte valores de Voltaje a Spectra |
|
75 | Convierte valores de Voltaje a Spectra | |
74 |
|
76 | |||
75 | Affected: |
|
77 | Affected: | |
76 | self.dataOut.data_spc |
|
78 | self.dataOut.data_spc | |
77 | self.dataOut.data_cspc |
|
79 | self.dataOut.data_cspc | |
78 | self.dataOut.data_dc |
|
80 | self.dataOut.data_dc | |
79 | self.dataOut.heightList |
|
81 | self.dataOut.heightList | |
80 | self.profIndex |
|
82 | self.profIndex | |
81 | self.buffer |
|
83 | self.buffer | |
82 | self.dataOut.flagNoData |
|
84 | self.dataOut.flagNoData | |
83 | """ |
|
85 | """ | |
84 | fft_volt = numpy.fft.fft( |
|
86 | fft_volt = numpy.fft.fft( | |
85 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
87 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) | |
86 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
88 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |
87 | dc = fft_volt[:, 0, :] |
|
89 | dc = fft_volt[:, 0, :] | |
88 |
|
90 | |||
89 | # calculo de self-spectra |
|
91 | # calculo de self-spectra | |
90 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
92 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) | |
91 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
93 | spc = fft_volt * numpy.conjugate(fft_volt) | |
92 | spc = spc.real |
|
94 | spc = spc.real | |
93 |
|
95 | |||
94 | blocksize = 0 |
|
96 | blocksize = 0 | |
95 | blocksize += dc.size |
|
97 | blocksize += dc.size | |
96 | blocksize += spc.size |
|
98 | blocksize += spc.size | |
97 |
|
99 | |||
98 | cspc = None |
|
100 | cspc = None | |
99 | pairIndex = 0 |
|
101 | pairIndex = 0 | |
100 | if self.dataOut.pairsList != None: |
|
102 | if self.dataOut.pairsList != None: | |
101 | # calculo de cross-spectra |
|
103 | # calculo de cross-spectra | |
102 | cspc = numpy.zeros( |
|
104 | cspc = numpy.zeros( | |
103 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
105 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |
104 | for pair in self.dataOut.pairsList: |
|
106 | for pair in self.dataOut.pairsList: | |
105 | if pair[0] not in self.dataOut.channelList: |
|
107 | if pair[0] not in self.dataOut.channelList: | |
106 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
108 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( | |
107 | str(pair), str(self.dataOut.channelList))) |
|
109 | str(pair), str(self.dataOut.channelList))) | |
108 | if pair[1] not in self.dataOut.channelList: |
|
110 | if pair[1] not in self.dataOut.channelList: | |
109 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
111 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( | |
110 | str(pair), str(self.dataOut.channelList))) |
|
112 | str(pair), str(self.dataOut.channelList))) | |
111 |
|
113 | |||
112 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
114 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ | |
113 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
115 | numpy.conjugate(fft_volt[pair[1], :, :]) | |
114 | pairIndex += 1 |
|
116 | pairIndex += 1 | |
115 | blocksize += cspc.size |
|
117 | blocksize += cspc.size | |
116 |
|
118 | |||
117 | self.dataOut.data_spc = spc |
|
119 | self.dataOut.data_spc = spc | |
118 | self.dataOut.data_cspc = cspc |
|
120 | self.dataOut.data_cspc = cspc | |
119 | self.dataOut.data_dc = dc |
|
121 | self.dataOut.data_dc = dc | |
120 | self.dataOut.blockSize = blocksize |
|
122 | self.dataOut.blockSize = blocksize | |
121 | self.dataOut.flagShiftFFT = False |
|
123 | self.dataOut.flagShiftFFT = False | |
122 |
|
124 | |||
123 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): |
|
125 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): | |
124 |
|
126 | |||
125 | if self.dataIn.type == "Spectra": |
|
127 | if self.dataIn.type == "Spectra": | |
126 |
|
128 | |||
127 | try: |
|
129 | try: | |
128 | self.dataOut.copy(self.dataIn) |
|
130 | self.dataOut.copy(self.dataIn) | |
129 |
|
131 | |||
130 | except Exception as e: |
|
132 | except Exception as e: | |
131 | print(e) |
|
133 | print(e) | |
132 |
|
134 | |||
133 | if shift_fft: |
|
135 | if shift_fft: | |
134 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
136 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
135 | shift = int(self.dataOut.nFFTPoints/2) |
|
137 | shift = int(self.dataOut.nFFTPoints/2) | |
136 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
138 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) | |
137 |
|
139 | |||
138 | if self.dataOut.data_cspc is not None: |
|
140 | if self.dataOut.data_cspc is not None: | |
139 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
141 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
140 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
142 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) | |
141 | if pairsList: |
|
143 | if pairsList: | |
142 | self.__selectPairs(pairsList) |
|
144 | self.__selectPairs(pairsList) | |
143 |
|
145 | |||
144 |
|
146 | |||
145 | elif self.dataIn.type == "Voltage": |
|
147 | elif self.dataIn.type == "Voltage": | |
146 |
|
148 | |||
147 | self.dataOut.flagNoData = True |
|
149 | self.dataOut.flagNoData = True | |
148 |
|
150 | |||
149 | if nFFTPoints == None: |
|
151 | if nFFTPoints == None: | |
150 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
152 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") | |
151 |
|
153 | |||
152 | if nProfiles == None: |
|
154 | if nProfiles == None: | |
153 | nProfiles = nFFTPoints |
|
155 | nProfiles = nFFTPoints | |
154 |
|
156 | |||
155 | if ippFactor == None: |
|
157 | if ippFactor == None: | |
156 | self.dataOut.ippFactor = 1 |
|
158 | self.dataOut.ippFactor = 1 | |
157 |
|
159 | |||
158 | self.dataOut.nFFTPoints = nFFTPoints |
|
160 | self.dataOut.nFFTPoints = nFFTPoints | |
159 |
|
161 | |||
160 | if self.buffer is None: |
|
162 | if self.buffer is None: | |
161 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
163 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
162 | nProfiles, |
|
164 | nProfiles, | |
163 | self.dataIn.nHeights), |
|
165 | self.dataIn.nHeights), | |
164 | dtype='complex') |
|
166 | dtype='complex') | |
165 |
|
167 | |||
166 | if self.dataIn.flagDataAsBlock: |
|
168 | if self.dataIn.flagDataAsBlock: | |
167 | nVoltProfiles = self.dataIn.data.shape[1] |
|
169 | nVoltProfiles = self.dataIn.data.shape[1] | |
168 |
|
170 | |||
169 | if nVoltProfiles == nProfiles: |
|
171 | if nVoltProfiles == nProfiles: | |
170 | self.buffer = self.dataIn.data.copy() |
|
172 | self.buffer = self.dataIn.data.copy() | |
171 | self.profIndex = nVoltProfiles |
|
173 | self.profIndex = nVoltProfiles | |
172 |
|
174 | |||
173 | elif nVoltProfiles < nProfiles: |
|
175 | elif nVoltProfiles < nProfiles: | |
174 |
|
176 | |||
175 | if self.profIndex == 0: |
|
177 | if self.profIndex == 0: | |
176 | self.id_min = 0 |
|
178 | self.id_min = 0 | |
177 | self.id_max = nVoltProfiles |
|
179 | self.id_max = nVoltProfiles | |
178 |
|
180 | |||
179 | self.buffer[:, self.id_min:self.id_max, |
|
181 | self.buffer[:, self.id_min:self.id_max, | |
180 | :] = self.dataIn.data |
|
182 | :] = self.dataIn.data | |
181 | self.profIndex += nVoltProfiles |
|
183 | self.profIndex += nVoltProfiles | |
182 | self.id_min += nVoltProfiles |
|
184 | self.id_min += nVoltProfiles | |
183 | self.id_max += nVoltProfiles |
|
185 | self.id_max += nVoltProfiles | |
184 | else: |
|
186 | else: | |
185 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
187 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( | |
186 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
188 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) | |
187 | self.dataOut.flagNoData = True |
|
189 | self.dataOut.flagNoData = True | |
188 | else: |
|
190 | else: | |
189 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
191 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() | |
190 | self.profIndex += 1 |
|
192 | self.profIndex += 1 | |
191 |
|
193 | |||
192 | if self.firstdatatime == None: |
|
194 | if self.firstdatatime == None: | |
193 | self.firstdatatime = self.dataIn.utctime |
|
195 | self.firstdatatime = self.dataIn.utctime | |
194 |
|
196 | |||
195 | if self.profIndex == nProfiles: |
|
197 | if self.profIndex == nProfiles: | |
196 | self.__updateSpecFromVoltage() |
|
198 | self.__updateSpecFromVoltage() | |
197 | if pairsList == None: |
|
199 | if pairsList == None: | |
198 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
200 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] | |
199 | else: |
|
201 | else: | |
200 | self.dataOut.pairsList = pairsList |
|
202 | self.dataOut.pairsList = pairsList | |
201 | self.__getFft() |
|
203 | self.__getFft() | |
202 | self.dataOut.flagNoData = False |
|
204 | self.dataOut.flagNoData = False | |
203 | self.firstdatatime = None |
|
205 | self.firstdatatime = None | |
204 | self.profIndex = 0 |
|
206 | self.profIndex = 0 | |
205 |
|
207 | |||
206 | else: |
|
208 | else: | |
207 | raise ValueError("The type of input object '%s' is not valid".format( |
|
209 | raise ValueError("The type of input object '%s' is not valid".format( | |
208 | self.dataIn.type)) |
|
210 | self.dataIn.type)) | |
209 |
|
211 | |||
210 | def __selectPairs(self, pairsList): |
|
212 | def __selectPairs(self, pairsList): | |
211 |
|
213 | |||
212 | if not pairsList: |
|
214 | if not pairsList: | |
213 | return |
|
215 | return | |
214 |
|
216 | |||
215 | pairs = [] |
|
217 | pairs = [] | |
216 | pairsIndex = [] |
|
218 | pairsIndex = [] | |
217 |
|
219 | |||
218 | for pair in pairsList: |
|
220 | for pair in pairsList: | |
219 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
221 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: | |
220 | continue |
|
222 | continue | |
221 | pairs.append(pair) |
|
223 | pairs.append(pair) | |
222 | pairsIndex.append(pairs.index(pair)) |
|
224 | pairsIndex.append(pairs.index(pair)) | |
223 |
|
225 | |||
224 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
226 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] | |
225 | self.dataOut.pairsList = pairs |
|
227 | self.dataOut.pairsList = pairs | |
226 |
|
228 | |||
227 | return |
|
229 | return | |
228 |
|
230 | |||
229 | def selectFFTs(self, minFFT, maxFFT ): |
|
231 | def selectFFTs(self, minFFT, maxFFT ): | |
230 | """ |
|
232 | """ | |
231 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
233 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |
232 | minFFT<= FFT <= maxFFT |
|
234 | minFFT<= FFT <= maxFFT | |
233 | """ |
|
235 | """ | |
234 |
|
236 | |||
235 | if (minFFT > maxFFT): |
|
237 | if (minFFT > maxFFT): | |
236 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
238 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) | |
237 |
|
239 | |||
238 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
240 | if (minFFT < self.dataOut.getFreqRange()[0]): | |
239 | minFFT = self.dataOut.getFreqRange()[0] |
|
241 | minFFT = self.dataOut.getFreqRange()[0] | |
240 |
|
242 | |||
241 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
243 | if (maxFFT > self.dataOut.getFreqRange()[-1]): | |
242 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
244 | maxFFT = self.dataOut.getFreqRange()[-1] | |
243 |
|
245 | |||
244 | minIndex = 0 |
|
246 | minIndex = 0 | |
245 | maxIndex = 0 |
|
247 | maxIndex = 0 | |
246 | FFTs = self.dataOut.getFreqRange() |
|
248 | FFTs = self.dataOut.getFreqRange() | |
247 |
|
249 | |||
248 | inda = numpy.where(FFTs >= minFFT) |
|
250 | inda = numpy.where(FFTs >= minFFT) | |
249 | indb = numpy.where(FFTs <= maxFFT) |
|
251 | indb = numpy.where(FFTs <= maxFFT) | |
250 |
|
252 | |||
251 | try: |
|
253 | try: | |
252 | minIndex = inda[0][0] |
|
254 | minIndex = inda[0][0] | |
253 | except: |
|
255 | except: | |
254 | minIndex = 0 |
|
256 | minIndex = 0 | |
255 |
|
257 | |||
256 | try: |
|
258 | try: | |
257 | maxIndex = indb[0][-1] |
|
259 | maxIndex = indb[0][-1] | |
258 | except: |
|
260 | except: | |
259 | maxIndex = len(FFTs) |
|
261 | maxIndex = len(FFTs) | |
260 |
|
262 | |||
261 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
263 | self.selectFFTsByIndex(minIndex, maxIndex) | |
262 |
|
264 | |||
263 | return 1 |
|
265 | return 1 | |
264 |
|
266 | |||
265 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
267 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): | |
266 | newheis = numpy.where( |
|
268 | newheis = numpy.where( | |
267 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
269 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
268 |
|
270 | |||
269 | if hei_ref != None: |
|
271 | if hei_ref != None: | |
270 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
272 | newheis = numpy.where(self.dataOut.heightList > hei_ref) | |
271 |
|
273 | |||
272 | minIndex = min(newheis[0]) |
|
274 | minIndex = min(newheis[0]) | |
273 | maxIndex = max(newheis[0]) |
|
275 | maxIndex = max(newheis[0]) | |
274 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
276 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
275 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
277 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
276 |
|
278 | |||
277 | # determina indices |
|
279 | # determina indices | |
278 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
280 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / | |
279 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
281 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) | |
280 | avg_dB = 10 * \ |
|
282 | avg_dB = 10 * \ | |
281 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
283 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) | |
282 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
284 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |
283 | beacon_heiIndexList = [] |
|
285 | beacon_heiIndexList = [] | |
284 | for val in avg_dB.tolist(): |
|
286 | for val in avg_dB.tolist(): | |
285 | if val >= beacon_dB[0]: |
|
287 | if val >= beacon_dB[0]: | |
286 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
288 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |
287 |
|
289 | |||
288 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
290 | #data_spc = data_spc[:,:,beacon_heiIndexList] | |
289 | data_cspc = None |
|
291 | data_cspc = None | |
290 | if self.dataOut.data_cspc is not None: |
|
292 | if self.dataOut.data_cspc is not None: | |
291 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
293 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
292 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
294 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] | |
293 |
|
295 | |||
294 | data_dc = None |
|
296 | data_dc = None | |
295 | if self.dataOut.data_dc is not None: |
|
297 | if self.dataOut.data_dc is not None: | |
296 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
298 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
297 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
299 | #data_dc = data_dc[:,beacon_heiIndexList] | |
298 |
|
300 | |||
299 | self.dataOut.data_spc = data_spc |
|
301 | self.dataOut.data_spc = data_spc | |
300 | self.dataOut.data_cspc = data_cspc |
|
302 | self.dataOut.data_cspc = data_cspc | |
301 | self.dataOut.data_dc = data_dc |
|
303 | self.dataOut.data_dc = data_dc | |
302 | self.dataOut.heightList = heightList |
|
304 | self.dataOut.heightList = heightList | |
303 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
305 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |
304 |
|
306 | |||
305 | return 1 |
|
307 | return 1 | |
306 |
|
308 | |||
307 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
309 | def selectFFTsByIndex(self, minIndex, maxIndex): | |
308 | """ |
|
310 | """ | |
309 |
|
311 | |||
310 | """ |
|
312 | """ | |
311 |
|
313 | |||
312 | if (minIndex < 0) or (minIndex > maxIndex): |
|
314 | if (minIndex < 0) or (minIndex > maxIndex): | |
313 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
315 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
314 |
|
316 | |||
315 | if (maxIndex >= self.dataOut.nProfiles): |
|
317 | if (maxIndex >= self.dataOut.nProfiles): | |
316 | maxIndex = self.dataOut.nProfiles-1 |
|
318 | maxIndex = self.dataOut.nProfiles-1 | |
317 |
|
319 | |||
318 | #Spectra |
|
320 | #Spectra | |
319 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
321 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] | |
320 |
|
322 | |||
321 | data_cspc = None |
|
323 | data_cspc = None | |
322 | if self.dataOut.data_cspc is not None: |
|
324 | if self.dataOut.data_cspc is not None: | |
323 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
325 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] | |
324 |
|
326 | |||
325 | data_dc = None |
|
327 | data_dc = None | |
326 | if self.dataOut.data_dc is not None: |
|
328 | if self.dataOut.data_dc is not None: | |
327 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
329 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] | |
328 |
|
330 | |||
329 | self.dataOut.data_spc = data_spc |
|
331 | self.dataOut.data_spc = data_spc | |
330 | self.dataOut.data_cspc = data_cspc |
|
332 | self.dataOut.data_cspc = data_cspc | |
331 | self.dataOut.data_dc = data_dc |
|
333 | self.dataOut.data_dc = data_dc | |
332 |
|
334 | |||
333 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
335 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) | |
334 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
336 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] | |
335 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
337 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] | |
336 |
|
338 | |||
337 | return 1 |
|
339 | return 1 | |
338 |
|
340 | |||
339 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
341 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |
340 | # validacion de rango |
|
342 | # validacion de rango | |
341 | if minHei == None: |
|
343 | if minHei == None: | |
342 | minHei = self.dataOut.heightList[0] |
|
344 | minHei = self.dataOut.heightList[0] | |
343 |
|
345 | |||
344 | if maxHei == None: |
|
346 | if maxHei == None: | |
345 | maxHei = self.dataOut.heightList[-1] |
|
347 | maxHei = self.dataOut.heightList[-1] | |
346 |
|
348 | |||
347 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
349 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
348 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
350 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
349 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
351 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
350 | minHei = self.dataOut.heightList[0] |
|
352 | minHei = self.dataOut.heightList[0] | |
351 |
|
353 | |||
352 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
354 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
353 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
355 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
354 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
356 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
355 | maxHei = self.dataOut.heightList[-1] |
|
357 | maxHei = self.dataOut.heightList[-1] | |
356 |
|
358 | |||
357 | # validacion de velocidades |
|
359 | # validacion de velocidades | |
358 | velrange = self.dataOut.getVelRange(1) |
|
360 | velrange = self.dataOut.getVelRange(1) | |
359 |
|
361 | |||
360 | if minVel == None: |
|
362 | if minVel == None: | |
361 | minVel = velrange[0] |
|
363 | minVel = velrange[0] | |
362 |
|
364 | |||
363 | if maxVel == None: |
|
365 | if maxVel == None: | |
364 | maxVel = velrange[-1] |
|
366 | maxVel = velrange[-1] | |
365 |
|
367 | |||
366 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
368 | if (minVel < velrange[0]) or (minVel > maxVel): | |
367 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
369 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |
368 | print('minVel is setting to %.2f' % (velrange[0])) |
|
370 | print('minVel is setting to %.2f' % (velrange[0])) | |
369 | minVel = velrange[0] |
|
371 | minVel = velrange[0] | |
370 |
|
372 | |||
371 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
373 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
372 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
374 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |
373 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
375 | print('maxVel is setting to %.2f' % (velrange[-1])) | |
374 | maxVel = velrange[-1] |
|
376 | maxVel = velrange[-1] | |
375 |
|
377 | |||
376 | # seleccion de indices para rango |
|
378 | # seleccion de indices para rango | |
377 | minIndex = 0 |
|
379 | minIndex = 0 | |
378 | maxIndex = 0 |
|
380 | maxIndex = 0 | |
379 | heights = self.dataOut.heightList |
|
381 | heights = self.dataOut.heightList | |
380 |
|
382 | |||
381 | inda = numpy.where(heights >= minHei) |
|
383 | inda = numpy.where(heights >= minHei) | |
382 | indb = numpy.where(heights <= maxHei) |
|
384 | indb = numpy.where(heights <= maxHei) | |
383 |
|
385 | |||
384 | try: |
|
386 | try: | |
385 | minIndex = inda[0][0] |
|
387 | minIndex = inda[0][0] | |
386 | except: |
|
388 | except: | |
387 | minIndex = 0 |
|
389 | minIndex = 0 | |
388 |
|
390 | |||
389 | try: |
|
391 | try: | |
390 | maxIndex = indb[0][-1] |
|
392 | maxIndex = indb[0][-1] | |
391 | except: |
|
393 | except: | |
392 | maxIndex = len(heights) |
|
394 | maxIndex = len(heights) | |
393 |
|
395 | |||
394 | if (minIndex < 0) or (minIndex > maxIndex): |
|
396 | if (minIndex < 0) or (minIndex > maxIndex): | |
395 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
397 | raise ValueError("some value in (%d,%d) is not valid" % ( | |
396 | minIndex, maxIndex)) |
|
398 | minIndex, maxIndex)) | |
397 |
|
399 | |||
398 | if (maxIndex >= self.dataOut.nHeights): |
|
400 | if (maxIndex >= self.dataOut.nHeights): | |
399 | maxIndex = self.dataOut.nHeights - 1 |
|
401 | maxIndex = self.dataOut.nHeights - 1 | |
400 |
|
402 | |||
401 | # seleccion de indices para velocidades |
|
403 | # seleccion de indices para velocidades | |
402 | indminvel = numpy.where(velrange >= minVel) |
|
404 | indminvel = numpy.where(velrange >= minVel) | |
403 | indmaxvel = numpy.where(velrange <= maxVel) |
|
405 | indmaxvel = numpy.where(velrange <= maxVel) | |
404 | try: |
|
406 | try: | |
405 | minIndexVel = indminvel[0][0] |
|
407 | minIndexVel = indminvel[0][0] | |
406 | except: |
|
408 | except: | |
407 | minIndexVel = 0 |
|
409 | minIndexVel = 0 | |
408 |
|
410 | |||
409 | try: |
|
411 | try: | |
410 | maxIndexVel = indmaxvel[0][-1] |
|
412 | maxIndexVel = indmaxvel[0][-1] | |
411 | except: |
|
413 | except: | |
412 | maxIndexVel = len(velrange) |
|
414 | maxIndexVel = len(velrange) | |
413 |
|
415 | |||
414 | # seleccion del espectro |
|
416 | # seleccion del espectro | |
415 | data_spc = self.dataOut.data_spc[:, |
|
417 | data_spc = self.dataOut.data_spc[:, | |
416 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
418 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] | |
417 | # estimacion de ruido |
|
419 | # estimacion de ruido | |
418 | noise = numpy.zeros(self.dataOut.nChannels) |
|
420 | noise = numpy.zeros(self.dataOut.nChannels) | |
419 |
|
421 | |||
420 | for channel in range(self.dataOut.nChannels): |
|
422 | for channel in range(self.dataOut.nChannels): | |
421 | daux = data_spc[channel, :, :] |
|
423 | daux = data_spc[channel, :, :] | |
422 | sortdata = numpy.sort(daux, axis=None) |
|
424 | sortdata = numpy.sort(daux, axis=None) | |
423 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
425 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) | |
424 |
|
426 | |||
425 | self.dataOut.noise_estimation = noise.copy() |
|
427 | self.dataOut.noise_estimation = noise.copy() | |
426 |
|
428 | |||
427 | return 1 |
|
429 | return 1 | |
428 |
|
430 | |||
429 | class removeDC(Operation): |
|
431 | class removeDC(Operation): | |
430 |
|
432 | |||
431 | def run(self, dataOut, mode=2): |
|
433 | def run(self, dataOut, mode=2): | |
432 | self.dataOut = dataOut |
|
434 | self.dataOut = dataOut | |
433 | jspectra = self.dataOut.data_spc |
|
435 | jspectra = self.dataOut.data_spc | |
434 | jcspectra = self.dataOut.data_cspc |
|
436 | jcspectra = self.dataOut.data_cspc | |
435 |
|
437 | |||
436 | num_chan = jspectra.shape[0] |
|
438 | num_chan = jspectra.shape[0] | |
437 | num_hei = jspectra.shape[2] |
|
439 | num_hei = jspectra.shape[2] | |
438 |
|
440 | |||
439 | if jcspectra is not None: |
|
441 | if jcspectra is not None: | |
440 | jcspectraExist = True |
|
442 | jcspectraExist = True | |
441 | num_pairs = jcspectra.shape[0] |
|
443 | num_pairs = jcspectra.shape[0] | |
442 | else: |
|
444 | else: | |
443 | jcspectraExist = False |
|
445 | jcspectraExist = False | |
444 |
|
446 | |||
445 | freq_dc = int(jspectra.shape[1] / 2) |
|
447 | freq_dc = int(jspectra.shape[1] / 2) | |
446 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
448 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
447 | ind_vel = ind_vel.astype(int) |
|
449 | ind_vel = ind_vel.astype(int) | |
448 |
|
450 | |||
449 | if ind_vel[0] < 0: |
|
451 | if ind_vel[0] < 0: | |
450 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
452 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof | |
451 |
|
453 | |||
452 | if mode == 1: |
|
454 | if mode == 1: | |
453 | jspectra[:, freq_dc, :] = ( |
|
455 | jspectra[:, freq_dc, :] = ( | |
454 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
456 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
455 |
|
457 | |||
456 | if jcspectraExist: |
|
458 | if jcspectraExist: | |
457 | jcspectra[:, freq_dc, :] = ( |
|
459 | jcspectra[:, freq_dc, :] = ( | |
458 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
460 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 | |
459 |
|
461 | |||
460 | if mode == 2: |
|
462 | if mode == 2: | |
461 |
|
463 | |||
462 | vel = numpy.array([-2, -1, 1, 2]) |
|
464 | vel = numpy.array([-2, -1, 1, 2]) | |
463 | xx = numpy.zeros([4, 4]) |
|
465 | xx = numpy.zeros([4, 4]) | |
464 |
|
466 | |||
465 | for fil in range(4): |
|
467 | for fil in range(4): | |
466 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
468 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
467 |
|
469 | |||
468 | xx_inv = numpy.linalg.inv(xx) |
|
470 | xx_inv = numpy.linalg.inv(xx) | |
469 | xx_aux = xx_inv[0, :] |
|
471 | xx_aux = xx_inv[0, :] | |
470 |
|
472 | |||
471 | for ich in range(num_chan): |
|
473 | for ich in range(num_chan): | |
472 | yy = jspectra[ich, ind_vel, :] |
|
474 | yy = jspectra[ich, ind_vel, :] | |
473 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
475 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
474 |
|
476 | |||
475 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
477 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
476 | cjunkid = sum(junkid) |
|
478 | cjunkid = sum(junkid) | |
477 |
|
479 | |||
478 | if cjunkid.any(): |
|
480 | if cjunkid.any(): | |
479 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
481 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
480 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
482 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
481 |
|
483 | |||
482 | if jcspectraExist: |
|
484 | if jcspectraExist: | |
483 | for ip in range(num_pairs): |
|
485 | for ip in range(num_pairs): | |
484 | yy = jcspectra[ip, ind_vel, :] |
|
486 | yy = jcspectra[ip, ind_vel, :] | |
485 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
487 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) | |
486 |
|
488 | |||
487 | self.dataOut.data_spc = jspectra |
|
489 | self.dataOut.data_spc = jspectra | |
488 | self.dataOut.data_cspc = jcspectra |
|
490 | self.dataOut.data_cspc = jcspectra | |
489 |
|
491 | |||
490 | return self.dataOut |
|
492 | return self.dataOut | |
491 |
|
493 | |||
492 | class getNoise(Operation): |
|
494 | class getNoise(Operation): | |
493 |
|
495 | |||
494 | def __init__(self): |
|
496 | def __init__(self): | |
495 |
|
497 | |||
496 | Operation.__init__(self) |
|
498 | Operation.__init__(self) | |
497 |
|
499 | |||
498 | def run(self, dataOut, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None): |
|
500 | def run(self, dataOut, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None): | |
499 | self.dataOut = dataOut |
|
501 | self.dataOut = dataOut | |
500 |
|
502 | |||
501 | if minHei == None: |
|
503 | if minHei == None: | |
502 | minHei = self.dataOut.heightList[0] |
|
504 | minHei = self.dataOut.heightList[0] | |
503 |
|
505 | |||
504 | if maxHei == None: |
|
506 | if maxHei == None: | |
505 | maxHei = self.dataOut.heightList[-1] |
|
507 | maxHei = self.dataOut.heightList[-1] | |
506 |
|
508 | |||
507 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
509 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
508 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
510 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
509 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
511 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
510 | minHei = self.dataOut.heightList[0] |
|
512 | minHei = self.dataOut.heightList[0] | |
511 |
|
513 | |||
512 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
514 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
513 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
515 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
514 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
516 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
515 | maxHei = self.dataOut.heightList[-1] |
|
517 | maxHei = self.dataOut.heightList[-1] | |
516 |
|
518 | |||
517 |
|
519 | |||
518 | #indices relativos a los puntos de fft, puede ser de acuerdo a velocidad o frecuencia |
|
520 | #indices relativos a los puntos de fft, puede ser de acuerdo a velocidad o frecuencia | |
519 | minIndexFFT = 0 |
|
521 | minIndexFFT = 0 | |
520 | maxIndexFFT = 0 |
|
522 | maxIndexFFT = 0 | |
521 | # validacion de velocidades |
|
523 | # validacion de velocidades | |
522 | indminPoint = None |
|
524 | indminPoint = None | |
523 | indmaxPoint = None |
|
525 | indmaxPoint = None | |
524 |
|
526 | |||
525 | if minVel == None and maxVel == None: |
|
527 | if minVel == None and maxVel == None: | |
526 |
|
528 | |||
527 | freqrange = self.dataOut.getFreqRange(1) |
|
529 | freqrange = self.dataOut.getFreqRange(1) | |
528 |
|
530 | |||
529 | if minFreq == None: |
|
531 | if minFreq == None: | |
530 | minFreq = freqrange[0] |
|
532 | minFreq = freqrange[0] | |
531 |
|
533 | |||
532 | if maxFreq == None: |
|
534 | if maxFreq == None: | |
533 | maxFreq = freqrange[-1] |
|
535 | maxFreq = freqrange[-1] | |
534 |
|
536 | |||
535 | if (minFreq < freqrange[0]) or (minFreq > maxFreq): |
|
537 | if (minFreq < freqrange[0]) or (minFreq > maxFreq): | |
536 | print('minFreq: %.2f is out of the frequency range' % (minFreq)) |
|
538 | print('minFreq: %.2f is out of the frequency range' % (minFreq)) | |
537 | print('minFreq is setting to %.2f' % (freqrange[0])) |
|
539 | print('minFreq is setting to %.2f' % (freqrange[0])) | |
538 | minFreq = freqrange[0] |
|
540 | minFreq = freqrange[0] | |
539 |
|
541 | |||
540 | if (maxFreq > freqrange[-1]) or (maxFreq < minFreq): |
|
542 | if (maxFreq > freqrange[-1]) or (maxFreq < minFreq): | |
541 | print('maxFreq: %.2f is out of the frequency range' % (maxFreq)) |
|
543 | print('maxFreq: %.2f is out of the frequency range' % (maxFreq)) | |
542 | print('maxFreq is setting to %.2f' % (freqrange[-1])) |
|
544 | print('maxFreq is setting to %.2f' % (freqrange[-1])) | |
543 | maxFreq = freqrange[-1] |
|
545 | maxFreq = freqrange[-1] | |
544 |
|
546 | |||
545 | indminPoint = numpy.where(freqrange >= minFreq) |
|
547 | indminPoint = numpy.where(freqrange >= minFreq) | |
546 | indmaxPoint = numpy.where(freqrange <= maxFreq) |
|
548 | indmaxPoint = numpy.where(freqrange <= maxFreq) | |
547 |
|
549 | |||
548 | else: |
|
550 | else: | |
549 | velrange = self.dataOut.getVelRange(1) |
|
551 | velrange = self.dataOut.getVelRange(1) | |
550 |
|
552 | |||
551 | if minVel == None: |
|
553 | if minVel == None: | |
552 | minVel = velrange[0] |
|
554 | minVel = velrange[0] | |
553 |
|
555 | |||
554 | if maxVel == None: |
|
556 | if maxVel == None: | |
555 | maxVel = velrange[-1] |
|
557 | maxVel = velrange[-1] | |
556 |
|
558 | |||
557 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
559 | if (minVel < velrange[0]) or (minVel > maxVel): | |
558 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
560 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |
559 | print('minVel is setting to %.2f' % (velrange[0])) |
|
561 | print('minVel is setting to %.2f' % (velrange[0])) | |
560 | minVel = velrange[0] |
|
562 | minVel = velrange[0] | |
561 |
|
563 | |||
562 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
564 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
563 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
565 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |
564 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
566 | print('maxVel is setting to %.2f' % (velrange[-1])) | |
565 | maxVel = velrange[-1] |
|
567 | maxVel = velrange[-1] | |
566 |
|
568 | |||
567 | indminPoint = numpy.where(velrange >= minVel) |
|
569 | indminPoint = numpy.where(velrange >= minVel) | |
568 | indmaxPoint = numpy.where(velrange <= maxVel) |
|
570 | indmaxPoint = numpy.where(velrange <= maxVel) | |
569 |
|
571 | |||
570 |
|
572 | |||
571 | # seleccion de indices para rango |
|
573 | # seleccion de indices para rango | |
572 | minIndex = 0 |
|
574 | minIndex = 0 | |
573 | maxIndex = 0 |
|
575 | maxIndex = 0 | |
574 | heights = self.dataOut.heightList |
|
576 | heights = self.dataOut.heightList | |
575 |
|
577 | |||
576 | inda = numpy.where(heights >= minHei) |
|
578 | inda = numpy.where(heights >= minHei) | |
577 | indb = numpy.where(heights <= maxHei) |
|
579 | indb = numpy.where(heights <= maxHei) | |
578 |
|
580 | |||
579 | try: |
|
581 | try: | |
580 | minIndex = inda[0][0] |
|
582 | minIndex = inda[0][0] | |
581 | except: |
|
583 | except: | |
582 | minIndex = 0 |
|
584 | minIndex = 0 | |
583 |
|
585 | |||
584 | try: |
|
586 | try: | |
585 | maxIndex = indb[0][-1] |
|
587 | maxIndex = indb[0][-1] | |
586 | except: |
|
588 | except: | |
587 | maxIndex = len(heights) |
|
589 | maxIndex = len(heights) | |
588 |
|
590 | |||
589 | if (minIndex < 0) or (minIndex > maxIndex): |
|
591 | if (minIndex < 0) or (minIndex > maxIndex): | |
590 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
592 | raise ValueError("some value in (%d,%d) is not valid" % ( | |
591 | minIndex, maxIndex)) |
|
593 | minIndex, maxIndex)) | |
592 |
|
594 | |||
593 | if (maxIndex >= self.dataOut.nHeights): |
|
595 | if (maxIndex >= self.dataOut.nHeights): | |
594 | maxIndex = self.dataOut.nHeights - 1 |
|
596 | maxIndex = self.dataOut.nHeights - 1 | |
595 | #############################################################3 |
|
597 | #############################################################3 | |
596 | # seleccion de indices para velocidades |
|
598 | # seleccion de indices para velocidades | |
597 |
|
599 | |||
598 | try: |
|
600 | try: | |
599 | minIndexFFT = indminPoint[0][0] |
|
601 | minIndexFFT = indminPoint[0][0] | |
600 | except: |
|
602 | except: | |
601 | minIndexFFT = 0 |
|
603 | minIndexFFT = 0 | |
602 |
|
604 | |||
603 | try: |
|
605 | try: | |
604 | maxIndexFFT = indmaxPoint[0][-1] |
|
606 | maxIndexFFT = indmaxPoint[0][-1] | |
605 | except: |
|
607 | except: | |
606 | maxIndexFFT = len( self.dataOut.getFreqRange(1)) |
|
608 | maxIndexFFT = len( self.dataOut.getFreqRange(1)) | |
607 |
|
609 | |||
608 | #print(minIndex, maxIndex,minIndexVel, maxIndexVel) |
|
610 | #print(minIndex, maxIndex,minIndexVel, maxIndexVel) | |
609 | self.dataOut.noise_estimation = None |
|
611 | self.dataOut.noise_estimation = None | |
610 | noise = self.dataOut.getNoise(xmin_index=minIndexFFT, xmax_index=maxIndexFFT, ymin_index=minIndex, ymax_index=maxIndex) |
|
612 | noise = self.dataOut.getNoise(xmin_index=minIndexFFT, xmax_index=maxIndexFFT, ymin_index=minIndex, ymax_index=maxIndex) | |
611 |
|
613 | |||
612 | self.dataOut.noise_estimation = noise.copy() # dataOut.noise |
|
614 | self.dataOut.noise_estimation = noise.copy() # dataOut.noise | |
613 | #print("2: ",10*numpy.log10(self.dataOut.noise_estimation/64)) |
|
615 | #print("2: ",10*numpy.log10(self.dataOut.noise_estimation/64)) | |
614 | return self.dataOut |
|
616 | return self.dataOut | |
615 |
|
617 | |||
616 |
|
618 | |||
617 |
|
619 | |||
618 | # import matplotlib.pyplot as plt |
|
620 | # import matplotlib.pyplot as plt | |
619 |
|
621 | |||
620 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): |
|
622 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): | |
621 | z = (x - a1) / a2 |
|
623 | z = (x - a1) / a2 | |
622 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 |
|
624 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 | |
623 | return y |
|
625 | return y | |
624 |
|
626 | |||
625 |
|
627 | |||
626 | class CleanRayleigh(Operation): |
|
628 | class CleanRayleigh(Operation): | |
627 |
|
629 | |||
628 | def __init__(self): |
|
630 | def __init__(self): | |
629 |
|
631 | |||
630 | Operation.__init__(self) |
|
632 | Operation.__init__(self) | |
631 | self.i=0 |
|
633 | self.i=0 | |
632 | self.isConfig = False |
|
634 | self.isConfig = False | |
633 | self.__dataReady = False |
|
635 | self.__dataReady = False | |
634 | self.__profIndex = 0 |
|
636 | self.__profIndex = 0 | |
635 | self.byTime = False |
|
637 | self.byTime = False | |
636 | self.byProfiles = False |
|
638 | self.byProfiles = False | |
637 |
|
639 | |||
638 | self.bloques = None |
|
640 | self.bloques = None | |
639 | self.bloque0 = None |
|
641 | self.bloque0 = None | |
640 |
|
642 | |||
641 | self.index = 0 |
|
643 | self.index = 0 | |
642 |
|
644 | |||
643 | self.buffer = 0 |
|
645 | self.buffer = 0 | |
644 | self.buffer2 = 0 |
|
646 | self.buffer2 = 0 | |
645 | self.buffer3 = 0 |
|
647 | self.buffer3 = 0 | |
646 |
|
648 | |||
647 |
|
649 | |||
648 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): |
|
650 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): | |
649 |
|
651 | |||
650 | self.nChannels = dataOut.nChannels |
|
652 | self.nChannels = dataOut.nChannels | |
651 | self.nProf = dataOut.nProfiles |
|
653 | self.nProf = dataOut.nProfiles | |
652 | self.nPairs = dataOut.data_cspc.shape[0] |
|
654 | self.nPairs = dataOut.data_cspc.shape[0] | |
653 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
655 | self.pairsArray = numpy.array(dataOut.pairsList) | |
654 | self.spectra = dataOut.data_spc |
|
656 | self.spectra = dataOut.data_spc | |
655 | self.cspectra = dataOut.data_cspc |
|
657 | self.cspectra = dataOut.data_cspc | |
656 | self.heights = dataOut.heightList #alturas totales |
|
658 | self.heights = dataOut.heightList #alturas totales | |
657 | self.nHeights = len(self.heights) |
|
659 | self.nHeights = len(self.heights) | |
658 | self.min_hei = min_hei |
|
660 | self.min_hei = min_hei | |
659 | self.max_hei = max_hei |
|
661 | self.max_hei = max_hei | |
660 | if (self.min_hei == None): |
|
662 | if (self.min_hei == None): | |
661 | self.min_hei = 0 |
|
663 | self.min_hei = 0 | |
662 | if (self.max_hei == None): |
|
664 | if (self.max_hei == None): | |
663 | self.max_hei = dataOut.heightList[-1] |
|
665 | self.max_hei = dataOut.heightList[-1] | |
664 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() |
|
666 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() | |
665 | self.heightsClean = self.heights[self.hval] #alturas filtradas |
|
667 | self.heightsClean = self.heights[self.hval] #alturas filtradas | |
666 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas |
|
668 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas | |
667 | self.nHeightsClean = len(self.heightsClean) |
|
669 | self.nHeightsClean = len(self.heightsClean) | |
668 | self.channels = dataOut.channelList |
|
670 | self.channels = dataOut.channelList | |
669 | self.nChan = len(self.channels) |
|
671 | self.nChan = len(self.channels) | |
670 | self.nIncohInt = dataOut.nIncohInt |
|
672 | self.nIncohInt = dataOut.nIncohInt | |
671 | self.__initime = dataOut.utctime |
|
673 | self.__initime = dataOut.utctime | |
672 | self.maxAltInd = self.hval[-1]+1 |
|
674 | self.maxAltInd = self.hval[-1]+1 | |
673 | self.minAltInd = self.hval[0] |
|
675 | self.minAltInd = self.hval[0] | |
674 |
|
676 | |||
675 | self.crosspairs = dataOut.pairsList |
|
677 | self.crosspairs = dataOut.pairsList | |
676 | self.nPairs = len(self.crosspairs) |
|
678 | self.nPairs = len(self.crosspairs) | |
677 | self.normFactor = dataOut.normFactor |
|
679 | self.normFactor = dataOut.normFactor | |
678 | self.nFFTPoints = dataOut.nFFTPoints |
|
680 | self.nFFTPoints = dataOut.nFFTPoints | |
679 | self.ippSeconds = dataOut.ippSeconds |
|
681 | self.ippSeconds = dataOut.ippSeconds | |
680 | self.currentTime = self.__initime |
|
682 | self.currentTime = self.__initime | |
681 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
683 | self.pairsArray = numpy.array(dataOut.pairsList) | |
682 | self.factor_stdv = factor_stdv |
|
684 | self.factor_stdv = factor_stdv | |
683 |
|
685 | |||
684 | if n != None : |
|
686 | if n != None : | |
685 | self.byProfiles = True |
|
687 | self.byProfiles = True | |
686 | self.nIntProfiles = n |
|
688 | self.nIntProfiles = n | |
687 | else: |
|
689 | else: | |
688 | self.__integrationtime = timeInterval |
|
690 | self.__integrationtime = timeInterval | |
689 |
|
691 | |||
690 | self.__dataReady = False |
|
692 | self.__dataReady = False | |
691 | self.isConfig = True |
|
693 | self.isConfig = True | |
692 |
|
694 | |||
693 |
|
695 | |||
694 |
|
696 | |||
695 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): |
|
697 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): | |
696 |
|
698 | |||
697 | if not self.isConfig : |
|
699 | if not self.isConfig : | |
698 |
|
700 | |||
699 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) |
|
701 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) | |
700 |
|
702 | |||
701 | tini=dataOut.utctime |
|
703 | tini=dataOut.utctime | |
702 |
|
704 | |||
703 | if self.byProfiles: |
|
705 | if self.byProfiles: | |
704 | if self.__profIndex == self.nIntProfiles: |
|
706 | if self.__profIndex == self.nIntProfiles: | |
705 | self.__dataReady = True |
|
707 | self.__dataReady = True | |
706 | else: |
|
708 | else: | |
707 | if (tini - self.__initime) >= self.__integrationtime: |
|
709 | if (tini - self.__initime) >= self.__integrationtime: | |
708 |
|
710 | |||
709 | self.__dataReady = True |
|
711 | self.__dataReady = True | |
710 | self.__initime = tini |
|
712 | self.__initime = tini | |
711 |
|
713 | |||
712 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): |
|
714 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): | |
713 |
|
715 | |||
714 | if self.__dataReady: |
|
716 | if self.__dataReady: | |
715 |
|
717 | |||
716 | self.__profIndex = 0 |
|
718 | self.__profIndex = 0 | |
717 | jspc = self.buffer |
|
719 | jspc = self.buffer | |
718 | jcspc = self.buffer2 |
|
720 | jcspc = self.buffer2 | |
719 | #jnoise = self.buffer3 |
|
721 | #jnoise = self.buffer3 | |
720 | self.buffer = dataOut.data_spc |
|
722 | self.buffer = dataOut.data_spc | |
721 | self.buffer2 = dataOut.data_cspc |
|
723 | self.buffer2 = dataOut.data_cspc | |
722 | #self.buffer3 = dataOut.noise |
|
724 | #self.buffer3 = dataOut.noise | |
723 | self.currentTime = dataOut.utctime |
|
725 | self.currentTime = dataOut.utctime | |
724 | if numpy.any(jspc) : |
|
726 | if numpy.any(jspc) : | |
725 | #print( jspc.shape, jcspc.shape) |
|
727 | #print( jspc.shape, jcspc.shape) | |
726 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) |
|
728 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) | |
727 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) |
|
729 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) | |
728 | self.__dataReady = False |
|
730 | self.__dataReady = False | |
729 | #print( jspc.shape, jcspc.shape) |
|
731 | #print( jspc.shape, jcspc.shape) | |
730 | dataOut.flagNoData = False |
|
732 | dataOut.flagNoData = False | |
731 | else: |
|
733 | else: | |
732 | dataOut.flagNoData = True |
|
734 | dataOut.flagNoData = True | |
733 | self.__dataReady = False |
|
735 | self.__dataReady = False | |
734 | return dataOut |
|
736 | return dataOut | |
735 | else: |
|
737 | else: | |
736 | #print( len(self.buffer)) |
|
738 | #print( len(self.buffer)) | |
737 | if numpy.any(self.buffer): |
|
739 | if numpy.any(self.buffer): | |
738 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) |
|
740 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) | |
739 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) |
|
741 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) | |
740 | self.buffer3 += dataOut.data_dc |
|
742 | self.buffer3 += dataOut.data_dc | |
741 | else: |
|
743 | else: | |
742 | self.buffer = dataOut.data_spc |
|
744 | self.buffer = dataOut.data_spc | |
743 | self.buffer2 = dataOut.data_cspc |
|
745 | self.buffer2 = dataOut.data_cspc | |
744 | self.buffer3 = dataOut.data_dc |
|
746 | self.buffer3 = dataOut.data_dc | |
745 | #print self.index, self.fint |
|
747 | #print self.index, self.fint | |
746 | #print self.buffer2.shape |
|
748 | #print self.buffer2.shape | |
747 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO |
|
749 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO | |
748 | self.__profIndex += 1 |
|
750 | self.__profIndex += 1 | |
749 | return dataOut ## NOTE: REV |
|
751 | return dataOut ## NOTE: REV | |
750 |
|
752 | |||
751 |
|
753 | |||
752 | #index = tini.tm_hour*12+tini.tm_min/5 |
|
754 | #index = tini.tm_hour*12+tini.tm_min/5 | |
753 | '''REVISAR''' |
|
755 | '''REVISAR''' | |
754 | # jspc = jspc/self.nFFTPoints/self.normFactor |
|
756 | # jspc = jspc/self.nFFTPoints/self.normFactor | |
755 | # jcspc = jcspc/self.nFFTPoints/self.normFactor |
|
757 | # jcspc = jcspc/self.nFFTPoints/self.normFactor | |
756 |
|
758 | |||
757 |
|
759 | |||
758 |
|
760 | |||
759 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
761 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) | |
760 | dataOut.data_spc = tmp_spectra |
|
762 | dataOut.data_spc = tmp_spectra | |
761 | dataOut.data_cspc = tmp_cspectra |
|
763 | dataOut.data_cspc = tmp_cspectra | |
762 |
|
764 | |||
763 | #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
765 | #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) | |
764 |
|
766 | |||
765 | dataOut.data_dc = self.buffer3 |
|
767 | dataOut.data_dc = self.buffer3 | |
766 | dataOut.nIncohInt *= self.nIntProfiles |
|
768 | dataOut.nIncohInt *= self.nIntProfiles | |
767 | dataOut.utctime = self.currentTime #tiempo promediado |
|
769 | dataOut.utctime = self.currentTime #tiempo promediado | |
768 | #print("Time: ",time.localtime(dataOut.utctime)) |
|
770 | #print("Time: ",time.localtime(dataOut.utctime)) | |
769 | # dataOut.data_spc = sat_spectra |
|
771 | # dataOut.data_spc = sat_spectra | |
770 | # dataOut.data_cspc = sat_cspectra |
|
772 | # dataOut.data_cspc = sat_cspectra | |
771 | self.buffer = 0 |
|
773 | self.buffer = 0 | |
772 | self.buffer2 = 0 |
|
774 | self.buffer2 = 0 | |
773 | self.buffer3 = 0 |
|
775 | self.buffer3 = 0 | |
774 |
|
776 | |||
775 | return dataOut |
|
777 | return dataOut | |
776 |
|
778 | |||
777 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): |
|
779 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): | |
778 | #print("OP cleanRayleigh") |
|
780 | #print("OP cleanRayleigh") | |
779 | #import matplotlib.pyplot as plt |
|
781 | #import matplotlib.pyplot as plt | |
780 | #for k in range(149): |
|
782 | #for k in range(149): | |
781 | #channelsProcssd = [] |
|
783 | #channelsProcssd = [] | |
782 | #channelA_ok = False |
|
784 | #channelA_ok = False | |
783 | #rfunc = cspectra.copy() #self.bloques |
|
785 | #rfunc = cspectra.copy() #self.bloques | |
784 | rfunc = spectra.copy() |
|
786 | rfunc = spectra.copy() | |
785 | #rfunc = cspectra |
|
787 | #rfunc = cspectra | |
786 | #val_spc = spectra*0.0 #self.bloque0*0.0 |
|
788 | #val_spc = spectra*0.0 #self.bloque0*0.0 | |
787 | #val_cspc = cspectra*0.0 #self.bloques*0.0 |
|
789 | #val_cspc = cspectra*0.0 #self.bloques*0.0 | |
788 | #in_sat_spectra = spectra.copy() #self.bloque0 |
|
790 | #in_sat_spectra = spectra.copy() #self.bloque0 | |
789 | #in_sat_cspectra = cspectra.copy() #self.bloques |
|
791 | #in_sat_cspectra = cspectra.copy() #self.bloques | |
790 |
|
792 | |||
791 |
|
793 | |||
792 | ###ONLY FOR TEST: |
|
794 | ###ONLY FOR TEST: | |
793 | raxs = math.ceil(math.sqrt(self.nPairs)) |
|
795 | raxs = math.ceil(math.sqrt(self.nPairs)) | |
794 | caxs = math.ceil(self.nPairs/raxs) |
|
796 | caxs = math.ceil(self.nPairs/raxs) | |
795 | if self.nPairs <4: |
|
797 | if self.nPairs <4: | |
796 | raxs = 2 |
|
798 | raxs = 2 | |
797 | caxs = 2 |
|
799 | caxs = 2 | |
798 | #print(raxs, caxs) |
|
800 | #print(raxs, caxs) | |
799 | fft_rev = 14 #nFFT to plot |
|
801 | fft_rev = 14 #nFFT to plot | |
800 | hei_rev = ((self.heights >= 550) & (self.heights <= 551)).nonzero() #hei to plot |
|
802 | hei_rev = ((self.heights >= 550) & (self.heights <= 551)).nonzero() #hei to plot | |
801 | hei_rev = hei_rev[0] |
|
803 | hei_rev = hei_rev[0] | |
802 | #print(hei_rev) |
|
804 | #print(hei_rev) | |
803 |
|
805 | |||
804 | #print numpy.absolute(rfunc[:,0,0,14]) |
|
806 | #print numpy.absolute(rfunc[:,0,0,14]) | |
805 |
|
807 | |||
806 | gauss_fit, covariance = None, None |
|
808 | gauss_fit, covariance = None, None | |
807 | for ih in range(self.minAltInd,self.maxAltInd): |
|
809 | for ih in range(self.minAltInd,self.maxAltInd): | |
808 | for ifreq in range(self.nFFTPoints): |
|
810 | for ifreq in range(self.nFFTPoints): | |
809 | ''' |
|
811 | ''' | |
810 | ###ONLY FOR TEST: |
|
812 | ###ONLY FOR TEST: | |
811 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
813 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
812 | fig, axs = plt.subplots(raxs, caxs) |
|
814 | fig, axs = plt.subplots(raxs, caxs) | |
813 | fig2, axs2 = plt.subplots(raxs, caxs) |
|
815 | fig2, axs2 = plt.subplots(raxs, caxs) | |
814 | col_ax = 0 |
|
816 | col_ax = 0 | |
815 | row_ax = 0 |
|
817 | row_ax = 0 | |
816 | ''' |
|
818 | ''' | |
817 | #print(self.nPairs) |
|
819 | #print(self.nPairs) | |
818 | for ii in range(self.nChan): #PARES DE CANALES SELF y CROSS |
|
820 | for ii in range(self.nChan): #PARES DE CANALES SELF y CROSS | |
819 | # if self.crosspairs[ii][1]-self.crosspairs[ii][0] > 1: # APLICAR SOLO EN PARES CONTIGUOS |
|
821 | # if self.crosspairs[ii][1]-self.crosspairs[ii][0] > 1: # APLICAR SOLO EN PARES CONTIGUOS | |
820 | # continue |
|
822 | # continue | |
821 | # if not self.crosspairs[ii][0] in channelsProcssd: |
|
823 | # if not self.crosspairs[ii][0] in channelsProcssd: | |
822 | # channelA_ok = True |
|
824 | # channelA_ok = True | |
823 | #print("pair: ",self.crosspairs[ii]) |
|
825 | #print("pair: ",self.crosspairs[ii]) | |
824 | ''' |
|
826 | ''' | |
825 | ###ONLY FOR TEST: |
|
827 | ###ONLY FOR TEST: | |
826 | if (col_ax%caxs==0 and col_ax!=0 and self.nPairs !=1): |
|
828 | if (col_ax%caxs==0 and col_ax!=0 and self.nPairs !=1): | |
827 | col_ax = 0 |
|
829 | col_ax = 0 | |
828 | row_ax += 1 |
|
830 | row_ax += 1 | |
829 | ''' |
|
831 | ''' | |
830 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? |
|
832 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? | |
831 | #print(func2clean.shape) |
|
833 | #print(func2clean.shape) | |
832 | val = (numpy.isfinite(func2clean)==True).nonzero() |
|
834 | val = (numpy.isfinite(func2clean)==True).nonzero() | |
833 |
|
835 | |||
834 | if len(val)>0: #limitador |
|
836 | if len(val)>0: #limitador | |
835 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) |
|
837 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) | |
836 | if min_val <= -40 : |
|
838 | if min_val <= -40 : | |
837 | min_val = -40 |
|
839 | min_val = -40 | |
838 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 |
|
840 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 | |
839 | if max_val >= 200 : |
|
841 | if max_val >= 200 : | |
840 | max_val = 200 |
|
842 | max_val = 200 | |
841 | #print min_val, max_val |
|
843 | #print min_val, max_val | |
842 | step = 1 |
|
844 | step = 1 | |
843 | #print("Getting bins and the histogram") |
|
845 | #print("Getting bins and the histogram") | |
844 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step |
|
846 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step | |
845 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
847 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
846 | #print(len(y_dist),len(binstep[:-1])) |
|
848 | #print(len(y_dist),len(binstep[:-1])) | |
847 | #print(row_ax,col_ax, " ..") |
|
849 | #print(row_ax,col_ax, " ..") | |
848 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) |
|
850 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) | |
849 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) |
|
851 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) | |
850 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) |
|
852 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) | |
851 | parg = [numpy.amax(y_dist),mean,sigma] |
|
853 | parg = [numpy.amax(y_dist),mean,sigma] | |
852 |
|
854 | |||
853 | newY = None |
|
855 | newY = None | |
854 |
|
856 | |||
855 | try : |
|
857 | try : | |
856 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) |
|
858 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) | |
857 | mode = gauss_fit[1] |
|
859 | mode = gauss_fit[1] | |
858 | stdv = gauss_fit[2] |
|
860 | stdv = gauss_fit[2] | |
859 | #print(" FIT OK",gauss_fit) |
|
861 | #print(" FIT OK",gauss_fit) | |
860 | ''' |
|
862 | ''' | |
861 | ###ONLY FOR TEST: |
|
863 | ###ONLY FOR TEST: | |
862 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
864 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
863 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) |
|
865 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) | |
864 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
866 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
865 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
867 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
866 | axs[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
868 | axs[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) | |
867 | ''' |
|
869 | ''' | |
868 | except: |
|
870 | except: | |
869 | mode = mean |
|
871 | mode = mean | |
870 | stdv = sigma |
|
872 | stdv = sigma | |
871 | #print("FIT FAIL") |
|
873 | #print("FIT FAIL") | |
872 | #continue |
|
874 | #continue | |
873 |
|
875 | |||
874 |
|
876 | |||
875 | #print(mode,stdv) |
|
877 | #print(mode,stdv) | |
876 | #Removing echoes greater than mode + std_factor*stdv |
|
878 | #Removing echoes greater than mode + std_factor*stdv | |
877 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() |
|
879 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() | |
878 | #noval tiene los indices que se van a remover |
|
880 | #noval tiene los indices que se van a remover | |
879 | #print("Chan ",ii," novals: ",len(noval[0])) |
|
881 | #print("Chan ",ii," novals: ",len(noval[0])) | |
880 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) |
|
882 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) | |
881 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() |
|
883 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() | |
882 | #print(novall) |
|
884 | #print(novall) | |
883 | #print(" ",self.pairsArray[ii]) |
|
885 | #print(" ",self.pairsArray[ii]) | |
884 | #cross_pairs = self.pairsArray[ii] |
|
886 | #cross_pairs = self.pairsArray[ii] | |
885 | #Getting coherent echoes which are removed. |
|
887 | #Getting coherent echoes which are removed. | |
886 | # if len(novall[0]) > 0: |
|
888 | # if len(novall[0]) > 0: | |
887 | # |
|
889 | # | |
888 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 |
|
890 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 | |
889 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 |
|
891 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 | |
890 | # val_cspc[novall[0],ii,ifreq,ih] = 1 |
|
892 | # val_cspc[novall[0],ii,ifreq,ih] = 1 | |
891 | #print("OUT NOVALL 1") |
|
893 | #print("OUT NOVALL 1") | |
892 | try: |
|
894 | try: | |
893 | pair = (self.channels[ii],self.channels[ii + 1]) |
|
895 | pair = (self.channels[ii],self.channels[ii + 1]) | |
894 | except: |
|
896 | except: | |
895 | pair = (99,99) |
|
897 | pair = (99,99) | |
896 | #print("par ", pair) |
|
898 | #print("par ", pair) | |
897 | if ( pair in self.crosspairs): |
|
899 | if ( pair in self.crosspairs): | |
898 | q = self.crosspairs.index(pair) |
|
900 | q = self.crosspairs.index(pair) | |
899 | #print("estΓ‘ aqui: ", q, (ii,ii + 1)) |
|
901 | #print("estΓ‘ aqui: ", q, (ii,ii + 1)) | |
900 | new_a = numpy.delete(cspectra[:,q,ifreq,ih], noval[0]) |
|
902 | new_a = numpy.delete(cspectra[:,q,ifreq,ih], noval[0]) | |
901 | cspectra[noval,q,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra |
|
903 | cspectra[noval,q,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra | |
902 |
|
904 | |||
903 | #if channelA_ok: |
|
905 | #if channelA_ok: | |
904 | #chA = self.channels.index(cross_pairs[0]) |
|
906 | #chA = self.channels.index(cross_pairs[0]) | |
905 | new_b = numpy.delete(spectra[:,ii,ifreq,ih], noval[0]) |
|
907 | new_b = numpy.delete(spectra[:,ii,ifreq,ih], noval[0]) | |
906 | spectra[noval,ii,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A |
|
908 | spectra[noval,ii,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A | |
907 | #channelA_ok = False |
|
909 | #channelA_ok = False | |
908 |
|
910 | |||
909 | # chB = self.channels.index(cross_pairs[1]) |
|
911 | # chB = self.channels.index(cross_pairs[1]) | |
910 | # new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) |
|
912 | # new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) | |
911 | # spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B |
|
913 | # spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B | |
912 | # |
|
914 | # | |
913 | # channelsProcssd.append(self.crosspairs[ii][0]) # save channel A |
|
915 | # channelsProcssd.append(self.crosspairs[ii][0]) # save channel A | |
914 | # channelsProcssd.append(self.crosspairs[ii][1]) # save channel B |
|
916 | # channelsProcssd.append(self.crosspairs[ii][1]) # save channel B | |
915 | ''' |
|
917 | ''' | |
916 | ###ONLY FOR TEST: |
|
918 | ###ONLY FOR TEST: | |
917 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
919 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
918 | func2clean = 10*numpy.log10(numpy.absolute(spectra[:,ii,ifreq,ih])) |
|
920 | func2clean = 10*numpy.log10(numpy.absolute(spectra[:,ii,ifreq,ih])) | |
919 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
921 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
920 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
922 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
921 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
923 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
922 | axs2[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
924 | axs2[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) | |
923 | ''' |
|
925 | ''' | |
924 | ''' |
|
926 | ''' | |
925 | ###ONLY FOR TEST: |
|
927 | ###ONLY FOR TEST: | |
926 | col_ax += 1 #contador de ploteo columnas |
|
928 | col_ax += 1 #contador de ploteo columnas | |
927 | ##print(col_ax) |
|
929 | ##print(col_ax) | |
928 | ###ONLY FOR TEST: |
|
930 | ###ONLY FOR TEST: | |
929 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
931 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
930 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" |
|
932 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" | |
931 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" |
|
933 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" | |
932 | fig.suptitle(title) |
|
934 | fig.suptitle(title) | |
933 | fig2.suptitle(title2) |
|
935 | fig2.suptitle(title2) | |
934 | plt.show() |
|
936 | plt.show() | |
935 | ''' |
|
937 | ''' | |
936 | ################################################################################################## |
|
938 | ################################################################################################## | |
937 |
|
939 | |||
938 | #print("Getting average of the spectra and cross-spectra from incoherent echoes.") |
|
940 | #print("Getting average of the spectra and cross-spectra from incoherent echoes.") | |
939 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan |
|
941 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan | |
940 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan |
|
942 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan | |
941 | for ih in range(self.nHeights): |
|
943 | for ih in range(self.nHeights): | |
942 | for ifreq in range(self.nFFTPoints): |
|
944 | for ifreq in range(self.nFFTPoints): | |
943 | for ich in range(self.nChan): |
|
945 | for ich in range(self.nChan): | |
944 | tmp = spectra[:,ich,ifreq,ih] |
|
946 | tmp = spectra[:,ich,ifreq,ih] | |
945 | valid = (numpy.isfinite(tmp[:])==True).nonzero() |
|
947 | valid = (numpy.isfinite(tmp[:])==True).nonzero() | |
946 |
|
948 | |||
947 | if len(valid[0]) >0 : |
|
949 | if len(valid[0]) >0 : | |
948 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
950 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) | |
949 |
|
951 | |||
950 | for icr in range(self.nPairs): |
|
952 | for icr in range(self.nPairs): | |
951 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) |
|
953 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) | |
952 | valid = (numpy.isfinite(tmp)==True).nonzero() |
|
954 | valid = (numpy.isfinite(tmp)==True).nonzero() | |
953 | if len(valid[0]) > 0: |
|
955 | if len(valid[0]) > 0: | |
954 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
956 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) | |
955 |
|
957 | |||
956 | return out_spectra, out_cspectra |
|
958 | return out_spectra, out_cspectra | |
957 |
|
959 | |||
958 | def REM_ISOLATED_POINTS(self,array,rth): |
|
960 | def REM_ISOLATED_POINTS(self,array,rth): | |
959 | # import matplotlib.pyplot as plt |
|
961 | # import matplotlib.pyplot as plt | |
960 | if rth == None : |
|
962 | if rth == None : | |
961 | rth = 4 |
|
963 | rth = 4 | |
962 | #print("REM ISO") |
|
964 | #print("REM ISO") | |
963 | num_prof = len(array[0,:,0]) |
|
965 | num_prof = len(array[0,:,0]) | |
964 | num_hei = len(array[0,0,:]) |
|
966 | num_hei = len(array[0,0,:]) | |
965 | n2d = len(array[:,0,0]) |
|
967 | n2d = len(array[:,0,0]) | |
966 |
|
968 | |||
967 | for ii in range(n2d) : |
|
969 | for ii in range(n2d) : | |
968 | #print ii,n2d |
|
970 | #print ii,n2d | |
969 | tmp = array[ii,:,:] |
|
971 | tmp = array[ii,:,:] | |
970 | #print tmp.shape, array[ii,101,:],array[ii,102,:] |
|
972 | #print tmp.shape, array[ii,101,:],array[ii,102,:] | |
971 |
|
973 | |||
972 | # fig = plt.figure(figsize=(6,5)) |
|
974 | # fig = plt.figure(figsize=(6,5)) | |
973 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
975 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
974 | # ax = fig.add_axes([left, bottom, width, height]) |
|
976 | # ax = fig.add_axes([left, bottom, width, height]) | |
975 | # x = range(num_prof) |
|
977 | # x = range(num_prof) | |
976 | # y = range(num_hei) |
|
978 | # y = range(num_hei) | |
977 | # cp = ax.contour(y,x,tmp) |
|
979 | # cp = ax.contour(y,x,tmp) | |
978 | # ax.clabel(cp, inline=True,fontsize=10) |
|
980 | # ax.clabel(cp, inline=True,fontsize=10) | |
979 | # plt.show() |
|
981 | # plt.show() | |
980 |
|
982 | |||
981 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) |
|
983 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) | |
982 | tmp = numpy.reshape(tmp,num_prof*num_hei) |
|
984 | tmp = numpy.reshape(tmp,num_prof*num_hei) | |
983 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() |
|
985 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() | |
984 | indxs2 = (tmp > 0).nonzero() |
|
986 | indxs2 = (tmp > 0).nonzero() | |
985 |
|
987 | |||
986 | indxs1 = (indxs1[0]) |
|
988 | indxs1 = (indxs1[0]) | |
987 | indxs2 = indxs2[0] |
|
989 | indxs2 = indxs2[0] | |
988 | #indxs1 = numpy.array(indxs1[0]) |
|
990 | #indxs1 = numpy.array(indxs1[0]) | |
989 | #indxs2 = numpy.array(indxs2[0]) |
|
991 | #indxs2 = numpy.array(indxs2[0]) | |
990 | indxs = None |
|
992 | indxs = None | |
991 | #print indxs1 , indxs2 |
|
993 | #print indxs1 , indxs2 | |
992 | for iv in range(len(indxs2)): |
|
994 | for iv in range(len(indxs2)): | |
993 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) |
|
995 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) | |
994 | #print len(indxs2), indv |
|
996 | #print len(indxs2), indv | |
995 | if len(indv[0]) > 0 : |
|
997 | if len(indv[0]) > 0 : | |
996 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) |
|
998 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) | |
997 | # print indxs |
|
999 | # print indxs | |
998 | indxs = indxs[1:] |
|
1000 | indxs = indxs[1:] | |
999 | #print(indxs, len(indxs)) |
|
1001 | #print(indxs, len(indxs)) | |
1000 | if len(indxs) < 4 : |
|
1002 | if len(indxs) < 4 : | |
1001 | array[ii,:,:] = 0. |
|
1003 | array[ii,:,:] = 0. | |
1002 | return |
|
1004 | return | |
1003 |
|
1005 | |||
1004 | xpos = numpy.mod(indxs ,num_hei) |
|
1006 | xpos = numpy.mod(indxs ,num_hei) | |
1005 | ypos = (indxs / num_hei) |
|
1007 | ypos = (indxs / num_hei) | |
1006 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) |
|
1008 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) | |
1007 | #print sx |
|
1009 | #print sx | |
1008 | xpos = xpos[sx] |
|
1010 | xpos = xpos[sx] | |
1009 | ypos = ypos[sx] |
|
1011 | ypos = ypos[sx] | |
1010 |
|
1012 | |||
1011 | # *********************************** Cleaning isolated points ********************************** |
|
1013 | # *********************************** Cleaning isolated points ********************************** | |
1012 | ic = 0 |
|
1014 | ic = 0 | |
1013 | while True : |
|
1015 | while True : | |
1014 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) |
|
1016 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) | |
1015 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) |
|
1017 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) | |
1016 | #plt.plot(r) |
|
1018 | #plt.plot(r) | |
1017 | #plt.show() |
|
1019 | #plt.show() | |
1018 | no_coh1 = (numpy.isfinite(r)==True).nonzero() |
|
1020 | no_coh1 = (numpy.isfinite(r)==True).nonzero() | |
1019 | no_coh2 = (r <= rth).nonzero() |
|
1021 | no_coh2 = (r <= rth).nonzero() | |
1020 | #print r, no_coh1, no_coh2 |
|
1022 | #print r, no_coh1, no_coh2 | |
1021 | no_coh1 = numpy.array(no_coh1[0]) |
|
1023 | no_coh1 = numpy.array(no_coh1[0]) | |
1022 | no_coh2 = numpy.array(no_coh2[0]) |
|
1024 | no_coh2 = numpy.array(no_coh2[0]) | |
1023 | no_coh = None |
|
1025 | no_coh = None | |
1024 | #print valid1 , valid2 |
|
1026 | #print valid1 , valid2 | |
1025 | for iv in range(len(no_coh2)): |
|
1027 | for iv in range(len(no_coh2)): | |
1026 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) |
|
1028 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) | |
1027 | if len(indv[0]) > 0 : |
|
1029 | if len(indv[0]) > 0 : | |
1028 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) |
|
1030 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) | |
1029 | no_coh = no_coh[1:] |
|
1031 | no_coh = no_coh[1:] | |
1030 | #print len(no_coh), no_coh |
|
1032 | #print len(no_coh), no_coh | |
1031 | if len(no_coh) < 4 : |
|
1033 | if len(no_coh) < 4 : | |
1032 | #print xpos[ic], ypos[ic], ic |
|
1034 | #print xpos[ic], ypos[ic], ic | |
1033 | # plt.plot(r) |
|
1035 | # plt.plot(r) | |
1034 | # plt.show() |
|
1036 | # plt.show() | |
1035 | xpos[ic] = numpy.nan |
|
1037 | xpos[ic] = numpy.nan | |
1036 | ypos[ic] = numpy.nan |
|
1038 | ypos[ic] = numpy.nan | |
1037 |
|
1039 | |||
1038 | ic = ic + 1 |
|
1040 | ic = ic + 1 | |
1039 | if (ic == len(indxs)) : |
|
1041 | if (ic == len(indxs)) : | |
1040 | break |
|
1042 | break | |
1041 | #print( xpos, ypos) |
|
1043 | #print( xpos, ypos) | |
1042 |
|
1044 | |||
1043 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() |
|
1045 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() | |
1044 | #print indxs[0] |
|
1046 | #print indxs[0] | |
1045 | if len(indxs[0]) < 4 : |
|
1047 | if len(indxs[0]) < 4 : | |
1046 | array[ii,:,:] = 0. |
|
1048 | array[ii,:,:] = 0. | |
1047 | return |
|
1049 | return | |
1048 |
|
1050 | |||
1049 | xpos = xpos[indxs[0]] |
|
1051 | xpos = xpos[indxs[0]] | |
1050 | ypos = ypos[indxs[0]] |
|
1052 | ypos = ypos[indxs[0]] | |
1051 | for i in range(0,len(ypos)): |
|
1053 | for i in range(0,len(ypos)): | |
1052 | ypos[i]=int(ypos[i]) |
|
1054 | ypos[i]=int(ypos[i]) | |
1053 | junk = tmp |
|
1055 | junk = tmp | |
1054 | tmp = junk*0.0 |
|
1056 | tmp = junk*0.0 | |
1055 |
|
1057 | |||
1056 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] |
|
1058 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] | |
1057 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1059 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) | |
1058 |
|
1060 | |||
1059 | #print array.shape |
|
1061 | #print array.shape | |
1060 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1062 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) | |
1061 | #print tmp.shape |
|
1063 | #print tmp.shape | |
1062 |
|
1064 | |||
1063 | # fig = plt.figure(figsize=(6,5)) |
|
1065 | # fig = plt.figure(figsize=(6,5)) | |
1064 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
1066 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
1065 | # ax = fig.add_axes([left, bottom, width, height]) |
|
1067 | # ax = fig.add_axes([left, bottom, width, height]) | |
1066 | # x = range(num_prof) |
|
1068 | # x = range(num_prof) | |
1067 | # y = range(num_hei) |
|
1069 | # y = range(num_hei) | |
1068 | # cp = ax.contour(y,x,array[ii,:,:]) |
|
1070 | # cp = ax.contour(y,x,array[ii,:,:]) | |
1069 | # ax.clabel(cp, inline=True,fontsize=10) |
|
1071 | # ax.clabel(cp, inline=True,fontsize=10) | |
1070 | # plt.show() |
|
1072 | # plt.show() | |
1071 | return array |
|
1073 | return array | |
1072 |
|
1074 | |||
1073 |
|
1075 | |||
1074 | class IntegrationFaradaySpectra(Operation): |
|
1076 | class IntegrationFaradaySpectra(Operation): | |
1075 |
|
1077 | |||
1076 | __profIndex = 0 |
|
1078 | __profIndex = 0 | |
1077 | __withOverapping = False |
|
1079 | __withOverapping = False | |
1078 |
|
1080 | |||
1079 | __byTime = False |
|
1081 | __byTime = False | |
1080 | __initime = None |
|
1082 | __initime = None | |
1081 | __lastdatatime = None |
|
1083 | __lastdatatime = None | |
1082 | __integrationtime = None |
|
1084 | __integrationtime = None | |
1083 |
|
1085 | |||
1084 | __buffer_spc = None |
|
1086 | __buffer_spc = None | |
1085 | __buffer_cspc = None |
|
1087 | __buffer_cspc = None | |
1086 | __buffer_dc = None |
|
1088 | __buffer_dc = None | |
1087 |
|
1089 | |||
1088 | __dataReady = False |
|
1090 | __dataReady = False | |
1089 |
|
1091 | |||
1090 | __timeInterval = None |
|
1092 | __timeInterval = None | |
1091 |
|
1093 | |||
1092 | n = None |
|
1094 | n = None | |
1093 | minHei_ind = None |
|
1095 | minHei_ind = None | |
1094 | maxHei_ind = None |
|
1096 | maxHei_ind = None | |
|
1097 | avg = 1.0 | |||
1095 | factor = 0.0 |
|
1098 | factor = 0.0 | |
1096 |
|
1099 | |||
1097 | def __init__(self): |
|
1100 | def __init__(self): | |
1098 |
|
1101 | |||
1099 | Operation.__init__(self) |
|
1102 | Operation.__init__(self) | |
1100 |
|
1103 | |||
1101 | def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None, minHei=None, maxHei=None, factor=0.75): |
|
1104 | def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None, minHei=None, maxHei=None, factor=0.75): | |
1102 | """ |
|
1105 | """ | |
1103 | Set the parameters of the integration class. |
|
1106 | Set the parameters of the integration class. | |
1104 |
|
1107 | |||
1105 | Inputs: |
|
1108 | Inputs: | |
1106 |
|
1109 | |||
1107 | n : Number of coherent integrations |
|
1110 | n : Number of coherent integrations | |
1108 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1111 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
1109 | overlapping : |
|
1112 | overlapping : | |
1110 |
|
1113 | |||
1111 | """ |
|
1114 | """ | |
1112 |
|
1115 | |||
1113 | self.__initime = None |
|
1116 | self.__initime = None | |
1114 | self.__lastdatatime = 0 |
|
1117 | self.__lastdatatime = 0 | |
1115 |
|
1118 | |||
1116 | self.__buffer_spc = [] |
|
1119 | self.__buffer_spc = [] | |
1117 | self.__buffer_cspc = [] |
|
1120 | self.__buffer_cspc = [] | |
1118 | self.__buffer_dc = 0 |
|
1121 | self.__buffer_dc = 0 | |
1119 |
|
1122 | |||
1120 | self.__profIndex = 0 |
|
1123 | self.__profIndex = 0 | |
1121 | self.__dataReady = False |
|
1124 | self.__dataReady = False | |
1122 | self.__byTime = False |
|
1125 | self.__byTime = False | |
1123 |
|
1126 | |||
1124 | self.factor = factor |
|
1127 | self.factor = factor | |
1125 | #self.ByLags = dataOut.ByLags ###REDEFINIR |
|
1128 | #self.ByLags = dataOut.ByLags ###REDEFINIR | |
1126 | self.ByLags = False |
|
1129 | self.ByLags = False | |
1127 |
|
1130 | |||
1128 | if DPL != None: |
|
1131 | if DPL != None: | |
1129 | self.DPL=DPL |
|
1132 | self.DPL=DPL | |
1130 | else: |
|
1133 | else: | |
1131 | #self.DPL=dataOut.DPL ###REDEFINIR |
|
1134 | #self.DPL=dataOut.DPL ###REDEFINIR | |
1132 | self.DPL=0 |
|
1135 | self.DPL=0 | |
1133 |
|
1136 | |||
1134 | if n is None and timeInterval is None: |
|
1137 | if n is None and timeInterval is None: | |
1135 | raise ValueError("n or timeInterval should be specified ...") |
|
1138 | raise ValueError("n or timeInterval should be specified ...") | |
1136 |
|
1139 | |||
1137 | if n is not None: |
|
1140 | if n is not None: | |
1138 | self.n = int(n) |
|
1141 | self.n = int(n) | |
1139 | else: |
|
1142 | else: | |
1140 | self.__integrationtime = int(timeInterval) |
|
1143 | self.__integrationtime = int(timeInterval) | |
1141 | self.n = None |
|
1144 | self.n = None | |
1142 | self.__byTime = True |
|
1145 | self.__byTime = True | |
1143 |
|
1146 | |||
1144 | if minHei == None: |
|
1147 | if minHei == None: | |
1145 | minHei = self.dataOut.heightList[0] |
|
1148 | minHei = self.dataOut.heightList[0] | |
1146 |
|
1149 | |||
1147 | if maxHei == None: |
|
1150 | if maxHei == None: | |
1148 | maxHei = self.dataOut.heightList[-1] |
|
1151 | maxHei = self.dataOut.heightList[-1] | |
1149 |
|
1152 | |||
1150 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
1153 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
1151 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
1154 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
1152 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
1155 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
1153 | minHei = self.dataOut.heightList[0] |
|
1156 | minHei = self.dataOut.heightList[0] | |
1154 |
|
1157 | |||
1155 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
1158 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
1156 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
1159 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
1157 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
1160 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
1158 | maxHei = self.dataOut.heightList[-1] |
|
1161 | maxHei = self.dataOut.heightList[-1] | |
1159 |
|
1162 | |||
1160 | ind_list1 = numpy.where(self.dataOut.heightList >= minHei) |
|
1163 | ind_list1 = numpy.where(self.dataOut.heightList >= minHei) | |
1161 | ind_list2 = numpy.where(self.dataOut.heightList <= maxHei) |
|
1164 | ind_list2 = numpy.where(self.dataOut.heightList <= maxHei) | |
1162 | self.minHei_ind = ind_list1[0][0] |
|
1165 | self.minHei_ind = ind_list1[0][0] | |
1163 | self.maxHei_ind = ind_list2[0][-1] |
|
1166 | self.maxHei_ind = ind_list2[0][-1] | |
1164 |
|
1167 | |||
1165 | def putData(self, data_spc, data_cspc, data_dc): |
|
1168 | def putData(self, data_spc, data_cspc, data_dc): | |
1166 | """ |
|
1169 | """ | |
1167 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1170 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
1168 |
|
1171 | |||
1169 | """ |
|
1172 | """ | |
1170 |
|
1173 | |||
1171 | self.__buffer_spc.append(data_spc) |
|
1174 | self.__buffer_spc.append(data_spc) | |
1172 |
|
1175 | |||
1173 | if data_cspc is None: |
|
1176 | if data_cspc is None: | |
1174 | self.__buffer_cspc = None |
|
1177 | self.__buffer_cspc = None | |
1175 | else: |
|
1178 | else: | |
1176 | self.__buffer_cspc.append(data_cspc) |
|
1179 | self.__buffer_cspc.append(data_cspc) | |
1177 |
|
1180 | |||
1178 | if data_dc is None: |
|
1181 | if data_dc is None: | |
1179 | self.__buffer_dc = None |
|
1182 | self.__buffer_dc = None | |
1180 | else: |
|
1183 | else: | |
1181 | self.__buffer_dc += data_dc |
|
1184 | self.__buffer_dc += data_dc | |
1182 |
|
1185 | |||
1183 | self.__profIndex += 1 |
|
1186 | self.__profIndex += 1 | |
1184 |
|
1187 | |||
1185 | return |
|
1188 | return | |
1186 |
|
1189 | |||
1187 | def hildebrand_sekhon_Integration(self,data,navg, factor): |
|
1190 | def hildebrand_sekhon_Integration(self,sortdata,navg, factor): | |
1188 |
|
1191 | #data debe estar ordenado | ||
1189 | sortdata = numpy.sort(data, axis=None) |
|
1192 | #sortdata = numpy.sort(data, axis=None) | |
1190 | sortID=data.argsort() |
|
1193 | #sortID=data.argsort() | |
1191 | lenOfData = len(sortdata) |
|
1194 | lenOfData = len(sortdata) | |
1192 | nums_min = lenOfData*factor |
|
1195 | nums_min = lenOfData*factor | |
1193 | if nums_min <= 5: |
|
1196 | if nums_min <= 5: | |
1194 | nums_min = 5 |
|
1197 | nums_min = 5 | |
1195 | sump = 0. |
|
1198 | sump = 0. | |
1196 | sumq = 0. |
|
1199 | sumq = 0. | |
1197 | j = 0 |
|
1200 | j = 0 | |
1198 | cont = 1 |
|
1201 | cont = 1 | |
1199 | while((cont == 1)and(j < lenOfData)): |
|
1202 | while((cont == 1)and(j < lenOfData)): | |
1200 | sump += sortdata[j] |
|
1203 | sump += sortdata[j] | |
1201 | sumq += sortdata[j]**2 |
|
1204 | sumq += sortdata[j]**2 | |
1202 | if j > nums_min: |
|
1205 | if j > nums_min: | |
1203 | rtest = float(j)/(j-1) + 1.0/navg |
|
1206 | rtest = float(j)/(j-1) + 1.0/navg | |
1204 | if ((sumq*j) > (rtest*sump**2)): |
|
1207 | if ((sumq*j) > (rtest*sump**2)): | |
1205 | j = j - 1 |
|
1208 | j = j - 1 | |
1206 | sump = sump - sortdata[j] |
|
1209 | sump = sump - sortdata[j] | |
1207 | sumq = sumq - sortdata[j]**2 |
|
1210 | sumq = sumq - sortdata[j]**2 | |
1208 | cont = 0 |
|
1211 | cont = 0 | |
1209 | j += 1 |
|
1212 | j += 1 | |
1210 | #lnoise = sump / j |
|
1213 | #lnoise = sump / j | |
1211 | #print("H S done") |
|
1214 | #print("H S done") | |
1212 | return j,sortID |
|
1215 | #return j,sortID | |
|
1216 | return j | |||
|
1217 | ||||
1213 |
|
1218 | |||
1214 | def pushData(self): |
|
1219 | def pushData(self): | |
1215 | """ |
|
1220 | """ | |
1216 | Return the sum of the last profiles and the profiles used in the sum. |
|
1221 | Return the sum of the last profiles and the profiles used in the sum. | |
1217 |
|
1222 | |||
1218 | Affected: |
|
1223 | Affected: | |
1219 |
|
1224 | |||
1220 | self.__profileIndex |
|
1225 | self.__profileIndex | |
1221 |
|
1226 | |||
1222 | """ |
|
1227 | """ | |
1223 | bufferH=None |
|
1228 | bufferH=None | |
1224 | buffer=None |
|
1229 | buffer=None | |
1225 | buffer1=None |
|
1230 | buffer1=None | |
1226 | buffer_cspc=None |
|
1231 | buffer_cspc=None | |
1227 | self.__buffer_spc=numpy.array(self.__buffer_spc) |
|
1232 | self.__buffer_spc=numpy.array(self.__buffer_spc) | |
1228 | try: |
|
1233 | try: | |
1229 | self.__buffer_cspc=numpy.array(self.__buffer_cspc) |
|
1234 | self.__buffer_cspc=numpy.array(self.__buffer_cspc) | |
1230 | except : |
|
1235 | except : | |
1231 | #print("No cpsc",e) |
|
1236 | #print("No cpsc",e) | |
1232 | pass |
|
1237 | pass | |
1233 | #print("FREQ_DC",self.__buffer_spc.shape,self.__buffer_cspc.shape) |
|
1238 | #print("FREQ_DC",self.__buffer_spc.shape,self.__buffer_cspc.shape) | |
1234 |
|
1239 | |||
1235 | freq_dc = int(self.__buffer_spc.shape[2] / 2) |
|
1240 | freq_dc = int(self.__buffer_spc.shape[2] / 2) | |
1236 | #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) |
|
1241 | #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) | |
1237 |
|
1242 | |||
1238 | for k in range(self.minHei_ind,self.maxHei_ind): |
|
1243 | for k in range(self.minHei_ind,self.maxHei_ind): | |
1239 | try: |
|
1244 | try: | |
1240 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) |
|
1245 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) | |
1241 | except: |
|
1246 | except: | |
1242 | #print("No cpsc",e) |
|
1247 | #print("No cpsc",e) | |
1243 | pass |
|
1248 | pass | |
1244 | outliers_IDs_cspc=[] |
|
1249 | outliers_IDs_cspc=[] | |
1245 | cspc_outliers_exist=False |
|
1250 | cspc_outliers_exist=False | |
1246 | for i in range(self.nChannels):#dataOut.nChannels): |
|
1251 | for i in range(self.nChannels):#dataOut.nChannels): | |
1247 |
|
1252 | |||
1248 | buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) |
|
1253 | buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) | |
1249 | indexes=[] |
|
1254 | indexes=[] | |
1250 | #sortIDs=[] |
|
1255 | #sortIDs=[] | |
1251 | outliers_IDs=[] |
|
1256 | outliers_IDs=[] | |
1252 |
|
1257 | |||
1253 | for j in range(self.nProfiles): |
|
1258 | for j in range(self.nProfiles): | |
1254 | # if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 |
|
1259 | # if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 | |
1255 | # continue |
|
1260 | # continue | |
1256 | # if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 |
|
1261 | # if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 | |
1257 | # continue |
|
1262 | # continue | |
1258 | buffer=buffer1[:,j] |
|
1263 | buffer=buffer1[:,j] | |
1259 | index,sortID=self.hildebrand_sekhon_Integration(buffer,1,self.factor) |
|
1264 | sortdata = numpy.sort(buffer, axis=None) | |
|
1265 | sortID=buffer.argsort() | |||
|
1266 | index = _noise.hildebrand_sekhon2(sortdata,self.navg) | |||
|
1267 | ||||
|
1268 | #index,sortID=self.hildebrand_sekhon_Integration(buffer,1,self.factor) | |||
1260 |
|
1269 | |||
1261 | indexes.append(index) |
|
1270 | indexes.append(index) | |
1262 | #sortIDs.append(sortID) |
|
1271 | #sortIDs.append(sortID) | |
1263 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) |
|
1272 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) | |
1264 |
|
1273 | |||
1265 | outliers_IDs=numpy.array(outliers_IDs) |
|
1274 | outliers_IDs=numpy.array(outliers_IDs) | |
1266 | outliers_IDs=outliers_IDs.ravel() |
|
1275 | outliers_IDs=outliers_IDs.ravel() | |
1267 | outliers_IDs=numpy.unique(outliers_IDs) |
|
1276 | outliers_IDs=numpy.unique(outliers_IDs) | |
1268 | outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) |
|
1277 | outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) | |
1269 | indexes=numpy.array(indexes) |
|
1278 | indexes=numpy.array(indexes) | |
1270 | indexmin=numpy.min(indexes) |
|
1279 | indexmin=numpy.min(indexes) | |
1271 | #print("clean CH: ", i) |
|
1280 | #print("clean CH: ", i) | |
1272 | if indexmin != buffer1.shape[0]: |
|
1281 | if indexmin != buffer1.shape[0]: | |
1273 | if self.nChannels > 1: |
|
1282 | if self.nChannels > 1: | |
1274 | cspc_outliers_exist= True |
|
1283 | cspc_outliers_exist= True | |
1275 |
print("outliers c |
|
1284 | #print("outliers cspc") | |
1276 | ###sortdata=numpy.sort(buffer1,axis=0) |
|
1285 | ###sortdata=numpy.sort(buffer1,axis=0) | |
1277 | ###avg2=numpy.mean(sortdata[:indexmin,:],axis=0) |
|
1286 | ###avg2=numpy.mean(sortdata[:indexmin,:],axis=0) | |
1278 | lt=outliers_IDs |
|
1287 | lt=outliers_IDs | |
1279 | avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) |
|
1288 | avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) | |
1280 |
|
1289 | |||
1281 | for p in list(outliers_IDs): |
|
1290 | for p in list(outliers_IDs): | |
1282 | buffer1[p,:]=avg |
|
1291 | buffer1[p,:]=avg | |
1283 |
|
1292 | |||
1284 | self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) |
|
1293 | self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) | |
1285 | ###cspc IDs |
|
1294 | ###cspc IDs | |
1286 | #indexmin_cspc+=indexmin_cspc |
|
1295 | #indexmin_cspc+=indexmin_cspc | |
1287 | outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) |
|
1296 | outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) | |
1288 |
|
1297 | |||
1289 | #if not breakFlag: |
|
1298 | #if not breakFlag: | |
1290 | outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) |
|
1299 | outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) | |
1291 | if cspc_outliers_exist : |
|
1300 | if cspc_outliers_exist : | |
1292 | #sortdata=numpy.sort(buffer_cspc,axis=0) |
|
1301 | #sortdata=numpy.sort(buffer_cspc,axis=0) | |
1293 | #avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0) |
|
1302 | #avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0) | |
1294 | lt=outliers_IDs_cspc |
|
1303 | lt=outliers_IDs_cspc | |
1295 |
|
1304 | |||
1296 | avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) |
|
1305 | avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) | |
1297 | for p in list(outliers_IDs_cspc): |
|
1306 | for p in list(outliers_IDs_cspc): | |
1298 | buffer_cspc[p,:]=avg |
|
1307 | buffer_cspc[p,:]=avg | |
1299 |
|
1308 | |||
1300 | try: |
|
1309 | try: | |
1301 | self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) |
|
1310 | self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) | |
1302 | except: |
|
1311 | except: | |
1303 | #print("No cpsc",e) |
|
1312 | #print("No cpsc",e) | |
1304 | pass |
|
1313 | pass | |
1305 | #else: |
|
1314 | #else: | |
1306 | #break |
|
1315 | #break | |
1307 |
|
1316 | |||
1308 |
|
1317 | |||
1309 |
|
1318 | |||
1310 |
|
1319 | |||
1311 | buffer=None |
|
1320 | buffer=None | |
1312 | bufferH=None |
|
1321 | bufferH=None | |
1313 | buffer1=None |
|
1322 | buffer1=None | |
1314 | buffer_cspc=None |
|
1323 | buffer_cspc=None | |
1315 |
|
1324 | |||
1316 | #print("cpsc",self.__buffer_cspc[:,0,0,0,0]) |
|
1325 | #print("cpsc",self.__buffer_cspc[:,0,0,0,0]) | |
1317 | #exit() |
|
1326 | #exit() | |
1318 |
|
1327 | |||
1319 | buffer=None |
|
1328 | buffer=None | |
1320 | #print(self.__buffer_spc[:,1,3,20,0]) |
|
1329 | #print(self.__buffer_spc[:,1,3,20,0]) | |
1321 | #print(self.__buffer_spc[:,1,5,37,0]) |
|
1330 | #print(self.__buffer_spc[:,1,5,37,0]) | |
1322 | data_spc = numpy.sum(self.__buffer_spc,axis=0) |
|
1331 | data_spc = numpy.sum(self.__buffer_spc,axis=0) | |
1323 | try: |
|
1332 | try: | |
1324 | data_cspc = numpy.sum(self.__buffer_cspc,axis=0) |
|
1333 | data_cspc = numpy.sum(self.__buffer_cspc,axis=0) | |
1325 | except: |
|
1334 | except: | |
1326 | #print("No cpsc",e) |
|
1335 | #print("No cpsc",e) | |
1327 | pass |
|
1336 | pass | |
1328 |
|
1337 | |||
1329 |
|
1338 | |||
1330 | #print(numpy.shape(data_spc)) |
|
1339 | #print(numpy.shape(data_spc)) | |
1331 | #data_spc[1,4,20,0]=numpy.nan |
|
1340 | #data_spc[1,4,20,0]=numpy.nan | |
1332 |
|
1341 | |||
1333 | #data_cspc = self.__buffer_cspc |
|
1342 | #data_cspc = self.__buffer_cspc | |
1334 | #print("pushData pre Done") |
|
1343 | #print("pushData pre Done") | |
1335 | data_dc = self.__buffer_dc |
|
1344 | data_dc = self.__buffer_dc | |
1336 | n = self.__profIndex |
|
1345 | n = self.__profIndex | |
1337 |
|
1346 | |||
1338 | self.__buffer_spc = [] |
|
1347 | self.__buffer_spc = [] | |
1339 | self.__buffer_cspc = [] |
|
1348 | self.__buffer_cspc = [] | |
1340 | self.__buffer_dc = 0 |
|
1349 | self.__buffer_dc = 0 | |
1341 | self.__profIndex = 0 |
|
1350 | self.__profIndex = 0 | |
1342 | #print("pushData Done") |
|
1351 | #print("pushData Done") | |
1343 | return data_spc, data_cspc, data_dc, n |
|
1352 | return data_spc, data_cspc, data_dc, n | |
1344 |
|
1353 | |||
1345 | def byProfiles(self, *args): |
|
1354 | def byProfiles(self, *args): | |
1346 |
|
1355 | |||
1347 | self.__dataReady = False |
|
1356 | self.__dataReady = False | |
1348 | avgdata_spc = None |
|
1357 | avgdata_spc = None | |
1349 | avgdata_cspc = None |
|
1358 | avgdata_cspc = None | |
1350 | avgdata_dc = None |
|
1359 | avgdata_dc = None | |
1351 |
|
1360 | |||
1352 | self.putData(*args) |
|
1361 | self.putData(*args) | |
1353 |
|
1362 | |||
1354 | if self.__profIndex == self.n: |
|
1363 | if self.__profIndex == self.n: | |
1355 |
|
1364 | |||
1356 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1365 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1357 | self.n = n |
|
1366 | self.n = n | |
1358 | self.__dataReady = True |
|
1367 | self.__dataReady = True | |
1359 |
|
1368 | |||
1360 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1369 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1361 |
|
1370 | |||
1362 | def byTime(self, datatime, *args): |
|
1371 | def byTime(self, datatime, *args): | |
1363 |
|
1372 | |||
1364 | self.__dataReady = False |
|
1373 | self.__dataReady = False | |
1365 | avgdata_spc = None |
|
1374 | avgdata_spc = None | |
1366 | avgdata_cspc = None |
|
1375 | avgdata_cspc = None | |
1367 | avgdata_dc = None |
|
1376 | avgdata_dc = None | |
1368 |
|
1377 | |||
1369 | self.putData(*args) |
|
1378 | self.putData(*args) | |
1370 |
|
1379 | |||
1371 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1380 | if (datatime - self.__initime) >= self.__integrationtime: | |
1372 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1381 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1373 | self.n = n |
|
1382 | self.n = n | |
1374 | self.__dataReady = True |
|
1383 | self.__dataReady = True | |
1375 |
|
1384 | |||
1376 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1385 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1377 |
|
1386 | |||
1378 | def integrate(self, datatime, *args): |
|
1387 | def integrate(self, datatime, *args): | |
1379 |
|
1388 | |||
1380 | if self.__profIndex == 0: |
|
1389 | if self.__profIndex == 0: | |
1381 | self.__initime = datatime |
|
1390 | self.__initime = datatime | |
1382 |
|
1391 | |||
1383 | if self.__byTime: |
|
1392 | if self.__byTime: | |
1384 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1393 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |
1385 | datatime, *args) |
|
1394 | datatime, *args) | |
1386 | else: |
|
1395 | else: | |
1387 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1396 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
1388 |
|
1397 | |||
1389 | if not self.__dataReady: |
|
1398 | if not self.__dataReady: | |
1390 | return None, None, None, None |
|
1399 | return None, None, None, None | |
1391 |
|
1400 | |||
1392 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1401 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |
1393 |
|
1402 | |||
1394 | def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False, minHei=None, maxHei=None, factor=0.75): |
|
1403 | def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False, minHei=None, maxHei=None, factor=0.75): | |
1395 | self.dataOut = dataOut.copy() |
|
1404 | self.dataOut = dataOut.copy() | |
1396 | if n == 1: |
|
1405 | if n == 1: | |
1397 | return self.dataOut |
|
1406 | return self.dataOut | |
1398 |
|
1407 | |||
1399 | self.dataOut.flagNoData = True |
|
1408 | self.dataOut.flagNoData = True | |
1400 | if self.dataOut.nChannels == 1: |
|
1409 | if self.dataOut.nChannels == 1: | |
1401 | self.dataOut.data_cspc = None #si es un solo canal no vale la pena acumular DATOS |
|
1410 | self.dataOut.data_cspc = None #si es un solo canal no vale la pena acumular DATOS | |
1402 | #print(self.dataOut.data_spc.shape, self.dataOut.data_cspc) |
|
1411 | #print(self.dataOut.data_spc.shape, self.dataOut.data_cspc) | |
1403 | if not self.isConfig: |
|
1412 | if not self.isConfig: | |
1404 | self.setup(self.dataOut, n, timeInterval, overlapping,DPL ,minHei, maxHei, factor) |
|
1413 | self.setup(self.dataOut, n, timeInterval, overlapping,DPL ,minHei, maxHei, factor) | |
1405 | self.isConfig = True |
|
1414 | self.isConfig = True | |
1406 |
|
1415 | |||
1407 | if not self.ByLags: |
|
1416 | if not self.ByLags: | |
1408 | self.nProfiles=self.dataOut.nProfiles |
|
1417 | self.nProfiles=self.dataOut.nProfiles | |
1409 | self.nChannels=self.dataOut.nChannels |
|
1418 | self.nChannels=self.dataOut.nChannels | |
1410 | self.nHeights=self.dataOut.nHeights |
|
1419 | self.nHeights=self.dataOut.nHeights | |
1411 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, |
|
1420 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, | |
1412 | self.dataOut.data_spc, |
|
1421 | self.dataOut.data_spc, | |
1413 | self.dataOut.data_cspc, |
|
1422 | self.dataOut.data_cspc, | |
1414 | self.dataOut.data_dc) |
|
1423 | self.dataOut.data_dc) | |
1415 | else: |
|
1424 | else: | |
1416 | self.nProfiles=self.dataOut.nProfiles |
|
1425 | self.nProfiles=self.dataOut.nProfiles | |
1417 | self.nChannels=self.dataOut.nChannels |
|
1426 | self.nChannels=self.dataOut.nChannels | |
1418 | self.nHeights=self.dataOut.nHeights |
|
1427 | self.nHeights=self.dataOut.nHeights | |
1419 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, |
|
1428 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, | |
1420 | self.dataOut.dataLag_spc, |
|
1429 | self.dataOut.dataLag_spc, | |
1421 | self.dataOut.dataLag_cspc, |
|
1430 | self.dataOut.dataLag_cspc, | |
1422 | self.dataOut.dataLag_dc) |
|
1431 | self.dataOut.dataLag_dc) | |
1423 |
|
1432 | |||
1424 | if self.__dataReady: |
|
1433 | if self.__dataReady: | |
1425 |
|
1434 | |||
1426 | if not self.ByLags: |
|
1435 | if not self.ByLags: | |
1427 | if self.nChannels == 1: |
|
1436 | if self.nChannels == 1: | |
1428 | #print("f int", avgdata_spc.shape) |
|
1437 | #print("f int", avgdata_spc.shape) | |
1429 | self.dataOut.data_spc = avgdata_spc |
|
1438 | self.dataOut.data_spc = avgdata_spc | |
1430 | self.dataOut.data_cspc = avgdata_spc |
|
1439 | self.dataOut.data_cspc = avgdata_spc | |
1431 | else: |
|
1440 | else: | |
1432 | self.dataOut.data_spc = numpy.squeeze(avgdata_spc) |
|
1441 | self.dataOut.data_spc = numpy.squeeze(avgdata_spc) | |
1433 | self.dataOut.data_cspc = numpy.squeeze(avgdata_cspc) |
|
1442 | self.dataOut.data_cspc = numpy.squeeze(avgdata_cspc) | |
1434 | self.dataOut.data_dc = avgdata_dc |
|
1443 | self.dataOut.data_dc = avgdata_dc | |
1435 |
|
1444 | |||
1436 |
|
1445 | |||
1437 | else: |
|
1446 | else: | |
1438 | self.dataOut.dataLag_spc = avgdata_spc |
|
1447 | self.dataOut.dataLag_spc = avgdata_spc | |
1439 | self.dataOut.dataLag_cspc = avgdata_cspc |
|
1448 | self.dataOut.dataLag_cspc = avgdata_cspc | |
1440 | self.dataOut.dataLag_dc = avgdata_dc |
|
1449 | self.dataOut.dataLag_dc = avgdata_dc | |
1441 |
|
1450 | |||
1442 | self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot] |
|
1451 | self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot] | |
1443 | self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] |
|
1452 | self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] | |
1444 | self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] |
|
1453 | self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] | |
1445 |
|
1454 | |||
1446 |
|
1455 | |||
1447 | self.dataOut.nIncohInt *= self.n |
|
1456 | self.dataOut.nIncohInt *= self.n | |
1448 | self.dataOut.utctime = avgdatatime |
|
1457 | self.dataOut.utctime = avgdatatime | |
1449 | self.dataOut.flagNoData = False |
|
1458 | self.dataOut.flagNoData = False | |
1450 |
|
1459 | |||
1451 | return self.dataOut |
|
1460 | return self.dataOut | |
1452 |
|
1461 | |||
1453 | class removeInterference(Operation): |
|
1462 | class removeInterference(Operation): | |
1454 |
|
1463 | |||
1455 | def removeInterference2(self): |
|
1464 | def removeInterference2(self): | |
1456 |
|
1465 | |||
1457 | cspc = self.dataOut.data_cspc |
|
1466 | cspc = self.dataOut.data_cspc | |
1458 | spc = self.dataOut.data_spc |
|
1467 | spc = self.dataOut.data_spc | |
1459 | Heights = numpy.arange(cspc.shape[2]) |
|
1468 | Heights = numpy.arange(cspc.shape[2]) | |
1460 | realCspc = numpy.abs(cspc) |
|
1469 | realCspc = numpy.abs(cspc) | |
1461 |
|
1470 | |||
1462 | for i in range(cspc.shape[0]): |
|
1471 | for i in range(cspc.shape[0]): | |
1463 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
1472 | LinePower= numpy.sum(realCspc[i], axis=0) | |
1464 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
1473 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] | |
1465 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
1474 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] | |
1466 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
1475 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) | |
1467 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
1476 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] | |
1468 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
1477 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] | |
1469 |
|
1478 | |||
1470 |
|
1479 | |||
1471 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
1480 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) | |
1472 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
1481 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) | |
1473 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
1482 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): | |
1474 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
1483 | cspc[i,InterferenceRange,:] = numpy.NaN | |
1475 |
|
1484 | |||
1476 | self.dataOut.data_cspc = cspc |
|
1485 | self.dataOut.data_cspc = cspc | |
1477 |
|
1486 | |||
1478 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
1487 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): | |
1479 |
|
1488 | |||
1480 | jspectra = self.dataOut.data_spc |
|
1489 | jspectra = self.dataOut.data_spc | |
1481 | jcspectra = self.dataOut.data_cspc |
|
1490 | jcspectra = self.dataOut.data_cspc | |
1482 | jnoise = self.dataOut.getNoise() |
|
1491 | jnoise = self.dataOut.getNoise() | |
1483 | num_incoh = self.dataOut.nIncohInt |
|
1492 | num_incoh = self.dataOut.nIncohInt | |
1484 |
|
1493 | |||
1485 | num_channel = jspectra.shape[0] |
|
1494 | num_channel = jspectra.shape[0] | |
1486 | num_prof = jspectra.shape[1] |
|
1495 | num_prof = jspectra.shape[1] | |
1487 | num_hei = jspectra.shape[2] |
|
1496 | num_hei = jspectra.shape[2] | |
1488 |
|
1497 | |||
1489 | # hei_interf |
|
1498 | # hei_interf | |
1490 | if hei_interf is None: |
|
1499 | if hei_interf is None: | |
1491 | count_hei = int(num_hei / 2) |
|
1500 | count_hei = int(num_hei / 2) | |
1492 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
1501 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei | |
1493 | hei_interf = numpy.asarray(hei_interf)[0] |
|
1502 | hei_interf = numpy.asarray(hei_interf)[0] | |
1494 | # nhei_interf |
|
1503 | # nhei_interf | |
1495 | if (nhei_interf == None): |
|
1504 | if (nhei_interf == None): | |
1496 | nhei_interf = 5 |
|
1505 | nhei_interf = 5 | |
1497 | if (nhei_interf < 1): |
|
1506 | if (nhei_interf < 1): | |
1498 | nhei_interf = 1 |
|
1507 | nhei_interf = 1 | |
1499 | if (nhei_interf > count_hei): |
|
1508 | if (nhei_interf > count_hei): | |
1500 | nhei_interf = count_hei |
|
1509 | nhei_interf = count_hei | |
1501 | if (offhei_interf == None): |
|
1510 | if (offhei_interf == None): | |
1502 | offhei_interf = 0 |
|
1511 | offhei_interf = 0 | |
1503 |
|
1512 | |||
1504 | ind_hei = list(range(num_hei)) |
|
1513 | ind_hei = list(range(num_hei)) | |
1505 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
1514 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |
1506 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
1515 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |
1507 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
1516 | mask_prof = numpy.asarray(list(range(num_prof))) | |
1508 | num_mask_prof = mask_prof.size |
|
1517 | num_mask_prof = mask_prof.size | |
1509 | comp_mask_prof = [0, num_prof / 2] |
|
1518 | comp_mask_prof = [0, num_prof / 2] | |
1510 |
|
1519 | |||
1511 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
1520 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |
1512 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
1521 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |
1513 | jnoise = numpy.nan |
|
1522 | jnoise = numpy.nan | |
1514 | noise_exist = jnoise[0] < numpy.Inf |
|
1523 | noise_exist = jnoise[0] < numpy.Inf | |
1515 |
|
1524 | |||
1516 | # Subrutina de Remocion de la Interferencia |
|
1525 | # Subrutina de Remocion de la Interferencia | |
1517 | for ich in range(num_channel): |
|
1526 | for ich in range(num_channel): | |
1518 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1527 | # Se ordena los espectros segun su potencia (menor a mayor) | |
1519 | power = jspectra[ich, mask_prof, :] |
|
1528 | power = jspectra[ich, mask_prof, :] | |
1520 | power = power[:, hei_interf] |
|
1529 | power = power[:, hei_interf] | |
1521 | power = power.sum(axis=0) |
|
1530 | power = power.sum(axis=0) | |
1522 | psort = power.ravel().argsort() |
|
1531 | psort = power.ravel().argsort() | |
1523 |
|
1532 | |||
1524 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
1533 | # Se estima la interferencia promedio en los Espectros de Potencia empleando | |
1525 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
1534 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( | |
1526 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1535 | offhei_interf, nhei_interf + offhei_interf))]]] | |
1527 |
|
1536 | |||
1528 | if noise_exist: |
|
1537 | if noise_exist: | |
1529 | # tmp_noise = jnoise[ich] / num_prof |
|
1538 | # tmp_noise = jnoise[ich] / num_prof | |
1530 | tmp_noise = jnoise[ich] |
|
1539 | tmp_noise = jnoise[ich] | |
1531 | junkspc_interf = junkspc_interf - tmp_noise |
|
1540 | junkspc_interf = junkspc_interf - tmp_noise | |
1532 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
1541 | #junkspc_interf[:,comp_mask_prof] = 0 | |
1533 |
|
1542 | |||
1534 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
1543 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf | |
1535 | jspc_interf = jspc_interf.transpose() |
|
1544 | jspc_interf = jspc_interf.transpose() | |
1536 | # Calculando el espectro de interferencia promedio |
|
1545 | # Calculando el espectro de interferencia promedio | |
1537 | noiseid = numpy.where( |
|
1546 | noiseid = numpy.where( | |
1538 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
1547 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) | |
1539 | noiseid = noiseid[0] |
|
1548 | noiseid = noiseid[0] | |
1540 | cnoiseid = noiseid.size |
|
1549 | cnoiseid = noiseid.size | |
1541 | interfid = numpy.where( |
|
1550 | interfid = numpy.where( | |
1542 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
1551 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) | |
1543 | interfid = interfid[0] |
|
1552 | interfid = interfid[0] | |
1544 | cinterfid = interfid.size |
|
1553 | cinterfid = interfid.size | |
1545 |
|
1554 | |||
1546 | if (cnoiseid > 0): |
|
1555 | if (cnoiseid > 0): | |
1547 | jspc_interf[noiseid] = 0 |
|
1556 | jspc_interf[noiseid] = 0 | |
1548 |
|
1557 | |||
1549 | # Expandiendo los perfiles a limpiar |
|
1558 | # Expandiendo los perfiles a limpiar | |
1550 | if (cinterfid > 0): |
|
1559 | if (cinterfid > 0): | |
1551 | new_interfid = ( |
|
1560 | new_interfid = ( | |
1552 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
1561 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof | |
1553 | new_interfid = numpy.asarray(new_interfid) |
|
1562 | new_interfid = numpy.asarray(new_interfid) | |
1554 | new_interfid = {x for x in new_interfid} |
|
1563 | new_interfid = {x for x in new_interfid} | |
1555 | new_interfid = numpy.array(list(new_interfid)) |
|
1564 | new_interfid = numpy.array(list(new_interfid)) | |
1556 | new_cinterfid = new_interfid.size |
|
1565 | new_cinterfid = new_interfid.size | |
1557 | else: |
|
1566 | else: | |
1558 | new_cinterfid = 0 |
|
1567 | new_cinterfid = 0 | |
1559 |
|
1568 | |||
1560 | for ip in range(new_cinterfid): |
|
1569 | for ip in range(new_cinterfid): | |
1561 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
1570 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() | |
1562 | jspc_interf[new_interfid[ip] |
|
1571 | jspc_interf[new_interfid[ip] | |
1563 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
1572 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] | |
1564 |
|
1573 | |||
1565 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
1574 | jspectra[ich, :, ind_hei] = jspectra[ich, :, | |
1566 | ind_hei] - jspc_interf # Corregir indices |
|
1575 | ind_hei] - jspc_interf # Corregir indices | |
1567 |
|
1576 | |||
1568 | # Removiendo la interferencia del punto de mayor interferencia |
|
1577 | # Removiendo la interferencia del punto de mayor interferencia | |
1569 | ListAux = jspc_interf[mask_prof].tolist() |
|
1578 | ListAux = jspc_interf[mask_prof].tolist() | |
1570 | maxid = ListAux.index(max(ListAux)) |
|
1579 | maxid = ListAux.index(max(ListAux)) | |
1571 |
|
1580 | |||
1572 | if cinterfid > 0: |
|
1581 | if cinterfid > 0: | |
1573 | for ip in range(cinterfid * (interf == 2) - 1): |
|
1582 | for ip in range(cinterfid * (interf == 2) - 1): | |
1574 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
1583 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * | |
1575 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1584 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() | |
1576 | cind = len(ind) |
|
1585 | cind = len(ind) | |
1577 |
|
1586 | |||
1578 | if (cind > 0): |
|
1587 | if (cind > 0): | |
1579 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
1588 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ | |
1580 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
1589 | (1 + (numpy.random.uniform(cind) - 0.5) / | |
1581 | numpy.sqrt(num_incoh)) |
|
1590 | numpy.sqrt(num_incoh)) | |
1582 |
|
1591 | |||
1583 | ind = numpy.array([-2, -1, 1, 2]) |
|
1592 | ind = numpy.array([-2, -1, 1, 2]) | |
1584 | xx = numpy.zeros([4, 4]) |
|
1593 | xx = numpy.zeros([4, 4]) | |
1585 |
|
1594 | |||
1586 | for id1 in range(4): |
|
1595 | for id1 in range(4): | |
1587 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1596 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
1588 |
|
1597 | |||
1589 | xx_inv = numpy.linalg.inv(xx) |
|
1598 | xx_inv = numpy.linalg.inv(xx) | |
1590 | xx = xx_inv[:, 0] |
|
1599 | xx = xx_inv[:, 0] | |
1591 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1600 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
1592 | yy = jspectra[ich, mask_prof[ind], :] |
|
1601 | yy = jspectra[ich, mask_prof[ind], :] | |
1593 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
1602 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( | |
1594 | yy.transpose(), xx) |
|
1603 | yy.transpose(), xx) | |
1595 |
|
1604 | |||
1596 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
1605 | indAux = (jspectra[ich, :, :] < tmp_noise * | |
1597 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1606 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() | |
1598 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
1607 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ | |
1599 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
1608 | (1 - 1 / numpy.sqrt(num_incoh)) | |
1600 |
|
1609 | |||
1601 | # Remocion de Interferencia en el Cross Spectra |
|
1610 | # Remocion de Interferencia en el Cross Spectra | |
1602 | if jcspectra is None: |
|
1611 | if jcspectra is None: | |
1603 | return jspectra, jcspectra |
|
1612 | return jspectra, jcspectra | |
1604 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
1613 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) | |
1605 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
1614 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |
1606 |
|
1615 | |||
1607 | for ip in range(num_pairs): |
|
1616 | for ip in range(num_pairs): | |
1608 |
|
1617 | |||
1609 | #------------------------------------------- |
|
1618 | #------------------------------------------- | |
1610 |
|
1619 | |||
1611 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
1620 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) | |
1612 | cspower = cspower[:, hei_interf] |
|
1621 | cspower = cspower[:, hei_interf] | |
1613 | cspower = cspower.sum(axis=0) |
|
1622 | cspower = cspower.sum(axis=0) | |
1614 |
|
1623 | |||
1615 | cspsort = cspower.ravel().argsort() |
|
1624 | cspsort = cspower.ravel().argsort() | |
1616 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
1625 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( | |
1617 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1626 | offhei_interf, nhei_interf + offhei_interf))]]] | |
1618 | junkcspc_interf = junkcspc_interf.transpose() |
|
1627 | junkcspc_interf = junkcspc_interf.transpose() | |
1619 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
1628 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf | |
1620 |
|
1629 | |||
1621 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1630 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |
1622 |
|
1631 | |||
1623 | median_real = int(numpy.median(numpy.real( |
|
1632 | median_real = int(numpy.median(numpy.real( | |
1624 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1633 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
1625 | median_imag = int(numpy.median(numpy.imag( |
|
1634 | median_imag = int(numpy.median(numpy.imag( | |
1626 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1635 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
1627 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
1636 | comp_mask_prof = [int(e) for e in comp_mask_prof] | |
1628 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
1637 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( | |
1629 | median_real, median_imag) |
|
1638 | median_real, median_imag) | |
1630 |
|
1639 | |||
1631 | for iprof in range(num_prof): |
|
1640 | for iprof in range(num_prof): | |
1632 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
1641 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() | |
1633 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
1642 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] | |
1634 |
|
1643 | |||
1635 | # Removiendo la Interferencia |
|
1644 | # Removiendo la Interferencia | |
1636 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
1645 | jcspectra[ip, :, ind_hei] = jcspectra[ip, | |
1637 | :, ind_hei] - jcspc_interf |
|
1646 | :, ind_hei] - jcspc_interf | |
1638 |
|
1647 | |||
1639 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1648 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |
1640 | maxid = ListAux.index(max(ListAux)) |
|
1649 | maxid = ListAux.index(max(ListAux)) | |
1641 |
|
1650 | |||
1642 | ind = numpy.array([-2, -1, 1, 2]) |
|
1651 | ind = numpy.array([-2, -1, 1, 2]) | |
1643 | xx = numpy.zeros([4, 4]) |
|
1652 | xx = numpy.zeros([4, 4]) | |
1644 |
|
1653 | |||
1645 | for id1 in range(4): |
|
1654 | for id1 in range(4): | |
1646 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1655 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
1647 |
|
1656 | |||
1648 | xx_inv = numpy.linalg.inv(xx) |
|
1657 | xx_inv = numpy.linalg.inv(xx) | |
1649 | xx = xx_inv[:, 0] |
|
1658 | xx = xx_inv[:, 0] | |
1650 |
|
1659 | |||
1651 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1660 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
1652 | yy = jcspectra[ip, mask_prof[ind], :] |
|
1661 | yy = jcspectra[ip, mask_prof[ind], :] | |
1653 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1662 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) | |
1654 |
|
1663 | |||
1655 | # Guardar Resultados |
|
1664 | # Guardar Resultados | |
1656 | self.dataOut.data_spc = jspectra |
|
1665 | self.dataOut.data_spc = jspectra | |
1657 | self.dataOut.data_cspc = jcspectra |
|
1666 | self.dataOut.data_cspc = jcspectra | |
1658 |
|
1667 | |||
1659 | return 1 |
|
1668 | return 1 | |
1660 |
|
1669 | |||
1661 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): |
|
1670 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): | |
1662 |
|
1671 | |||
1663 | self.dataOut = dataOut |
|
1672 | self.dataOut = dataOut | |
1664 |
|
1673 | |||
1665 | if mode == 1: |
|
1674 | if mode == 1: | |
1666 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
1675 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) | |
1667 | elif mode == 2: |
|
1676 | elif mode == 2: | |
1668 | self.removeInterference2() |
|
1677 | self.removeInterference2() | |
1669 |
|
1678 | |||
1670 | return self.dataOut |
|
1679 | return self.dataOut | |
1671 |
|
1680 | |||
1672 |
|
1681 | |||
1673 | class IncohInt(Operation): |
|
1682 | class IncohInt(Operation): | |
1674 |
|
1683 | |||
1675 | __profIndex = 0 |
|
1684 | __profIndex = 0 | |
1676 | __withOverapping = False |
|
1685 | __withOverapping = False | |
1677 |
|
1686 | |||
1678 | __byTime = False |
|
1687 | __byTime = False | |
1679 | __initime = None |
|
1688 | __initime = None | |
1680 | __lastdatatime = None |
|
1689 | __lastdatatime = None | |
1681 | __integrationtime = None |
|
1690 | __integrationtime = None | |
1682 |
|
1691 | |||
1683 | __buffer_spc = None |
|
1692 | __buffer_spc = None | |
1684 | __buffer_cspc = None |
|
1693 | __buffer_cspc = None | |
1685 | __buffer_dc = None |
|
1694 | __buffer_dc = None | |
1686 |
|
1695 | |||
1687 | __dataReady = False |
|
1696 | __dataReady = False | |
1688 |
|
1697 | |||
1689 | __timeInterval = None |
|
1698 | __timeInterval = None | |
1690 |
|
1699 | |||
1691 | n = None |
|
1700 | n = None | |
1692 |
|
1701 | |||
1693 | def __init__(self): |
|
1702 | def __init__(self): | |
1694 |
|
1703 | |||
1695 | Operation.__init__(self) |
|
1704 | Operation.__init__(self) | |
1696 |
|
1705 | |||
1697 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1706 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
1698 | """ |
|
1707 | """ | |
1699 | Set the parameters of the integration class. |
|
1708 | Set the parameters of the integration class. | |
1700 |
|
1709 | |||
1701 | Inputs: |
|
1710 | Inputs: | |
1702 |
|
1711 | |||
1703 | n : Number of coherent integrations |
|
1712 | n : Number of coherent integrations | |
1704 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1713 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
1705 | overlapping : |
|
1714 | overlapping : | |
1706 |
|
1715 | |||
1707 | """ |
|
1716 | """ | |
1708 |
|
1717 | |||
1709 | self.__initime = None |
|
1718 | self.__initime = None | |
1710 | self.__lastdatatime = 0 |
|
1719 | self.__lastdatatime = 0 | |
1711 |
|
1720 | |||
1712 | self.__buffer_spc = 0 |
|
1721 | self.__buffer_spc = 0 | |
1713 | self.__buffer_cspc = 0 |
|
1722 | self.__buffer_cspc = 0 | |
1714 | self.__buffer_dc = 0 |
|
1723 | self.__buffer_dc = 0 | |
1715 |
|
1724 | |||
1716 | self.__profIndex = 0 |
|
1725 | self.__profIndex = 0 | |
1717 | self.__dataReady = False |
|
1726 | self.__dataReady = False | |
1718 | self.__byTime = False |
|
1727 | self.__byTime = False | |
1719 |
|
1728 | |||
1720 | if n is None and timeInterval is None: |
|
1729 | if n is None and timeInterval is None: | |
1721 | raise ValueError("n or timeInterval should be specified ...") |
|
1730 | raise ValueError("n or timeInterval should be specified ...") | |
1722 |
|
1731 | |||
1723 | if n is not None: |
|
1732 | if n is not None: | |
1724 | self.n = int(n) |
|
1733 | self.n = int(n) | |
1725 | else: |
|
1734 | else: | |
1726 |
|
1735 | |||
1727 | self.__integrationtime = int(timeInterval) |
|
1736 | self.__integrationtime = int(timeInterval) | |
1728 | self.n = None |
|
1737 | self.n = None | |
1729 | self.__byTime = True |
|
1738 | self.__byTime = True | |
1730 |
|
1739 | |||
1731 | def putData(self, data_spc, data_cspc, data_dc): |
|
1740 | def putData(self, data_spc, data_cspc, data_dc): | |
1732 | """ |
|
1741 | """ | |
1733 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1742 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
1734 |
|
1743 | |||
1735 | """ |
|
1744 | """ | |
1736 |
|
1745 | |||
1737 | self.__buffer_spc += data_spc |
|
1746 | self.__buffer_spc += data_spc | |
1738 |
|
1747 | |||
1739 | if data_cspc is None: |
|
1748 | if data_cspc is None: | |
1740 | self.__buffer_cspc = None |
|
1749 | self.__buffer_cspc = None | |
1741 | else: |
|
1750 | else: | |
1742 | self.__buffer_cspc += data_cspc |
|
1751 | self.__buffer_cspc += data_cspc | |
1743 |
|
1752 | |||
1744 | if data_dc is None: |
|
1753 | if data_dc is None: | |
1745 | self.__buffer_dc = None |
|
1754 | self.__buffer_dc = None | |
1746 | else: |
|
1755 | else: | |
1747 | self.__buffer_dc += data_dc |
|
1756 | self.__buffer_dc += data_dc | |
1748 |
|
1757 | |||
1749 | self.__profIndex += 1 |
|
1758 | self.__profIndex += 1 | |
1750 |
|
1759 | |||
1751 | return |
|
1760 | return | |
1752 |
|
1761 | |||
1753 | def pushData(self): |
|
1762 | def pushData(self): | |
1754 | """ |
|
1763 | """ | |
1755 | Return the sum of the last profiles and the profiles used in the sum. |
|
1764 | Return the sum of the last profiles and the profiles used in the sum. | |
1756 |
|
1765 | |||
1757 | Affected: |
|
1766 | Affected: | |
1758 |
|
1767 | |||
1759 | self.__profileIndex |
|
1768 | self.__profileIndex | |
1760 |
|
1769 | |||
1761 | """ |
|
1770 | """ | |
1762 |
|
1771 | |||
1763 | data_spc = self.__buffer_spc |
|
1772 | data_spc = self.__buffer_spc | |
1764 | data_cspc = self.__buffer_cspc |
|
1773 | data_cspc = self.__buffer_cspc | |
1765 | data_dc = self.__buffer_dc |
|
1774 | data_dc = self.__buffer_dc | |
1766 | n = self.__profIndex |
|
1775 | n = self.__profIndex | |
1767 |
|
1776 | |||
1768 | self.__buffer_spc = 0 |
|
1777 | self.__buffer_spc = 0 | |
1769 | self.__buffer_cspc = 0 |
|
1778 | self.__buffer_cspc = 0 | |
1770 | self.__buffer_dc = 0 |
|
1779 | self.__buffer_dc = 0 | |
1771 | self.__profIndex = 0 |
|
1780 | self.__profIndex = 0 | |
1772 |
|
1781 | |||
1773 | return data_spc, data_cspc, data_dc, n |
|
1782 | return data_spc, data_cspc, data_dc, n | |
1774 |
|
1783 | |||
1775 | def byProfiles(self, *args): |
|
1784 | def byProfiles(self, *args): | |
1776 |
|
1785 | |||
1777 | self.__dataReady = False |
|
1786 | self.__dataReady = False | |
1778 | avgdata_spc = None |
|
1787 | avgdata_spc = None | |
1779 | avgdata_cspc = None |
|
1788 | avgdata_cspc = None | |
1780 | avgdata_dc = None |
|
1789 | avgdata_dc = None | |
1781 |
|
1790 | |||
1782 | self.putData(*args) |
|
1791 | self.putData(*args) | |
1783 |
|
1792 | |||
1784 | if self.__profIndex == self.n: |
|
1793 | if self.__profIndex == self.n: | |
1785 |
|
1794 | |||
1786 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1795 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1787 | self.n = n |
|
1796 | self.n = n | |
1788 | self.__dataReady = True |
|
1797 | self.__dataReady = True | |
1789 |
|
1798 | |||
1790 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1799 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1791 |
|
1800 | |||
1792 | def byTime(self, datatime, *args): |
|
1801 | def byTime(self, datatime, *args): | |
1793 |
|
1802 | |||
1794 | self.__dataReady = False |
|
1803 | self.__dataReady = False | |
1795 | avgdata_spc = None |
|
1804 | avgdata_spc = None | |
1796 | avgdata_cspc = None |
|
1805 | avgdata_cspc = None | |
1797 | avgdata_dc = None |
|
1806 | avgdata_dc = None | |
1798 |
|
1807 | |||
1799 | self.putData(*args) |
|
1808 | self.putData(*args) | |
1800 |
|
1809 | |||
1801 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1810 | if (datatime - self.__initime) >= self.__integrationtime: | |
1802 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1811 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1803 | self.n = n |
|
1812 | self.n = n | |
1804 | self.__dataReady = True |
|
1813 | self.__dataReady = True | |
1805 |
|
1814 | |||
1806 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1815 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1807 |
|
1816 | |||
1808 | def integrate(self, datatime, *args): |
|
1817 | def integrate(self, datatime, *args): | |
1809 |
|
1818 | |||
1810 | if self.__profIndex == 0: |
|
1819 | if self.__profIndex == 0: | |
1811 | self.__initime = datatime |
|
1820 | self.__initime = datatime | |
1812 |
|
1821 | |||
1813 | if self.__byTime: |
|
1822 | if self.__byTime: | |
1814 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1823 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |
1815 | datatime, *args) |
|
1824 | datatime, *args) | |
1816 | else: |
|
1825 | else: | |
1817 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1826 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
1818 |
|
1827 | |||
1819 | if not self.__dataReady: |
|
1828 | if not self.__dataReady: | |
1820 | return None, None, None, None |
|
1829 | return None, None, None, None | |
1821 |
|
1830 | |||
1822 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1831 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |
1823 |
|
1832 | |||
1824 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1833 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | |
1825 | if n == 1: |
|
1834 | if n == 1: | |
1826 | return dataOut |
|
1835 | return dataOut | |
1827 |
|
1836 | |||
1828 | dataOut.flagNoData = True |
|
1837 | dataOut.flagNoData = True | |
1829 |
|
1838 | |||
1830 | if not self.isConfig: |
|
1839 | if not self.isConfig: | |
1831 | self.setup(n, timeInterval, overlapping) |
|
1840 | self.setup(n, timeInterval, overlapping) | |
1832 | self.isConfig = True |
|
1841 | self.isConfig = True | |
1833 |
|
1842 | |||
1834 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1843 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |
1835 | dataOut.data_spc, |
|
1844 | dataOut.data_spc, | |
1836 | dataOut.data_cspc, |
|
1845 | dataOut.data_cspc, | |
1837 | dataOut.data_dc) |
|
1846 | dataOut.data_dc) | |
1838 |
|
1847 | |||
1839 | if self.__dataReady: |
|
1848 | if self.__dataReady: | |
1840 |
|
1849 | |||
1841 | dataOut.data_spc = avgdata_spc |
|
1850 | dataOut.data_spc = avgdata_spc | |
1842 | dataOut.data_cspc = avgdata_cspc |
|
1851 | dataOut.data_cspc = avgdata_cspc | |
1843 | dataOut.data_dc = avgdata_dc |
|
1852 | dataOut.data_dc = avgdata_dc | |
1844 | dataOut.nIncohInt *= self.n |
|
1853 | dataOut.nIncohInt *= self.n | |
1845 | dataOut.utctime = avgdatatime |
|
1854 | dataOut.utctime = avgdatatime | |
1846 | dataOut.flagNoData = False |
|
1855 | dataOut.flagNoData = False | |
1847 |
|
1856 | |||
1848 | return dataOut |
|
1857 | return dataOut | |
1849 |
|
1858 | |||
1850 | class dopplerFlip(Operation): |
|
1859 | class dopplerFlip(Operation): | |
1851 |
|
1860 | |||
1852 | def run(self, dataOut): |
|
1861 | def run(self, dataOut): | |
1853 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1862 | # arreglo 1: (num_chan, num_profiles, num_heights) | |
1854 | self.dataOut = dataOut |
|
1863 | self.dataOut = dataOut | |
1855 | # JULIA-oblicua, indice 2 |
|
1864 | # JULIA-oblicua, indice 2 | |
1856 | # arreglo 2: (num_profiles, num_heights) |
|
1865 | # arreglo 2: (num_profiles, num_heights) | |
1857 | jspectra = self.dataOut.data_spc[2] |
|
1866 | jspectra = self.dataOut.data_spc[2] | |
1858 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
1867 | jspectra_tmp = numpy.zeros(jspectra.shape) | |
1859 | num_profiles = jspectra.shape[0] |
|
1868 | num_profiles = jspectra.shape[0] | |
1860 | freq_dc = int(num_profiles / 2) |
|
1869 | freq_dc = int(num_profiles / 2) | |
1861 | # Flip con for |
|
1870 | # Flip con for | |
1862 | for j in range(num_profiles): |
|
1871 | for j in range(num_profiles): | |
1863 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1872 | jspectra_tmp[num_profiles-j-1]= jspectra[j] | |
1864 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1873 | # Intercambio perfil de DC con perfil inmediato anterior | |
1865 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1874 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] | |
1866 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1875 | jspectra_tmp[freq_dc]= jspectra[freq_dc] | |
1867 | # canal modificado es re-escrito en el arreglo de canales |
|
1876 | # canal modificado es re-escrito en el arreglo de canales | |
1868 | self.dataOut.data_spc[2] = jspectra_tmp |
|
1877 | self.dataOut.data_spc[2] = jspectra_tmp | |
1869 |
|
1878 | |||
1870 | return self.dataOut |
|
1879 | return self.dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now