@@ -1,396 +1,401 | |||
|
1 | 1 | import os |
|
2 | 2 | import numpy |
|
3 | 3 | import time, datetime |
|
4 | 4 | import mpldriver |
|
5 | 5 | |
|
6 | 6 | |
|
7 | 7 | class Figure: |
|
8 | 8 | |
|
9 | 9 | __driver = mpldriver |
|
10 | 10 | fig = None |
|
11 | 11 | |
|
12 | 12 | idfigure = None |
|
13 | 13 | wintitle = None |
|
14 | 14 | width = None |
|
15 | 15 | height = None |
|
16 | 16 | nplots = None |
|
17 | 17 | timerange = None |
|
18 | 18 | |
|
19 | 19 | axesObjList = [] |
|
20 | 20 | |
|
21 | 21 | WIDTH = None |
|
22 | 22 | HEIGHT = None |
|
23 | 23 | PREFIX = 'fig' |
|
24 | 24 | |
|
25 | 25 | def __init__(self): |
|
26 | 26 | |
|
27 | 27 | raise ValueError, "This method is not implemented" |
|
28 | 28 | |
|
29 | 29 | def __del__(self): |
|
30 | 30 | |
|
31 | 31 | self.__driver.closeFigure() |
|
32 | 32 | |
|
33 | 33 | def getFilename(self, name, ext='.png'): |
|
34 | 34 | |
|
35 | 35 | filename = '%s-%s_%s%s' %(self.wintitle[0:10], self.PREFIX, name, ext) |
|
36 | 36 | |
|
37 | 37 | return filename |
|
38 | 38 | |
|
39 | 39 | def getAxesObjList(self): |
|
40 | 40 | |
|
41 | 41 | return self.axesObjList |
|
42 | 42 | |
|
43 | 43 | def getSubplots(self): |
|
44 | 44 | |
|
45 | 45 | raise ValueError, "Abstract method: This method should be defined" |
|
46 | 46 | |
|
47 | 47 | def getScreenDim(self, widthplot, heightplot): |
|
48 | 48 | |
|
49 | 49 | nrow, ncol = self.getSubplots() |
|
50 | 50 | |
|
51 | 51 | widthscreen = widthplot*ncol |
|
52 | 52 | heightscreen = heightplot*nrow |
|
53 | 53 | |
|
54 | 54 | return widthscreen, heightscreen |
|
55 | 55 | |
|
56 | 56 | def getTimeLim(self, x, xmin, xmax): |
|
57 | 57 | |
|
58 | 58 | thisdatetime = datetime.datetime.fromtimestamp(numpy.min(x)) |
|
59 | 59 | thisdate = datetime.datetime.combine(thisdatetime.date(), datetime.time(0,0,0)) |
|
60 | 60 | |
|
61 | 61 | #################################################### |
|
62 | 62 | #If the x is out of xrange |
|
63 | 63 | if xmax < (thisdatetime - thisdate).seconds/(60*60.): |
|
64 | 64 | xmin = None |
|
65 | 65 | xmax = None |
|
66 | 66 | |
|
67 | 67 | if xmin == None: |
|
68 | 68 | td = thisdatetime - thisdate |
|
69 | 69 | xmin = td.seconds/(60*60.) |
|
70 | 70 | |
|
71 | 71 | if xmax == None: |
|
72 | 72 | xmax = xmin + self.timerange/(60*60.) |
|
73 | 73 | |
|
74 | 74 | mindt = thisdate + datetime.timedelta(0,0,0,0,0, xmin) |
|
75 | 75 | tmin = time.mktime(mindt.timetuple()) |
|
76 | 76 | |
|
77 | 77 | maxdt = thisdate + datetime.timedelta(0,0,0,0,0, xmax) |
|
78 | 78 | tmax = time.mktime(maxdt.timetuple()) |
|
79 | 79 | |
|
80 | 80 | self.timerange = tmax - tmin |
|
81 | 81 | |
|
82 | 82 | return tmin, tmax |
|
83 | 83 | |
|
84 | 84 | def init(self, idfigure, nplots, wintitle): |
|
85 | 85 | |
|
86 | 86 | raise ValueError, "This method has been replaced with createFigure" |
|
87 | 87 | |
|
88 | 88 | def createFigure(self, idfigure, wintitle, widthplot=None, heightplot=None): |
|
89 | 89 | |
|
90 | 90 | """ |
|
91 | 91 | Crea la figura de acuerdo al driver y parametros seleccionados seleccionados. |
|
92 | 92 | Las dimensiones de la pantalla es calculada a partir de los atributos self.WIDTH |
|
93 | 93 | y self.HEIGHT y el numero de subplots (nrow, ncol) |
|
94 | 94 | |
|
95 | 95 | Input: |
|
96 | 96 | idfigure : Los parametros necesarios son |
|
97 | 97 | wintitle : |
|
98 | 98 | |
|
99 | 99 | """ |
|
100 | 100 | |
|
101 | 101 | if widthplot == None: |
|
102 | 102 | widthplot = self.WIDTH |
|
103 | 103 | |
|
104 | 104 | if heightplot == None: |
|
105 | 105 | heightplot = self.HEIGHT |
|
106 | 106 | |
|
107 | 107 | self.idfigure = idfigure |
|
108 | 108 | |
|
109 | 109 | self.wintitle = wintitle |
|
110 | 110 | |
|
111 | 111 | self.widthscreen, self.heightscreen = self.getScreenDim(widthplot, heightplot) |
|
112 | 112 | |
|
113 | 113 | self.fig = self.__driver.createFigure(self.idfigure, |
|
114 | 114 | self.wintitle, |
|
115 | 115 | self.widthscreen, |
|
116 | 116 | self.heightscreen) |
|
117 | 117 | |
|
118 | 118 | self.axesObjList = [] |
|
119 | 119 | |
|
120 | 120 | def setDriver(self, driver=mpldriver): |
|
121 | 121 | |
|
122 | 122 | self.__driver = driver |
|
123 | 123 | |
|
124 | 124 | def setTitle(self, title): |
|
125 | 125 | |
|
126 | 126 | self.__driver.setTitle(self.fig, title) |
|
127 | 127 | |
|
128 | 128 | def setWinTitle(self, title): |
|
129 | 129 | |
|
130 | 130 | self.__driver.setWinTitle(self.fig, title=title) |
|
131 | 131 | |
|
132 | 132 | def setTextFromAxes(self, text): |
|
133 | 133 | |
|
134 | 134 | raise ValueError, "Este metodo ha sido reemplazaado con el metodo setText de la clase Axes" |
|
135 | 135 | |
|
136 | 136 | def makeAxes(self, nrow, ncol, xpos, ypos, colspan, rowspan): |
|
137 | 137 | |
|
138 | 138 | raise ValueError, "Este metodo ha sido reemplazaado con el metodo addAxes" |
|
139 | 139 | |
|
140 | 140 | def addAxes(self, *args): |
|
141 | 141 | """ |
|
142 | 142 | |
|
143 | 143 | Input: |
|
144 | 144 | *args : Los parametros necesarios son |
|
145 | 145 | nrow, ncol, xpos, ypos, colspan, rowspan |
|
146 | 146 | """ |
|
147 | 147 | |
|
148 | 148 | axesObj = Axes(self.fig, *args) |
|
149 | 149 | self.axesObjList.append(axesObj) |
|
150 | 150 | |
|
151 | 151 | def saveFigure(self, figpath, figfile, *args): |
|
152 | 152 | |
|
153 | 153 | filename = os.path.join(figpath, figfile) |
|
154 | 154 | self.__driver.saveFigure(self.fig, filename, *args) |
|
155 | 155 | |
|
156 | 156 | def draw(self): |
|
157 | 157 | |
|
158 | 158 | self.__driver.draw(self.fig) |
|
159 | 159 | |
|
160 | 160 | def run(self): |
|
161 | 161 | |
|
162 | 162 | raise ValueError, "This method is not implemented" |
|
163 | 163 | |
|
164 | 164 | axesList = property(getAxesObjList) |
|
165 | 165 | |
|
166 | 166 | |
|
167 | 167 | class Axes: |
|
168 | 168 | |
|
169 | 169 | __driver = mpldriver |
|
170 | 170 | fig = None |
|
171 | 171 | ax = None |
|
172 | 172 | plot = None |
|
173 | 173 | |
|
174 | 174 | __firsttime = None |
|
175 | 175 | |
|
176 | 176 | __showprofile = False |
|
177 | 177 | |
|
178 | 178 | xmin = None |
|
179 | 179 | xmax = None |
|
180 | 180 | ymin = None |
|
181 | 181 | ymax = None |
|
182 | 182 | zmin = None |
|
183 | 183 | zmax = None |
|
184 | 184 | |
|
185 | 185 | def __init__(self, *args): |
|
186 | 186 | |
|
187 | 187 | """ |
|
188 | 188 | |
|
189 | 189 | Input: |
|
190 | 190 | *args : Los parametros necesarios son |
|
191 | 191 | fig, nrow, ncol, xpos, ypos, colspan, rowspan |
|
192 | 192 | """ |
|
193 | 193 | |
|
194 | 194 | ax = self.__driver.createAxes(*args) |
|
195 | 195 | self.fig = args[0] |
|
196 | 196 | self.ax = ax |
|
197 | 197 | self.plot = None |
|
198 | 198 | |
|
199 | 199 | self.__firsttime = True |
|
200 | 200 | self.idlineList = [] |
|
201 | 201 | |
|
202 | 202 | def setText(self, text): |
|
203 | 203 | |
|
204 | 204 | self.__driver.setAxesText(self.ax, text) |
|
205 | 205 | |
|
206 | 206 | def setXAxisAsTime(self): |
|
207 | 207 | pass |
|
208 | 208 | |
|
209 | 209 | def pline(self, x, y, |
|
210 | 210 | xmin=None, xmax=None, |
|
211 | 211 | ymin=None, ymax=None, |
|
212 | 212 | xlabel='', ylabel='', |
|
213 | 213 | title='', |
|
214 | 214 | **kwargs): |
|
215 | 215 | |
|
216 | 216 | """ |
|
217 | 217 | |
|
218 | 218 | Input: |
|
219 | 219 | x : |
|
220 | 220 | y : |
|
221 | 221 | xmin : |
|
222 | 222 | xmax : |
|
223 | 223 | ymin : |
|
224 | 224 | ymax : |
|
225 | 225 | xlabel : |
|
226 | 226 | ylabel : |
|
227 | 227 | title : |
|
228 | 228 | **kwargs : Los parametros aceptados son |
|
229 | 229 | |
|
230 | 230 | ticksize |
|
231 | 231 | ytick_visible |
|
232 | 232 | """ |
|
233 | 233 | |
|
234 | 234 | if self.__firsttime: |
|
235 | 235 | |
|
236 | 236 | if xmin == None: xmin = numpy.nanmin(x) |
|
237 | 237 | if xmax == None: xmax = numpy.nanmax(x) |
|
238 | 238 | if ymin == None: ymin = numpy.nanmin(y) |
|
239 | 239 | if ymax == None: ymax = numpy.nanmax(y) |
|
240 | 240 | |
|
241 | 241 | self.plot = self.__driver.createPline(self.ax, x, y, |
|
242 | 242 | xmin, xmax, |
|
243 | 243 | ymin, ymax, |
|
244 | 244 | xlabel=xlabel, |
|
245 | 245 | ylabel=ylabel, |
|
246 | 246 | title=title, |
|
247 | 247 | **kwargs) |
|
248 | 248 | |
|
249 | 249 | self.idlineList.append(0) |
|
250 | 250 | self.__firsttime = False |
|
251 | 251 | return |
|
252 | 252 | |
|
253 | 253 | self.__driver.pline(self.plot, x, y, xlabel=xlabel, |
|
254 | 254 | ylabel=ylabel, |
|
255 | 255 | title=title) |
|
256 | 256 | |
|
257 | 257 | def addpline(self, x, y, idline, **kwargs): |
|
258 | 258 | lines = self.ax.lines |
|
259 | 259 | |
|
260 | 260 | if idline in self.idlineList: |
|
261 | 261 | self.__driver.set_linedata(self.ax, x, y, idline) |
|
262 | 262 | |
|
263 | 263 | if idline not in(self.idlineList): |
|
264 | 264 | self.__driver.addpline(self.ax, x, y, **kwargs) |
|
265 | 265 | self.idlineList.append(idline) |
|
266 | 266 | |
|
267 | 267 | return |
|
268 | 268 | |
|
269 | 269 | def pmultiline(self, x, y, |
|
270 | 270 | xmin=None, xmax=None, |
|
271 | 271 | ymin=None, ymax=None, |
|
272 | 272 | xlabel='', ylabel='', |
|
273 | 273 | title='', |
|
274 | 274 | **kwargs): |
|
275 | 275 | |
|
276 | 276 | if self.__firsttime: |
|
277 | 277 | |
|
278 | 278 | if xmin == None: xmin = numpy.nanmin(x) |
|
279 | 279 | if xmax == None: xmax = numpy.nanmax(x) |
|
280 | 280 | if ymin == None: ymin = numpy.nanmin(y) |
|
281 | 281 | if ymax == None: ymax = numpy.nanmax(y) |
|
282 | 282 | |
|
283 | 283 | self.plot = self.__driver.createPmultiline(self.ax, x, y, |
|
284 | 284 | xmin, xmax, |
|
285 | 285 | ymin, ymax, |
|
286 | 286 | xlabel=xlabel, |
|
287 | 287 | ylabel=ylabel, |
|
288 | 288 | title=title, |
|
289 | 289 | **kwargs) |
|
290 | 290 | self.__firsttime = False |
|
291 | 291 | return |
|
292 | 292 | |
|
293 | 293 | self.__driver.pmultiline(self.plot, x, y, xlabel=xlabel, |
|
294 | 294 | ylabel=ylabel, |
|
295 | 295 | title=title) |
|
296 | 296 | |
|
297 | 297 | def pmultilineyaxis(self, x, y, |
|
298 | 298 | xmin=None, xmax=None, |
|
299 | 299 | ymin=None, ymax=None, |
|
300 | 300 | xlabel='', ylabel='', |
|
301 | 301 | title='', |
|
302 | 302 | **kwargs): |
|
303 | 303 | |
|
304 | 304 | if self.__firsttime: |
|
305 | 305 | |
|
306 | 306 | if xmin == None: xmin = numpy.nanmin(x) |
|
307 | 307 | if xmax == None: xmax = numpy.nanmax(x) |
|
308 | 308 | if ymin == None: ymin = numpy.nanmin(y) |
|
309 | 309 | if ymax == None: ymax = numpy.nanmax(y) |
|
310 | 310 | |
|
311 | 311 | self.plot = self.__driver.createPmultilineYAxis(self.ax, x, y, |
|
312 | 312 | xmin, xmax, |
|
313 | 313 | ymin, ymax, |
|
314 | 314 | xlabel=xlabel, |
|
315 | 315 | ylabel=ylabel, |
|
316 | 316 | title=title, |
|
317 | 317 | **kwargs) |
|
318 | if self.xmin == None: self.xmin = xmin | |
|
319 | if self.xmax == None: self.xmax = xmax | |
|
320 | if self.ymin == None: self.ymin = ymin | |
|
321 | if self.ymax == None: self.ymax = ymax | |
|
322 | ||
|
318 | 323 | self.__firsttime = False |
|
319 | 324 | return |
|
320 | 325 | |
|
321 | 326 | self.__driver.pmultilineyaxis(self.plot, x, y, xlabel=xlabel, |
|
322 | 327 | ylabel=ylabel, |
|
323 | 328 | title=title) |
|
324 | 329 | |
|
325 | 330 | def pcolor(self, x, y, z, |
|
326 | 331 | xmin=None, xmax=None, |
|
327 | 332 | ymin=None, ymax=None, |
|
328 | 333 | zmin=None, zmax=None, |
|
329 | 334 | xlabel='', ylabel='', |
|
330 | 335 | title='', rti = False, colormap='jet', |
|
331 | 336 | **kwargs): |
|
332 | 337 | |
|
333 | 338 | """ |
|
334 | 339 | Input: |
|
335 | 340 | x : |
|
336 | 341 | y : |
|
337 | 342 | x : |
|
338 | 343 | xmin : |
|
339 | 344 | xmax : |
|
340 | 345 | ymin : |
|
341 | 346 | ymax : |
|
342 | 347 | zmin : |
|
343 | 348 | zmax : |
|
344 | 349 | xlabel : |
|
345 | 350 | ylabel : |
|
346 | 351 | title : |
|
347 | 352 | **kwargs : Los parametros aceptados son |
|
348 | 353 | ticksize=9, |
|
349 | 354 | cblabel='' |
|
350 | 355 | rti = True or False |
|
351 | 356 | """ |
|
352 | 357 | |
|
353 | 358 | if self.__firsttime: |
|
354 | 359 | |
|
355 | 360 | if xmin == None: xmin = numpy.nanmin(x) |
|
356 | 361 | if xmax == None: xmax = numpy.nanmax(x) |
|
357 | 362 | if ymin == None: ymin = numpy.nanmin(y) |
|
358 | 363 | if ymax == None: ymax = numpy.nanmax(y) |
|
359 | 364 | if zmin == None: zmin = numpy.nanmin(z) |
|
360 | 365 | if zmax == None: zmax = numpy.nanmax(z) |
|
361 | 366 | |
|
362 | 367 | |
|
363 | 368 | self.plot = self.__driver.createPcolor(self.ax, x, y, z, |
|
364 | 369 | xmin, xmax, |
|
365 | 370 | ymin, ymax, |
|
366 | 371 | zmin, zmax, |
|
367 | 372 | xlabel=xlabel, |
|
368 | 373 | ylabel=ylabel, |
|
369 | 374 | title=title, |
|
370 | 375 | colormap=colormap, |
|
371 | 376 | **kwargs) |
|
372 | 377 | |
|
373 | 378 | if self.xmin == None: self.xmin = xmin |
|
374 | 379 | if self.xmax == None: self.xmax = xmax |
|
375 | 380 | if self.ymin == None: self.ymin = ymin |
|
376 | 381 | if self.ymax == None: self.ymax = ymax |
|
377 | 382 | if self.zmin == None: self.zmin = zmin |
|
378 | 383 | if self.zmax == None: self.zmax = zmax |
|
379 | 384 | |
|
380 | 385 | self.__firsttime = False |
|
381 | 386 | return |
|
382 | 387 | |
|
383 | 388 | if rti: |
|
384 | 389 | self.__driver.addpcolor(self.ax, x, y, z, self.zmin, self.zmax, |
|
385 | 390 | xlabel=xlabel, |
|
386 | 391 | ylabel=ylabel, |
|
387 | 392 | title=title, |
|
388 | 393 | colormap=colormap) |
|
389 | 394 | return |
|
390 | 395 | |
|
391 | 396 | self.__driver.pcolor(self.plot, z, |
|
392 | 397 | xlabel=xlabel, |
|
393 | 398 | ylabel=ylabel, |
|
394 | 399 | title=title) |
|
395 | 400 | |
|
396 | 401 | No newline at end of file |
@@ -1,366 +1,370 | |||
|
1 | 1 | import numpy |
|
2 | 2 | import datetime |
|
3 | import sys | |
|
3 | 4 | import matplotlib |
|
4 | matplotlib.use("GTKAgg") | |
|
5 | if sys.platform == 'linux': | |
|
6 | matplotlib.use("GTKAgg") | |
|
7 | if sys.platform == 'darwin': | |
|
8 | matplotlib.use("TKAgg") | |
|
5 | 9 | import matplotlib.pyplot |
|
6 | 10 | import matplotlib.dates |
|
7 | 11 | #import scitools.numpyutils |
|
8 | 12 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
9 | 13 | |
|
10 | 14 | from matplotlib.dates import DayLocator, HourLocator, MinuteLocator, SecondLocator, DateFormatter |
|
11 | 15 | from matplotlib.ticker import FuncFormatter |
|
12 | 16 | from matplotlib.ticker import * |
|
13 | 17 | |
|
14 | 18 | ########################################### |
|
15 | 19 | #Actualizacion de las funciones del driver |
|
16 | 20 | ########################################### |
|
17 | 21 | |
|
18 | 22 | def createFigure(idfigure, wintitle, width, height, facecolor="w"): |
|
19 | 23 | |
|
20 | 24 | matplotlib.pyplot.ioff() |
|
21 | 25 | fig = matplotlib.pyplot.figure(num=idfigure, facecolor=facecolor) |
|
22 | 26 | fig.canvas.manager.set_window_title(wintitle) |
|
23 | 27 | fig.canvas.manager.resize(width, height) |
|
24 | 28 | matplotlib.pyplot.ion() |
|
25 | 29 | matplotlib.pyplot.show() |
|
26 | 30 | |
|
27 | 31 | return fig |
|
28 | 32 | |
|
29 | 33 | def closeFigure(): |
|
30 | 34 | |
|
31 | 35 | matplotlib.pyplot.ioff() |
|
32 | 36 | matplotlib.pyplot.show() |
|
33 | 37 | |
|
34 | 38 | return |
|
35 | 39 | |
|
36 | 40 | def saveFigure(fig, filename): |
|
37 | 41 | |
|
38 | 42 | matplotlib.pyplot.ioff() |
|
39 | 43 | fig.savefig(filename) |
|
40 | 44 | matplotlib.pyplot.ion() |
|
41 | 45 | |
|
42 | 46 | def setWinTitle(fig, title): |
|
43 | 47 | |
|
44 | 48 | fig.canvas.manager.set_window_title(title) |
|
45 | 49 | |
|
46 | 50 | def setTitle(fig, title): |
|
47 | 51 | |
|
48 | 52 | fig.suptitle(title) |
|
49 | 53 | |
|
50 | 54 | def createAxes(fig, nrow, ncol, xpos, ypos, colspan, rowspan): |
|
51 | 55 | |
|
52 | 56 | matplotlib.pyplot.ioff() |
|
53 | 57 | matplotlib.pyplot.figure(fig.number) |
|
54 | 58 | axes = matplotlib.pyplot.subplot2grid((nrow, ncol), |
|
55 | 59 | (xpos, ypos), |
|
56 | 60 | colspan=colspan, |
|
57 | 61 | rowspan=rowspan) |
|
58 | 62 | |
|
59 | 63 | matplotlib.pyplot.ion() |
|
60 | 64 | return axes |
|
61 | 65 | |
|
62 | 66 | def setAxesText(ax, text): |
|
63 | 67 | |
|
64 | 68 | ax.annotate(text, |
|
65 | 69 | xy = (.1, .99), |
|
66 | 70 | xycoords = 'figure fraction', |
|
67 | 71 | horizontalalignment = 'left', |
|
68 | 72 | verticalalignment = 'top', |
|
69 | 73 | fontsize = 10) |
|
70 | 74 | |
|
71 | 75 | def printLabels(ax, xlabel, ylabel, title): |
|
72 | 76 | |
|
73 | 77 | ax.set_xlabel(xlabel, size=11) |
|
74 | 78 | ax.set_ylabel(ylabel, size=11) |
|
75 | 79 | ax.set_title(title, size=12) |
|
76 | 80 | |
|
77 | 81 | def createPline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', |
|
78 | 82 | ticksize=9, xtick_visible=True, ytick_visible=True, |
|
79 | 83 | nxticks=4, nyticks=10, |
|
80 | 84 | grid=None): |
|
81 | 85 | |
|
82 | 86 | """ |
|
83 | 87 | |
|
84 | 88 | Input: |
|
85 | 89 | grid : None, 'both', 'x', 'y' |
|
86 | 90 | """ |
|
87 | 91 | |
|
88 | 92 | matplotlib.pyplot.ioff() |
|
89 | 93 | |
|
90 | 94 | ax.set_xlim([xmin,xmax]) |
|
91 | 95 | ax.set_ylim([ymin,ymax]) |
|
92 | 96 | |
|
93 | 97 | printLabels(ax, xlabel, ylabel, title) |
|
94 | 98 | |
|
95 | 99 | ###################################################### |
|
96 | 100 | if (xmax-xmin)<=1: |
|
97 | 101 | xtickspos = numpy.linspace(xmin,xmax,nxticks) |
|
98 | 102 | xtickspos = numpy.array([float("%.1f"%i) for i in xtickspos]) |
|
99 | 103 | ax.set_xticks(xtickspos) |
|
100 | 104 | else: |
|
101 | 105 | xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) |
|
102 | 106 | ax.set_xticks(xtickspos) |
|
103 | 107 | |
|
104 | 108 | for tick in ax.get_xticklabels(): |
|
105 | 109 | tick.set_visible(xtick_visible) |
|
106 | 110 | |
|
107 | 111 | for tick in ax.xaxis.get_major_ticks(): |
|
108 | 112 | tick.label.set_fontsize(ticksize) |
|
109 | 113 | |
|
110 | 114 | ###################################################### |
|
111 | 115 | for tick in ax.get_yticklabels(): |
|
112 | 116 | tick.set_visible(ytick_visible) |
|
113 | 117 | |
|
114 | 118 | for tick in ax.yaxis.get_major_ticks(): |
|
115 | 119 | tick.label.set_fontsize(ticksize) |
|
116 | 120 | |
|
117 | 121 | ax.plot(x, y) |
|
118 | 122 | iplot = ax.lines[-1] |
|
119 | 123 | |
|
120 | 124 | ###################################################### |
|
121 | 125 | if '0.' in matplotlib.__version__[0:2]: |
|
122 | 126 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
123 | 127 | return iplot |
|
124 | 128 | |
|
125 | 129 | if '1.0.' in matplotlib.__version__[0:4]: |
|
126 | 130 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
127 | 131 | return iplot |
|
128 | 132 | |
|
129 | 133 | if grid != None: |
|
130 | 134 | ax.grid(b=True, which='major', axis=grid) |
|
131 | 135 | |
|
132 | 136 | matplotlib.pyplot.tight_layout() |
|
133 | 137 | |
|
134 | 138 | matplotlib.pyplot.ion() |
|
135 | 139 | |
|
136 | 140 | return iplot |
|
137 | 141 | |
|
138 | 142 | def set_linedata(ax, x, y, idline): |
|
139 | 143 | |
|
140 | 144 | ax.lines[idline].set_data(x,y) |
|
141 | 145 | |
|
142 | 146 | def pline(iplot, x, y, xlabel='', ylabel='', title=''): |
|
143 | 147 | |
|
144 | 148 | ax = iplot.get_axes() |
|
145 | 149 | |
|
146 | 150 | printLabels(ax, xlabel, ylabel, title) |
|
147 | 151 | |
|
148 | 152 | set_linedata(ax, x, y, idline=0) |
|
149 | 153 | |
|
150 | 154 | def addpline(ax, x, y, color, linestyle, lw): |
|
151 | 155 | |
|
152 | 156 | ax.plot(x,y,color=color,linestyle=linestyle,lw=lw) |
|
153 | 157 | |
|
154 | 158 | |
|
155 | 159 | def createPcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax, |
|
156 | 160 | xlabel='', ylabel='', title='', ticksize = 9, |
|
157 | 161 | colormap='jet',cblabel='', cbsize="5%", |
|
158 | 162 | XAxisAsTime=False): |
|
159 | 163 | |
|
160 | 164 | matplotlib.pyplot.ioff() |
|
161 | 165 | |
|
162 | 166 | divider = make_axes_locatable(ax) |
|
163 | 167 | ax_cb = divider.new_horizontal(size=cbsize, pad=0.05) |
|
164 | 168 | fig = ax.get_figure() |
|
165 | 169 | fig.add_axes(ax_cb) |
|
166 | 170 | |
|
167 | 171 | ax.set_xlim([xmin,xmax]) |
|
168 | 172 | ax.set_ylim([ymin,ymax]) |
|
169 | 173 | |
|
170 | 174 | printLabels(ax, xlabel, ylabel, title) |
|
171 | 175 | |
|
172 | 176 | imesh = ax.pcolormesh(x,y,z.T, vmin=zmin, vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap)) |
|
173 | 177 | cb = matplotlib.pyplot.colorbar(imesh, cax=ax_cb) |
|
174 | 178 | cb.set_label(cblabel) |
|
175 | 179 | |
|
176 | 180 | # for tl in ax_cb.get_yticklabels(): |
|
177 | 181 | # tl.set_visible(True) |
|
178 | 182 | |
|
179 | 183 | for tick in ax.yaxis.get_major_ticks(): |
|
180 | 184 | tick.label.set_fontsize(ticksize) |
|
181 | 185 | |
|
182 | 186 | for tick in ax.xaxis.get_major_ticks(): |
|
183 | 187 | tick.label.set_fontsize(ticksize) |
|
184 | 188 | |
|
185 | 189 | for tick in cb.ax.get_yticklabels(): |
|
186 | 190 | tick.set_fontsize(ticksize) |
|
187 | 191 | |
|
188 | 192 | ax_cb.yaxis.tick_right() |
|
189 | 193 | |
|
190 | 194 | if '0.' in matplotlib.__version__[0:2]: |
|
191 | 195 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
192 | 196 | return imesh |
|
193 | 197 | |
|
194 | 198 | if '1.0.' in matplotlib.__version__[0:4]: |
|
195 | 199 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
196 | 200 | return imesh |
|
197 | 201 | |
|
198 | 202 | matplotlib.pyplot.tight_layout() |
|
199 | 203 | |
|
200 | 204 | if XAxisAsTime: |
|
201 | 205 | |
|
202 | 206 | func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S")) |
|
203 | 207 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
204 | 208 | ax.xaxis.set_major_locator(LinearLocator(7)) |
|
205 | 209 | |
|
206 | 210 | matplotlib.pyplot.ion() |
|
207 | 211 | return imesh |
|
208 | 212 | |
|
209 | 213 | def pcolor(imesh, z, xlabel='', ylabel='', title=''): |
|
210 | 214 | |
|
211 | 215 | z = z.T |
|
212 | 216 | |
|
213 | 217 | ax = imesh.get_axes() |
|
214 | 218 | |
|
215 | 219 | printLabels(ax, xlabel, ylabel, title) |
|
216 | 220 | |
|
217 | 221 | imesh.set_array(z.ravel()) |
|
218 | 222 | |
|
219 | 223 | def addpcolor(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'): |
|
220 | 224 | |
|
221 | 225 | printLabels(ax, xlabel, ylabel, title) |
|
222 | 226 | |
|
223 | 227 | imesh = ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap)) |
|
224 | 228 | |
|
225 | 229 | def createPmultiline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None, |
|
226 | 230 | ticksize=9, xtick_visible=True, ytick_visible=True, |
|
227 | 231 | nxticks=4, nyticks=10, |
|
228 | 232 | grid=None): |
|
229 | 233 | |
|
230 | 234 | """ |
|
231 | 235 | |
|
232 | 236 | Input: |
|
233 | 237 | grid : None, 'both', 'x', 'y' |
|
234 | 238 | """ |
|
235 | 239 | |
|
236 | 240 | matplotlib.pyplot.ioff() |
|
237 | 241 | |
|
238 | 242 | lines = ax.plot(x.T, y) |
|
239 | 243 | leg = ax.legend(lines, legendlabels, loc='upper right') |
|
240 | 244 | leg.get_frame().set_alpha(0.5) |
|
241 | 245 | ax.set_xlim([xmin,xmax]) |
|
242 | 246 | ax.set_ylim([ymin,ymax]) |
|
243 | 247 | printLabels(ax, xlabel, ylabel, title) |
|
244 | 248 | |
|
245 | 249 | xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) |
|
246 | 250 | ax.set_xticks(xtickspos) |
|
247 | 251 | |
|
248 | 252 | for tick in ax.get_xticklabels(): |
|
249 | 253 | tick.set_visible(xtick_visible) |
|
250 | 254 | |
|
251 | 255 | for tick in ax.xaxis.get_major_ticks(): |
|
252 | 256 | tick.label.set_fontsize(ticksize) |
|
253 | 257 | |
|
254 | 258 | for tick in ax.get_yticklabels(): |
|
255 | 259 | tick.set_visible(ytick_visible) |
|
256 | 260 | |
|
257 | 261 | for tick in ax.yaxis.get_major_ticks(): |
|
258 | 262 | tick.label.set_fontsize(ticksize) |
|
259 | 263 | |
|
260 | 264 | iplot = ax.lines[-1] |
|
261 | 265 | |
|
262 | 266 | if '0.' in matplotlib.__version__[0:2]: |
|
263 | 267 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
264 | 268 | return iplot |
|
265 | 269 | |
|
266 | 270 | if '1.0.' in matplotlib.__version__[0:4]: |
|
267 | 271 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
268 | 272 | return iplot |
|
269 | 273 | |
|
270 | 274 | if grid != None: |
|
271 | 275 | ax.grid(b=True, which='major', axis=grid) |
|
272 | 276 | |
|
273 | 277 | matplotlib.pyplot.tight_layout() |
|
274 | 278 | |
|
275 | 279 | matplotlib.pyplot.ion() |
|
276 | 280 | |
|
277 | 281 | return iplot |
|
278 | 282 | |
|
279 | 283 | |
|
280 | 284 | def pmultiline(iplot, x, y, xlabel='', ylabel='', title=''): |
|
281 | 285 | |
|
282 | 286 | ax = iplot.get_axes() |
|
283 | 287 | |
|
284 | 288 | printLabels(ax, xlabel, ylabel, title) |
|
285 | 289 | |
|
286 | 290 | for i in range(len(ax.lines)): |
|
287 | 291 | line = ax.lines[i] |
|
288 | 292 | line.set_data(x[i,:],y) |
|
289 | 293 | |
|
290 | 294 | def createPmultilineYAxis(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None, |
|
291 | 295 | ticksize=9, xtick_visible=True, ytick_visible=True, |
|
292 | 296 | nxticks=4, nyticks=10, marker='^', markersize=8, linestyle="solid", |
|
293 | 297 | grid=None, XAxisAsTime=False): |
|
294 | 298 | |
|
295 | 299 | """ |
|
296 | 300 | |
|
297 | 301 | Input: |
|
298 | 302 | grid : None, 'both', 'x', 'y' |
|
299 | 303 | """ |
|
300 | 304 | |
|
301 | 305 | matplotlib.pyplot.ioff() |
|
302 | 306 | |
|
303 | 307 | lines = ax.plot(x, y.T, marker=marker,markersize=markersize,linestyle=linestyle) |
|
304 | 308 | leg = ax.legend(lines, legendlabels, bbox_to_anchor=(1.05, 1), loc='upper right', numpoints=1, handlelength=1.5, \ |
|
305 | 309 | handletextpad=0.5, borderpad=0.2, labelspacing=0.2, borderaxespad=0.) |
|
306 | 310 | |
|
307 | 311 | ax.set_xlim([xmin,xmax]) |
|
308 | 312 | ax.set_ylim([ymin,ymax]) |
|
309 | 313 | printLabels(ax, xlabel, ylabel, title) |
|
310 | 314 | |
|
311 | 315 | # xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) |
|
312 | 316 | # ax.set_xticks(xtickspos) |
|
313 | 317 | |
|
314 | 318 | for tick in ax.get_xticklabels(): |
|
315 | 319 | tick.set_visible(xtick_visible) |
|
316 | 320 | |
|
317 | 321 | for tick in ax.xaxis.get_major_ticks(): |
|
318 | 322 | tick.label.set_fontsize(ticksize) |
|
319 | 323 | |
|
320 | 324 | for tick in ax.get_yticklabels(): |
|
321 | 325 | tick.set_visible(ytick_visible) |
|
322 | 326 | |
|
323 | 327 | for tick in ax.yaxis.get_major_ticks(): |
|
324 | 328 | tick.label.set_fontsize(ticksize) |
|
325 | 329 | |
|
326 | 330 | iplot = ax.lines[-1] |
|
327 | 331 | |
|
328 | 332 | if '0.' in matplotlib.__version__[0:2]: |
|
329 | 333 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
330 | 334 | return iplot |
|
331 | 335 | |
|
332 | 336 | if '1.0.' in matplotlib.__version__[0:4]: |
|
333 | 337 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
334 | 338 | return iplot |
|
335 | 339 | |
|
336 | 340 | if grid != None: |
|
337 | 341 | ax.grid(b=True, which='major', axis=grid) |
|
338 | 342 | |
|
339 | 343 | matplotlib.pyplot.tight_layout() |
|
340 | 344 | |
|
341 | 345 | if XAxisAsTime: |
|
342 | 346 | |
|
343 | 347 | func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S")) |
|
344 | 348 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
345 | 349 | ax.xaxis.set_major_locator(LinearLocator(7)) |
|
346 | 350 | |
|
347 | 351 | matplotlib.pyplot.ion() |
|
348 | 352 | |
|
349 | 353 | return iplot |
|
350 | 354 | |
|
351 | 355 | def pmultilineinyaxis(iplot, x, y, xlabel='', ylabel='', title=''): |
|
352 | 356 | |
|
353 | 357 | ax = iplot.get_axes() |
|
354 | 358 | |
|
355 | 359 | printLabels(ax, xlabel, ylabel, title) |
|
356 | 360 | |
|
357 | 361 | for i in range(len(ax.lines)): |
|
358 | 362 | line = ax.lines[i] |
|
359 | 363 | line.set_data(x,y[i,:]) |
|
360 | 364 | |
|
361 | 365 | def draw(fig): |
|
362 | 366 | |
|
363 | 367 | if type(fig) == 'int': |
|
364 | 368 | raise ValueError, "This parameter should be of tpye matplotlib figure" |
|
365 | 369 | |
|
366 | 370 | fig.canvas.draw() No newline at end of file |
@@ -1,525 +1,536 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import os, sys |
|
8 | 8 | import copy |
|
9 | 9 | import numpy |
|
10 | 10 | import datetime |
|
11 | 11 | |
|
12 | 12 | from jroheaderIO import SystemHeader, RadarControllerHeader |
|
13 | 13 | |
|
14 | 14 | def hildebrand_sekhon(data, navg): |
|
15 | 15 | """ |
|
16 | 16 | This method is for the objective determination of de noise level in Doppler spectra. This |
|
17 | 17 | implementation technique is based on the fact that the standard deviation of the spectral |
|
18 | 18 | densities is equal to the mean spectral density for white Gaussian noise |
|
19 | 19 | |
|
20 | 20 | Inputs: |
|
21 | 21 | Data : heights |
|
22 | 22 | navg : numbers of averages |
|
23 | 23 | |
|
24 | 24 | Return: |
|
25 | 25 | -1 : any error |
|
26 | 26 | anoise : noise's level |
|
27 | 27 | """ |
|
28 | 28 | |
|
29 | 29 | dataflat = data.copy().reshape(-1) |
|
30 | 30 | dataflat.sort() |
|
31 | 31 | npts = dataflat.size #numbers of points of the data |
|
32 | 32 | npts_noise = 0.2*npts |
|
33 | 33 | |
|
34 | 34 | if npts < 32: |
|
35 | 35 | print "error in noise - requires at least 32 points" |
|
36 | 36 | return -1.0 |
|
37 | 37 | |
|
38 | 38 | dataflat2 = numpy.power(dataflat,2) |
|
39 | 39 | |
|
40 | 40 | cs = numpy.cumsum(dataflat) |
|
41 | 41 | cs2 = numpy.cumsum(dataflat2) |
|
42 | 42 | |
|
43 | 43 | # data sorted in ascending order |
|
44 | 44 | nmin = int((npts + 7.)/8) |
|
45 | 45 | |
|
46 | 46 | for i in range(nmin, npts): |
|
47 | 47 | s = cs[i] |
|
48 | 48 | s2 = cs2[i] |
|
49 | 49 | p = s / float(i); |
|
50 | 50 | p2 = p**2; |
|
51 | 51 | q = s2 / float(i) - p2; |
|
52 | 52 | leftc = p2; |
|
53 | 53 | rightc = q * float(navg); |
|
54 | 54 | R2 = leftc/rightc |
|
55 | 55 | |
|
56 | 56 | # Signal detect: R2 < 1 (R2 = leftc/rightc) |
|
57 | 57 | if R2 < 1: |
|
58 | 58 | npts_noise = i |
|
59 | 59 | break |
|
60 | 60 | |
|
61 | 61 | |
|
62 | 62 | anoise = numpy.average(dataflat[0:npts_noise]) |
|
63 | 63 | |
|
64 | 64 | return anoise; |
|
65 | 65 | |
|
66 | 66 | def sorting_bruce(data, navg): |
|
67 | 67 | |
|
68 | 68 | data = data.copy() |
|
69 | 69 | |
|
70 | 70 | sortdata = numpy.sort(data) |
|
71 | 71 | lenOfData = len(data) |
|
72 | 72 | nums_min = lenOfData/10 |
|
73 | 73 | |
|
74 | 74 | if (lenOfData/10) > 0: |
|
75 | 75 | nums_min = lenOfData/10 |
|
76 | 76 | else: |
|
77 | 77 | nums_min = 0 |
|
78 | 78 | |
|
79 | 79 | rtest = 1.0 + 1.0/navg |
|
80 | 80 | |
|
81 | 81 | sum = 0. |
|
82 | 82 | |
|
83 | 83 | sumq = 0. |
|
84 | 84 | |
|
85 | 85 | j = 0 |
|
86 | 86 | |
|
87 | 87 | cont = 1 |
|
88 | 88 | |
|
89 | 89 | while((cont==1)and(j<lenOfData)): |
|
90 | 90 | |
|
91 | 91 | sum += sortdata[j] |
|
92 | 92 | |
|
93 | 93 | sumq += sortdata[j]**2 |
|
94 | 94 | |
|
95 | 95 | j += 1 |
|
96 | 96 | |
|
97 | 97 | if j > nums_min: |
|
98 | 98 | if ((sumq*j) <= (rtest*sum**2)): |
|
99 | 99 | lnoise = sum / j |
|
100 | 100 | else: |
|
101 | 101 | j = j - 1 |
|
102 | 102 | sum = sum - sordata[j] |
|
103 | 103 | sumq = sumq - sordata[j]**2 |
|
104 | 104 | cont = 0 |
|
105 | 105 | |
|
106 | 106 | if j == nums_min: |
|
107 | 107 | lnoise = sum /j |
|
108 | 108 | |
|
109 | 109 | return lnoise |
|
110 | 110 | |
|
111 | 111 | class JROData: |
|
112 | 112 | |
|
113 | 113 | # m_BasicHeader = BasicHeader() |
|
114 | 114 | # m_ProcessingHeader = ProcessingHeader() |
|
115 | 115 | |
|
116 | 116 | systemHeaderObj = SystemHeader() |
|
117 | 117 | |
|
118 | 118 | radarControllerHeaderObj = RadarControllerHeader() |
|
119 | 119 | |
|
120 | 120 | # data = None |
|
121 | 121 | |
|
122 | 122 | type = None |
|
123 | 123 | |
|
124 | 124 | dtype = None |
|
125 | 125 | |
|
126 | 126 | # nChannels = None |
|
127 | 127 | |
|
128 | 128 | # nHeights = None |
|
129 | 129 | |
|
130 | 130 | nProfiles = None |
|
131 | 131 | |
|
132 | 132 | heightList = None |
|
133 | 133 | |
|
134 | 134 | channelList = None |
|
135 | 135 | |
|
136 | 136 | flagNoData = True |
|
137 | 137 | |
|
138 | 138 | flagTimeBlock = False |
|
139 | 139 | |
|
140 | 140 | utctime = None |
|
141 | 141 | |
|
142 | 142 | blocksize = None |
|
143 | 143 | |
|
144 | 144 | nCode = None |
|
145 | 145 | |
|
146 | 146 | nBaud = None |
|
147 | 147 | |
|
148 | 148 | code = None |
|
149 | 149 | |
|
150 | 150 | flagDecodeData = False #asumo q la data no esta decodificada |
|
151 | 151 | |
|
152 | 152 | flagDeflipData = False #asumo q la data no esta sin flip |
|
153 | 153 | |
|
154 | 154 | flagShiftFFT = False |
|
155 | 155 | |
|
156 | 156 | ippSeconds = None |
|
157 | 157 | |
|
158 | 158 | timeInterval = None |
|
159 | 159 | |
|
160 | 160 | nCohInt = None |
|
161 | 161 | |
|
162 | 162 | noise = None |
|
163 | 163 | |
|
164 | windowOfFilter = 1 | |
|
165 | ||
|
164 | 166 | #Speed of ligth |
|
165 | 167 | C = 3e8 |
|
166 | 168 | |
|
167 | 169 | frequency = 49.92e6 |
|
168 | 170 | |
|
169 | 171 | def __init__(self): |
|
170 | 172 | |
|
171 | 173 | raise ValueError, "This class has not been implemented" |
|
172 | 174 | |
|
173 | 175 | def copy(self, inputObj=None): |
|
174 | 176 | |
|
175 | 177 | if inputObj == None: |
|
176 | 178 | return copy.deepcopy(self) |
|
177 | 179 | |
|
178 | 180 | for key in inputObj.__dict__.keys(): |
|
179 | 181 | self.__dict__[key] = inputObj.__dict__[key] |
|
180 | 182 | |
|
181 | 183 | def deepcopy(self): |
|
182 | 184 | |
|
183 | 185 | return copy.deepcopy(self) |
|
184 | 186 | |
|
185 | 187 | def isEmpty(self): |
|
186 | 188 | |
|
187 | 189 | return self.flagNoData |
|
188 | 190 | |
|
189 | 191 | def getNoise(self): |
|
190 | 192 | |
|
191 | 193 | raise ValueError, "Not implemented" |
|
192 | 194 | |
|
193 | 195 | def getNChannels(self): |
|
194 | 196 | |
|
195 | 197 | return len(self.channelList) |
|
196 | 198 | |
|
197 | 199 | def getChannelIndexList(self): |
|
198 | 200 | |
|
199 | 201 | return range(self.nChannels) |
|
200 | 202 | |
|
201 | 203 | def getNHeights(self): |
|
202 | 204 | |
|
203 | 205 | return len(self.heightList) |
|
204 | 206 | |
|
205 | 207 | def getHeiRange(self, extrapoints=0): |
|
206 | 208 | |
|
207 | 209 | heis = self.heightList |
|
208 | 210 | # deltah = self.heightList[1] - self.heightList[0] |
|
209 | 211 | # |
|
210 | 212 | # heis.append(self.heightList[-1]) |
|
211 | 213 | |
|
212 | 214 | return heis |
|
213 | 215 | |
|
214 | 216 | def getDatatime(self): |
|
215 | 217 | |
|
216 | 218 | datatime = datetime.datetime.utcfromtimestamp(self.utctime) |
|
217 | 219 | return datatime |
|
218 | 220 | |
|
219 | 221 | def getTimeRange(self): |
|
220 | 222 | |
|
221 | 223 | datatime = [] |
|
222 | 224 | |
|
223 | 225 | datatime.append(self.utctime) |
|
224 | 226 | datatime.append(self.utctime + self.timeInterval) |
|
225 | 227 | |
|
226 | 228 | datatime = numpy.array(datatime) |
|
227 | 229 | |
|
228 | 230 | return datatime |
|
229 | 231 | |
|
230 | 232 | def getFmax(self): |
|
231 | 233 | |
|
232 | 234 | PRF = 1./(self.ippSeconds * self.nCohInt) |
|
233 | 235 | |
|
234 | 236 | fmax = PRF/2. |
|
235 | 237 | |
|
236 | 238 | return fmax |
|
237 | 239 | |
|
238 | 240 | def getVmax(self): |
|
239 | 241 | |
|
240 | 242 | _lambda = self.C/self.frequency |
|
241 | 243 | |
|
242 | 244 | vmax = self.getFmax() * _lambda |
|
243 | 245 | |
|
244 | 246 | return vmax |
|
245 | 247 | |
|
246 | 248 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
247 | 249 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
248 | 250 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
249 | 251 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
250 | 252 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
251 | 253 | |
|
252 | 254 | class Voltage(JROData): |
|
253 | 255 | |
|
254 | 256 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
255 | 257 | data = None |
|
256 | 258 | |
|
257 | 259 | def __init__(self): |
|
258 | 260 | ''' |
|
259 | 261 | Constructor |
|
260 | 262 | ''' |
|
261 | 263 | |
|
262 | 264 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
263 | 265 | |
|
264 | 266 | self.systemHeaderObj = SystemHeader() |
|
265 | 267 | |
|
266 | 268 | self.type = "Voltage" |
|
267 | 269 | |
|
268 | 270 | self.data = None |
|
269 | 271 | |
|
270 | 272 | self.dtype = None |
|
271 | 273 | |
|
272 | 274 | # self.nChannels = 0 |
|
273 | 275 | |
|
274 | 276 | # self.nHeights = 0 |
|
275 | 277 | |
|
276 | 278 | self.nProfiles = None |
|
277 | 279 | |
|
278 | 280 | self.heightList = None |
|
279 | 281 | |
|
280 | 282 | self.channelList = None |
|
281 | 283 | |
|
282 | 284 | # self.channelIndexList = None |
|
283 | 285 | |
|
284 | 286 | self.flagNoData = True |
|
285 | 287 | |
|
286 | 288 | self.flagTimeBlock = False |
|
287 | 289 | |
|
288 | 290 | self.utctime = None |
|
289 | 291 | |
|
290 | 292 | self.nCohInt = None |
|
291 | 293 | |
|
292 | 294 | self.blocksize = None |
|
293 | 295 | |
|
294 | 296 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
295 | 297 | |
|
296 | 298 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
297 | 299 | |
|
298 | 300 | self.flagShiftFFT = False |
|
299 | 301 | |
|
300 | 302 | |
|
301 | 303 | def getNoisebyHildebrand(self): |
|
302 | 304 | """ |
|
303 | 305 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
304 | 306 | |
|
305 | 307 | Return: |
|
306 | 308 | noiselevel |
|
307 | 309 | """ |
|
308 | 310 | |
|
309 | 311 | for channel in range(self.nChannels): |
|
310 | 312 | daux = self.data_spc[channel,:,:] |
|
311 | 313 | self.noise[channel] = hildebrand_sekhon(daux, self.nCohInt) |
|
312 | 314 | |
|
313 | 315 | return self.noise |
|
314 | 316 | |
|
315 | 317 | def getNoise(self, type = 1): |
|
316 | 318 | |
|
317 | 319 | self.noise = numpy.zeros(self.nChannels) |
|
318 | 320 | |
|
319 | 321 | if type == 1: |
|
320 | 322 | noise = self.getNoisebyHildebrand() |
|
321 | 323 | |
|
322 | 324 | return 10*numpy.log10(noise) |
|
323 | 325 | |
|
324 | 326 | class Spectra(JROData): |
|
325 | 327 | |
|
326 | 328 | #data es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
327 | 329 | data_spc = None |
|
328 | 330 | |
|
329 | 331 | #data es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
330 | 332 | data_cspc = None |
|
331 | 333 | |
|
332 | 334 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
333 | 335 | data_dc = None |
|
334 | 336 | |
|
335 | 337 | nFFTPoints = None |
|
336 | 338 | |
|
337 | 339 | nPairs = None |
|
338 | 340 | |
|
339 | 341 | pairsList = None |
|
340 | 342 | |
|
341 | 343 | nIncohInt = None |
|
342 | 344 | |
|
343 | 345 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia |
|
344 | 346 | |
|
345 | 347 | nCohInt = None #se requiere para determinar el valor de timeInterval |
|
346 | 348 | |
|
347 | 349 | def __init__(self): |
|
348 | 350 | ''' |
|
349 | 351 | Constructor |
|
350 | 352 | ''' |
|
351 | 353 | |
|
352 | 354 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
353 | 355 | |
|
354 | 356 | self.systemHeaderObj = SystemHeader() |
|
355 | 357 | |
|
356 | 358 | self.type = "Spectra" |
|
357 | 359 | |
|
358 | 360 | # self.data = None |
|
359 | 361 | |
|
360 | 362 | self.dtype = None |
|
361 | 363 | |
|
362 | 364 | # self.nChannels = 0 |
|
363 | 365 | |
|
364 | 366 | # self.nHeights = 0 |
|
365 | 367 | |
|
366 | 368 | self.nProfiles = None |
|
367 | 369 | |
|
368 | 370 | self.heightList = None |
|
369 | 371 | |
|
370 | 372 | self.channelList = None |
|
371 | 373 | |
|
372 | 374 | # self.channelIndexList = None |
|
373 | 375 | |
|
374 | 376 | self.flagNoData = True |
|
375 | 377 | |
|
376 | 378 | self.flagTimeBlock = False |
|
377 | 379 | |
|
378 | 380 | self.utctime = None |
|
379 | 381 | |
|
380 | 382 | self.nCohInt = None |
|
381 | 383 | |
|
382 | 384 | self.nIncohInt = None |
|
383 | 385 | |
|
384 | 386 | self.blocksize = None |
|
385 | 387 | |
|
386 | 388 | self.nFFTPoints = None |
|
387 | 389 | |
|
388 | 390 | self.wavelength = None |
|
389 | 391 | |
|
390 | 392 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
391 | 393 | |
|
392 | 394 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
393 | 395 | |
|
394 | 396 | self.flagShiftFFT = False |
|
395 | 397 | |
|
396 | 398 | def getNoisebyHildebrand(self): |
|
397 | 399 | """ |
|
398 | 400 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
399 | 401 | |
|
400 | 402 | Return: |
|
401 | 403 | noiselevel |
|
402 | 404 | """ |
|
403 | 405 | |
|
404 | 406 | for channel in range(self.nChannels): |
|
405 | 407 | daux = self.data_spc[channel,:,:] |
|
406 | 408 | self.noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
407 | 409 | |
|
408 | 410 | return self.noise |
|
409 | 411 | |
|
410 | 412 | def getNoisebyWindow(self, heiIndexMin=0, heiIndexMax=-1, freqIndexMin=0, freqIndexMax=-1): |
|
411 | 413 | """ |
|
412 | 414 | Determina el ruido del canal utilizando la ventana indicada con las coordenadas: |
|
413 | 415 | (heiIndexMIn, freqIndexMin) hasta (heiIndexMax, freqIndexMAx) |
|
414 | 416 | |
|
415 | 417 | Inputs: |
|
416 | 418 | heiIndexMin: Limite inferior del eje de alturas |
|
417 | 419 | heiIndexMax: Limite superior del eje de alturas |
|
418 | 420 | freqIndexMin: Limite inferior del eje de frecuencia |
|
419 | 421 | freqIndexMax: Limite supoerior del eje de frecuencia |
|
420 | 422 | """ |
|
421 | 423 | |
|
422 | 424 | data = self.data_spc[:, heiIndexMin:heiIndexMax, freqIndexMin:freqIndexMax] |
|
423 | 425 | |
|
424 | 426 | for channel in range(self.nChannels): |
|
425 | 427 | daux = data[channel,:,:] |
|
426 | 428 | self.noise[channel] = numpy.average(daux) |
|
427 | 429 | |
|
428 | 430 | return self.noise |
|
429 | 431 | |
|
430 | 432 | def getNoisebySort(self): |
|
431 | 433 | |
|
432 | 434 | for channel in range(self.nChannels): |
|
433 | 435 | daux = self.data_spc[channel,:,:] |
|
434 | 436 | self.noise[channel] = sorting_bruce(daux, self.nIncohInt) |
|
435 | 437 | |
|
436 | 438 | return self.noise |
|
437 | 439 | |
|
438 | 440 | def getNoise(self, type = 1): |
|
439 | 441 | |
|
440 | 442 | self.noise = numpy.zeros(self.nChannels) |
|
441 | 443 | |
|
442 | 444 | if type == 1: |
|
443 | 445 | noise = self.getNoisebyHildebrand() |
|
444 | 446 | |
|
445 | 447 | if type == 2: |
|
446 | 448 | noise = self.getNoisebySort() |
|
447 | 449 | |
|
448 | 450 | if type == 3: |
|
449 | 451 | noise = self.getNoisebyWindow() |
|
450 | 452 | |
|
451 |
return |
|
|
453 | return noise | |
|
452 | 454 | |
|
453 | 455 | |
|
454 | 456 | def getFreqRange(self, extrapoints=0): |
|
455 | 457 | |
|
456 | 458 | deltafreq = self.getFmax() / self.nFFTPoints |
|
457 | 459 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
458 | 460 | |
|
459 | 461 | return freqrange |
|
460 | 462 | |
|
461 | 463 | def getVelRange(self, extrapoints=0): |
|
462 | 464 | |
|
463 | 465 | deltav = self.getVmax() / self.nFFTPoints |
|
464 | 466 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltav/2 |
|
465 | 467 | |
|
466 | 468 | return velrange |
|
467 | 469 | |
|
468 | 470 | def getNPairs(self): |
|
469 | 471 | |
|
470 | 472 | return len(self.pairsList) |
|
471 | 473 | |
|
472 | 474 | def getPairsIndexList(self): |
|
473 | 475 | |
|
474 | 476 | return range(self.nPairs) |
|
475 | 477 | |
|
478 | def getNormFactor(self): | |
|
479 | pwcode = 1 | |
|
480 | if self.flagDecodeData: | |
|
481 | pwcode = numpy.sum(self.code[0]**2) | |
|
482 | normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*self.windowOfFilter*pwcode | |
|
483 | ||
|
484 | return normFactor | |
|
485 | ||
|
476 | 486 | nPairs = property(getNPairs, "I'm the 'nPairs' property.") |
|
477 | 487 | pairsIndexList = property(getPairsIndexList, "I'm the 'pairsIndexList' property.") |
|
488 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") | |
|
478 | 489 | |
|
479 | 490 | class SpectraHeis(JROData): |
|
480 | 491 | |
|
481 | 492 | data_spc = None |
|
482 | 493 | |
|
483 | 494 | data_cspc = None |
|
484 | 495 | |
|
485 | 496 | data_dc = None |
|
486 | 497 | |
|
487 | 498 | nFFTPoints = None |
|
488 | 499 | |
|
489 | 500 | nPairs = None |
|
490 | 501 | |
|
491 | 502 | pairsList = None |
|
492 | 503 | |
|
493 | 504 | nIncohInt = None |
|
494 | 505 | |
|
495 | 506 | def __init__(self): |
|
496 | 507 | |
|
497 | 508 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
498 | 509 | |
|
499 | 510 | self.systemHeaderObj = SystemHeader() |
|
500 | 511 | |
|
501 | 512 | self.type = "SpectraHeis" |
|
502 | 513 | |
|
503 | 514 | self.dtype = None |
|
504 | 515 | |
|
505 | 516 | # self.nChannels = 0 |
|
506 | 517 | |
|
507 | 518 | # self.nHeights = 0 |
|
508 | 519 | |
|
509 | 520 | self.nProfiles = None |
|
510 | 521 | |
|
511 | 522 | self.heightList = None |
|
512 | 523 | |
|
513 | 524 | self.channelList = None |
|
514 | 525 | |
|
515 | 526 | # self.channelIndexList = None |
|
516 | 527 | |
|
517 | 528 | self.flagNoData = True |
|
518 | 529 | |
|
519 | 530 | self.flagTimeBlock = False |
|
520 | 531 | |
|
521 | 532 | self.nPairs = 0 |
|
522 | 533 | |
|
523 | 534 | self.utctime = None |
|
524 | 535 | |
|
525 | 536 | self.blocksize = None |
@@ -1,954 +1,986 | |||
|
1 | 1 | import numpy |
|
2 | 2 | import time, datetime |
|
3 | 3 | from graphics.figure import * |
|
4 | 4 | |
|
5 | 5 | class CrossSpectraPlot(Figure): |
|
6 | 6 | |
|
7 | 7 | __isConfig = None |
|
8 | 8 | __nsubplots = None |
|
9 | 9 | |
|
10 | 10 | WIDTH = None |
|
11 | 11 | HEIGHT = None |
|
12 | 12 | WIDTHPROF = None |
|
13 | 13 | HEIGHTPROF = None |
|
14 | 14 | PREFIX = 'cspc' |
|
15 | 15 | |
|
16 | 16 | def __init__(self): |
|
17 | 17 | |
|
18 | 18 | self.__isConfig = False |
|
19 | 19 | self.__nsubplots = 4 |
|
20 | 20 | |
|
21 | 21 | self.WIDTH = 250 |
|
22 | 22 | self.HEIGHT = 250 |
|
23 | 23 | self.WIDTHPROF = 0 |
|
24 | 24 | self.HEIGHTPROF = 0 |
|
25 | 25 | |
|
26 | 26 | def getSubplots(self): |
|
27 | 27 | |
|
28 | 28 | ncol = 4 |
|
29 | 29 | nrow = self.nplots |
|
30 | 30 | |
|
31 | 31 | return nrow, ncol |
|
32 | 32 | |
|
33 | 33 | def setup(self, idfigure, nplots, wintitle, showprofile=True): |
|
34 | 34 | |
|
35 | 35 | self.__showprofile = showprofile |
|
36 | 36 | self.nplots = nplots |
|
37 | 37 | |
|
38 | 38 | ncolspan = 1 |
|
39 | 39 | colspan = 1 |
|
40 | 40 | |
|
41 | 41 | self.createFigure(idfigure = idfigure, |
|
42 | 42 | wintitle = wintitle, |
|
43 | 43 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
44 | 44 | heightplot = self.HEIGHT + self.HEIGHTPROF) |
|
45 | 45 | |
|
46 | 46 | nrow, ncol = self.getSubplots() |
|
47 | 47 | |
|
48 | 48 | counter = 0 |
|
49 | 49 | for y in range(nrow): |
|
50 | 50 | for x in range(ncol): |
|
51 | 51 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
52 | 52 | |
|
53 | 53 | counter += 1 |
|
54 | 54 | |
|
55 | 55 | def run(self, dataOut, idfigure, wintitle="", pairsList=None, showprofile='True', |
|
56 | 56 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
57 | 57 | save=False, figpath='./', figfile=None): |
|
58 | 58 | |
|
59 | 59 | """ |
|
60 | 60 | |
|
61 | 61 | Input: |
|
62 | 62 | dataOut : |
|
63 | 63 | idfigure : |
|
64 | 64 | wintitle : |
|
65 | 65 | channelList : |
|
66 | 66 | showProfile : |
|
67 | 67 | xmin : None, |
|
68 | 68 | xmax : None, |
|
69 | 69 | ymin : None, |
|
70 | 70 | ymax : None, |
|
71 | 71 | zmin : None, |
|
72 | 72 | zmax : None |
|
73 | 73 | """ |
|
74 | 74 | |
|
75 | 75 | if pairsList == None: |
|
76 | 76 | pairsIndexList = dataOut.pairsIndexList |
|
77 | 77 | else: |
|
78 | 78 | pairsIndexList = [] |
|
79 | 79 | for pair in pairsList: |
|
80 | 80 | if pair not in dataOut.pairsList: |
|
81 | 81 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
82 | 82 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
83 | 83 | |
|
84 | 84 | if pairsIndexList == []: |
|
85 | 85 | return |
|
86 | 86 | |
|
87 | 87 | if len(pairsIndexList) > 4: |
|
88 | 88 | pairsIndexList = pairsIndexList[0:4] |
|
89 | ||
|
89 | factor = dataOut.normFactor | |
|
90 | 90 | x = dataOut.getVelRange(1) |
|
91 | 91 | y = dataOut.getHeiRange() |
|
92 |
z = |
|
|
92 | z = dataOut.data_spc[:,:,:]/factor | |
|
93 | 93 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
94 | 94 | avg = numpy.average(numpy.abs(z), axis=1) |
|
95 | noise = dataOut.getNoise()/factor | |
|
96 | ||
|
97 | zdB = 10*numpy.log10(z) | |
|
98 | avgdB = 10*numpy.log10(avg) | |
|
99 | noisedB = 10*numpy.log10(noise) | |
|
95 | 100 | |
|
96 | noise = dataOut.getNoise() | |
|
97 | 101 | |
|
98 | 102 | thisDatetime = dataOut.datatime |
|
99 | 103 | title = "Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
100 | 104 | xlabel = "Velocity (m/s)" |
|
101 | 105 | ylabel = "Range (Km)" |
|
102 | 106 | |
|
103 | 107 | if not self.__isConfig: |
|
104 | 108 | |
|
105 | 109 | nplots = len(pairsIndexList) |
|
106 | 110 | |
|
107 | 111 | self.setup(idfigure=idfigure, |
|
108 | 112 | nplots=nplots, |
|
109 | 113 | wintitle=wintitle, |
|
110 | 114 | showprofile=showprofile) |
|
111 | 115 | |
|
112 | 116 | if xmin == None: xmin = numpy.nanmin(x) |
|
113 | 117 | if xmax == None: xmax = numpy.nanmax(x) |
|
114 | 118 | if ymin == None: ymin = numpy.nanmin(y) |
|
115 | 119 | if ymax == None: ymax = numpy.nanmax(y) |
|
116 | if zmin == None: zmin = numpy.nanmin(avg)*0.9 | |
|
117 | if zmax == None: zmax = numpy.nanmax(avg)*0.9 | |
|
120 | if zmin == None: zmin = numpy.nanmin(avgdB)*0.9 | |
|
121 | if zmax == None: zmax = numpy.nanmax(avgdB)*0.9 | |
|
118 | 122 | |
|
119 | 123 | self.__isConfig = True |
|
120 | 124 | |
|
121 | 125 | self.setWinTitle(title) |
|
122 | 126 | |
|
123 | 127 | for i in range(self.nplots): |
|
124 | 128 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
125 | 129 | |
|
126 | title = "Channel %d: %4.2fdB" %(pair[0], noise[pair[0]]) | |
|
127 | z = 10.*numpy.log10(dataOut.data_spc[pair[0],:,:]) | |
|
130 | title = "Channel %d: %4.2fdB" %(pair[0], noisedB[pair[0]]) | |
|
131 | zdB = 10.*numpy.log10(dataOut.data_spc[pair[0],:,:]/factor) | |
|
128 | 132 | axes0 = self.axesList[i*self.__nsubplots] |
|
129 | axes0.pcolor(x, y, z, | |
|
133 | axes0.pcolor(x, y, zdB, | |
|
130 | 134 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
131 | 135 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
132 | 136 | ticksize=9, cblabel='') |
|
133 | 137 | |
|
134 | title = "Channel %d: %4.2fdB" %(pair[1], noise[pair[1]]) | |
|
135 | z = 10.*numpy.log10(dataOut.data_spc[pair[1],:,:]) | |
|
138 | title = "Channel %d: %4.2fdB" %(pair[1], noisedB[pair[1]]) | |
|
139 | zdB = 10.*numpy.log10(dataOut.data_spc[pair[1],:,:]/factor) | |
|
136 | 140 | axes0 = self.axesList[i*self.__nsubplots+1] |
|
137 | axes0.pcolor(x, y, z, | |
|
141 | axes0.pcolor(x, y, zdB, | |
|
138 | 142 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
139 | 143 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
140 | 144 | ticksize=9, cblabel='') |
|
141 | 145 | |
|
142 | 146 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:]) |
|
143 | 147 | coherence = numpy.abs(coherenceComplex) |
|
144 | 148 | phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
145 | 149 | |
|
146 | 150 | |
|
147 | 151 | title = "Coherence %d%d" %(pair[0], pair[1]) |
|
148 | 152 | axes0 = self.axesList[i*self.__nsubplots+2] |
|
149 | 153 | axes0.pcolor(x, y, coherence, |
|
150 | 154 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=0, zmax=1, |
|
151 | 155 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
152 | 156 | ticksize=9, cblabel='') |
|
153 | 157 | |
|
154 | 158 | title = "Phase %d%d" %(pair[0], pair[1]) |
|
155 | 159 | axes0 = self.axesList[i*self.__nsubplots+3] |
|
156 | 160 | axes0.pcolor(x, y, phase, |
|
157 | 161 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=-180, zmax=180, |
|
158 | 162 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
159 | 163 | ticksize=9, cblabel='', colormap='RdBu_r') |
|
160 | 164 | |
|
161 | 165 | |
|
162 | 166 | |
|
163 | 167 | self.draw() |
|
164 | 168 | |
|
165 | 169 | if save: |
|
166 | 170 | date = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
167 | 171 | if figfile == None: |
|
168 | 172 | figfile = self.getFilename(name = date) |
|
169 | 173 | |
|
170 | 174 | self.saveFigure(figpath, figfile) |
|
171 | 175 | |
|
172 | 176 | |
|
173 | 177 | class RTIPlot(Figure): |
|
174 | 178 | |
|
175 | 179 | __isConfig = None |
|
176 | 180 | __nsubplots = None |
|
177 | 181 | |
|
178 | 182 | WIDTHPROF = None |
|
179 | 183 | HEIGHTPROF = None |
|
180 | 184 | PREFIX = 'rti' |
|
181 | 185 | |
|
182 | 186 | def __init__(self): |
|
183 | 187 | |
|
184 | 188 | self.timerange = 2*60*60 |
|
185 | 189 | self.__isConfig = False |
|
186 | 190 | self.__nsubplots = 1 |
|
187 | 191 | |
|
188 | 192 | self.WIDTH = 800 |
|
189 | 193 | self.HEIGHT = 200 |
|
190 | 194 | self.WIDTHPROF = 120 |
|
191 | 195 | self.HEIGHTPROF = 0 |
|
192 | 196 | |
|
193 | 197 | def getSubplots(self): |
|
194 | 198 | |
|
195 | 199 | ncol = 1 |
|
196 | 200 | nrow = self.nplots |
|
197 | 201 | |
|
198 | 202 | return nrow, ncol |
|
199 | 203 | |
|
200 | 204 | def setup(self, idfigure, nplots, wintitle, showprofile=True): |
|
201 | 205 | |
|
202 | 206 | self.__showprofile = showprofile |
|
203 | 207 | self.nplots = nplots |
|
204 | 208 | |
|
205 | 209 | ncolspan = 1 |
|
206 | 210 | colspan = 1 |
|
207 | 211 | if showprofile: |
|
208 | 212 | ncolspan = 7 |
|
209 | 213 | colspan = 6 |
|
210 | 214 | self.__nsubplots = 2 |
|
211 | 215 | |
|
212 | 216 | self.createFigure(idfigure = idfigure, |
|
213 | 217 | wintitle = wintitle, |
|
214 | 218 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
215 | 219 | heightplot = self.HEIGHT + self.HEIGHTPROF) |
|
216 | 220 | |
|
217 | 221 | nrow, ncol = self.getSubplots() |
|
218 | 222 | |
|
219 | 223 | counter = 0 |
|
220 | 224 | for y in range(nrow): |
|
221 | 225 | for x in range(ncol): |
|
222 | 226 | |
|
223 | 227 | if counter >= self.nplots: |
|
224 | 228 | break |
|
225 | 229 | |
|
226 | 230 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
227 | 231 | |
|
228 | 232 | if showprofile: |
|
229 | 233 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
230 | 234 | |
|
231 | 235 | counter += 1 |
|
232 | 236 | |
|
233 | 237 | def run(self, dataOut, idfigure, wintitle="", channelList=None, showprofile='True', |
|
234 | 238 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
235 | 239 | timerange=None, |
|
236 | 240 | save=False, figpath='./', figfile=None): |
|
237 | 241 | |
|
238 | 242 | """ |
|
239 | 243 | |
|
240 | 244 | Input: |
|
241 | 245 | dataOut : |
|
242 | 246 | idfigure : |
|
243 | 247 | wintitle : |
|
244 | 248 | channelList : |
|
245 | 249 | showProfile : |
|
246 | 250 | xmin : None, |
|
247 | 251 | xmax : None, |
|
248 | 252 | ymin : None, |
|
249 | 253 | ymax : None, |
|
250 | 254 | zmin : None, |
|
251 | 255 | zmax : None |
|
252 | 256 | """ |
|
253 | 257 | |
|
254 | 258 | if channelList == None: |
|
255 | 259 | channelIndexList = dataOut.channelIndexList |
|
256 | 260 | else: |
|
257 | 261 | channelIndexList = [] |
|
258 | 262 | for channel in channelList: |
|
259 | 263 | if channel not in dataOut.channelList: |
|
260 | 264 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
261 | 265 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
262 | 266 | |
|
263 | 267 | if timerange != None: |
|
264 | 268 | self.timerange = timerange |
|
265 | 269 | |
|
266 | 270 | tmin = None |
|
267 | 271 | tmax = None |
|
272 | factor = dataOut.normFactor | |
|
268 | 273 | x = dataOut.getTimeRange() |
|
269 | 274 | y = dataOut.getHeiRange() |
|
270 | z = 10.*numpy.log10(dataOut.data_spc[channelIndexList,:,:]) | |
|
271 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
|
275 | ||
|
276 | z = dataOut.data_spc[channelIndexList,:,:]/factor | |
|
277 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
|
272 | 278 | avg = numpy.average(z, axis=1) |
|
279 | noise = dataOut.getNoise()/factor | |
|
273 | 280 | |
|
274 | noise = dataOut.getNoise() | |
|
281 | # zdB = 10.*numpy.log10(z) | |
|
282 | avgdB = 10.*numpy.log10(avg) | |
|
283 | noisedB = 10.*numpy.log10(noise) | |
|
275 | 284 | |
|
276 | 285 | thisDatetime = dataOut.datatime |
|
277 | 286 | title = "RTI: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
278 | 287 | xlabel = "Velocity (m/s)" |
|
279 | 288 | ylabel = "Range (Km)" |
|
280 | 289 | |
|
281 | 290 | if not self.__isConfig: |
|
282 | 291 | |
|
283 | 292 | nplots = len(channelIndexList) |
|
284 | 293 | |
|
285 | 294 | self.setup(idfigure=idfigure, |
|
286 | 295 | nplots=nplots, |
|
287 | 296 | wintitle=wintitle, |
|
288 | 297 | showprofile=showprofile) |
|
289 | 298 | |
|
290 | 299 | tmin, tmax = self.getTimeLim(x, xmin, xmax) |
|
291 | 300 | if ymin == None: ymin = numpy.nanmin(y) |
|
292 | 301 | if ymax == None: ymax = numpy.nanmax(y) |
|
293 | if zmin == None: zmin = numpy.nanmin(avg)*0.9 | |
|
294 | if zmax == None: zmax = numpy.nanmax(avg)*0.9 | |
|
302 | if zmin == None: zmin = numpy.nanmin(avgdB)*0.9 | |
|
303 | if zmax == None: zmax = numpy.nanmax(avgdB)*0.9 | |
|
295 | 304 | |
|
296 | 305 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
297 | 306 | self.__isConfig = True |
|
298 | 307 | |
|
299 | 308 | |
|
300 | 309 | self.setWinTitle(title) |
|
301 | 310 | |
|
302 | 311 | for i in range(self.nplots): |
|
303 | 312 | title = "Channel %d: %s" %(dataOut.channelList[i], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
304 | 313 | axes = self.axesList[i*self.__nsubplots] |
|
305 | z = avg[i].reshape((1,-1)) | |
|
306 | axes.pcolor(x, y, z, | |
|
314 | zdB = avgdB[i].reshape((1,-1)) | |
|
315 | axes.pcolor(x, y, zdB, | |
|
307 | 316 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
308 | 317 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
309 | 318 | ticksize=9, cblabel='', cbsize="1%") |
|
310 | 319 | |
|
311 | 320 | if self.__showprofile: |
|
312 | 321 | axes = self.axesList[i*self.__nsubplots +1] |
|
313 | axes.pline(avg[i], y, | |
|
322 | axes.pline(avgdB[i], y, | |
|
314 | 323 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
315 | 324 | xlabel='dB', ylabel='', title='', |
|
316 | 325 | ytick_visible=False, |
|
317 | 326 | grid='x') |
|
318 | 327 | |
|
319 | 328 | self.draw() |
|
320 | 329 | |
|
321 | 330 | if save: |
|
322 | 331 | |
|
323 | 332 | if figfile == None: |
|
324 | 333 | figfile = self.getFilename(name = self.name) |
|
325 | 334 | |
|
326 | 335 | self.saveFigure(figpath, figfile) |
|
327 | 336 | |
|
328 | 337 | if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax: |
|
329 | 338 | self.__isConfig = False |
|
330 | 339 | |
|
331 | 340 | class SpectraPlot(Figure): |
|
332 | 341 | |
|
333 | 342 | __isConfig = None |
|
334 | 343 | __nsubplots = None |
|
335 | 344 | |
|
336 | 345 | WIDTHPROF = None |
|
337 | 346 | HEIGHTPROF = None |
|
338 | 347 | PREFIX = 'spc' |
|
339 | 348 | |
|
340 | 349 | def __init__(self): |
|
341 | 350 | |
|
342 | 351 | self.__isConfig = False |
|
343 | 352 | self.__nsubplots = 1 |
|
344 | 353 | |
|
345 | 354 | self.WIDTH = 230 |
|
346 | 355 | self.HEIGHT = 250 |
|
347 | 356 | self.WIDTHPROF = 120 |
|
348 | 357 | self.HEIGHTPROF = 0 |
|
349 | 358 | |
|
350 | 359 | def getSubplots(self): |
|
351 | 360 | |
|
352 | 361 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
353 | 362 | nrow = int(self.nplots*1./ncol + 0.9) |
|
354 | 363 | |
|
355 | 364 | return nrow, ncol |
|
356 | 365 | |
|
357 | 366 | def setup(self, idfigure, nplots, wintitle, showprofile=True): |
|
358 | 367 | |
|
359 | 368 | self.__showprofile = showprofile |
|
360 | 369 | self.nplots = nplots |
|
361 | 370 | |
|
362 | 371 | ncolspan = 1 |
|
363 | 372 | colspan = 1 |
|
364 | 373 | if showprofile: |
|
365 | 374 | ncolspan = 3 |
|
366 | 375 | colspan = 2 |
|
367 | 376 | self.__nsubplots = 2 |
|
368 | 377 | |
|
369 | 378 | self.createFigure(idfigure = idfigure, |
|
370 | 379 | wintitle = wintitle, |
|
371 | 380 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
372 | 381 | heightplot = self.HEIGHT + self.HEIGHTPROF) |
|
373 | 382 | |
|
374 | 383 | nrow, ncol = self.getSubplots() |
|
375 | 384 | |
|
376 | 385 | counter = 0 |
|
377 | 386 | for y in range(nrow): |
|
378 | 387 | for x in range(ncol): |
|
379 | 388 | |
|
380 | 389 | if counter >= self.nplots: |
|
381 | 390 | break |
|
382 | 391 | |
|
383 | 392 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
384 | 393 | |
|
385 | 394 | if showprofile: |
|
386 | 395 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
387 | 396 | |
|
388 | 397 | counter += 1 |
|
389 | 398 | |
|
390 | 399 | def run(self, dataOut, idfigure, wintitle="", channelList=None, showprofile='True', |
|
391 | 400 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
392 | 401 | save=False, figpath='./', figfile=None): |
|
393 | 402 | |
|
394 | 403 | """ |
|
395 | 404 | |
|
396 | 405 | Input: |
|
397 | 406 | dataOut : |
|
398 | 407 | idfigure : |
|
399 | 408 | wintitle : |
|
400 | 409 | channelList : |
|
401 | 410 | showProfile : |
|
402 | 411 | xmin : None, |
|
403 | 412 | xmax : None, |
|
404 | 413 | ymin : None, |
|
405 | 414 | ymax : None, |
|
406 | 415 | zmin : None, |
|
407 | 416 | zmax : None |
|
408 | 417 | """ |
|
409 | 418 | |
|
410 | 419 | if channelList == None: |
|
411 | 420 | channelIndexList = dataOut.channelIndexList |
|
412 | 421 | else: |
|
413 | 422 | channelIndexList = [] |
|
414 | 423 | for channel in channelList: |
|
415 | 424 | if channel not in dataOut.channelList: |
|
416 | 425 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
417 | 426 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
418 | ||
|
427 | factor = dataOut.normFactor | |
|
419 | 428 | x = dataOut.getVelRange(1) |
|
420 | 429 | y = dataOut.getHeiRange() |
|
421 | 430 | |
|
422 |
z = |
|
|
423 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
|
431 | z = dataOut.data_spc[channelIndexList,:,:]/factor | |
|
432 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
|
424 | 433 | avg = numpy.average(z, axis=1) |
|
434 | noise = dataOut.getNoise()/factor | |
|
425 | 435 | |
|
426 | noise = dataOut.getNoise() | |
|
436 | zdB = 10*numpy.log10(z) | |
|
437 | avgdB = 10*numpy.log10(avg) | |
|
438 | noisedB = 10*numpy.log10(noise) | |
|
427 | 439 | |
|
428 | 440 | thisDatetime = dataOut.datatime |
|
429 | 441 | title = "Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
430 | 442 | xlabel = "Velocity (m/s)" |
|
431 | 443 | ylabel = "Range (Km)" |
|
432 | 444 | |
|
433 | 445 | if not self.__isConfig: |
|
434 | 446 | |
|
435 | 447 | nplots = len(channelIndexList) |
|
436 | 448 | |
|
437 | 449 | self.setup(idfigure=idfigure, |
|
438 | 450 | nplots=nplots, |
|
439 | 451 | wintitle=wintitle, |
|
440 | 452 | showprofile=showprofile) |
|
441 | 453 | |
|
442 | 454 | if xmin == None: xmin = numpy.nanmin(x) |
|
443 | 455 | if xmax == None: xmax = numpy.nanmax(x) |
|
444 | 456 | if ymin == None: ymin = numpy.nanmin(y) |
|
445 | 457 | if ymax == None: ymax = numpy.nanmax(y) |
|
446 | if zmin == None: zmin = numpy.nanmin(avg)*0.9 | |
|
447 | if zmax == None: zmax = numpy.nanmax(avg)*0.9 | |
|
458 | if zmin == None: zmin = numpy.nanmin(avgdB)*0.9 | |
|
459 | if zmax == None: zmax = numpy.nanmax(avgdB)*0.9 | |
|
448 | 460 | |
|
449 | 461 | self.__isConfig = True |
|
450 | 462 | |
|
451 | 463 | self.setWinTitle(title) |
|
452 | 464 | |
|
453 | 465 | for i in range(self.nplots): |
|
454 | title = "Channel %d: %4.2fdB" %(dataOut.channelList[i], noise[i]) | |
|
466 | title = "Channel %d: %4.2fdB" %(dataOut.channelList[i], noisedB[i]) | |
|
455 | 467 | axes = self.axesList[i*self.__nsubplots] |
|
456 | axes.pcolor(x, y, z[i,:,:], | |
|
468 | axes.pcolor(x, y, zdB[i,:,:], | |
|
457 | 469 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
458 | 470 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
459 | 471 | ticksize=9, cblabel='') |
|
460 | 472 | |
|
461 | 473 | if self.__showprofile: |
|
462 | 474 | axes = self.axesList[i*self.__nsubplots +1] |
|
463 | axes.pline(avg[i], y, | |
|
475 | axes.pline(avgdB[i], y, | |
|
464 | 476 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
465 | 477 | xlabel='dB', ylabel='', title='', |
|
466 | 478 | ytick_visible=False, |
|
467 | 479 | grid='x') |
|
468 | 480 | |
|
469 | noiseline = numpy.repeat(noise[i], len(y)) | |
|
481 | noiseline = numpy.repeat(noisedB[i], len(y)) | |
|
470 | 482 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
471 | 483 | |
|
472 | 484 | self.draw() |
|
473 | 485 | |
|
474 | 486 | if save: |
|
475 | 487 | date = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
476 | 488 | if figfile == None: |
|
477 | 489 | figfile = self.getFilename(name = date) |
|
478 | 490 | |
|
479 | 491 | self.saveFigure(figpath, figfile) |
|
480 | 492 | |
|
481 | 493 | class Scope(Figure): |
|
482 | 494 | |
|
483 | 495 | __isConfig = None |
|
484 | 496 | |
|
485 | 497 | def __init__(self): |
|
486 | 498 | |
|
487 | 499 | self.__isConfig = False |
|
488 | 500 | self.WIDTH = 600 |
|
489 | 501 | self.HEIGHT = 200 |
|
490 | 502 | |
|
491 | 503 | def getSubplots(self): |
|
492 | 504 | |
|
493 | 505 | nrow = self.nplots |
|
494 | 506 | ncol = 3 |
|
495 | 507 | return nrow, ncol |
|
496 | 508 | |
|
497 | 509 | def setup(self, idfigure, nplots, wintitle): |
|
498 | 510 | |
|
499 | 511 | self.nplots = nplots |
|
500 | 512 | |
|
501 | 513 | self.createFigure(idfigure, wintitle) |
|
502 | 514 | |
|
503 | 515 | nrow,ncol = self.getSubplots() |
|
504 | 516 | colspan = 3 |
|
505 | 517 | rowspan = 1 |
|
506 | 518 | |
|
507 | 519 | for i in range(nplots): |
|
508 | 520 | self.addAxes(nrow, ncol, i, 0, colspan, rowspan) |
|
509 | 521 | |
|
510 | 522 | |
|
511 | 523 | |
|
512 | 524 | def run(self, dataOut, idfigure, wintitle="", channelList=None, |
|
513 | 525 | xmin=None, xmax=None, ymin=None, ymax=None, save=False, |
|
514 | 526 | figpath='./', figfile=None): |
|
515 | 527 | |
|
516 | 528 | """ |
|
517 | 529 | |
|
518 | 530 | Input: |
|
519 | 531 | dataOut : |
|
520 | 532 | idfigure : |
|
521 | 533 | wintitle : |
|
522 | 534 | channelList : |
|
523 | 535 | xmin : None, |
|
524 | 536 | xmax : None, |
|
525 | 537 | ymin : None, |
|
526 | 538 | ymax : None, |
|
527 | 539 | """ |
|
528 | 540 | |
|
529 | 541 | if channelList == None: |
|
530 | 542 | channelIndexList = dataOut.channelIndexList |
|
531 | 543 | else: |
|
532 | 544 | channelIndexList = [] |
|
533 | 545 | for channel in channelList: |
|
534 | 546 | if channel not in dataOut.channelList: |
|
535 | 547 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
536 | 548 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
537 | 549 | |
|
538 | 550 | x = dataOut.heightList |
|
539 | 551 | y = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) |
|
540 | 552 | y = y.real |
|
541 | 553 | |
|
542 | 554 | thisDatetime = dataOut.datatime |
|
543 | 555 | title = "Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
544 | 556 | xlabel = "Range (Km)" |
|
545 | 557 | ylabel = "Intensity" |
|
546 | 558 | |
|
547 | 559 | if not self.__isConfig: |
|
548 | 560 | nplots = len(channelIndexList) |
|
549 | 561 | |
|
550 | 562 | self.setup(idfigure=idfigure, |
|
551 | 563 | nplots=nplots, |
|
552 | 564 | wintitle=wintitle) |
|
553 | 565 | |
|
554 | 566 | if xmin == None: xmin = numpy.nanmin(x) |
|
555 | 567 | if xmax == None: xmax = numpy.nanmax(x) |
|
556 | 568 | if ymin == None: ymin = numpy.nanmin(y) |
|
557 | 569 | if ymax == None: ymax = numpy.nanmax(y) |
|
558 | 570 | |
|
559 | 571 | self.__isConfig = True |
|
560 | 572 | |
|
561 | 573 | self.setWinTitle(title) |
|
562 | 574 | |
|
563 | 575 | for i in range(len(self.axesList)): |
|
564 | 576 | title = "Channel %d" %(i) |
|
565 | 577 | axes = self.axesList[i] |
|
566 | 578 | ychannel = y[i,:] |
|
567 | 579 | axes.pline(x, ychannel, |
|
568 | 580 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
569 | 581 | xlabel=xlabel, ylabel=ylabel, title=title) |
|
570 | 582 | |
|
571 | 583 | self.draw() |
|
572 | 584 | |
|
573 | 585 | if save: |
|
574 | 586 | date = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
575 | 587 | if figfile == None: |
|
576 | 588 | figfile = self.getFilename(name = date) |
|
577 | 589 | |
|
578 | 590 | self.saveFigure(figpath, figfile) |
|
579 | 591 | |
|
580 | 592 | class ProfilePlot(Figure): |
|
581 | 593 | __isConfig = None |
|
582 | 594 | __nsubplots = None |
|
583 | 595 | |
|
584 | 596 | WIDTHPROF = None |
|
585 | 597 | HEIGHTPROF = None |
|
586 | 598 | PREFIX = 'spcprofile' |
|
587 | 599 | |
|
588 | 600 | def __init__(self): |
|
589 | 601 | self.__isConfig = False |
|
590 | 602 | self.__nsubplots = 1 |
|
591 | 603 | |
|
592 | 604 | self.WIDTH = 300 |
|
593 | 605 | self.HEIGHT = 500 |
|
594 | 606 | |
|
595 | 607 | def getSubplots(self): |
|
596 | 608 | ncol = 1 |
|
597 | 609 | nrow = 1 |
|
598 | 610 | |
|
599 | 611 | return nrow, ncol |
|
600 | 612 | |
|
601 | 613 | def setup(self, idfigure, nplots, wintitle): |
|
602 | 614 | |
|
603 | 615 | self.nplots = nplots |
|
604 | 616 | |
|
605 | 617 | ncolspan = 1 |
|
606 | 618 | colspan = 1 |
|
607 | 619 | |
|
608 | 620 | self.createFigure(idfigure = idfigure, |
|
609 | 621 | wintitle = wintitle, |
|
610 | 622 | widthplot = self.WIDTH, |
|
611 | 623 | heightplot = self.HEIGHT) |
|
612 | 624 | |
|
613 | 625 | nrow, ncol = self.getSubplots() |
|
614 | 626 | |
|
615 | 627 | counter = 0 |
|
616 | 628 | for y in range(nrow): |
|
617 | 629 | for x in range(ncol): |
|
618 | 630 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
619 | 631 | |
|
620 | 632 | def run(self, dataOut, idfigure, wintitle="", channelList=None, |
|
621 | 633 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
622 | 634 | save=False, figpath='./', figfile=None): |
|
623 | 635 | |
|
624 | 636 | if channelList == None: |
|
625 | 637 | channelIndexList = dataOut.channelIndexList |
|
626 | 638 | channelList = dataOut.channelList |
|
627 | 639 | else: |
|
628 | 640 | channelIndexList = [] |
|
629 | 641 | for channel in channelList: |
|
630 | 642 | if channel not in dataOut.channelList: |
|
631 | 643 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
632 | 644 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
633 | 645 | |
|
634 | ||
|
635 | y = dataOut.getHeiRange() | |
|
636 |
x = |
|
|
646 | factor = dataOut.normFactor | |
|
647 | y = dataOut.getHeiRange() | |
|
648 | x = dataOut.data_spc[channelIndexList,:,:]/factor | |
|
649 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) | |
|
637 | 650 | avg = numpy.average(x, axis=1) |
|
638 | 651 | |
|
652 | avgdB = 10*numpy.log10(avg) | |
|
653 | ||
|
639 | 654 | thisDatetime = dataOut.datatime |
|
640 | 655 | title = "Power Profile" |
|
641 | 656 | xlabel = "dB" |
|
642 | 657 | ylabel = "Range (Km)" |
|
643 | 658 | |
|
644 | 659 | if not self.__isConfig: |
|
645 | 660 | |
|
646 | 661 | nplots = 1 |
|
647 | 662 | |
|
648 | 663 | self.setup(idfigure=idfigure, |
|
649 | 664 | nplots=nplots, |
|
650 | 665 | wintitle=wintitle) |
|
651 | 666 | |
|
652 | 667 | if ymin == None: ymin = numpy.nanmin(y) |
|
653 | 668 | if ymax == None: ymax = numpy.nanmax(y) |
|
654 | if xmin == None: xmin = numpy.nanmin(avg)*0.9 | |
|
655 | if xmax == None: xmax = numpy.nanmax(avg)*0.9 | |
|
669 | if xmin == None: xmin = numpy.nanmin(avgdB)*0.9 | |
|
670 | if xmax == None: xmax = numpy.nanmax(avgdB)*0.9 | |
|
656 | 671 | |
|
657 | 672 | self.__isConfig = True |
|
658 | 673 | |
|
659 | 674 | self.setWinTitle(title) |
|
660 | 675 | |
|
661 | 676 | |
|
662 | 677 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
663 | 678 | axes = self.axesList[0] |
|
664 | 679 | |
|
665 | 680 | legendlabels = ["channel %d"%x for x in channelList] |
|
666 | axes.pmultiline(avg, y, | |
|
681 | axes.pmultiline(avgdB, y, | |
|
667 | 682 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
668 | 683 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
669 | 684 | ytick_visible=True, nxticks=5, |
|
670 | 685 | grid='x') |
|
671 | 686 | |
|
672 | 687 | self.draw() |
|
673 | 688 | |
|
674 | 689 | if save: |
|
675 | 690 | date = thisDatetime.strftime("%Y%m%d") |
|
676 | 691 | if figfile == None: |
|
677 | 692 | figfile = self.getFilename(name = date) |
|
678 | 693 | |
|
679 | 694 | self.saveFigure(figpath, figfile) |
|
680 | 695 | |
|
681 | 696 | class CoherenceMap(Figure): |
|
682 | 697 | __isConfig = None |
|
683 | 698 | __nsubplots = None |
|
684 | 699 | |
|
685 | 700 | WIDTHPROF = None |
|
686 | 701 | HEIGHTPROF = None |
|
687 | 702 | PREFIX = 'coherencemap' |
|
688 | 703 | |
|
689 | 704 | def __init__(self): |
|
690 | 705 | self.timerange = 2*60*60 |
|
691 | 706 | self.__isConfig = False |
|
692 | 707 | self.__nsubplots = 1 |
|
693 | 708 | |
|
694 | 709 | self.WIDTH = 800 |
|
695 | 710 | self.HEIGHT = 200 |
|
696 | 711 | self.WIDTHPROF = 120 |
|
697 | 712 | self.HEIGHTPROF = 0 |
|
698 | 713 | |
|
699 | 714 | def getSubplots(self): |
|
700 | 715 | ncol = 1 |
|
701 | 716 | nrow = self.nplots*2 |
|
702 | 717 | |
|
703 | 718 | return nrow, ncol |
|
704 | 719 | |
|
705 | 720 | def setup(self, idfigure, nplots, wintitle, showprofile=True): |
|
706 | 721 | self.__showprofile = showprofile |
|
707 | 722 | self.nplots = nplots |
|
708 | 723 | |
|
709 | 724 | ncolspan = 1 |
|
710 | 725 | colspan = 1 |
|
711 | 726 | if showprofile: |
|
712 | 727 | ncolspan = 7 |
|
713 | 728 | colspan = 6 |
|
714 | 729 | self.__nsubplots = 2 |
|
715 | 730 | |
|
716 | 731 | self.createFigure(idfigure = idfigure, |
|
717 | 732 | wintitle = wintitle, |
|
718 | 733 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
719 | 734 | heightplot = self.HEIGHT + self.HEIGHTPROF) |
|
720 | 735 | |
|
721 | 736 | nrow, ncol = self.getSubplots() |
|
722 | 737 | |
|
723 | 738 | for y in range(nrow): |
|
724 | 739 | for x in range(ncol): |
|
725 | 740 | |
|
726 | 741 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
727 | 742 | |
|
728 | 743 | if showprofile: |
|
729 | 744 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
730 | 745 | |
|
731 | 746 | def run(self, dataOut, idfigure, wintitle="", pairsList=None, showprofile='True', |
|
732 | 747 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
733 | 748 | timerange=None, |
|
734 | 749 | save=False, figpath='./', figfile=None): |
|
735 | 750 | |
|
736 | 751 | if pairsList == None: |
|
737 | 752 | pairsIndexList = dataOut.pairsIndexList |
|
738 | 753 | else: |
|
739 | 754 | pairsIndexList = [] |
|
740 | 755 | for pair in pairsList: |
|
741 | 756 | if pair not in dataOut.pairsList: |
|
742 | 757 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
743 | 758 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
744 | 759 | |
|
745 | 760 | if timerange != None: |
|
746 | 761 | self.timerange = timerange |
|
747 | 762 | |
|
748 | 763 | if pairsIndexList == []: |
|
749 | 764 | return |
|
750 | 765 | |
|
751 | 766 | if len(pairsIndexList) > 4: |
|
752 | 767 | pairsIndexList = pairsIndexList[0:4] |
|
753 | 768 | |
|
754 | 769 | tmin = None |
|
755 | 770 | tmax = None |
|
756 | 771 | x = dataOut.getTimeRange() |
|
757 | 772 | y = dataOut.getHeiRange() |
|
758 | 773 | |
|
759 | 774 | thisDatetime = dataOut.datatime |
|
760 | 775 | title = "CoherenceMap: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
761 | 776 | xlabel = "" |
|
762 | 777 | ylabel = "Range (Km)" |
|
763 | 778 | |
|
764 | 779 | if not self.__isConfig: |
|
765 | 780 | nplots = len(pairsIndexList) |
|
766 | 781 | self.setup(idfigure=idfigure, |
|
767 | 782 | nplots=nplots, |
|
768 | 783 | wintitle=wintitle, |
|
769 | 784 | showprofile=showprofile) |
|
770 | 785 | |
|
771 | 786 | tmin, tmax = self.getTimeLim(x, xmin, xmax) |
|
772 | 787 | if ymin == None: ymin = numpy.nanmin(y) |
|
773 | 788 | if ymax == None: ymax = numpy.nanmax(y) |
|
774 | 789 | |
|
775 | 790 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
776 | 791 | |
|
777 | 792 | self.__isConfig = True |
|
778 | 793 | |
|
779 | 794 | self.setWinTitle(title) |
|
780 | 795 | |
|
781 | 796 | for i in range(self.nplots): |
|
782 | 797 | |
|
783 | 798 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
784 | 799 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:]) |
|
785 | 800 | coherence = numpy.abs(coherenceComplex) |
|
786 | 801 | avg = numpy.average(coherence, axis=0) |
|
787 | 802 | z = avg.reshape((1,-1)) |
|
788 | 803 | |
|
789 | 804 | counter = 0 |
|
790 | 805 | |
|
791 | 806 | title = "Coherence %d%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
792 | 807 | axes = self.axesList[i*self.__nsubplots*2] |
|
793 | 808 | axes.pcolor(x, y, z, |
|
794 | 809 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=0, zmax=1, |
|
795 | 810 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
796 | 811 | ticksize=9, cblabel='', cbsize="1%") |
|
797 | 812 | |
|
798 | 813 | if self.__showprofile: |
|
799 | 814 | counter += 1 |
|
800 | 815 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
801 | 816 | axes.pline(avg, y, |
|
802 | 817 | xmin=0, xmax=1, ymin=ymin, ymax=ymax, |
|
803 | 818 | xlabel='', ylabel='', title='', ticksize=7, |
|
804 | 819 | ytick_visible=False, nxticks=5, |
|
805 | 820 | grid='x') |
|
806 | 821 | |
|
807 | 822 | counter += 1 |
|
808 | 823 | phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
809 | 824 | avg = numpy.average(phase, axis=0) |
|
810 | 825 | z = avg.reshape((1,-1)) |
|
811 | 826 | |
|
812 | 827 | title = "Phase %d%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
813 | 828 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
814 | 829 | axes.pcolor(x, y, z, |
|
815 | 830 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=-180, zmax=180, |
|
816 | 831 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
817 | 832 | ticksize=9, cblabel='', colormap='RdBu', cbsize="1%") |
|
818 | 833 | |
|
819 | 834 | if self.__showprofile: |
|
820 | 835 | counter += 1 |
|
821 | 836 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
822 | 837 | axes.pline(avg, y, |
|
823 | 838 | xmin=-180, xmax=180, ymin=ymin, ymax=ymax, |
|
824 | 839 | xlabel='', ylabel='', title='', ticksize=7, |
|
825 | 840 | ytick_visible=False, nxticks=4, |
|
826 | 841 | grid='x') |
|
827 | 842 | |
|
828 | 843 | self.draw() |
|
829 | 844 | |
|
830 | 845 | if save: |
|
831 | 846 | |
|
832 | 847 | if figfile == None: |
|
833 | 848 | figfile = self.getFilename(name = self.name) |
|
834 | 849 | |
|
835 | 850 | self.saveFigure(figpath, figfile) |
|
836 | 851 | |
|
837 | 852 | if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax: |
|
838 | 853 | self.__isConfig = False |
|
839 | 854 | |
|
840 | 855 | class RTIfromNoise(Figure): |
|
841 | 856 | |
|
842 | 857 | __isConfig = None |
|
843 | 858 | __nsubplots = None |
|
844 | 859 | |
|
845 | 860 | PREFIX = 'rtinoise' |
|
846 | 861 | |
|
847 | 862 | def __init__(self): |
|
848 | 863 | |
|
849 | 864 | self.timerange = 24*60*60 |
|
850 | 865 | self.__isConfig = False |
|
851 | 866 | self.__nsubplots = 1 |
|
852 | 867 | |
|
853 | 868 | self.WIDTH = 820 |
|
854 | 869 | self.HEIGHT = 200 |
|
870 | self.WIDTHPROF = 120 | |
|
871 | self.HEIGHTPROF = 0 | |
|
872 | self.xdata = None | |
|
873 | self.ydata = None | |
|
855 | 874 | |
|
856 | 875 | def getSubplots(self): |
|
857 | 876 | |
|
858 | 877 | ncol = 1 |
|
859 | 878 | nrow = 1 |
|
860 | 879 | |
|
861 | 880 | return nrow, ncol |
|
862 | 881 | |
|
863 | 882 | def setup(self, idfigure, nplots, wintitle, showprofile=True): |
|
864 | 883 | |
|
865 | 884 | self.__showprofile = showprofile |
|
866 | 885 | self.nplots = nplots |
|
867 | 886 | |
|
868 |
ncolspan = |
|
|
869 |
colspan = |
|
|
870 | ||
|
887 | ncolspan = 7 | |
|
888 | colspan = 6 | |
|
889 | self.__nsubplots = 2 | |
|
890 | ||
|
871 | 891 | self.createFigure(idfigure = idfigure, |
|
872 | 892 | wintitle = wintitle, |
|
873 | widthplot = self.WIDTH, | |
|
874 | heightplot = self.HEIGHT) | |
|
893 | widthplot = self.WIDTH+self.WIDTHPROF, | |
|
894 | heightplot = self.HEIGHT+self.HEIGHTPROF) | |
|
875 | 895 | |
|
876 | 896 | nrow, ncol = self.getSubplots() |
|
877 |
|
|
|
878 |
self.addAxes(nrow, ncol, 0, 0, |
|
|
897 | ||
|
898 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
|
899 | ||
|
879 | 900 | |
|
880 | 901 | def run(self, dataOut, idfigure, wintitle="", channelList=None, showprofile='True', |
|
881 | 902 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
882 | 903 | timerange=None, |
|
883 | 904 | save=False, figpath='./', figfile=None): |
|
884 | 905 | |
|
885 | 906 | if channelList == None: |
|
886 | 907 | channelIndexList = dataOut.channelIndexList |
|
887 | 908 | channelList = dataOut.channelList |
|
888 | 909 | else: |
|
889 | 910 | channelIndexList = [] |
|
890 | 911 | for channel in channelList: |
|
891 | 912 | if channel not in dataOut.channelList: |
|
892 | 913 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
893 | 914 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
894 | 915 | |
|
895 | 916 | if timerange != None: |
|
896 | 917 | self.timerange = timerange |
|
897 | 918 | |
|
898 | 919 | tmin = None |
|
899 | 920 | tmax = None |
|
900 | 921 | x = dataOut.getTimeRange() |
|
901 | 922 | y = dataOut.getHeiRange() |
|
902 | ||
|
903 | noise = dataOut.getNoise() | |
|
923 | factor = dataOut.normFactor | |
|
924 | noise = dataOut.getNoise()/factor | |
|
925 | noisedB = 10*numpy.log10(noise) | |
|
904 | 926 | |
|
905 | 927 | thisDatetime = dataOut.datatime |
|
906 | 928 | title = "RTI: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
907 |
xlabel = " |
|
|
929 | xlabel = "" | |
|
908 | 930 | ylabel = "Range (Km)" |
|
909 | 931 | |
|
910 | 932 | if not self.__isConfig: |
|
911 | 933 | |
|
912 | 934 | nplots = 1 |
|
913 | 935 | |
|
914 | 936 | self.setup(idfigure=idfigure, |
|
915 | 937 | nplots=nplots, |
|
916 | 938 | wintitle=wintitle, |
|
917 | 939 | showprofile=showprofile) |
|
918 | 940 | |
|
919 | 941 | tmin, tmax = self.getTimeLim(x, xmin, xmax) |
|
920 | if ymin == None: ymin = numpy.nanmin(noise) | |
|
921 | if ymax == None: ymax = numpy.nanmax(noise) | |
|
942 | if ymin == None: ymin = numpy.nanmin(noisedB) | |
|
943 | if ymax == None: ymax = numpy.nanmax(noisedB) | |
|
922 | 944 | |
|
923 | 945 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
924 | 946 | self.__isConfig = True |
|
925 | 947 | |
|
948 | self.xdata = numpy.array([]) | |
|
949 | self.ydata = numpy.array([]) | |
|
926 | 950 | |
|
927 | 951 | self.setWinTitle(title) |
|
928 | 952 | |
|
929 | 953 | |
|
930 | 954 | title = "RTI Noise %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
931 | 955 | |
|
932 | 956 | legendlabels = ["channel %d"%idchannel for idchannel in channelList] |
|
933 | 957 | axes = self.axesList[0] |
|
934 | xdata = x[0:1] | |
|
935 | ydata = noise[channelIndexList].reshape(-1,1) | |
|
936 | axes.pmultilineyaxis(x=xdata, y=ydata, | |
|
958 | ||
|
959 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
|
960 | ||
|
961 | if len(self.ydata)==0: | |
|
962 | self.ydata = noisedB[channelIndexList].reshape(-1,1) | |
|
963 | else: | |
|
964 | self.ydata = numpy.hstack((self.ydata, noisedB[channelIndexList].reshape(-1,1))) | |
|
965 | ||
|
966 | ||
|
967 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
|
937 | 968 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, |
|
938 | 969 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
939 | 970 | XAxisAsTime=True |
|
940 | 971 | ) |
|
941 | 972 | |
|
942 | ||
|
943 | 973 | self.draw() |
|
944 | 974 | |
|
945 | 975 | if save: |
|
946 | 976 | |
|
947 | 977 | if figfile == None: |
|
948 | 978 | figfile = self.getFilename(name = self.name) |
|
949 | 979 | |
|
950 | 980 | self.saveFigure(figpath, figfile) |
|
951 | 981 | |
|
952 | 982 | if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax: |
|
953 | 983 | self.__isConfig = False |
|
984 | del self.xdata | |
|
985 | del self.ydata | |
|
954 | 986 | No newline at end of file |
@@ -1,1157 +1,1159 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: dsuarez $ |
|
4 | 4 | $Id: Processor.py 1 2012-11-12 18:56:07Z dsuarez $ |
|
5 | 5 | ''' |
|
6 | 6 | import os |
|
7 | 7 | import numpy |
|
8 | 8 | import datetime |
|
9 | 9 | import time |
|
10 | 10 | |
|
11 | 11 | from jrodata import * |
|
12 | 12 | from jrodataIO import * |
|
13 | 13 | from jroplot import * |
|
14 | 14 | |
|
15 | 15 | class ProcessingUnit: |
|
16 | 16 | |
|
17 | 17 | """ |
|
18 | 18 | Esta es la clase base para el procesamiento de datos. |
|
19 | 19 | |
|
20 | 20 | Contiene el metodo "call" para llamar operaciones. Las operaciones pueden ser: |
|
21 | 21 | - Metodos internos (callMethod) |
|
22 | 22 | - Objetos del tipo Operation (callObject). Antes de ser llamados, estos objetos |
|
23 | 23 | tienen que ser agreagados con el metodo "add". |
|
24 | 24 | |
|
25 | 25 | """ |
|
26 | 26 | # objeto de datos de entrada (Voltage, Spectra o Correlation) |
|
27 | 27 | dataIn = None |
|
28 | 28 | |
|
29 | 29 | # objeto de datos de entrada (Voltage, Spectra o Correlation) |
|
30 | 30 | dataOut = None |
|
31 | 31 | |
|
32 | 32 | |
|
33 | 33 | objectDict = None |
|
34 | 34 | |
|
35 | 35 | def __init__(self): |
|
36 | 36 | |
|
37 | 37 | self.objectDict = {} |
|
38 | 38 | |
|
39 | 39 | def init(self): |
|
40 | 40 | |
|
41 | 41 | raise ValueError, "Not implemented" |
|
42 | 42 | |
|
43 | 43 | def addOperation(self, object, objId): |
|
44 | 44 | |
|
45 | 45 | """ |
|
46 | 46 | Agrega el objeto "object" a la lista de objetos "self.objectList" y retorna el |
|
47 | 47 | identificador asociado a este objeto. |
|
48 | 48 | |
|
49 | 49 | Input: |
|
50 | 50 | |
|
51 | 51 | object : objeto de la clase "Operation" |
|
52 | 52 | |
|
53 | 53 | Return: |
|
54 | 54 | |
|
55 | 55 | objId : identificador del objeto, necesario para ejecutar la operacion |
|
56 | 56 | """ |
|
57 | 57 | |
|
58 | 58 | self.objectDict[objId] = object |
|
59 | 59 | |
|
60 | 60 | return objId |
|
61 | 61 | |
|
62 | 62 | def operation(self, **kwargs): |
|
63 | 63 | |
|
64 | 64 | """ |
|
65 | 65 | Operacion directa sobre la data (dataOut.data). Es necesario actualizar los valores de los |
|
66 | 66 | atributos del objeto dataOut |
|
67 | 67 | |
|
68 | 68 | Input: |
|
69 | 69 | |
|
70 | 70 | **kwargs : Diccionario de argumentos de la funcion a ejecutar |
|
71 | 71 | """ |
|
72 | 72 | |
|
73 | 73 | raise ValueError, "ImplementedError" |
|
74 | 74 | |
|
75 | 75 | def callMethod(self, name, **kwargs): |
|
76 | 76 | |
|
77 | 77 | """ |
|
78 | 78 | Ejecuta el metodo con el nombre "name" y con argumentos **kwargs de la propia clase. |
|
79 | 79 | |
|
80 | 80 | Input: |
|
81 | 81 | name : nombre del metodo a ejecutar |
|
82 | 82 | |
|
83 | 83 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. |
|
84 | 84 | |
|
85 | 85 | """ |
|
86 | 86 | if name != 'run': |
|
87 | 87 | |
|
88 | 88 | if name == 'init' and self.dataIn.isEmpty(): |
|
89 | 89 | self.dataOut.flagNoData = True |
|
90 | 90 | return False |
|
91 | 91 | |
|
92 | 92 | if name != 'init' and self.dataOut.isEmpty(): |
|
93 | 93 | return False |
|
94 | 94 | |
|
95 | 95 | methodToCall = getattr(self, name) |
|
96 | 96 | |
|
97 | 97 | methodToCall(**kwargs) |
|
98 | 98 | |
|
99 | 99 | if name != 'run': |
|
100 | 100 | return True |
|
101 | 101 | |
|
102 | 102 | if self.dataOut.isEmpty(): |
|
103 | 103 | return False |
|
104 | 104 | |
|
105 | 105 | return True |
|
106 | 106 | |
|
107 | 107 | def callObject(self, objId, **kwargs): |
|
108 | 108 | |
|
109 | 109 | """ |
|
110 | 110 | Ejecuta la operacion asociada al identificador del objeto "objId" |
|
111 | 111 | |
|
112 | 112 | Input: |
|
113 | 113 | |
|
114 | 114 | objId : identificador del objeto a ejecutar |
|
115 | 115 | |
|
116 | 116 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. |
|
117 | 117 | |
|
118 | 118 | Return: |
|
119 | 119 | |
|
120 | 120 | None |
|
121 | 121 | """ |
|
122 | 122 | |
|
123 | 123 | if self.dataOut.isEmpty(): |
|
124 | 124 | return False |
|
125 | 125 | |
|
126 | 126 | object = self.objectDict[objId] |
|
127 | 127 | |
|
128 | 128 | object.run(self.dataOut, **kwargs) |
|
129 | 129 | |
|
130 | 130 | return True |
|
131 | 131 | |
|
132 | 132 | def call(self, operationConf, **kwargs): |
|
133 | 133 | |
|
134 | 134 | """ |
|
135 | 135 | Return True si ejecuta la operacion "operationConf.name" con los |
|
136 | 136 | argumentos "**kwargs". False si la operacion no se ha ejecutado. |
|
137 | 137 | La operacion puede ser de dos tipos: |
|
138 | 138 | |
|
139 | 139 | 1. Un metodo propio de esta clase: |
|
140 | 140 | |
|
141 | 141 | operation.type = "self" |
|
142 | 142 | |
|
143 | 143 | 2. El metodo "run" de un objeto del tipo Operation o de un derivado de ella: |
|
144 | 144 | operation.type = "other". |
|
145 | 145 | |
|
146 | 146 | Este objeto de tipo Operation debe de haber sido agregado antes con el metodo: |
|
147 | 147 | "addOperation" e identificado con el operation.id |
|
148 | 148 | |
|
149 | 149 | |
|
150 | 150 | con el id de la operacion. |
|
151 | 151 | |
|
152 | 152 | Input: |
|
153 | 153 | |
|
154 | 154 | Operation : Objeto del tipo operacion con los atributos: name, type y id. |
|
155 | 155 | |
|
156 | 156 | """ |
|
157 | 157 | |
|
158 | 158 | if operationConf.type == 'self': |
|
159 | 159 | sts = self.callMethod(operationConf.name, **kwargs) |
|
160 | 160 | |
|
161 | 161 | if operationConf.type == 'other': |
|
162 | 162 | sts = self.callObject(operationConf.id, **kwargs) |
|
163 | 163 | |
|
164 | 164 | return sts |
|
165 | 165 | |
|
166 | 166 | def setInput(self, dataIn): |
|
167 | 167 | |
|
168 | 168 | self.dataIn = dataIn |
|
169 | 169 | |
|
170 | 170 | def getOutput(self): |
|
171 | 171 | |
|
172 | 172 | return self.dataOut |
|
173 | 173 | |
|
174 | 174 | class Operation(): |
|
175 | 175 | |
|
176 | 176 | """ |
|
177 | 177 | Clase base para definir las operaciones adicionales que se pueden agregar a la clase ProcessingUnit |
|
178 | 178 | y necesiten acumular informacion previa de los datos a procesar. De preferencia usar un buffer de |
|
179 | 179 | acumulacion dentro de esta clase |
|
180 | 180 | |
|
181 | 181 | Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer) |
|
182 | 182 | |
|
183 | 183 | """ |
|
184 | 184 | |
|
185 | 185 | __buffer = None |
|
186 | 186 | __isConfig = False |
|
187 | 187 | |
|
188 | 188 | def __init__(self): |
|
189 | 189 | |
|
190 | 190 | pass |
|
191 | 191 | |
|
192 | 192 | def run(self, dataIn, **kwargs): |
|
193 | 193 | |
|
194 | 194 | """ |
|
195 | 195 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los atributos del objeto dataIn. |
|
196 | 196 | |
|
197 | 197 | Input: |
|
198 | 198 | |
|
199 | 199 | dataIn : objeto del tipo JROData |
|
200 | 200 | |
|
201 | 201 | Return: |
|
202 | 202 | |
|
203 | 203 | None |
|
204 | 204 | |
|
205 | 205 | Affected: |
|
206 | 206 | __buffer : buffer de recepcion de datos. |
|
207 | 207 | |
|
208 | 208 | """ |
|
209 | 209 | |
|
210 | 210 | raise ValueError, "ImplementedError" |
|
211 | 211 | |
|
212 | 212 | class VoltageProc(ProcessingUnit): |
|
213 | 213 | |
|
214 | 214 | |
|
215 | 215 | def __init__(self): |
|
216 | 216 | |
|
217 | 217 | self.objectDict = {} |
|
218 | 218 | self.dataOut = Voltage() |
|
219 | 219 | self.flip = 1 |
|
220 | 220 | |
|
221 | 221 | def init(self): |
|
222 | 222 | |
|
223 | 223 | self.dataOut.copy(self.dataIn) |
|
224 | 224 | # No necesita copiar en cada init() los atributos de dataIn |
|
225 | 225 | # la copia deberia hacerse por cada nuevo bloque de datos |
|
226 | 226 | |
|
227 | 227 | def selectChannels(self, channelList): |
|
228 | 228 | |
|
229 | 229 | channelIndexList = [] |
|
230 | 230 | |
|
231 | 231 | for channel in channelList: |
|
232 | 232 | index = self.dataOut.channelList.index(channel) |
|
233 | 233 | channelIndexList.append(index) |
|
234 | 234 | |
|
235 | 235 | self.selectChannelsByIndex(channelIndexList) |
|
236 | 236 | |
|
237 | 237 | def selectChannelsByIndex(self, channelIndexList): |
|
238 | 238 | """ |
|
239 | 239 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
240 | 240 | |
|
241 | 241 | Input: |
|
242 | 242 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
243 | 243 | |
|
244 | 244 | Affected: |
|
245 | 245 | self.dataOut.data |
|
246 | 246 | self.dataOut.channelIndexList |
|
247 | 247 | self.dataOut.nChannels |
|
248 | 248 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
249 | 249 | self.dataOut.systemHeaderObj.numChannels |
|
250 | 250 | self.dataOut.m_ProcessingHeader.blockSize |
|
251 | 251 | |
|
252 | 252 | Return: |
|
253 | 253 | None |
|
254 | 254 | """ |
|
255 | 255 | |
|
256 | 256 | for channelIndex in channelIndexList: |
|
257 | 257 | if channelIndex not in self.dataOut.channelIndexList: |
|
258 | 258 | print channelIndexList |
|
259 | 259 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
260 | 260 | |
|
261 | 261 | nChannels = len(channelIndexList) |
|
262 | 262 | |
|
263 | 263 | data = self.dataOut.data[channelIndexList,:] |
|
264 | 264 | |
|
265 | 265 | self.dataOut.data = data |
|
266 | 266 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
267 | 267 | # self.dataOut.nChannels = nChannels |
|
268 | 268 | |
|
269 | 269 | return 1 |
|
270 | 270 | |
|
271 | 271 | def selectHeights(self, minHei, maxHei): |
|
272 | 272 | """ |
|
273 | 273 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
274 | 274 | minHei <= height <= maxHei |
|
275 | 275 | |
|
276 | 276 | Input: |
|
277 | 277 | minHei : valor minimo de altura a considerar |
|
278 | 278 | maxHei : valor maximo de altura a considerar |
|
279 | 279 | |
|
280 | 280 | Affected: |
|
281 | 281 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
282 | 282 | |
|
283 | 283 | Return: |
|
284 | 284 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
285 | 285 | """ |
|
286 | 286 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
287 | 287 | raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) |
|
288 | 288 | |
|
289 | 289 | if (maxHei > self.dataOut.heightList[-1]): |
|
290 | 290 | maxHei = self.dataOut.heightList[-1] |
|
291 | 291 | # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) |
|
292 | 292 | |
|
293 | 293 | minIndex = 0 |
|
294 | 294 | maxIndex = 0 |
|
295 | 295 | heights = self.dataOut.heightList |
|
296 | 296 | |
|
297 | 297 | inda = numpy.where(heights >= minHei) |
|
298 | 298 | indb = numpy.where(heights <= maxHei) |
|
299 | 299 | |
|
300 | 300 | try: |
|
301 | 301 | minIndex = inda[0][0] |
|
302 | 302 | except: |
|
303 | 303 | minIndex = 0 |
|
304 | 304 | |
|
305 | 305 | try: |
|
306 | 306 | maxIndex = indb[0][-1] |
|
307 | 307 | except: |
|
308 | 308 | maxIndex = len(heights) |
|
309 | 309 | |
|
310 | 310 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
311 | 311 | |
|
312 | 312 | return 1 |
|
313 | 313 | |
|
314 | 314 | |
|
315 | 315 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
316 | 316 | """ |
|
317 | 317 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
318 | 318 | minIndex <= index <= maxIndex |
|
319 | 319 | |
|
320 | 320 | Input: |
|
321 | 321 | minIndex : valor de indice minimo de altura a considerar |
|
322 | 322 | maxIndex : valor de indice maximo de altura a considerar |
|
323 | 323 | |
|
324 | 324 | Affected: |
|
325 | 325 | self.dataOut.data |
|
326 | 326 | self.dataOut.heightList |
|
327 | 327 | |
|
328 | 328 | Return: |
|
329 | 329 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
330 | 330 | """ |
|
331 | 331 | |
|
332 | 332 | if (minIndex < 0) or (minIndex > maxIndex): |
|
333 | 333 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
334 | 334 | |
|
335 | 335 | if (maxIndex >= self.dataOut.nHeights): |
|
336 | 336 | maxIndex = self.dataOut.nHeights-1 |
|
337 | 337 | # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
338 | 338 | |
|
339 | 339 | nHeights = maxIndex - minIndex + 1 |
|
340 | 340 | |
|
341 | 341 | #voltage |
|
342 | 342 | data = self.dataOut.data[:,minIndex:maxIndex+1] |
|
343 | 343 | |
|
344 | 344 | firstHeight = self.dataOut.heightList[minIndex] |
|
345 | 345 | |
|
346 | 346 | self.dataOut.data = data |
|
347 | 347 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
348 | 348 | |
|
349 | 349 | return 1 |
|
350 | 350 | |
|
351 | 351 | |
|
352 | 352 | def filterByHeights(self, window): |
|
353 | 353 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
354 | 354 | |
|
355 | 355 | if window == None: |
|
356 | 356 | window = self.dataOut.radarControllerHeaderObj.txA / deltaHeight |
|
357 | 357 | |
|
358 | 358 | newdelta = deltaHeight * window |
|
359 | 359 | r = self.dataOut.data.shape[1] % window |
|
360 | 360 | buffer = self.dataOut.data[:,0:self.dataOut.data.shape[1]-r] |
|
361 | 361 | buffer = buffer.reshape(self.dataOut.data.shape[0],self.dataOut.data.shape[1]/window,window) |
|
362 |
buffer = numpy. |
|
|
362 | buffer = numpy.sum(buffer,2) | |
|
363 | 363 | self.dataOut.data = buffer |
|
364 | 364 | self.dataOut.heightList = numpy.arange(self.dataOut.heightList[0],newdelta*self.dataOut.nHeights/window-newdelta,newdelta) |
|
365 | self.dataOut.windowOfFilter = window | |
|
365 | 366 | |
|
366 | 367 | def deFlip(self): |
|
367 | 368 | self.dataOut.data *= self.flip |
|
368 | 369 | self.flip *= -1. |
|
369 | 370 | |
|
370 | 371 | |
|
371 | 372 | class CohInt(Operation): |
|
372 | 373 | |
|
373 | 374 | __isConfig = False |
|
374 | 375 | |
|
375 | 376 | __profIndex = 0 |
|
376 | 377 | __withOverapping = False |
|
377 | 378 | |
|
378 | 379 | __byTime = False |
|
379 | 380 | __initime = None |
|
380 | 381 | __lastdatatime = None |
|
381 | 382 | __integrationtime = None |
|
382 | 383 | |
|
383 | 384 | __buffer = None |
|
384 | 385 | |
|
385 | 386 | __dataReady = False |
|
386 | 387 | |
|
387 | 388 | n = None |
|
388 | 389 | |
|
389 | 390 | |
|
390 | 391 | def __init__(self): |
|
391 | 392 | |
|
392 | 393 | self.__isConfig = False |
|
393 | 394 | |
|
394 | 395 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
395 | 396 | """ |
|
396 | 397 | Set the parameters of the integration class. |
|
397 | 398 | |
|
398 | 399 | Inputs: |
|
399 | 400 | |
|
400 | 401 | n : Number of coherent integrations |
|
401 | 402 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
402 | 403 | overlapping : |
|
403 | 404 | |
|
404 | 405 | """ |
|
405 | 406 | |
|
406 | 407 | self.__initime = None |
|
407 | 408 | self.__lastdatatime = 0 |
|
408 | 409 | self.__buffer = None |
|
409 | 410 | self.__dataReady = False |
|
410 | 411 | |
|
411 | 412 | |
|
412 | 413 | if n == None and timeInterval == None: |
|
413 | 414 | raise ValueError, "n or timeInterval should be specified ..." |
|
414 | 415 | |
|
415 | 416 | if n != None: |
|
416 | 417 | self.n = n |
|
417 | 418 | self.__byTime = False |
|
418 | 419 | else: |
|
419 | 420 | self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line |
|
420 | 421 | self.n = 9999 |
|
421 | 422 | self.__byTime = True |
|
422 | 423 | |
|
423 | 424 | if overlapping: |
|
424 | 425 | self.__withOverapping = True |
|
425 | 426 | self.__buffer = None |
|
426 | 427 | else: |
|
427 | 428 | self.__withOverapping = False |
|
428 | 429 | self.__buffer = 0 |
|
429 | 430 | |
|
430 | 431 | self.__profIndex = 0 |
|
431 | 432 | |
|
432 | 433 | def putData(self, data): |
|
433 | 434 | |
|
434 | 435 | """ |
|
435 | 436 | Add a profile to the __buffer and increase in one the __profileIndex |
|
436 | 437 | |
|
437 | 438 | """ |
|
438 | 439 | |
|
439 | 440 | if not self.__withOverapping: |
|
440 | 441 | self.__buffer += data.copy() |
|
441 | 442 | self.__profIndex += 1 |
|
442 | 443 | return |
|
443 | 444 | |
|
444 | 445 | #Overlapping data |
|
445 | 446 | nChannels, nHeis = data.shape |
|
446 | 447 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
447 | 448 | |
|
448 | 449 | #If the buffer is empty then it takes the data value |
|
449 | 450 | if self.__buffer == None: |
|
450 | 451 | self.__buffer = data |
|
451 | 452 | self.__profIndex += 1 |
|
452 | 453 | return |
|
453 | 454 | |
|
454 | 455 | #If the buffer length is lower than n then stakcing the data value |
|
455 | 456 | if self.__profIndex < self.n: |
|
456 | 457 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
457 | 458 | self.__profIndex += 1 |
|
458 | 459 | return |
|
459 | 460 | |
|
460 | 461 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
461 | 462 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
462 | 463 | self.__buffer[self.n-1] = data |
|
463 | 464 | self.__profIndex = self.n |
|
464 | 465 | return |
|
465 | 466 | |
|
466 | 467 | |
|
467 | 468 | def pushData(self): |
|
468 | 469 | """ |
|
469 | 470 | Return the sum of the last profiles and the profiles used in the sum. |
|
470 | 471 | |
|
471 | 472 | Affected: |
|
472 | 473 | |
|
473 | 474 | self.__profileIndex |
|
474 | 475 | |
|
475 | 476 | """ |
|
476 | 477 | |
|
477 | 478 | if not self.__withOverapping: |
|
478 | 479 | data = self.__buffer |
|
479 | 480 | n = self.__profIndex |
|
480 | 481 | |
|
481 | 482 | self.__buffer = 0 |
|
482 | 483 | self.__profIndex = 0 |
|
483 | 484 | |
|
484 | 485 | return data, n |
|
485 | 486 | |
|
486 | 487 | #Integration with Overlapping |
|
487 | 488 | data = numpy.sum(self.__buffer, axis=0) |
|
488 | 489 | n = self.__profIndex |
|
489 | 490 | |
|
490 | 491 | return data, n |
|
491 | 492 | |
|
492 | 493 | def byProfiles(self, data): |
|
493 | 494 | |
|
494 | 495 | self.__dataReady = False |
|
495 | 496 | avgdata = None |
|
496 | 497 | n = None |
|
497 | 498 | |
|
498 | 499 | self.putData(data) |
|
499 | 500 | |
|
500 | 501 | if self.__profIndex == self.n: |
|
501 | 502 | |
|
502 | 503 | avgdata, n = self.pushData() |
|
503 | 504 | self.__dataReady = True |
|
504 | 505 | |
|
505 | 506 | return avgdata |
|
506 | 507 | |
|
507 | 508 | def byTime(self, data, datatime): |
|
508 | 509 | |
|
509 | 510 | self.__dataReady = False |
|
510 | 511 | avgdata = None |
|
511 | 512 | n = None |
|
512 | 513 | |
|
513 | 514 | self.putData(data) |
|
514 | 515 | |
|
515 | 516 | if (datatime - self.__initime) >= self.__integrationtime: |
|
516 | 517 | avgdata, n = self.pushData() |
|
517 | 518 | self.n = n |
|
518 | 519 | self.__dataReady = True |
|
519 | 520 | |
|
520 | 521 | return avgdata |
|
521 | 522 | |
|
522 | 523 | def integrate(self, data, datatime=None): |
|
523 | 524 | |
|
524 | 525 | if self.__initime == None: |
|
525 | 526 | self.__initime = datatime |
|
526 | 527 | |
|
527 | 528 | if self.__byTime: |
|
528 | 529 | avgdata = self.byTime(data, datatime) |
|
529 | 530 | else: |
|
530 | 531 | avgdata = self.byProfiles(data) |
|
531 | 532 | |
|
532 | 533 | |
|
533 | 534 | self.__lastdatatime = datatime |
|
534 | 535 | |
|
535 | 536 | if avgdata == None: |
|
536 | 537 | return None, None |
|
537 | 538 | |
|
538 | 539 | avgdatatime = self.__initime |
|
539 | 540 | |
|
540 | 541 | deltatime = datatime -self.__lastdatatime |
|
541 | 542 | |
|
542 | 543 | if not self.__withOverapping: |
|
543 | 544 | self.__initime = datatime |
|
544 | 545 | else: |
|
545 | 546 | self.__initime += deltatime |
|
546 | 547 | |
|
547 | 548 | return avgdata, avgdatatime |
|
548 | 549 | |
|
549 | 550 | def run(self, dataOut, **kwargs): |
|
550 | 551 | |
|
551 | 552 | if not self.__isConfig: |
|
552 | 553 | self.setup(**kwargs) |
|
553 | 554 | self.__isConfig = True |
|
554 | 555 | |
|
555 | 556 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
556 | 557 | |
|
557 | 558 | # dataOut.timeInterval *= n |
|
558 | 559 | dataOut.flagNoData = True |
|
559 | 560 | |
|
560 | 561 | if self.__dataReady: |
|
561 | 562 | dataOut.data = avgdata |
|
562 | 563 | dataOut.nCohInt *= self.n |
|
563 | 564 | dataOut.utctime = avgdatatime |
|
564 | 565 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
565 | 566 | dataOut.flagNoData = False |
|
566 | 567 | |
|
567 | 568 | |
|
568 | 569 | class Decoder(Operation): |
|
569 | 570 | |
|
570 | 571 | __isConfig = False |
|
571 | 572 | __profIndex = 0 |
|
572 | 573 | |
|
573 | 574 | code = None |
|
574 | 575 | |
|
575 | 576 | nCode = None |
|
576 | 577 | nBaud = None |
|
577 | 578 | |
|
578 | 579 | def __init__(self): |
|
579 | 580 | |
|
580 | 581 | self.__isConfig = False |
|
581 | 582 | |
|
582 | 583 | def setup(self, code): |
|
583 | 584 | |
|
584 | 585 | self.__profIndex = 0 |
|
585 | 586 | |
|
586 | 587 | self.code = code |
|
587 | 588 | |
|
588 | 589 | self.nCode = len(code) |
|
589 | 590 | self.nBaud = len(code[0]) |
|
590 | 591 | |
|
591 | 592 | def convolutionInFreq(self, data): |
|
592 | 593 | |
|
593 | 594 | nchannel, ndata = data.shape |
|
594 | 595 | newcode = numpy.zeros(ndata) |
|
595 | 596 | newcode[0:self.nBaud] = self.code[self.__profIndex] |
|
596 | 597 | |
|
597 | 598 | fft_data = numpy.fft.fft(data, axis=1) |
|
598 | 599 | fft_code = numpy.conj(numpy.fft.fft(newcode)) |
|
599 | 600 | fft_code = fft_code.reshape(1,len(fft_code)) |
|
600 | 601 | |
|
601 | 602 | # conv = fft_data.copy() |
|
602 | 603 | # conv.fill(0) |
|
603 | 604 | |
|
604 | 605 | conv = fft_data*fft_code |
|
605 | 606 | |
|
606 | 607 | data = numpy.fft.ifft(conv,axis=1) |
|
607 | 608 | |
|
608 | 609 | datadec = data[:,:-self.nBaud+1] |
|
609 | 610 | ndatadec = ndata - self.nBaud + 1 |
|
610 | 611 | |
|
611 | 612 | if self.__profIndex == self.nCode-1: |
|
612 | 613 | self.__profIndex = 0 |
|
613 | 614 | return ndatadec, datadec |
|
614 | 615 | |
|
615 | 616 | self.__profIndex += 1 |
|
616 | 617 | |
|
617 | 618 | return ndatadec, datadec |
|
618 | 619 | |
|
619 | 620 | |
|
620 | 621 | def convolutionInTime(self, data): |
|
621 | 622 | |
|
622 | 623 | nchannel, ndata = data.shape |
|
623 | 624 | newcode = self.code[self.__profIndex] |
|
624 | 625 | ndatadec = ndata - self.nBaud + 1 |
|
625 | 626 | |
|
626 | 627 | datadec = numpy.zeros((nchannel, ndatadec)) |
|
627 | 628 | |
|
628 | 629 | for i in range(nchannel): |
|
629 | 630 | datadec[i,:] = numpy.correlate(data[i,:], newcode) |
|
630 | 631 | |
|
631 | 632 | if self.__profIndex == self.nCode-1: |
|
632 | 633 | self.__profIndex = 0 |
|
633 | 634 | return ndatadec, datadec |
|
634 | 635 | |
|
635 | 636 | self.__profIndex += 1 |
|
636 | 637 | |
|
637 | 638 | return ndatadec, datadec |
|
638 | 639 | |
|
639 | 640 | def run(self, dataOut, code=None, mode = 0): |
|
640 | 641 | |
|
641 | 642 | if not self.__isConfig: |
|
642 | 643 | |
|
643 | 644 | if code == None: |
|
644 | 645 | code = dataOut.code |
|
645 | 646 | |
|
646 | 647 | self.setup(code) |
|
647 | 648 | self.__isConfig = True |
|
648 | 649 | |
|
649 | 650 | if mode == 0: |
|
650 | 651 | ndatadec, datadec = self.convolutionInFreq(dataOut.data) |
|
651 | 652 | |
|
652 | 653 | if mode == 1: |
|
653 | 654 | print "This function is not implemented" |
|
654 | 655 | # ndatadec, datadec = self.convolutionInTime(dataOut.data) |
|
655 | 656 | |
|
656 | 657 | dataOut.data = datadec |
|
657 | 658 | |
|
658 | 659 | dataOut.heightList = dataOut.heightList[0:ndatadec] |
|
659 | 660 | |
|
660 | 661 | dataOut.flagDecodeData = True #asumo q la data no esta decodificada |
|
661 | 662 | |
|
662 | 663 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
663 | 664 | |
|
664 | 665 | |
|
665 | 666 | class SpectraProc(ProcessingUnit): |
|
666 | 667 | |
|
667 | 668 | def __init__(self): |
|
668 | 669 | |
|
669 | 670 | self.objectDict = {} |
|
670 | 671 | self.buffer = None |
|
671 | 672 | self.firstdatatime = None |
|
672 | 673 | self.profIndex = 0 |
|
673 | 674 | self.dataOut = Spectra() |
|
674 | 675 | |
|
675 | 676 | def __updateObjFromInput(self): |
|
676 | 677 | |
|
677 | 678 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
678 | 679 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
679 | 680 | self.dataOut.channelList = self.dataIn.channelList |
|
680 | 681 | self.dataOut.heightList = self.dataIn.heightList |
|
681 | 682 | self.dataOut.dtype = self.dataIn.dtype |
|
682 | 683 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
683 | 684 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
684 | 685 | self.dataOut.nBaud = self.dataIn.nBaud |
|
685 | 686 | self.dataOut.nCode = self.dataIn.nCode |
|
686 | 687 | self.dataOut.code = self.dataIn.code |
|
687 | 688 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
688 | 689 | # self.dataOut.channelIndexList = self.dataIn.channelIndexList |
|
689 | 690 | self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock |
|
690 | 691 | self.dataOut.utctime = self.firstdatatime |
|
691 | 692 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
692 | 693 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
693 | 694 | self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT |
|
694 | 695 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
695 | 696 | self.dataOut.nIncohInt = 1 |
|
696 | 697 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
698 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
|
697 | 699 | |
|
698 | 700 | self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nFFTPoints*self.dataOut.nIncohInt |
|
699 | 701 | |
|
700 | 702 | def __getFft(self): |
|
701 | 703 | """ |
|
702 | 704 | Convierte valores de Voltaje a Spectra |
|
703 | 705 | |
|
704 | 706 | Affected: |
|
705 | 707 | self.dataOut.data_spc |
|
706 | 708 | self.dataOut.data_cspc |
|
707 | 709 | self.dataOut.data_dc |
|
708 | 710 | self.dataOut.heightList |
|
709 | 711 | self.profIndex |
|
710 | 712 | self.buffer |
|
711 | 713 | self.dataOut.flagNoData |
|
712 | 714 | """ |
|
713 | 715 | fft_volt = numpy.fft.fft(self.buffer,axis=1) |
|
714 | 716 | dc = fft_volt[:,0,:] |
|
715 | 717 | |
|
716 | 718 | #calculo de self-spectra |
|
717 | 719 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) |
|
718 | 720 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
719 | 721 | spc = spc.real |
|
720 | 722 | |
|
721 | 723 | blocksize = 0 |
|
722 | 724 | blocksize += dc.size |
|
723 | 725 | blocksize += spc.size |
|
724 | 726 | |
|
725 | 727 | cspc = None |
|
726 | 728 | pairIndex = 0 |
|
727 | 729 | if self.dataOut.pairsList != None: |
|
728 | 730 | #calculo de cross-spectra |
|
729 | 731 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
730 | 732 | for pair in self.dataOut.pairsList: |
|
731 | 733 | cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:]) |
|
732 | 734 | pairIndex += 1 |
|
733 | 735 | blocksize += cspc.size |
|
734 | 736 | |
|
735 | 737 | self.dataOut.data_spc = spc |
|
736 | 738 | self.dataOut.data_cspc = cspc |
|
737 | 739 | self.dataOut.data_dc = dc |
|
738 | 740 | self.dataOut.blockSize = blocksize |
|
739 | 741 | |
|
740 | 742 | def init(self, nFFTPoints=None, pairsList=None): |
|
741 | 743 | |
|
742 | 744 | self.dataOut.flagNoData = True |
|
743 | 745 | |
|
744 | 746 | if self.dataIn.type == "Spectra": |
|
745 | 747 | self.dataOut.copy(self.dataIn) |
|
746 | 748 | return |
|
747 | 749 | |
|
748 | 750 | if self.dataIn.type == "Voltage": |
|
749 | 751 | |
|
750 | 752 | if nFFTPoints == None: |
|
751 | 753 | raise ValueError, "This SpectraProc.init() need nFFTPoints input variable" |
|
752 | 754 | |
|
753 | 755 | if pairsList == None: |
|
754 | 756 | nPairs = 0 |
|
755 | 757 | else: |
|
756 | 758 | nPairs = len(pairsList) |
|
757 | 759 | |
|
758 | 760 | self.dataOut.nFFTPoints = nFFTPoints |
|
759 | 761 | self.dataOut.pairsList = pairsList |
|
760 | 762 | self.dataOut.nPairs = nPairs |
|
761 | 763 | |
|
762 | 764 | if self.buffer == None: |
|
763 | 765 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
764 | 766 | self.dataOut.nFFTPoints, |
|
765 | 767 | self.dataIn.nHeights), |
|
766 | 768 | dtype='complex') |
|
767 | 769 | |
|
768 | 770 | |
|
769 | 771 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() |
|
770 | 772 | self.profIndex += 1 |
|
771 | 773 | |
|
772 | 774 | if self.firstdatatime == None: |
|
773 | 775 | self.firstdatatime = self.dataIn.utctime |
|
774 | 776 | |
|
775 | 777 | if self.profIndex == self.dataOut.nFFTPoints: |
|
776 | 778 | self.__updateObjFromInput() |
|
777 | 779 | self.__getFft() |
|
778 | 780 | |
|
779 | 781 | self.dataOut.flagNoData = False |
|
780 | 782 | |
|
781 | 783 | self.buffer = None |
|
782 | 784 | self.firstdatatime = None |
|
783 | 785 | self.profIndex = 0 |
|
784 | 786 | |
|
785 | 787 | return |
|
786 | 788 | |
|
787 | 789 | raise ValuError, "The type object %s is not valid"%(self.dataIn.type) |
|
788 | 790 | |
|
789 | 791 | def selectChannels(self, channelList): |
|
790 | 792 | |
|
791 | 793 | channelIndexList = [] |
|
792 | 794 | |
|
793 | 795 | for channel in channelList: |
|
794 | 796 | index = self.dataOut.channelList.index(channel) |
|
795 | 797 | channelIndexList.append(index) |
|
796 | 798 | |
|
797 | 799 | self.selectChannelsByIndex(channelIndexList) |
|
798 | 800 | |
|
799 | 801 | def selectChannelsByIndex(self, channelIndexList): |
|
800 | 802 | """ |
|
801 | 803 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
802 | 804 | |
|
803 | 805 | Input: |
|
804 | 806 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
805 | 807 | |
|
806 | 808 | Affected: |
|
807 | 809 | self.dataOut.data_spc |
|
808 | 810 | self.dataOut.channelIndexList |
|
809 | 811 | self.dataOut.nChannels |
|
810 | 812 | |
|
811 | 813 | Return: |
|
812 | 814 | None |
|
813 | 815 | """ |
|
814 | 816 | |
|
815 | 817 | for channelIndex in channelIndexList: |
|
816 | 818 | if channelIndex not in self.dataOut.channelIndexList: |
|
817 | 819 | print channelIndexList |
|
818 | 820 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
819 | 821 | |
|
820 | 822 | nChannels = len(channelIndexList) |
|
821 | 823 | |
|
822 | 824 | data_spc = self.dataOut.data_spc[channelIndexList,:] |
|
823 | 825 | |
|
824 | 826 | self.dataOut.data_spc = data_spc |
|
825 | 827 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
826 | 828 | # self.dataOut.nChannels = nChannels |
|
827 | 829 | |
|
828 | 830 | return 1 |
|
829 | 831 | |
|
830 | 832 | |
|
831 | 833 | class IncohInt(Operation): |
|
832 | 834 | |
|
833 | 835 | |
|
834 | 836 | __profIndex = 0 |
|
835 | 837 | __withOverapping = False |
|
836 | 838 | |
|
837 | 839 | __byTime = False |
|
838 | 840 | __initime = None |
|
839 | 841 | __lastdatatime = None |
|
840 | 842 | __integrationtime = None |
|
841 | 843 | |
|
842 | 844 | __buffer_spc = None |
|
843 | 845 | __buffer_cspc = None |
|
844 | 846 | __buffer_dc = None |
|
845 | 847 | |
|
846 | 848 | __dataReady = False |
|
847 | 849 | |
|
848 | 850 | n = None |
|
849 | 851 | |
|
850 | 852 | |
|
851 | 853 | def __init__(self): |
|
852 | 854 | |
|
853 | 855 | self.__isConfig = False |
|
854 | 856 | |
|
855 | 857 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
856 | 858 | """ |
|
857 | 859 | Set the parameters of the integration class. |
|
858 | 860 | |
|
859 | 861 | Inputs: |
|
860 | 862 | |
|
861 | 863 | n : Number of coherent integrations |
|
862 | 864 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
863 | 865 | overlapping : |
|
864 | 866 | |
|
865 | 867 | """ |
|
866 | 868 | |
|
867 | 869 | self.__initime = None |
|
868 | 870 | self.__lastdatatime = 0 |
|
869 | 871 | self.__buffer_spc = None |
|
870 | 872 | self.__buffer_cspc = None |
|
871 | 873 | self.__buffer_dc = None |
|
872 | 874 | self.__dataReady = False |
|
873 | 875 | |
|
874 | 876 | |
|
875 | 877 | if n == None and timeInterval == None: |
|
876 | 878 | raise ValueError, "n or timeInterval should be specified ..." |
|
877 | 879 | |
|
878 | 880 | if n != None: |
|
879 | 881 | self.n = n |
|
880 | 882 | self.__byTime = False |
|
881 | 883 | else: |
|
882 | 884 | self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line |
|
883 | 885 | self.n = 9999 |
|
884 | 886 | self.__byTime = True |
|
885 | 887 | |
|
886 | 888 | if overlapping: |
|
887 | 889 | self.__withOverapping = True |
|
888 | 890 | else: |
|
889 | 891 | self.__withOverapping = False |
|
890 | 892 | self.__buffer_spc = 0 |
|
891 | 893 | self.__buffer_cspc = 0 |
|
892 | 894 | self.__buffer_dc = 0 |
|
893 | 895 | |
|
894 | 896 | self.__profIndex = 0 |
|
895 | 897 | |
|
896 | 898 | def putData(self, data_spc, data_cspc, data_dc): |
|
897 | 899 | |
|
898 | 900 | """ |
|
899 | 901 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
900 | 902 | |
|
901 | 903 | """ |
|
902 | 904 | |
|
903 | 905 | if not self.__withOverapping: |
|
904 | 906 | self.__buffer_spc += data_spc |
|
905 | 907 | |
|
906 | 908 | if data_cspc == None: |
|
907 | 909 | self.__buffer_cspc = None |
|
908 | 910 | else: |
|
909 | 911 | self.__buffer_cspc += data_cspc |
|
910 | 912 | |
|
911 | 913 | if data_dc == None: |
|
912 | 914 | self.__buffer_dc = None |
|
913 | 915 | else: |
|
914 | 916 | self.__buffer_dc += data_dc |
|
915 | 917 | |
|
916 | 918 | self.__profIndex += 1 |
|
917 | 919 | return |
|
918 | 920 | |
|
919 | 921 | #Overlapping data |
|
920 | 922 | nChannels, nFFTPoints, nHeis = data_spc.shape |
|
921 | 923 | data_spc = numpy.reshape(data_spc, (1, nChannels, nFFTPoints, nHeis)) |
|
922 | 924 | if data_cspc != None: |
|
923 | 925 | data_cspc = numpy.reshape(data_cspc, (1, -1, nFFTPoints, nHeis)) |
|
924 | 926 | if data_dc != None: |
|
925 | 927 | data_dc = numpy.reshape(data_dc, (1, -1, nHeis)) |
|
926 | 928 | |
|
927 | 929 | #If the buffer is empty then it takes the data value |
|
928 | 930 | if self.__buffer_spc == None: |
|
929 | 931 | self.__buffer_spc = data_spc |
|
930 | 932 | |
|
931 | 933 | if data_cspc == None: |
|
932 | 934 | self.__buffer_cspc = None |
|
933 | 935 | else: |
|
934 | 936 | self.__buffer_cspc += data_cspc |
|
935 | 937 | |
|
936 | 938 | if data_dc == None: |
|
937 | 939 | self.__buffer_dc = None |
|
938 | 940 | else: |
|
939 | 941 | self.__buffer_dc += data_dc |
|
940 | 942 | |
|
941 | 943 | self.__profIndex += 1 |
|
942 | 944 | return |
|
943 | 945 | |
|
944 | 946 | #If the buffer length is lower than n then stakcing the data value |
|
945 | 947 | if self.__profIndex < self.n: |
|
946 | 948 | self.__buffer_spc = numpy.vstack((self.__buffer_spc, data_spc)) |
|
947 | 949 | |
|
948 | 950 | if data_cspc != None: |
|
949 | 951 | self.__buffer_cspc = numpy.vstack((self.__buffer_cspc, data_cspc)) |
|
950 | 952 | |
|
951 | 953 | if data_dc != None: |
|
952 | 954 | self.__buffer_dc = numpy.vstack((self.__buffer_dc, data_dc)) |
|
953 | 955 | |
|
954 | 956 | self.__profIndex += 1 |
|
955 | 957 | return |
|
956 | 958 | |
|
957 | 959 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
958 | 960 | self.__buffer_spc = numpy.roll(self.__buffer_spc, -1, axis=0) |
|
959 | 961 | self.__buffer_spc[self.n-1] = data_spc |
|
960 | 962 | |
|
961 | 963 | if data_cspc != None: |
|
962 | 964 | self.__buffer_cspc = numpy.roll(self.__buffer_cspc, -1, axis=0) |
|
963 | 965 | self.__buffer_cspc[self.n-1] = data_cspc |
|
964 | 966 | |
|
965 | 967 | if data_dc != None: |
|
966 | 968 | self.__buffer_dc = numpy.roll(self.__buffer_dc, -1, axis=0) |
|
967 | 969 | self.__buffer_dc[self.n-1] = data_dc |
|
968 | 970 | |
|
969 | 971 | self.__profIndex = self.n |
|
970 | 972 | return |
|
971 | 973 | |
|
972 | 974 | |
|
973 | 975 | def pushData(self): |
|
974 | 976 | """ |
|
975 | 977 | Return the sum of the last profiles and the profiles used in the sum. |
|
976 | 978 | |
|
977 | 979 | Affected: |
|
978 | 980 | |
|
979 | 981 | self.__profileIndex |
|
980 | 982 | |
|
981 | 983 | """ |
|
982 | 984 | data_spc = None |
|
983 | 985 | data_cspc = None |
|
984 | 986 | data_dc = None |
|
985 | 987 | |
|
986 | 988 | if not self.__withOverapping: |
|
987 | 989 | data_spc = self.__buffer_spc |
|
988 | 990 | data_cspc = self.__buffer_cspc |
|
989 | 991 | data_dc = self.__buffer_dc |
|
990 | 992 | |
|
991 | 993 | n = self.__profIndex |
|
992 | 994 | |
|
993 | 995 | self.__buffer_spc = 0 |
|
994 | 996 | self.__buffer_cspc = 0 |
|
995 | 997 | self.__buffer_dc = 0 |
|
996 | 998 | self.__profIndex = 0 |
|
997 | 999 | |
|
998 | 1000 | return data_spc, data_cspc, data_dc, n |
|
999 | 1001 | |
|
1000 | 1002 | #Integration with Overlapping |
|
1001 | 1003 | data_spc = numpy.sum(self.__buffer_spc, axis=0) |
|
1002 | 1004 | |
|
1003 | 1005 | if self.__buffer_cspc != None: |
|
1004 | 1006 | data_cspc = numpy.sum(self.__buffer_cspc, axis=0) |
|
1005 | 1007 | |
|
1006 | 1008 | if self.__buffer_dc != None: |
|
1007 | 1009 | data_dc = numpy.sum(self.__buffer_dc, axis=0) |
|
1008 | 1010 | |
|
1009 | 1011 | n = self.__profIndex |
|
1010 | 1012 | |
|
1011 | 1013 | return data_spc, data_cspc, data_dc, n |
|
1012 | 1014 | |
|
1013 | 1015 | def byProfiles(self, *args): |
|
1014 | 1016 | |
|
1015 | 1017 | self.__dataReady = False |
|
1016 | 1018 | avgdata_spc = None |
|
1017 | 1019 | avgdata_cspc = None |
|
1018 | 1020 | avgdata_dc = None |
|
1019 | 1021 | n = None |
|
1020 | 1022 | |
|
1021 | 1023 | self.putData(*args) |
|
1022 | 1024 | |
|
1023 | 1025 | if self.__profIndex == self.n: |
|
1024 | 1026 | |
|
1025 | 1027 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1026 | 1028 | self.__dataReady = True |
|
1027 | 1029 | |
|
1028 | 1030 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1029 | 1031 | |
|
1030 | 1032 | def byTime(self, datatime, *args): |
|
1031 | 1033 | |
|
1032 | 1034 | self.__dataReady = False |
|
1033 | 1035 | avgdata_spc = None |
|
1034 | 1036 | avgdata_cspc = None |
|
1035 | 1037 | avgdata_dc = None |
|
1036 | 1038 | n = None |
|
1037 | 1039 | |
|
1038 | 1040 | self.putData(*args) |
|
1039 | 1041 | |
|
1040 | 1042 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1041 | 1043 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1042 | 1044 | self.n = n |
|
1043 | 1045 | self.__dataReady = True |
|
1044 | 1046 | |
|
1045 | 1047 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1046 | 1048 | |
|
1047 | 1049 | def integrate(self, datatime, *args): |
|
1048 | 1050 | |
|
1049 | 1051 | if self.__initime == None: |
|
1050 | 1052 | self.__initime = datatime |
|
1051 | 1053 | |
|
1052 | 1054 | if self.__byTime: |
|
1053 | 1055 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args) |
|
1054 | 1056 | else: |
|
1055 | 1057 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1056 | 1058 | |
|
1057 | 1059 | self.__lastdatatime = datatime |
|
1058 | 1060 | |
|
1059 | 1061 | if avgdata_spc == None: |
|
1060 | 1062 | return None, None, None, None |
|
1061 | 1063 | |
|
1062 | 1064 | avgdatatime = self.__initime |
|
1063 | 1065 | |
|
1064 | 1066 | deltatime = datatime -self.__lastdatatime |
|
1065 | 1067 | |
|
1066 | 1068 | if not self.__withOverapping: |
|
1067 | 1069 | self.__initime = datatime |
|
1068 | 1070 | else: |
|
1069 | 1071 | self.__initime += deltatime |
|
1070 | 1072 | |
|
1071 | 1073 | return avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1072 | 1074 | |
|
1073 | 1075 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1074 | 1076 | |
|
1075 | 1077 | if not self.__isConfig: |
|
1076 | 1078 | self.setup(n, timeInterval, overlapping) |
|
1077 | 1079 | self.__isConfig = True |
|
1078 | 1080 | |
|
1079 | 1081 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1080 | 1082 | dataOut.data_spc, |
|
1081 | 1083 | dataOut.data_cspc, |
|
1082 | 1084 | dataOut.data_dc) |
|
1083 | 1085 | |
|
1084 | 1086 | # dataOut.timeInterval *= n |
|
1085 | 1087 | dataOut.flagNoData = True |
|
1086 | 1088 | |
|
1087 | 1089 | if self.__dataReady: |
|
1088 | 1090 | |
|
1089 |
dataOut.data_spc = avgdata_spc |
|
|
1090 |
dataOut.data_cspc = avgdata_cspc |
|
|
1091 |
dataOut.data_dc = avgdata_dc |
|
|
1091 | dataOut.data_spc = avgdata_spc | |
|
1092 | dataOut.data_cspc = avgdata_cspc | |
|
1093 | dataOut.data_dc = avgdata_dc | |
|
1092 | 1094 | |
|
1093 | 1095 | dataOut.nIncohInt *= self.n |
|
1094 | 1096 | dataOut.utctime = avgdatatime |
|
1095 | 1097 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt * dataOut.nIncohInt * dataOut.nFFTPoints |
|
1096 | 1098 | dataOut.flagNoData = False |
|
1097 | 1099 | |
|
1098 | 1100 | class ProfileSelector(Operation): |
|
1099 | 1101 | |
|
1100 | 1102 | profileIndex = None |
|
1101 | 1103 | # Tamanho total de los perfiles |
|
1102 | 1104 | nProfiles = None |
|
1103 | 1105 | |
|
1104 | 1106 | def __init__(self): |
|
1105 | 1107 | |
|
1106 | 1108 | self.profileIndex = 0 |
|
1107 | 1109 | |
|
1108 | 1110 | def incIndex(self): |
|
1109 | 1111 | self.profileIndex += 1 |
|
1110 | 1112 | |
|
1111 | 1113 | if self.profileIndex >= self.nProfiles: |
|
1112 | 1114 | self.profileIndex = 0 |
|
1113 | 1115 | |
|
1114 | 1116 | def isProfileInRange(self, minIndex, maxIndex): |
|
1115 | 1117 | |
|
1116 | 1118 | if self.profileIndex < minIndex: |
|
1117 | 1119 | return False |
|
1118 | 1120 | |
|
1119 | 1121 | if self.profileIndex > maxIndex: |
|
1120 | 1122 | return False |
|
1121 | 1123 | |
|
1122 | 1124 | return True |
|
1123 | 1125 | |
|
1124 | 1126 | def isProfileInList(self, profileList): |
|
1125 | 1127 | |
|
1126 | 1128 | if self.profileIndex not in profileList: |
|
1127 | 1129 | return False |
|
1128 | 1130 | |
|
1129 | 1131 | return True |
|
1130 | 1132 | |
|
1131 | 1133 | def run(self, dataOut, profileList=None, profileRangeList=None): |
|
1132 | 1134 | |
|
1133 | 1135 | dataOut.flagNoData = True |
|
1134 | 1136 | self.nProfiles = dataOut.nProfiles |
|
1135 | 1137 | |
|
1136 | 1138 | if profileList != None: |
|
1137 | 1139 | if self.isProfileInList(profileList): |
|
1138 | 1140 | dataOut.flagNoData = False |
|
1139 | 1141 | |
|
1140 | 1142 | self.incIndex() |
|
1141 | 1143 | return 1 |
|
1142 | 1144 | |
|
1143 | 1145 | |
|
1144 | 1146 | elif profileRangeList != None: |
|
1145 | 1147 | minIndex = profileRangeList[0] |
|
1146 | 1148 | maxIndex = profileRangeList[1] |
|
1147 | 1149 | if self.isProfileInRange(minIndex, maxIndex): |
|
1148 | 1150 | dataOut.flagNoData = False |
|
1149 | 1151 | |
|
1150 | 1152 | self.incIndex() |
|
1151 | 1153 | return 1 |
|
1152 | 1154 | |
|
1153 | 1155 | else: |
|
1154 | 1156 | raise ValueError, "ProfileSelector needs profileList or profileRangeList" |
|
1155 | 1157 | |
|
1156 | 1158 | return 0 |
|
1157 | 1159 |
General Comments 0
You need to be logged in to leave comments.
Login now