@@ -1,130 +1,130 | |||
|
1 | 1 | #include <Python.h> |
|
2 | 2 | #include <numpy/arrayobject.h> |
|
3 | 3 | #include <math.h> |
|
4 | 4 | |
|
5 | 5 | |
|
6 | 6 | static PyObject *hildebrand_sekhon(PyObject *self, PyObject *args) { |
|
7 | 7 | double navg; |
|
8 | 8 | PyObject *data_obj, *data_array; |
|
9 | 9 | |
|
10 | 10 | if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg)) { |
|
11 | 11 | return NULL; |
|
12 | 12 | } |
|
13 | 13 | |
|
14 | 14 | data_array = PyArray_FROM_OTF(data_obj, NPY_FLOAT64, NPY_IN_ARRAY); |
|
15 | 15 | |
|
16 | 16 | if (data_array == NULL) { |
|
17 | 17 | Py_XDECREF(data_array); |
|
18 | 18 | Py_XDECREF(data_obj); |
|
19 | 19 | return NULL; |
|
20 | 20 | } |
|
21 | 21 | double *sortdata = (double*)PyArray_DATA(data_array); |
|
22 | 22 | int lenOfData = (int)PyArray_SIZE(data_array) ; |
|
23 | 23 | double nums_min = lenOfData*0.2; |
|
24 | 24 | if (nums_min <= 5) nums_min = 5; |
|
25 | 25 | double sump = 0; |
|
26 | 26 | double sumq = 0; |
|
27 | 27 | long j = 0; |
|
28 | 28 | int cont = 1; |
|
29 | 29 | double rtest = 0; |
|
30 | 30 | while ((cont == 1) && (j < lenOfData)) { |
|
31 | 31 | sump = sump + sortdata[j]; |
|
32 | 32 | sumq = sumq + pow(sortdata[j], 2); |
|
33 | 33 | if (j > nums_min) { |
|
34 | 34 | rtest = (double)j/(j-1) + 1/navg; |
|
35 | 35 | if ((sumq*j) > (rtest*pow(sump, 2))) { |
|
36 | 36 | j = j - 1; |
|
37 | 37 | sump = sump - sortdata[j]; |
|
38 | 38 | sumq = sumq - pow(sortdata[j],2); |
|
39 | 39 | cont = 0; |
|
40 | 40 | } |
|
41 | 41 | } |
|
42 | 42 | j = j + 1; |
|
43 | 43 | } |
|
44 | 44 | |
|
45 | 45 | double lnoise = sump / j; |
|
46 | 46 | |
|
47 | 47 | Py_DECREF(data_array); |
|
48 | 48 | |
|
49 | 49 | // return PyLong_FromLong(lnoise); |
|
50 | 50 | return PyFloat_FromDouble(lnoise); |
|
51 | 51 | } |
|
52 | /* | |
|
52 | ||
|
53 | 53 | static PyObject *hildebrand_sekhon2(PyObject *self, PyObject *args) { |
|
54 | 54 | double navg; |
|
55 | double th; | |
|
56 | 55 | PyObject *data_obj, *data_array; |
|
57 | 56 | |
|
58 |
if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg |
|
|
57 | if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg)) { | |
|
59 | 58 | return NULL; |
|
60 | 59 | } |
|
61 | 60 | |
|
62 | 61 | data_array = PyArray_FROM_OTF(data_obj, NPY_FLOAT64, NPY_IN_ARRAY); |
|
63 | 62 | |
|
64 | 63 | if (data_array == NULL) { |
|
65 | 64 | Py_XDECREF(data_array); |
|
66 | 65 | Py_XDECREF(data_obj); |
|
67 | 66 | return NULL; |
|
68 | 67 | } |
|
69 | 68 | double *sortdata = (double*)PyArray_DATA(data_array); |
|
70 | 69 | int lenOfData = (int)PyArray_SIZE(data_array) ; |
|
71 |
double nums_min = lenOfData* |
|
|
70 | double nums_min = lenOfData*0.75; | |
|
72 | 71 | if (nums_min <= 5) nums_min = 5; |
|
73 | 72 | double sump = 0; |
|
74 | 73 | double sumq = 0; |
|
75 | 74 | long j = 0; |
|
76 | 75 | int cont = 1; |
|
77 | 76 | double rtest = 0; |
|
78 | 77 | while ((cont == 1) && (j < lenOfData)) { |
|
79 | 78 | sump = sump + sortdata[j]; |
|
80 | 79 | sumq = sumq + pow(sortdata[j], 2); |
|
81 | 80 | if (j > nums_min) { |
|
82 | 81 | rtest = (double)j/(j-1) + 1/navg; |
|
83 | 82 | if ((sumq*j) > (rtest*pow(sump, 2))) { |
|
84 | 83 | j = j - 1; |
|
85 | 84 | sump = sump - sortdata[j]; |
|
86 | 85 | sumq = sumq - pow(sortdata[j],2); |
|
87 | 86 | cont = 0; |
|
88 | 87 | } |
|
89 | 88 | } |
|
90 | 89 | j = j + 1; |
|
91 | 90 | } |
|
92 | 91 | |
|
93 | 92 | //double lnoise = sump / j; |
|
94 | 93 | |
|
95 | 94 | Py_DECREF(data_array); |
|
96 | 95 | |
|
97 |
|
|
|
98 | return PyFloat_FromDouble(j,sortID); | |
|
96 | return PyLong_FromLong(j); | |
|
97 | ||
|
99 | 98 | } |
|
100 | */ | |
|
99 | ||
|
101 | 100 | |
|
102 | 101 | static PyMethodDef noiseMethods[] = { |
|
103 | 102 | { "hildebrand_sekhon", hildebrand_sekhon, METH_VARARGS, "Get noise with hildebrand_sekhon algorithm" }, |
|
103 | { "hildebrand_sekhon2", hildebrand_sekhon2, METH_VARARGS, "Get index for satellite cleaning" }, | |
|
104 | 104 | { NULL, NULL, 0, NULL } |
|
105 | 105 | }; |
|
106 | 106 | |
|
107 | 107 | #if PY_MAJOR_VERSION >= 3 |
|
108 | 108 | |
|
109 | 109 | static struct PyModuleDef noisemodule = { |
|
110 | 110 | PyModuleDef_HEAD_INIT, |
|
111 | 111 | "_noise", |
|
112 | 112 | "Get noise with hildebrand_sekhon algorithm", |
|
113 | 113 | -1, |
|
114 | 114 | noiseMethods |
|
115 | 115 | }; |
|
116 | 116 | |
|
117 | 117 | #endif |
|
118 | 118 | |
|
119 | 119 | #if PY_MAJOR_VERSION >= 3 |
|
120 | 120 | PyMODINIT_FUNC PyInit__noise(void) { |
|
121 | 121 | Py_Initialize(); |
|
122 | 122 | import_array(); |
|
123 | 123 | return PyModule_Create(&noisemodule); |
|
124 | 124 | } |
|
125 | 125 | #else |
|
126 | 126 | PyMODINIT_FUNC init_noise() { |
|
127 | 127 | Py_InitModule("_noise", noiseMethods); |
|
128 | 128 | import_array(); |
|
129 | 129 | } |
|
130 | 130 | #endif |
@@ -1,1076 +1,1076 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Definition of diferent Data objects for different types of data |
|
6 | 6 | |
|
7 | 7 | Here you will find the diferent data objects for the different types |
|
8 | 8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
9 | 9 | processing units and operations. Currently the supported data objects are: |
|
10 | 10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
11 | 11 | """ |
|
12 | 12 | |
|
13 | 13 | import copy |
|
14 | 14 | import numpy |
|
15 | 15 | import datetime |
|
16 | 16 | import json |
|
17 | 17 | |
|
18 | 18 | import schainpy.admin |
|
19 | 19 | from schainpy.utils import log |
|
20 | 20 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
21 | 21 | from schainpy.model.data import _noise |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def getNumpyDtype(dataTypeCode): |
|
25 | 25 | |
|
26 | 26 | if dataTypeCode == 0: |
|
27 | 27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
28 | 28 | elif dataTypeCode == 1: |
|
29 | 29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
30 | 30 | elif dataTypeCode == 2: |
|
31 | 31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
32 | 32 | elif dataTypeCode == 3: |
|
33 | 33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
34 | 34 | elif dataTypeCode == 4: |
|
35 | 35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
36 | 36 | elif dataTypeCode == 5: |
|
37 | 37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
38 | 38 | else: |
|
39 | 39 | raise ValueError('dataTypeCode was not defined') |
|
40 | 40 | |
|
41 | 41 | return numpyDtype |
|
42 | 42 | |
|
43 | 43 | |
|
44 | 44 | def getDataTypeCode(numpyDtype): |
|
45 | 45 | |
|
46 | 46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
47 | 47 | datatype = 0 |
|
48 | 48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
49 | 49 | datatype = 1 |
|
50 | 50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
51 | 51 | datatype = 2 |
|
52 | 52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
53 | 53 | datatype = 3 |
|
54 | 54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
55 | 55 | datatype = 4 |
|
56 | 56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
57 | 57 | datatype = 5 |
|
58 | 58 | else: |
|
59 | 59 | datatype = None |
|
60 | 60 | |
|
61 | 61 | return datatype |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | def hildebrand_sekhon(data, navg): |
|
65 | 65 | """ |
|
66 | 66 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
67 | 67 | implementation technique is based on the fact that the standard deviation of the spectral |
|
68 | 68 | densities is equal to the mean spectral density for white Gaussian noise |
|
69 | 69 | |
|
70 | 70 | Inputs: |
|
71 | 71 | Data : heights |
|
72 | 72 | navg : numbers of averages |
|
73 | 73 | |
|
74 | 74 | Return: |
|
75 | 75 | mean : noise's level |
|
76 | 76 | """ |
|
77 | 77 | |
|
78 | 78 | sortdata = numpy.sort(data, axis=None) |
|
79 | 79 | ''' |
|
80 | 80 | lenOfData = len(sortdata) |
|
81 | 81 | nums_min = lenOfData*0.2 |
|
82 | 82 | |
|
83 | 83 | if nums_min <= 5: |
|
84 | 84 | |
|
85 | 85 | nums_min = 5 |
|
86 | 86 | |
|
87 | 87 | sump = 0. |
|
88 | 88 | sumq = 0. |
|
89 | 89 | |
|
90 | 90 | j = 0 |
|
91 | 91 | cont = 1 |
|
92 | 92 | |
|
93 | 93 | while((cont == 1)and(j < lenOfData)): |
|
94 | 94 | |
|
95 | 95 | sump += sortdata[j] |
|
96 | 96 | sumq += sortdata[j]**2 |
|
97 | 97 | |
|
98 | 98 | if j > nums_min: |
|
99 | 99 | rtest = float(j)/(j-1) + 1.0/navg |
|
100 | 100 | if ((sumq*j) > (rtest*sump**2)): |
|
101 | 101 | j = j - 1 |
|
102 | 102 | sump = sump - sortdata[j] |
|
103 | 103 | sumq = sumq - sortdata[j]**2 |
|
104 | 104 | cont = 0 |
|
105 | 105 | |
|
106 | 106 | j += 1 |
|
107 | 107 | |
|
108 | 108 | lnoise = sump / j |
|
109 | 109 | ''' |
|
110 | 110 | return _noise.hildebrand_sekhon(sortdata, navg) |
|
111 | 111 | |
|
112 | 112 | |
|
113 | 113 | class Beam: |
|
114 | 114 | |
|
115 | 115 | def __init__(self): |
|
116 | 116 | self.codeList = [] |
|
117 | 117 | self.azimuthList = [] |
|
118 | 118 | self.zenithList = [] |
|
119 | 119 | |
|
120 | 120 | |
|
121 | 121 | |
|
122 | 122 | class GenericData(object): |
|
123 | 123 | |
|
124 | 124 | flagNoData = True |
|
125 | 125 | |
|
126 | 126 | def copy(self, inputObj=None): |
|
127 | 127 | |
|
128 | 128 | if inputObj == None: |
|
129 | 129 | return copy.deepcopy(self) |
|
130 | 130 | |
|
131 | 131 | for key in list(inputObj.__dict__.keys()): |
|
132 | 132 | |
|
133 | 133 | attribute = inputObj.__dict__[key] |
|
134 | 134 | |
|
135 | 135 | # If this attribute is a tuple or list |
|
136 | 136 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
137 | 137 | self.__dict__[key] = attribute[:] |
|
138 | 138 | continue |
|
139 | 139 | |
|
140 | 140 | # If this attribute is another object or instance |
|
141 | 141 | if hasattr(attribute, '__dict__'): |
|
142 | 142 | self.__dict__[key] = attribute.copy() |
|
143 | 143 | continue |
|
144 | 144 | |
|
145 | 145 | self.__dict__[key] = inputObj.__dict__[key] |
|
146 | 146 | |
|
147 | 147 | def deepcopy(self): |
|
148 | 148 | |
|
149 | 149 | return copy.deepcopy(self) |
|
150 | 150 | |
|
151 | 151 | def isEmpty(self): |
|
152 | 152 | |
|
153 | 153 | return self.flagNoData |
|
154 | 154 | |
|
155 | 155 | def isReady(self): |
|
156 | 156 | |
|
157 | 157 | return not self.flagNoData |
|
158 | 158 | |
|
159 | 159 | |
|
160 | 160 | class JROData(GenericData): |
|
161 | 161 | |
|
162 | 162 | systemHeaderObj = SystemHeader() |
|
163 | 163 | radarControllerHeaderObj = RadarControllerHeader() |
|
164 | 164 | type = None |
|
165 | 165 | datatype = None # dtype but in string |
|
166 | 166 | nProfiles = None |
|
167 | 167 | heightList = None |
|
168 | 168 | channelList = None |
|
169 | 169 | flagDiscontinuousBlock = False |
|
170 | 170 | useLocalTime = False |
|
171 | 171 | utctime = None |
|
172 | 172 | timeZone = None |
|
173 | 173 | dstFlag = None |
|
174 | 174 | errorCount = None |
|
175 | 175 | blocksize = None |
|
176 | 176 | flagDecodeData = False # asumo q la data no esta decodificada |
|
177 | 177 | flagDeflipData = False # asumo q la data no esta sin flip |
|
178 | 178 | flagShiftFFT = False |
|
179 | 179 | nCohInt = None |
|
180 | 180 | windowOfFilter = 1 |
|
181 | 181 | C = 3e8 |
|
182 | 182 | frequency = 49.92e6 |
|
183 | 183 | realtime = False |
|
184 | 184 | beacon_heiIndexList = None |
|
185 | 185 | last_block = None |
|
186 | 186 | blocknow = None |
|
187 | 187 | azimuth = None |
|
188 | 188 | zenith = None |
|
189 | 189 | beam = Beam() |
|
190 | 190 | profileIndex = None |
|
191 | 191 | error = None |
|
192 | 192 | data = None |
|
193 | 193 | nmodes = None |
|
194 | 194 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
195 |
codeList = |
|
|
196 |
azimuthList = |
|
|
197 |
elevationList = |
|
|
195 | codeList = [] | |
|
196 | azimuthList = [] | |
|
197 | elevationList = [] | |
|
198 | 198 | |
|
199 | 199 | def __str__(self): |
|
200 | 200 | |
|
201 | 201 | return '{} - {}'.format(self.type, self.datatime()) |
|
202 | 202 | |
|
203 | 203 | def getNoise(self): |
|
204 | 204 | |
|
205 | 205 | raise NotImplementedError |
|
206 | 206 | |
|
207 | 207 | @property |
|
208 | 208 | def nChannels(self): |
|
209 | 209 | |
|
210 | 210 | return len(self.channelList) |
|
211 | 211 | |
|
212 | 212 | @property |
|
213 | 213 | def channelIndexList(self): |
|
214 | 214 | |
|
215 | 215 | return list(range(self.nChannels)) |
|
216 | 216 | |
|
217 | 217 | @property |
|
218 | 218 | def nHeights(self): |
|
219 | 219 | |
|
220 | 220 | return len(self.heightList) |
|
221 | 221 | |
|
222 | 222 | def getDeltaH(self): |
|
223 | 223 | |
|
224 | 224 | return self.heightList[1] - self.heightList[0] |
|
225 | 225 | |
|
226 | 226 | @property |
|
227 | 227 | def ltctime(self): |
|
228 | 228 | |
|
229 | 229 | if self.useLocalTime: |
|
230 | 230 | return self.utctime - self.timeZone * 60 |
|
231 | 231 | |
|
232 | 232 | return self.utctime |
|
233 | 233 | |
|
234 | 234 | @property |
|
235 | 235 | def datatime(self): |
|
236 | 236 | |
|
237 | 237 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
238 | 238 | return datatimeValue |
|
239 | 239 | |
|
240 | 240 | def getTimeRange(self): |
|
241 | 241 | |
|
242 | 242 | datatime = [] |
|
243 | 243 | |
|
244 | 244 | datatime.append(self.ltctime) |
|
245 | 245 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
246 | 246 | |
|
247 | 247 | datatime = numpy.array(datatime) |
|
248 | 248 | |
|
249 | 249 | return datatime |
|
250 | 250 | |
|
251 | 251 | def getFmaxTimeResponse(self): |
|
252 | 252 | |
|
253 | 253 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
254 | 254 | |
|
255 | 255 | PRF = 1. / (period * self.nCohInt) |
|
256 | 256 | |
|
257 | 257 | fmax = PRF |
|
258 | 258 | |
|
259 | 259 | return fmax |
|
260 | 260 | |
|
261 | 261 | def getFmax(self): |
|
262 | 262 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
263 | 263 | |
|
264 | 264 | fmax = PRF |
|
265 | 265 | return fmax |
|
266 | 266 | |
|
267 | 267 | def getVmax(self): |
|
268 | 268 | |
|
269 | 269 | _lambda = self.C / self.frequency |
|
270 | 270 | |
|
271 | 271 | vmax = self.getFmax() * _lambda / 2 |
|
272 | 272 | |
|
273 | 273 | return vmax |
|
274 | 274 | |
|
275 | 275 | @property |
|
276 | 276 | def ippSeconds(self): |
|
277 | 277 | ''' |
|
278 | 278 | ''' |
|
279 | 279 | return self.radarControllerHeaderObj.ippSeconds |
|
280 | 280 | |
|
281 | 281 | @ippSeconds.setter |
|
282 | 282 | def ippSeconds(self, ippSeconds): |
|
283 | 283 | ''' |
|
284 | 284 | ''' |
|
285 | 285 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
286 | 286 | |
|
287 | 287 | @property |
|
288 | 288 | def code(self): |
|
289 | 289 | ''' |
|
290 | 290 | ''' |
|
291 | 291 | return self.radarControllerHeaderObj.code |
|
292 | 292 | |
|
293 | 293 | @code.setter |
|
294 | 294 | def code(self, code): |
|
295 | 295 | ''' |
|
296 | 296 | ''' |
|
297 | 297 | self.radarControllerHeaderObj.code = code |
|
298 | 298 | |
|
299 | 299 | @property |
|
300 | 300 | def nCode(self): |
|
301 | 301 | ''' |
|
302 | 302 | ''' |
|
303 | 303 | return self.radarControllerHeaderObj.nCode |
|
304 | 304 | |
|
305 | 305 | @nCode.setter |
|
306 | 306 | def nCode(self, ncode): |
|
307 | 307 | ''' |
|
308 | 308 | ''' |
|
309 | 309 | self.radarControllerHeaderObj.nCode = ncode |
|
310 | 310 | |
|
311 | 311 | @property |
|
312 | 312 | def nBaud(self): |
|
313 | 313 | ''' |
|
314 | 314 | ''' |
|
315 | 315 | return self.radarControllerHeaderObj.nBaud |
|
316 | 316 | |
|
317 | 317 | @nBaud.setter |
|
318 | 318 | def nBaud(self, nbaud): |
|
319 | 319 | ''' |
|
320 | 320 | ''' |
|
321 | 321 | self.radarControllerHeaderObj.nBaud = nbaud |
|
322 | 322 | |
|
323 | 323 | @property |
|
324 | 324 | def ipp(self): |
|
325 | 325 | ''' |
|
326 | 326 | ''' |
|
327 | 327 | return self.radarControllerHeaderObj.ipp |
|
328 | 328 | |
|
329 | 329 | @ipp.setter |
|
330 | 330 | def ipp(self, ipp): |
|
331 | 331 | ''' |
|
332 | 332 | ''' |
|
333 | 333 | self.radarControllerHeaderObj.ipp = ipp |
|
334 | 334 | |
|
335 | 335 | @property |
|
336 | 336 | def metadata(self): |
|
337 | 337 | ''' |
|
338 | 338 | ''' |
|
339 | 339 | |
|
340 | 340 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
341 | 341 | |
|
342 | 342 | |
|
343 | 343 | class Voltage(JROData): |
|
344 | 344 | |
|
345 | 345 | dataPP_POW = None |
|
346 | 346 | dataPP_DOP = None |
|
347 | 347 | dataPP_WIDTH = None |
|
348 | 348 | dataPP_SNR = None |
|
349 | 349 | |
|
350 | 350 | def __init__(self): |
|
351 | 351 | ''' |
|
352 | 352 | Constructor |
|
353 | 353 | ''' |
|
354 | 354 | |
|
355 | 355 | self.useLocalTime = True |
|
356 | 356 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
357 | 357 | self.systemHeaderObj = SystemHeader() |
|
358 | 358 | self.type = "Voltage" |
|
359 | 359 | self.data = None |
|
360 | 360 | self.nProfiles = None |
|
361 | 361 | self.heightList = None |
|
362 | 362 | self.channelList = None |
|
363 | 363 | self.flagNoData = True |
|
364 | 364 | self.flagDiscontinuousBlock = False |
|
365 | 365 | self.utctime = None |
|
366 | 366 | self.timeZone = 0 |
|
367 | 367 | self.dstFlag = None |
|
368 | 368 | self.errorCount = None |
|
369 | 369 | self.nCohInt = None |
|
370 | 370 | self.blocksize = None |
|
371 | 371 | self.flagCohInt = False |
|
372 | 372 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
373 | 373 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
374 | 374 | self.flagShiftFFT = False |
|
375 | 375 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
376 | 376 | self.profileIndex = 0 |
|
377 | 377 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
378 | 378 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
379 | 379 | |
|
380 | 380 | def getNoisebyHildebrand(self, channel=None): |
|
381 | 381 | """ |
|
382 | 382 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
383 | 383 | |
|
384 | 384 | Return: |
|
385 | 385 | noiselevel |
|
386 | 386 | """ |
|
387 | 387 | |
|
388 | 388 | if channel != None: |
|
389 | 389 | data = self.data[channel] |
|
390 | 390 | nChannels = 1 |
|
391 | 391 | else: |
|
392 | 392 | data = self.data |
|
393 | 393 | nChannels = self.nChannels |
|
394 | 394 | |
|
395 | 395 | noise = numpy.zeros(nChannels) |
|
396 | 396 | power = data * numpy.conjugate(data) |
|
397 | 397 | |
|
398 | 398 | for thisChannel in range(nChannels): |
|
399 | 399 | if nChannels == 1: |
|
400 | 400 | daux = power[:].real |
|
401 | 401 | else: |
|
402 | 402 | daux = power[thisChannel, :].real |
|
403 | 403 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
404 | 404 | |
|
405 | 405 | return noise |
|
406 | 406 | |
|
407 | 407 | def getNoise(self, type=1, channel=None): |
|
408 | 408 | |
|
409 | 409 | if type == 1: |
|
410 | 410 | noise = self.getNoisebyHildebrand(channel) |
|
411 | 411 | |
|
412 | 412 | return noise |
|
413 | 413 | |
|
414 | 414 | def getPower(self, channel=None): |
|
415 | 415 | |
|
416 | 416 | if channel != None: |
|
417 | 417 | data = self.data[channel] |
|
418 | 418 | else: |
|
419 | 419 | data = self.data |
|
420 | 420 | |
|
421 | 421 | power = data * numpy.conjugate(data) |
|
422 | 422 | powerdB = 10 * numpy.log10(power.real) |
|
423 | 423 | powerdB = numpy.squeeze(powerdB) |
|
424 | 424 | |
|
425 | 425 | return powerdB |
|
426 | 426 | |
|
427 | 427 | @property |
|
428 | 428 | def timeInterval(self): |
|
429 | 429 | |
|
430 | 430 | return self.ippSeconds * self.nCohInt |
|
431 | 431 | |
|
432 | 432 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
433 | 433 | |
|
434 | 434 | |
|
435 | 435 | class Spectra(JROData): |
|
436 | 436 | |
|
437 | 437 | def __init__(self): |
|
438 | 438 | ''' |
|
439 | 439 | Constructor |
|
440 | 440 | ''' |
|
441 | 441 | |
|
442 | 442 | self.data_dc = None |
|
443 | 443 | self.data_spc = None |
|
444 | 444 | self.data_cspc = None |
|
445 | 445 | self.useLocalTime = True |
|
446 | 446 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
447 | 447 | self.systemHeaderObj = SystemHeader() |
|
448 | 448 | self.type = "Spectra" |
|
449 | 449 | self.timeZone = 0 |
|
450 | 450 | self.nProfiles = None |
|
451 | 451 | self.heightList = None |
|
452 | 452 | self.channelList = None |
|
453 | 453 | self.pairsList = None |
|
454 | 454 | self.flagNoData = True |
|
455 | 455 | self.flagDiscontinuousBlock = False |
|
456 | 456 | self.utctime = None |
|
457 | 457 | self.nCohInt = None |
|
458 | 458 | self.nIncohInt = None |
|
459 | 459 | self.blocksize = None |
|
460 | 460 | self.nFFTPoints = None |
|
461 | 461 | self.wavelength = None |
|
462 | 462 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
463 | 463 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
464 | 464 | self.flagShiftFFT = False |
|
465 | 465 | self.ippFactor = 1 |
|
466 | 466 | self.beacon_heiIndexList = [] |
|
467 | 467 | self.noise_estimation = None |
|
468 | 468 | self.codeList = [] |
|
469 | 469 | self.azimuthList = [] |
|
470 | 470 | self.elevationList = [] |
|
471 | 471 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
472 | 472 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] |
|
473 | 473 | |
|
474 | 474 | |
|
475 | 475 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
476 | 476 | """ |
|
477 | 477 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
478 | 478 | |
|
479 | 479 | Return: |
|
480 | 480 | noiselevel |
|
481 | 481 | """ |
|
482 | 482 | |
|
483 | 483 | noise = numpy.zeros(self.nChannels) |
|
484 | 484 | for channel in range(self.nChannels): |
|
485 | 485 | daux = self.data_spc[channel, |
|
486 | 486 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
487 | 487 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
488 | 488 | |
|
489 | 489 | return noise |
|
490 | 490 | |
|
491 | 491 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
492 | 492 | |
|
493 | 493 | if self.noise_estimation is not None: |
|
494 | 494 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
495 | 495 | return self.noise_estimation |
|
496 | 496 | else: |
|
497 | 497 | noise = self.getNoisebyHildebrand( |
|
498 | 498 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
499 | 499 | return noise |
|
500 | 500 | |
|
501 | 501 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
502 | 502 | |
|
503 | 503 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
504 | 504 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
505 | 505 | |
|
506 | 506 | return freqrange |
|
507 | 507 | |
|
508 | 508 | def getAcfRange(self, extrapoints=0): |
|
509 | 509 | |
|
510 | 510 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
511 | 511 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
512 | 512 | |
|
513 | 513 | return freqrange |
|
514 | 514 | |
|
515 | 515 | def getFreqRange(self, extrapoints=0): |
|
516 | 516 | |
|
517 | 517 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
518 | 518 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
519 | 519 | |
|
520 | 520 | return freqrange |
|
521 | 521 | |
|
522 | 522 | def getVelRange(self, extrapoints=0): |
|
523 | 523 | |
|
524 | 524 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
525 | 525 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
526 | 526 | |
|
527 | 527 | if self.nmodes: |
|
528 | 528 | return velrange/self.nmodes |
|
529 | 529 | else: |
|
530 | 530 | return velrange |
|
531 | 531 | |
|
532 | 532 | @property |
|
533 | 533 | def nPairs(self): |
|
534 | 534 | |
|
535 | 535 | return len(self.pairsList) |
|
536 | 536 | |
|
537 | 537 | @property |
|
538 | 538 | def pairsIndexList(self): |
|
539 | 539 | |
|
540 | 540 | return list(range(self.nPairs)) |
|
541 | 541 | |
|
542 | 542 | @property |
|
543 | 543 | def normFactor(self): |
|
544 | 544 | |
|
545 | 545 | pwcode = 1 |
|
546 | 546 | |
|
547 | 547 | if self.flagDecodeData: |
|
548 | 548 | pwcode = numpy.sum(self.code[0]**2) |
|
549 | 549 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
550 | 550 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
551 | 551 | |
|
552 | 552 | return normFactor |
|
553 | 553 | |
|
554 | 554 | @property |
|
555 | 555 | def flag_cspc(self): |
|
556 | 556 | |
|
557 | 557 | if self.data_cspc is None: |
|
558 | 558 | return True |
|
559 | 559 | |
|
560 | 560 | return False |
|
561 | 561 | |
|
562 | 562 | @property |
|
563 | 563 | def flag_dc(self): |
|
564 | 564 | |
|
565 | 565 | if self.data_dc is None: |
|
566 | 566 | return True |
|
567 | 567 | |
|
568 | 568 | return False |
|
569 | 569 | |
|
570 | 570 | @property |
|
571 | 571 | def timeInterval(self): |
|
572 | 572 | |
|
573 | 573 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
574 | 574 | if self.nmodes: |
|
575 | 575 | return self.nmodes*timeInterval |
|
576 | 576 | else: |
|
577 | 577 | return timeInterval |
|
578 | 578 | |
|
579 | 579 | def getPower(self): |
|
580 | 580 | |
|
581 | 581 | factor = self.normFactor |
|
582 | 582 | z = self.data_spc / factor |
|
583 | 583 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
584 | 584 | avg = numpy.average(z, axis=1) |
|
585 | 585 | |
|
586 | 586 | return 10 * numpy.log10(avg) |
|
587 | 587 | |
|
588 | 588 | def getCoherence(self, pairsList=None, phase=False): |
|
589 | 589 | |
|
590 | 590 | z = [] |
|
591 | 591 | if pairsList is None: |
|
592 | 592 | pairsIndexList = self.pairsIndexList |
|
593 | 593 | else: |
|
594 | 594 | pairsIndexList = [] |
|
595 | 595 | for pair in pairsList: |
|
596 | 596 | if pair not in self.pairsList: |
|
597 | 597 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
598 | 598 | pair)) |
|
599 | 599 | pairsIndexList.append(self.pairsList.index(pair)) |
|
600 | 600 | for i in range(len(pairsIndexList)): |
|
601 | 601 | pair = self.pairsList[pairsIndexList[i]] |
|
602 | 602 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
603 | 603 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
604 | 604 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
605 | 605 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
606 | 606 | if phase: |
|
607 | 607 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
608 | 608 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
609 | 609 | else: |
|
610 | 610 | data = numpy.abs(avgcoherenceComplex) |
|
611 | 611 | |
|
612 | 612 | z.append(data) |
|
613 | 613 | |
|
614 | 614 | return numpy.array(z) |
|
615 | 615 | |
|
616 | 616 | def setValue(self, value): |
|
617 | 617 | |
|
618 | 618 | print("This property should not be initialized") |
|
619 | 619 | |
|
620 | 620 | return |
|
621 | 621 | |
|
622 | 622 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
623 | 623 | |
|
624 | 624 | |
|
625 | 625 | class SpectraHeis(Spectra): |
|
626 | 626 | |
|
627 | 627 | def __init__(self): |
|
628 | 628 | |
|
629 | 629 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
630 | 630 | self.systemHeaderObj = SystemHeader() |
|
631 | 631 | self.type = "SpectraHeis" |
|
632 | 632 | self.nProfiles = None |
|
633 | 633 | self.heightList = None |
|
634 | 634 | self.channelList = None |
|
635 | 635 | self.flagNoData = True |
|
636 | 636 | self.flagDiscontinuousBlock = False |
|
637 | 637 | self.utctime = None |
|
638 | 638 | self.blocksize = None |
|
639 | 639 | self.profileIndex = 0 |
|
640 | 640 | self.nCohInt = 1 |
|
641 | 641 | self.nIncohInt = 1 |
|
642 | 642 | |
|
643 | 643 | @property |
|
644 | 644 | def normFactor(self): |
|
645 | 645 | pwcode = 1 |
|
646 | 646 | if self.flagDecodeData: |
|
647 | 647 | pwcode = numpy.sum(self.code[0]**2) |
|
648 | 648 | |
|
649 | 649 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
650 | 650 | |
|
651 | 651 | return normFactor |
|
652 | 652 | |
|
653 | 653 | @property |
|
654 | 654 | def timeInterval(self): |
|
655 | 655 | |
|
656 | 656 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
657 | 657 | |
|
658 | 658 | |
|
659 | 659 | class Fits(JROData): |
|
660 | 660 | |
|
661 | 661 | def __init__(self): |
|
662 | 662 | |
|
663 | 663 | self.type = "Fits" |
|
664 | 664 | self.nProfiles = None |
|
665 | 665 | self.heightList = None |
|
666 | 666 | self.channelList = None |
|
667 | 667 | self.flagNoData = True |
|
668 | 668 | self.utctime = None |
|
669 | 669 | self.nCohInt = 1 |
|
670 | 670 | self.nIncohInt = 1 |
|
671 | 671 | self.useLocalTime = True |
|
672 | 672 | self.profileIndex = 0 |
|
673 | 673 | self.timeZone = 0 |
|
674 | 674 | |
|
675 | 675 | def getTimeRange(self): |
|
676 | 676 | |
|
677 | 677 | datatime = [] |
|
678 | 678 | |
|
679 | 679 | datatime.append(self.ltctime) |
|
680 | 680 | datatime.append(self.ltctime + self.timeInterval) |
|
681 | 681 | |
|
682 | 682 | datatime = numpy.array(datatime) |
|
683 | 683 | |
|
684 | 684 | return datatime |
|
685 | 685 | |
|
686 | 686 | def getChannelIndexList(self): |
|
687 | 687 | |
|
688 | 688 | return list(range(self.nChannels)) |
|
689 | 689 | |
|
690 | 690 | def getNoise(self, type=1): |
|
691 | 691 | |
|
692 | 692 | |
|
693 | 693 | if type == 1: |
|
694 | 694 | noise = self.getNoisebyHildebrand() |
|
695 | 695 | |
|
696 | 696 | if type == 2: |
|
697 | 697 | noise = self.getNoisebySort() |
|
698 | 698 | |
|
699 | 699 | if type == 3: |
|
700 | 700 | noise = self.getNoisebyWindow() |
|
701 | 701 | |
|
702 | 702 | return noise |
|
703 | 703 | |
|
704 | 704 | @property |
|
705 | 705 | def timeInterval(self): |
|
706 | 706 | |
|
707 | 707 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
708 | 708 | |
|
709 | 709 | return timeInterval |
|
710 | 710 | |
|
711 | 711 | @property |
|
712 | 712 | def ippSeconds(self): |
|
713 | 713 | ''' |
|
714 | 714 | ''' |
|
715 | 715 | return self.ipp_sec |
|
716 | 716 | |
|
717 | 717 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
718 | 718 | |
|
719 | 719 | |
|
720 | 720 | class Correlation(JROData): |
|
721 | 721 | |
|
722 | 722 | def __init__(self): |
|
723 | 723 | ''' |
|
724 | 724 | Constructor |
|
725 | 725 | ''' |
|
726 | 726 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
727 | 727 | self.systemHeaderObj = SystemHeader() |
|
728 | 728 | self.type = "Correlation" |
|
729 | 729 | self.data = None |
|
730 | 730 | self.dtype = None |
|
731 | 731 | self.nProfiles = None |
|
732 | 732 | self.heightList = None |
|
733 | 733 | self.channelList = None |
|
734 | 734 | self.flagNoData = True |
|
735 | 735 | self.flagDiscontinuousBlock = False |
|
736 | 736 | self.utctime = None |
|
737 | 737 | self.timeZone = 0 |
|
738 | 738 | self.dstFlag = None |
|
739 | 739 | self.errorCount = None |
|
740 | 740 | self.blocksize = None |
|
741 | 741 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
742 | 742 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
743 | 743 | self.pairsList = None |
|
744 | 744 | self.nPoints = None |
|
745 | 745 | |
|
746 | 746 | def getPairsList(self): |
|
747 | 747 | |
|
748 | 748 | return self.pairsList |
|
749 | 749 | |
|
750 | 750 | def getNoise(self, mode=2): |
|
751 | 751 | |
|
752 | 752 | indR = numpy.where(self.lagR == 0)[0][0] |
|
753 | 753 | indT = numpy.where(self.lagT == 0)[0][0] |
|
754 | 754 | |
|
755 | 755 | jspectra0 = self.data_corr[:, :, indR, :] |
|
756 | 756 | jspectra = copy.copy(jspectra0) |
|
757 | 757 | |
|
758 | 758 | num_chan = jspectra.shape[0] |
|
759 | 759 | num_hei = jspectra.shape[2] |
|
760 | 760 | |
|
761 | 761 | freq_dc = jspectra.shape[1] / 2 |
|
762 | 762 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
763 | 763 | |
|
764 | 764 | if ind_vel[0] < 0: |
|
765 | 765 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
766 | 766 | range(0, 1))] + self.num_prof |
|
767 | 767 | |
|
768 | 768 | if mode == 1: |
|
769 | 769 | jspectra[:, freq_dc, :] = ( |
|
770 | 770 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
771 | 771 | |
|
772 | 772 | if mode == 2: |
|
773 | 773 | |
|
774 | 774 | vel = numpy.array([-2, -1, 1, 2]) |
|
775 | 775 | xx = numpy.zeros([4, 4]) |
|
776 | 776 | |
|
777 | 777 | for fil in range(4): |
|
778 | 778 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
779 | 779 | |
|
780 | 780 | xx_inv = numpy.linalg.inv(xx) |
|
781 | 781 | xx_aux = xx_inv[0, :] |
|
782 | 782 | |
|
783 | 783 | for ich in range(num_chan): |
|
784 | 784 | yy = jspectra[ich, ind_vel, :] |
|
785 | 785 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
786 | 786 | |
|
787 | 787 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
788 | 788 | cjunkid = sum(junkid) |
|
789 | 789 | |
|
790 | 790 | if cjunkid.any(): |
|
791 | 791 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
792 | 792 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
793 | 793 | |
|
794 | 794 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
795 | 795 | |
|
796 | 796 | return noise |
|
797 | 797 | |
|
798 | 798 | @property |
|
799 | 799 | def timeInterval(self): |
|
800 | 800 | |
|
801 | 801 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
802 | 802 | |
|
803 | 803 | def splitFunctions(self): |
|
804 | 804 | |
|
805 | 805 | pairsList = self.pairsList |
|
806 | 806 | ccf_pairs = [] |
|
807 | 807 | acf_pairs = [] |
|
808 | 808 | ccf_ind = [] |
|
809 | 809 | acf_ind = [] |
|
810 | 810 | for l in range(len(pairsList)): |
|
811 | 811 | chan0 = pairsList[l][0] |
|
812 | 812 | chan1 = pairsList[l][1] |
|
813 | 813 | |
|
814 | 814 | # Obteniendo pares de Autocorrelacion |
|
815 | 815 | if chan0 == chan1: |
|
816 | 816 | acf_pairs.append(chan0) |
|
817 | 817 | acf_ind.append(l) |
|
818 | 818 | else: |
|
819 | 819 | ccf_pairs.append(pairsList[l]) |
|
820 | 820 | ccf_ind.append(l) |
|
821 | 821 | |
|
822 | 822 | data_acf = self.data_cf[acf_ind] |
|
823 | 823 | data_ccf = self.data_cf[ccf_ind] |
|
824 | 824 | |
|
825 | 825 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
826 | 826 | |
|
827 | 827 | @property |
|
828 | 828 | def normFactor(self): |
|
829 | 829 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
830 | 830 | acf_pairs = numpy.array(acf_pairs) |
|
831 | 831 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
832 | 832 | |
|
833 | 833 | for p in range(self.nPairs): |
|
834 | 834 | pair = self.pairsList[p] |
|
835 | 835 | |
|
836 | 836 | ch0 = pair[0] |
|
837 | 837 | ch1 = pair[1] |
|
838 | 838 | |
|
839 | 839 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
840 | 840 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
841 | 841 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
842 | 842 | |
|
843 | 843 | return normFactor |
|
844 | 844 | |
|
845 | 845 | |
|
846 | 846 | class Parameters(Spectra): |
|
847 | 847 | |
|
848 | 848 | groupList = None # List of Pairs, Groups, etc |
|
849 | 849 | data_param = None # Parameters obtained |
|
850 | 850 | data_pre = None # Data Pre Parametrization |
|
851 | 851 | data_SNR = None # Signal to Noise Ratio |
|
852 | 852 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
853 | 853 | utctimeInit = None # Initial UTC time |
|
854 | 854 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
855 | 855 | useLocalTime = True |
|
856 | 856 | # Fitting |
|
857 | 857 | data_error = None # Error of the estimation |
|
858 | 858 | constants = None |
|
859 | 859 | library = None |
|
860 | 860 | # Output signal |
|
861 | 861 | outputInterval = None # Time interval to calculate output signal in seconds |
|
862 | 862 | data_output = None # Out signal |
|
863 | 863 | nAvg = None |
|
864 | 864 | noise_estimation = None |
|
865 | 865 | GauSPC = None # Fit gaussian SPC |
|
866 | 866 | |
|
867 | 867 | def __init__(self): |
|
868 | 868 | ''' |
|
869 | 869 | Constructor |
|
870 | 870 | ''' |
|
871 | 871 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
872 | 872 | self.systemHeaderObj = SystemHeader() |
|
873 | 873 | self.type = "Parameters" |
|
874 | 874 | self.timeZone = 0 |
|
875 | 875 | |
|
876 | 876 | def getTimeRange1(self, interval): |
|
877 | 877 | |
|
878 | 878 | datatime = [] |
|
879 | 879 | |
|
880 | 880 | if self.useLocalTime: |
|
881 | 881 | time1 = self.utctimeInit - self.timeZone * 60 |
|
882 | 882 | else: |
|
883 | 883 | time1 = self.utctimeInit |
|
884 | 884 | |
|
885 | 885 | datatime.append(time1) |
|
886 | 886 | datatime.append(time1 + interval) |
|
887 | 887 | datatime = numpy.array(datatime) |
|
888 | 888 | |
|
889 | 889 | return datatime |
|
890 | 890 | |
|
891 | 891 | @property |
|
892 | 892 | def timeInterval(self): |
|
893 | 893 | |
|
894 | 894 | if hasattr(self, 'timeInterval1'): |
|
895 | 895 | return self.timeInterval1 |
|
896 | 896 | else: |
|
897 | 897 | return self.paramInterval |
|
898 | 898 | |
|
899 | 899 | def setValue(self, value): |
|
900 | 900 | |
|
901 | 901 | print("This property should not be initialized") |
|
902 | 902 | |
|
903 | 903 | return |
|
904 | 904 | |
|
905 | 905 | def getNoise(self): |
|
906 | 906 | |
|
907 | 907 | return self.spc_noise |
|
908 | 908 | |
|
909 | 909 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
910 | 910 | |
|
911 | 911 | |
|
912 | 912 | class PlotterData(object): |
|
913 | 913 | ''' |
|
914 | 914 | Object to hold data to be plotted |
|
915 | 915 | ''' |
|
916 | 916 | |
|
917 | 917 | MAXNUMX = 200 |
|
918 | 918 | MAXNUMY = 200 |
|
919 | 919 | |
|
920 | 920 | def __init__(self, code, exp_code, localtime=True): |
|
921 | 921 | |
|
922 | 922 | self.key = code |
|
923 | 923 | self.exp_code = exp_code |
|
924 | 924 | self.ready = False |
|
925 | 925 | self.flagNoData = False |
|
926 | 926 | self.localtime = localtime |
|
927 | 927 | self.data = {} |
|
928 | 928 | self.meta = {} |
|
929 | 929 | self.__heights = [] |
|
930 | 930 | |
|
931 | 931 | def __str__(self): |
|
932 | 932 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
933 | 933 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
934 | 934 | |
|
935 | 935 | def __len__(self): |
|
936 | 936 | return len(self.data) |
|
937 | 937 | |
|
938 | 938 | def __getitem__(self, key): |
|
939 | 939 | if isinstance(key, int): |
|
940 | 940 | return self.data[self.times[key]] |
|
941 | 941 | elif isinstance(key, str): |
|
942 | 942 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
943 | 943 | if ret.ndim > 1: |
|
944 | 944 | ret = numpy.swapaxes(ret, 0, 1) |
|
945 | 945 | return ret |
|
946 | 946 | |
|
947 | 947 | def __contains__(self, key): |
|
948 | 948 | return key in self.data[self.min_time] |
|
949 | 949 | |
|
950 | 950 | def setup(self): |
|
951 | 951 | ''' |
|
952 | 952 | Configure object |
|
953 | 953 | ''' |
|
954 | 954 | self.type = '' |
|
955 | 955 | self.ready = False |
|
956 | 956 | del self.data |
|
957 | 957 | self.data = {} |
|
958 | 958 | self.__heights = [] |
|
959 | 959 | self.__all_heights = set() |
|
960 | 960 | |
|
961 | 961 | def shape(self, key): |
|
962 | 962 | ''' |
|
963 | 963 | Get the shape of the one-element data for the given key |
|
964 | 964 | ''' |
|
965 | 965 | |
|
966 | 966 | if len(self.data[self.min_time][key]): |
|
967 | 967 | return self.data[self.min_time][key].shape |
|
968 | 968 | return (0,) |
|
969 | 969 | |
|
970 | 970 | def update(self, data, tm, meta={}): |
|
971 | 971 | ''' |
|
972 | 972 | Update data object with new dataOut |
|
973 | 973 | ''' |
|
974 | 974 | |
|
975 | 975 | self.data[tm] = data |
|
976 | 976 | |
|
977 | 977 | for key, value in meta.items(): |
|
978 | 978 | setattr(self, key, value) |
|
979 | 979 | |
|
980 | 980 | def normalize_heights(self): |
|
981 | 981 | ''' |
|
982 | 982 | Ensure same-dimension of the data for different heighList |
|
983 | 983 | ''' |
|
984 | 984 | |
|
985 | 985 | H = numpy.array(list(self.__all_heights)) |
|
986 | 986 | H.sort() |
|
987 | 987 | for key in self.data: |
|
988 | 988 | shape = self.shape(key)[:-1] + H.shape |
|
989 | 989 | for tm, obj in list(self.data[key].items()): |
|
990 | 990 | h = self.__heights[self.times.tolist().index(tm)] |
|
991 | 991 | if H.size == h.size: |
|
992 | 992 | continue |
|
993 | 993 | index = numpy.where(numpy.in1d(H, h))[0] |
|
994 | 994 | dummy = numpy.zeros(shape) + numpy.nan |
|
995 | 995 | if len(shape) == 2: |
|
996 | 996 | dummy[:, index] = obj |
|
997 | 997 | else: |
|
998 | 998 | dummy[index] = obj |
|
999 | 999 | self.data[key][tm] = dummy |
|
1000 | 1000 | |
|
1001 | 1001 | self.__heights = [H for tm in self.times] |
|
1002 | 1002 | |
|
1003 | 1003 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
1004 | 1004 | ''' |
|
1005 | 1005 | Convert data to json |
|
1006 | 1006 | ''' |
|
1007 | 1007 | |
|
1008 | 1008 | meta = {} |
|
1009 | 1009 | meta['xrange'] = [] |
|
1010 | 1010 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 |
|
1011 | 1011 | tmp = self.data[tm][self.key] |
|
1012 | 1012 | shape = tmp.shape |
|
1013 | 1013 | if len(shape) == 2: |
|
1014 | 1014 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1015 | 1015 | elif len(shape) == 3: |
|
1016 | 1016 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 |
|
1017 | 1017 | data = self.roundFloats( |
|
1018 | 1018 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1019 | 1019 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1020 | 1020 | else: |
|
1021 | 1021 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1022 | 1022 | |
|
1023 | 1023 | ret = { |
|
1024 | 1024 | 'plot': plot_name, |
|
1025 | 1025 | 'code': self.exp_code, |
|
1026 | 1026 | 'time': float(tm), |
|
1027 | 1027 | 'data': data, |
|
1028 | 1028 | } |
|
1029 | 1029 | meta['type'] = plot_type |
|
1030 | 1030 | meta['interval'] = float(self.interval) |
|
1031 | 1031 | meta['localtime'] = self.localtime |
|
1032 | 1032 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1033 | 1033 | meta.update(self.meta) |
|
1034 | 1034 | ret['metadata'] = meta |
|
1035 | 1035 | return json.dumps(ret) |
|
1036 | 1036 | |
|
1037 | 1037 | @property |
|
1038 | 1038 | def times(self): |
|
1039 | 1039 | ''' |
|
1040 | 1040 | Return the list of times of the current data |
|
1041 | 1041 | ''' |
|
1042 | 1042 | |
|
1043 | 1043 | ret = [t for t in self.data] |
|
1044 | 1044 | ret.sort() |
|
1045 | 1045 | return numpy.array(ret) |
|
1046 | 1046 | |
|
1047 | 1047 | @property |
|
1048 | 1048 | def min_time(self): |
|
1049 | 1049 | ''' |
|
1050 | 1050 | Return the minimun time value |
|
1051 | 1051 | ''' |
|
1052 | 1052 | |
|
1053 | 1053 | return self.times[0] |
|
1054 | 1054 | |
|
1055 | 1055 | @property |
|
1056 | 1056 | def max_time(self): |
|
1057 | 1057 | ''' |
|
1058 | 1058 | Return the maximun time value |
|
1059 | 1059 | ''' |
|
1060 | 1060 | |
|
1061 | 1061 | return self.times[-1] |
|
1062 | 1062 | |
|
1063 | 1063 | # @property |
|
1064 | 1064 | # def heights(self): |
|
1065 | 1065 | # ''' |
|
1066 | 1066 | # Return the list of heights of the current data |
|
1067 | 1067 | # ''' |
|
1068 | 1068 | |
|
1069 | 1069 | # return numpy.array(self.__heights[-1]) |
|
1070 | 1070 | |
|
1071 | 1071 | @staticmethod |
|
1072 | 1072 | def roundFloats(obj): |
|
1073 | 1073 | if isinstance(obj, list): |
|
1074 | 1074 | return list(map(PlotterData.roundFloats, obj)) |
|
1075 | 1075 | elif isinstance(obj, float): |
|
1076 | 1076 | return round(obj, 2) |
@@ -1,359 +1,362 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | 6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot |
|
7 | 7 | from schainpy.utils import log |
|
8 | 8 | |
|
9 | 9 | EARTH_RADIUS = 6.3710e3 |
|
10 | 10 | |
|
11 | 11 | |
|
12 | 12 | def ll2xy(lat1, lon1, lat2, lon2): |
|
13 | 13 | |
|
14 | 14 | p = 0.017453292519943295 |
|
15 | 15 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
16 | 16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
17 | 17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
18 | 18 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
19 | 19 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
20 | 20 | theta = -theta + numpy.pi/2 |
|
21 | 21 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def km2deg(km): |
|
25 | 25 | ''' |
|
26 | 26 | Convert distance in km to degrees |
|
27 | 27 | ''' |
|
28 | 28 | |
|
29 | 29 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
30 | 30 | |
|
31 | 31 | |
|
32 | 32 | |
|
33 | 33 | class SpectralMomentsPlot(SpectraPlot): |
|
34 | 34 | ''' |
|
35 | 35 | Plot for Spectral Moments |
|
36 | 36 | ''' |
|
37 | 37 | CODE = 'spc_moments' |
|
38 | 38 | colormap = 'jet' |
|
39 | 39 | plot_type = 'pcolor' |
|
40 | 40 | |
|
41 | 41 | |
|
42 | 42 | class SnrPlot(RTIPlot): |
|
43 | 43 | ''' |
|
44 | 44 | Plot for SNR Data |
|
45 | 45 | ''' |
|
46 | 46 | |
|
47 | 47 | CODE = 'snr' |
|
48 | 48 | colormap = 'jet' |
|
49 | 49 | |
|
50 | 50 | def update(self, dataOut): |
|
51 | 51 | if len(self.channelList) == 0: |
|
52 | 52 | self.update_list(dataOut) |
|
53 | 53 | |
|
54 | 54 | meta = {} |
|
55 | 55 | data = { |
|
56 | 56 | 'snr': 10 * numpy.log10(dataOut.data_snr) |
|
57 | 57 | } |
|
58 | 58 | #print(data['snr']) |
|
59 | 59 | return data, meta |
|
60 | 60 | |
|
61 | 61 | class DopplerPlot(RTIPlot): |
|
62 | 62 | ''' |
|
63 | 63 | Plot for DOPPLER Data (1st moment) |
|
64 | 64 | ''' |
|
65 | 65 | |
|
66 | 66 | CODE = 'dop' |
|
67 | 67 | colormap = 'jet' |
|
68 | 68 | |
|
69 | 69 | def update(self, dataOut): |
|
70 | 70 | self.update_list(dataOut) |
|
71 | 71 | data = { |
|
72 | 72 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
73 | 73 | } |
|
74 | 74 | |
|
75 | 75 | return data, {} |
|
76 | 76 | |
|
77 | 77 | class PowerPlot(RTIPlot): |
|
78 | 78 | ''' |
|
79 | 79 | Plot for Power Data (0 moment) |
|
80 | 80 | ''' |
|
81 | 81 | |
|
82 | 82 | CODE = 'pow' |
|
83 | 83 | colormap = 'jet' |
|
84 | 84 | |
|
85 | 85 | def update(self, dataOut): |
|
86 | 86 | self.update_list(dataOut) |
|
87 | 87 | data = { |
|
88 | 88 | 'pow': 10*numpy.log10(dataOut.data_pow) |
|
89 | 89 | } |
|
90 | try: | |
|
90 | 91 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
92 | except: | |
|
93 | pass | |
|
91 | 94 | return data, {} |
|
92 | 95 | |
|
93 | 96 | class SpectralWidthPlot(RTIPlot): |
|
94 | 97 | ''' |
|
95 | 98 | Plot for Spectral Width Data (2nd moment) |
|
96 | 99 | ''' |
|
97 | 100 | |
|
98 | 101 | CODE = 'width' |
|
99 | 102 | colormap = 'jet' |
|
100 | 103 | |
|
101 | 104 | def update(self, dataOut): |
|
102 | 105 | self.update_list(dataOut) |
|
103 | 106 | data = { |
|
104 | 107 | 'width': dataOut.data_width |
|
105 | 108 | } |
|
106 | 109 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
107 | 110 | return data, {} |
|
108 | 111 | |
|
109 | 112 | class SkyMapPlot(Plot): |
|
110 | 113 | ''' |
|
111 | 114 | Plot for meteors detection data |
|
112 | 115 | ''' |
|
113 | 116 | |
|
114 | 117 | CODE = 'param' |
|
115 | 118 | |
|
116 | 119 | def setup(self): |
|
117 | 120 | |
|
118 | 121 | self.ncols = 1 |
|
119 | 122 | self.nrows = 1 |
|
120 | 123 | self.width = 7.2 |
|
121 | 124 | self.height = 7.2 |
|
122 | 125 | self.nplots = 1 |
|
123 | 126 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
124 | 127 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
125 | 128 | self.polar = True |
|
126 | 129 | self.ymin = -180 |
|
127 | 130 | self.ymax = 180 |
|
128 | 131 | self.colorbar = False |
|
129 | 132 | |
|
130 | 133 | def plot(self): |
|
131 | 134 | |
|
132 | 135 | arrayParameters = numpy.concatenate(self.data['param']) |
|
133 | 136 | error = arrayParameters[:, -1] |
|
134 | 137 | indValid = numpy.where(error == 0)[0] |
|
135 | 138 | finalMeteor = arrayParameters[indValid, :] |
|
136 | 139 | finalAzimuth = finalMeteor[:, 3] |
|
137 | 140 | finalZenith = finalMeteor[:, 4] |
|
138 | 141 | |
|
139 | 142 | x = finalAzimuth * numpy.pi / 180 |
|
140 | 143 | y = finalZenith |
|
141 | 144 | |
|
142 | 145 | ax = self.axes[0] |
|
143 | 146 | |
|
144 | 147 | if ax.firsttime: |
|
145 | 148 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
146 | 149 | else: |
|
147 | 150 | ax.plot.set_data(x, y) |
|
148 | 151 | |
|
149 | 152 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
150 | 153 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
151 | 154 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
152 | 155 | dt2, |
|
153 | 156 | len(x)) |
|
154 | 157 | self.titles[0] = title |
|
155 | 158 | |
|
156 | 159 | |
|
157 | 160 | class GenericRTIPlot(Plot): |
|
158 | 161 | ''' |
|
159 | 162 | Plot for data_xxxx object |
|
160 | 163 | ''' |
|
161 | 164 | |
|
162 | 165 | CODE = 'param' |
|
163 | 166 | colormap = 'viridis' |
|
164 | 167 | plot_type = 'pcolorbuffer' |
|
165 | 168 | |
|
166 | 169 | def setup(self): |
|
167 | 170 | self.xaxis = 'time' |
|
168 | 171 | self.ncols = 1 |
|
169 | 172 | self.nrows = self.data.shape('param')[0] |
|
170 | 173 | self.nplots = self.nrows |
|
171 | 174 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
172 | 175 | |
|
173 | 176 | if not self.xlabel: |
|
174 | 177 | self.xlabel = 'Time' |
|
175 | 178 | |
|
176 | 179 | self.ylabel = 'Height [km]' |
|
177 | 180 | if not self.titles: |
|
178 | 181 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
179 | 182 | |
|
180 | 183 | def update(self, dataOut): |
|
181 | 184 | |
|
182 | 185 | data = { |
|
183 | 186 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
184 | 187 | } |
|
185 | 188 | |
|
186 | 189 | meta = {} |
|
187 | 190 | |
|
188 | 191 | return data, meta |
|
189 | 192 | |
|
190 | 193 | def plot(self): |
|
191 | 194 | # self.data.normalize_heights() |
|
192 | 195 | self.x = self.data.times |
|
193 | 196 | self.y = self.data.yrange |
|
194 | 197 | self.z = self.data['param'] |
|
195 | 198 | |
|
196 | 199 | self.z = numpy.ma.masked_invalid(self.z) |
|
197 | 200 | |
|
198 | 201 | if self.decimation is None: |
|
199 | 202 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
200 | 203 | else: |
|
201 | 204 | x, y, z = self.fill_gaps(*self.decimate()) |
|
202 | 205 | |
|
203 | 206 | for n, ax in enumerate(self.axes): |
|
204 | 207 | |
|
205 | 208 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
206 | 209 | self.z[n]) |
|
207 | 210 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
208 | 211 | self.z[n]) |
|
209 | 212 | |
|
210 | 213 | if ax.firsttime: |
|
211 | 214 | if self.zlimits is not None: |
|
212 | 215 | self.zmin, self.zmax = self.zlimits[n] |
|
213 | 216 | |
|
214 | 217 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
215 | 218 | vmin=self.zmin, |
|
216 | 219 | vmax=self.zmax, |
|
217 | 220 | cmap=self.cmaps[n] |
|
218 | 221 | ) |
|
219 | 222 | else: |
|
220 | 223 | if self.zlimits is not None: |
|
221 | 224 | self.zmin, self.zmax = self.zlimits[n] |
|
222 | 225 | ax.collections.remove(ax.collections[0]) |
|
223 | 226 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
224 | 227 | vmin=self.zmin, |
|
225 | 228 | vmax=self.zmax, |
|
226 | 229 | cmap=self.cmaps[n] |
|
227 | 230 | ) |
|
228 | 231 | |
|
229 | 232 | |
|
230 | 233 | class PolarMapPlot(Plot): |
|
231 | 234 | ''' |
|
232 | 235 | Plot for weather radar |
|
233 | 236 | ''' |
|
234 | 237 | |
|
235 | 238 | CODE = 'param' |
|
236 | 239 | colormap = 'seismic' |
|
237 | 240 | |
|
238 | 241 | def setup(self): |
|
239 | 242 | self.ncols = 1 |
|
240 | 243 | self.nrows = 1 |
|
241 | 244 | self.width = 9 |
|
242 | 245 | self.height = 8 |
|
243 | 246 | self.mode = self.data.meta['mode'] |
|
244 | 247 | if self.channels is not None: |
|
245 | 248 | self.nplots = len(self.channels) |
|
246 | 249 | self.nrows = len(self.channels) |
|
247 | 250 | else: |
|
248 | 251 | self.nplots = self.data.shape(self.CODE)[0] |
|
249 | 252 | self.nrows = self.nplots |
|
250 | 253 | self.channels = list(range(self.nplots)) |
|
251 | 254 | if self.mode == 'E': |
|
252 | 255 | self.xlabel = 'Longitude' |
|
253 | 256 | self.ylabel = 'Latitude' |
|
254 | 257 | else: |
|
255 | 258 | self.xlabel = 'Range (km)' |
|
256 | 259 | self.ylabel = 'Height (km)' |
|
257 | 260 | self.bgcolor = 'white' |
|
258 | 261 | self.cb_labels = self.data.meta['units'] |
|
259 | 262 | self.lat = self.data.meta['latitude'] |
|
260 | 263 | self.lon = self.data.meta['longitude'] |
|
261 | 264 | self.xmin, self.xmax = float( |
|
262 | 265 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
263 | 266 | self.ymin, self.ymax = float( |
|
264 | 267 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
265 | 268 | # self.polar = True |
|
266 | 269 | |
|
267 | 270 | def plot(self): |
|
268 | 271 | |
|
269 | 272 | for n, ax in enumerate(self.axes): |
|
270 | 273 | data = self.data['param'][self.channels[n]] |
|
271 | 274 | |
|
272 | 275 | zeniths = numpy.linspace( |
|
273 | 276 | 0, self.data.meta['max_range'], data.shape[1]) |
|
274 | 277 | if self.mode == 'E': |
|
275 | 278 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
276 | 279 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
277 | 280 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
278 | 281 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
279 | 282 | x = km2deg(x) + self.lon |
|
280 | 283 | y = km2deg(y) + self.lat |
|
281 | 284 | else: |
|
282 | 285 | azimuths = numpy.radians(self.data.yrange) |
|
283 | 286 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
284 | 287 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
285 | 288 | self.y = zeniths |
|
286 | 289 | |
|
287 | 290 | if ax.firsttime: |
|
288 | 291 | if self.zlimits is not None: |
|
289 | 292 | self.zmin, self.zmax = self.zlimits[n] |
|
290 | 293 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
291 | 294 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
292 | 295 | vmin=self.zmin, |
|
293 | 296 | vmax=self.zmax, |
|
294 | 297 | cmap=self.cmaps[n]) |
|
295 | 298 | else: |
|
296 | 299 | if self.zlimits is not None: |
|
297 | 300 | self.zmin, self.zmax = self.zlimits[n] |
|
298 | 301 | ax.collections.remove(ax.collections[0]) |
|
299 | 302 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
300 | 303 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
301 | 304 | vmin=self.zmin, |
|
302 | 305 | vmax=self.zmax, |
|
303 | 306 | cmap=self.cmaps[n]) |
|
304 | 307 | |
|
305 | 308 | if self.mode == 'A': |
|
306 | 309 | continue |
|
307 | 310 | |
|
308 | 311 | # plot district names |
|
309 | 312 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
310 | 313 | for line in f: |
|
311 | 314 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
312 | 315 | lat = float(lat) |
|
313 | 316 | lon = float(lon) |
|
314 | 317 | # ax.plot(lon, lat, '.b', ms=2) |
|
315 | 318 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
316 | 319 | va='bottom', size='8', color='black') |
|
317 | 320 | |
|
318 | 321 | # plot limites |
|
319 | 322 | limites = [] |
|
320 | 323 | tmp = [] |
|
321 | 324 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
322 | 325 | if '#' in line: |
|
323 | 326 | if tmp: |
|
324 | 327 | limites.append(tmp) |
|
325 | 328 | tmp = [] |
|
326 | 329 | continue |
|
327 | 330 | values = line.strip().split(',') |
|
328 | 331 | tmp.append((float(values[0]), float(values[1]))) |
|
329 | 332 | for points in limites: |
|
330 | 333 | ax.add_patch( |
|
331 | 334 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
332 | 335 | |
|
333 | 336 | # plot Cuencas |
|
334 | 337 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
335 | 338 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
336 | 339 | values = [line.strip().split(',') for line in f] |
|
337 | 340 | points = [(float(s[0]), float(s[1])) for s in values] |
|
338 | 341 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
339 | 342 | |
|
340 | 343 | # plot grid |
|
341 | 344 | for r in (15, 30, 45, 60): |
|
342 | 345 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
343 | 346 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
344 | 347 | ax.text( |
|
345 | 348 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
346 | 349 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
347 | 350 | '{}km'.format(r), |
|
348 | 351 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
349 | 352 | |
|
350 | 353 | if self.mode == 'E': |
|
351 | 354 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
352 | 355 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
353 | 356 | else: |
|
354 | 357 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
355 | 358 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
356 | 359 | |
|
357 | 360 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
358 | 361 | self.titles = ['{} {}'.format( |
|
359 | 362 | self.data.parameters[x], title) for x in self.channels] |
@@ -1,964 +1,1002 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Classes to plot Spectra data |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import numpy |
|
11 | 11 | |
|
12 | 12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
13 | 13 | from itertools import combinations |
|
14 | 14 | |
|
15 | 15 | |
|
16 | 16 | class SpectraPlot(Plot): |
|
17 | 17 | ''' |
|
18 | 18 | Plot for Spectra data |
|
19 | 19 | ''' |
|
20 | 20 | |
|
21 | 21 | CODE = 'spc' |
|
22 | 22 | colormap = 'jet' |
|
23 | 23 | plot_type = 'pcolor' |
|
24 | 24 | buffering = False |
|
25 | 25 | channelList = [] |
|
26 | elevationList = [] | |
|
27 | azimuthList = [] | |
|
26 | 28 | |
|
27 | 29 | def setup(self): |
|
28 | 30 | |
|
29 | 31 | self.nplots = len(self.data.channels) |
|
30 | 32 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
31 | 33 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
32 | 34 | self.height = 3.4 * self.nrows |
|
33 | 35 | |
|
34 | 36 | self.cb_label = 'dB' |
|
35 | 37 | if self.showprofile: |
|
36 | 38 | self.width = 5.2 * self.ncols |
|
37 | 39 | else: |
|
38 | 40 | self.width = 4.2* self.ncols |
|
39 | 41 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.12}) |
|
40 | 42 | self.ylabel = 'Range [km]' |
|
41 | 43 | |
|
42 | 44 | |
|
43 | 45 | def update_list(self,dataOut): |
|
44 | 46 | if len(self.channelList) == 0: |
|
45 | 47 | self.channelList = dataOut.channelList |
|
48 | if len(self.elevationList) == 0: | |
|
49 | self.elevationList = dataOut.elevationList | |
|
50 | if len(self.azimuthList) == 0: | |
|
51 | self.azimuthList = dataOut.azimuthList | |
|
46 | 52 | |
|
47 | 53 | def update(self, dataOut): |
|
48 | 54 | |
|
49 | 55 | self.update_list(dataOut) |
|
50 | 56 | data = {} |
|
51 | 57 | meta = {} |
|
52 | 58 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
53 | 59 | data['spc'] = spc |
|
54 | 60 | data['rti'] = dataOut.getPower() |
|
55 | 61 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
56 | 62 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
57 | 63 | if self.CODE == 'spc_moments': |
|
58 | 64 | data['moments'] = dataOut.moments |
|
59 | 65 | |
|
60 | 66 | return data, meta |
|
61 | 67 | |
|
62 | 68 | def plot(self): |
|
63 | 69 | if self.xaxis == "frequency": |
|
64 | 70 | x = self.data.xrange[0] |
|
65 | 71 | self.xlabel = "Frequency (kHz)" |
|
66 | 72 | elif self.xaxis == "time": |
|
67 | 73 | x = self.data.xrange[1] |
|
68 | 74 | self.xlabel = "Time (ms)" |
|
69 | 75 | else: |
|
70 | 76 | x = self.data.xrange[2] |
|
71 | 77 | self.xlabel = "Velocity (m/s)" |
|
72 | 78 | |
|
73 | 79 | if self.CODE == 'spc_moments': |
|
74 | 80 | x = self.data.xrange[2] |
|
75 | 81 | self.xlabel = "Velocity (m/s)" |
|
76 | 82 | |
|
77 | 83 | self.titles = [] |
|
78 | 84 | y = self.data.yrange |
|
79 | 85 | self.y = y |
|
80 | 86 | |
|
81 | 87 | data = self.data[-1] |
|
82 | 88 | z = data['spc'] |
|
83 | 89 | |
|
84 | 90 | for n, ax in enumerate(self.axes): |
|
85 | 91 | noise = data['noise'][n] |
|
86 | 92 | if self.CODE == 'spc_moments': |
|
87 | 93 | mean = data['moments'][n, 1] |
|
88 | 94 | if ax.firsttime: |
|
89 | 95 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
90 | 96 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
91 | 97 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
92 | 98 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
93 | 99 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
94 | 100 | vmin=self.zmin, |
|
95 | 101 | vmax=self.zmax, |
|
96 | 102 | cmap=plt.get_cmap(self.colormap) |
|
97 | 103 | ) |
|
98 | 104 | |
|
99 | 105 | if self.showprofile: |
|
100 | 106 | ax.plt_profile = self.pf_axes[n].plot( |
|
101 | 107 | data['rti'][n], y)[0] |
|
102 | 108 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
103 | 109 | color="k", linestyle="dashed", lw=1)[0] |
|
104 | 110 | if self.CODE == 'spc_moments': |
|
105 | 111 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
106 | 112 | else: |
|
107 | 113 | ax.plt.set_array(z[n].T.ravel()) |
|
108 | 114 | if self.showprofile: |
|
109 | 115 | ax.plt_profile.set_data(data['rti'][n], y) |
|
110 | 116 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
111 | 117 | if self.CODE == 'spc_moments': |
|
112 | 118 | ax.plt_mean.set_data(mean, y) |
|
119 | if len(self.azimuthList) > 0 and len(self.elevationList) > 0: | |
|
120 | self.titles.append('CH {}: {:2.1f}elv {:2.1f}az {:3.2f}dB'.format(self.channelList[n], noise, self.elevationList[n], self.azimuthList[n])) | |
|
121 | else: | |
|
113 | 122 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
114 | 123 | |
|
115 | 124 | |
|
116 | 125 | class CrossSpectraPlot(Plot): |
|
117 | 126 | |
|
118 | 127 | CODE = 'cspc' |
|
119 | 128 | colormap = 'jet' |
|
120 | 129 | plot_type = 'pcolor' |
|
121 | 130 | zmin_coh = None |
|
122 | 131 | zmax_coh = None |
|
123 | 132 | zmin_phase = None |
|
124 | 133 | zmax_phase = None |
|
125 | 134 | realChannels = None |
|
126 | 135 | crossPairs = None |
|
127 | 136 | |
|
128 | 137 | def setup(self): |
|
129 | 138 | |
|
130 | 139 | self.ncols = 4 |
|
131 | 140 | self.nplots = len(self.data.pairs) * 2 |
|
132 | 141 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
133 | 142 | self.width = 3.1 * self.ncols |
|
134 | 143 | self.height = 2.6 * self.nrows |
|
135 | 144 | self.ylabel = 'Range [km]' |
|
136 | 145 | self.showprofile = False |
|
137 | 146 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
138 | 147 | |
|
139 | 148 | def update(self, dataOut): |
|
140 | 149 | |
|
141 | 150 | data = {} |
|
142 | 151 | meta = {} |
|
143 | 152 | |
|
144 | 153 | spc = dataOut.data_spc |
|
145 | 154 | cspc = dataOut.data_cspc |
|
146 | 155 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
147 | 156 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) |
|
148 | 157 | meta['pairs'] = rawPairs |
|
149 | 158 | |
|
150 | 159 | if self.crossPairs == None: |
|
151 | 160 | self.crossPairs = dataOut.pairsList |
|
152 | 161 | |
|
153 | 162 | tmp = [] |
|
154 | 163 | |
|
155 | 164 | for n, pair in enumerate(meta['pairs']): |
|
156 | 165 | |
|
157 | 166 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
158 | 167 | coh = numpy.abs(out) |
|
159 | 168 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
160 | 169 | tmp.append(coh) |
|
161 | 170 | tmp.append(phase) |
|
162 | 171 | |
|
163 | 172 | data['cspc'] = numpy.array(tmp) |
|
164 | 173 | |
|
165 | 174 | return data, meta |
|
166 | 175 | |
|
167 | 176 | def plot(self): |
|
168 | 177 | |
|
169 | 178 | if self.xaxis == "frequency": |
|
170 | 179 | x = self.data.xrange[0] |
|
171 | 180 | self.xlabel = "Frequency (kHz)" |
|
172 | 181 | elif self.xaxis == "time": |
|
173 | 182 | x = self.data.xrange[1] |
|
174 | 183 | self.xlabel = "Time (ms)" |
|
175 | 184 | else: |
|
176 | 185 | x = self.data.xrange[2] |
|
177 | 186 | self.xlabel = "Velocity (m/s)" |
|
178 | 187 | |
|
179 | 188 | self.titles = [] |
|
180 | 189 | |
|
181 | 190 | y = self.data.yrange |
|
182 | 191 | self.y = y |
|
183 | 192 | |
|
184 | 193 | data = self.data[-1] |
|
185 | 194 | cspc = data['cspc'] |
|
186 | 195 | |
|
187 | 196 | for n in range(len(self.data.pairs)): |
|
188 | 197 | |
|
189 | 198 | pair = self.crossPairs[n] |
|
190 | 199 | |
|
191 | 200 | coh = cspc[n*2] |
|
192 | 201 | phase = cspc[n*2+1] |
|
193 | 202 | ax = self.axes[2 * n] |
|
194 | 203 | |
|
195 | 204 | if ax.firsttime: |
|
196 | 205 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
197 | 206 | vmin=self.zmin_coh, |
|
198 | 207 | vmax=self.zmax_coh, |
|
199 | 208 | cmap=plt.get_cmap(self.colormap_coh) |
|
200 | 209 | ) |
|
201 | 210 | else: |
|
202 | 211 | ax.plt.set_array(coh.T.ravel()) |
|
203 | 212 | self.titles.append( |
|
204 | 213 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
205 | 214 | |
|
206 | 215 | ax = self.axes[2 * n + 1] |
|
207 | 216 | if ax.firsttime: |
|
208 | 217 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
209 | 218 | vmin=-180, |
|
210 | 219 | vmax=180, |
|
211 | 220 | cmap=plt.get_cmap(self.colormap_phase) |
|
212 | 221 | ) |
|
213 | 222 | else: |
|
214 | 223 | ax.plt.set_array(phase.T.ravel()) |
|
215 | 224 | |
|
216 | 225 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
217 | 226 | |
|
218 | 227 | |
|
219 | 228 | class RTIPlot(Plot): |
|
220 | 229 | ''' |
|
221 | 230 | Plot for RTI data |
|
222 | 231 | ''' |
|
223 | 232 | |
|
224 | 233 | CODE = 'rti' |
|
225 | 234 | colormap = 'jet' |
|
226 | 235 | plot_type = 'pcolorbuffer' |
|
227 | 236 | titles = None |
|
228 | 237 | channelList = [] |
|
238 | elevationList = [] | |
|
239 | azimuthList = [] | |
|
229 | 240 | |
|
230 | 241 | def setup(self): |
|
231 | 242 | self.xaxis = 'time' |
|
232 | 243 | self.ncols = 1 |
|
233 | 244 | #print("dataChannels ",self.data.channels) |
|
234 | 245 | self.nrows = len(self.data.channels) |
|
235 | 246 | self.nplots = len(self.data.channels) |
|
236 | 247 | self.ylabel = 'Range [km]' |
|
237 | 248 | self.xlabel = 'Time' |
|
238 | 249 | self.cb_label = 'dB' |
|
239 | 250 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
240 | 251 | self.titles = ['{} Channel {}'.format( |
|
241 | 252 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
242 | 253 | |
|
243 | 254 | def update_list(self,dataOut): |
|
244 | 255 | |
|
256 | if len(self.channelList) == 0: | |
|
245 | 257 | self.channelList = dataOut.channelList |
|
258 | if len(self.elevationList) == 0: | |
|
259 | self.elevationList = dataOut.elevationList | |
|
260 | if len(self.azimuthList) == 0: | |
|
261 | self.azimuthList = dataOut.azimuthList | |
|
246 | 262 | |
|
247 | 263 | |
|
248 | 264 | def update(self, dataOut): |
|
249 | 265 | if len(self.channelList) == 0: |
|
250 | 266 | self.update_list(dataOut) |
|
251 | 267 | data = {} |
|
252 | 268 | meta = {} |
|
253 | 269 | data['rti'] = dataOut.getPower() |
|
254 | 270 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
255 | 271 | return data, meta |
|
256 | 272 | |
|
257 | 273 | def plot(self): |
|
258 | 274 | |
|
259 | 275 | self.x = self.data.times |
|
260 | 276 | self.y = self.data.yrange |
|
261 | 277 | |
|
262 | 278 | self.z = self.data[self.CODE] |
|
263 | 279 | self.z = numpy.array(self.z, dtype=float) |
|
264 | 280 | self.z = numpy.ma.masked_invalid(self.z) |
|
265 | 281 | |
|
266 | 282 | try: |
|
267 | 283 | if self.channelList != None: |
|
284 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: | |
|
285 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( | |
|
286 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] | |
|
287 | else: | |
|
268 | 288 | self.titles = ['{} Channel {}'.format( |
|
269 | 289 | self.CODE.upper(), x) for x in self.channelList] |
|
270 | 290 | except: |
|
271 | 291 | if self.channelList.any() != None: |
|
292 | ||
|
272 | 293 | self.titles = ['{} Channel {}'.format( |
|
273 | 294 | self.CODE.upper(), x) for x in self.channelList] |
|
295 | ||
|
274 | 296 | if self.decimation is None: |
|
275 | 297 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
276 | 298 | else: |
|
277 | 299 | x, y, z = self.fill_gaps(*self.decimate()) |
|
278 | 300 | |
|
279 | 301 | #dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes |
|
280 | 302 | for n, ax in enumerate(self.axes): |
|
281 | 303 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
282 | 304 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
283 | 305 | data = self.data[-1] |
|
284 | 306 | |
|
285 | 307 | if ax.firsttime: |
|
286 | 308 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
287 | 309 | vmin=self.zmin, |
|
288 | 310 | vmax=self.zmax, |
|
289 | 311 | cmap=plt.get_cmap(self.colormap) |
|
290 | 312 | ) |
|
291 | 313 | if self.showprofile: |
|
292 | 314 | ax.plot_profile = self.pf_axes[n].plot(data[self.CODE][n], self.y)[0] |
|
293 | 315 | if "noise" in self.data: |
|
294 | 316 | |
|
295 | 317 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
296 | 318 | color="k", linestyle="dashed", lw=1)[0] |
|
297 | 319 | else: |
|
298 | 320 | ax.collections.remove(ax.collections[0]) |
|
299 | 321 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
300 | 322 | vmin=self.zmin, |
|
301 | 323 | vmax=self.zmax, |
|
302 | 324 | cmap=plt.get_cmap(self.colormap) |
|
303 | 325 | ) |
|
304 | 326 | if self.showprofile: |
|
305 | 327 | ax.plot_profile.set_data(data[self.CODE][n], self.y) |
|
306 | 328 | if "noise" in self.data: |
|
307 | 329 | |
|
308 | 330 | ax.plot_noise.set_data(numpy.repeat( |
|
309 | 331 | data['noise'][n], len(self.y)), self.y) |
|
310 | 332 | |
|
311 | 333 | |
|
312 | 334 | class CoherencePlot(RTIPlot): |
|
313 | 335 | ''' |
|
314 | 336 | Plot for Coherence data |
|
315 | 337 | ''' |
|
316 | 338 | |
|
317 | 339 | CODE = 'coh' |
|
318 | 340 | |
|
319 | 341 | def setup(self): |
|
320 | 342 | self.xaxis = 'time' |
|
321 | 343 | self.ncols = 1 |
|
322 | 344 | self.nrows = len(self.data.pairs) |
|
323 | 345 | self.nplots = len(self.data.pairs) |
|
324 | 346 | self.ylabel = 'Range [km]' |
|
325 | 347 | self.xlabel = 'Time' |
|
326 | 348 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
327 | 349 | if self.CODE == 'coh': |
|
328 | 350 | self.cb_label = '' |
|
329 | 351 | self.titles = [ |
|
330 | 352 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
331 | 353 | else: |
|
332 | 354 | self.cb_label = 'Degrees' |
|
333 | 355 | self.titles = [ |
|
334 | 356 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
335 | 357 | |
|
336 | 358 | def update(self, dataOut): |
|
337 | 359 | self.update_list(dataOut) |
|
338 | 360 | data = {} |
|
339 | 361 | meta = {} |
|
340 | 362 | data['coh'] = dataOut.getCoherence() |
|
341 | 363 | meta['pairs'] = dataOut.pairsList |
|
342 | 364 | |
|
343 | 365 | |
|
344 | 366 | return data, meta |
|
345 | 367 | |
|
346 | 368 | class PhasePlot(CoherencePlot): |
|
347 | 369 | ''' |
|
348 | 370 | Plot for Phase map data |
|
349 | 371 | ''' |
|
350 | 372 | |
|
351 | 373 | CODE = 'phase' |
|
352 | 374 | colormap = 'seismic' |
|
353 | 375 | |
|
354 | 376 | def update(self, dataOut): |
|
355 | 377 | |
|
356 | 378 | data = {} |
|
357 | 379 | meta = {} |
|
358 | 380 | data['phase'] = dataOut.getCoherence(phase=True) |
|
359 | 381 | meta['pairs'] = dataOut.pairsList |
|
360 | 382 | |
|
361 | 383 | return data, meta |
|
362 | 384 | |
|
363 | 385 | class NoisePlot(Plot): |
|
364 | 386 | ''' |
|
365 | 387 | Plot for noise |
|
366 | 388 | ''' |
|
367 | 389 | |
|
368 | 390 | CODE = 'noise' |
|
369 | 391 | plot_type = 'scatterbuffer' |
|
370 | 392 | |
|
371 | 393 | def setup(self): |
|
372 | 394 | self.xaxis = 'time' |
|
373 | 395 | self.ncols = 1 |
|
374 | 396 | self.nrows = 1 |
|
375 | 397 | self.nplots = 1 |
|
376 | 398 | self.ylabel = 'Intensity [dB]' |
|
377 | 399 | self.xlabel = 'Time' |
|
378 | 400 | self.titles = ['Noise'] |
|
379 | 401 | self.colorbar = False |
|
380 | 402 | self.plots_adjust.update({'right': 0.85 }) |
|
381 | 403 | |
|
382 | 404 | def update(self, dataOut): |
|
383 | 405 | |
|
384 | 406 | data = {} |
|
385 | 407 | meta = {} |
|
386 | 408 | noise = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
387 | 409 | data['noise'] = noise |
|
388 | 410 | meta['yrange'] = numpy.array([]) |
|
389 | 411 | |
|
390 | 412 | return data, meta |
|
391 | 413 | |
|
392 | 414 | def plot(self): |
|
393 | 415 | |
|
394 | 416 | x = self.data.times |
|
395 | 417 | xmin = self.data.min_time |
|
396 | 418 | xmax = xmin + self.xrange * 60 * 60 |
|
397 | 419 | Y = self.data['noise'] |
|
398 | 420 | |
|
399 | 421 | if self.axes[0].firsttime: |
|
400 | 422 | if self.ymin is None: self.ymin = numpy.nanmin(Y) - 5 |
|
401 | 423 | if self.ymax is None: self.ymax = numpy.nanmax(Y) + 5 |
|
402 | 424 | for ch in self.data.channels: |
|
403 | 425 | y = Y[ch] |
|
404 | 426 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
405 | 427 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
406 | 428 | else: |
|
407 | 429 | for ch in self.data.channels: |
|
408 | 430 | y = Y[ch] |
|
409 | 431 | self.axes[0].lines[ch].set_data(x, y) |
|
410 | 432 | |
|
411 | 433 | |
|
412 | 434 | class PowerProfilePlot(Plot): |
|
413 | 435 | |
|
414 | 436 | CODE = 'pow_profile' |
|
415 | 437 | plot_type = 'scatter' |
|
416 | 438 | |
|
417 | 439 | def setup(self): |
|
418 | 440 | |
|
419 | 441 | self.ncols = 1 |
|
420 | 442 | self.nrows = 1 |
|
421 | 443 | self.nplots = 1 |
|
422 | 444 | self.height = 4 |
|
423 | 445 | self.width = 3 |
|
424 | 446 | self.ylabel = 'Range [km]' |
|
425 | 447 | self.xlabel = 'Intensity [dB]' |
|
426 | 448 | self.titles = ['Power Profile'] |
|
427 | 449 | self.colorbar = False |
|
428 | 450 | |
|
429 | 451 | def update(self, dataOut): |
|
430 | 452 | |
|
431 | 453 | data = {} |
|
432 | 454 | meta = {} |
|
433 | 455 | data[self.CODE] = dataOut.getPower() |
|
434 | 456 | |
|
435 | 457 | return data, meta |
|
436 | 458 | |
|
437 | 459 | def plot(self): |
|
438 | 460 | |
|
439 | 461 | y = self.data.yrange |
|
440 | 462 | self.y = y |
|
441 | 463 | |
|
442 | 464 | x = self.data[-1][self.CODE] |
|
443 | 465 | |
|
444 | 466 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
445 | 467 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
446 | 468 | |
|
447 | 469 | if self.axes[0].firsttime: |
|
448 | 470 | for ch in self.data.channels: |
|
449 | 471 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
450 | 472 | plt.legend() |
|
451 | 473 | else: |
|
452 | 474 | for ch in self.data.channels: |
|
453 | 475 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
454 | 476 | |
|
455 | 477 | |
|
456 | 478 | class SpectraCutPlot(Plot): |
|
457 | 479 | |
|
458 | 480 | CODE = 'spc_cut' |
|
459 | 481 | plot_type = 'scatter' |
|
460 | 482 | buffering = False |
|
461 | 483 | heights = [] |
|
462 | 484 | channelList = [] |
|
463 | 485 | maintitle = "Spectra Cuts" |
|
464 | 486 | flag_setIndex = False |
|
465 | 487 | |
|
466 | 488 | def setup(self): |
|
467 | 489 | |
|
468 | 490 | self.nplots = len(self.data.channels) |
|
469 | 491 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
470 | 492 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
471 | 493 | self.width = 4.2 * self.ncols + 2.5 |
|
472 | 494 | self.height = 4.8 * self.nrows |
|
473 | 495 | self.ylabel = 'Power [dB]' |
|
474 | 496 | self.colorbar = False |
|
475 | 497 | self.plots_adjust.update({'left':0.15, 'hspace':0.3, 'right': 0.85, 'bottom':0.08}) |
|
476 | 498 | |
|
477 | 499 | if len(self.selectedHeightsList) > 0: |
|
478 | 500 | self.maintitle = "Spectra Cut"# for %d km " %(int(self.selectedHeight)) |
|
479 | 501 | |
|
480 | 502 | def update(self, dataOut): |
|
481 | 503 | if len(self.channelList) == 0: |
|
482 | 504 | self.channelList = dataOut.channelList |
|
483 | 505 | |
|
484 | 506 | self.heights = dataOut.heightList |
|
485 | 507 | #print("sels: ",self.selectedHeightsList) |
|
486 | 508 | if len(self.selectedHeightsList)>0 and not self.flag_setIndex: |
|
487 | 509 | |
|
488 | 510 | for sel_height in self.selectedHeightsList: |
|
489 | 511 | index_list = numpy.where(self.heights >= sel_height) |
|
490 | 512 | index_list = index_list[0] |
|
491 | 513 | self.height_index.append(index_list[0]) |
|
492 | 514 | #print("sels i:"", self.height_index) |
|
493 | 515 | self.flag_setIndex = True |
|
494 | 516 | #print(self.height_index) |
|
495 | 517 | data = {} |
|
496 | 518 | meta = {} |
|
497 | 519 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
498 | 520 | |
|
499 | 521 | data['spc'] = spc |
|
500 | 522 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
501 | 523 | |
|
502 | 524 | return data, meta |
|
503 | 525 | |
|
504 | 526 | def plot(self): |
|
505 | 527 | if self.xaxis == "frequency": |
|
506 | 528 | x = self.data.xrange[0][1:] |
|
507 | 529 | self.xlabel = "Frequency (kHz)" |
|
508 | 530 | elif self.xaxis == "time": |
|
509 | 531 | x = self.data.xrange[1] |
|
510 | 532 | self.xlabel = "Time (ms)" |
|
511 | 533 | else: |
|
512 | 534 | x = self.data.xrange[2] |
|
513 | 535 | self.xlabel = "Velocity (m/s)" |
|
514 | 536 | |
|
515 | 537 | self.titles = [] |
|
516 | 538 | |
|
517 | 539 | y = self.data.yrange |
|
518 | 540 | z = self.data[-1]['spc'] |
|
519 | 541 | #print(z.shape) |
|
520 | 542 | if len(self.height_index) > 0: |
|
521 | 543 | index = self.height_index |
|
522 | 544 | else: |
|
523 | 545 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
524 | 546 | #print("inde x ", index, self.axes) |
|
525 | 547 | for n, ax in enumerate(self.axes): |
|
526 | 548 | if ax.firsttime: |
|
527 | 549 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
528 | 550 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
529 | 551 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
530 | 552 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
531 | 553 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
532 | 554 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
533 | 555 | self.figures[0].legend(ax.plt, labels, loc='center right', prop={'size': 8}) |
|
534 | 556 | else: |
|
535 | 557 |
for i, line in enumerate(ax.plt): |
|
536 | 558 | line.set_data(x, z[n, :, index[i]]) |
|
537 | 559 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
538 | 560 | plt.suptitle(self.maintitle, fontsize=10) |
|
539 | 561 | |
|
540 | 562 | class BeaconPhase(Plot): |
|
541 | 563 | |
|
542 | 564 | __isConfig = None |
|
543 | 565 | __nsubplots = None |
|
544 | 566 | |
|
545 | 567 | PREFIX = 'beacon_phase' |
|
546 | 568 | |
|
547 | 569 | def __init__(self): |
|
548 | 570 | Plot.__init__(self) |
|
549 | 571 | self.timerange = 24*60*60 |
|
550 | 572 | self.isConfig = False |
|
551 | 573 | self.__nsubplots = 1 |
|
552 | 574 | self.counter_imagwr = 0 |
|
553 | 575 | self.WIDTH = 800 |
|
554 | 576 | self.HEIGHT = 400 |
|
555 | 577 | self.WIDTHPROF = 120 |
|
556 | 578 | self.HEIGHTPROF = 0 |
|
557 | 579 | self.xdata = None |
|
558 | 580 | self.ydata = None |
|
559 | 581 | |
|
560 | 582 | self.PLOT_CODE = BEACON_CODE |
|
561 | 583 | |
|
562 | 584 | self.FTP_WEI = None |
|
563 | 585 | self.EXP_CODE = None |
|
564 | 586 | self.SUB_EXP_CODE = None |
|
565 | 587 | self.PLOT_POS = None |
|
566 | 588 | |
|
567 | 589 | self.filename_phase = None |
|
568 | 590 | |
|
569 | 591 | self.figfile = None |
|
570 | 592 | |
|
571 | 593 | self.xmin = None |
|
572 | 594 | self.xmax = None |
|
573 | 595 | |
|
574 | 596 | def getSubplots(self): |
|
575 | 597 | |
|
576 | 598 | ncol = 1 |
|
577 | 599 | nrow = 1 |
|
578 | 600 | |
|
579 | 601 | return nrow, ncol |
|
580 | 602 | |
|
581 | 603 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
582 | 604 | |
|
583 | 605 | self.__showprofile = showprofile |
|
584 | 606 | self.nplots = nplots |
|
585 | 607 | |
|
586 | 608 | ncolspan = 7 |
|
587 | 609 | colspan = 6 |
|
588 | 610 | self.__nsubplots = 2 |
|
589 | 611 | |
|
590 | 612 | self.createFigure(id = id, |
|
591 | 613 | wintitle = wintitle, |
|
592 | 614 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
593 | 615 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
594 | 616 | show=show) |
|
595 | 617 | |
|
596 | 618 | nrow, ncol = self.getSubplots() |
|
597 | 619 | |
|
598 | 620 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
599 | 621 | |
|
600 | 622 | def save_phase(self, filename_phase): |
|
601 | 623 | f = open(filename_phase,'w+') |
|
602 | 624 | f.write('\n\n') |
|
603 | 625 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
604 | 626 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
605 | 627 | f.close() |
|
606 | 628 | |
|
607 | 629 | def save_data(self, filename_phase, data, data_datetime): |
|
608 | 630 | f=open(filename_phase,'a') |
|
609 | 631 | timetuple_data = data_datetime.timetuple() |
|
610 | 632 | day = str(timetuple_data.tm_mday) |
|
611 | 633 | month = str(timetuple_data.tm_mon) |
|
612 | 634 | year = str(timetuple_data.tm_year) |
|
613 | 635 | hour = str(timetuple_data.tm_hour) |
|
614 | 636 | minute = str(timetuple_data.tm_min) |
|
615 | 637 | second = str(timetuple_data.tm_sec) |
|
616 | 638 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
617 | 639 | f.close() |
|
618 | 640 | |
|
619 | 641 | def plot(self): |
|
620 | 642 | log.warning('TODO: Not yet implemented...') |
|
621 | 643 | |
|
622 | 644 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
623 | 645 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
624 | 646 | timerange=None, |
|
625 | 647 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
626 | 648 | server=None, folder=None, username=None, password=None, |
|
627 | 649 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
628 | 650 | |
|
629 | 651 | if dataOut.flagNoData: |
|
630 | 652 | return dataOut |
|
631 | 653 | |
|
632 | 654 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
633 | 655 | return |
|
634 | 656 | |
|
635 | 657 | if pairsList == None: |
|
636 | 658 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
637 | 659 | else: |
|
638 | 660 | pairsIndexList = [] |
|
639 | 661 | for pair in pairsList: |
|
640 | 662 | if pair not in dataOut.pairsList: |
|
641 | 663 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
642 | 664 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
643 | 665 | |
|
644 | 666 | if pairsIndexList == []: |
|
645 | 667 | return |
|
646 | 668 | |
|
647 | 669 | # if len(pairsIndexList) > 4: |
|
648 | 670 | # pairsIndexList = pairsIndexList[0:4] |
|
649 | 671 | |
|
650 | 672 | hmin_index = None |
|
651 | 673 | hmax_index = None |
|
652 | 674 | |
|
653 | 675 | if hmin != None and hmax != None: |
|
654 | 676 | indexes = numpy.arange(dataOut.nHeights) |
|
655 | 677 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
656 | 678 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
657 | 679 | |
|
658 | 680 | if hmin_list.any(): |
|
659 | 681 | hmin_index = hmin_list[0] |
|
660 | 682 | |
|
661 | 683 | if hmax_list.any(): |
|
662 | 684 | hmax_index = hmax_list[-1]+1 |
|
663 | 685 | |
|
664 | 686 | x = dataOut.getTimeRange() |
|
665 | 687 | |
|
666 | 688 | thisDatetime = dataOut.datatime |
|
667 | 689 | |
|
668 | 690 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
669 | 691 | xlabel = "Local Time" |
|
670 | 692 | ylabel = "Phase (degrees)" |
|
671 | 693 | |
|
672 | 694 | update_figfile = False |
|
673 | 695 | |
|
674 | 696 | nplots = len(pairsIndexList) |
|
675 | 697 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
676 | 698 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
677 | 699 | for i in range(nplots): |
|
678 | 700 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
679 | 701 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
680 | 702 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
681 | 703 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
682 | 704 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
683 | 705 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
684 | 706 | |
|
685 | 707 | if dataOut.beacon_heiIndexList: |
|
686 | 708 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
687 | 709 | else: |
|
688 | 710 | phase_beacon[i] = numpy.average(phase) |
|
689 | 711 | |
|
690 | 712 | if not self.isConfig: |
|
691 | 713 | |
|
692 | 714 | nplots = len(pairsIndexList) |
|
693 | 715 | |
|
694 | 716 | self.setup(id=id, |
|
695 | 717 | nplots=nplots, |
|
696 | 718 | wintitle=wintitle, |
|
697 | 719 | showprofile=showprofile, |
|
698 | 720 | show=show) |
|
699 | 721 | |
|
700 | 722 | if timerange != None: |
|
701 | 723 | self.timerange = timerange |
|
702 | 724 | |
|
703 | 725 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
704 | 726 | |
|
705 | 727 | if ymin == None: ymin = 0 |
|
706 | 728 | if ymax == None: ymax = 360 |
|
707 | 729 | |
|
708 | 730 | self.FTP_WEI = ftp_wei |
|
709 | 731 | self.EXP_CODE = exp_code |
|
710 | 732 | self.SUB_EXP_CODE = sub_exp_code |
|
711 | 733 | self.PLOT_POS = plot_pos |
|
712 | 734 | |
|
713 | 735 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
714 | 736 | self.isConfig = True |
|
715 | 737 | self.figfile = figfile |
|
716 | 738 | self.xdata = numpy.array([]) |
|
717 | 739 | self.ydata = numpy.array([]) |
|
718 | 740 | |
|
719 | 741 | update_figfile = True |
|
720 | 742 | |
|
721 | 743 | #open file beacon phase |
|
722 | 744 | path = '%s%03d' %(self.PREFIX, self.id) |
|
723 | 745 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
724 | 746 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
725 | 747 | #self.save_phase(self.filename_phase) |
|
726 | 748 | |
|
727 | 749 | |
|
728 | 750 | #store data beacon phase |
|
729 | 751 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
730 | 752 | |
|
731 | 753 | self.setWinTitle(title) |
|
732 | 754 | |
|
733 | 755 | |
|
734 | 756 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
735 | 757 | |
|
736 | 758 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
737 | 759 | |
|
738 | 760 | axes = self.axesList[0] |
|
739 | 761 | |
|
740 | 762 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
741 | 763 | |
|
742 | 764 | if len(self.ydata)==0: |
|
743 | 765 | self.ydata = phase_beacon.reshape(-1,1) |
|
744 | 766 | else: |
|
745 | 767 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
746 | 768 | |
|
747 | 769 | |
|
748 | 770 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
749 | 771 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
750 | 772 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
751 | 773 | XAxisAsTime=True, grid='both' |
|
752 | 774 | ) |
|
753 | 775 | |
|
754 | 776 | self.draw() |
|
755 | 777 | |
|
756 | 778 | if dataOut.ltctime >= self.xmax: |
|
757 | 779 | self.counter_imagwr = wr_period |
|
758 | 780 | self.isConfig = False |
|
759 | 781 | update_figfile = True |
|
760 | 782 | |
|
761 | 783 | self.save(figpath=figpath, |
|
762 | 784 | figfile=figfile, |
|
763 | 785 | save=save, |
|
764 | 786 | ftp=ftp, |
|
765 | 787 | wr_period=wr_period, |
|
766 | 788 | thisDatetime=thisDatetime, |
|
767 | 789 | update_figfile=update_figfile) |
|
768 | 790 | |
|
769 | 791 | return dataOut |
|
770 | 792 | |
|
771 | 793 | class NoiselessSpectraPlot(Plot): |
|
772 | 794 | ''' |
|
773 | 795 | Plot for Spectra data, subtracting |
|
774 | 796 | the noise in all channels, using for |
|
775 | 797 | amisr-14 data |
|
776 | 798 | ''' |
|
777 | 799 | |
|
778 | 800 | CODE = 'noiseless_spc' |
|
779 | 801 | colormap = 'nipy_spectral' |
|
780 | 802 | plot_type = 'pcolor' |
|
781 | 803 | buffering = False |
|
782 | 804 | channelList = [] |
|
783 | 805 | |
|
784 | 806 | def setup(self): |
|
785 | 807 | |
|
786 | 808 | self.nplots = len(self.data.channels) |
|
787 | 809 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
788 | 810 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
789 | 811 | self.height = 2.6 * self.nrows |
|
790 | 812 | |
|
791 | 813 | self.cb_label = 'dB' |
|
792 | 814 | if self.showprofile: |
|
793 | 815 | self.width = 4 * self.ncols |
|
794 | 816 | else: |
|
795 | 817 | self.width = 3.5 * self.ncols |
|
796 | 818 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
797 | 819 | self.ylabel = 'Range [km]' |
|
798 | 820 | |
|
799 | 821 | |
|
800 | 822 | def update_list(self,dataOut): |
|
801 | 823 | if len(self.channelList) == 0: |
|
802 | 824 | self.channelList = dataOut.channelList |
|
803 | 825 | |
|
804 | 826 | def update(self, dataOut): |
|
805 | 827 | |
|
806 | 828 | self.update_list(dataOut) |
|
807 | 829 | data = {} |
|
808 | 830 | meta = {} |
|
809 | 831 | n0 = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
810 | 832 | (nch, nff, nh) = dataOut.data_spc.shape |
|
811 | 833 | n1 = numpy.repeat(n0,nh, axis=0).reshape((nch,nh)) |
|
812 | 834 | noise = numpy.repeat(n1,nff, axis=1).reshape((nch,nff,nh)) |
|
813 | 835 | #print(noise.shape, "noise", noise) |
|
814 | 836 | |
|
815 | 837 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) - noise |
|
816 | 838 | |
|
817 | 839 | data['spc'] = spc |
|
818 | 840 | data['rti'] = dataOut.getPower() - n1 |
|
819 | 841 | |
|
820 | 842 | data['noise'] = n0 |
|
821 | 843 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
822 | 844 | |
|
823 | 845 | return data, meta |
|
824 | 846 | |
|
825 | 847 | def plot(self): |
|
826 | 848 | if self.xaxis == "frequency": |
|
827 | 849 | x = self.data.xrange[0] |
|
828 | 850 | self.xlabel = "Frequency (kHz)" |
|
829 | 851 | elif self.xaxis == "time": |
|
830 | 852 | x = self.data.xrange[1] |
|
831 | 853 | self.xlabel = "Time (ms)" |
|
832 | 854 | else: |
|
833 | 855 | x = self.data.xrange[2] |
|
834 | 856 | self.xlabel = "Velocity (m/s)" |
|
835 | 857 | |
|
836 | 858 | self.titles = [] |
|
837 | 859 | y = self.data.yrange |
|
838 | 860 | self.y = y |
|
839 | 861 | |
|
840 | 862 | data = self.data[-1] |
|
841 | 863 | z = data['spc'] |
|
842 | 864 | |
|
843 | 865 | for n, ax in enumerate(self.axes): |
|
844 | 866 | noise = data['noise'][n] |
|
845 | 867 | |
|
846 | 868 | if ax.firsttime: |
|
847 | 869 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
848 | 870 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
849 | 871 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
850 | 872 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
851 | 873 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
852 | 874 | vmin=self.zmin, |
|
853 | 875 | vmax=self.zmax, |
|
854 | 876 | cmap=plt.get_cmap(self.colormap) |
|
855 | 877 | ) |
|
856 | 878 | |
|
857 | 879 | if self.showprofile: |
|
858 | 880 | ax.plt_profile = self.pf_axes[n].plot( |
|
859 | 881 | data['rti'][n], y)[0] |
|
860 | 882 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
861 | 883 | color="k", linestyle="dashed", lw=1)[0] |
|
862 | 884 | |
|
863 | 885 | else: |
|
864 | 886 | ax.plt.set_array(z[n].T.ravel()) |
|
865 | 887 | if self.showprofile: |
|
866 | 888 | ax.plt_profile.set_data(data['rti'][n], y) |
|
867 | 889 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
868 | 890 | |
|
869 | 891 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
870 | 892 | |
|
871 | 893 | |
|
872 | 894 | class NoiselessRTIPlot(Plot): |
|
873 | 895 | ''' |
|
874 | 896 | Plot for RTI data |
|
875 | 897 | ''' |
|
876 | 898 | |
|
877 | 899 | CODE = 'noiseless_rti' |
|
878 | 900 | colormap = 'jet' |
|
879 | 901 | plot_type = 'pcolorbuffer' |
|
880 | 902 | titles = None |
|
881 | 903 | channelList = [] |
|
904 | elevationList = [] | |
|
905 | azimuthList = [] | |
|
882 | 906 | |
|
883 | 907 | def setup(self): |
|
884 | 908 | self.xaxis = 'time' |
|
885 | 909 | self.ncols = 1 |
|
886 | 910 | #print("dataChannels ",self.data.channels) |
|
887 | 911 | self.nrows = len(self.data.channels) |
|
888 | 912 | self.nplots = len(self.data.channels) |
|
889 | 913 | self.ylabel = 'Range [km]' |
|
890 | 914 | self.xlabel = 'Time' |
|
891 | 915 | self.cb_label = 'dB' |
|
892 | 916 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
893 | 917 | self.titles = ['{} Channel {}'.format( |
|
894 | 918 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
895 | 919 | |
|
896 | 920 | def update_list(self,dataOut): |
|
897 | ||
|
921 | if len(self.channelList) == 0: | |
|
898 | 922 | self.channelList = dataOut.channelList |
|
899 | ||
|
923 | if len(self.elevationList) == 0: | |
|
924 | self.elevationList = dataOut.elevationList | |
|
925 | if len(self.azimuthList) == 0: | |
|
926 | self.azimuthList = dataOut.azimuthList | |
|
900 | 927 | |
|
901 | 928 | def update(self, dataOut): |
|
902 | 929 | if len(self.channelList) == 0: |
|
903 | 930 | self.update_list(dataOut) |
|
904 | 931 | data = {} |
|
905 | 932 | meta = {} |
|
906 | 933 | |
|
907 | 934 | n0 = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
908 | 935 | (nch, nff, nh) = dataOut.data_spc.shape |
|
936 | #print(nch, nff, nh) | |
|
937 | if nch != 1: | |
|
938 | aux = [] | |
|
939 | for c in self.channelList: | |
|
940 | aux.append(n0[c]) | |
|
941 | n0 = numpy.asarray(aux) | |
|
909 | 942 | noise = numpy.repeat(n0,nh, axis=0).reshape((nch,nh)) |
|
910 | ||
|
911 | ||
|
943 | #print(dataOut.elevationList, dataOut.azimuthList) | |
|
944 | #print(dataOut.channelList) | |
|
912 | 945 | data['noiseless_rti'] = dataOut.getPower() - noise |
|
913 | 946 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
914 | 947 | return data, meta |
|
915 | 948 | |
|
916 | 949 | def plot(self): |
|
917 | 950 | |
|
918 | 951 | self.x = self.data.times |
|
919 | 952 | self.y = self.data.yrange |
|
920 | 953 | self.z = self.data['noiseless_rti'] |
|
921 | 954 | self.z = numpy.array(self.z, dtype=float) |
|
922 | 955 | self.z = numpy.ma.masked_invalid(self.z) |
|
923 | 956 | |
|
924 | 957 | try: |
|
925 | 958 | if self.channelList != None: |
|
959 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: | |
|
960 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( | |
|
961 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] | |
|
962 | else: | |
|
926 | 963 | self.titles = ['{} Channel {}'.format( |
|
927 | 964 | self.CODE.upper(), x) for x in self.channelList] |
|
928 | 965 | except: |
|
929 | 966 | if self.channelList.any() != None: |
|
967 | ||
|
930 | 968 | self.titles = ['{} Channel {}'.format( |
|
931 | 969 | self.CODE.upper(), x) for x in self.channelList] |
|
932 | 970 | if self.decimation is None: |
|
933 | 971 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
934 | 972 | else: |
|
935 | 973 | x, y, z = self.fill_gaps(*self.decimate()) |
|
936 | 974 | dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes |
|
937 | 975 | for n, ax in enumerate(self.axes): |
|
938 | 976 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
939 | 977 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
940 | 978 | data = self.data[-1] |
|
941 | 979 | if ax.firsttime: |
|
942 | 980 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
943 | 981 | vmin=self.zmin, |
|
944 | 982 | vmax=self.zmax, |
|
945 | 983 | cmap=plt.get_cmap(self.colormap) |
|
946 | 984 | ) |
|
947 | 985 | if self.showprofile: |
|
948 | 986 | ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0] |
|
949 | 987 | |
|
950 | 988 | if "noise" in self.data: |
|
951 | 989 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
952 | 990 | color="k", linestyle="dashed", lw=1)[0] |
|
953 | 991 | else: |
|
954 | 992 | ax.collections.remove(ax.collections[0]) |
|
955 | 993 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
956 | 994 | vmin=self.zmin, |
|
957 | 995 | vmax=self.zmax, |
|
958 | 996 | cmap=plt.get_cmap(self.colormap) |
|
959 | 997 | ) |
|
960 | 998 | if self.showprofile: |
|
961 | 999 | ax.plot_profile.set_data(data['noiseless_rti'][n], self.y) |
|
962 | 1000 | if "noise" in self.data: |
|
963 | 1001 | ax.plot_noise.set_data(numpy.repeat( |
|
964 | 1002 | data['noise'][n], len(self.y)), self.y) |
@@ -1,1870 +1,1879 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Spectra processing Unit and operations |
|
6 | 6 | |
|
7 | 7 | Here you will find the processing unit `SpectraProc` and several operations |
|
8 | 8 | to work with Spectra data type |
|
9 | 9 | """ |
|
10 | 10 | |
|
11 | 11 | import time |
|
12 | 12 | import itertools |
|
13 | 13 | |
|
14 | 14 | import numpy |
|
15 | 15 | import math |
|
16 | 16 | |
|
17 | 17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
18 | 18 | from schainpy.model.data.jrodata import Spectra |
|
19 | 19 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
20 | from schainpy.model.data import _noise | |
|
21 | ||
|
20 | 22 | from schainpy.utils import log |
|
21 | 23 | |
|
22 | 24 | from scipy.optimize import curve_fit |
|
23 | 25 | |
|
24 | 26 | class SpectraProc(ProcessingUnit): |
|
25 | 27 | |
|
26 | 28 | def __init__(self): |
|
27 | 29 | |
|
28 | 30 | ProcessingUnit.__init__(self) |
|
29 | 31 | |
|
30 | 32 | self.buffer = None |
|
31 | 33 | self.firstdatatime = None |
|
32 | 34 | self.profIndex = 0 |
|
33 | 35 | self.dataOut = Spectra() |
|
34 | 36 | self.id_min = None |
|
35 | 37 | self.id_max = None |
|
36 | 38 | self.setupReq = False #Agregar a todas las unidades de proc |
|
37 | 39 | |
|
38 | 40 | def __updateSpecFromVoltage(self): |
|
39 | 41 | |
|
40 | 42 | self.dataOut.timeZone = self.dataIn.timeZone |
|
41 | 43 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
42 | 44 | self.dataOut.errorCount = self.dataIn.errorCount |
|
43 | 45 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
44 | 46 | try: |
|
45 | 47 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
46 | 48 | except: |
|
47 | 49 | pass |
|
48 | 50 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
49 | 51 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
50 | 52 | self.dataOut.channelList = self.dataIn.channelList |
|
51 | 53 | self.dataOut.heightList = self.dataIn.heightList |
|
52 | 54 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
53 | 55 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
54 | 56 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
55 | 57 | self.dataOut.utctime = self.firstdatatime |
|
56 | 58 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
57 | 59 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
58 | 60 | self.dataOut.flagShiftFFT = False |
|
59 | 61 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
60 | 62 | self.dataOut.nIncohInt = 1 |
|
61 | 63 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
62 | 64 | self.dataOut.frequency = self.dataIn.frequency |
|
63 | 65 | self.dataOut.realtime = self.dataIn.realtime |
|
64 | 66 | self.dataOut.azimuth = self.dataIn.azimuth |
|
65 | 67 | self.dataOut.zenith = self.dataIn.zenith |
|
66 | 68 | self.dataOut.codeList = self.dataIn.codeList |
|
67 | 69 | self.dataOut.azimuthList = self.dataIn.azimuthList |
|
68 | 70 | self.dataOut.elevationList = self.dataIn.elevationList |
|
69 | 71 | |
|
70 | 72 | |
|
71 | 73 | def __getFft(self): |
|
72 | 74 | """ |
|
73 | 75 | Convierte valores de Voltaje a Spectra |
|
74 | 76 | |
|
75 | 77 | Affected: |
|
76 | 78 | self.dataOut.data_spc |
|
77 | 79 | self.dataOut.data_cspc |
|
78 | 80 | self.dataOut.data_dc |
|
79 | 81 | self.dataOut.heightList |
|
80 | 82 | self.profIndex |
|
81 | 83 | self.buffer |
|
82 | 84 | self.dataOut.flagNoData |
|
83 | 85 | """ |
|
84 | 86 | fft_volt = numpy.fft.fft( |
|
85 | 87 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
86 | 88 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
87 | 89 | dc = fft_volt[:, 0, :] |
|
88 | 90 | |
|
89 | 91 | # calculo de self-spectra |
|
90 | 92 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
91 | 93 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
92 | 94 | spc = spc.real |
|
93 | 95 | |
|
94 | 96 | blocksize = 0 |
|
95 | 97 | blocksize += dc.size |
|
96 | 98 | blocksize += spc.size |
|
97 | 99 | |
|
98 | 100 | cspc = None |
|
99 | 101 | pairIndex = 0 |
|
100 | 102 | if self.dataOut.pairsList != None: |
|
101 | 103 | # calculo de cross-spectra |
|
102 | 104 | cspc = numpy.zeros( |
|
103 | 105 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
104 | 106 | for pair in self.dataOut.pairsList: |
|
105 | 107 | if pair[0] not in self.dataOut.channelList: |
|
106 | 108 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
107 | 109 | str(pair), str(self.dataOut.channelList))) |
|
108 | 110 | if pair[1] not in self.dataOut.channelList: |
|
109 | 111 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
110 | 112 | str(pair), str(self.dataOut.channelList))) |
|
111 | 113 | |
|
112 | 114 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
113 | 115 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
114 | 116 | pairIndex += 1 |
|
115 | 117 | blocksize += cspc.size |
|
116 | 118 | |
|
117 | 119 | self.dataOut.data_spc = spc |
|
118 | 120 | self.dataOut.data_cspc = cspc |
|
119 | 121 | self.dataOut.data_dc = dc |
|
120 | 122 | self.dataOut.blockSize = blocksize |
|
121 | 123 | self.dataOut.flagShiftFFT = False |
|
122 | 124 | |
|
123 | 125 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): |
|
124 | 126 | |
|
125 | 127 | if self.dataIn.type == "Spectra": |
|
126 | 128 | |
|
127 | 129 | try: |
|
128 | 130 | self.dataOut.copy(self.dataIn) |
|
129 | 131 | |
|
130 | 132 | except Exception as e: |
|
131 | 133 | print(e) |
|
132 | 134 | |
|
133 | 135 | if shift_fft: |
|
134 | 136 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
135 | 137 | shift = int(self.dataOut.nFFTPoints/2) |
|
136 | 138 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
137 | 139 | |
|
138 | 140 | if self.dataOut.data_cspc is not None: |
|
139 | 141 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
140 | 142 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
141 | 143 | if pairsList: |
|
142 | 144 | self.__selectPairs(pairsList) |
|
143 | 145 | |
|
144 | 146 | |
|
145 | 147 | elif self.dataIn.type == "Voltage": |
|
146 | 148 | |
|
147 | 149 | self.dataOut.flagNoData = True |
|
148 | 150 | |
|
149 | 151 | if nFFTPoints == None: |
|
150 | 152 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
151 | 153 | |
|
152 | 154 | if nProfiles == None: |
|
153 | 155 | nProfiles = nFFTPoints |
|
154 | 156 | |
|
155 | 157 | if ippFactor == None: |
|
156 | 158 | self.dataOut.ippFactor = 1 |
|
157 | 159 | |
|
158 | 160 | self.dataOut.nFFTPoints = nFFTPoints |
|
159 | 161 | |
|
160 | 162 | if self.buffer is None: |
|
161 | 163 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
162 | 164 | nProfiles, |
|
163 | 165 | self.dataIn.nHeights), |
|
164 | 166 | dtype='complex') |
|
165 | 167 | |
|
166 | 168 | if self.dataIn.flagDataAsBlock: |
|
167 | 169 | nVoltProfiles = self.dataIn.data.shape[1] |
|
168 | 170 | |
|
169 | 171 | if nVoltProfiles == nProfiles: |
|
170 | 172 | self.buffer = self.dataIn.data.copy() |
|
171 | 173 | self.profIndex = nVoltProfiles |
|
172 | 174 | |
|
173 | 175 | elif nVoltProfiles < nProfiles: |
|
174 | 176 | |
|
175 | 177 | if self.profIndex == 0: |
|
176 | 178 | self.id_min = 0 |
|
177 | 179 | self.id_max = nVoltProfiles |
|
178 | 180 | |
|
179 | 181 | self.buffer[:, self.id_min:self.id_max, |
|
180 | 182 | :] = self.dataIn.data |
|
181 | 183 | self.profIndex += nVoltProfiles |
|
182 | 184 | self.id_min += nVoltProfiles |
|
183 | 185 | self.id_max += nVoltProfiles |
|
184 | 186 | else: |
|
185 | 187 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
186 | 188 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
187 | 189 | self.dataOut.flagNoData = True |
|
188 | 190 | else: |
|
189 | 191 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
190 | 192 | self.profIndex += 1 |
|
191 | 193 | |
|
192 | 194 | if self.firstdatatime == None: |
|
193 | 195 | self.firstdatatime = self.dataIn.utctime |
|
194 | 196 | |
|
195 | 197 | if self.profIndex == nProfiles: |
|
196 | 198 | self.__updateSpecFromVoltage() |
|
197 | 199 | if pairsList == None: |
|
198 | 200 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
199 | 201 | else: |
|
200 | 202 | self.dataOut.pairsList = pairsList |
|
201 | 203 | self.__getFft() |
|
202 | 204 | self.dataOut.flagNoData = False |
|
203 | 205 | self.firstdatatime = None |
|
204 | 206 | self.profIndex = 0 |
|
205 | 207 | |
|
206 | 208 | else: |
|
207 | 209 | raise ValueError("The type of input object '%s' is not valid".format( |
|
208 | 210 | self.dataIn.type)) |
|
209 | 211 | |
|
210 | 212 | def __selectPairs(self, pairsList): |
|
211 | 213 | |
|
212 | 214 | if not pairsList: |
|
213 | 215 | return |
|
214 | 216 | |
|
215 | 217 | pairs = [] |
|
216 | 218 | pairsIndex = [] |
|
217 | 219 | |
|
218 | 220 | for pair in pairsList: |
|
219 | 221 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
220 | 222 | continue |
|
221 | 223 | pairs.append(pair) |
|
222 | 224 | pairsIndex.append(pairs.index(pair)) |
|
223 | 225 | |
|
224 | 226 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
225 | 227 | self.dataOut.pairsList = pairs |
|
226 | 228 | |
|
227 | 229 | return |
|
228 | 230 | |
|
229 | 231 | def selectFFTs(self, minFFT, maxFFT ): |
|
230 | 232 | """ |
|
231 | 233 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
232 | 234 | minFFT<= FFT <= maxFFT |
|
233 | 235 | """ |
|
234 | 236 | |
|
235 | 237 | if (minFFT > maxFFT): |
|
236 | 238 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
237 | 239 | |
|
238 | 240 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
239 | 241 | minFFT = self.dataOut.getFreqRange()[0] |
|
240 | 242 | |
|
241 | 243 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
242 | 244 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
243 | 245 | |
|
244 | 246 | minIndex = 0 |
|
245 | 247 | maxIndex = 0 |
|
246 | 248 | FFTs = self.dataOut.getFreqRange() |
|
247 | 249 | |
|
248 | 250 | inda = numpy.where(FFTs >= minFFT) |
|
249 | 251 | indb = numpy.where(FFTs <= maxFFT) |
|
250 | 252 | |
|
251 | 253 | try: |
|
252 | 254 | minIndex = inda[0][0] |
|
253 | 255 | except: |
|
254 | 256 | minIndex = 0 |
|
255 | 257 | |
|
256 | 258 | try: |
|
257 | 259 | maxIndex = indb[0][-1] |
|
258 | 260 | except: |
|
259 | 261 | maxIndex = len(FFTs) |
|
260 | 262 | |
|
261 | 263 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
262 | 264 | |
|
263 | 265 | return 1 |
|
264 | 266 | |
|
265 | 267 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
266 | 268 | newheis = numpy.where( |
|
267 | 269 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
268 | 270 | |
|
269 | 271 | if hei_ref != None: |
|
270 | 272 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
271 | 273 | |
|
272 | 274 | minIndex = min(newheis[0]) |
|
273 | 275 | maxIndex = max(newheis[0]) |
|
274 | 276 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
275 | 277 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
276 | 278 | |
|
277 | 279 | # determina indices |
|
278 | 280 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
279 | 281 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
280 | 282 | avg_dB = 10 * \ |
|
281 | 283 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
282 | 284 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
283 | 285 | beacon_heiIndexList = [] |
|
284 | 286 | for val in avg_dB.tolist(): |
|
285 | 287 | if val >= beacon_dB[0]: |
|
286 | 288 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
287 | 289 | |
|
288 | 290 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
289 | 291 | data_cspc = None |
|
290 | 292 | if self.dataOut.data_cspc is not None: |
|
291 | 293 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
292 | 294 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
293 | 295 | |
|
294 | 296 | data_dc = None |
|
295 | 297 | if self.dataOut.data_dc is not None: |
|
296 | 298 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
297 | 299 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
298 | 300 | |
|
299 | 301 | self.dataOut.data_spc = data_spc |
|
300 | 302 | self.dataOut.data_cspc = data_cspc |
|
301 | 303 | self.dataOut.data_dc = data_dc |
|
302 | 304 | self.dataOut.heightList = heightList |
|
303 | 305 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
304 | 306 | |
|
305 | 307 | return 1 |
|
306 | 308 | |
|
307 | 309 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
308 | 310 | """ |
|
309 | 311 | |
|
310 | 312 | """ |
|
311 | 313 | |
|
312 | 314 | if (minIndex < 0) or (minIndex > maxIndex): |
|
313 | 315 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
314 | 316 | |
|
315 | 317 | if (maxIndex >= self.dataOut.nProfiles): |
|
316 | 318 | maxIndex = self.dataOut.nProfiles-1 |
|
317 | 319 | |
|
318 | 320 | #Spectra |
|
319 | 321 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
320 | 322 | |
|
321 | 323 | data_cspc = None |
|
322 | 324 | if self.dataOut.data_cspc is not None: |
|
323 | 325 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
324 | 326 | |
|
325 | 327 | data_dc = None |
|
326 | 328 | if self.dataOut.data_dc is not None: |
|
327 | 329 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
328 | 330 | |
|
329 | 331 | self.dataOut.data_spc = data_spc |
|
330 | 332 | self.dataOut.data_cspc = data_cspc |
|
331 | 333 | self.dataOut.data_dc = data_dc |
|
332 | 334 | |
|
333 | 335 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
334 | 336 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
335 | 337 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
336 | 338 | |
|
337 | 339 | return 1 |
|
338 | 340 | |
|
339 | 341 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
340 | 342 | # validacion de rango |
|
341 | 343 | if minHei == None: |
|
342 | 344 | minHei = self.dataOut.heightList[0] |
|
343 | 345 | |
|
344 | 346 | if maxHei == None: |
|
345 | 347 | maxHei = self.dataOut.heightList[-1] |
|
346 | 348 | |
|
347 | 349 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
348 | 350 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
349 | 351 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
350 | 352 | minHei = self.dataOut.heightList[0] |
|
351 | 353 | |
|
352 | 354 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
353 | 355 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
354 | 356 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
355 | 357 | maxHei = self.dataOut.heightList[-1] |
|
356 | 358 | |
|
357 | 359 | # validacion de velocidades |
|
358 | 360 | velrange = self.dataOut.getVelRange(1) |
|
359 | 361 | |
|
360 | 362 | if minVel == None: |
|
361 | 363 | minVel = velrange[0] |
|
362 | 364 | |
|
363 | 365 | if maxVel == None: |
|
364 | 366 | maxVel = velrange[-1] |
|
365 | 367 | |
|
366 | 368 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
367 | 369 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
368 | 370 | print('minVel is setting to %.2f' % (velrange[0])) |
|
369 | 371 | minVel = velrange[0] |
|
370 | 372 | |
|
371 | 373 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
372 | 374 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
373 | 375 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
374 | 376 | maxVel = velrange[-1] |
|
375 | 377 | |
|
376 | 378 | # seleccion de indices para rango |
|
377 | 379 | minIndex = 0 |
|
378 | 380 | maxIndex = 0 |
|
379 | 381 | heights = self.dataOut.heightList |
|
380 | 382 | |
|
381 | 383 | inda = numpy.where(heights >= minHei) |
|
382 | 384 | indb = numpy.where(heights <= maxHei) |
|
383 | 385 | |
|
384 | 386 | try: |
|
385 | 387 | minIndex = inda[0][0] |
|
386 | 388 | except: |
|
387 | 389 | minIndex = 0 |
|
388 | 390 | |
|
389 | 391 | try: |
|
390 | 392 | maxIndex = indb[0][-1] |
|
391 | 393 | except: |
|
392 | 394 | maxIndex = len(heights) |
|
393 | 395 | |
|
394 | 396 | if (minIndex < 0) or (minIndex > maxIndex): |
|
395 | 397 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
396 | 398 | minIndex, maxIndex)) |
|
397 | 399 | |
|
398 | 400 | if (maxIndex >= self.dataOut.nHeights): |
|
399 | 401 | maxIndex = self.dataOut.nHeights - 1 |
|
400 | 402 | |
|
401 | 403 | # seleccion de indices para velocidades |
|
402 | 404 | indminvel = numpy.where(velrange >= minVel) |
|
403 | 405 | indmaxvel = numpy.where(velrange <= maxVel) |
|
404 | 406 | try: |
|
405 | 407 | minIndexVel = indminvel[0][0] |
|
406 | 408 | except: |
|
407 | 409 | minIndexVel = 0 |
|
408 | 410 | |
|
409 | 411 | try: |
|
410 | 412 | maxIndexVel = indmaxvel[0][-1] |
|
411 | 413 | except: |
|
412 | 414 | maxIndexVel = len(velrange) |
|
413 | 415 | |
|
414 | 416 | # seleccion del espectro |
|
415 | 417 | data_spc = self.dataOut.data_spc[:, |
|
416 | 418 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
417 | 419 | # estimacion de ruido |
|
418 | 420 | noise = numpy.zeros(self.dataOut.nChannels) |
|
419 | 421 | |
|
420 | 422 | for channel in range(self.dataOut.nChannels): |
|
421 | 423 | daux = data_spc[channel, :, :] |
|
422 | 424 | sortdata = numpy.sort(daux, axis=None) |
|
423 | 425 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
424 | 426 | |
|
425 | 427 | self.dataOut.noise_estimation = noise.copy() |
|
426 | 428 | |
|
427 | 429 | return 1 |
|
428 | 430 | |
|
429 | 431 | class removeDC(Operation): |
|
430 | 432 | |
|
431 | 433 | def run(self, dataOut, mode=2): |
|
432 | 434 | self.dataOut = dataOut |
|
433 | 435 | jspectra = self.dataOut.data_spc |
|
434 | 436 | jcspectra = self.dataOut.data_cspc |
|
435 | 437 | |
|
436 | 438 | num_chan = jspectra.shape[0] |
|
437 | 439 | num_hei = jspectra.shape[2] |
|
438 | 440 | |
|
439 | 441 | if jcspectra is not None: |
|
440 | 442 | jcspectraExist = True |
|
441 | 443 | num_pairs = jcspectra.shape[0] |
|
442 | 444 | else: |
|
443 | 445 | jcspectraExist = False |
|
444 | 446 | |
|
445 | 447 | freq_dc = int(jspectra.shape[1] / 2) |
|
446 | 448 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
447 | 449 | ind_vel = ind_vel.astype(int) |
|
448 | 450 | |
|
449 | 451 | if ind_vel[0] < 0: |
|
450 | 452 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
451 | 453 | |
|
452 | 454 | if mode == 1: |
|
453 | 455 | jspectra[:, freq_dc, :] = ( |
|
454 | 456 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
455 | 457 | |
|
456 | 458 | if jcspectraExist: |
|
457 | 459 | jcspectra[:, freq_dc, :] = ( |
|
458 | 460 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
459 | 461 | |
|
460 | 462 | if mode == 2: |
|
461 | 463 | |
|
462 | 464 | vel = numpy.array([-2, -1, 1, 2]) |
|
463 | 465 | xx = numpy.zeros([4, 4]) |
|
464 | 466 | |
|
465 | 467 | for fil in range(4): |
|
466 | 468 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
467 | 469 | |
|
468 | 470 | xx_inv = numpy.linalg.inv(xx) |
|
469 | 471 | xx_aux = xx_inv[0, :] |
|
470 | 472 | |
|
471 | 473 | for ich in range(num_chan): |
|
472 | 474 | yy = jspectra[ich, ind_vel, :] |
|
473 | 475 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
474 | 476 | |
|
475 | 477 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
476 | 478 | cjunkid = sum(junkid) |
|
477 | 479 | |
|
478 | 480 | if cjunkid.any(): |
|
479 | 481 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
480 | 482 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
481 | 483 | |
|
482 | 484 | if jcspectraExist: |
|
483 | 485 | for ip in range(num_pairs): |
|
484 | 486 | yy = jcspectra[ip, ind_vel, :] |
|
485 | 487 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
486 | 488 | |
|
487 | 489 | self.dataOut.data_spc = jspectra |
|
488 | 490 | self.dataOut.data_cspc = jcspectra |
|
489 | 491 | |
|
490 | 492 | return self.dataOut |
|
491 | 493 | |
|
492 | 494 | class getNoise(Operation): |
|
493 | 495 | |
|
494 | 496 | def __init__(self): |
|
495 | 497 | |
|
496 | 498 | Operation.__init__(self) |
|
497 | 499 | |
|
498 | 500 | def run(self, dataOut, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None): |
|
499 | 501 | self.dataOut = dataOut |
|
500 | 502 | |
|
501 | 503 | if minHei == None: |
|
502 | 504 | minHei = self.dataOut.heightList[0] |
|
503 | 505 | |
|
504 | 506 | if maxHei == None: |
|
505 | 507 | maxHei = self.dataOut.heightList[-1] |
|
506 | 508 | |
|
507 | 509 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
508 | 510 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
509 | 511 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
510 | 512 | minHei = self.dataOut.heightList[0] |
|
511 | 513 | |
|
512 | 514 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
513 | 515 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
514 | 516 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
515 | 517 | maxHei = self.dataOut.heightList[-1] |
|
516 | 518 | |
|
517 | 519 | |
|
518 | 520 | #indices relativos a los puntos de fft, puede ser de acuerdo a velocidad o frecuencia |
|
519 | 521 | minIndexFFT = 0 |
|
520 | 522 | maxIndexFFT = 0 |
|
521 | 523 | # validacion de velocidades |
|
522 | 524 | indminPoint = None |
|
523 | 525 | indmaxPoint = None |
|
524 | 526 | |
|
525 | 527 | if minVel == None and maxVel == None: |
|
526 | 528 | |
|
527 | 529 | freqrange = self.dataOut.getFreqRange(1) |
|
528 | 530 | |
|
529 | 531 | if minFreq == None: |
|
530 | 532 | minFreq = freqrange[0] |
|
531 | 533 | |
|
532 | 534 | if maxFreq == None: |
|
533 | 535 | maxFreq = freqrange[-1] |
|
534 | 536 | |
|
535 | 537 | if (minFreq < freqrange[0]) or (minFreq > maxFreq): |
|
536 | 538 | print('minFreq: %.2f is out of the frequency range' % (minFreq)) |
|
537 | 539 | print('minFreq is setting to %.2f' % (freqrange[0])) |
|
538 | 540 | minFreq = freqrange[0] |
|
539 | 541 | |
|
540 | 542 | if (maxFreq > freqrange[-1]) or (maxFreq < minFreq): |
|
541 | 543 | print('maxFreq: %.2f is out of the frequency range' % (maxFreq)) |
|
542 | 544 | print('maxFreq is setting to %.2f' % (freqrange[-1])) |
|
543 | 545 | maxFreq = freqrange[-1] |
|
544 | 546 | |
|
545 | 547 | indminPoint = numpy.where(freqrange >= minFreq) |
|
546 | 548 | indmaxPoint = numpy.where(freqrange <= maxFreq) |
|
547 | 549 | |
|
548 | 550 | else: |
|
549 | 551 | velrange = self.dataOut.getVelRange(1) |
|
550 | 552 | |
|
551 | 553 | if minVel == None: |
|
552 | 554 | minVel = velrange[0] |
|
553 | 555 | |
|
554 | 556 | if maxVel == None: |
|
555 | 557 | maxVel = velrange[-1] |
|
556 | 558 | |
|
557 | 559 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
558 | 560 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
559 | 561 | print('minVel is setting to %.2f' % (velrange[0])) |
|
560 | 562 | minVel = velrange[0] |
|
561 | 563 | |
|
562 | 564 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
563 | 565 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
564 | 566 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
565 | 567 | maxVel = velrange[-1] |
|
566 | 568 | |
|
567 | 569 | indminPoint = numpy.where(velrange >= minVel) |
|
568 | 570 | indmaxPoint = numpy.where(velrange <= maxVel) |
|
569 | 571 | |
|
570 | 572 | |
|
571 | 573 | # seleccion de indices para rango |
|
572 | 574 | minIndex = 0 |
|
573 | 575 | maxIndex = 0 |
|
574 | 576 | heights = self.dataOut.heightList |
|
575 | 577 | |
|
576 | 578 | inda = numpy.where(heights >= minHei) |
|
577 | 579 | indb = numpy.where(heights <= maxHei) |
|
578 | 580 | |
|
579 | 581 | try: |
|
580 | 582 | minIndex = inda[0][0] |
|
581 | 583 | except: |
|
582 | 584 | minIndex = 0 |
|
583 | 585 | |
|
584 | 586 | try: |
|
585 | 587 | maxIndex = indb[0][-1] |
|
586 | 588 | except: |
|
587 | 589 | maxIndex = len(heights) |
|
588 | 590 | |
|
589 | 591 | if (minIndex < 0) or (minIndex > maxIndex): |
|
590 | 592 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
591 | 593 | minIndex, maxIndex)) |
|
592 | 594 | |
|
593 | 595 | if (maxIndex >= self.dataOut.nHeights): |
|
594 | 596 | maxIndex = self.dataOut.nHeights - 1 |
|
595 | 597 | #############################################################3 |
|
596 | 598 | # seleccion de indices para velocidades |
|
597 | 599 | |
|
598 | 600 | try: |
|
599 | 601 | minIndexFFT = indminPoint[0][0] |
|
600 | 602 | except: |
|
601 | 603 | minIndexFFT = 0 |
|
602 | 604 | |
|
603 | 605 | try: |
|
604 | 606 | maxIndexFFT = indmaxPoint[0][-1] |
|
605 | 607 | except: |
|
606 | 608 | maxIndexFFT = len( self.dataOut.getFreqRange(1)) |
|
607 | 609 | |
|
608 | 610 | #print(minIndex, maxIndex,minIndexVel, maxIndexVel) |
|
609 | 611 | self.dataOut.noise_estimation = None |
|
610 | 612 | noise = self.dataOut.getNoise(xmin_index=minIndexFFT, xmax_index=maxIndexFFT, ymin_index=minIndex, ymax_index=maxIndex) |
|
611 | 613 | |
|
612 | 614 | self.dataOut.noise_estimation = noise.copy() # dataOut.noise |
|
613 | 615 | #print("2: ",10*numpy.log10(self.dataOut.noise_estimation/64)) |
|
614 | 616 | return self.dataOut |
|
615 | 617 | |
|
616 | 618 | |
|
617 | 619 | |
|
618 | 620 | # import matplotlib.pyplot as plt |
|
619 | 621 | |
|
620 | 622 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): |
|
621 | 623 | z = (x - a1) / a2 |
|
622 | 624 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 |
|
623 | 625 | return y |
|
624 | 626 | |
|
625 | 627 | |
|
626 | 628 | class CleanRayleigh(Operation): |
|
627 | 629 | |
|
628 | 630 | def __init__(self): |
|
629 | 631 | |
|
630 | 632 | Operation.__init__(self) |
|
631 | 633 | self.i=0 |
|
632 | 634 | self.isConfig = False |
|
633 | 635 | self.__dataReady = False |
|
634 | 636 | self.__profIndex = 0 |
|
635 | 637 | self.byTime = False |
|
636 | 638 | self.byProfiles = False |
|
637 | 639 | |
|
638 | 640 | self.bloques = None |
|
639 | 641 | self.bloque0 = None |
|
640 | 642 | |
|
641 | 643 | self.index = 0 |
|
642 | 644 | |
|
643 | 645 | self.buffer = 0 |
|
644 | 646 | self.buffer2 = 0 |
|
645 | 647 | self.buffer3 = 0 |
|
646 | 648 | |
|
647 | 649 | |
|
648 | 650 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): |
|
649 | 651 | |
|
650 | 652 | self.nChannels = dataOut.nChannels |
|
651 | 653 | self.nProf = dataOut.nProfiles |
|
652 | 654 | self.nPairs = dataOut.data_cspc.shape[0] |
|
653 | 655 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
654 | 656 | self.spectra = dataOut.data_spc |
|
655 | 657 | self.cspectra = dataOut.data_cspc |
|
656 | 658 | self.heights = dataOut.heightList #alturas totales |
|
657 | 659 | self.nHeights = len(self.heights) |
|
658 | 660 | self.min_hei = min_hei |
|
659 | 661 | self.max_hei = max_hei |
|
660 | 662 | if (self.min_hei == None): |
|
661 | 663 | self.min_hei = 0 |
|
662 | 664 | if (self.max_hei == None): |
|
663 | 665 | self.max_hei = dataOut.heightList[-1] |
|
664 | 666 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() |
|
665 | 667 | self.heightsClean = self.heights[self.hval] #alturas filtradas |
|
666 | 668 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas |
|
667 | 669 | self.nHeightsClean = len(self.heightsClean) |
|
668 | 670 | self.channels = dataOut.channelList |
|
669 | 671 | self.nChan = len(self.channels) |
|
670 | 672 | self.nIncohInt = dataOut.nIncohInt |
|
671 | 673 | self.__initime = dataOut.utctime |
|
672 | 674 | self.maxAltInd = self.hval[-1]+1 |
|
673 | 675 | self.minAltInd = self.hval[0] |
|
674 | 676 | |
|
675 | 677 | self.crosspairs = dataOut.pairsList |
|
676 | 678 | self.nPairs = len(self.crosspairs) |
|
677 | 679 | self.normFactor = dataOut.normFactor |
|
678 | 680 | self.nFFTPoints = dataOut.nFFTPoints |
|
679 | 681 | self.ippSeconds = dataOut.ippSeconds |
|
680 | 682 | self.currentTime = self.__initime |
|
681 | 683 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
682 | 684 | self.factor_stdv = factor_stdv |
|
683 | 685 | |
|
684 | 686 | if n != None : |
|
685 | 687 | self.byProfiles = True |
|
686 | 688 | self.nIntProfiles = n |
|
687 | 689 | else: |
|
688 | 690 | self.__integrationtime = timeInterval |
|
689 | 691 | |
|
690 | 692 | self.__dataReady = False |
|
691 | 693 | self.isConfig = True |
|
692 | 694 | |
|
693 | 695 | |
|
694 | 696 | |
|
695 | 697 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): |
|
696 | 698 | |
|
697 | 699 | if not self.isConfig : |
|
698 | 700 | |
|
699 | 701 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) |
|
700 | 702 | |
|
701 | 703 | tini=dataOut.utctime |
|
702 | 704 | |
|
703 | 705 | if self.byProfiles: |
|
704 | 706 | if self.__profIndex == self.nIntProfiles: |
|
705 | 707 | self.__dataReady = True |
|
706 | 708 | else: |
|
707 | 709 | if (tini - self.__initime) >= self.__integrationtime: |
|
708 | 710 | |
|
709 | 711 | self.__dataReady = True |
|
710 | 712 | self.__initime = tini |
|
711 | 713 | |
|
712 | 714 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): |
|
713 | 715 | |
|
714 | 716 | if self.__dataReady: |
|
715 | 717 | |
|
716 | 718 | self.__profIndex = 0 |
|
717 | 719 | jspc = self.buffer |
|
718 | 720 | jcspc = self.buffer2 |
|
719 | 721 | #jnoise = self.buffer3 |
|
720 | 722 | self.buffer = dataOut.data_spc |
|
721 | 723 | self.buffer2 = dataOut.data_cspc |
|
722 | 724 | #self.buffer3 = dataOut.noise |
|
723 | 725 | self.currentTime = dataOut.utctime |
|
724 | 726 | if numpy.any(jspc) : |
|
725 | 727 | #print( jspc.shape, jcspc.shape) |
|
726 | 728 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) |
|
727 | 729 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) |
|
728 | 730 | self.__dataReady = False |
|
729 | 731 | #print( jspc.shape, jcspc.shape) |
|
730 | 732 | dataOut.flagNoData = False |
|
731 | 733 | else: |
|
732 | 734 | dataOut.flagNoData = True |
|
733 | 735 | self.__dataReady = False |
|
734 | 736 | return dataOut |
|
735 | 737 | else: |
|
736 | 738 | #print( len(self.buffer)) |
|
737 | 739 | if numpy.any(self.buffer): |
|
738 | 740 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) |
|
739 | 741 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) |
|
740 | 742 | self.buffer3 += dataOut.data_dc |
|
741 | 743 | else: |
|
742 | 744 | self.buffer = dataOut.data_spc |
|
743 | 745 | self.buffer2 = dataOut.data_cspc |
|
744 | 746 | self.buffer3 = dataOut.data_dc |
|
745 | 747 | #print self.index, self.fint |
|
746 | 748 | #print self.buffer2.shape |
|
747 | 749 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO |
|
748 | 750 | self.__profIndex += 1 |
|
749 | 751 | return dataOut ## NOTE: REV |
|
750 | 752 | |
|
751 | 753 | |
|
752 | 754 | #index = tini.tm_hour*12+tini.tm_min/5 |
|
753 | 755 | '''REVISAR''' |
|
754 | 756 | # jspc = jspc/self.nFFTPoints/self.normFactor |
|
755 | 757 | # jcspc = jcspc/self.nFFTPoints/self.normFactor |
|
756 | 758 | |
|
757 | 759 | |
|
758 | 760 | |
|
759 | 761 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
760 | 762 | dataOut.data_spc = tmp_spectra |
|
761 | 763 | dataOut.data_cspc = tmp_cspectra |
|
762 | 764 | |
|
763 | 765 | #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
764 | 766 | |
|
765 | 767 | dataOut.data_dc = self.buffer3 |
|
766 | 768 | dataOut.nIncohInt *= self.nIntProfiles |
|
767 | 769 | dataOut.utctime = self.currentTime #tiempo promediado |
|
768 | 770 | #print("Time: ",time.localtime(dataOut.utctime)) |
|
769 | 771 | # dataOut.data_spc = sat_spectra |
|
770 | 772 | # dataOut.data_cspc = sat_cspectra |
|
771 | 773 | self.buffer = 0 |
|
772 | 774 | self.buffer2 = 0 |
|
773 | 775 | self.buffer3 = 0 |
|
774 | 776 | |
|
775 | 777 | return dataOut |
|
776 | 778 | |
|
777 | 779 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): |
|
778 | 780 | #print("OP cleanRayleigh") |
|
779 | 781 | #import matplotlib.pyplot as plt |
|
780 | 782 | #for k in range(149): |
|
781 | 783 | #channelsProcssd = [] |
|
782 | 784 | #channelA_ok = False |
|
783 | 785 | #rfunc = cspectra.copy() #self.bloques |
|
784 | 786 | rfunc = spectra.copy() |
|
785 | 787 | #rfunc = cspectra |
|
786 | 788 | #val_spc = spectra*0.0 #self.bloque0*0.0 |
|
787 | 789 | #val_cspc = cspectra*0.0 #self.bloques*0.0 |
|
788 | 790 | #in_sat_spectra = spectra.copy() #self.bloque0 |
|
789 | 791 | #in_sat_cspectra = cspectra.copy() #self.bloques |
|
790 | 792 | |
|
791 | 793 | |
|
792 | 794 | ###ONLY FOR TEST: |
|
793 | 795 | raxs = math.ceil(math.sqrt(self.nPairs)) |
|
794 | 796 | caxs = math.ceil(self.nPairs/raxs) |
|
795 | 797 | if self.nPairs <4: |
|
796 | 798 | raxs = 2 |
|
797 | 799 | caxs = 2 |
|
798 | 800 | #print(raxs, caxs) |
|
799 | 801 | fft_rev = 14 #nFFT to plot |
|
800 | 802 | hei_rev = ((self.heights >= 550) & (self.heights <= 551)).nonzero() #hei to plot |
|
801 | 803 | hei_rev = hei_rev[0] |
|
802 | 804 | #print(hei_rev) |
|
803 | 805 | |
|
804 | 806 | #print numpy.absolute(rfunc[:,0,0,14]) |
|
805 | 807 | |
|
806 | 808 | gauss_fit, covariance = None, None |
|
807 | 809 | for ih in range(self.minAltInd,self.maxAltInd): |
|
808 | 810 | for ifreq in range(self.nFFTPoints): |
|
809 | 811 | ''' |
|
810 | 812 | ###ONLY FOR TEST: |
|
811 | 813 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
812 | 814 | fig, axs = plt.subplots(raxs, caxs) |
|
813 | 815 | fig2, axs2 = plt.subplots(raxs, caxs) |
|
814 | 816 | col_ax = 0 |
|
815 | 817 | row_ax = 0 |
|
816 | 818 | ''' |
|
817 | 819 | #print(self.nPairs) |
|
818 | 820 | for ii in range(self.nChan): #PARES DE CANALES SELF y CROSS |
|
819 | 821 | # if self.crosspairs[ii][1]-self.crosspairs[ii][0] > 1: # APLICAR SOLO EN PARES CONTIGUOS |
|
820 | 822 | # continue |
|
821 | 823 | # if not self.crosspairs[ii][0] in channelsProcssd: |
|
822 | 824 | # channelA_ok = True |
|
823 | 825 | #print("pair: ",self.crosspairs[ii]) |
|
824 | 826 | ''' |
|
825 | 827 | ###ONLY FOR TEST: |
|
826 | 828 | if (col_ax%caxs==0 and col_ax!=0 and self.nPairs !=1): |
|
827 | 829 | col_ax = 0 |
|
828 | 830 | row_ax += 1 |
|
829 | 831 | ''' |
|
830 | 832 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? |
|
831 | 833 | #print(func2clean.shape) |
|
832 | 834 | val = (numpy.isfinite(func2clean)==True).nonzero() |
|
833 | 835 | |
|
834 | 836 | if len(val)>0: #limitador |
|
835 | 837 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) |
|
836 | 838 | if min_val <= -40 : |
|
837 | 839 | min_val = -40 |
|
838 | 840 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 |
|
839 | 841 | if max_val >= 200 : |
|
840 | 842 | max_val = 200 |
|
841 | 843 | #print min_val, max_val |
|
842 | 844 | step = 1 |
|
843 | 845 | #print("Getting bins and the histogram") |
|
844 | 846 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step |
|
845 | 847 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
846 | 848 | #print(len(y_dist),len(binstep[:-1])) |
|
847 | 849 | #print(row_ax,col_ax, " ..") |
|
848 | 850 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) |
|
849 | 851 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) |
|
850 | 852 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) |
|
851 | 853 | parg = [numpy.amax(y_dist),mean,sigma] |
|
852 | 854 | |
|
853 | 855 | newY = None |
|
854 | 856 | |
|
855 | 857 | try : |
|
856 | 858 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) |
|
857 | 859 | mode = gauss_fit[1] |
|
858 | 860 | stdv = gauss_fit[2] |
|
859 | 861 | #print(" FIT OK",gauss_fit) |
|
860 | 862 | ''' |
|
861 | 863 | ###ONLY FOR TEST: |
|
862 | 864 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
863 | 865 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) |
|
864 | 866 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
865 | 867 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
866 | 868 | axs[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
867 | 869 | ''' |
|
868 | 870 | except: |
|
869 | 871 | mode = mean |
|
870 | 872 | stdv = sigma |
|
871 | 873 | #print("FIT FAIL") |
|
872 | 874 | #continue |
|
873 | 875 | |
|
874 | 876 | |
|
875 | 877 | #print(mode,stdv) |
|
876 | 878 | #Removing echoes greater than mode + std_factor*stdv |
|
877 | 879 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() |
|
878 | 880 | #noval tiene los indices que se van a remover |
|
879 | 881 | #print("Chan ",ii," novals: ",len(noval[0])) |
|
880 | 882 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) |
|
881 | 883 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() |
|
882 | 884 | #print(novall) |
|
883 | 885 | #print(" ",self.pairsArray[ii]) |
|
884 | 886 | #cross_pairs = self.pairsArray[ii] |
|
885 | 887 | #Getting coherent echoes which are removed. |
|
886 | 888 | # if len(novall[0]) > 0: |
|
887 | 889 | # |
|
888 | 890 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 |
|
889 | 891 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 |
|
890 | 892 | # val_cspc[novall[0],ii,ifreq,ih] = 1 |
|
891 | 893 | #print("OUT NOVALL 1") |
|
892 | 894 | try: |
|
893 | 895 | pair = (self.channels[ii],self.channels[ii + 1]) |
|
894 | 896 | except: |
|
895 | 897 | pair = (99,99) |
|
896 | 898 | #print("par ", pair) |
|
897 | 899 | if ( pair in self.crosspairs): |
|
898 | 900 | q = self.crosspairs.index(pair) |
|
899 | 901 | #print("estΓ‘ aqui: ", q, (ii,ii + 1)) |
|
900 | 902 | new_a = numpy.delete(cspectra[:,q,ifreq,ih], noval[0]) |
|
901 | 903 | cspectra[noval,q,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra |
|
902 | 904 | |
|
903 | 905 | #if channelA_ok: |
|
904 | 906 | #chA = self.channels.index(cross_pairs[0]) |
|
905 | 907 | new_b = numpy.delete(spectra[:,ii,ifreq,ih], noval[0]) |
|
906 | 908 | spectra[noval,ii,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A |
|
907 | 909 | #channelA_ok = False |
|
908 | 910 | |
|
909 | 911 | # chB = self.channels.index(cross_pairs[1]) |
|
910 | 912 | # new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) |
|
911 | 913 | # spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B |
|
912 | 914 | # |
|
913 | 915 | # channelsProcssd.append(self.crosspairs[ii][0]) # save channel A |
|
914 | 916 | # channelsProcssd.append(self.crosspairs[ii][1]) # save channel B |
|
915 | 917 | ''' |
|
916 | 918 | ###ONLY FOR TEST: |
|
917 | 919 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
918 | 920 | func2clean = 10*numpy.log10(numpy.absolute(spectra[:,ii,ifreq,ih])) |
|
919 | 921 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
920 | 922 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
921 | 923 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
922 | 924 | axs2[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
923 | 925 | ''' |
|
924 | 926 | ''' |
|
925 | 927 | ###ONLY FOR TEST: |
|
926 | 928 | col_ax += 1 #contador de ploteo columnas |
|
927 | 929 | ##print(col_ax) |
|
928 | 930 | ###ONLY FOR TEST: |
|
929 | 931 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
930 | 932 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" |
|
931 | 933 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" |
|
932 | 934 | fig.suptitle(title) |
|
933 | 935 | fig2.suptitle(title2) |
|
934 | 936 | plt.show() |
|
935 | 937 | ''' |
|
936 | 938 | ################################################################################################## |
|
937 | 939 | |
|
938 | 940 | #print("Getting average of the spectra and cross-spectra from incoherent echoes.") |
|
939 | 941 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan |
|
940 | 942 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan |
|
941 | 943 | for ih in range(self.nHeights): |
|
942 | 944 | for ifreq in range(self.nFFTPoints): |
|
943 | 945 | for ich in range(self.nChan): |
|
944 | 946 | tmp = spectra[:,ich,ifreq,ih] |
|
945 | 947 | valid = (numpy.isfinite(tmp[:])==True).nonzero() |
|
946 | 948 | |
|
947 | 949 | if len(valid[0]) >0 : |
|
948 | 950 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
949 | 951 | |
|
950 | 952 | for icr in range(self.nPairs): |
|
951 | 953 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) |
|
952 | 954 | valid = (numpy.isfinite(tmp)==True).nonzero() |
|
953 | 955 | if len(valid[0]) > 0: |
|
954 | 956 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
955 | 957 | |
|
956 | 958 | return out_spectra, out_cspectra |
|
957 | 959 | |
|
958 | 960 | def REM_ISOLATED_POINTS(self,array,rth): |
|
959 | 961 | # import matplotlib.pyplot as plt |
|
960 | 962 | if rth == None : |
|
961 | 963 | rth = 4 |
|
962 | 964 | #print("REM ISO") |
|
963 | 965 | num_prof = len(array[0,:,0]) |
|
964 | 966 | num_hei = len(array[0,0,:]) |
|
965 | 967 | n2d = len(array[:,0,0]) |
|
966 | 968 | |
|
967 | 969 | for ii in range(n2d) : |
|
968 | 970 | #print ii,n2d |
|
969 | 971 | tmp = array[ii,:,:] |
|
970 | 972 | #print tmp.shape, array[ii,101,:],array[ii,102,:] |
|
971 | 973 | |
|
972 | 974 | # fig = plt.figure(figsize=(6,5)) |
|
973 | 975 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
974 | 976 | # ax = fig.add_axes([left, bottom, width, height]) |
|
975 | 977 | # x = range(num_prof) |
|
976 | 978 | # y = range(num_hei) |
|
977 | 979 | # cp = ax.contour(y,x,tmp) |
|
978 | 980 | # ax.clabel(cp, inline=True,fontsize=10) |
|
979 | 981 | # plt.show() |
|
980 | 982 | |
|
981 | 983 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) |
|
982 | 984 | tmp = numpy.reshape(tmp,num_prof*num_hei) |
|
983 | 985 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() |
|
984 | 986 | indxs2 = (tmp > 0).nonzero() |
|
985 | 987 | |
|
986 | 988 | indxs1 = (indxs1[0]) |
|
987 | 989 | indxs2 = indxs2[0] |
|
988 | 990 | #indxs1 = numpy.array(indxs1[0]) |
|
989 | 991 | #indxs2 = numpy.array(indxs2[0]) |
|
990 | 992 | indxs = None |
|
991 | 993 | #print indxs1 , indxs2 |
|
992 | 994 | for iv in range(len(indxs2)): |
|
993 | 995 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) |
|
994 | 996 | #print len(indxs2), indv |
|
995 | 997 | if len(indv[0]) > 0 : |
|
996 | 998 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) |
|
997 | 999 | # print indxs |
|
998 | 1000 | indxs = indxs[1:] |
|
999 | 1001 | #print(indxs, len(indxs)) |
|
1000 | 1002 | if len(indxs) < 4 : |
|
1001 | 1003 | array[ii,:,:] = 0. |
|
1002 | 1004 | return |
|
1003 | 1005 | |
|
1004 | 1006 | xpos = numpy.mod(indxs ,num_hei) |
|
1005 | 1007 | ypos = (indxs / num_hei) |
|
1006 | 1008 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) |
|
1007 | 1009 | #print sx |
|
1008 | 1010 | xpos = xpos[sx] |
|
1009 | 1011 | ypos = ypos[sx] |
|
1010 | 1012 | |
|
1011 | 1013 | # *********************************** Cleaning isolated points ********************************** |
|
1012 | 1014 | ic = 0 |
|
1013 | 1015 | while True : |
|
1014 | 1016 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) |
|
1015 | 1017 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) |
|
1016 | 1018 | #plt.plot(r) |
|
1017 | 1019 | #plt.show() |
|
1018 | 1020 | no_coh1 = (numpy.isfinite(r)==True).nonzero() |
|
1019 | 1021 | no_coh2 = (r <= rth).nonzero() |
|
1020 | 1022 | #print r, no_coh1, no_coh2 |
|
1021 | 1023 | no_coh1 = numpy.array(no_coh1[0]) |
|
1022 | 1024 | no_coh2 = numpy.array(no_coh2[0]) |
|
1023 | 1025 | no_coh = None |
|
1024 | 1026 | #print valid1 , valid2 |
|
1025 | 1027 | for iv in range(len(no_coh2)): |
|
1026 | 1028 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) |
|
1027 | 1029 | if len(indv[0]) > 0 : |
|
1028 | 1030 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) |
|
1029 | 1031 | no_coh = no_coh[1:] |
|
1030 | 1032 | #print len(no_coh), no_coh |
|
1031 | 1033 | if len(no_coh) < 4 : |
|
1032 | 1034 | #print xpos[ic], ypos[ic], ic |
|
1033 | 1035 | # plt.plot(r) |
|
1034 | 1036 | # plt.show() |
|
1035 | 1037 | xpos[ic] = numpy.nan |
|
1036 | 1038 | ypos[ic] = numpy.nan |
|
1037 | 1039 | |
|
1038 | 1040 | ic = ic + 1 |
|
1039 | 1041 | if (ic == len(indxs)) : |
|
1040 | 1042 | break |
|
1041 | 1043 | #print( xpos, ypos) |
|
1042 | 1044 | |
|
1043 | 1045 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() |
|
1044 | 1046 | #print indxs[0] |
|
1045 | 1047 | if len(indxs[0]) < 4 : |
|
1046 | 1048 | array[ii,:,:] = 0. |
|
1047 | 1049 | return |
|
1048 | 1050 | |
|
1049 | 1051 | xpos = xpos[indxs[0]] |
|
1050 | 1052 | ypos = ypos[indxs[0]] |
|
1051 | 1053 | for i in range(0,len(ypos)): |
|
1052 | 1054 | ypos[i]=int(ypos[i]) |
|
1053 | 1055 | junk = tmp |
|
1054 | 1056 | tmp = junk*0.0 |
|
1055 | 1057 | |
|
1056 | 1058 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] |
|
1057 | 1059 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1058 | 1060 | |
|
1059 | 1061 | #print array.shape |
|
1060 | 1062 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1061 | 1063 | #print tmp.shape |
|
1062 | 1064 | |
|
1063 | 1065 | # fig = plt.figure(figsize=(6,5)) |
|
1064 | 1066 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
1065 | 1067 | # ax = fig.add_axes([left, bottom, width, height]) |
|
1066 | 1068 | # x = range(num_prof) |
|
1067 | 1069 | # y = range(num_hei) |
|
1068 | 1070 | # cp = ax.contour(y,x,array[ii,:,:]) |
|
1069 | 1071 | # ax.clabel(cp, inline=True,fontsize=10) |
|
1070 | 1072 | # plt.show() |
|
1071 | 1073 | return array |
|
1072 | 1074 | |
|
1073 | 1075 | |
|
1074 | 1076 | class IntegrationFaradaySpectra(Operation): |
|
1075 | 1077 | |
|
1076 | 1078 | __profIndex = 0 |
|
1077 | 1079 | __withOverapping = False |
|
1078 | 1080 | |
|
1079 | 1081 | __byTime = False |
|
1080 | 1082 | __initime = None |
|
1081 | 1083 | __lastdatatime = None |
|
1082 | 1084 | __integrationtime = None |
|
1083 | 1085 | |
|
1084 | 1086 | __buffer_spc = None |
|
1085 | 1087 | __buffer_cspc = None |
|
1086 | 1088 | __buffer_dc = None |
|
1087 | 1089 | |
|
1088 | 1090 | __dataReady = False |
|
1089 | 1091 | |
|
1090 | 1092 | __timeInterval = None |
|
1091 | 1093 | |
|
1092 | 1094 | n = None |
|
1093 | 1095 | minHei_ind = None |
|
1094 | 1096 | maxHei_ind = None |
|
1097 | avg = 1.0 | |
|
1095 | 1098 | factor = 0.0 |
|
1096 | 1099 | |
|
1097 | 1100 | def __init__(self): |
|
1098 | 1101 | |
|
1099 | 1102 | Operation.__init__(self) |
|
1100 | 1103 | |
|
1101 | 1104 | def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None, minHei=None, maxHei=None, factor=0.75): |
|
1102 | 1105 | """ |
|
1103 | 1106 | Set the parameters of the integration class. |
|
1104 | 1107 | |
|
1105 | 1108 | Inputs: |
|
1106 | 1109 | |
|
1107 | 1110 | n : Number of coherent integrations |
|
1108 | 1111 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1109 | 1112 | overlapping : |
|
1110 | 1113 | |
|
1111 | 1114 | """ |
|
1112 | 1115 | |
|
1113 | 1116 | self.__initime = None |
|
1114 | 1117 | self.__lastdatatime = 0 |
|
1115 | 1118 | |
|
1116 | 1119 | self.__buffer_spc = [] |
|
1117 | 1120 | self.__buffer_cspc = [] |
|
1118 | 1121 | self.__buffer_dc = 0 |
|
1119 | 1122 | |
|
1120 | 1123 | self.__profIndex = 0 |
|
1121 | 1124 | self.__dataReady = False |
|
1122 | 1125 | self.__byTime = False |
|
1123 | 1126 | |
|
1124 | 1127 | self.factor = factor |
|
1125 | 1128 | #self.ByLags = dataOut.ByLags ###REDEFINIR |
|
1126 | 1129 | self.ByLags = False |
|
1127 | 1130 | |
|
1128 | 1131 | if DPL != None: |
|
1129 | 1132 | self.DPL=DPL |
|
1130 | 1133 | else: |
|
1131 | 1134 | #self.DPL=dataOut.DPL ###REDEFINIR |
|
1132 | 1135 | self.DPL=0 |
|
1133 | 1136 | |
|
1134 | 1137 | if n is None and timeInterval is None: |
|
1135 | 1138 | raise ValueError("n or timeInterval should be specified ...") |
|
1136 | 1139 | |
|
1137 | 1140 | if n is not None: |
|
1138 | 1141 | self.n = int(n) |
|
1139 | 1142 | else: |
|
1140 | 1143 | self.__integrationtime = int(timeInterval) |
|
1141 | 1144 | self.n = None |
|
1142 | 1145 | self.__byTime = True |
|
1143 | 1146 | |
|
1144 | 1147 | if minHei == None: |
|
1145 | 1148 | minHei = self.dataOut.heightList[0] |
|
1146 | 1149 | |
|
1147 | 1150 | if maxHei == None: |
|
1148 | 1151 | maxHei = self.dataOut.heightList[-1] |
|
1149 | 1152 | |
|
1150 | 1153 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
1151 | 1154 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
1152 | 1155 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
1153 | 1156 | minHei = self.dataOut.heightList[0] |
|
1154 | 1157 | |
|
1155 | 1158 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
1156 | 1159 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
1157 | 1160 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
1158 | 1161 | maxHei = self.dataOut.heightList[-1] |
|
1159 | 1162 | |
|
1160 | 1163 | ind_list1 = numpy.where(self.dataOut.heightList >= minHei) |
|
1161 | 1164 | ind_list2 = numpy.where(self.dataOut.heightList <= maxHei) |
|
1162 | 1165 | self.minHei_ind = ind_list1[0][0] |
|
1163 | 1166 | self.maxHei_ind = ind_list2[0][-1] |
|
1164 | 1167 | |
|
1165 | 1168 | def putData(self, data_spc, data_cspc, data_dc): |
|
1166 | 1169 | """ |
|
1167 | 1170 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1168 | 1171 | |
|
1169 | 1172 | """ |
|
1170 | 1173 | |
|
1171 | 1174 | self.__buffer_spc.append(data_spc) |
|
1172 | 1175 | |
|
1173 | 1176 | if data_cspc is None: |
|
1174 | 1177 | self.__buffer_cspc = None |
|
1175 | 1178 | else: |
|
1176 | 1179 | self.__buffer_cspc.append(data_cspc) |
|
1177 | 1180 | |
|
1178 | 1181 | if data_dc is None: |
|
1179 | 1182 | self.__buffer_dc = None |
|
1180 | 1183 | else: |
|
1181 | 1184 | self.__buffer_dc += data_dc |
|
1182 | 1185 | |
|
1183 | 1186 | self.__profIndex += 1 |
|
1184 | 1187 | |
|
1185 | 1188 | return |
|
1186 | 1189 | |
|
1187 | def hildebrand_sekhon_Integration(self,data,navg, factor): | |
|
1188 | ||
|
1189 | sortdata = numpy.sort(data, axis=None) | |
|
1190 | sortID=data.argsort() | |
|
1190 | def hildebrand_sekhon_Integration(self,sortdata,navg, factor): | |
|
1191 | #data debe estar ordenado | |
|
1192 | #sortdata = numpy.sort(data, axis=None) | |
|
1193 | #sortID=data.argsort() | |
|
1191 | 1194 | lenOfData = len(sortdata) |
|
1192 | 1195 | nums_min = lenOfData*factor |
|
1193 | 1196 | if nums_min <= 5: |
|
1194 | 1197 | nums_min = 5 |
|
1195 | 1198 | sump = 0. |
|
1196 | 1199 | sumq = 0. |
|
1197 | 1200 | j = 0 |
|
1198 | 1201 | cont = 1 |
|
1199 | 1202 | while((cont == 1)and(j < lenOfData)): |
|
1200 | 1203 | sump += sortdata[j] |
|
1201 | 1204 | sumq += sortdata[j]**2 |
|
1202 | 1205 | if j > nums_min: |
|
1203 | 1206 | rtest = float(j)/(j-1) + 1.0/navg |
|
1204 | 1207 | if ((sumq*j) > (rtest*sump**2)): |
|
1205 | 1208 | j = j - 1 |
|
1206 | 1209 | sump = sump - sortdata[j] |
|
1207 | 1210 | sumq = sumq - sortdata[j]**2 |
|
1208 | 1211 | cont = 0 |
|
1209 | 1212 | j += 1 |
|
1210 | 1213 | #lnoise = sump / j |
|
1211 | 1214 | #print("H S done") |
|
1212 | return j,sortID | |
|
1215 | #return j,sortID | |
|
1216 | return j | |
|
1217 | ||
|
1213 | 1218 | |
|
1214 | 1219 | def pushData(self): |
|
1215 | 1220 | """ |
|
1216 | 1221 | Return the sum of the last profiles and the profiles used in the sum. |
|
1217 | 1222 | |
|
1218 | 1223 | Affected: |
|
1219 | 1224 | |
|
1220 | 1225 | self.__profileIndex |
|
1221 | 1226 | |
|
1222 | 1227 | """ |
|
1223 | 1228 | bufferH=None |
|
1224 | 1229 | buffer=None |
|
1225 | 1230 | buffer1=None |
|
1226 | 1231 | buffer_cspc=None |
|
1227 | 1232 | self.__buffer_spc=numpy.array(self.__buffer_spc) |
|
1228 | 1233 | try: |
|
1229 | 1234 | self.__buffer_cspc=numpy.array(self.__buffer_cspc) |
|
1230 | 1235 | except : |
|
1231 | 1236 | #print("No cpsc",e) |
|
1232 | 1237 | pass |
|
1233 | 1238 | #print("FREQ_DC",self.__buffer_spc.shape,self.__buffer_cspc.shape) |
|
1234 | 1239 | |
|
1235 | 1240 | freq_dc = int(self.__buffer_spc.shape[2] / 2) |
|
1236 | 1241 | #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) |
|
1237 | 1242 | |
|
1238 | 1243 | for k in range(self.minHei_ind,self.maxHei_ind): |
|
1239 | 1244 | try: |
|
1240 | 1245 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) |
|
1241 | 1246 | except: |
|
1242 | 1247 | #print("No cpsc",e) |
|
1243 | 1248 | pass |
|
1244 | 1249 | outliers_IDs_cspc=[] |
|
1245 | 1250 | cspc_outliers_exist=False |
|
1246 | 1251 | for i in range(self.nChannels):#dataOut.nChannels): |
|
1247 | 1252 | |
|
1248 | 1253 | buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) |
|
1249 | 1254 | indexes=[] |
|
1250 | 1255 | #sortIDs=[] |
|
1251 | 1256 | outliers_IDs=[] |
|
1252 | 1257 | |
|
1253 | 1258 | for j in range(self.nProfiles): |
|
1254 | 1259 | # if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 |
|
1255 | 1260 | # continue |
|
1256 | 1261 | # if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 |
|
1257 | 1262 | # continue |
|
1258 | 1263 | buffer=buffer1[:,j] |
|
1259 | index,sortID=self.hildebrand_sekhon_Integration(buffer,1,self.factor) | |
|
1264 | sortdata = numpy.sort(buffer, axis=None) | |
|
1265 | sortID=buffer.argsort() | |
|
1266 | index = _noise.hildebrand_sekhon2(sortdata,self.navg) | |
|
1267 | ||
|
1268 | #index,sortID=self.hildebrand_sekhon_Integration(buffer,1,self.factor) | |
|
1260 | 1269 | |
|
1261 | 1270 | indexes.append(index) |
|
1262 | 1271 | #sortIDs.append(sortID) |
|
1263 | 1272 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) |
|
1264 | 1273 | |
|
1265 | 1274 | outliers_IDs=numpy.array(outliers_IDs) |
|
1266 | 1275 | outliers_IDs=outliers_IDs.ravel() |
|
1267 | 1276 | outliers_IDs=numpy.unique(outliers_IDs) |
|
1268 | 1277 | outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) |
|
1269 | 1278 | indexes=numpy.array(indexes) |
|
1270 | 1279 | indexmin=numpy.min(indexes) |
|
1271 | 1280 | #print("clean CH: ", i) |
|
1272 | 1281 | if indexmin != buffer1.shape[0]: |
|
1273 | 1282 | if self.nChannels > 1: |
|
1274 | 1283 | cspc_outliers_exist= True |
|
1275 |
print("outliers c |
|
|
1284 | #print("outliers cspc") | |
|
1276 | 1285 | ###sortdata=numpy.sort(buffer1,axis=0) |
|
1277 | 1286 | ###avg2=numpy.mean(sortdata[:indexmin,:],axis=0) |
|
1278 | 1287 | lt=outliers_IDs |
|
1279 | 1288 | avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) |
|
1280 | 1289 | |
|
1281 | 1290 | for p in list(outliers_IDs): |
|
1282 | 1291 | buffer1[p,:]=avg |
|
1283 | 1292 | |
|
1284 | 1293 | self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) |
|
1285 | 1294 | ###cspc IDs |
|
1286 | 1295 | #indexmin_cspc+=indexmin_cspc |
|
1287 | 1296 | outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) |
|
1288 | 1297 | |
|
1289 | 1298 | #if not breakFlag: |
|
1290 | 1299 | outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) |
|
1291 | 1300 | if cspc_outliers_exist : |
|
1292 | 1301 | #sortdata=numpy.sort(buffer_cspc,axis=0) |
|
1293 | 1302 | #avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0) |
|
1294 | 1303 | lt=outliers_IDs_cspc |
|
1295 | 1304 | |
|
1296 | 1305 | avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) |
|
1297 | 1306 | for p in list(outliers_IDs_cspc): |
|
1298 | 1307 | buffer_cspc[p,:]=avg |
|
1299 | 1308 | |
|
1300 | 1309 | try: |
|
1301 | 1310 | self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) |
|
1302 | 1311 | except: |
|
1303 | 1312 | #print("No cpsc",e) |
|
1304 | 1313 | pass |
|
1305 | 1314 | #else: |
|
1306 | 1315 | #break |
|
1307 | 1316 | |
|
1308 | 1317 | |
|
1309 | 1318 | |
|
1310 | 1319 | |
|
1311 | 1320 | buffer=None |
|
1312 | 1321 | bufferH=None |
|
1313 | 1322 | buffer1=None |
|
1314 | 1323 | buffer_cspc=None |
|
1315 | 1324 | |
|
1316 | 1325 | #print("cpsc",self.__buffer_cspc[:,0,0,0,0]) |
|
1317 | 1326 | #exit() |
|
1318 | 1327 | |
|
1319 | 1328 | buffer=None |
|
1320 | 1329 | #print(self.__buffer_spc[:,1,3,20,0]) |
|
1321 | 1330 | #print(self.__buffer_spc[:,1,5,37,0]) |
|
1322 | 1331 | data_spc = numpy.sum(self.__buffer_spc,axis=0) |
|
1323 | 1332 | try: |
|
1324 | 1333 | data_cspc = numpy.sum(self.__buffer_cspc,axis=0) |
|
1325 | 1334 | except: |
|
1326 | 1335 | #print("No cpsc",e) |
|
1327 | 1336 | pass |
|
1328 | 1337 | |
|
1329 | 1338 | |
|
1330 | 1339 | #print(numpy.shape(data_spc)) |
|
1331 | 1340 | #data_spc[1,4,20,0]=numpy.nan |
|
1332 | 1341 | |
|
1333 | 1342 | #data_cspc = self.__buffer_cspc |
|
1334 | 1343 | #print("pushData pre Done") |
|
1335 | 1344 | data_dc = self.__buffer_dc |
|
1336 | 1345 | n = self.__profIndex |
|
1337 | 1346 | |
|
1338 | 1347 | self.__buffer_spc = [] |
|
1339 | 1348 | self.__buffer_cspc = [] |
|
1340 | 1349 | self.__buffer_dc = 0 |
|
1341 | 1350 | self.__profIndex = 0 |
|
1342 | 1351 | #print("pushData Done") |
|
1343 | 1352 | return data_spc, data_cspc, data_dc, n |
|
1344 | 1353 | |
|
1345 | 1354 | def byProfiles(self, *args): |
|
1346 | 1355 | |
|
1347 | 1356 | self.__dataReady = False |
|
1348 | 1357 | avgdata_spc = None |
|
1349 | 1358 | avgdata_cspc = None |
|
1350 | 1359 | avgdata_dc = None |
|
1351 | 1360 | |
|
1352 | 1361 | self.putData(*args) |
|
1353 | 1362 | |
|
1354 | 1363 | if self.__profIndex == self.n: |
|
1355 | 1364 | |
|
1356 | 1365 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1357 | 1366 | self.n = n |
|
1358 | 1367 | self.__dataReady = True |
|
1359 | 1368 | |
|
1360 | 1369 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1361 | 1370 | |
|
1362 | 1371 | def byTime(self, datatime, *args): |
|
1363 | 1372 | |
|
1364 | 1373 | self.__dataReady = False |
|
1365 | 1374 | avgdata_spc = None |
|
1366 | 1375 | avgdata_cspc = None |
|
1367 | 1376 | avgdata_dc = None |
|
1368 | 1377 | |
|
1369 | 1378 | self.putData(*args) |
|
1370 | 1379 | |
|
1371 | 1380 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1372 | 1381 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1373 | 1382 | self.n = n |
|
1374 | 1383 | self.__dataReady = True |
|
1375 | 1384 | |
|
1376 | 1385 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1377 | 1386 | |
|
1378 | 1387 | def integrate(self, datatime, *args): |
|
1379 | 1388 | |
|
1380 | 1389 | if self.__profIndex == 0: |
|
1381 | 1390 | self.__initime = datatime |
|
1382 | 1391 | |
|
1383 | 1392 | if self.__byTime: |
|
1384 | 1393 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1385 | 1394 | datatime, *args) |
|
1386 | 1395 | else: |
|
1387 | 1396 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1388 | 1397 | |
|
1389 | 1398 | if not self.__dataReady: |
|
1390 | 1399 | return None, None, None, None |
|
1391 | 1400 | |
|
1392 | 1401 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1393 | 1402 | |
|
1394 | 1403 | def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False, minHei=None, maxHei=None, factor=0.75): |
|
1395 | 1404 | self.dataOut = dataOut.copy() |
|
1396 | 1405 | if n == 1: |
|
1397 | 1406 | return self.dataOut |
|
1398 | 1407 | |
|
1399 | 1408 | self.dataOut.flagNoData = True |
|
1400 | 1409 | if self.dataOut.nChannels == 1: |
|
1401 | 1410 | self.dataOut.data_cspc = None #si es un solo canal no vale la pena acumular DATOS |
|
1402 | 1411 | #print(self.dataOut.data_spc.shape, self.dataOut.data_cspc) |
|
1403 | 1412 | if not self.isConfig: |
|
1404 | 1413 | self.setup(self.dataOut, n, timeInterval, overlapping,DPL ,minHei, maxHei, factor) |
|
1405 | 1414 | self.isConfig = True |
|
1406 | 1415 | |
|
1407 | 1416 | if not self.ByLags: |
|
1408 | 1417 | self.nProfiles=self.dataOut.nProfiles |
|
1409 | 1418 | self.nChannels=self.dataOut.nChannels |
|
1410 | 1419 | self.nHeights=self.dataOut.nHeights |
|
1411 | 1420 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, |
|
1412 | 1421 | self.dataOut.data_spc, |
|
1413 | 1422 | self.dataOut.data_cspc, |
|
1414 | 1423 | self.dataOut.data_dc) |
|
1415 | 1424 | else: |
|
1416 | 1425 | self.nProfiles=self.dataOut.nProfiles |
|
1417 | 1426 | self.nChannels=self.dataOut.nChannels |
|
1418 | 1427 | self.nHeights=self.dataOut.nHeights |
|
1419 | 1428 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, |
|
1420 | 1429 | self.dataOut.dataLag_spc, |
|
1421 | 1430 | self.dataOut.dataLag_cspc, |
|
1422 | 1431 | self.dataOut.dataLag_dc) |
|
1423 | 1432 | |
|
1424 | 1433 | if self.__dataReady: |
|
1425 | 1434 | |
|
1426 | 1435 | if not self.ByLags: |
|
1427 | 1436 | if self.nChannels == 1: |
|
1428 | 1437 | #print("f int", avgdata_spc.shape) |
|
1429 | 1438 | self.dataOut.data_spc = avgdata_spc |
|
1430 | 1439 | self.dataOut.data_cspc = avgdata_spc |
|
1431 | 1440 | else: |
|
1432 | 1441 | self.dataOut.data_spc = numpy.squeeze(avgdata_spc) |
|
1433 | 1442 | self.dataOut.data_cspc = numpy.squeeze(avgdata_cspc) |
|
1434 | 1443 | self.dataOut.data_dc = avgdata_dc |
|
1435 | 1444 | |
|
1436 | 1445 | |
|
1437 | 1446 | else: |
|
1438 | 1447 | self.dataOut.dataLag_spc = avgdata_spc |
|
1439 | 1448 | self.dataOut.dataLag_cspc = avgdata_cspc |
|
1440 | 1449 | self.dataOut.dataLag_dc = avgdata_dc |
|
1441 | 1450 | |
|
1442 | 1451 | self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot] |
|
1443 | 1452 | self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] |
|
1444 | 1453 | self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] |
|
1445 | 1454 | |
|
1446 | 1455 | |
|
1447 | 1456 | self.dataOut.nIncohInt *= self.n |
|
1448 | 1457 | self.dataOut.utctime = avgdatatime |
|
1449 | 1458 | self.dataOut.flagNoData = False |
|
1450 | 1459 | |
|
1451 | 1460 | return self.dataOut |
|
1452 | 1461 | |
|
1453 | 1462 | class removeInterference(Operation): |
|
1454 | 1463 | |
|
1455 | 1464 | def removeInterference2(self): |
|
1456 | 1465 | |
|
1457 | 1466 | cspc = self.dataOut.data_cspc |
|
1458 | 1467 | spc = self.dataOut.data_spc |
|
1459 | 1468 | Heights = numpy.arange(cspc.shape[2]) |
|
1460 | 1469 | realCspc = numpy.abs(cspc) |
|
1461 | 1470 | |
|
1462 | 1471 | for i in range(cspc.shape[0]): |
|
1463 | 1472 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
1464 | 1473 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
1465 | 1474 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
1466 | 1475 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
1467 | 1476 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
1468 | 1477 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
1469 | 1478 | |
|
1470 | 1479 | |
|
1471 | 1480 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
1472 | 1481 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
1473 | 1482 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
1474 | 1483 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
1475 | 1484 | |
|
1476 | 1485 | self.dataOut.data_cspc = cspc |
|
1477 | 1486 | |
|
1478 | 1487 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
1479 | 1488 | |
|
1480 | 1489 | jspectra = self.dataOut.data_spc |
|
1481 | 1490 | jcspectra = self.dataOut.data_cspc |
|
1482 | 1491 | jnoise = self.dataOut.getNoise() |
|
1483 | 1492 | num_incoh = self.dataOut.nIncohInt |
|
1484 | 1493 | |
|
1485 | 1494 | num_channel = jspectra.shape[0] |
|
1486 | 1495 | num_prof = jspectra.shape[1] |
|
1487 | 1496 | num_hei = jspectra.shape[2] |
|
1488 | 1497 | |
|
1489 | 1498 | # hei_interf |
|
1490 | 1499 | if hei_interf is None: |
|
1491 | 1500 | count_hei = int(num_hei / 2) |
|
1492 | 1501 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
1493 | 1502 | hei_interf = numpy.asarray(hei_interf)[0] |
|
1494 | 1503 | # nhei_interf |
|
1495 | 1504 | if (nhei_interf == None): |
|
1496 | 1505 | nhei_interf = 5 |
|
1497 | 1506 | if (nhei_interf < 1): |
|
1498 | 1507 | nhei_interf = 1 |
|
1499 | 1508 | if (nhei_interf > count_hei): |
|
1500 | 1509 | nhei_interf = count_hei |
|
1501 | 1510 | if (offhei_interf == None): |
|
1502 | 1511 | offhei_interf = 0 |
|
1503 | 1512 | |
|
1504 | 1513 | ind_hei = list(range(num_hei)) |
|
1505 | 1514 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
1506 | 1515 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
1507 | 1516 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
1508 | 1517 | num_mask_prof = mask_prof.size |
|
1509 | 1518 | comp_mask_prof = [0, num_prof / 2] |
|
1510 | 1519 | |
|
1511 | 1520 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
1512 | 1521 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
1513 | 1522 | jnoise = numpy.nan |
|
1514 | 1523 | noise_exist = jnoise[0] < numpy.Inf |
|
1515 | 1524 | |
|
1516 | 1525 | # Subrutina de Remocion de la Interferencia |
|
1517 | 1526 | for ich in range(num_channel): |
|
1518 | 1527 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1519 | 1528 | power = jspectra[ich, mask_prof, :] |
|
1520 | 1529 | power = power[:, hei_interf] |
|
1521 | 1530 | power = power.sum(axis=0) |
|
1522 | 1531 | psort = power.ravel().argsort() |
|
1523 | 1532 | |
|
1524 | 1533 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
1525 | 1534 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
1526 | 1535 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1527 | 1536 | |
|
1528 | 1537 | if noise_exist: |
|
1529 | 1538 | # tmp_noise = jnoise[ich] / num_prof |
|
1530 | 1539 | tmp_noise = jnoise[ich] |
|
1531 | 1540 | junkspc_interf = junkspc_interf - tmp_noise |
|
1532 | 1541 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
1533 | 1542 | |
|
1534 | 1543 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
1535 | 1544 | jspc_interf = jspc_interf.transpose() |
|
1536 | 1545 | # Calculando el espectro de interferencia promedio |
|
1537 | 1546 | noiseid = numpy.where( |
|
1538 | 1547 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
1539 | 1548 | noiseid = noiseid[0] |
|
1540 | 1549 | cnoiseid = noiseid.size |
|
1541 | 1550 | interfid = numpy.where( |
|
1542 | 1551 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
1543 | 1552 | interfid = interfid[0] |
|
1544 | 1553 | cinterfid = interfid.size |
|
1545 | 1554 | |
|
1546 | 1555 | if (cnoiseid > 0): |
|
1547 | 1556 | jspc_interf[noiseid] = 0 |
|
1548 | 1557 | |
|
1549 | 1558 | # Expandiendo los perfiles a limpiar |
|
1550 | 1559 | if (cinterfid > 0): |
|
1551 | 1560 | new_interfid = ( |
|
1552 | 1561 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
1553 | 1562 | new_interfid = numpy.asarray(new_interfid) |
|
1554 | 1563 | new_interfid = {x for x in new_interfid} |
|
1555 | 1564 | new_interfid = numpy.array(list(new_interfid)) |
|
1556 | 1565 | new_cinterfid = new_interfid.size |
|
1557 | 1566 | else: |
|
1558 | 1567 | new_cinterfid = 0 |
|
1559 | 1568 | |
|
1560 | 1569 | for ip in range(new_cinterfid): |
|
1561 | 1570 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
1562 | 1571 | jspc_interf[new_interfid[ip] |
|
1563 | 1572 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
1564 | 1573 | |
|
1565 | 1574 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
1566 | 1575 | ind_hei] - jspc_interf # Corregir indices |
|
1567 | 1576 | |
|
1568 | 1577 | # Removiendo la interferencia del punto de mayor interferencia |
|
1569 | 1578 | ListAux = jspc_interf[mask_prof].tolist() |
|
1570 | 1579 | maxid = ListAux.index(max(ListAux)) |
|
1571 | 1580 | |
|
1572 | 1581 | if cinterfid > 0: |
|
1573 | 1582 | for ip in range(cinterfid * (interf == 2) - 1): |
|
1574 | 1583 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
1575 | 1584 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1576 | 1585 | cind = len(ind) |
|
1577 | 1586 | |
|
1578 | 1587 | if (cind > 0): |
|
1579 | 1588 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
1580 | 1589 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
1581 | 1590 | numpy.sqrt(num_incoh)) |
|
1582 | 1591 | |
|
1583 | 1592 | ind = numpy.array([-2, -1, 1, 2]) |
|
1584 | 1593 | xx = numpy.zeros([4, 4]) |
|
1585 | 1594 | |
|
1586 | 1595 | for id1 in range(4): |
|
1587 | 1596 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1588 | 1597 | |
|
1589 | 1598 | xx_inv = numpy.linalg.inv(xx) |
|
1590 | 1599 | xx = xx_inv[:, 0] |
|
1591 | 1600 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1592 | 1601 | yy = jspectra[ich, mask_prof[ind], :] |
|
1593 | 1602 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
1594 | 1603 | yy.transpose(), xx) |
|
1595 | 1604 | |
|
1596 | 1605 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
1597 | 1606 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1598 | 1607 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
1599 | 1608 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
1600 | 1609 | |
|
1601 | 1610 | # Remocion de Interferencia en el Cross Spectra |
|
1602 | 1611 | if jcspectra is None: |
|
1603 | 1612 | return jspectra, jcspectra |
|
1604 | 1613 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
1605 | 1614 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
1606 | 1615 | |
|
1607 | 1616 | for ip in range(num_pairs): |
|
1608 | 1617 | |
|
1609 | 1618 | #------------------------------------------- |
|
1610 | 1619 | |
|
1611 | 1620 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
1612 | 1621 | cspower = cspower[:, hei_interf] |
|
1613 | 1622 | cspower = cspower.sum(axis=0) |
|
1614 | 1623 | |
|
1615 | 1624 | cspsort = cspower.ravel().argsort() |
|
1616 | 1625 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
1617 | 1626 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1618 | 1627 | junkcspc_interf = junkcspc_interf.transpose() |
|
1619 | 1628 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
1620 | 1629 | |
|
1621 | 1630 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1622 | 1631 | |
|
1623 | 1632 | median_real = int(numpy.median(numpy.real( |
|
1624 | 1633 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1625 | 1634 | median_imag = int(numpy.median(numpy.imag( |
|
1626 | 1635 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1627 | 1636 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
1628 | 1637 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
1629 | 1638 | median_real, median_imag) |
|
1630 | 1639 | |
|
1631 | 1640 | for iprof in range(num_prof): |
|
1632 | 1641 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
1633 | 1642 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
1634 | 1643 | |
|
1635 | 1644 | # Removiendo la Interferencia |
|
1636 | 1645 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
1637 | 1646 | :, ind_hei] - jcspc_interf |
|
1638 | 1647 | |
|
1639 | 1648 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1640 | 1649 | maxid = ListAux.index(max(ListAux)) |
|
1641 | 1650 | |
|
1642 | 1651 | ind = numpy.array([-2, -1, 1, 2]) |
|
1643 | 1652 | xx = numpy.zeros([4, 4]) |
|
1644 | 1653 | |
|
1645 | 1654 | for id1 in range(4): |
|
1646 | 1655 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1647 | 1656 | |
|
1648 | 1657 | xx_inv = numpy.linalg.inv(xx) |
|
1649 | 1658 | xx = xx_inv[:, 0] |
|
1650 | 1659 | |
|
1651 | 1660 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1652 | 1661 | yy = jcspectra[ip, mask_prof[ind], :] |
|
1653 | 1662 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1654 | 1663 | |
|
1655 | 1664 | # Guardar Resultados |
|
1656 | 1665 | self.dataOut.data_spc = jspectra |
|
1657 | 1666 | self.dataOut.data_cspc = jcspectra |
|
1658 | 1667 | |
|
1659 | 1668 | return 1 |
|
1660 | 1669 | |
|
1661 | 1670 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): |
|
1662 | 1671 | |
|
1663 | 1672 | self.dataOut = dataOut |
|
1664 | 1673 | |
|
1665 | 1674 | if mode == 1: |
|
1666 | 1675 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
1667 | 1676 | elif mode == 2: |
|
1668 | 1677 | self.removeInterference2() |
|
1669 | 1678 | |
|
1670 | 1679 | return self.dataOut |
|
1671 | 1680 | |
|
1672 | 1681 | |
|
1673 | 1682 | class IncohInt(Operation): |
|
1674 | 1683 | |
|
1675 | 1684 | __profIndex = 0 |
|
1676 | 1685 | __withOverapping = False |
|
1677 | 1686 | |
|
1678 | 1687 | __byTime = False |
|
1679 | 1688 | __initime = None |
|
1680 | 1689 | __lastdatatime = None |
|
1681 | 1690 | __integrationtime = None |
|
1682 | 1691 | |
|
1683 | 1692 | __buffer_spc = None |
|
1684 | 1693 | __buffer_cspc = None |
|
1685 | 1694 | __buffer_dc = None |
|
1686 | 1695 | |
|
1687 | 1696 | __dataReady = False |
|
1688 | 1697 | |
|
1689 | 1698 | __timeInterval = None |
|
1690 | 1699 | |
|
1691 | 1700 | n = None |
|
1692 | 1701 | |
|
1693 | 1702 | def __init__(self): |
|
1694 | 1703 | |
|
1695 | 1704 | Operation.__init__(self) |
|
1696 | 1705 | |
|
1697 | 1706 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1698 | 1707 | """ |
|
1699 | 1708 | Set the parameters of the integration class. |
|
1700 | 1709 | |
|
1701 | 1710 | Inputs: |
|
1702 | 1711 | |
|
1703 | 1712 | n : Number of coherent integrations |
|
1704 | 1713 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1705 | 1714 | overlapping : |
|
1706 | 1715 | |
|
1707 | 1716 | """ |
|
1708 | 1717 | |
|
1709 | 1718 | self.__initime = None |
|
1710 | 1719 | self.__lastdatatime = 0 |
|
1711 | 1720 | |
|
1712 | 1721 | self.__buffer_spc = 0 |
|
1713 | 1722 | self.__buffer_cspc = 0 |
|
1714 | 1723 | self.__buffer_dc = 0 |
|
1715 | 1724 | |
|
1716 | 1725 | self.__profIndex = 0 |
|
1717 | 1726 | self.__dataReady = False |
|
1718 | 1727 | self.__byTime = False |
|
1719 | 1728 | |
|
1720 | 1729 | if n is None and timeInterval is None: |
|
1721 | 1730 | raise ValueError("n or timeInterval should be specified ...") |
|
1722 | 1731 | |
|
1723 | 1732 | if n is not None: |
|
1724 | 1733 | self.n = int(n) |
|
1725 | 1734 | else: |
|
1726 | 1735 | |
|
1727 | 1736 | self.__integrationtime = int(timeInterval) |
|
1728 | 1737 | self.n = None |
|
1729 | 1738 | self.__byTime = True |
|
1730 | 1739 | |
|
1731 | 1740 | def putData(self, data_spc, data_cspc, data_dc): |
|
1732 | 1741 | """ |
|
1733 | 1742 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1734 | 1743 | |
|
1735 | 1744 | """ |
|
1736 | 1745 | |
|
1737 | 1746 | self.__buffer_spc += data_spc |
|
1738 | 1747 | |
|
1739 | 1748 | if data_cspc is None: |
|
1740 | 1749 | self.__buffer_cspc = None |
|
1741 | 1750 | else: |
|
1742 | 1751 | self.__buffer_cspc += data_cspc |
|
1743 | 1752 | |
|
1744 | 1753 | if data_dc is None: |
|
1745 | 1754 | self.__buffer_dc = None |
|
1746 | 1755 | else: |
|
1747 | 1756 | self.__buffer_dc += data_dc |
|
1748 | 1757 | |
|
1749 | 1758 | self.__profIndex += 1 |
|
1750 | 1759 | |
|
1751 | 1760 | return |
|
1752 | 1761 | |
|
1753 | 1762 | def pushData(self): |
|
1754 | 1763 | """ |
|
1755 | 1764 | Return the sum of the last profiles and the profiles used in the sum. |
|
1756 | 1765 | |
|
1757 | 1766 | Affected: |
|
1758 | 1767 | |
|
1759 | 1768 | self.__profileIndex |
|
1760 | 1769 | |
|
1761 | 1770 | """ |
|
1762 | 1771 | |
|
1763 | 1772 | data_spc = self.__buffer_spc |
|
1764 | 1773 | data_cspc = self.__buffer_cspc |
|
1765 | 1774 | data_dc = self.__buffer_dc |
|
1766 | 1775 | n = self.__profIndex |
|
1767 | 1776 | |
|
1768 | 1777 | self.__buffer_spc = 0 |
|
1769 | 1778 | self.__buffer_cspc = 0 |
|
1770 | 1779 | self.__buffer_dc = 0 |
|
1771 | 1780 | self.__profIndex = 0 |
|
1772 | 1781 | |
|
1773 | 1782 | return data_spc, data_cspc, data_dc, n |
|
1774 | 1783 | |
|
1775 | 1784 | def byProfiles(self, *args): |
|
1776 | 1785 | |
|
1777 | 1786 | self.__dataReady = False |
|
1778 | 1787 | avgdata_spc = None |
|
1779 | 1788 | avgdata_cspc = None |
|
1780 | 1789 | avgdata_dc = None |
|
1781 | 1790 | |
|
1782 | 1791 | self.putData(*args) |
|
1783 | 1792 | |
|
1784 | 1793 | if self.__profIndex == self.n: |
|
1785 | 1794 | |
|
1786 | 1795 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1787 | 1796 | self.n = n |
|
1788 | 1797 | self.__dataReady = True |
|
1789 | 1798 | |
|
1790 | 1799 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1791 | 1800 | |
|
1792 | 1801 | def byTime(self, datatime, *args): |
|
1793 | 1802 | |
|
1794 | 1803 | self.__dataReady = False |
|
1795 | 1804 | avgdata_spc = None |
|
1796 | 1805 | avgdata_cspc = None |
|
1797 | 1806 | avgdata_dc = None |
|
1798 | 1807 | |
|
1799 | 1808 | self.putData(*args) |
|
1800 | 1809 | |
|
1801 | 1810 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1802 | 1811 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1803 | 1812 | self.n = n |
|
1804 | 1813 | self.__dataReady = True |
|
1805 | 1814 | |
|
1806 | 1815 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1807 | 1816 | |
|
1808 | 1817 | def integrate(self, datatime, *args): |
|
1809 | 1818 | |
|
1810 | 1819 | if self.__profIndex == 0: |
|
1811 | 1820 | self.__initime = datatime |
|
1812 | 1821 | |
|
1813 | 1822 | if self.__byTime: |
|
1814 | 1823 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1815 | 1824 | datatime, *args) |
|
1816 | 1825 | else: |
|
1817 | 1826 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1818 | 1827 | |
|
1819 | 1828 | if not self.__dataReady: |
|
1820 | 1829 | return None, None, None, None |
|
1821 | 1830 | |
|
1822 | 1831 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1823 | 1832 | |
|
1824 | 1833 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1825 | 1834 | if n == 1: |
|
1826 | 1835 | return dataOut |
|
1827 | 1836 | |
|
1828 | 1837 | dataOut.flagNoData = True |
|
1829 | 1838 | |
|
1830 | 1839 | if not self.isConfig: |
|
1831 | 1840 | self.setup(n, timeInterval, overlapping) |
|
1832 | 1841 | self.isConfig = True |
|
1833 | 1842 | |
|
1834 | 1843 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1835 | 1844 | dataOut.data_spc, |
|
1836 | 1845 | dataOut.data_cspc, |
|
1837 | 1846 | dataOut.data_dc) |
|
1838 | 1847 | |
|
1839 | 1848 | if self.__dataReady: |
|
1840 | 1849 | |
|
1841 | 1850 | dataOut.data_spc = avgdata_spc |
|
1842 | 1851 | dataOut.data_cspc = avgdata_cspc |
|
1843 | 1852 | dataOut.data_dc = avgdata_dc |
|
1844 | 1853 | dataOut.nIncohInt *= self.n |
|
1845 | 1854 | dataOut.utctime = avgdatatime |
|
1846 | 1855 | dataOut.flagNoData = False |
|
1847 | 1856 | |
|
1848 | 1857 | return dataOut |
|
1849 | 1858 | |
|
1850 | 1859 | class dopplerFlip(Operation): |
|
1851 | 1860 | |
|
1852 | 1861 | def run(self, dataOut): |
|
1853 | 1862 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1854 | 1863 | self.dataOut = dataOut |
|
1855 | 1864 | # JULIA-oblicua, indice 2 |
|
1856 | 1865 | # arreglo 2: (num_profiles, num_heights) |
|
1857 | 1866 | jspectra = self.dataOut.data_spc[2] |
|
1858 | 1867 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
1859 | 1868 | num_profiles = jspectra.shape[0] |
|
1860 | 1869 | freq_dc = int(num_profiles / 2) |
|
1861 | 1870 | # Flip con for |
|
1862 | 1871 | for j in range(num_profiles): |
|
1863 | 1872 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1864 | 1873 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1865 | 1874 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1866 | 1875 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1867 | 1876 | # canal modificado es re-escrito en el arreglo de canales |
|
1868 | 1877 | self.dataOut.data_spc[2] = jspectra_tmp |
|
1869 | 1878 | |
|
1870 | 1879 | return self.dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now