@@ -1,396 +1,401 | |||||
1 | import os |
|
1 | import os | |
2 | import numpy |
|
2 | import numpy | |
3 | import time, datetime |
|
3 | import time, datetime | |
4 | import mpldriver |
|
4 | import mpldriver | |
5 |
|
5 | |||
6 |
|
6 | |||
7 | class Figure: |
|
7 | class Figure: | |
8 |
|
8 | |||
9 | __driver = mpldriver |
|
9 | __driver = mpldriver | |
10 | fig = None |
|
10 | fig = None | |
11 |
|
11 | |||
12 | idfigure = None |
|
12 | idfigure = None | |
13 | wintitle = None |
|
13 | wintitle = None | |
14 | width = None |
|
14 | width = None | |
15 | height = None |
|
15 | height = None | |
16 | nplots = None |
|
16 | nplots = None | |
17 | timerange = None |
|
17 | timerange = None | |
18 |
|
18 | |||
19 | axesObjList = [] |
|
19 | axesObjList = [] | |
20 |
|
20 | |||
21 | WIDTH = None |
|
21 | WIDTH = None | |
22 | HEIGHT = None |
|
22 | HEIGHT = None | |
23 | PREFIX = 'fig' |
|
23 | PREFIX = 'fig' | |
24 |
|
24 | |||
25 | def __init__(self): |
|
25 | def __init__(self): | |
26 |
|
26 | |||
27 | raise ValueError, "This method is not implemented" |
|
27 | raise ValueError, "This method is not implemented" | |
28 |
|
28 | |||
29 | def __del__(self): |
|
29 | def __del__(self): | |
30 |
|
30 | |||
31 | self.__driver.closeFigure() |
|
31 | self.__driver.closeFigure() | |
32 |
|
32 | |||
33 | def getFilename(self, name, ext='.png'): |
|
33 | def getFilename(self, name, ext='.png'): | |
34 |
|
34 | |||
35 | filename = '%s-%s_%s%s' %(self.wintitle[0:10], self.PREFIX, name, ext) |
|
35 | filename = '%s-%s_%s%s' %(self.wintitle[0:10], self.PREFIX, name, ext) | |
36 |
|
36 | |||
37 | return filename |
|
37 | return filename | |
38 |
|
38 | |||
39 | def getAxesObjList(self): |
|
39 | def getAxesObjList(self): | |
40 |
|
40 | |||
41 | return self.axesObjList |
|
41 | return self.axesObjList | |
42 |
|
42 | |||
43 | def getSubplots(self): |
|
43 | def getSubplots(self): | |
44 |
|
44 | |||
45 | raise ValueError, "Abstract method: This method should be defined" |
|
45 | raise ValueError, "Abstract method: This method should be defined" | |
46 |
|
46 | |||
47 | def getScreenDim(self, widthplot, heightplot): |
|
47 | def getScreenDim(self, widthplot, heightplot): | |
48 |
|
48 | |||
49 | nrow, ncol = self.getSubplots() |
|
49 | nrow, ncol = self.getSubplots() | |
50 |
|
50 | |||
51 | widthscreen = widthplot*ncol |
|
51 | widthscreen = widthplot*ncol | |
52 | heightscreen = heightplot*nrow |
|
52 | heightscreen = heightplot*nrow | |
53 |
|
53 | |||
54 | return widthscreen, heightscreen |
|
54 | return widthscreen, heightscreen | |
55 |
|
55 | |||
56 | def getTimeLim(self, x, xmin, xmax): |
|
56 | def getTimeLim(self, x, xmin, xmax): | |
57 |
|
57 | |||
58 | thisdatetime = datetime.datetime.fromtimestamp(numpy.min(x)) |
|
58 | thisdatetime = datetime.datetime.fromtimestamp(numpy.min(x)) | |
59 | thisdate = datetime.datetime.combine(thisdatetime.date(), datetime.time(0,0,0)) |
|
59 | thisdate = datetime.datetime.combine(thisdatetime.date(), datetime.time(0,0,0)) | |
60 |
|
60 | |||
61 | #################################################### |
|
61 | #################################################### | |
62 | #If the x is out of xrange |
|
62 | #If the x is out of xrange | |
63 | if xmax < (thisdatetime - thisdate).seconds/(60*60.): |
|
63 | if xmax < (thisdatetime - thisdate).seconds/(60*60.): | |
64 | xmin = None |
|
64 | xmin = None | |
65 | xmax = None |
|
65 | xmax = None | |
66 |
|
66 | |||
67 | if xmin == None: |
|
67 | if xmin == None: | |
68 | td = thisdatetime - thisdate |
|
68 | td = thisdatetime - thisdate | |
69 | xmin = td.seconds/(60*60.) |
|
69 | xmin = td.seconds/(60*60.) | |
70 |
|
70 | |||
71 | if xmax == None: |
|
71 | if xmax == None: | |
72 | xmax = xmin + self.timerange/(60*60.) |
|
72 | xmax = xmin + self.timerange/(60*60.) | |
73 |
|
73 | |||
74 | mindt = thisdate + datetime.timedelta(0,0,0,0,0, xmin) |
|
74 | mindt = thisdate + datetime.timedelta(0,0,0,0,0, xmin) | |
75 | tmin = time.mktime(mindt.timetuple()) |
|
75 | tmin = time.mktime(mindt.timetuple()) | |
76 |
|
76 | |||
77 | maxdt = thisdate + datetime.timedelta(0,0,0,0,0, xmax) |
|
77 | maxdt = thisdate + datetime.timedelta(0,0,0,0,0, xmax) | |
78 | tmax = time.mktime(maxdt.timetuple()) |
|
78 | tmax = time.mktime(maxdt.timetuple()) | |
79 |
|
79 | |||
80 | self.timerange = tmax - tmin |
|
80 | self.timerange = tmax - tmin | |
81 |
|
81 | |||
82 | return tmin, tmax |
|
82 | return tmin, tmax | |
83 |
|
83 | |||
84 | def init(self, idfigure, nplots, wintitle): |
|
84 | def init(self, idfigure, nplots, wintitle): | |
85 |
|
85 | |||
86 | raise ValueError, "This method has been replaced with createFigure" |
|
86 | raise ValueError, "This method has been replaced with createFigure" | |
87 |
|
87 | |||
88 | def createFigure(self, idfigure, wintitle, widthplot=None, heightplot=None): |
|
88 | def createFigure(self, idfigure, wintitle, widthplot=None, heightplot=None): | |
89 |
|
89 | |||
90 | """ |
|
90 | """ | |
91 | Crea la figura de acuerdo al driver y parametros seleccionados seleccionados. |
|
91 | Crea la figura de acuerdo al driver y parametros seleccionados seleccionados. | |
92 | Las dimensiones de la pantalla es calculada a partir de los atributos self.WIDTH |
|
92 | Las dimensiones de la pantalla es calculada a partir de los atributos self.WIDTH | |
93 | y self.HEIGHT y el numero de subplots (nrow, ncol) |
|
93 | y self.HEIGHT y el numero de subplots (nrow, ncol) | |
94 |
|
94 | |||
95 | Input: |
|
95 | Input: | |
96 | idfigure : Los parametros necesarios son |
|
96 | idfigure : Los parametros necesarios son | |
97 | wintitle : |
|
97 | wintitle : | |
98 |
|
98 | |||
99 | """ |
|
99 | """ | |
100 |
|
100 | |||
101 | if widthplot == None: |
|
101 | if widthplot == None: | |
102 | widthplot = self.WIDTH |
|
102 | widthplot = self.WIDTH | |
103 |
|
103 | |||
104 | if heightplot == None: |
|
104 | if heightplot == None: | |
105 | heightplot = self.HEIGHT |
|
105 | heightplot = self.HEIGHT | |
106 |
|
106 | |||
107 | self.idfigure = idfigure |
|
107 | self.idfigure = idfigure | |
108 |
|
108 | |||
109 | self.wintitle = wintitle |
|
109 | self.wintitle = wintitle | |
110 |
|
110 | |||
111 | self.widthscreen, self.heightscreen = self.getScreenDim(widthplot, heightplot) |
|
111 | self.widthscreen, self.heightscreen = self.getScreenDim(widthplot, heightplot) | |
112 |
|
112 | |||
113 | self.fig = self.__driver.createFigure(self.idfigure, |
|
113 | self.fig = self.__driver.createFigure(self.idfigure, | |
114 | self.wintitle, |
|
114 | self.wintitle, | |
115 | self.widthscreen, |
|
115 | self.widthscreen, | |
116 | self.heightscreen) |
|
116 | self.heightscreen) | |
117 |
|
117 | |||
118 | self.axesObjList = [] |
|
118 | self.axesObjList = [] | |
119 |
|
119 | |||
120 | def setDriver(self, driver=mpldriver): |
|
120 | def setDriver(self, driver=mpldriver): | |
121 |
|
121 | |||
122 | self.__driver = driver |
|
122 | self.__driver = driver | |
123 |
|
123 | |||
124 | def setTitle(self, title): |
|
124 | def setTitle(self, title): | |
125 |
|
125 | |||
126 | self.__driver.setTitle(self.fig, title) |
|
126 | self.__driver.setTitle(self.fig, title) | |
127 |
|
127 | |||
128 | def setWinTitle(self, title): |
|
128 | def setWinTitle(self, title): | |
129 |
|
129 | |||
130 | self.__driver.setWinTitle(self.fig, title=title) |
|
130 | self.__driver.setWinTitle(self.fig, title=title) | |
131 |
|
131 | |||
132 | def setTextFromAxes(self, text): |
|
132 | def setTextFromAxes(self, text): | |
133 |
|
133 | |||
134 | raise ValueError, "Este metodo ha sido reemplazaado con el metodo setText de la clase Axes" |
|
134 | raise ValueError, "Este metodo ha sido reemplazaado con el metodo setText de la clase Axes" | |
135 |
|
135 | |||
136 | def makeAxes(self, nrow, ncol, xpos, ypos, colspan, rowspan): |
|
136 | def makeAxes(self, nrow, ncol, xpos, ypos, colspan, rowspan): | |
137 |
|
137 | |||
138 | raise ValueError, "Este metodo ha sido reemplazaado con el metodo addAxes" |
|
138 | raise ValueError, "Este metodo ha sido reemplazaado con el metodo addAxes" | |
139 |
|
139 | |||
140 | def addAxes(self, *args): |
|
140 | def addAxes(self, *args): | |
141 | """ |
|
141 | """ | |
142 |
|
142 | |||
143 | Input: |
|
143 | Input: | |
144 | *args : Los parametros necesarios son |
|
144 | *args : Los parametros necesarios son | |
145 | nrow, ncol, xpos, ypos, colspan, rowspan |
|
145 | nrow, ncol, xpos, ypos, colspan, rowspan | |
146 | """ |
|
146 | """ | |
147 |
|
147 | |||
148 | axesObj = Axes(self.fig, *args) |
|
148 | axesObj = Axes(self.fig, *args) | |
149 | self.axesObjList.append(axesObj) |
|
149 | self.axesObjList.append(axesObj) | |
150 |
|
150 | |||
151 | def saveFigure(self, figpath, figfile, *args): |
|
151 | def saveFigure(self, figpath, figfile, *args): | |
152 |
|
152 | |||
153 | filename = os.path.join(figpath, figfile) |
|
153 | filename = os.path.join(figpath, figfile) | |
154 | self.__driver.saveFigure(self.fig, filename, *args) |
|
154 | self.__driver.saveFigure(self.fig, filename, *args) | |
155 |
|
155 | |||
156 | def draw(self): |
|
156 | def draw(self): | |
157 |
|
157 | |||
158 | self.__driver.draw(self.fig) |
|
158 | self.__driver.draw(self.fig) | |
159 |
|
159 | |||
160 | def run(self): |
|
160 | def run(self): | |
161 |
|
161 | |||
162 | raise ValueError, "This method is not implemented" |
|
162 | raise ValueError, "This method is not implemented" | |
163 |
|
163 | |||
164 | axesList = property(getAxesObjList) |
|
164 | axesList = property(getAxesObjList) | |
165 |
|
165 | |||
166 |
|
166 | |||
167 | class Axes: |
|
167 | class Axes: | |
168 |
|
168 | |||
169 | __driver = mpldriver |
|
169 | __driver = mpldriver | |
170 | fig = None |
|
170 | fig = None | |
171 | ax = None |
|
171 | ax = None | |
172 | plot = None |
|
172 | plot = None | |
173 |
|
173 | |||
174 | __firsttime = None |
|
174 | __firsttime = None | |
175 |
|
175 | |||
176 | __showprofile = False |
|
176 | __showprofile = False | |
177 |
|
177 | |||
178 | xmin = None |
|
178 | xmin = None | |
179 | xmax = None |
|
179 | xmax = None | |
180 | ymin = None |
|
180 | ymin = None | |
181 | ymax = None |
|
181 | ymax = None | |
182 | zmin = None |
|
182 | zmin = None | |
183 | zmax = None |
|
183 | zmax = None | |
184 |
|
184 | |||
185 | def __init__(self, *args): |
|
185 | def __init__(self, *args): | |
186 |
|
186 | |||
187 | """ |
|
187 | """ | |
188 |
|
188 | |||
189 | Input: |
|
189 | Input: | |
190 | *args : Los parametros necesarios son |
|
190 | *args : Los parametros necesarios son | |
191 | fig, nrow, ncol, xpos, ypos, colspan, rowspan |
|
191 | fig, nrow, ncol, xpos, ypos, colspan, rowspan | |
192 | """ |
|
192 | """ | |
193 |
|
193 | |||
194 | ax = self.__driver.createAxes(*args) |
|
194 | ax = self.__driver.createAxes(*args) | |
195 | self.fig = args[0] |
|
195 | self.fig = args[0] | |
196 | self.ax = ax |
|
196 | self.ax = ax | |
197 | self.plot = None |
|
197 | self.plot = None | |
198 |
|
198 | |||
199 | self.__firsttime = True |
|
199 | self.__firsttime = True | |
200 | self.idlineList = [] |
|
200 | self.idlineList = [] | |
201 |
|
201 | |||
202 | def setText(self, text): |
|
202 | def setText(self, text): | |
203 |
|
203 | |||
204 | self.__driver.setAxesText(self.ax, text) |
|
204 | self.__driver.setAxesText(self.ax, text) | |
205 |
|
205 | |||
206 | def setXAxisAsTime(self): |
|
206 | def setXAxisAsTime(self): | |
207 | pass |
|
207 | pass | |
208 |
|
208 | |||
209 | def pline(self, x, y, |
|
209 | def pline(self, x, y, | |
210 | xmin=None, xmax=None, |
|
210 | xmin=None, xmax=None, | |
211 | ymin=None, ymax=None, |
|
211 | ymin=None, ymax=None, | |
212 | xlabel='', ylabel='', |
|
212 | xlabel='', ylabel='', | |
213 | title='', |
|
213 | title='', | |
214 | **kwargs): |
|
214 | **kwargs): | |
215 |
|
215 | |||
216 | """ |
|
216 | """ | |
217 |
|
217 | |||
218 | Input: |
|
218 | Input: | |
219 | x : |
|
219 | x : | |
220 | y : |
|
220 | y : | |
221 | xmin : |
|
221 | xmin : | |
222 | xmax : |
|
222 | xmax : | |
223 | ymin : |
|
223 | ymin : | |
224 | ymax : |
|
224 | ymax : | |
225 | xlabel : |
|
225 | xlabel : | |
226 | ylabel : |
|
226 | ylabel : | |
227 | title : |
|
227 | title : | |
228 | **kwargs : Los parametros aceptados son |
|
228 | **kwargs : Los parametros aceptados son | |
229 |
|
229 | |||
230 | ticksize |
|
230 | ticksize | |
231 | ytick_visible |
|
231 | ytick_visible | |
232 | """ |
|
232 | """ | |
233 |
|
233 | |||
234 | if self.__firsttime: |
|
234 | if self.__firsttime: | |
235 |
|
235 | |||
236 | if xmin == None: xmin = numpy.nanmin(x) |
|
236 | if xmin == None: xmin = numpy.nanmin(x) | |
237 | if xmax == None: xmax = numpy.nanmax(x) |
|
237 | if xmax == None: xmax = numpy.nanmax(x) | |
238 | if ymin == None: ymin = numpy.nanmin(y) |
|
238 | if ymin == None: ymin = numpy.nanmin(y) | |
239 | if ymax == None: ymax = numpy.nanmax(y) |
|
239 | if ymax == None: ymax = numpy.nanmax(y) | |
240 |
|
240 | |||
241 | self.plot = self.__driver.createPline(self.ax, x, y, |
|
241 | self.plot = self.__driver.createPline(self.ax, x, y, | |
242 | xmin, xmax, |
|
242 | xmin, xmax, | |
243 | ymin, ymax, |
|
243 | ymin, ymax, | |
244 | xlabel=xlabel, |
|
244 | xlabel=xlabel, | |
245 | ylabel=ylabel, |
|
245 | ylabel=ylabel, | |
246 | title=title, |
|
246 | title=title, | |
247 | **kwargs) |
|
247 | **kwargs) | |
248 |
|
248 | |||
249 | self.idlineList.append(0) |
|
249 | self.idlineList.append(0) | |
250 | self.__firsttime = False |
|
250 | self.__firsttime = False | |
251 | return |
|
251 | return | |
252 |
|
252 | |||
253 | self.__driver.pline(self.plot, x, y, xlabel=xlabel, |
|
253 | self.__driver.pline(self.plot, x, y, xlabel=xlabel, | |
254 | ylabel=ylabel, |
|
254 | ylabel=ylabel, | |
255 | title=title) |
|
255 | title=title) | |
256 |
|
256 | |||
257 | def addpline(self, x, y, idline, **kwargs): |
|
257 | def addpline(self, x, y, idline, **kwargs): | |
258 | lines = self.ax.lines |
|
258 | lines = self.ax.lines | |
259 |
|
259 | |||
260 | if idline in self.idlineList: |
|
260 | if idline in self.idlineList: | |
261 | self.__driver.set_linedata(self.ax, x, y, idline) |
|
261 | self.__driver.set_linedata(self.ax, x, y, idline) | |
262 |
|
262 | |||
263 | if idline not in(self.idlineList): |
|
263 | if idline not in(self.idlineList): | |
264 | self.__driver.addpline(self.ax, x, y, **kwargs) |
|
264 | self.__driver.addpline(self.ax, x, y, **kwargs) | |
265 | self.idlineList.append(idline) |
|
265 | self.idlineList.append(idline) | |
266 |
|
266 | |||
267 | return |
|
267 | return | |
268 |
|
268 | |||
269 | def pmultiline(self, x, y, |
|
269 | def pmultiline(self, x, y, | |
270 | xmin=None, xmax=None, |
|
270 | xmin=None, xmax=None, | |
271 | ymin=None, ymax=None, |
|
271 | ymin=None, ymax=None, | |
272 | xlabel='', ylabel='', |
|
272 | xlabel='', ylabel='', | |
273 | title='', |
|
273 | title='', | |
274 | **kwargs): |
|
274 | **kwargs): | |
275 |
|
275 | |||
276 | if self.__firsttime: |
|
276 | if self.__firsttime: | |
277 |
|
277 | |||
278 | if xmin == None: xmin = numpy.nanmin(x) |
|
278 | if xmin == None: xmin = numpy.nanmin(x) | |
279 | if xmax == None: xmax = numpy.nanmax(x) |
|
279 | if xmax == None: xmax = numpy.nanmax(x) | |
280 | if ymin == None: ymin = numpy.nanmin(y) |
|
280 | if ymin == None: ymin = numpy.nanmin(y) | |
281 | if ymax == None: ymax = numpy.nanmax(y) |
|
281 | if ymax == None: ymax = numpy.nanmax(y) | |
282 |
|
282 | |||
283 | self.plot = self.__driver.createPmultiline(self.ax, x, y, |
|
283 | self.plot = self.__driver.createPmultiline(self.ax, x, y, | |
284 | xmin, xmax, |
|
284 | xmin, xmax, | |
285 | ymin, ymax, |
|
285 | ymin, ymax, | |
286 | xlabel=xlabel, |
|
286 | xlabel=xlabel, | |
287 | ylabel=ylabel, |
|
287 | ylabel=ylabel, | |
288 | title=title, |
|
288 | title=title, | |
289 | **kwargs) |
|
289 | **kwargs) | |
290 | self.__firsttime = False |
|
290 | self.__firsttime = False | |
291 | return |
|
291 | return | |
292 |
|
292 | |||
293 | self.__driver.pmultiline(self.plot, x, y, xlabel=xlabel, |
|
293 | self.__driver.pmultiline(self.plot, x, y, xlabel=xlabel, | |
294 | ylabel=ylabel, |
|
294 | ylabel=ylabel, | |
295 | title=title) |
|
295 | title=title) | |
296 |
|
296 | |||
297 | def pmultilineyaxis(self, x, y, |
|
297 | def pmultilineyaxis(self, x, y, | |
298 | xmin=None, xmax=None, |
|
298 | xmin=None, xmax=None, | |
299 | ymin=None, ymax=None, |
|
299 | ymin=None, ymax=None, | |
300 | xlabel='', ylabel='', |
|
300 | xlabel='', ylabel='', | |
301 | title='', |
|
301 | title='', | |
302 | **kwargs): |
|
302 | **kwargs): | |
303 |
|
303 | |||
304 | if self.__firsttime: |
|
304 | if self.__firsttime: | |
305 |
|
305 | |||
306 | if xmin == None: xmin = numpy.nanmin(x) |
|
306 | if xmin == None: xmin = numpy.nanmin(x) | |
307 | if xmax == None: xmax = numpy.nanmax(x) |
|
307 | if xmax == None: xmax = numpy.nanmax(x) | |
308 | if ymin == None: ymin = numpy.nanmin(y) |
|
308 | if ymin == None: ymin = numpy.nanmin(y) | |
309 | if ymax == None: ymax = numpy.nanmax(y) |
|
309 | if ymax == None: ymax = numpy.nanmax(y) | |
310 |
|
310 | |||
311 | self.plot = self.__driver.createPmultilineYAxis(self.ax, x, y, |
|
311 | self.plot = self.__driver.createPmultilineYAxis(self.ax, x, y, | |
312 | xmin, xmax, |
|
312 | xmin, xmax, | |
313 | ymin, ymax, |
|
313 | ymin, ymax, | |
314 | xlabel=xlabel, |
|
314 | xlabel=xlabel, | |
315 | ylabel=ylabel, |
|
315 | ylabel=ylabel, | |
316 | title=title, |
|
316 | title=title, | |
317 | **kwargs) |
|
317 | **kwargs) | |
|
318 | if self.xmin == None: self.xmin = xmin | |||
|
319 | if self.xmax == None: self.xmax = xmax | |||
|
320 | if self.ymin == None: self.ymin = ymin | |||
|
321 | if self.ymax == None: self.ymax = ymax | |||
|
322 | ||||
318 | self.__firsttime = False |
|
323 | self.__firsttime = False | |
319 | return |
|
324 | return | |
320 |
|
325 | |||
321 | self.__driver.pmultilineyaxis(self.plot, x, y, xlabel=xlabel, |
|
326 | self.__driver.pmultilineyaxis(self.plot, x, y, xlabel=xlabel, | |
322 | ylabel=ylabel, |
|
327 | ylabel=ylabel, | |
323 | title=title) |
|
328 | title=title) | |
324 |
|
329 | |||
325 | def pcolor(self, x, y, z, |
|
330 | def pcolor(self, x, y, z, | |
326 | xmin=None, xmax=None, |
|
331 | xmin=None, xmax=None, | |
327 | ymin=None, ymax=None, |
|
332 | ymin=None, ymax=None, | |
328 | zmin=None, zmax=None, |
|
333 | zmin=None, zmax=None, | |
329 | xlabel='', ylabel='', |
|
334 | xlabel='', ylabel='', | |
330 | title='', rti = False, colormap='jet', |
|
335 | title='', rti = False, colormap='jet', | |
331 | **kwargs): |
|
336 | **kwargs): | |
332 |
|
337 | |||
333 | """ |
|
338 | """ | |
334 | Input: |
|
339 | Input: | |
335 | x : |
|
340 | x : | |
336 | y : |
|
341 | y : | |
337 | x : |
|
342 | x : | |
338 | xmin : |
|
343 | xmin : | |
339 | xmax : |
|
344 | xmax : | |
340 | ymin : |
|
345 | ymin : | |
341 | ymax : |
|
346 | ymax : | |
342 | zmin : |
|
347 | zmin : | |
343 | zmax : |
|
348 | zmax : | |
344 | xlabel : |
|
349 | xlabel : | |
345 | ylabel : |
|
350 | ylabel : | |
346 | title : |
|
351 | title : | |
347 | **kwargs : Los parametros aceptados son |
|
352 | **kwargs : Los parametros aceptados son | |
348 | ticksize=9, |
|
353 | ticksize=9, | |
349 | cblabel='' |
|
354 | cblabel='' | |
350 | rti = True or False |
|
355 | rti = True or False | |
351 | """ |
|
356 | """ | |
352 |
|
357 | |||
353 | if self.__firsttime: |
|
358 | if self.__firsttime: | |
354 |
|
359 | |||
355 | if xmin == None: xmin = numpy.nanmin(x) |
|
360 | if xmin == None: xmin = numpy.nanmin(x) | |
356 | if xmax == None: xmax = numpy.nanmax(x) |
|
361 | if xmax == None: xmax = numpy.nanmax(x) | |
357 | if ymin == None: ymin = numpy.nanmin(y) |
|
362 | if ymin == None: ymin = numpy.nanmin(y) | |
358 | if ymax == None: ymax = numpy.nanmax(y) |
|
363 | if ymax == None: ymax = numpy.nanmax(y) | |
359 | if zmin == None: zmin = numpy.nanmin(z) |
|
364 | if zmin == None: zmin = numpy.nanmin(z) | |
360 | if zmax == None: zmax = numpy.nanmax(z) |
|
365 | if zmax == None: zmax = numpy.nanmax(z) | |
361 |
|
366 | |||
362 |
|
367 | |||
363 | self.plot = self.__driver.createPcolor(self.ax, x, y, z, |
|
368 | self.plot = self.__driver.createPcolor(self.ax, x, y, z, | |
364 | xmin, xmax, |
|
369 | xmin, xmax, | |
365 | ymin, ymax, |
|
370 | ymin, ymax, | |
366 | zmin, zmax, |
|
371 | zmin, zmax, | |
367 | xlabel=xlabel, |
|
372 | xlabel=xlabel, | |
368 | ylabel=ylabel, |
|
373 | ylabel=ylabel, | |
369 | title=title, |
|
374 | title=title, | |
370 | colormap=colormap, |
|
375 | colormap=colormap, | |
371 | **kwargs) |
|
376 | **kwargs) | |
372 |
|
377 | |||
373 | if self.xmin == None: self.xmin = xmin |
|
378 | if self.xmin == None: self.xmin = xmin | |
374 | if self.xmax == None: self.xmax = xmax |
|
379 | if self.xmax == None: self.xmax = xmax | |
375 | if self.ymin == None: self.ymin = ymin |
|
380 | if self.ymin == None: self.ymin = ymin | |
376 | if self.ymax == None: self.ymax = ymax |
|
381 | if self.ymax == None: self.ymax = ymax | |
377 | if self.zmin == None: self.zmin = zmin |
|
382 | if self.zmin == None: self.zmin = zmin | |
378 | if self.zmax == None: self.zmax = zmax |
|
383 | if self.zmax == None: self.zmax = zmax | |
379 |
|
384 | |||
380 | self.__firsttime = False |
|
385 | self.__firsttime = False | |
381 | return |
|
386 | return | |
382 |
|
387 | |||
383 | if rti: |
|
388 | if rti: | |
384 | self.__driver.addpcolor(self.ax, x, y, z, self.zmin, self.zmax, |
|
389 | self.__driver.addpcolor(self.ax, x, y, z, self.zmin, self.zmax, | |
385 | xlabel=xlabel, |
|
390 | xlabel=xlabel, | |
386 | ylabel=ylabel, |
|
391 | ylabel=ylabel, | |
387 | title=title, |
|
392 | title=title, | |
388 | colormap=colormap) |
|
393 | colormap=colormap) | |
389 | return |
|
394 | return | |
390 |
|
395 | |||
391 | self.__driver.pcolor(self.plot, z, |
|
396 | self.__driver.pcolor(self.plot, z, | |
392 | xlabel=xlabel, |
|
397 | xlabel=xlabel, | |
393 | ylabel=ylabel, |
|
398 | ylabel=ylabel, | |
394 | title=title) |
|
399 | title=title) | |
395 |
|
400 | |||
396 | No newline at end of file |
|
401 |
@@ -1,366 +1,370 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import datetime |
|
2 | import datetime | |
|
3 | import sys | |||
3 | import matplotlib |
|
4 | import matplotlib | |
|
5 | if sys.platform == 'linux': | |||
4 | matplotlib.use("GTKAgg") |
|
6 | matplotlib.use("GTKAgg") | |
|
7 | if sys.platform == 'darwin': | |||
|
8 | matplotlib.use("TKAgg") | |||
5 | import matplotlib.pyplot |
|
9 | import matplotlib.pyplot | |
6 | import matplotlib.dates |
|
10 | import matplotlib.dates | |
7 | #import scitools.numpyutils |
|
11 | #import scitools.numpyutils | |
8 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
12 | from mpl_toolkits.axes_grid1 import make_axes_locatable | |
9 |
|
13 | |||
10 | from matplotlib.dates import DayLocator, HourLocator, MinuteLocator, SecondLocator, DateFormatter |
|
14 | from matplotlib.dates import DayLocator, HourLocator, MinuteLocator, SecondLocator, DateFormatter | |
11 | from matplotlib.ticker import FuncFormatter |
|
15 | from matplotlib.ticker import FuncFormatter | |
12 | from matplotlib.ticker import * |
|
16 | from matplotlib.ticker import * | |
13 |
|
17 | |||
14 | ########################################### |
|
18 | ########################################### | |
15 | #Actualizacion de las funciones del driver |
|
19 | #Actualizacion de las funciones del driver | |
16 | ########################################### |
|
20 | ########################################### | |
17 |
|
21 | |||
18 | def createFigure(idfigure, wintitle, width, height, facecolor="w"): |
|
22 | def createFigure(idfigure, wintitle, width, height, facecolor="w"): | |
19 |
|
23 | |||
20 | matplotlib.pyplot.ioff() |
|
24 | matplotlib.pyplot.ioff() | |
21 | fig = matplotlib.pyplot.figure(num=idfigure, facecolor=facecolor) |
|
25 | fig = matplotlib.pyplot.figure(num=idfigure, facecolor=facecolor) | |
22 | fig.canvas.manager.set_window_title(wintitle) |
|
26 | fig.canvas.manager.set_window_title(wintitle) | |
23 | fig.canvas.manager.resize(width, height) |
|
27 | fig.canvas.manager.resize(width, height) | |
24 | matplotlib.pyplot.ion() |
|
28 | matplotlib.pyplot.ion() | |
25 | matplotlib.pyplot.show() |
|
29 | matplotlib.pyplot.show() | |
26 |
|
30 | |||
27 | return fig |
|
31 | return fig | |
28 |
|
32 | |||
29 | def closeFigure(): |
|
33 | def closeFigure(): | |
30 |
|
34 | |||
31 | matplotlib.pyplot.ioff() |
|
35 | matplotlib.pyplot.ioff() | |
32 | matplotlib.pyplot.show() |
|
36 | matplotlib.pyplot.show() | |
33 |
|
37 | |||
34 | return |
|
38 | return | |
35 |
|
39 | |||
36 | def saveFigure(fig, filename): |
|
40 | def saveFigure(fig, filename): | |
37 |
|
41 | |||
38 | matplotlib.pyplot.ioff() |
|
42 | matplotlib.pyplot.ioff() | |
39 | fig.savefig(filename) |
|
43 | fig.savefig(filename) | |
40 | matplotlib.pyplot.ion() |
|
44 | matplotlib.pyplot.ion() | |
41 |
|
45 | |||
42 | def setWinTitle(fig, title): |
|
46 | def setWinTitle(fig, title): | |
43 |
|
47 | |||
44 | fig.canvas.manager.set_window_title(title) |
|
48 | fig.canvas.manager.set_window_title(title) | |
45 |
|
49 | |||
46 | def setTitle(fig, title): |
|
50 | def setTitle(fig, title): | |
47 |
|
51 | |||
48 | fig.suptitle(title) |
|
52 | fig.suptitle(title) | |
49 |
|
53 | |||
50 | def createAxes(fig, nrow, ncol, xpos, ypos, colspan, rowspan): |
|
54 | def createAxes(fig, nrow, ncol, xpos, ypos, colspan, rowspan): | |
51 |
|
55 | |||
52 | matplotlib.pyplot.ioff() |
|
56 | matplotlib.pyplot.ioff() | |
53 | matplotlib.pyplot.figure(fig.number) |
|
57 | matplotlib.pyplot.figure(fig.number) | |
54 | axes = matplotlib.pyplot.subplot2grid((nrow, ncol), |
|
58 | axes = matplotlib.pyplot.subplot2grid((nrow, ncol), | |
55 | (xpos, ypos), |
|
59 | (xpos, ypos), | |
56 | colspan=colspan, |
|
60 | colspan=colspan, | |
57 | rowspan=rowspan) |
|
61 | rowspan=rowspan) | |
58 |
|
62 | |||
59 | matplotlib.pyplot.ion() |
|
63 | matplotlib.pyplot.ion() | |
60 | return axes |
|
64 | return axes | |
61 |
|
65 | |||
62 | def setAxesText(ax, text): |
|
66 | def setAxesText(ax, text): | |
63 |
|
67 | |||
64 | ax.annotate(text, |
|
68 | ax.annotate(text, | |
65 | xy = (.1, .99), |
|
69 | xy = (.1, .99), | |
66 | xycoords = 'figure fraction', |
|
70 | xycoords = 'figure fraction', | |
67 | horizontalalignment = 'left', |
|
71 | horizontalalignment = 'left', | |
68 | verticalalignment = 'top', |
|
72 | verticalalignment = 'top', | |
69 | fontsize = 10) |
|
73 | fontsize = 10) | |
70 |
|
74 | |||
71 | def printLabels(ax, xlabel, ylabel, title): |
|
75 | def printLabels(ax, xlabel, ylabel, title): | |
72 |
|
76 | |||
73 | ax.set_xlabel(xlabel, size=11) |
|
77 | ax.set_xlabel(xlabel, size=11) | |
74 | ax.set_ylabel(ylabel, size=11) |
|
78 | ax.set_ylabel(ylabel, size=11) | |
75 | ax.set_title(title, size=12) |
|
79 | ax.set_title(title, size=12) | |
76 |
|
80 | |||
77 | def createPline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', |
|
81 | def createPline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', | |
78 | ticksize=9, xtick_visible=True, ytick_visible=True, |
|
82 | ticksize=9, xtick_visible=True, ytick_visible=True, | |
79 | nxticks=4, nyticks=10, |
|
83 | nxticks=4, nyticks=10, | |
80 | grid=None): |
|
84 | grid=None): | |
81 |
|
85 | |||
82 | """ |
|
86 | """ | |
83 |
|
87 | |||
84 | Input: |
|
88 | Input: | |
85 | grid : None, 'both', 'x', 'y' |
|
89 | grid : None, 'both', 'x', 'y' | |
86 | """ |
|
90 | """ | |
87 |
|
91 | |||
88 | matplotlib.pyplot.ioff() |
|
92 | matplotlib.pyplot.ioff() | |
89 |
|
93 | |||
90 | ax.set_xlim([xmin,xmax]) |
|
94 | ax.set_xlim([xmin,xmax]) | |
91 | ax.set_ylim([ymin,ymax]) |
|
95 | ax.set_ylim([ymin,ymax]) | |
92 |
|
96 | |||
93 | printLabels(ax, xlabel, ylabel, title) |
|
97 | printLabels(ax, xlabel, ylabel, title) | |
94 |
|
98 | |||
95 | ###################################################### |
|
99 | ###################################################### | |
96 | if (xmax-xmin)<=1: |
|
100 | if (xmax-xmin)<=1: | |
97 | xtickspos = numpy.linspace(xmin,xmax,nxticks) |
|
101 | xtickspos = numpy.linspace(xmin,xmax,nxticks) | |
98 | xtickspos = numpy.array([float("%.1f"%i) for i in xtickspos]) |
|
102 | xtickspos = numpy.array([float("%.1f"%i) for i in xtickspos]) | |
99 | ax.set_xticks(xtickspos) |
|
103 | ax.set_xticks(xtickspos) | |
100 | else: |
|
104 | else: | |
101 | xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) |
|
105 | xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) | |
102 | ax.set_xticks(xtickspos) |
|
106 | ax.set_xticks(xtickspos) | |
103 |
|
107 | |||
104 | for tick in ax.get_xticklabels(): |
|
108 | for tick in ax.get_xticklabels(): | |
105 | tick.set_visible(xtick_visible) |
|
109 | tick.set_visible(xtick_visible) | |
106 |
|
110 | |||
107 | for tick in ax.xaxis.get_major_ticks(): |
|
111 | for tick in ax.xaxis.get_major_ticks(): | |
108 | tick.label.set_fontsize(ticksize) |
|
112 | tick.label.set_fontsize(ticksize) | |
109 |
|
113 | |||
110 | ###################################################### |
|
114 | ###################################################### | |
111 | for tick in ax.get_yticklabels(): |
|
115 | for tick in ax.get_yticklabels(): | |
112 | tick.set_visible(ytick_visible) |
|
116 | tick.set_visible(ytick_visible) | |
113 |
|
117 | |||
114 | for tick in ax.yaxis.get_major_ticks(): |
|
118 | for tick in ax.yaxis.get_major_ticks(): | |
115 | tick.label.set_fontsize(ticksize) |
|
119 | tick.label.set_fontsize(ticksize) | |
116 |
|
120 | |||
117 | ax.plot(x, y) |
|
121 | ax.plot(x, y) | |
118 | iplot = ax.lines[-1] |
|
122 | iplot = ax.lines[-1] | |
119 |
|
123 | |||
120 | ###################################################### |
|
124 | ###################################################### | |
121 | if '0.' in matplotlib.__version__[0:2]: |
|
125 | if '0.' in matplotlib.__version__[0:2]: | |
122 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
126 | print "The matplotlib version has to be updated to 1.1 or newer" | |
123 | return iplot |
|
127 | return iplot | |
124 |
|
128 | |||
125 | if '1.0.' in matplotlib.__version__[0:4]: |
|
129 | if '1.0.' in matplotlib.__version__[0:4]: | |
126 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
130 | print "The matplotlib version has to be updated to 1.1 or newer" | |
127 | return iplot |
|
131 | return iplot | |
128 |
|
132 | |||
129 | if grid != None: |
|
133 | if grid != None: | |
130 | ax.grid(b=True, which='major', axis=grid) |
|
134 | ax.grid(b=True, which='major', axis=grid) | |
131 |
|
135 | |||
132 | matplotlib.pyplot.tight_layout() |
|
136 | matplotlib.pyplot.tight_layout() | |
133 |
|
137 | |||
134 | matplotlib.pyplot.ion() |
|
138 | matplotlib.pyplot.ion() | |
135 |
|
139 | |||
136 | return iplot |
|
140 | return iplot | |
137 |
|
141 | |||
138 | def set_linedata(ax, x, y, idline): |
|
142 | def set_linedata(ax, x, y, idline): | |
139 |
|
143 | |||
140 | ax.lines[idline].set_data(x,y) |
|
144 | ax.lines[idline].set_data(x,y) | |
141 |
|
145 | |||
142 | def pline(iplot, x, y, xlabel='', ylabel='', title=''): |
|
146 | def pline(iplot, x, y, xlabel='', ylabel='', title=''): | |
143 |
|
147 | |||
144 | ax = iplot.get_axes() |
|
148 | ax = iplot.get_axes() | |
145 |
|
149 | |||
146 | printLabels(ax, xlabel, ylabel, title) |
|
150 | printLabels(ax, xlabel, ylabel, title) | |
147 |
|
151 | |||
148 | set_linedata(ax, x, y, idline=0) |
|
152 | set_linedata(ax, x, y, idline=0) | |
149 |
|
153 | |||
150 | def addpline(ax, x, y, color, linestyle, lw): |
|
154 | def addpline(ax, x, y, color, linestyle, lw): | |
151 |
|
155 | |||
152 | ax.plot(x,y,color=color,linestyle=linestyle,lw=lw) |
|
156 | ax.plot(x,y,color=color,linestyle=linestyle,lw=lw) | |
153 |
|
157 | |||
154 |
|
158 | |||
155 | def createPcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax, |
|
159 | def createPcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax, | |
156 | xlabel='', ylabel='', title='', ticksize = 9, |
|
160 | xlabel='', ylabel='', title='', ticksize = 9, | |
157 | colormap='jet',cblabel='', cbsize="5%", |
|
161 | colormap='jet',cblabel='', cbsize="5%", | |
158 | XAxisAsTime=False): |
|
162 | XAxisAsTime=False): | |
159 |
|
163 | |||
160 | matplotlib.pyplot.ioff() |
|
164 | matplotlib.pyplot.ioff() | |
161 |
|
165 | |||
162 | divider = make_axes_locatable(ax) |
|
166 | divider = make_axes_locatable(ax) | |
163 | ax_cb = divider.new_horizontal(size=cbsize, pad=0.05) |
|
167 | ax_cb = divider.new_horizontal(size=cbsize, pad=0.05) | |
164 | fig = ax.get_figure() |
|
168 | fig = ax.get_figure() | |
165 | fig.add_axes(ax_cb) |
|
169 | fig.add_axes(ax_cb) | |
166 |
|
170 | |||
167 | ax.set_xlim([xmin,xmax]) |
|
171 | ax.set_xlim([xmin,xmax]) | |
168 | ax.set_ylim([ymin,ymax]) |
|
172 | ax.set_ylim([ymin,ymax]) | |
169 |
|
173 | |||
170 | printLabels(ax, xlabel, ylabel, title) |
|
174 | printLabels(ax, xlabel, ylabel, title) | |
171 |
|
175 | |||
172 | imesh = ax.pcolormesh(x,y,z.T, vmin=zmin, vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap)) |
|
176 | imesh = ax.pcolormesh(x,y,z.T, vmin=zmin, vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap)) | |
173 | cb = matplotlib.pyplot.colorbar(imesh, cax=ax_cb) |
|
177 | cb = matplotlib.pyplot.colorbar(imesh, cax=ax_cb) | |
174 | cb.set_label(cblabel) |
|
178 | cb.set_label(cblabel) | |
175 |
|
179 | |||
176 | # for tl in ax_cb.get_yticklabels(): |
|
180 | # for tl in ax_cb.get_yticklabels(): | |
177 | # tl.set_visible(True) |
|
181 | # tl.set_visible(True) | |
178 |
|
182 | |||
179 | for tick in ax.yaxis.get_major_ticks(): |
|
183 | for tick in ax.yaxis.get_major_ticks(): | |
180 | tick.label.set_fontsize(ticksize) |
|
184 | tick.label.set_fontsize(ticksize) | |
181 |
|
185 | |||
182 | for tick in ax.xaxis.get_major_ticks(): |
|
186 | for tick in ax.xaxis.get_major_ticks(): | |
183 | tick.label.set_fontsize(ticksize) |
|
187 | tick.label.set_fontsize(ticksize) | |
184 |
|
188 | |||
185 | for tick in cb.ax.get_yticklabels(): |
|
189 | for tick in cb.ax.get_yticklabels(): | |
186 | tick.set_fontsize(ticksize) |
|
190 | tick.set_fontsize(ticksize) | |
187 |
|
191 | |||
188 | ax_cb.yaxis.tick_right() |
|
192 | ax_cb.yaxis.tick_right() | |
189 |
|
193 | |||
190 | if '0.' in matplotlib.__version__[0:2]: |
|
194 | if '0.' in matplotlib.__version__[0:2]: | |
191 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
195 | print "The matplotlib version has to be updated to 1.1 or newer" | |
192 | return imesh |
|
196 | return imesh | |
193 |
|
197 | |||
194 | if '1.0.' in matplotlib.__version__[0:4]: |
|
198 | if '1.0.' in matplotlib.__version__[0:4]: | |
195 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
199 | print "The matplotlib version has to be updated to 1.1 or newer" | |
196 | return imesh |
|
200 | return imesh | |
197 |
|
201 | |||
198 | matplotlib.pyplot.tight_layout() |
|
202 | matplotlib.pyplot.tight_layout() | |
199 |
|
203 | |||
200 | if XAxisAsTime: |
|
204 | if XAxisAsTime: | |
201 |
|
205 | |||
202 | func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S")) |
|
206 | func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S")) | |
203 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
207 | ax.xaxis.set_major_formatter(FuncFormatter(func)) | |
204 | ax.xaxis.set_major_locator(LinearLocator(7)) |
|
208 | ax.xaxis.set_major_locator(LinearLocator(7)) | |
205 |
|
209 | |||
206 | matplotlib.pyplot.ion() |
|
210 | matplotlib.pyplot.ion() | |
207 | return imesh |
|
211 | return imesh | |
208 |
|
212 | |||
209 | def pcolor(imesh, z, xlabel='', ylabel='', title=''): |
|
213 | def pcolor(imesh, z, xlabel='', ylabel='', title=''): | |
210 |
|
214 | |||
211 | z = z.T |
|
215 | z = z.T | |
212 |
|
216 | |||
213 | ax = imesh.get_axes() |
|
217 | ax = imesh.get_axes() | |
214 |
|
218 | |||
215 | printLabels(ax, xlabel, ylabel, title) |
|
219 | printLabels(ax, xlabel, ylabel, title) | |
216 |
|
220 | |||
217 | imesh.set_array(z.ravel()) |
|
221 | imesh.set_array(z.ravel()) | |
218 |
|
222 | |||
219 | def addpcolor(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'): |
|
223 | def addpcolor(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'): | |
220 |
|
224 | |||
221 | printLabels(ax, xlabel, ylabel, title) |
|
225 | printLabels(ax, xlabel, ylabel, title) | |
222 |
|
226 | |||
223 | imesh = ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap)) |
|
227 | imesh = ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap)) | |
224 |
|
228 | |||
225 | def createPmultiline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None, |
|
229 | def createPmultiline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None, | |
226 | ticksize=9, xtick_visible=True, ytick_visible=True, |
|
230 | ticksize=9, xtick_visible=True, ytick_visible=True, | |
227 | nxticks=4, nyticks=10, |
|
231 | nxticks=4, nyticks=10, | |
228 | grid=None): |
|
232 | grid=None): | |
229 |
|
233 | |||
230 | """ |
|
234 | """ | |
231 |
|
235 | |||
232 | Input: |
|
236 | Input: | |
233 | grid : None, 'both', 'x', 'y' |
|
237 | grid : None, 'both', 'x', 'y' | |
234 | """ |
|
238 | """ | |
235 |
|
239 | |||
236 | matplotlib.pyplot.ioff() |
|
240 | matplotlib.pyplot.ioff() | |
237 |
|
241 | |||
238 | lines = ax.plot(x.T, y) |
|
242 | lines = ax.plot(x.T, y) | |
239 | leg = ax.legend(lines, legendlabels, loc='upper right') |
|
243 | leg = ax.legend(lines, legendlabels, loc='upper right') | |
240 | leg.get_frame().set_alpha(0.5) |
|
244 | leg.get_frame().set_alpha(0.5) | |
241 | ax.set_xlim([xmin,xmax]) |
|
245 | ax.set_xlim([xmin,xmax]) | |
242 | ax.set_ylim([ymin,ymax]) |
|
246 | ax.set_ylim([ymin,ymax]) | |
243 | printLabels(ax, xlabel, ylabel, title) |
|
247 | printLabels(ax, xlabel, ylabel, title) | |
244 |
|
248 | |||
245 | xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) |
|
249 | xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) | |
246 | ax.set_xticks(xtickspos) |
|
250 | ax.set_xticks(xtickspos) | |
247 |
|
251 | |||
248 | for tick in ax.get_xticklabels(): |
|
252 | for tick in ax.get_xticklabels(): | |
249 | tick.set_visible(xtick_visible) |
|
253 | tick.set_visible(xtick_visible) | |
250 |
|
254 | |||
251 | for tick in ax.xaxis.get_major_ticks(): |
|
255 | for tick in ax.xaxis.get_major_ticks(): | |
252 | tick.label.set_fontsize(ticksize) |
|
256 | tick.label.set_fontsize(ticksize) | |
253 |
|
257 | |||
254 | for tick in ax.get_yticklabels(): |
|
258 | for tick in ax.get_yticklabels(): | |
255 | tick.set_visible(ytick_visible) |
|
259 | tick.set_visible(ytick_visible) | |
256 |
|
260 | |||
257 | for tick in ax.yaxis.get_major_ticks(): |
|
261 | for tick in ax.yaxis.get_major_ticks(): | |
258 | tick.label.set_fontsize(ticksize) |
|
262 | tick.label.set_fontsize(ticksize) | |
259 |
|
263 | |||
260 | iplot = ax.lines[-1] |
|
264 | iplot = ax.lines[-1] | |
261 |
|
265 | |||
262 | if '0.' in matplotlib.__version__[0:2]: |
|
266 | if '0.' in matplotlib.__version__[0:2]: | |
263 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
267 | print "The matplotlib version has to be updated to 1.1 or newer" | |
264 | return iplot |
|
268 | return iplot | |
265 |
|
269 | |||
266 | if '1.0.' in matplotlib.__version__[0:4]: |
|
270 | if '1.0.' in matplotlib.__version__[0:4]: | |
267 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
271 | print "The matplotlib version has to be updated to 1.1 or newer" | |
268 | return iplot |
|
272 | return iplot | |
269 |
|
273 | |||
270 | if grid != None: |
|
274 | if grid != None: | |
271 | ax.grid(b=True, which='major', axis=grid) |
|
275 | ax.grid(b=True, which='major', axis=grid) | |
272 |
|
276 | |||
273 | matplotlib.pyplot.tight_layout() |
|
277 | matplotlib.pyplot.tight_layout() | |
274 |
|
278 | |||
275 | matplotlib.pyplot.ion() |
|
279 | matplotlib.pyplot.ion() | |
276 |
|
280 | |||
277 | return iplot |
|
281 | return iplot | |
278 |
|
282 | |||
279 |
|
283 | |||
280 | def pmultiline(iplot, x, y, xlabel='', ylabel='', title=''): |
|
284 | def pmultiline(iplot, x, y, xlabel='', ylabel='', title=''): | |
281 |
|
285 | |||
282 | ax = iplot.get_axes() |
|
286 | ax = iplot.get_axes() | |
283 |
|
287 | |||
284 | printLabels(ax, xlabel, ylabel, title) |
|
288 | printLabels(ax, xlabel, ylabel, title) | |
285 |
|
289 | |||
286 | for i in range(len(ax.lines)): |
|
290 | for i in range(len(ax.lines)): | |
287 | line = ax.lines[i] |
|
291 | line = ax.lines[i] | |
288 | line.set_data(x[i,:],y) |
|
292 | line.set_data(x[i,:],y) | |
289 |
|
293 | |||
290 | def createPmultilineYAxis(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None, |
|
294 | def createPmultilineYAxis(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None, | |
291 | ticksize=9, xtick_visible=True, ytick_visible=True, |
|
295 | ticksize=9, xtick_visible=True, ytick_visible=True, | |
292 | nxticks=4, nyticks=10, marker='^', markersize=8, linestyle="solid", |
|
296 | nxticks=4, nyticks=10, marker='^', markersize=8, linestyle="solid", | |
293 | grid=None, XAxisAsTime=False): |
|
297 | grid=None, XAxisAsTime=False): | |
294 |
|
298 | |||
295 | """ |
|
299 | """ | |
296 |
|
300 | |||
297 | Input: |
|
301 | Input: | |
298 | grid : None, 'both', 'x', 'y' |
|
302 | grid : None, 'both', 'x', 'y' | |
299 | """ |
|
303 | """ | |
300 |
|
304 | |||
301 | matplotlib.pyplot.ioff() |
|
305 | matplotlib.pyplot.ioff() | |
302 |
|
306 | |||
303 | lines = ax.plot(x, y.T, marker=marker,markersize=markersize,linestyle=linestyle) |
|
307 | lines = ax.plot(x, y.T, marker=marker,markersize=markersize,linestyle=linestyle) | |
304 | leg = ax.legend(lines, legendlabels, bbox_to_anchor=(1.05, 1), loc='upper right', numpoints=1, handlelength=1.5, \ |
|
308 | leg = ax.legend(lines, legendlabels, bbox_to_anchor=(1.05, 1), loc='upper right', numpoints=1, handlelength=1.5, \ | |
305 | handletextpad=0.5, borderpad=0.2, labelspacing=0.2, borderaxespad=0.) |
|
309 | handletextpad=0.5, borderpad=0.2, labelspacing=0.2, borderaxespad=0.) | |
306 |
|
310 | |||
307 | ax.set_xlim([xmin,xmax]) |
|
311 | ax.set_xlim([xmin,xmax]) | |
308 | ax.set_ylim([ymin,ymax]) |
|
312 | ax.set_ylim([ymin,ymax]) | |
309 | printLabels(ax, xlabel, ylabel, title) |
|
313 | printLabels(ax, xlabel, ylabel, title) | |
310 |
|
314 | |||
311 | # xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) |
|
315 | # xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) | |
312 | # ax.set_xticks(xtickspos) |
|
316 | # ax.set_xticks(xtickspos) | |
313 |
|
317 | |||
314 | for tick in ax.get_xticklabels(): |
|
318 | for tick in ax.get_xticklabels(): | |
315 | tick.set_visible(xtick_visible) |
|
319 | tick.set_visible(xtick_visible) | |
316 |
|
320 | |||
317 | for tick in ax.xaxis.get_major_ticks(): |
|
321 | for tick in ax.xaxis.get_major_ticks(): | |
318 | tick.label.set_fontsize(ticksize) |
|
322 | tick.label.set_fontsize(ticksize) | |
319 |
|
323 | |||
320 | for tick in ax.get_yticklabels(): |
|
324 | for tick in ax.get_yticklabels(): | |
321 | tick.set_visible(ytick_visible) |
|
325 | tick.set_visible(ytick_visible) | |
322 |
|
326 | |||
323 | for tick in ax.yaxis.get_major_ticks(): |
|
327 | for tick in ax.yaxis.get_major_ticks(): | |
324 | tick.label.set_fontsize(ticksize) |
|
328 | tick.label.set_fontsize(ticksize) | |
325 |
|
329 | |||
326 | iplot = ax.lines[-1] |
|
330 | iplot = ax.lines[-1] | |
327 |
|
331 | |||
328 | if '0.' in matplotlib.__version__[0:2]: |
|
332 | if '0.' in matplotlib.__version__[0:2]: | |
329 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
333 | print "The matplotlib version has to be updated to 1.1 or newer" | |
330 | return iplot |
|
334 | return iplot | |
331 |
|
335 | |||
332 | if '1.0.' in matplotlib.__version__[0:4]: |
|
336 | if '1.0.' in matplotlib.__version__[0:4]: | |
333 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
337 | print "The matplotlib version has to be updated to 1.1 or newer" | |
334 | return iplot |
|
338 | return iplot | |
335 |
|
339 | |||
336 | if grid != None: |
|
340 | if grid != None: | |
337 | ax.grid(b=True, which='major', axis=grid) |
|
341 | ax.grid(b=True, which='major', axis=grid) | |
338 |
|
342 | |||
339 | matplotlib.pyplot.tight_layout() |
|
343 | matplotlib.pyplot.tight_layout() | |
340 |
|
344 | |||
341 | if XAxisAsTime: |
|
345 | if XAxisAsTime: | |
342 |
|
346 | |||
343 | func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S")) |
|
347 | func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S")) | |
344 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
348 | ax.xaxis.set_major_formatter(FuncFormatter(func)) | |
345 | ax.xaxis.set_major_locator(LinearLocator(7)) |
|
349 | ax.xaxis.set_major_locator(LinearLocator(7)) | |
346 |
|
350 | |||
347 | matplotlib.pyplot.ion() |
|
351 | matplotlib.pyplot.ion() | |
348 |
|
352 | |||
349 | return iplot |
|
353 | return iplot | |
350 |
|
354 | |||
351 | def pmultilineinyaxis(iplot, x, y, xlabel='', ylabel='', title=''): |
|
355 | def pmultilineinyaxis(iplot, x, y, xlabel='', ylabel='', title=''): | |
352 |
|
356 | |||
353 | ax = iplot.get_axes() |
|
357 | ax = iplot.get_axes() | |
354 |
|
358 | |||
355 | printLabels(ax, xlabel, ylabel, title) |
|
359 | printLabels(ax, xlabel, ylabel, title) | |
356 |
|
360 | |||
357 | for i in range(len(ax.lines)): |
|
361 | for i in range(len(ax.lines)): | |
358 | line = ax.lines[i] |
|
362 | line = ax.lines[i] | |
359 | line.set_data(x,y[i,:]) |
|
363 | line.set_data(x,y[i,:]) | |
360 |
|
364 | |||
361 | def draw(fig): |
|
365 | def draw(fig): | |
362 |
|
366 | |||
363 | if type(fig) == 'int': |
|
367 | if type(fig) == 'int': | |
364 | raise ValueError, "This parameter should be of tpye matplotlib figure" |
|
368 | raise ValueError, "This parameter should be of tpye matplotlib figure" | |
365 |
|
369 | |||
366 | fig.canvas.draw() No newline at end of file |
|
370 | fig.canvas.draw() |
@@ -1,525 +1,536 | |||||
1 | ''' |
|
1 | ''' | |
2 |
|
2 | |||
3 | $Author: murco $ |
|
3 | $Author: murco $ | |
4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | import os, sys |
|
7 | import os, sys | |
8 | import copy |
|
8 | import copy | |
9 | import numpy |
|
9 | import numpy | |
10 | import datetime |
|
10 | import datetime | |
11 |
|
11 | |||
12 | from jroheaderIO import SystemHeader, RadarControllerHeader |
|
12 | from jroheaderIO import SystemHeader, RadarControllerHeader | |
13 |
|
13 | |||
14 | def hildebrand_sekhon(data, navg): |
|
14 | def hildebrand_sekhon(data, navg): | |
15 | """ |
|
15 | """ | |
16 | This method is for the objective determination of de noise level in Doppler spectra. This |
|
16 | This method is for the objective determination of de noise level in Doppler spectra. This | |
17 | implementation technique is based on the fact that the standard deviation of the spectral |
|
17 | implementation technique is based on the fact that the standard deviation of the spectral | |
18 | densities is equal to the mean spectral density for white Gaussian noise |
|
18 | densities is equal to the mean spectral density for white Gaussian noise | |
19 |
|
19 | |||
20 | Inputs: |
|
20 | Inputs: | |
21 | Data : heights |
|
21 | Data : heights | |
22 | navg : numbers of averages |
|
22 | navg : numbers of averages | |
23 |
|
23 | |||
24 | Return: |
|
24 | Return: | |
25 | -1 : any error |
|
25 | -1 : any error | |
26 | anoise : noise's level |
|
26 | anoise : noise's level | |
27 | """ |
|
27 | """ | |
28 |
|
28 | |||
29 | dataflat = data.copy().reshape(-1) |
|
29 | dataflat = data.copy().reshape(-1) | |
30 | dataflat.sort() |
|
30 | dataflat.sort() | |
31 | npts = dataflat.size #numbers of points of the data |
|
31 | npts = dataflat.size #numbers of points of the data | |
32 | npts_noise = 0.2*npts |
|
32 | npts_noise = 0.2*npts | |
33 |
|
33 | |||
34 | if npts < 32: |
|
34 | if npts < 32: | |
35 | print "error in noise - requires at least 32 points" |
|
35 | print "error in noise - requires at least 32 points" | |
36 | return -1.0 |
|
36 | return -1.0 | |
37 |
|
37 | |||
38 | dataflat2 = numpy.power(dataflat,2) |
|
38 | dataflat2 = numpy.power(dataflat,2) | |
39 |
|
39 | |||
40 | cs = numpy.cumsum(dataflat) |
|
40 | cs = numpy.cumsum(dataflat) | |
41 | cs2 = numpy.cumsum(dataflat2) |
|
41 | cs2 = numpy.cumsum(dataflat2) | |
42 |
|
42 | |||
43 | # data sorted in ascending order |
|
43 | # data sorted in ascending order | |
44 | nmin = int((npts + 7.)/8) |
|
44 | nmin = int((npts + 7.)/8) | |
45 |
|
45 | |||
46 | for i in range(nmin, npts): |
|
46 | for i in range(nmin, npts): | |
47 | s = cs[i] |
|
47 | s = cs[i] | |
48 | s2 = cs2[i] |
|
48 | s2 = cs2[i] | |
49 | p = s / float(i); |
|
49 | p = s / float(i); | |
50 | p2 = p**2; |
|
50 | p2 = p**2; | |
51 | q = s2 / float(i) - p2; |
|
51 | q = s2 / float(i) - p2; | |
52 | leftc = p2; |
|
52 | leftc = p2; | |
53 | rightc = q * float(navg); |
|
53 | rightc = q * float(navg); | |
54 | R2 = leftc/rightc |
|
54 | R2 = leftc/rightc | |
55 |
|
55 | |||
56 | # Signal detect: R2 < 1 (R2 = leftc/rightc) |
|
56 | # Signal detect: R2 < 1 (R2 = leftc/rightc) | |
57 | if R2 < 1: |
|
57 | if R2 < 1: | |
58 | npts_noise = i |
|
58 | npts_noise = i | |
59 | break |
|
59 | break | |
60 |
|
60 | |||
61 |
|
61 | |||
62 | anoise = numpy.average(dataflat[0:npts_noise]) |
|
62 | anoise = numpy.average(dataflat[0:npts_noise]) | |
63 |
|
63 | |||
64 | return anoise; |
|
64 | return anoise; | |
65 |
|
65 | |||
66 | def sorting_bruce(data, navg): |
|
66 | def sorting_bruce(data, navg): | |
67 |
|
67 | |||
68 | data = data.copy() |
|
68 | data = data.copy() | |
69 |
|
69 | |||
70 | sortdata = numpy.sort(data) |
|
70 | sortdata = numpy.sort(data) | |
71 | lenOfData = len(data) |
|
71 | lenOfData = len(data) | |
72 | nums_min = lenOfData/10 |
|
72 | nums_min = lenOfData/10 | |
73 |
|
73 | |||
74 | if (lenOfData/10) > 0: |
|
74 | if (lenOfData/10) > 0: | |
75 | nums_min = lenOfData/10 |
|
75 | nums_min = lenOfData/10 | |
76 | else: |
|
76 | else: | |
77 | nums_min = 0 |
|
77 | nums_min = 0 | |
78 |
|
78 | |||
79 | rtest = 1.0 + 1.0/navg |
|
79 | rtest = 1.0 + 1.0/navg | |
80 |
|
80 | |||
81 | sum = 0. |
|
81 | sum = 0. | |
82 |
|
82 | |||
83 | sumq = 0. |
|
83 | sumq = 0. | |
84 |
|
84 | |||
85 | j = 0 |
|
85 | j = 0 | |
86 |
|
86 | |||
87 | cont = 1 |
|
87 | cont = 1 | |
88 |
|
88 | |||
89 | while((cont==1)and(j<lenOfData)): |
|
89 | while((cont==1)and(j<lenOfData)): | |
90 |
|
90 | |||
91 | sum += sortdata[j] |
|
91 | sum += sortdata[j] | |
92 |
|
92 | |||
93 | sumq += sortdata[j]**2 |
|
93 | sumq += sortdata[j]**2 | |
94 |
|
94 | |||
95 | j += 1 |
|
95 | j += 1 | |
96 |
|
96 | |||
97 | if j > nums_min: |
|
97 | if j > nums_min: | |
98 | if ((sumq*j) <= (rtest*sum**2)): |
|
98 | if ((sumq*j) <= (rtest*sum**2)): | |
99 | lnoise = sum / j |
|
99 | lnoise = sum / j | |
100 | else: |
|
100 | else: | |
101 | j = j - 1 |
|
101 | j = j - 1 | |
102 | sum = sum - sordata[j] |
|
102 | sum = sum - sordata[j] | |
103 | sumq = sumq - sordata[j]**2 |
|
103 | sumq = sumq - sordata[j]**2 | |
104 | cont = 0 |
|
104 | cont = 0 | |
105 |
|
105 | |||
106 | if j == nums_min: |
|
106 | if j == nums_min: | |
107 | lnoise = sum /j |
|
107 | lnoise = sum /j | |
108 |
|
108 | |||
109 | return lnoise |
|
109 | return lnoise | |
110 |
|
110 | |||
111 | class JROData: |
|
111 | class JROData: | |
112 |
|
112 | |||
113 | # m_BasicHeader = BasicHeader() |
|
113 | # m_BasicHeader = BasicHeader() | |
114 | # m_ProcessingHeader = ProcessingHeader() |
|
114 | # m_ProcessingHeader = ProcessingHeader() | |
115 |
|
115 | |||
116 | systemHeaderObj = SystemHeader() |
|
116 | systemHeaderObj = SystemHeader() | |
117 |
|
117 | |||
118 | radarControllerHeaderObj = RadarControllerHeader() |
|
118 | radarControllerHeaderObj = RadarControllerHeader() | |
119 |
|
119 | |||
120 | # data = None |
|
120 | # data = None | |
121 |
|
121 | |||
122 | type = None |
|
122 | type = None | |
123 |
|
123 | |||
124 | dtype = None |
|
124 | dtype = None | |
125 |
|
125 | |||
126 | # nChannels = None |
|
126 | # nChannels = None | |
127 |
|
127 | |||
128 | # nHeights = None |
|
128 | # nHeights = None | |
129 |
|
129 | |||
130 | nProfiles = None |
|
130 | nProfiles = None | |
131 |
|
131 | |||
132 | heightList = None |
|
132 | heightList = None | |
133 |
|
133 | |||
134 | channelList = None |
|
134 | channelList = None | |
135 |
|
135 | |||
136 | flagNoData = True |
|
136 | flagNoData = True | |
137 |
|
137 | |||
138 | flagTimeBlock = False |
|
138 | flagTimeBlock = False | |
139 |
|
139 | |||
140 | utctime = None |
|
140 | utctime = None | |
141 |
|
141 | |||
142 | blocksize = None |
|
142 | blocksize = None | |
143 |
|
143 | |||
144 | nCode = None |
|
144 | nCode = None | |
145 |
|
145 | |||
146 | nBaud = None |
|
146 | nBaud = None | |
147 |
|
147 | |||
148 | code = None |
|
148 | code = None | |
149 |
|
149 | |||
150 | flagDecodeData = False #asumo q la data no esta decodificada |
|
150 | flagDecodeData = False #asumo q la data no esta decodificada | |
151 |
|
151 | |||
152 | flagDeflipData = False #asumo q la data no esta sin flip |
|
152 | flagDeflipData = False #asumo q la data no esta sin flip | |
153 |
|
153 | |||
154 | flagShiftFFT = False |
|
154 | flagShiftFFT = False | |
155 |
|
155 | |||
156 | ippSeconds = None |
|
156 | ippSeconds = None | |
157 |
|
157 | |||
158 | timeInterval = None |
|
158 | timeInterval = None | |
159 |
|
159 | |||
160 | nCohInt = None |
|
160 | nCohInt = None | |
161 |
|
161 | |||
162 | noise = None |
|
162 | noise = None | |
163 |
|
163 | |||
|
164 | windowOfFilter = 1 | |||
|
165 | ||||
164 | #Speed of ligth |
|
166 | #Speed of ligth | |
165 | C = 3e8 |
|
167 | C = 3e8 | |
166 |
|
168 | |||
167 | frequency = 49.92e6 |
|
169 | frequency = 49.92e6 | |
168 |
|
170 | |||
169 | def __init__(self): |
|
171 | def __init__(self): | |
170 |
|
172 | |||
171 | raise ValueError, "This class has not been implemented" |
|
173 | raise ValueError, "This class has not been implemented" | |
172 |
|
174 | |||
173 | def copy(self, inputObj=None): |
|
175 | def copy(self, inputObj=None): | |
174 |
|
176 | |||
175 | if inputObj == None: |
|
177 | if inputObj == None: | |
176 | return copy.deepcopy(self) |
|
178 | return copy.deepcopy(self) | |
177 |
|
179 | |||
178 | for key in inputObj.__dict__.keys(): |
|
180 | for key in inputObj.__dict__.keys(): | |
179 | self.__dict__[key] = inputObj.__dict__[key] |
|
181 | self.__dict__[key] = inputObj.__dict__[key] | |
180 |
|
182 | |||
181 | def deepcopy(self): |
|
183 | def deepcopy(self): | |
182 |
|
184 | |||
183 | return copy.deepcopy(self) |
|
185 | return copy.deepcopy(self) | |
184 |
|
186 | |||
185 | def isEmpty(self): |
|
187 | def isEmpty(self): | |
186 |
|
188 | |||
187 | return self.flagNoData |
|
189 | return self.flagNoData | |
188 |
|
190 | |||
189 | def getNoise(self): |
|
191 | def getNoise(self): | |
190 |
|
192 | |||
191 | raise ValueError, "Not implemented" |
|
193 | raise ValueError, "Not implemented" | |
192 |
|
194 | |||
193 | def getNChannels(self): |
|
195 | def getNChannels(self): | |
194 |
|
196 | |||
195 | return len(self.channelList) |
|
197 | return len(self.channelList) | |
196 |
|
198 | |||
197 | def getChannelIndexList(self): |
|
199 | def getChannelIndexList(self): | |
198 |
|
200 | |||
199 | return range(self.nChannels) |
|
201 | return range(self.nChannels) | |
200 |
|
202 | |||
201 | def getNHeights(self): |
|
203 | def getNHeights(self): | |
202 |
|
204 | |||
203 | return len(self.heightList) |
|
205 | return len(self.heightList) | |
204 |
|
206 | |||
205 | def getHeiRange(self, extrapoints=0): |
|
207 | def getHeiRange(self, extrapoints=0): | |
206 |
|
208 | |||
207 | heis = self.heightList |
|
209 | heis = self.heightList | |
208 | # deltah = self.heightList[1] - self.heightList[0] |
|
210 | # deltah = self.heightList[1] - self.heightList[0] | |
209 | # |
|
211 | # | |
210 | # heis.append(self.heightList[-1]) |
|
212 | # heis.append(self.heightList[-1]) | |
211 |
|
213 | |||
212 | return heis |
|
214 | return heis | |
213 |
|
215 | |||
214 | def getDatatime(self): |
|
216 | def getDatatime(self): | |
215 |
|
217 | |||
216 | datatime = datetime.datetime.utcfromtimestamp(self.utctime) |
|
218 | datatime = datetime.datetime.utcfromtimestamp(self.utctime) | |
217 | return datatime |
|
219 | return datatime | |
218 |
|
220 | |||
219 | def getTimeRange(self): |
|
221 | def getTimeRange(self): | |
220 |
|
222 | |||
221 | datatime = [] |
|
223 | datatime = [] | |
222 |
|
224 | |||
223 | datatime.append(self.utctime) |
|
225 | datatime.append(self.utctime) | |
224 | datatime.append(self.utctime + self.timeInterval) |
|
226 | datatime.append(self.utctime + self.timeInterval) | |
225 |
|
227 | |||
226 | datatime = numpy.array(datatime) |
|
228 | datatime = numpy.array(datatime) | |
227 |
|
229 | |||
228 | return datatime |
|
230 | return datatime | |
229 |
|
231 | |||
230 | def getFmax(self): |
|
232 | def getFmax(self): | |
231 |
|
233 | |||
232 | PRF = 1./(self.ippSeconds * self.nCohInt) |
|
234 | PRF = 1./(self.ippSeconds * self.nCohInt) | |
233 |
|
235 | |||
234 | fmax = PRF/2. |
|
236 | fmax = PRF/2. | |
235 |
|
237 | |||
236 | return fmax |
|
238 | return fmax | |
237 |
|
239 | |||
238 | def getVmax(self): |
|
240 | def getVmax(self): | |
239 |
|
241 | |||
240 | _lambda = self.C/self.frequency |
|
242 | _lambda = self.C/self.frequency | |
241 |
|
243 | |||
242 | vmax = self.getFmax() * _lambda |
|
244 | vmax = self.getFmax() * _lambda | |
243 |
|
245 | |||
244 | return vmax |
|
246 | return vmax | |
245 |
|
247 | |||
246 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
248 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") | |
247 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
249 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") | |
248 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
250 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") | |
249 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
251 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
250 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
252 | datatime = property(getDatatime, "I'm the 'datatime' property") | |
251 |
|
253 | |||
252 | class Voltage(JROData): |
|
254 | class Voltage(JROData): | |
253 |
|
255 | |||
254 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
256 | #data es un numpy array de 2 dmensiones (canales, alturas) | |
255 | data = None |
|
257 | data = None | |
256 |
|
258 | |||
257 | def __init__(self): |
|
259 | def __init__(self): | |
258 | ''' |
|
260 | ''' | |
259 | Constructor |
|
261 | Constructor | |
260 | ''' |
|
262 | ''' | |
261 |
|
263 | |||
262 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
264 | self.radarControllerHeaderObj = RadarControllerHeader() | |
263 |
|
265 | |||
264 | self.systemHeaderObj = SystemHeader() |
|
266 | self.systemHeaderObj = SystemHeader() | |
265 |
|
267 | |||
266 | self.type = "Voltage" |
|
268 | self.type = "Voltage" | |
267 |
|
269 | |||
268 | self.data = None |
|
270 | self.data = None | |
269 |
|
271 | |||
270 | self.dtype = None |
|
272 | self.dtype = None | |
271 |
|
273 | |||
272 | # self.nChannels = 0 |
|
274 | # self.nChannels = 0 | |
273 |
|
275 | |||
274 | # self.nHeights = 0 |
|
276 | # self.nHeights = 0 | |
275 |
|
277 | |||
276 | self.nProfiles = None |
|
278 | self.nProfiles = None | |
277 |
|
279 | |||
278 | self.heightList = None |
|
280 | self.heightList = None | |
279 |
|
281 | |||
280 | self.channelList = None |
|
282 | self.channelList = None | |
281 |
|
283 | |||
282 | # self.channelIndexList = None |
|
284 | # self.channelIndexList = None | |
283 |
|
285 | |||
284 | self.flagNoData = True |
|
286 | self.flagNoData = True | |
285 |
|
287 | |||
286 | self.flagTimeBlock = False |
|
288 | self.flagTimeBlock = False | |
287 |
|
289 | |||
288 | self.utctime = None |
|
290 | self.utctime = None | |
289 |
|
291 | |||
290 | self.nCohInt = None |
|
292 | self.nCohInt = None | |
291 |
|
293 | |||
292 | self.blocksize = None |
|
294 | self.blocksize = None | |
293 |
|
295 | |||
294 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
296 | self.flagDecodeData = False #asumo q la data no esta decodificada | |
295 |
|
297 | |||
296 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
298 | self.flagDeflipData = False #asumo q la data no esta sin flip | |
297 |
|
299 | |||
298 | self.flagShiftFFT = False |
|
300 | self.flagShiftFFT = False | |
299 |
|
301 | |||
300 |
|
302 | |||
301 | def getNoisebyHildebrand(self): |
|
303 | def getNoisebyHildebrand(self): | |
302 | """ |
|
304 | """ | |
303 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
305 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
304 |
|
306 | |||
305 | Return: |
|
307 | Return: | |
306 | noiselevel |
|
308 | noiselevel | |
307 | """ |
|
309 | """ | |
308 |
|
310 | |||
309 | for channel in range(self.nChannels): |
|
311 | for channel in range(self.nChannels): | |
310 | daux = self.data_spc[channel,:,:] |
|
312 | daux = self.data_spc[channel,:,:] | |
311 | self.noise[channel] = hildebrand_sekhon(daux, self.nCohInt) |
|
313 | self.noise[channel] = hildebrand_sekhon(daux, self.nCohInt) | |
312 |
|
314 | |||
313 | return self.noise |
|
315 | return self.noise | |
314 |
|
316 | |||
315 | def getNoise(self, type = 1): |
|
317 | def getNoise(self, type = 1): | |
316 |
|
318 | |||
317 | self.noise = numpy.zeros(self.nChannels) |
|
319 | self.noise = numpy.zeros(self.nChannels) | |
318 |
|
320 | |||
319 | if type == 1: |
|
321 | if type == 1: | |
320 | noise = self.getNoisebyHildebrand() |
|
322 | noise = self.getNoisebyHildebrand() | |
321 |
|
323 | |||
322 | return 10*numpy.log10(noise) |
|
324 | return 10*numpy.log10(noise) | |
323 |
|
325 | |||
324 | class Spectra(JROData): |
|
326 | class Spectra(JROData): | |
325 |
|
327 | |||
326 | #data es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
328 | #data es un numpy array de 2 dmensiones (canales, perfiles, alturas) | |
327 | data_spc = None |
|
329 | data_spc = None | |
328 |
|
330 | |||
329 | #data es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
331 | #data es un numpy array de 2 dmensiones (canales, pares, alturas) | |
330 | data_cspc = None |
|
332 | data_cspc = None | |
331 |
|
333 | |||
332 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
334 | #data es un numpy array de 2 dmensiones (canales, alturas) | |
333 | data_dc = None |
|
335 | data_dc = None | |
334 |
|
336 | |||
335 | nFFTPoints = None |
|
337 | nFFTPoints = None | |
336 |
|
338 | |||
337 | nPairs = None |
|
339 | nPairs = None | |
338 |
|
340 | |||
339 | pairsList = None |
|
341 | pairsList = None | |
340 |
|
342 | |||
341 | nIncohInt = None |
|
343 | nIncohInt = None | |
342 |
|
344 | |||
343 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia |
|
345 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia | |
344 |
|
346 | |||
345 | nCohInt = None #se requiere para determinar el valor de timeInterval |
|
347 | nCohInt = None #se requiere para determinar el valor de timeInterval | |
346 |
|
348 | |||
347 | def __init__(self): |
|
349 | def __init__(self): | |
348 | ''' |
|
350 | ''' | |
349 | Constructor |
|
351 | Constructor | |
350 | ''' |
|
352 | ''' | |
351 |
|
353 | |||
352 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
354 | self.radarControllerHeaderObj = RadarControllerHeader() | |
353 |
|
355 | |||
354 | self.systemHeaderObj = SystemHeader() |
|
356 | self.systemHeaderObj = SystemHeader() | |
355 |
|
357 | |||
356 | self.type = "Spectra" |
|
358 | self.type = "Spectra" | |
357 |
|
359 | |||
358 | # self.data = None |
|
360 | # self.data = None | |
359 |
|
361 | |||
360 | self.dtype = None |
|
362 | self.dtype = None | |
361 |
|
363 | |||
362 | # self.nChannels = 0 |
|
364 | # self.nChannels = 0 | |
363 |
|
365 | |||
364 | # self.nHeights = 0 |
|
366 | # self.nHeights = 0 | |
365 |
|
367 | |||
366 | self.nProfiles = None |
|
368 | self.nProfiles = None | |
367 |
|
369 | |||
368 | self.heightList = None |
|
370 | self.heightList = None | |
369 |
|
371 | |||
370 | self.channelList = None |
|
372 | self.channelList = None | |
371 |
|
373 | |||
372 | # self.channelIndexList = None |
|
374 | # self.channelIndexList = None | |
373 |
|
375 | |||
374 | self.flagNoData = True |
|
376 | self.flagNoData = True | |
375 |
|
377 | |||
376 | self.flagTimeBlock = False |
|
378 | self.flagTimeBlock = False | |
377 |
|
379 | |||
378 | self.utctime = None |
|
380 | self.utctime = None | |
379 |
|
381 | |||
380 | self.nCohInt = None |
|
382 | self.nCohInt = None | |
381 |
|
383 | |||
382 | self.nIncohInt = None |
|
384 | self.nIncohInt = None | |
383 |
|
385 | |||
384 | self.blocksize = None |
|
386 | self.blocksize = None | |
385 |
|
387 | |||
386 | self.nFFTPoints = None |
|
388 | self.nFFTPoints = None | |
387 |
|
389 | |||
388 | self.wavelength = None |
|
390 | self.wavelength = None | |
389 |
|
391 | |||
390 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
392 | self.flagDecodeData = False #asumo q la data no esta decodificada | |
391 |
|
393 | |||
392 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
394 | self.flagDeflipData = False #asumo q la data no esta sin flip | |
393 |
|
395 | |||
394 | self.flagShiftFFT = False |
|
396 | self.flagShiftFFT = False | |
395 |
|
397 | |||
396 | def getNoisebyHildebrand(self): |
|
398 | def getNoisebyHildebrand(self): | |
397 | """ |
|
399 | """ | |
398 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
400 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
399 |
|
401 | |||
400 | Return: |
|
402 | Return: | |
401 | noiselevel |
|
403 | noiselevel | |
402 | """ |
|
404 | """ | |
403 |
|
405 | |||
404 | for channel in range(self.nChannels): |
|
406 | for channel in range(self.nChannels): | |
405 | daux = self.data_spc[channel,:,:] |
|
407 | daux = self.data_spc[channel,:,:] | |
406 | self.noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
408 | self.noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) | |
407 |
|
409 | |||
408 | return self.noise |
|
410 | return self.noise | |
409 |
|
411 | |||
410 | def getNoisebyWindow(self, heiIndexMin=0, heiIndexMax=-1, freqIndexMin=0, freqIndexMax=-1): |
|
412 | def getNoisebyWindow(self, heiIndexMin=0, heiIndexMax=-1, freqIndexMin=0, freqIndexMax=-1): | |
411 | """ |
|
413 | """ | |
412 | Determina el ruido del canal utilizando la ventana indicada con las coordenadas: |
|
414 | Determina el ruido del canal utilizando la ventana indicada con las coordenadas: | |
413 | (heiIndexMIn, freqIndexMin) hasta (heiIndexMax, freqIndexMAx) |
|
415 | (heiIndexMIn, freqIndexMin) hasta (heiIndexMax, freqIndexMAx) | |
414 |
|
416 | |||
415 | Inputs: |
|
417 | Inputs: | |
416 | heiIndexMin: Limite inferior del eje de alturas |
|
418 | heiIndexMin: Limite inferior del eje de alturas | |
417 | heiIndexMax: Limite superior del eje de alturas |
|
419 | heiIndexMax: Limite superior del eje de alturas | |
418 | freqIndexMin: Limite inferior del eje de frecuencia |
|
420 | freqIndexMin: Limite inferior del eje de frecuencia | |
419 | freqIndexMax: Limite supoerior del eje de frecuencia |
|
421 | freqIndexMax: Limite supoerior del eje de frecuencia | |
420 | """ |
|
422 | """ | |
421 |
|
423 | |||
422 | data = self.data_spc[:, heiIndexMin:heiIndexMax, freqIndexMin:freqIndexMax] |
|
424 | data = self.data_spc[:, heiIndexMin:heiIndexMax, freqIndexMin:freqIndexMax] | |
423 |
|
425 | |||
424 | for channel in range(self.nChannels): |
|
426 | for channel in range(self.nChannels): | |
425 | daux = data[channel,:,:] |
|
427 | daux = data[channel,:,:] | |
426 | self.noise[channel] = numpy.average(daux) |
|
428 | self.noise[channel] = numpy.average(daux) | |
427 |
|
429 | |||
428 | return self.noise |
|
430 | return self.noise | |
429 |
|
431 | |||
430 | def getNoisebySort(self): |
|
432 | def getNoisebySort(self): | |
431 |
|
433 | |||
432 | for channel in range(self.nChannels): |
|
434 | for channel in range(self.nChannels): | |
433 | daux = self.data_spc[channel,:,:] |
|
435 | daux = self.data_spc[channel,:,:] | |
434 | self.noise[channel] = sorting_bruce(daux, self.nIncohInt) |
|
436 | self.noise[channel] = sorting_bruce(daux, self.nIncohInt) | |
435 |
|
437 | |||
436 | return self.noise |
|
438 | return self.noise | |
437 |
|
439 | |||
438 | def getNoise(self, type = 1): |
|
440 | def getNoise(self, type = 1): | |
439 |
|
441 | |||
440 | self.noise = numpy.zeros(self.nChannels) |
|
442 | self.noise = numpy.zeros(self.nChannels) | |
441 |
|
443 | |||
442 | if type == 1: |
|
444 | if type == 1: | |
443 | noise = self.getNoisebyHildebrand() |
|
445 | noise = self.getNoisebyHildebrand() | |
444 |
|
446 | |||
445 | if type == 2: |
|
447 | if type == 2: | |
446 | noise = self.getNoisebySort() |
|
448 | noise = self.getNoisebySort() | |
447 |
|
449 | |||
448 | if type == 3: |
|
450 | if type == 3: | |
449 | noise = self.getNoisebyWindow() |
|
451 | noise = self.getNoisebyWindow() | |
450 |
|
452 | |||
451 |
return |
|
453 | return noise | |
452 |
|
454 | |||
453 |
|
455 | |||
454 | def getFreqRange(self, extrapoints=0): |
|
456 | def getFreqRange(self, extrapoints=0): | |
455 |
|
457 | |||
456 | deltafreq = self.getFmax() / self.nFFTPoints |
|
458 | deltafreq = self.getFmax() / self.nFFTPoints | |
457 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
459 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 | |
458 |
|
460 | |||
459 | return freqrange |
|
461 | return freqrange | |
460 |
|
462 | |||
461 | def getVelRange(self, extrapoints=0): |
|
463 | def getVelRange(self, extrapoints=0): | |
462 |
|
464 | |||
463 | deltav = self.getVmax() / self.nFFTPoints |
|
465 | deltav = self.getVmax() / self.nFFTPoints | |
464 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltav/2 |
|
466 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltav/2 | |
465 |
|
467 | |||
466 | return velrange |
|
468 | return velrange | |
467 |
|
469 | |||
468 | def getNPairs(self): |
|
470 | def getNPairs(self): | |
469 |
|
471 | |||
470 | return len(self.pairsList) |
|
472 | return len(self.pairsList) | |
471 |
|
473 | |||
472 | def getPairsIndexList(self): |
|
474 | def getPairsIndexList(self): | |
473 |
|
475 | |||
474 | return range(self.nPairs) |
|
476 | return range(self.nPairs) | |
475 |
|
477 | |||
|
478 | def getNormFactor(self): | |||
|
479 | pwcode = 1 | |||
|
480 | if self.flagDecodeData: | |||
|
481 | pwcode = numpy.sum(self.code[0]**2) | |||
|
482 | normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*self.windowOfFilter*pwcode | |||
|
483 | ||||
|
484 | return normFactor | |||
|
485 | ||||
476 | nPairs = property(getNPairs, "I'm the 'nPairs' property.") |
|
486 | nPairs = property(getNPairs, "I'm the 'nPairs' property.") | |
477 | pairsIndexList = property(getPairsIndexList, "I'm the 'pairsIndexList' property.") |
|
487 | pairsIndexList = property(getPairsIndexList, "I'm the 'pairsIndexList' property.") | |
|
488 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") | |||
478 |
|
489 | |||
479 | class SpectraHeis(JROData): |
|
490 | class SpectraHeis(JROData): | |
480 |
|
491 | |||
481 | data_spc = None |
|
492 | data_spc = None | |
482 |
|
493 | |||
483 | data_cspc = None |
|
494 | data_cspc = None | |
484 |
|
495 | |||
485 | data_dc = None |
|
496 | data_dc = None | |
486 |
|
497 | |||
487 | nFFTPoints = None |
|
498 | nFFTPoints = None | |
488 |
|
499 | |||
489 | nPairs = None |
|
500 | nPairs = None | |
490 |
|
501 | |||
491 | pairsList = None |
|
502 | pairsList = None | |
492 |
|
503 | |||
493 | nIncohInt = None |
|
504 | nIncohInt = None | |
494 |
|
505 | |||
495 | def __init__(self): |
|
506 | def __init__(self): | |
496 |
|
507 | |||
497 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
508 | self.radarControllerHeaderObj = RadarControllerHeader() | |
498 |
|
509 | |||
499 | self.systemHeaderObj = SystemHeader() |
|
510 | self.systemHeaderObj = SystemHeader() | |
500 |
|
511 | |||
501 | self.type = "SpectraHeis" |
|
512 | self.type = "SpectraHeis" | |
502 |
|
513 | |||
503 | self.dtype = None |
|
514 | self.dtype = None | |
504 |
|
515 | |||
505 | # self.nChannels = 0 |
|
516 | # self.nChannels = 0 | |
506 |
|
517 | |||
507 | # self.nHeights = 0 |
|
518 | # self.nHeights = 0 | |
508 |
|
519 | |||
509 | self.nProfiles = None |
|
520 | self.nProfiles = None | |
510 |
|
521 | |||
511 | self.heightList = None |
|
522 | self.heightList = None | |
512 |
|
523 | |||
513 | self.channelList = None |
|
524 | self.channelList = None | |
514 |
|
525 | |||
515 | # self.channelIndexList = None |
|
526 | # self.channelIndexList = None | |
516 |
|
527 | |||
517 | self.flagNoData = True |
|
528 | self.flagNoData = True | |
518 |
|
529 | |||
519 | self.flagTimeBlock = False |
|
530 | self.flagTimeBlock = False | |
520 |
|
531 | |||
521 | self.nPairs = 0 |
|
532 | self.nPairs = 0 | |
522 |
|
533 | |||
523 | self.utctime = None |
|
534 | self.utctime = None | |
524 |
|
535 | |||
525 | self.blocksize = None |
|
536 | self.blocksize = None |
@@ -1,954 +1,986 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import time, datetime |
|
2 | import time, datetime | |
3 | from graphics.figure import * |
|
3 | from graphics.figure import * | |
4 |
|
4 | |||
5 | class CrossSpectraPlot(Figure): |
|
5 | class CrossSpectraPlot(Figure): | |
6 |
|
6 | |||
7 | __isConfig = None |
|
7 | __isConfig = None | |
8 | __nsubplots = None |
|
8 | __nsubplots = None | |
9 |
|
9 | |||
10 | WIDTH = None |
|
10 | WIDTH = None | |
11 | HEIGHT = None |
|
11 | HEIGHT = None | |
12 | WIDTHPROF = None |
|
12 | WIDTHPROF = None | |
13 | HEIGHTPROF = None |
|
13 | HEIGHTPROF = None | |
14 | PREFIX = 'cspc' |
|
14 | PREFIX = 'cspc' | |
15 |
|
15 | |||
16 | def __init__(self): |
|
16 | def __init__(self): | |
17 |
|
17 | |||
18 | self.__isConfig = False |
|
18 | self.__isConfig = False | |
19 | self.__nsubplots = 4 |
|
19 | self.__nsubplots = 4 | |
20 |
|
20 | |||
21 | self.WIDTH = 250 |
|
21 | self.WIDTH = 250 | |
22 | self.HEIGHT = 250 |
|
22 | self.HEIGHT = 250 | |
23 | self.WIDTHPROF = 0 |
|
23 | self.WIDTHPROF = 0 | |
24 | self.HEIGHTPROF = 0 |
|
24 | self.HEIGHTPROF = 0 | |
25 |
|
25 | |||
26 | def getSubplots(self): |
|
26 | def getSubplots(self): | |
27 |
|
27 | |||
28 | ncol = 4 |
|
28 | ncol = 4 | |
29 | nrow = self.nplots |
|
29 | nrow = self.nplots | |
30 |
|
30 | |||
31 | return nrow, ncol |
|
31 | return nrow, ncol | |
32 |
|
32 | |||
33 | def setup(self, idfigure, nplots, wintitle, showprofile=True): |
|
33 | def setup(self, idfigure, nplots, wintitle, showprofile=True): | |
34 |
|
34 | |||
35 | self.__showprofile = showprofile |
|
35 | self.__showprofile = showprofile | |
36 | self.nplots = nplots |
|
36 | self.nplots = nplots | |
37 |
|
37 | |||
38 | ncolspan = 1 |
|
38 | ncolspan = 1 | |
39 | colspan = 1 |
|
39 | colspan = 1 | |
40 |
|
40 | |||
41 | self.createFigure(idfigure = idfigure, |
|
41 | self.createFigure(idfigure = idfigure, | |
42 | wintitle = wintitle, |
|
42 | wintitle = wintitle, | |
43 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
43 | widthplot = self.WIDTH + self.WIDTHPROF, | |
44 | heightplot = self.HEIGHT + self.HEIGHTPROF) |
|
44 | heightplot = self.HEIGHT + self.HEIGHTPROF) | |
45 |
|
45 | |||
46 | nrow, ncol = self.getSubplots() |
|
46 | nrow, ncol = self.getSubplots() | |
47 |
|
47 | |||
48 | counter = 0 |
|
48 | counter = 0 | |
49 | for y in range(nrow): |
|
49 | for y in range(nrow): | |
50 | for x in range(ncol): |
|
50 | for x in range(ncol): | |
51 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
51 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
52 |
|
52 | |||
53 | counter += 1 |
|
53 | counter += 1 | |
54 |
|
54 | |||
55 | def run(self, dataOut, idfigure, wintitle="", pairsList=None, showprofile='True', |
|
55 | def run(self, dataOut, idfigure, wintitle="", pairsList=None, showprofile='True', | |
56 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
56 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
57 | save=False, figpath='./', figfile=None): |
|
57 | save=False, figpath='./', figfile=None): | |
58 |
|
58 | |||
59 | """ |
|
59 | """ | |
60 |
|
60 | |||
61 | Input: |
|
61 | Input: | |
62 | dataOut : |
|
62 | dataOut : | |
63 | idfigure : |
|
63 | idfigure : | |
64 | wintitle : |
|
64 | wintitle : | |
65 | channelList : |
|
65 | channelList : | |
66 | showProfile : |
|
66 | showProfile : | |
67 | xmin : None, |
|
67 | xmin : None, | |
68 | xmax : None, |
|
68 | xmax : None, | |
69 | ymin : None, |
|
69 | ymin : None, | |
70 | ymax : None, |
|
70 | ymax : None, | |
71 | zmin : None, |
|
71 | zmin : None, | |
72 | zmax : None |
|
72 | zmax : None | |
73 | """ |
|
73 | """ | |
74 |
|
74 | |||
75 | if pairsList == None: |
|
75 | if pairsList == None: | |
76 | pairsIndexList = dataOut.pairsIndexList |
|
76 | pairsIndexList = dataOut.pairsIndexList | |
77 | else: |
|
77 | else: | |
78 | pairsIndexList = [] |
|
78 | pairsIndexList = [] | |
79 | for pair in pairsList: |
|
79 | for pair in pairsList: | |
80 | if pair not in dataOut.pairsList: |
|
80 | if pair not in dataOut.pairsList: | |
81 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
81 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) | |
82 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
82 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
83 |
|
83 | |||
84 | if pairsIndexList == []: |
|
84 | if pairsIndexList == []: | |
85 | return |
|
85 | return | |
86 |
|
86 | |||
87 | if len(pairsIndexList) > 4: |
|
87 | if len(pairsIndexList) > 4: | |
88 | pairsIndexList = pairsIndexList[0:4] |
|
88 | pairsIndexList = pairsIndexList[0:4] | |
89 |
|
89 | factor = dataOut.normFactor | ||
90 | x = dataOut.getVelRange(1) |
|
90 | x = dataOut.getVelRange(1) | |
91 | y = dataOut.getHeiRange() |
|
91 | y = dataOut.getHeiRange() | |
92 |
z = |
|
92 | z = dataOut.data_spc[:,:,:]/factor | |
93 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
93 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
94 | avg = numpy.average(numpy.abs(z), axis=1) |
|
94 | avg = numpy.average(numpy.abs(z), axis=1) | |
|
95 | noise = dataOut.getNoise()/factor | |||
|
96 | ||||
|
97 | zdB = 10*numpy.log10(z) | |||
|
98 | avgdB = 10*numpy.log10(avg) | |||
|
99 | noisedB = 10*numpy.log10(noise) | |||
95 |
|
100 | |||
96 | noise = dataOut.getNoise() |
|
|||
97 |
|
101 | |||
98 | thisDatetime = dataOut.datatime |
|
102 | thisDatetime = dataOut.datatime | |
99 | title = "Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
103 | title = "Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
100 | xlabel = "Velocity (m/s)" |
|
104 | xlabel = "Velocity (m/s)" | |
101 | ylabel = "Range (Km)" |
|
105 | ylabel = "Range (Km)" | |
102 |
|
106 | |||
103 | if not self.__isConfig: |
|
107 | if not self.__isConfig: | |
104 |
|
108 | |||
105 | nplots = len(pairsIndexList) |
|
109 | nplots = len(pairsIndexList) | |
106 |
|
110 | |||
107 | self.setup(idfigure=idfigure, |
|
111 | self.setup(idfigure=idfigure, | |
108 | nplots=nplots, |
|
112 | nplots=nplots, | |
109 | wintitle=wintitle, |
|
113 | wintitle=wintitle, | |
110 | showprofile=showprofile) |
|
114 | showprofile=showprofile) | |
111 |
|
115 | |||
112 | if xmin == None: xmin = numpy.nanmin(x) |
|
116 | if xmin == None: xmin = numpy.nanmin(x) | |
113 | if xmax == None: xmax = numpy.nanmax(x) |
|
117 | if xmax == None: xmax = numpy.nanmax(x) | |
114 | if ymin == None: ymin = numpy.nanmin(y) |
|
118 | if ymin == None: ymin = numpy.nanmin(y) | |
115 | if ymax == None: ymax = numpy.nanmax(y) |
|
119 | if ymax == None: ymax = numpy.nanmax(y) | |
116 | if zmin == None: zmin = numpy.nanmin(avg)*0.9 |
|
120 | if zmin == None: zmin = numpy.nanmin(avgdB)*0.9 | |
117 | if zmax == None: zmax = numpy.nanmax(avg)*0.9 |
|
121 | if zmax == None: zmax = numpy.nanmax(avgdB)*0.9 | |
118 |
|
122 | |||
119 | self.__isConfig = True |
|
123 | self.__isConfig = True | |
120 |
|
124 | |||
121 | self.setWinTitle(title) |
|
125 | self.setWinTitle(title) | |
122 |
|
126 | |||
123 | for i in range(self.nplots): |
|
127 | for i in range(self.nplots): | |
124 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
128 | pair = dataOut.pairsList[pairsIndexList[i]] | |
125 |
|
129 | |||
126 | title = "Channel %d: %4.2fdB" %(pair[0], noise[pair[0]]) |
|
130 | title = "Channel %d: %4.2fdB" %(pair[0], noisedB[pair[0]]) | |
127 | z = 10.*numpy.log10(dataOut.data_spc[pair[0],:,:]) |
|
131 | zdB = 10.*numpy.log10(dataOut.data_spc[pair[0],:,:]/factor) | |
128 | axes0 = self.axesList[i*self.__nsubplots] |
|
132 | axes0 = self.axesList[i*self.__nsubplots] | |
129 | axes0.pcolor(x, y, z, |
|
133 | axes0.pcolor(x, y, zdB, | |
130 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
134 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
131 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
135 | xlabel=xlabel, ylabel=ylabel, title=title, | |
132 | ticksize=9, cblabel='') |
|
136 | ticksize=9, cblabel='') | |
133 |
|
137 | |||
134 | title = "Channel %d: %4.2fdB" %(pair[1], noise[pair[1]]) |
|
138 | title = "Channel %d: %4.2fdB" %(pair[1], noisedB[pair[1]]) | |
135 | z = 10.*numpy.log10(dataOut.data_spc[pair[1],:,:]) |
|
139 | zdB = 10.*numpy.log10(dataOut.data_spc[pair[1],:,:]/factor) | |
136 | axes0 = self.axesList[i*self.__nsubplots+1] |
|
140 | axes0 = self.axesList[i*self.__nsubplots+1] | |
137 | axes0.pcolor(x, y, z, |
|
141 | axes0.pcolor(x, y, zdB, | |
138 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
142 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
139 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
143 | xlabel=xlabel, ylabel=ylabel, title=title, | |
140 | ticksize=9, cblabel='') |
|
144 | ticksize=9, cblabel='') | |
141 |
|
145 | |||
142 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:]) |
|
146 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:]) | |
143 | coherence = numpy.abs(coherenceComplex) |
|
147 | coherence = numpy.abs(coherenceComplex) | |
144 | phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
148 | phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi | |
145 |
|
149 | |||
146 |
|
150 | |||
147 | title = "Coherence %d%d" %(pair[0], pair[1]) |
|
151 | title = "Coherence %d%d" %(pair[0], pair[1]) | |
148 | axes0 = self.axesList[i*self.__nsubplots+2] |
|
152 | axes0 = self.axesList[i*self.__nsubplots+2] | |
149 | axes0.pcolor(x, y, coherence, |
|
153 | axes0.pcolor(x, y, coherence, | |
150 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=0, zmax=1, |
|
154 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=0, zmax=1, | |
151 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
155 | xlabel=xlabel, ylabel=ylabel, title=title, | |
152 | ticksize=9, cblabel='') |
|
156 | ticksize=9, cblabel='') | |
153 |
|
157 | |||
154 | title = "Phase %d%d" %(pair[0], pair[1]) |
|
158 | title = "Phase %d%d" %(pair[0], pair[1]) | |
155 | axes0 = self.axesList[i*self.__nsubplots+3] |
|
159 | axes0 = self.axesList[i*self.__nsubplots+3] | |
156 | axes0.pcolor(x, y, phase, |
|
160 | axes0.pcolor(x, y, phase, | |
157 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=-180, zmax=180, |
|
161 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=-180, zmax=180, | |
158 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
162 | xlabel=xlabel, ylabel=ylabel, title=title, | |
159 | ticksize=9, cblabel='', colormap='RdBu_r') |
|
163 | ticksize=9, cblabel='', colormap='RdBu_r') | |
160 |
|
164 | |||
161 |
|
165 | |||
162 |
|
166 | |||
163 | self.draw() |
|
167 | self.draw() | |
164 |
|
168 | |||
165 | if save: |
|
169 | if save: | |
166 | date = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
170 | date = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
167 | if figfile == None: |
|
171 | if figfile == None: | |
168 | figfile = self.getFilename(name = date) |
|
172 | figfile = self.getFilename(name = date) | |
169 |
|
173 | |||
170 | self.saveFigure(figpath, figfile) |
|
174 | self.saveFigure(figpath, figfile) | |
171 |
|
175 | |||
172 |
|
176 | |||
173 | class RTIPlot(Figure): |
|
177 | class RTIPlot(Figure): | |
174 |
|
178 | |||
175 | __isConfig = None |
|
179 | __isConfig = None | |
176 | __nsubplots = None |
|
180 | __nsubplots = None | |
177 |
|
181 | |||
178 | WIDTHPROF = None |
|
182 | WIDTHPROF = None | |
179 | HEIGHTPROF = None |
|
183 | HEIGHTPROF = None | |
180 | PREFIX = 'rti' |
|
184 | PREFIX = 'rti' | |
181 |
|
185 | |||
182 | def __init__(self): |
|
186 | def __init__(self): | |
183 |
|
187 | |||
184 | self.timerange = 2*60*60 |
|
188 | self.timerange = 2*60*60 | |
185 | self.__isConfig = False |
|
189 | self.__isConfig = False | |
186 | self.__nsubplots = 1 |
|
190 | self.__nsubplots = 1 | |
187 |
|
191 | |||
188 | self.WIDTH = 800 |
|
192 | self.WIDTH = 800 | |
189 | self.HEIGHT = 200 |
|
193 | self.HEIGHT = 200 | |
190 | self.WIDTHPROF = 120 |
|
194 | self.WIDTHPROF = 120 | |
191 | self.HEIGHTPROF = 0 |
|
195 | self.HEIGHTPROF = 0 | |
192 |
|
196 | |||
193 | def getSubplots(self): |
|
197 | def getSubplots(self): | |
194 |
|
198 | |||
195 | ncol = 1 |
|
199 | ncol = 1 | |
196 | nrow = self.nplots |
|
200 | nrow = self.nplots | |
197 |
|
201 | |||
198 | return nrow, ncol |
|
202 | return nrow, ncol | |
199 |
|
203 | |||
200 | def setup(self, idfigure, nplots, wintitle, showprofile=True): |
|
204 | def setup(self, idfigure, nplots, wintitle, showprofile=True): | |
201 |
|
205 | |||
202 | self.__showprofile = showprofile |
|
206 | self.__showprofile = showprofile | |
203 | self.nplots = nplots |
|
207 | self.nplots = nplots | |
204 |
|
208 | |||
205 | ncolspan = 1 |
|
209 | ncolspan = 1 | |
206 | colspan = 1 |
|
210 | colspan = 1 | |
207 | if showprofile: |
|
211 | if showprofile: | |
208 | ncolspan = 7 |
|
212 | ncolspan = 7 | |
209 | colspan = 6 |
|
213 | colspan = 6 | |
210 | self.__nsubplots = 2 |
|
214 | self.__nsubplots = 2 | |
211 |
|
215 | |||
212 | self.createFigure(idfigure = idfigure, |
|
216 | self.createFigure(idfigure = idfigure, | |
213 | wintitle = wintitle, |
|
217 | wintitle = wintitle, | |
214 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
218 | widthplot = self.WIDTH + self.WIDTHPROF, | |
215 | heightplot = self.HEIGHT + self.HEIGHTPROF) |
|
219 | heightplot = self.HEIGHT + self.HEIGHTPROF) | |
216 |
|
220 | |||
217 | nrow, ncol = self.getSubplots() |
|
221 | nrow, ncol = self.getSubplots() | |
218 |
|
222 | |||
219 | counter = 0 |
|
223 | counter = 0 | |
220 | for y in range(nrow): |
|
224 | for y in range(nrow): | |
221 | for x in range(ncol): |
|
225 | for x in range(ncol): | |
222 |
|
226 | |||
223 | if counter >= self.nplots: |
|
227 | if counter >= self.nplots: | |
224 | break |
|
228 | break | |
225 |
|
229 | |||
226 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
230 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
227 |
|
231 | |||
228 | if showprofile: |
|
232 | if showprofile: | |
229 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
233 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
230 |
|
234 | |||
231 | counter += 1 |
|
235 | counter += 1 | |
232 |
|
236 | |||
233 | def run(self, dataOut, idfigure, wintitle="", channelList=None, showprofile='True', |
|
237 | def run(self, dataOut, idfigure, wintitle="", channelList=None, showprofile='True', | |
234 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
238 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
235 | timerange=None, |
|
239 | timerange=None, | |
236 | save=False, figpath='./', figfile=None): |
|
240 | save=False, figpath='./', figfile=None): | |
237 |
|
241 | |||
238 | """ |
|
242 | """ | |
239 |
|
243 | |||
240 | Input: |
|
244 | Input: | |
241 | dataOut : |
|
245 | dataOut : | |
242 | idfigure : |
|
246 | idfigure : | |
243 | wintitle : |
|
247 | wintitle : | |
244 | channelList : |
|
248 | channelList : | |
245 | showProfile : |
|
249 | showProfile : | |
246 | xmin : None, |
|
250 | xmin : None, | |
247 | xmax : None, |
|
251 | xmax : None, | |
248 | ymin : None, |
|
252 | ymin : None, | |
249 | ymax : None, |
|
253 | ymax : None, | |
250 | zmin : None, |
|
254 | zmin : None, | |
251 | zmax : None |
|
255 | zmax : None | |
252 | """ |
|
256 | """ | |
253 |
|
257 | |||
254 | if channelList == None: |
|
258 | if channelList == None: | |
255 | channelIndexList = dataOut.channelIndexList |
|
259 | channelIndexList = dataOut.channelIndexList | |
256 | else: |
|
260 | else: | |
257 | channelIndexList = [] |
|
261 | channelIndexList = [] | |
258 | for channel in channelList: |
|
262 | for channel in channelList: | |
259 | if channel not in dataOut.channelList: |
|
263 | if channel not in dataOut.channelList: | |
260 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
264 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
261 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
265 | channelIndexList.append(dataOut.channelList.index(channel)) | |
262 |
|
266 | |||
263 | if timerange != None: |
|
267 | if timerange != None: | |
264 | self.timerange = timerange |
|
268 | self.timerange = timerange | |
265 |
|
269 | |||
266 | tmin = None |
|
270 | tmin = None | |
267 | tmax = None |
|
271 | tmax = None | |
|
272 | factor = dataOut.normFactor | |||
268 | x = dataOut.getTimeRange() |
|
273 | x = dataOut.getTimeRange() | |
269 | y = dataOut.getHeiRange() |
|
274 | y = dataOut.getHeiRange() | |
270 | z = 10.*numpy.log10(dataOut.data_spc[channelIndexList,:,:]) |
|
275 | ||
|
276 | z = dataOut.data_spc[channelIndexList,:,:]/factor | |||
271 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
277 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
272 | avg = numpy.average(z, axis=1) |
|
278 | avg = numpy.average(z, axis=1) | |
|
279 | noise = dataOut.getNoise()/factor | |||
273 |
|
280 | |||
274 | noise = dataOut.getNoise() |
|
281 | # zdB = 10.*numpy.log10(z) | |
|
282 | avgdB = 10.*numpy.log10(avg) | |||
|
283 | noisedB = 10.*numpy.log10(noise) | |||
275 |
|
284 | |||
276 | thisDatetime = dataOut.datatime |
|
285 | thisDatetime = dataOut.datatime | |
277 | title = "RTI: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
286 | title = "RTI: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
278 | xlabel = "Velocity (m/s)" |
|
287 | xlabel = "Velocity (m/s)" | |
279 | ylabel = "Range (Km)" |
|
288 | ylabel = "Range (Km)" | |
280 |
|
289 | |||
281 | if not self.__isConfig: |
|
290 | if not self.__isConfig: | |
282 |
|
291 | |||
283 | nplots = len(channelIndexList) |
|
292 | nplots = len(channelIndexList) | |
284 |
|
293 | |||
285 | self.setup(idfigure=idfigure, |
|
294 | self.setup(idfigure=idfigure, | |
286 | nplots=nplots, |
|
295 | nplots=nplots, | |
287 | wintitle=wintitle, |
|
296 | wintitle=wintitle, | |
288 | showprofile=showprofile) |
|
297 | showprofile=showprofile) | |
289 |
|
298 | |||
290 | tmin, tmax = self.getTimeLim(x, xmin, xmax) |
|
299 | tmin, tmax = self.getTimeLim(x, xmin, xmax) | |
291 | if ymin == None: ymin = numpy.nanmin(y) |
|
300 | if ymin == None: ymin = numpy.nanmin(y) | |
292 | if ymax == None: ymax = numpy.nanmax(y) |
|
301 | if ymax == None: ymax = numpy.nanmax(y) | |
293 | if zmin == None: zmin = numpy.nanmin(avg)*0.9 |
|
302 | if zmin == None: zmin = numpy.nanmin(avgdB)*0.9 | |
294 | if zmax == None: zmax = numpy.nanmax(avg)*0.9 |
|
303 | if zmax == None: zmax = numpy.nanmax(avgdB)*0.9 | |
295 |
|
304 | |||
296 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
305 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
297 | self.__isConfig = True |
|
306 | self.__isConfig = True | |
298 |
|
307 | |||
299 |
|
308 | |||
300 | self.setWinTitle(title) |
|
309 | self.setWinTitle(title) | |
301 |
|
310 | |||
302 | for i in range(self.nplots): |
|
311 | for i in range(self.nplots): | |
303 | title = "Channel %d: %s" %(dataOut.channelList[i], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
312 | title = "Channel %d: %s" %(dataOut.channelList[i], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
304 | axes = self.axesList[i*self.__nsubplots] |
|
313 | axes = self.axesList[i*self.__nsubplots] | |
305 | z = avg[i].reshape((1,-1)) |
|
314 | zdB = avgdB[i].reshape((1,-1)) | |
306 | axes.pcolor(x, y, z, |
|
315 | axes.pcolor(x, y, zdB, | |
307 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
316 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
308 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
317 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
309 | ticksize=9, cblabel='', cbsize="1%") |
|
318 | ticksize=9, cblabel='', cbsize="1%") | |
310 |
|
319 | |||
311 | if self.__showprofile: |
|
320 | if self.__showprofile: | |
312 | axes = self.axesList[i*self.__nsubplots +1] |
|
321 | axes = self.axesList[i*self.__nsubplots +1] | |
313 | axes.pline(avg[i], y, |
|
322 | axes.pline(avgdB[i], y, | |
314 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
323 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
315 | xlabel='dB', ylabel='', title='', |
|
324 | xlabel='dB', ylabel='', title='', | |
316 | ytick_visible=False, |
|
325 | ytick_visible=False, | |
317 | grid='x') |
|
326 | grid='x') | |
318 |
|
327 | |||
319 | self.draw() |
|
328 | self.draw() | |
320 |
|
329 | |||
321 | if save: |
|
330 | if save: | |
322 |
|
331 | |||
323 | if figfile == None: |
|
332 | if figfile == None: | |
324 | figfile = self.getFilename(name = self.name) |
|
333 | figfile = self.getFilename(name = self.name) | |
325 |
|
334 | |||
326 | self.saveFigure(figpath, figfile) |
|
335 | self.saveFigure(figpath, figfile) | |
327 |
|
336 | |||
328 | if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax: |
|
337 | if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax: | |
329 | self.__isConfig = False |
|
338 | self.__isConfig = False | |
330 |
|
339 | |||
331 | class SpectraPlot(Figure): |
|
340 | class SpectraPlot(Figure): | |
332 |
|
341 | |||
333 | __isConfig = None |
|
342 | __isConfig = None | |
334 | __nsubplots = None |
|
343 | __nsubplots = None | |
335 |
|
344 | |||
336 | WIDTHPROF = None |
|
345 | WIDTHPROF = None | |
337 | HEIGHTPROF = None |
|
346 | HEIGHTPROF = None | |
338 | PREFIX = 'spc' |
|
347 | PREFIX = 'spc' | |
339 |
|
348 | |||
340 | def __init__(self): |
|
349 | def __init__(self): | |
341 |
|
350 | |||
342 | self.__isConfig = False |
|
351 | self.__isConfig = False | |
343 | self.__nsubplots = 1 |
|
352 | self.__nsubplots = 1 | |
344 |
|
353 | |||
345 | self.WIDTH = 230 |
|
354 | self.WIDTH = 230 | |
346 | self.HEIGHT = 250 |
|
355 | self.HEIGHT = 250 | |
347 | self.WIDTHPROF = 120 |
|
356 | self.WIDTHPROF = 120 | |
348 | self.HEIGHTPROF = 0 |
|
357 | self.HEIGHTPROF = 0 | |
349 |
|
358 | |||
350 | def getSubplots(self): |
|
359 | def getSubplots(self): | |
351 |
|
360 | |||
352 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
361 | ncol = int(numpy.sqrt(self.nplots)+0.9) | |
353 | nrow = int(self.nplots*1./ncol + 0.9) |
|
362 | nrow = int(self.nplots*1./ncol + 0.9) | |
354 |
|
363 | |||
355 | return nrow, ncol |
|
364 | return nrow, ncol | |
356 |
|
365 | |||
357 | def setup(self, idfigure, nplots, wintitle, showprofile=True): |
|
366 | def setup(self, idfigure, nplots, wintitle, showprofile=True): | |
358 |
|
367 | |||
359 | self.__showprofile = showprofile |
|
368 | self.__showprofile = showprofile | |
360 | self.nplots = nplots |
|
369 | self.nplots = nplots | |
361 |
|
370 | |||
362 | ncolspan = 1 |
|
371 | ncolspan = 1 | |
363 | colspan = 1 |
|
372 | colspan = 1 | |
364 | if showprofile: |
|
373 | if showprofile: | |
365 | ncolspan = 3 |
|
374 | ncolspan = 3 | |
366 | colspan = 2 |
|
375 | colspan = 2 | |
367 | self.__nsubplots = 2 |
|
376 | self.__nsubplots = 2 | |
368 |
|
377 | |||
369 | self.createFigure(idfigure = idfigure, |
|
378 | self.createFigure(idfigure = idfigure, | |
370 | wintitle = wintitle, |
|
379 | wintitle = wintitle, | |
371 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
380 | widthplot = self.WIDTH + self.WIDTHPROF, | |
372 | heightplot = self.HEIGHT + self.HEIGHTPROF) |
|
381 | heightplot = self.HEIGHT + self.HEIGHTPROF) | |
373 |
|
382 | |||
374 | nrow, ncol = self.getSubplots() |
|
383 | nrow, ncol = self.getSubplots() | |
375 |
|
384 | |||
376 | counter = 0 |
|
385 | counter = 0 | |
377 | for y in range(nrow): |
|
386 | for y in range(nrow): | |
378 | for x in range(ncol): |
|
387 | for x in range(ncol): | |
379 |
|
388 | |||
380 | if counter >= self.nplots: |
|
389 | if counter >= self.nplots: | |
381 | break |
|
390 | break | |
382 |
|
391 | |||
383 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
392 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
384 |
|
393 | |||
385 | if showprofile: |
|
394 | if showprofile: | |
386 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
395 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
387 |
|
396 | |||
388 | counter += 1 |
|
397 | counter += 1 | |
389 |
|
398 | |||
390 | def run(self, dataOut, idfigure, wintitle="", channelList=None, showprofile='True', |
|
399 | def run(self, dataOut, idfigure, wintitle="", channelList=None, showprofile='True', | |
391 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
400 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
392 | save=False, figpath='./', figfile=None): |
|
401 | save=False, figpath='./', figfile=None): | |
393 |
|
402 | |||
394 | """ |
|
403 | """ | |
395 |
|
404 | |||
396 | Input: |
|
405 | Input: | |
397 | dataOut : |
|
406 | dataOut : | |
398 | idfigure : |
|
407 | idfigure : | |
399 | wintitle : |
|
408 | wintitle : | |
400 | channelList : |
|
409 | channelList : | |
401 | showProfile : |
|
410 | showProfile : | |
402 | xmin : None, |
|
411 | xmin : None, | |
403 | xmax : None, |
|
412 | xmax : None, | |
404 | ymin : None, |
|
413 | ymin : None, | |
405 | ymax : None, |
|
414 | ymax : None, | |
406 | zmin : None, |
|
415 | zmin : None, | |
407 | zmax : None |
|
416 | zmax : None | |
408 | """ |
|
417 | """ | |
409 |
|
418 | |||
410 | if channelList == None: |
|
419 | if channelList == None: | |
411 | channelIndexList = dataOut.channelIndexList |
|
420 | channelIndexList = dataOut.channelIndexList | |
412 | else: |
|
421 | else: | |
413 | channelIndexList = [] |
|
422 | channelIndexList = [] | |
414 | for channel in channelList: |
|
423 | for channel in channelList: | |
415 | if channel not in dataOut.channelList: |
|
424 | if channel not in dataOut.channelList: | |
416 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
425 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
417 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
426 | channelIndexList.append(dataOut.channelList.index(channel)) | |
418 |
|
427 | factor = dataOut.normFactor | ||
419 | x = dataOut.getVelRange(1) |
|
428 | x = dataOut.getVelRange(1) | |
420 | y = dataOut.getHeiRange() |
|
429 | y = dataOut.getHeiRange() | |
421 |
|
430 | |||
422 |
z = |
|
431 | z = dataOut.data_spc[channelIndexList,:,:]/factor | |
423 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
432 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
424 | avg = numpy.average(z, axis=1) |
|
433 | avg = numpy.average(z, axis=1) | |
|
434 | noise = dataOut.getNoise()/factor | |||
425 |
|
435 | |||
426 | noise = dataOut.getNoise() |
|
436 | zdB = 10*numpy.log10(z) | |
|
437 | avgdB = 10*numpy.log10(avg) | |||
|
438 | noisedB = 10*numpy.log10(noise) | |||
427 |
|
439 | |||
428 | thisDatetime = dataOut.datatime |
|
440 | thisDatetime = dataOut.datatime | |
429 | title = "Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
441 | title = "Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
430 | xlabel = "Velocity (m/s)" |
|
442 | xlabel = "Velocity (m/s)" | |
431 | ylabel = "Range (Km)" |
|
443 | ylabel = "Range (Km)" | |
432 |
|
444 | |||
433 | if not self.__isConfig: |
|
445 | if not self.__isConfig: | |
434 |
|
446 | |||
435 | nplots = len(channelIndexList) |
|
447 | nplots = len(channelIndexList) | |
436 |
|
448 | |||
437 | self.setup(idfigure=idfigure, |
|
449 | self.setup(idfigure=idfigure, | |
438 | nplots=nplots, |
|
450 | nplots=nplots, | |
439 | wintitle=wintitle, |
|
451 | wintitle=wintitle, | |
440 | showprofile=showprofile) |
|
452 | showprofile=showprofile) | |
441 |
|
453 | |||
442 | if xmin == None: xmin = numpy.nanmin(x) |
|
454 | if xmin == None: xmin = numpy.nanmin(x) | |
443 | if xmax == None: xmax = numpy.nanmax(x) |
|
455 | if xmax == None: xmax = numpy.nanmax(x) | |
444 | if ymin == None: ymin = numpy.nanmin(y) |
|
456 | if ymin == None: ymin = numpy.nanmin(y) | |
445 | if ymax == None: ymax = numpy.nanmax(y) |
|
457 | if ymax == None: ymax = numpy.nanmax(y) | |
446 | if zmin == None: zmin = numpy.nanmin(avg)*0.9 |
|
458 | if zmin == None: zmin = numpy.nanmin(avgdB)*0.9 | |
447 | if zmax == None: zmax = numpy.nanmax(avg)*0.9 |
|
459 | if zmax == None: zmax = numpy.nanmax(avgdB)*0.9 | |
448 |
|
460 | |||
449 | self.__isConfig = True |
|
461 | self.__isConfig = True | |
450 |
|
462 | |||
451 | self.setWinTitle(title) |
|
463 | self.setWinTitle(title) | |
452 |
|
464 | |||
453 | for i in range(self.nplots): |
|
465 | for i in range(self.nplots): | |
454 | title = "Channel %d: %4.2fdB" %(dataOut.channelList[i], noise[i]) |
|
466 | title = "Channel %d: %4.2fdB" %(dataOut.channelList[i], noisedB[i]) | |
455 | axes = self.axesList[i*self.__nsubplots] |
|
467 | axes = self.axesList[i*self.__nsubplots] | |
456 | axes.pcolor(x, y, z[i,:,:], |
|
468 | axes.pcolor(x, y, zdB[i,:,:], | |
457 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
469 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
458 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
470 | xlabel=xlabel, ylabel=ylabel, title=title, | |
459 | ticksize=9, cblabel='') |
|
471 | ticksize=9, cblabel='') | |
460 |
|
472 | |||
461 | if self.__showprofile: |
|
473 | if self.__showprofile: | |
462 | axes = self.axesList[i*self.__nsubplots +1] |
|
474 | axes = self.axesList[i*self.__nsubplots +1] | |
463 | axes.pline(avg[i], y, |
|
475 | axes.pline(avgdB[i], y, | |
464 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
476 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
465 | xlabel='dB', ylabel='', title='', |
|
477 | xlabel='dB', ylabel='', title='', | |
466 | ytick_visible=False, |
|
478 | ytick_visible=False, | |
467 | grid='x') |
|
479 | grid='x') | |
468 |
|
480 | |||
469 | noiseline = numpy.repeat(noise[i], len(y)) |
|
481 | noiseline = numpy.repeat(noisedB[i], len(y)) | |
470 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
482 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) | |
471 |
|
483 | |||
472 | self.draw() |
|
484 | self.draw() | |
473 |
|
485 | |||
474 | if save: |
|
486 | if save: | |
475 | date = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
487 | date = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
476 | if figfile == None: |
|
488 | if figfile == None: | |
477 | figfile = self.getFilename(name = date) |
|
489 | figfile = self.getFilename(name = date) | |
478 |
|
490 | |||
479 | self.saveFigure(figpath, figfile) |
|
491 | self.saveFigure(figpath, figfile) | |
480 |
|
492 | |||
481 | class Scope(Figure): |
|
493 | class Scope(Figure): | |
482 |
|
494 | |||
483 | __isConfig = None |
|
495 | __isConfig = None | |
484 |
|
496 | |||
485 | def __init__(self): |
|
497 | def __init__(self): | |
486 |
|
498 | |||
487 | self.__isConfig = False |
|
499 | self.__isConfig = False | |
488 | self.WIDTH = 600 |
|
500 | self.WIDTH = 600 | |
489 | self.HEIGHT = 200 |
|
501 | self.HEIGHT = 200 | |
490 |
|
502 | |||
491 | def getSubplots(self): |
|
503 | def getSubplots(self): | |
492 |
|
504 | |||
493 | nrow = self.nplots |
|
505 | nrow = self.nplots | |
494 | ncol = 3 |
|
506 | ncol = 3 | |
495 | return nrow, ncol |
|
507 | return nrow, ncol | |
496 |
|
508 | |||
497 | def setup(self, idfigure, nplots, wintitle): |
|
509 | def setup(self, idfigure, nplots, wintitle): | |
498 |
|
510 | |||
499 | self.nplots = nplots |
|
511 | self.nplots = nplots | |
500 |
|
512 | |||
501 | self.createFigure(idfigure, wintitle) |
|
513 | self.createFigure(idfigure, wintitle) | |
502 |
|
514 | |||
503 | nrow,ncol = self.getSubplots() |
|
515 | nrow,ncol = self.getSubplots() | |
504 | colspan = 3 |
|
516 | colspan = 3 | |
505 | rowspan = 1 |
|
517 | rowspan = 1 | |
506 |
|
518 | |||
507 | for i in range(nplots): |
|
519 | for i in range(nplots): | |
508 | self.addAxes(nrow, ncol, i, 0, colspan, rowspan) |
|
520 | self.addAxes(nrow, ncol, i, 0, colspan, rowspan) | |
509 |
|
521 | |||
510 |
|
522 | |||
511 |
|
523 | |||
512 | def run(self, dataOut, idfigure, wintitle="", channelList=None, |
|
524 | def run(self, dataOut, idfigure, wintitle="", channelList=None, | |
513 | xmin=None, xmax=None, ymin=None, ymax=None, save=False, |
|
525 | xmin=None, xmax=None, ymin=None, ymax=None, save=False, | |
514 | figpath='./', figfile=None): |
|
526 | figpath='./', figfile=None): | |
515 |
|
527 | |||
516 | """ |
|
528 | """ | |
517 |
|
529 | |||
518 | Input: |
|
530 | Input: | |
519 | dataOut : |
|
531 | dataOut : | |
520 | idfigure : |
|
532 | idfigure : | |
521 | wintitle : |
|
533 | wintitle : | |
522 | channelList : |
|
534 | channelList : | |
523 | xmin : None, |
|
535 | xmin : None, | |
524 | xmax : None, |
|
536 | xmax : None, | |
525 | ymin : None, |
|
537 | ymin : None, | |
526 | ymax : None, |
|
538 | ymax : None, | |
527 | """ |
|
539 | """ | |
528 |
|
540 | |||
529 | if channelList == None: |
|
541 | if channelList == None: | |
530 | channelIndexList = dataOut.channelIndexList |
|
542 | channelIndexList = dataOut.channelIndexList | |
531 | else: |
|
543 | else: | |
532 | channelIndexList = [] |
|
544 | channelIndexList = [] | |
533 | for channel in channelList: |
|
545 | for channel in channelList: | |
534 | if channel not in dataOut.channelList: |
|
546 | if channel not in dataOut.channelList: | |
535 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
547 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
536 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
548 | channelIndexList.append(dataOut.channelList.index(channel)) | |
537 |
|
549 | |||
538 | x = dataOut.heightList |
|
550 | x = dataOut.heightList | |
539 | y = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) |
|
551 | y = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) | |
540 | y = y.real |
|
552 | y = y.real | |
541 |
|
553 | |||
542 | thisDatetime = dataOut.datatime |
|
554 | thisDatetime = dataOut.datatime | |
543 | title = "Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
555 | title = "Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
544 | xlabel = "Range (Km)" |
|
556 | xlabel = "Range (Km)" | |
545 | ylabel = "Intensity" |
|
557 | ylabel = "Intensity" | |
546 |
|
558 | |||
547 | if not self.__isConfig: |
|
559 | if not self.__isConfig: | |
548 | nplots = len(channelIndexList) |
|
560 | nplots = len(channelIndexList) | |
549 |
|
561 | |||
550 | self.setup(idfigure=idfigure, |
|
562 | self.setup(idfigure=idfigure, | |
551 | nplots=nplots, |
|
563 | nplots=nplots, | |
552 | wintitle=wintitle) |
|
564 | wintitle=wintitle) | |
553 |
|
565 | |||
554 | if xmin == None: xmin = numpy.nanmin(x) |
|
566 | if xmin == None: xmin = numpy.nanmin(x) | |
555 | if xmax == None: xmax = numpy.nanmax(x) |
|
567 | if xmax == None: xmax = numpy.nanmax(x) | |
556 | if ymin == None: ymin = numpy.nanmin(y) |
|
568 | if ymin == None: ymin = numpy.nanmin(y) | |
557 | if ymax == None: ymax = numpy.nanmax(y) |
|
569 | if ymax == None: ymax = numpy.nanmax(y) | |
558 |
|
570 | |||
559 | self.__isConfig = True |
|
571 | self.__isConfig = True | |
560 |
|
572 | |||
561 | self.setWinTitle(title) |
|
573 | self.setWinTitle(title) | |
562 |
|
574 | |||
563 | for i in range(len(self.axesList)): |
|
575 | for i in range(len(self.axesList)): | |
564 | title = "Channel %d" %(i) |
|
576 | title = "Channel %d" %(i) | |
565 | axes = self.axesList[i] |
|
577 | axes = self.axesList[i] | |
566 | ychannel = y[i,:] |
|
578 | ychannel = y[i,:] | |
567 | axes.pline(x, ychannel, |
|
579 | axes.pline(x, ychannel, | |
568 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
580 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |
569 | xlabel=xlabel, ylabel=ylabel, title=title) |
|
581 | xlabel=xlabel, ylabel=ylabel, title=title) | |
570 |
|
582 | |||
571 | self.draw() |
|
583 | self.draw() | |
572 |
|
584 | |||
573 | if save: |
|
585 | if save: | |
574 | date = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
586 | date = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
575 | if figfile == None: |
|
587 | if figfile == None: | |
576 | figfile = self.getFilename(name = date) |
|
588 | figfile = self.getFilename(name = date) | |
577 |
|
589 | |||
578 | self.saveFigure(figpath, figfile) |
|
590 | self.saveFigure(figpath, figfile) | |
579 |
|
591 | |||
580 | class ProfilePlot(Figure): |
|
592 | class ProfilePlot(Figure): | |
581 | __isConfig = None |
|
593 | __isConfig = None | |
582 | __nsubplots = None |
|
594 | __nsubplots = None | |
583 |
|
595 | |||
584 | WIDTHPROF = None |
|
596 | WIDTHPROF = None | |
585 | HEIGHTPROF = None |
|
597 | HEIGHTPROF = None | |
586 | PREFIX = 'spcprofile' |
|
598 | PREFIX = 'spcprofile' | |
587 |
|
599 | |||
588 | def __init__(self): |
|
600 | def __init__(self): | |
589 | self.__isConfig = False |
|
601 | self.__isConfig = False | |
590 | self.__nsubplots = 1 |
|
602 | self.__nsubplots = 1 | |
591 |
|
603 | |||
592 | self.WIDTH = 300 |
|
604 | self.WIDTH = 300 | |
593 | self.HEIGHT = 500 |
|
605 | self.HEIGHT = 500 | |
594 |
|
606 | |||
595 | def getSubplots(self): |
|
607 | def getSubplots(self): | |
596 | ncol = 1 |
|
608 | ncol = 1 | |
597 | nrow = 1 |
|
609 | nrow = 1 | |
598 |
|
610 | |||
599 | return nrow, ncol |
|
611 | return nrow, ncol | |
600 |
|
612 | |||
601 | def setup(self, idfigure, nplots, wintitle): |
|
613 | def setup(self, idfigure, nplots, wintitle): | |
602 |
|
614 | |||
603 | self.nplots = nplots |
|
615 | self.nplots = nplots | |
604 |
|
616 | |||
605 | ncolspan = 1 |
|
617 | ncolspan = 1 | |
606 | colspan = 1 |
|
618 | colspan = 1 | |
607 |
|
619 | |||
608 | self.createFigure(idfigure = idfigure, |
|
620 | self.createFigure(idfigure = idfigure, | |
609 | wintitle = wintitle, |
|
621 | wintitle = wintitle, | |
610 | widthplot = self.WIDTH, |
|
622 | widthplot = self.WIDTH, | |
611 | heightplot = self.HEIGHT) |
|
623 | heightplot = self.HEIGHT) | |
612 |
|
624 | |||
613 | nrow, ncol = self.getSubplots() |
|
625 | nrow, ncol = self.getSubplots() | |
614 |
|
626 | |||
615 | counter = 0 |
|
627 | counter = 0 | |
616 | for y in range(nrow): |
|
628 | for y in range(nrow): | |
617 | for x in range(ncol): |
|
629 | for x in range(ncol): | |
618 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
630 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
619 |
|
631 | |||
620 | def run(self, dataOut, idfigure, wintitle="", channelList=None, |
|
632 | def run(self, dataOut, idfigure, wintitle="", channelList=None, | |
621 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
633 | xmin=None, xmax=None, ymin=None, ymax=None, | |
622 | save=False, figpath='./', figfile=None): |
|
634 | save=False, figpath='./', figfile=None): | |
623 |
|
635 | |||
624 | if channelList == None: |
|
636 | if channelList == None: | |
625 | channelIndexList = dataOut.channelIndexList |
|
637 | channelIndexList = dataOut.channelIndexList | |
626 | channelList = dataOut.channelList |
|
638 | channelList = dataOut.channelList | |
627 | else: |
|
639 | else: | |
628 | channelIndexList = [] |
|
640 | channelIndexList = [] | |
629 | for channel in channelList: |
|
641 | for channel in channelList: | |
630 | if channel not in dataOut.channelList: |
|
642 | if channel not in dataOut.channelList: | |
631 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
643 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
632 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
644 | channelIndexList.append(dataOut.channelList.index(channel)) | |
633 |
|
645 | |||
634 |
|
646 | factor = dataOut.normFactor | ||
635 | y = dataOut.getHeiRange() |
|
647 | y = dataOut.getHeiRange() | |
636 |
x = |
|
648 | x = dataOut.data_spc[channelIndexList,:,:]/factor | |
|
649 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) | |||
637 | avg = numpy.average(x, axis=1) |
|
650 | avg = numpy.average(x, axis=1) | |
638 |
|
651 | |||
|
652 | avgdB = 10*numpy.log10(avg) | |||
|
653 | ||||
639 | thisDatetime = dataOut.datatime |
|
654 | thisDatetime = dataOut.datatime | |
640 | title = "Power Profile" |
|
655 | title = "Power Profile" | |
641 | xlabel = "dB" |
|
656 | xlabel = "dB" | |
642 | ylabel = "Range (Km)" |
|
657 | ylabel = "Range (Km)" | |
643 |
|
658 | |||
644 | if not self.__isConfig: |
|
659 | if not self.__isConfig: | |
645 |
|
660 | |||
646 | nplots = 1 |
|
661 | nplots = 1 | |
647 |
|
662 | |||
648 | self.setup(idfigure=idfigure, |
|
663 | self.setup(idfigure=idfigure, | |
649 | nplots=nplots, |
|
664 | nplots=nplots, | |
650 | wintitle=wintitle) |
|
665 | wintitle=wintitle) | |
651 |
|
666 | |||
652 | if ymin == None: ymin = numpy.nanmin(y) |
|
667 | if ymin == None: ymin = numpy.nanmin(y) | |
653 | if ymax == None: ymax = numpy.nanmax(y) |
|
668 | if ymax == None: ymax = numpy.nanmax(y) | |
654 | if xmin == None: xmin = numpy.nanmin(avg)*0.9 |
|
669 | if xmin == None: xmin = numpy.nanmin(avgdB)*0.9 | |
655 | if xmax == None: xmax = numpy.nanmax(avg)*0.9 |
|
670 | if xmax == None: xmax = numpy.nanmax(avgdB)*0.9 | |
656 |
|
671 | |||
657 | self.__isConfig = True |
|
672 | self.__isConfig = True | |
658 |
|
673 | |||
659 | self.setWinTitle(title) |
|
674 | self.setWinTitle(title) | |
660 |
|
675 | |||
661 |
|
676 | |||
662 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
677 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
663 | axes = self.axesList[0] |
|
678 | axes = self.axesList[0] | |
664 |
|
679 | |||
665 | legendlabels = ["channel %d"%x for x in channelList] |
|
680 | legendlabels = ["channel %d"%x for x in channelList] | |
666 | axes.pmultiline(avg, y, |
|
681 | axes.pmultiline(avgdB, y, | |
667 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
682 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |
668 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
683 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, | |
669 | ytick_visible=True, nxticks=5, |
|
684 | ytick_visible=True, nxticks=5, | |
670 | grid='x') |
|
685 | grid='x') | |
671 |
|
686 | |||
672 | self.draw() |
|
687 | self.draw() | |
673 |
|
688 | |||
674 | if save: |
|
689 | if save: | |
675 | date = thisDatetime.strftime("%Y%m%d") |
|
690 | date = thisDatetime.strftime("%Y%m%d") | |
676 | if figfile == None: |
|
691 | if figfile == None: | |
677 | figfile = self.getFilename(name = date) |
|
692 | figfile = self.getFilename(name = date) | |
678 |
|
693 | |||
679 | self.saveFigure(figpath, figfile) |
|
694 | self.saveFigure(figpath, figfile) | |
680 |
|
695 | |||
681 | class CoherenceMap(Figure): |
|
696 | class CoherenceMap(Figure): | |
682 | __isConfig = None |
|
697 | __isConfig = None | |
683 | __nsubplots = None |
|
698 | __nsubplots = None | |
684 |
|
699 | |||
685 | WIDTHPROF = None |
|
700 | WIDTHPROF = None | |
686 | HEIGHTPROF = None |
|
701 | HEIGHTPROF = None | |
687 | PREFIX = 'coherencemap' |
|
702 | PREFIX = 'coherencemap' | |
688 |
|
703 | |||
689 | def __init__(self): |
|
704 | def __init__(self): | |
690 | self.timerange = 2*60*60 |
|
705 | self.timerange = 2*60*60 | |
691 | self.__isConfig = False |
|
706 | self.__isConfig = False | |
692 | self.__nsubplots = 1 |
|
707 | self.__nsubplots = 1 | |
693 |
|
708 | |||
694 | self.WIDTH = 800 |
|
709 | self.WIDTH = 800 | |
695 | self.HEIGHT = 200 |
|
710 | self.HEIGHT = 200 | |
696 | self.WIDTHPROF = 120 |
|
711 | self.WIDTHPROF = 120 | |
697 | self.HEIGHTPROF = 0 |
|
712 | self.HEIGHTPROF = 0 | |
698 |
|
713 | |||
699 | def getSubplots(self): |
|
714 | def getSubplots(self): | |
700 | ncol = 1 |
|
715 | ncol = 1 | |
701 | nrow = self.nplots*2 |
|
716 | nrow = self.nplots*2 | |
702 |
|
717 | |||
703 | return nrow, ncol |
|
718 | return nrow, ncol | |
704 |
|
719 | |||
705 | def setup(self, idfigure, nplots, wintitle, showprofile=True): |
|
720 | def setup(self, idfigure, nplots, wintitle, showprofile=True): | |
706 | self.__showprofile = showprofile |
|
721 | self.__showprofile = showprofile | |
707 | self.nplots = nplots |
|
722 | self.nplots = nplots | |
708 |
|
723 | |||
709 | ncolspan = 1 |
|
724 | ncolspan = 1 | |
710 | colspan = 1 |
|
725 | colspan = 1 | |
711 | if showprofile: |
|
726 | if showprofile: | |
712 | ncolspan = 7 |
|
727 | ncolspan = 7 | |
713 | colspan = 6 |
|
728 | colspan = 6 | |
714 | self.__nsubplots = 2 |
|
729 | self.__nsubplots = 2 | |
715 |
|
730 | |||
716 | self.createFigure(idfigure = idfigure, |
|
731 | self.createFigure(idfigure = idfigure, | |
717 | wintitle = wintitle, |
|
732 | wintitle = wintitle, | |
718 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
733 | widthplot = self.WIDTH + self.WIDTHPROF, | |
719 | heightplot = self.HEIGHT + self.HEIGHTPROF) |
|
734 | heightplot = self.HEIGHT + self.HEIGHTPROF) | |
720 |
|
735 | |||
721 | nrow, ncol = self.getSubplots() |
|
736 | nrow, ncol = self.getSubplots() | |
722 |
|
737 | |||
723 | for y in range(nrow): |
|
738 | for y in range(nrow): | |
724 | for x in range(ncol): |
|
739 | for x in range(ncol): | |
725 |
|
740 | |||
726 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
741 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
727 |
|
742 | |||
728 | if showprofile: |
|
743 | if showprofile: | |
729 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
744 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
730 |
|
745 | |||
731 | def run(self, dataOut, idfigure, wintitle="", pairsList=None, showprofile='True', |
|
746 | def run(self, dataOut, idfigure, wintitle="", pairsList=None, showprofile='True', | |
732 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
747 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
733 | timerange=None, |
|
748 | timerange=None, | |
734 | save=False, figpath='./', figfile=None): |
|
749 | save=False, figpath='./', figfile=None): | |
735 |
|
750 | |||
736 | if pairsList == None: |
|
751 | if pairsList == None: | |
737 | pairsIndexList = dataOut.pairsIndexList |
|
752 | pairsIndexList = dataOut.pairsIndexList | |
738 | else: |
|
753 | else: | |
739 | pairsIndexList = [] |
|
754 | pairsIndexList = [] | |
740 | for pair in pairsList: |
|
755 | for pair in pairsList: | |
741 | if pair not in dataOut.pairsList: |
|
756 | if pair not in dataOut.pairsList: | |
742 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
757 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) | |
743 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
758 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
744 |
|
759 | |||
745 | if timerange != None: |
|
760 | if timerange != None: | |
746 | self.timerange = timerange |
|
761 | self.timerange = timerange | |
747 |
|
762 | |||
748 | if pairsIndexList == []: |
|
763 | if pairsIndexList == []: | |
749 | return |
|
764 | return | |
750 |
|
765 | |||
751 | if len(pairsIndexList) > 4: |
|
766 | if len(pairsIndexList) > 4: | |
752 | pairsIndexList = pairsIndexList[0:4] |
|
767 | pairsIndexList = pairsIndexList[0:4] | |
753 |
|
768 | |||
754 | tmin = None |
|
769 | tmin = None | |
755 | tmax = None |
|
770 | tmax = None | |
756 | x = dataOut.getTimeRange() |
|
771 | x = dataOut.getTimeRange() | |
757 | y = dataOut.getHeiRange() |
|
772 | y = dataOut.getHeiRange() | |
758 |
|
773 | |||
759 | thisDatetime = dataOut.datatime |
|
774 | thisDatetime = dataOut.datatime | |
760 | title = "CoherenceMap: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
775 | title = "CoherenceMap: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
761 | xlabel = "" |
|
776 | xlabel = "" | |
762 | ylabel = "Range (Km)" |
|
777 | ylabel = "Range (Km)" | |
763 |
|
778 | |||
764 | if not self.__isConfig: |
|
779 | if not self.__isConfig: | |
765 | nplots = len(pairsIndexList) |
|
780 | nplots = len(pairsIndexList) | |
766 | self.setup(idfigure=idfigure, |
|
781 | self.setup(idfigure=idfigure, | |
767 | nplots=nplots, |
|
782 | nplots=nplots, | |
768 | wintitle=wintitle, |
|
783 | wintitle=wintitle, | |
769 | showprofile=showprofile) |
|
784 | showprofile=showprofile) | |
770 |
|
785 | |||
771 | tmin, tmax = self.getTimeLim(x, xmin, xmax) |
|
786 | tmin, tmax = self.getTimeLim(x, xmin, xmax) | |
772 | if ymin == None: ymin = numpy.nanmin(y) |
|
787 | if ymin == None: ymin = numpy.nanmin(y) | |
773 | if ymax == None: ymax = numpy.nanmax(y) |
|
788 | if ymax == None: ymax = numpy.nanmax(y) | |
774 |
|
789 | |||
775 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
790 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
776 |
|
791 | |||
777 | self.__isConfig = True |
|
792 | self.__isConfig = True | |
778 |
|
793 | |||
779 | self.setWinTitle(title) |
|
794 | self.setWinTitle(title) | |
780 |
|
795 | |||
781 | for i in range(self.nplots): |
|
796 | for i in range(self.nplots): | |
782 |
|
797 | |||
783 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
798 | pair = dataOut.pairsList[pairsIndexList[i]] | |
784 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:]) |
|
799 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:]) | |
785 | coherence = numpy.abs(coherenceComplex) |
|
800 | coherence = numpy.abs(coherenceComplex) | |
786 | avg = numpy.average(coherence, axis=0) |
|
801 | avg = numpy.average(coherence, axis=0) | |
787 | z = avg.reshape((1,-1)) |
|
802 | z = avg.reshape((1,-1)) | |
788 |
|
803 | |||
789 | counter = 0 |
|
804 | counter = 0 | |
790 |
|
805 | |||
791 | title = "Coherence %d%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
806 | title = "Coherence %d%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
792 | axes = self.axesList[i*self.__nsubplots*2] |
|
807 | axes = self.axesList[i*self.__nsubplots*2] | |
793 | axes.pcolor(x, y, z, |
|
808 | axes.pcolor(x, y, z, | |
794 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=0, zmax=1, |
|
809 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=0, zmax=1, | |
795 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
810 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
796 | ticksize=9, cblabel='', cbsize="1%") |
|
811 | ticksize=9, cblabel='', cbsize="1%") | |
797 |
|
812 | |||
798 | if self.__showprofile: |
|
813 | if self.__showprofile: | |
799 | counter += 1 |
|
814 | counter += 1 | |
800 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
815 | axes = self.axesList[i*self.__nsubplots*2 + counter] | |
801 | axes.pline(avg, y, |
|
816 | axes.pline(avg, y, | |
802 | xmin=0, xmax=1, ymin=ymin, ymax=ymax, |
|
817 | xmin=0, xmax=1, ymin=ymin, ymax=ymax, | |
803 | xlabel='', ylabel='', title='', ticksize=7, |
|
818 | xlabel='', ylabel='', title='', ticksize=7, | |
804 | ytick_visible=False, nxticks=5, |
|
819 | ytick_visible=False, nxticks=5, | |
805 | grid='x') |
|
820 | grid='x') | |
806 |
|
821 | |||
807 | counter += 1 |
|
822 | counter += 1 | |
808 | phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
823 | phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi | |
809 | avg = numpy.average(phase, axis=0) |
|
824 | avg = numpy.average(phase, axis=0) | |
810 | z = avg.reshape((1,-1)) |
|
825 | z = avg.reshape((1,-1)) | |
811 |
|
826 | |||
812 | title = "Phase %d%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
827 | title = "Phase %d%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
813 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
828 | axes = self.axesList[i*self.__nsubplots*2 + counter] | |
814 | axes.pcolor(x, y, z, |
|
829 | axes.pcolor(x, y, z, | |
815 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=-180, zmax=180, |
|
830 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=-180, zmax=180, | |
816 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
831 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
817 | ticksize=9, cblabel='', colormap='RdBu', cbsize="1%") |
|
832 | ticksize=9, cblabel='', colormap='RdBu', cbsize="1%") | |
818 |
|
833 | |||
819 | if self.__showprofile: |
|
834 | if self.__showprofile: | |
820 | counter += 1 |
|
835 | counter += 1 | |
821 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
836 | axes = self.axesList[i*self.__nsubplots*2 + counter] | |
822 | axes.pline(avg, y, |
|
837 | axes.pline(avg, y, | |
823 | xmin=-180, xmax=180, ymin=ymin, ymax=ymax, |
|
838 | xmin=-180, xmax=180, ymin=ymin, ymax=ymax, | |
824 | xlabel='', ylabel='', title='', ticksize=7, |
|
839 | xlabel='', ylabel='', title='', ticksize=7, | |
825 | ytick_visible=False, nxticks=4, |
|
840 | ytick_visible=False, nxticks=4, | |
826 | grid='x') |
|
841 | grid='x') | |
827 |
|
842 | |||
828 | self.draw() |
|
843 | self.draw() | |
829 |
|
844 | |||
830 | if save: |
|
845 | if save: | |
831 |
|
846 | |||
832 | if figfile == None: |
|
847 | if figfile == None: | |
833 | figfile = self.getFilename(name = self.name) |
|
848 | figfile = self.getFilename(name = self.name) | |
834 |
|
849 | |||
835 | self.saveFigure(figpath, figfile) |
|
850 | self.saveFigure(figpath, figfile) | |
836 |
|
851 | |||
837 | if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax: |
|
852 | if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax: | |
838 | self.__isConfig = False |
|
853 | self.__isConfig = False | |
839 |
|
854 | |||
840 | class RTIfromNoise(Figure): |
|
855 | class RTIfromNoise(Figure): | |
841 |
|
856 | |||
842 | __isConfig = None |
|
857 | __isConfig = None | |
843 | __nsubplots = None |
|
858 | __nsubplots = None | |
844 |
|
859 | |||
845 | PREFIX = 'rtinoise' |
|
860 | PREFIX = 'rtinoise' | |
846 |
|
861 | |||
847 | def __init__(self): |
|
862 | def __init__(self): | |
848 |
|
863 | |||
849 | self.timerange = 24*60*60 |
|
864 | self.timerange = 24*60*60 | |
850 | self.__isConfig = False |
|
865 | self.__isConfig = False | |
851 | self.__nsubplots = 1 |
|
866 | self.__nsubplots = 1 | |
852 |
|
867 | |||
853 | self.WIDTH = 820 |
|
868 | self.WIDTH = 820 | |
854 | self.HEIGHT = 200 |
|
869 | self.HEIGHT = 200 | |
|
870 | self.WIDTHPROF = 120 | |||
|
871 | self.HEIGHTPROF = 0 | |||
|
872 | self.xdata = None | |||
|
873 | self.ydata = None | |||
855 |
|
874 | |||
856 | def getSubplots(self): |
|
875 | def getSubplots(self): | |
857 |
|
876 | |||
858 | ncol = 1 |
|
877 | ncol = 1 | |
859 | nrow = 1 |
|
878 | nrow = 1 | |
860 |
|
879 | |||
861 | return nrow, ncol |
|
880 | return nrow, ncol | |
862 |
|
881 | |||
863 | def setup(self, idfigure, nplots, wintitle, showprofile=True): |
|
882 | def setup(self, idfigure, nplots, wintitle, showprofile=True): | |
864 |
|
883 | |||
865 | self.__showprofile = showprofile |
|
884 | self.__showprofile = showprofile | |
866 | self.nplots = nplots |
|
885 | self.nplots = nplots | |
867 |
|
886 | |||
868 |
ncolspan = |
|
887 | ncolspan = 7 | |
869 |
colspan = |
|
888 | colspan = 6 | |
|
889 | self.__nsubplots = 2 | |||
870 |
|
|
890 | ||
871 | self.createFigure(idfigure = idfigure, |
|
891 | self.createFigure(idfigure = idfigure, | |
872 | wintitle = wintitle, |
|
892 | wintitle = wintitle, | |
873 | widthplot = self.WIDTH, |
|
893 | widthplot = self.WIDTH+self.WIDTHPROF, | |
874 | heightplot = self.HEIGHT) |
|
894 | heightplot = self.HEIGHT+self.HEIGHTPROF) | |
875 |
|
895 | |||
876 | nrow, ncol = self.getSubplots() |
|
896 | nrow, ncol = self.getSubplots() | |
877 |
|
|
897 | ||
878 |
self.addAxes(nrow, ncol, 0, 0, |
|
898 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
|
899 | ||||
879 |
|
900 | |||
880 | def run(self, dataOut, idfigure, wintitle="", channelList=None, showprofile='True', |
|
901 | def run(self, dataOut, idfigure, wintitle="", channelList=None, showprofile='True', | |
881 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
902 | xmin=None, xmax=None, ymin=None, ymax=None, | |
882 | timerange=None, |
|
903 | timerange=None, | |
883 | save=False, figpath='./', figfile=None): |
|
904 | save=False, figpath='./', figfile=None): | |
884 |
|
905 | |||
885 | if channelList == None: |
|
906 | if channelList == None: | |
886 | channelIndexList = dataOut.channelIndexList |
|
907 | channelIndexList = dataOut.channelIndexList | |
887 | channelList = dataOut.channelList |
|
908 | channelList = dataOut.channelList | |
888 | else: |
|
909 | else: | |
889 | channelIndexList = [] |
|
910 | channelIndexList = [] | |
890 | for channel in channelList: |
|
911 | for channel in channelList: | |
891 | if channel not in dataOut.channelList: |
|
912 | if channel not in dataOut.channelList: | |
892 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
913 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
893 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
914 | channelIndexList.append(dataOut.channelList.index(channel)) | |
894 |
|
915 | |||
895 | if timerange != None: |
|
916 | if timerange != None: | |
896 | self.timerange = timerange |
|
917 | self.timerange = timerange | |
897 |
|
918 | |||
898 | tmin = None |
|
919 | tmin = None | |
899 | tmax = None |
|
920 | tmax = None | |
900 | x = dataOut.getTimeRange() |
|
921 | x = dataOut.getTimeRange() | |
901 | y = dataOut.getHeiRange() |
|
922 | y = dataOut.getHeiRange() | |
902 |
|
923 | factor = dataOut.normFactor | ||
903 | noise = dataOut.getNoise() |
|
924 | noise = dataOut.getNoise()/factor | |
|
925 | noisedB = 10*numpy.log10(noise) | |||
904 |
|
926 | |||
905 | thisDatetime = dataOut.datatime |
|
927 | thisDatetime = dataOut.datatime | |
906 | title = "RTI: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
928 | title = "RTI: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
907 |
xlabel = " |
|
929 | xlabel = "" | |
908 | ylabel = "Range (Km)" |
|
930 | ylabel = "Range (Km)" | |
909 |
|
931 | |||
910 | if not self.__isConfig: |
|
932 | if not self.__isConfig: | |
911 |
|
933 | |||
912 | nplots = 1 |
|
934 | nplots = 1 | |
913 |
|
935 | |||
914 | self.setup(idfigure=idfigure, |
|
936 | self.setup(idfigure=idfigure, | |
915 | nplots=nplots, |
|
937 | nplots=nplots, | |
916 | wintitle=wintitle, |
|
938 | wintitle=wintitle, | |
917 | showprofile=showprofile) |
|
939 | showprofile=showprofile) | |
918 |
|
940 | |||
919 | tmin, tmax = self.getTimeLim(x, xmin, xmax) |
|
941 | tmin, tmax = self.getTimeLim(x, xmin, xmax) | |
920 | if ymin == None: ymin = numpy.nanmin(noise) |
|
942 | if ymin == None: ymin = numpy.nanmin(noisedB) | |
921 | if ymax == None: ymax = numpy.nanmax(noise) |
|
943 | if ymax == None: ymax = numpy.nanmax(noisedB) | |
922 |
|
944 | |||
923 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
945 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
924 | self.__isConfig = True |
|
946 | self.__isConfig = True | |
925 |
|
947 | |||
|
948 | self.xdata = numpy.array([]) | |||
|
949 | self.ydata = numpy.array([]) | |||
926 |
|
950 | |||
927 | self.setWinTitle(title) |
|
951 | self.setWinTitle(title) | |
928 |
|
952 | |||
929 |
|
953 | |||
930 | title = "RTI Noise %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
954 | title = "RTI Noise %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
931 |
|
955 | |||
932 | legendlabels = ["channel %d"%idchannel for idchannel in channelList] |
|
956 | legendlabels = ["channel %d"%idchannel for idchannel in channelList] | |
933 | axes = self.axesList[0] |
|
957 | axes = self.axesList[0] | |
934 | xdata = x[0:1] |
|
958 | ||
935 | ydata = noise[channelIndexList].reshape(-1,1) |
|
959 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
936 | axes.pmultilineyaxis(x=xdata, y=ydata, |
|
960 | ||
|
961 | if len(self.ydata)==0: | |||
|
962 | self.ydata = noisedB[channelIndexList].reshape(-1,1) | |||
|
963 | else: | |||
|
964 | self.ydata = numpy.hstack((self.ydata, noisedB[channelIndexList].reshape(-1,1))) | |||
|
965 | ||||
|
966 | ||||
|
967 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |||
937 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, |
|
968 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, | |
938 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
969 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
939 | XAxisAsTime=True |
|
970 | XAxisAsTime=True | |
940 | ) |
|
971 | ) | |
941 |
|
972 | |||
942 |
|
||||
943 | self.draw() |
|
973 | self.draw() | |
944 |
|
974 | |||
945 | if save: |
|
975 | if save: | |
946 |
|
976 | |||
947 | if figfile == None: |
|
977 | if figfile == None: | |
948 | figfile = self.getFilename(name = self.name) |
|
978 | figfile = self.getFilename(name = self.name) | |
949 |
|
979 | |||
950 | self.saveFigure(figpath, figfile) |
|
980 | self.saveFigure(figpath, figfile) | |
951 |
|
981 | |||
952 | if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax: |
|
982 | if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax: | |
953 | self.__isConfig = False |
|
983 | self.__isConfig = False | |
|
984 | del self.xdata | |||
|
985 | del self.ydata | |||
954 | No newline at end of file |
|
986 |
@@ -1,1157 +1,1159 | |||||
1 | ''' |
|
1 | ''' | |
2 |
|
2 | |||
3 | $Author: dsuarez $ |
|
3 | $Author: dsuarez $ | |
4 | $Id: Processor.py 1 2012-11-12 18:56:07Z dsuarez $ |
|
4 | $Id: Processor.py 1 2012-11-12 18:56:07Z dsuarez $ | |
5 | ''' |
|
5 | ''' | |
6 | import os |
|
6 | import os | |
7 | import numpy |
|
7 | import numpy | |
8 | import datetime |
|
8 | import datetime | |
9 | import time |
|
9 | import time | |
10 |
|
10 | |||
11 | from jrodata import * |
|
11 | from jrodata import * | |
12 | from jrodataIO import * |
|
12 | from jrodataIO import * | |
13 | from jroplot import * |
|
13 | from jroplot import * | |
14 |
|
14 | |||
15 | class ProcessingUnit: |
|
15 | class ProcessingUnit: | |
16 |
|
16 | |||
17 | """ |
|
17 | """ | |
18 | Esta es la clase base para el procesamiento de datos. |
|
18 | Esta es la clase base para el procesamiento de datos. | |
19 |
|
19 | |||
20 | Contiene el metodo "call" para llamar operaciones. Las operaciones pueden ser: |
|
20 | Contiene el metodo "call" para llamar operaciones. Las operaciones pueden ser: | |
21 | - Metodos internos (callMethod) |
|
21 | - Metodos internos (callMethod) | |
22 | - Objetos del tipo Operation (callObject). Antes de ser llamados, estos objetos |
|
22 | - Objetos del tipo Operation (callObject). Antes de ser llamados, estos objetos | |
23 | tienen que ser agreagados con el metodo "add". |
|
23 | tienen que ser agreagados con el metodo "add". | |
24 |
|
24 | |||
25 | """ |
|
25 | """ | |
26 | # objeto de datos de entrada (Voltage, Spectra o Correlation) |
|
26 | # objeto de datos de entrada (Voltage, Spectra o Correlation) | |
27 | dataIn = None |
|
27 | dataIn = None | |
28 |
|
28 | |||
29 | # objeto de datos de entrada (Voltage, Spectra o Correlation) |
|
29 | # objeto de datos de entrada (Voltage, Spectra o Correlation) | |
30 | dataOut = None |
|
30 | dataOut = None | |
31 |
|
31 | |||
32 |
|
32 | |||
33 | objectDict = None |
|
33 | objectDict = None | |
34 |
|
34 | |||
35 | def __init__(self): |
|
35 | def __init__(self): | |
36 |
|
36 | |||
37 | self.objectDict = {} |
|
37 | self.objectDict = {} | |
38 |
|
38 | |||
39 | def init(self): |
|
39 | def init(self): | |
40 |
|
40 | |||
41 | raise ValueError, "Not implemented" |
|
41 | raise ValueError, "Not implemented" | |
42 |
|
42 | |||
43 | def addOperation(self, object, objId): |
|
43 | def addOperation(self, object, objId): | |
44 |
|
44 | |||
45 | """ |
|
45 | """ | |
46 | Agrega el objeto "object" a la lista de objetos "self.objectList" y retorna el |
|
46 | Agrega el objeto "object" a la lista de objetos "self.objectList" y retorna el | |
47 | identificador asociado a este objeto. |
|
47 | identificador asociado a este objeto. | |
48 |
|
48 | |||
49 | Input: |
|
49 | Input: | |
50 |
|
50 | |||
51 | object : objeto de la clase "Operation" |
|
51 | object : objeto de la clase "Operation" | |
52 |
|
52 | |||
53 | Return: |
|
53 | Return: | |
54 |
|
54 | |||
55 | objId : identificador del objeto, necesario para ejecutar la operacion |
|
55 | objId : identificador del objeto, necesario para ejecutar la operacion | |
56 | """ |
|
56 | """ | |
57 |
|
57 | |||
58 | self.objectDict[objId] = object |
|
58 | self.objectDict[objId] = object | |
59 |
|
59 | |||
60 | return objId |
|
60 | return objId | |
61 |
|
61 | |||
62 | def operation(self, **kwargs): |
|
62 | def operation(self, **kwargs): | |
63 |
|
63 | |||
64 | """ |
|
64 | """ | |
65 | Operacion directa sobre la data (dataOut.data). Es necesario actualizar los valores de los |
|
65 | Operacion directa sobre la data (dataOut.data). Es necesario actualizar los valores de los | |
66 | atributos del objeto dataOut |
|
66 | atributos del objeto dataOut | |
67 |
|
67 | |||
68 | Input: |
|
68 | Input: | |
69 |
|
69 | |||
70 | **kwargs : Diccionario de argumentos de la funcion a ejecutar |
|
70 | **kwargs : Diccionario de argumentos de la funcion a ejecutar | |
71 | """ |
|
71 | """ | |
72 |
|
72 | |||
73 | raise ValueError, "ImplementedError" |
|
73 | raise ValueError, "ImplementedError" | |
74 |
|
74 | |||
75 | def callMethod(self, name, **kwargs): |
|
75 | def callMethod(self, name, **kwargs): | |
76 |
|
76 | |||
77 | """ |
|
77 | """ | |
78 | Ejecuta el metodo con el nombre "name" y con argumentos **kwargs de la propia clase. |
|
78 | Ejecuta el metodo con el nombre "name" y con argumentos **kwargs de la propia clase. | |
79 |
|
79 | |||
80 | Input: |
|
80 | Input: | |
81 | name : nombre del metodo a ejecutar |
|
81 | name : nombre del metodo a ejecutar | |
82 |
|
82 | |||
83 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. |
|
83 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. | |
84 |
|
84 | |||
85 | """ |
|
85 | """ | |
86 | if name != 'run': |
|
86 | if name != 'run': | |
87 |
|
87 | |||
88 | if name == 'init' and self.dataIn.isEmpty(): |
|
88 | if name == 'init' and self.dataIn.isEmpty(): | |
89 | self.dataOut.flagNoData = True |
|
89 | self.dataOut.flagNoData = True | |
90 | return False |
|
90 | return False | |
91 |
|
91 | |||
92 | if name != 'init' and self.dataOut.isEmpty(): |
|
92 | if name != 'init' and self.dataOut.isEmpty(): | |
93 | return False |
|
93 | return False | |
94 |
|
94 | |||
95 | methodToCall = getattr(self, name) |
|
95 | methodToCall = getattr(self, name) | |
96 |
|
96 | |||
97 | methodToCall(**kwargs) |
|
97 | methodToCall(**kwargs) | |
98 |
|
98 | |||
99 | if name != 'run': |
|
99 | if name != 'run': | |
100 | return True |
|
100 | return True | |
101 |
|
101 | |||
102 | if self.dataOut.isEmpty(): |
|
102 | if self.dataOut.isEmpty(): | |
103 | return False |
|
103 | return False | |
104 |
|
104 | |||
105 | return True |
|
105 | return True | |
106 |
|
106 | |||
107 | def callObject(self, objId, **kwargs): |
|
107 | def callObject(self, objId, **kwargs): | |
108 |
|
108 | |||
109 | """ |
|
109 | """ | |
110 | Ejecuta la operacion asociada al identificador del objeto "objId" |
|
110 | Ejecuta la operacion asociada al identificador del objeto "objId" | |
111 |
|
111 | |||
112 | Input: |
|
112 | Input: | |
113 |
|
113 | |||
114 | objId : identificador del objeto a ejecutar |
|
114 | objId : identificador del objeto a ejecutar | |
115 |
|
115 | |||
116 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. |
|
116 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. | |
117 |
|
117 | |||
118 | Return: |
|
118 | Return: | |
119 |
|
119 | |||
120 | None |
|
120 | None | |
121 | """ |
|
121 | """ | |
122 |
|
122 | |||
123 | if self.dataOut.isEmpty(): |
|
123 | if self.dataOut.isEmpty(): | |
124 | return False |
|
124 | return False | |
125 |
|
125 | |||
126 | object = self.objectDict[objId] |
|
126 | object = self.objectDict[objId] | |
127 |
|
127 | |||
128 | object.run(self.dataOut, **kwargs) |
|
128 | object.run(self.dataOut, **kwargs) | |
129 |
|
129 | |||
130 | return True |
|
130 | return True | |
131 |
|
131 | |||
132 | def call(self, operationConf, **kwargs): |
|
132 | def call(self, operationConf, **kwargs): | |
133 |
|
133 | |||
134 | """ |
|
134 | """ | |
135 | Return True si ejecuta la operacion "operationConf.name" con los |
|
135 | Return True si ejecuta la operacion "operationConf.name" con los | |
136 | argumentos "**kwargs". False si la operacion no se ha ejecutado. |
|
136 | argumentos "**kwargs". False si la operacion no se ha ejecutado. | |
137 | La operacion puede ser de dos tipos: |
|
137 | La operacion puede ser de dos tipos: | |
138 |
|
138 | |||
139 | 1. Un metodo propio de esta clase: |
|
139 | 1. Un metodo propio de esta clase: | |
140 |
|
140 | |||
141 | operation.type = "self" |
|
141 | operation.type = "self" | |
142 |
|
142 | |||
143 | 2. El metodo "run" de un objeto del tipo Operation o de un derivado de ella: |
|
143 | 2. El metodo "run" de un objeto del tipo Operation o de un derivado de ella: | |
144 | operation.type = "other". |
|
144 | operation.type = "other". | |
145 |
|
145 | |||
146 | Este objeto de tipo Operation debe de haber sido agregado antes con el metodo: |
|
146 | Este objeto de tipo Operation debe de haber sido agregado antes con el metodo: | |
147 | "addOperation" e identificado con el operation.id |
|
147 | "addOperation" e identificado con el operation.id | |
148 |
|
148 | |||
149 |
|
149 | |||
150 | con el id de la operacion. |
|
150 | con el id de la operacion. | |
151 |
|
151 | |||
152 | Input: |
|
152 | Input: | |
153 |
|
153 | |||
154 | Operation : Objeto del tipo operacion con los atributos: name, type y id. |
|
154 | Operation : Objeto del tipo operacion con los atributos: name, type y id. | |
155 |
|
155 | |||
156 | """ |
|
156 | """ | |
157 |
|
157 | |||
158 | if operationConf.type == 'self': |
|
158 | if operationConf.type == 'self': | |
159 | sts = self.callMethod(operationConf.name, **kwargs) |
|
159 | sts = self.callMethod(operationConf.name, **kwargs) | |
160 |
|
160 | |||
161 | if operationConf.type == 'other': |
|
161 | if operationConf.type == 'other': | |
162 | sts = self.callObject(operationConf.id, **kwargs) |
|
162 | sts = self.callObject(operationConf.id, **kwargs) | |
163 |
|
163 | |||
164 | return sts |
|
164 | return sts | |
165 |
|
165 | |||
166 | def setInput(self, dataIn): |
|
166 | def setInput(self, dataIn): | |
167 |
|
167 | |||
168 | self.dataIn = dataIn |
|
168 | self.dataIn = dataIn | |
169 |
|
169 | |||
170 | def getOutput(self): |
|
170 | def getOutput(self): | |
171 |
|
171 | |||
172 | return self.dataOut |
|
172 | return self.dataOut | |
173 |
|
173 | |||
174 | class Operation(): |
|
174 | class Operation(): | |
175 |
|
175 | |||
176 | """ |
|
176 | """ | |
177 | Clase base para definir las operaciones adicionales que se pueden agregar a la clase ProcessingUnit |
|
177 | Clase base para definir las operaciones adicionales que se pueden agregar a la clase ProcessingUnit | |
178 | y necesiten acumular informacion previa de los datos a procesar. De preferencia usar un buffer de |
|
178 | y necesiten acumular informacion previa de los datos a procesar. De preferencia usar un buffer de | |
179 | acumulacion dentro de esta clase |
|
179 | acumulacion dentro de esta clase | |
180 |
|
180 | |||
181 | Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer) |
|
181 | Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer) | |
182 |
|
182 | |||
183 | """ |
|
183 | """ | |
184 |
|
184 | |||
185 | __buffer = None |
|
185 | __buffer = None | |
186 | __isConfig = False |
|
186 | __isConfig = False | |
187 |
|
187 | |||
188 | def __init__(self): |
|
188 | def __init__(self): | |
189 |
|
189 | |||
190 | pass |
|
190 | pass | |
191 |
|
191 | |||
192 | def run(self, dataIn, **kwargs): |
|
192 | def run(self, dataIn, **kwargs): | |
193 |
|
193 | |||
194 | """ |
|
194 | """ | |
195 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los atributos del objeto dataIn. |
|
195 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los atributos del objeto dataIn. | |
196 |
|
196 | |||
197 | Input: |
|
197 | Input: | |
198 |
|
198 | |||
199 | dataIn : objeto del tipo JROData |
|
199 | dataIn : objeto del tipo JROData | |
200 |
|
200 | |||
201 | Return: |
|
201 | Return: | |
202 |
|
202 | |||
203 | None |
|
203 | None | |
204 |
|
204 | |||
205 | Affected: |
|
205 | Affected: | |
206 | __buffer : buffer de recepcion de datos. |
|
206 | __buffer : buffer de recepcion de datos. | |
207 |
|
207 | |||
208 | """ |
|
208 | """ | |
209 |
|
209 | |||
210 | raise ValueError, "ImplementedError" |
|
210 | raise ValueError, "ImplementedError" | |
211 |
|
211 | |||
212 | class VoltageProc(ProcessingUnit): |
|
212 | class VoltageProc(ProcessingUnit): | |
213 |
|
213 | |||
214 |
|
214 | |||
215 | def __init__(self): |
|
215 | def __init__(self): | |
216 |
|
216 | |||
217 | self.objectDict = {} |
|
217 | self.objectDict = {} | |
218 | self.dataOut = Voltage() |
|
218 | self.dataOut = Voltage() | |
219 | self.flip = 1 |
|
219 | self.flip = 1 | |
220 |
|
220 | |||
221 | def init(self): |
|
221 | def init(self): | |
222 |
|
222 | |||
223 | self.dataOut.copy(self.dataIn) |
|
223 | self.dataOut.copy(self.dataIn) | |
224 | # No necesita copiar en cada init() los atributos de dataIn |
|
224 | # No necesita copiar en cada init() los atributos de dataIn | |
225 | # la copia deberia hacerse por cada nuevo bloque de datos |
|
225 | # la copia deberia hacerse por cada nuevo bloque de datos | |
226 |
|
226 | |||
227 | def selectChannels(self, channelList): |
|
227 | def selectChannels(self, channelList): | |
228 |
|
228 | |||
229 | channelIndexList = [] |
|
229 | channelIndexList = [] | |
230 |
|
230 | |||
231 | for channel in channelList: |
|
231 | for channel in channelList: | |
232 | index = self.dataOut.channelList.index(channel) |
|
232 | index = self.dataOut.channelList.index(channel) | |
233 | channelIndexList.append(index) |
|
233 | channelIndexList.append(index) | |
234 |
|
234 | |||
235 | self.selectChannelsByIndex(channelIndexList) |
|
235 | self.selectChannelsByIndex(channelIndexList) | |
236 |
|
236 | |||
237 | def selectChannelsByIndex(self, channelIndexList): |
|
237 | def selectChannelsByIndex(self, channelIndexList): | |
238 | """ |
|
238 | """ | |
239 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
239 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
240 |
|
240 | |||
241 | Input: |
|
241 | Input: | |
242 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
242 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
243 |
|
243 | |||
244 | Affected: |
|
244 | Affected: | |
245 | self.dataOut.data |
|
245 | self.dataOut.data | |
246 | self.dataOut.channelIndexList |
|
246 | self.dataOut.channelIndexList | |
247 | self.dataOut.nChannels |
|
247 | self.dataOut.nChannels | |
248 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
248 | self.dataOut.m_ProcessingHeader.totalSpectra | |
249 | self.dataOut.systemHeaderObj.numChannels |
|
249 | self.dataOut.systemHeaderObj.numChannels | |
250 | self.dataOut.m_ProcessingHeader.blockSize |
|
250 | self.dataOut.m_ProcessingHeader.blockSize | |
251 |
|
251 | |||
252 | Return: |
|
252 | Return: | |
253 | None |
|
253 | None | |
254 | """ |
|
254 | """ | |
255 |
|
255 | |||
256 | for channelIndex in channelIndexList: |
|
256 | for channelIndex in channelIndexList: | |
257 | if channelIndex not in self.dataOut.channelIndexList: |
|
257 | if channelIndex not in self.dataOut.channelIndexList: | |
258 | print channelIndexList |
|
258 | print channelIndexList | |
259 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
259 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex | |
260 |
|
260 | |||
261 | nChannels = len(channelIndexList) |
|
261 | nChannels = len(channelIndexList) | |
262 |
|
262 | |||
263 | data = self.dataOut.data[channelIndexList,:] |
|
263 | data = self.dataOut.data[channelIndexList,:] | |
264 |
|
264 | |||
265 | self.dataOut.data = data |
|
265 | self.dataOut.data = data | |
266 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
266 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
267 | # self.dataOut.nChannels = nChannels |
|
267 | # self.dataOut.nChannels = nChannels | |
268 |
|
268 | |||
269 | return 1 |
|
269 | return 1 | |
270 |
|
270 | |||
271 | def selectHeights(self, minHei, maxHei): |
|
271 | def selectHeights(self, minHei, maxHei): | |
272 | """ |
|
272 | """ | |
273 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
273 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
274 | minHei <= height <= maxHei |
|
274 | minHei <= height <= maxHei | |
275 |
|
275 | |||
276 | Input: |
|
276 | Input: | |
277 | minHei : valor minimo de altura a considerar |
|
277 | minHei : valor minimo de altura a considerar | |
278 | maxHei : valor maximo de altura a considerar |
|
278 | maxHei : valor maximo de altura a considerar | |
279 |
|
279 | |||
280 | Affected: |
|
280 | Affected: | |
281 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
281 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |
282 |
|
282 | |||
283 | Return: |
|
283 | Return: | |
284 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
284 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
285 | """ |
|
285 | """ | |
286 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
286 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
287 | raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) |
|
287 | raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) | |
288 |
|
288 | |||
289 | if (maxHei > self.dataOut.heightList[-1]): |
|
289 | if (maxHei > self.dataOut.heightList[-1]): | |
290 | maxHei = self.dataOut.heightList[-1] |
|
290 | maxHei = self.dataOut.heightList[-1] | |
291 | # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) |
|
291 | # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) | |
292 |
|
292 | |||
293 | minIndex = 0 |
|
293 | minIndex = 0 | |
294 | maxIndex = 0 |
|
294 | maxIndex = 0 | |
295 | heights = self.dataOut.heightList |
|
295 | heights = self.dataOut.heightList | |
296 |
|
296 | |||
297 | inda = numpy.where(heights >= minHei) |
|
297 | inda = numpy.where(heights >= minHei) | |
298 | indb = numpy.where(heights <= maxHei) |
|
298 | indb = numpy.where(heights <= maxHei) | |
299 |
|
299 | |||
300 | try: |
|
300 | try: | |
301 | minIndex = inda[0][0] |
|
301 | minIndex = inda[0][0] | |
302 | except: |
|
302 | except: | |
303 | minIndex = 0 |
|
303 | minIndex = 0 | |
304 |
|
304 | |||
305 | try: |
|
305 | try: | |
306 | maxIndex = indb[0][-1] |
|
306 | maxIndex = indb[0][-1] | |
307 | except: |
|
307 | except: | |
308 | maxIndex = len(heights) |
|
308 | maxIndex = len(heights) | |
309 |
|
309 | |||
310 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
310 | self.selectHeightsByIndex(minIndex, maxIndex) | |
311 |
|
311 | |||
312 | return 1 |
|
312 | return 1 | |
313 |
|
313 | |||
314 |
|
314 | |||
315 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
315 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
316 | """ |
|
316 | """ | |
317 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
317 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
318 | minIndex <= index <= maxIndex |
|
318 | minIndex <= index <= maxIndex | |
319 |
|
319 | |||
320 | Input: |
|
320 | Input: | |
321 | minIndex : valor de indice minimo de altura a considerar |
|
321 | minIndex : valor de indice minimo de altura a considerar | |
322 | maxIndex : valor de indice maximo de altura a considerar |
|
322 | maxIndex : valor de indice maximo de altura a considerar | |
323 |
|
323 | |||
324 | Affected: |
|
324 | Affected: | |
325 | self.dataOut.data |
|
325 | self.dataOut.data | |
326 | self.dataOut.heightList |
|
326 | self.dataOut.heightList | |
327 |
|
327 | |||
328 | Return: |
|
328 | Return: | |
329 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
329 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
330 | """ |
|
330 | """ | |
331 |
|
331 | |||
332 | if (minIndex < 0) or (minIndex > maxIndex): |
|
332 | if (minIndex < 0) or (minIndex > maxIndex): | |
333 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
333 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) | |
334 |
|
334 | |||
335 | if (maxIndex >= self.dataOut.nHeights): |
|
335 | if (maxIndex >= self.dataOut.nHeights): | |
336 | maxIndex = self.dataOut.nHeights-1 |
|
336 | maxIndex = self.dataOut.nHeights-1 | |
337 | # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
337 | # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) | |
338 |
|
338 | |||
339 | nHeights = maxIndex - minIndex + 1 |
|
339 | nHeights = maxIndex - minIndex + 1 | |
340 |
|
340 | |||
341 | #voltage |
|
341 | #voltage | |
342 | data = self.dataOut.data[:,minIndex:maxIndex+1] |
|
342 | data = self.dataOut.data[:,minIndex:maxIndex+1] | |
343 |
|
343 | |||
344 | firstHeight = self.dataOut.heightList[minIndex] |
|
344 | firstHeight = self.dataOut.heightList[minIndex] | |
345 |
|
345 | |||
346 | self.dataOut.data = data |
|
346 | self.dataOut.data = data | |
347 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
347 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] | |
348 |
|
348 | |||
349 | return 1 |
|
349 | return 1 | |
350 |
|
350 | |||
351 |
|
351 | |||
352 | def filterByHeights(self, window): |
|
352 | def filterByHeights(self, window): | |
353 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
353 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] | |
354 |
|
354 | |||
355 | if window == None: |
|
355 | if window == None: | |
356 | window = self.dataOut.radarControllerHeaderObj.txA / deltaHeight |
|
356 | window = self.dataOut.radarControllerHeaderObj.txA / deltaHeight | |
357 |
|
357 | |||
358 | newdelta = deltaHeight * window |
|
358 | newdelta = deltaHeight * window | |
359 | r = self.dataOut.data.shape[1] % window |
|
359 | r = self.dataOut.data.shape[1] % window | |
360 | buffer = self.dataOut.data[:,0:self.dataOut.data.shape[1]-r] |
|
360 | buffer = self.dataOut.data[:,0:self.dataOut.data.shape[1]-r] | |
361 | buffer = buffer.reshape(self.dataOut.data.shape[0],self.dataOut.data.shape[1]/window,window) |
|
361 | buffer = buffer.reshape(self.dataOut.data.shape[0],self.dataOut.data.shape[1]/window,window) | |
362 |
buffer = numpy. |
|
362 | buffer = numpy.sum(buffer,2) | |
363 | self.dataOut.data = buffer |
|
363 | self.dataOut.data = buffer | |
364 | self.dataOut.heightList = numpy.arange(self.dataOut.heightList[0],newdelta*self.dataOut.nHeights/window-newdelta,newdelta) |
|
364 | self.dataOut.heightList = numpy.arange(self.dataOut.heightList[0],newdelta*self.dataOut.nHeights/window-newdelta,newdelta) | |
|
365 | self.dataOut.windowOfFilter = window | |||
365 |
|
366 | |||
366 | def deFlip(self): |
|
367 | def deFlip(self): | |
367 | self.dataOut.data *= self.flip |
|
368 | self.dataOut.data *= self.flip | |
368 | self.flip *= -1. |
|
369 | self.flip *= -1. | |
369 |
|
370 | |||
370 |
|
371 | |||
371 | class CohInt(Operation): |
|
372 | class CohInt(Operation): | |
372 |
|
373 | |||
373 | __isConfig = False |
|
374 | __isConfig = False | |
374 |
|
375 | |||
375 | __profIndex = 0 |
|
376 | __profIndex = 0 | |
376 | __withOverapping = False |
|
377 | __withOverapping = False | |
377 |
|
378 | |||
378 | __byTime = False |
|
379 | __byTime = False | |
379 | __initime = None |
|
380 | __initime = None | |
380 | __lastdatatime = None |
|
381 | __lastdatatime = None | |
381 | __integrationtime = None |
|
382 | __integrationtime = None | |
382 |
|
383 | |||
383 | __buffer = None |
|
384 | __buffer = None | |
384 |
|
385 | |||
385 | __dataReady = False |
|
386 | __dataReady = False | |
386 |
|
387 | |||
387 | n = None |
|
388 | n = None | |
388 |
|
389 | |||
389 |
|
390 | |||
390 | def __init__(self): |
|
391 | def __init__(self): | |
391 |
|
392 | |||
392 | self.__isConfig = False |
|
393 | self.__isConfig = False | |
393 |
|
394 | |||
394 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
395 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
395 | """ |
|
396 | """ | |
396 | Set the parameters of the integration class. |
|
397 | Set the parameters of the integration class. | |
397 |
|
398 | |||
398 | Inputs: |
|
399 | Inputs: | |
399 |
|
400 | |||
400 | n : Number of coherent integrations |
|
401 | n : Number of coherent integrations | |
401 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
402 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
402 | overlapping : |
|
403 | overlapping : | |
403 |
|
404 | |||
404 | """ |
|
405 | """ | |
405 |
|
406 | |||
406 | self.__initime = None |
|
407 | self.__initime = None | |
407 | self.__lastdatatime = 0 |
|
408 | self.__lastdatatime = 0 | |
408 | self.__buffer = None |
|
409 | self.__buffer = None | |
409 | self.__dataReady = False |
|
410 | self.__dataReady = False | |
410 |
|
411 | |||
411 |
|
412 | |||
412 | if n == None and timeInterval == None: |
|
413 | if n == None and timeInterval == None: | |
413 | raise ValueError, "n or timeInterval should be specified ..." |
|
414 | raise ValueError, "n or timeInterval should be specified ..." | |
414 |
|
415 | |||
415 | if n != None: |
|
416 | if n != None: | |
416 | self.n = n |
|
417 | self.n = n | |
417 | self.__byTime = False |
|
418 | self.__byTime = False | |
418 | else: |
|
419 | else: | |
419 | self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line |
|
420 | self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line | |
420 | self.n = 9999 |
|
421 | self.n = 9999 | |
421 | self.__byTime = True |
|
422 | self.__byTime = True | |
422 |
|
423 | |||
423 | if overlapping: |
|
424 | if overlapping: | |
424 | self.__withOverapping = True |
|
425 | self.__withOverapping = True | |
425 | self.__buffer = None |
|
426 | self.__buffer = None | |
426 | else: |
|
427 | else: | |
427 | self.__withOverapping = False |
|
428 | self.__withOverapping = False | |
428 | self.__buffer = 0 |
|
429 | self.__buffer = 0 | |
429 |
|
430 | |||
430 | self.__profIndex = 0 |
|
431 | self.__profIndex = 0 | |
431 |
|
432 | |||
432 | def putData(self, data): |
|
433 | def putData(self, data): | |
433 |
|
434 | |||
434 | """ |
|
435 | """ | |
435 | Add a profile to the __buffer and increase in one the __profileIndex |
|
436 | Add a profile to the __buffer and increase in one the __profileIndex | |
436 |
|
437 | |||
437 | """ |
|
438 | """ | |
438 |
|
439 | |||
439 | if not self.__withOverapping: |
|
440 | if not self.__withOverapping: | |
440 | self.__buffer += data.copy() |
|
441 | self.__buffer += data.copy() | |
441 | self.__profIndex += 1 |
|
442 | self.__profIndex += 1 | |
442 | return |
|
443 | return | |
443 |
|
444 | |||
444 | #Overlapping data |
|
445 | #Overlapping data | |
445 | nChannels, nHeis = data.shape |
|
446 | nChannels, nHeis = data.shape | |
446 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
447 | data = numpy.reshape(data, (1, nChannels, nHeis)) | |
447 |
|
448 | |||
448 | #If the buffer is empty then it takes the data value |
|
449 | #If the buffer is empty then it takes the data value | |
449 | if self.__buffer == None: |
|
450 | if self.__buffer == None: | |
450 | self.__buffer = data |
|
451 | self.__buffer = data | |
451 | self.__profIndex += 1 |
|
452 | self.__profIndex += 1 | |
452 | return |
|
453 | return | |
453 |
|
454 | |||
454 | #If the buffer length is lower than n then stakcing the data value |
|
455 | #If the buffer length is lower than n then stakcing the data value | |
455 | if self.__profIndex < self.n: |
|
456 | if self.__profIndex < self.n: | |
456 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
457 | self.__buffer = numpy.vstack((self.__buffer, data)) | |
457 | self.__profIndex += 1 |
|
458 | self.__profIndex += 1 | |
458 | return |
|
459 | return | |
459 |
|
460 | |||
460 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
461 | #If the buffer length is equal to n then replacing the last buffer value with the data value | |
461 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
462 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) | |
462 | self.__buffer[self.n-1] = data |
|
463 | self.__buffer[self.n-1] = data | |
463 | self.__profIndex = self.n |
|
464 | self.__profIndex = self.n | |
464 | return |
|
465 | return | |
465 |
|
466 | |||
466 |
|
467 | |||
467 | def pushData(self): |
|
468 | def pushData(self): | |
468 | """ |
|
469 | """ | |
469 | Return the sum of the last profiles and the profiles used in the sum. |
|
470 | Return the sum of the last profiles and the profiles used in the sum. | |
470 |
|
471 | |||
471 | Affected: |
|
472 | Affected: | |
472 |
|
473 | |||
473 | self.__profileIndex |
|
474 | self.__profileIndex | |
474 |
|
475 | |||
475 | """ |
|
476 | """ | |
476 |
|
477 | |||
477 | if not self.__withOverapping: |
|
478 | if not self.__withOverapping: | |
478 | data = self.__buffer |
|
479 | data = self.__buffer | |
479 | n = self.__profIndex |
|
480 | n = self.__profIndex | |
480 |
|
481 | |||
481 | self.__buffer = 0 |
|
482 | self.__buffer = 0 | |
482 | self.__profIndex = 0 |
|
483 | self.__profIndex = 0 | |
483 |
|
484 | |||
484 | return data, n |
|
485 | return data, n | |
485 |
|
486 | |||
486 | #Integration with Overlapping |
|
487 | #Integration with Overlapping | |
487 | data = numpy.sum(self.__buffer, axis=0) |
|
488 | data = numpy.sum(self.__buffer, axis=0) | |
488 | n = self.__profIndex |
|
489 | n = self.__profIndex | |
489 |
|
490 | |||
490 | return data, n |
|
491 | return data, n | |
491 |
|
492 | |||
492 | def byProfiles(self, data): |
|
493 | def byProfiles(self, data): | |
493 |
|
494 | |||
494 | self.__dataReady = False |
|
495 | self.__dataReady = False | |
495 | avgdata = None |
|
496 | avgdata = None | |
496 | n = None |
|
497 | n = None | |
497 |
|
498 | |||
498 | self.putData(data) |
|
499 | self.putData(data) | |
499 |
|
500 | |||
500 | if self.__profIndex == self.n: |
|
501 | if self.__profIndex == self.n: | |
501 |
|
502 | |||
502 | avgdata, n = self.pushData() |
|
503 | avgdata, n = self.pushData() | |
503 | self.__dataReady = True |
|
504 | self.__dataReady = True | |
504 |
|
505 | |||
505 | return avgdata |
|
506 | return avgdata | |
506 |
|
507 | |||
507 | def byTime(self, data, datatime): |
|
508 | def byTime(self, data, datatime): | |
508 |
|
509 | |||
509 | self.__dataReady = False |
|
510 | self.__dataReady = False | |
510 | avgdata = None |
|
511 | avgdata = None | |
511 | n = None |
|
512 | n = None | |
512 |
|
513 | |||
513 | self.putData(data) |
|
514 | self.putData(data) | |
514 |
|
515 | |||
515 | if (datatime - self.__initime) >= self.__integrationtime: |
|
516 | if (datatime - self.__initime) >= self.__integrationtime: | |
516 | avgdata, n = self.pushData() |
|
517 | avgdata, n = self.pushData() | |
517 | self.n = n |
|
518 | self.n = n | |
518 | self.__dataReady = True |
|
519 | self.__dataReady = True | |
519 |
|
520 | |||
520 | return avgdata |
|
521 | return avgdata | |
521 |
|
522 | |||
522 | def integrate(self, data, datatime=None): |
|
523 | def integrate(self, data, datatime=None): | |
523 |
|
524 | |||
524 | if self.__initime == None: |
|
525 | if self.__initime == None: | |
525 | self.__initime = datatime |
|
526 | self.__initime = datatime | |
526 |
|
527 | |||
527 | if self.__byTime: |
|
528 | if self.__byTime: | |
528 | avgdata = self.byTime(data, datatime) |
|
529 | avgdata = self.byTime(data, datatime) | |
529 | else: |
|
530 | else: | |
530 | avgdata = self.byProfiles(data) |
|
531 | avgdata = self.byProfiles(data) | |
531 |
|
532 | |||
532 |
|
533 | |||
533 | self.__lastdatatime = datatime |
|
534 | self.__lastdatatime = datatime | |
534 |
|
535 | |||
535 | if avgdata == None: |
|
536 | if avgdata == None: | |
536 | return None, None |
|
537 | return None, None | |
537 |
|
538 | |||
538 | avgdatatime = self.__initime |
|
539 | avgdatatime = self.__initime | |
539 |
|
540 | |||
540 | deltatime = datatime -self.__lastdatatime |
|
541 | deltatime = datatime -self.__lastdatatime | |
541 |
|
542 | |||
542 | if not self.__withOverapping: |
|
543 | if not self.__withOverapping: | |
543 | self.__initime = datatime |
|
544 | self.__initime = datatime | |
544 | else: |
|
545 | else: | |
545 | self.__initime += deltatime |
|
546 | self.__initime += deltatime | |
546 |
|
547 | |||
547 | return avgdata, avgdatatime |
|
548 | return avgdata, avgdatatime | |
548 |
|
549 | |||
549 | def run(self, dataOut, **kwargs): |
|
550 | def run(self, dataOut, **kwargs): | |
550 |
|
551 | |||
551 | if not self.__isConfig: |
|
552 | if not self.__isConfig: | |
552 | self.setup(**kwargs) |
|
553 | self.setup(**kwargs) | |
553 | self.__isConfig = True |
|
554 | self.__isConfig = True | |
554 |
|
555 | |||
555 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
556 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) | |
556 |
|
557 | |||
557 | # dataOut.timeInterval *= n |
|
558 | # dataOut.timeInterval *= n | |
558 | dataOut.flagNoData = True |
|
559 | dataOut.flagNoData = True | |
559 |
|
560 | |||
560 | if self.__dataReady: |
|
561 | if self.__dataReady: | |
561 | dataOut.data = avgdata |
|
562 | dataOut.data = avgdata | |
562 | dataOut.nCohInt *= self.n |
|
563 | dataOut.nCohInt *= self.n | |
563 | dataOut.utctime = avgdatatime |
|
564 | dataOut.utctime = avgdatatime | |
564 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
565 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt | |
565 | dataOut.flagNoData = False |
|
566 | dataOut.flagNoData = False | |
566 |
|
567 | |||
567 |
|
568 | |||
568 | class Decoder(Operation): |
|
569 | class Decoder(Operation): | |
569 |
|
570 | |||
570 | __isConfig = False |
|
571 | __isConfig = False | |
571 | __profIndex = 0 |
|
572 | __profIndex = 0 | |
572 |
|
573 | |||
573 | code = None |
|
574 | code = None | |
574 |
|
575 | |||
575 | nCode = None |
|
576 | nCode = None | |
576 | nBaud = None |
|
577 | nBaud = None | |
577 |
|
578 | |||
578 | def __init__(self): |
|
579 | def __init__(self): | |
579 |
|
580 | |||
580 | self.__isConfig = False |
|
581 | self.__isConfig = False | |
581 |
|
582 | |||
582 | def setup(self, code): |
|
583 | def setup(self, code): | |
583 |
|
584 | |||
584 | self.__profIndex = 0 |
|
585 | self.__profIndex = 0 | |
585 |
|
586 | |||
586 | self.code = code |
|
587 | self.code = code | |
587 |
|
588 | |||
588 | self.nCode = len(code) |
|
589 | self.nCode = len(code) | |
589 | self.nBaud = len(code[0]) |
|
590 | self.nBaud = len(code[0]) | |
590 |
|
591 | |||
591 | def convolutionInFreq(self, data): |
|
592 | def convolutionInFreq(self, data): | |
592 |
|
593 | |||
593 | nchannel, ndata = data.shape |
|
594 | nchannel, ndata = data.shape | |
594 | newcode = numpy.zeros(ndata) |
|
595 | newcode = numpy.zeros(ndata) | |
595 | newcode[0:self.nBaud] = self.code[self.__profIndex] |
|
596 | newcode[0:self.nBaud] = self.code[self.__profIndex] | |
596 |
|
597 | |||
597 | fft_data = numpy.fft.fft(data, axis=1) |
|
598 | fft_data = numpy.fft.fft(data, axis=1) | |
598 | fft_code = numpy.conj(numpy.fft.fft(newcode)) |
|
599 | fft_code = numpy.conj(numpy.fft.fft(newcode)) | |
599 | fft_code = fft_code.reshape(1,len(fft_code)) |
|
600 | fft_code = fft_code.reshape(1,len(fft_code)) | |
600 |
|
601 | |||
601 | # conv = fft_data.copy() |
|
602 | # conv = fft_data.copy() | |
602 | # conv.fill(0) |
|
603 | # conv.fill(0) | |
603 |
|
604 | |||
604 | conv = fft_data*fft_code |
|
605 | conv = fft_data*fft_code | |
605 |
|
606 | |||
606 | data = numpy.fft.ifft(conv,axis=1) |
|
607 | data = numpy.fft.ifft(conv,axis=1) | |
607 |
|
608 | |||
608 | datadec = data[:,:-self.nBaud+1] |
|
609 | datadec = data[:,:-self.nBaud+1] | |
609 | ndatadec = ndata - self.nBaud + 1 |
|
610 | ndatadec = ndata - self.nBaud + 1 | |
610 |
|
611 | |||
611 | if self.__profIndex == self.nCode-1: |
|
612 | if self.__profIndex == self.nCode-1: | |
612 | self.__profIndex = 0 |
|
613 | self.__profIndex = 0 | |
613 | return ndatadec, datadec |
|
614 | return ndatadec, datadec | |
614 |
|
615 | |||
615 | self.__profIndex += 1 |
|
616 | self.__profIndex += 1 | |
616 |
|
617 | |||
617 | return ndatadec, datadec |
|
618 | return ndatadec, datadec | |
618 |
|
619 | |||
619 |
|
620 | |||
620 | def convolutionInTime(self, data): |
|
621 | def convolutionInTime(self, data): | |
621 |
|
622 | |||
622 | nchannel, ndata = data.shape |
|
623 | nchannel, ndata = data.shape | |
623 | newcode = self.code[self.__profIndex] |
|
624 | newcode = self.code[self.__profIndex] | |
624 | ndatadec = ndata - self.nBaud + 1 |
|
625 | ndatadec = ndata - self.nBaud + 1 | |
625 |
|
626 | |||
626 | datadec = numpy.zeros((nchannel, ndatadec)) |
|
627 | datadec = numpy.zeros((nchannel, ndatadec)) | |
627 |
|
628 | |||
628 | for i in range(nchannel): |
|
629 | for i in range(nchannel): | |
629 | datadec[i,:] = numpy.correlate(data[i,:], newcode) |
|
630 | datadec[i,:] = numpy.correlate(data[i,:], newcode) | |
630 |
|
631 | |||
631 | if self.__profIndex == self.nCode-1: |
|
632 | if self.__profIndex == self.nCode-1: | |
632 | self.__profIndex = 0 |
|
633 | self.__profIndex = 0 | |
633 | return ndatadec, datadec |
|
634 | return ndatadec, datadec | |
634 |
|
635 | |||
635 | self.__profIndex += 1 |
|
636 | self.__profIndex += 1 | |
636 |
|
637 | |||
637 | return ndatadec, datadec |
|
638 | return ndatadec, datadec | |
638 |
|
639 | |||
639 | def run(self, dataOut, code=None, mode = 0): |
|
640 | def run(self, dataOut, code=None, mode = 0): | |
640 |
|
641 | |||
641 | if not self.__isConfig: |
|
642 | if not self.__isConfig: | |
642 |
|
643 | |||
643 | if code == None: |
|
644 | if code == None: | |
644 | code = dataOut.code |
|
645 | code = dataOut.code | |
645 |
|
646 | |||
646 | self.setup(code) |
|
647 | self.setup(code) | |
647 | self.__isConfig = True |
|
648 | self.__isConfig = True | |
648 |
|
649 | |||
649 | if mode == 0: |
|
650 | if mode == 0: | |
650 | ndatadec, datadec = self.convolutionInFreq(dataOut.data) |
|
651 | ndatadec, datadec = self.convolutionInFreq(dataOut.data) | |
651 |
|
652 | |||
652 | if mode == 1: |
|
653 | if mode == 1: | |
653 | print "This function is not implemented" |
|
654 | print "This function is not implemented" | |
654 | # ndatadec, datadec = self.convolutionInTime(dataOut.data) |
|
655 | # ndatadec, datadec = self.convolutionInTime(dataOut.data) | |
655 |
|
656 | |||
656 | dataOut.data = datadec |
|
657 | dataOut.data = datadec | |
657 |
|
658 | |||
658 | dataOut.heightList = dataOut.heightList[0:ndatadec] |
|
659 | dataOut.heightList = dataOut.heightList[0:ndatadec] | |
659 |
|
660 | |||
660 | dataOut.flagDecodeData = True #asumo q la data no esta decodificada |
|
661 | dataOut.flagDecodeData = True #asumo q la data no esta decodificada | |
661 |
|
662 | |||
662 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
663 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip | |
663 |
|
664 | |||
664 |
|
665 | |||
665 | class SpectraProc(ProcessingUnit): |
|
666 | class SpectraProc(ProcessingUnit): | |
666 |
|
667 | |||
667 | def __init__(self): |
|
668 | def __init__(self): | |
668 |
|
669 | |||
669 | self.objectDict = {} |
|
670 | self.objectDict = {} | |
670 | self.buffer = None |
|
671 | self.buffer = None | |
671 | self.firstdatatime = None |
|
672 | self.firstdatatime = None | |
672 | self.profIndex = 0 |
|
673 | self.profIndex = 0 | |
673 | self.dataOut = Spectra() |
|
674 | self.dataOut = Spectra() | |
674 |
|
675 | |||
675 | def __updateObjFromInput(self): |
|
676 | def __updateObjFromInput(self): | |
676 |
|
677 | |||
677 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
678 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
678 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
679 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
679 | self.dataOut.channelList = self.dataIn.channelList |
|
680 | self.dataOut.channelList = self.dataIn.channelList | |
680 | self.dataOut.heightList = self.dataIn.heightList |
|
681 | self.dataOut.heightList = self.dataIn.heightList | |
681 | self.dataOut.dtype = self.dataIn.dtype |
|
682 | self.dataOut.dtype = self.dataIn.dtype | |
682 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
683 | # self.dataOut.nHeights = self.dataIn.nHeights | |
683 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
684 | # self.dataOut.nChannels = self.dataIn.nChannels | |
684 | self.dataOut.nBaud = self.dataIn.nBaud |
|
685 | self.dataOut.nBaud = self.dataIn.nBaud | |
685 | self.dataOut.nCode = self.dataIn.nCode |
|
686 | self.dataOut.nCode = self.dataIn.nCode | |
686 | self.dataOut.code = self.dataIn.code |
|
687 | self.dataOut.code = self.dataIn.code | |
687 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
688 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
688 | # self.dataOut.channelIndexList = self.dataIn.channelIndexList |
|
689 | # self.dataOut.channelIndexList = self.dataIn.channelIndexList | |
689 | self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock |
|
690 | self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock | |
690 | self.dataOut.utctime = self.firstdatatime |
|
691 | self.dataOut.utctime = self.firstdatatime | |
691 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
692 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
692 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
693 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
693 | self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT |
|
694 | self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT | |
694 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
695 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
695 | self.dataOut.nIncohInt = 1 |
|
696 | self.dataOut.nIncohInt = 1 | |
696 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
697 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
|
698 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |||
697 |
|
699 | |||
698 | self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nFFTPoints*self.dataOut.nIncohInt |
|
700 | self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nFFTPoints*self.dataOut.nIncohInt | |
699 |
|
701 | |||
700 | def __getFft(self): |
|
702 | def __getFft(self): | |
701 | """ |
|
703 | """ | |
702 | Convierte valores de Voltaje a Spectra |
|
704 | Convierte valores de Voltaje a Spectra | |
703 |
|
705 | |||
704 | Affected: |
|
706 | Affected: | |
705 | self.dataOut.data_spc |
|
707 | self.dataOut.data_spc | |
706 | self.dataOut.data_cspc |
|
708 | self.dataOut.data_cspc | |
707 | self.dataOut.data_dc |
|
709 | self.dataOut.data_dc | |
708 | self.dataOut.heightList |
|
710 | self.dataOut.heightList | |
709 | self.profIndex |
|
711 | self.profIndex | |
710 | self.buffer |
|
712 | self.buffer | |
711 | self.dataOut.flagNoData |
|
713 | self.dataOut.flagNoData | |
712 | """ |
|
714 | """ | |
713 | fft_volt = numpy.fft.fft(self.buffer,axis=1) |
|
715 | fft_volt = numpy.fft.fft(self.buffer,axis=1) | |
714 | dc = fft_volt[:,0,:] |
|
716 | dc = fft_volt[:,0,:] | |
715 |
|
717 | |||
716 | #calculo de self-spectra |
|
718 | #calculo de self-spectra | |
717 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) |
|
719 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) | |
718 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
720 | spc = fft_volt * numpy.conjugate(fft_volt) | |
719 | spc = spc.real |
|
721 | spc = spc.real | |
720 |
|
722 | |||
721 | blocksize = 0 |
|
723 | blocksize = 0 | |
722 | blocksize += dc.size |
|
724 | blocksize += dc.size | |
723 | blocksize += spc.size |
|
725 | blocksize += spc.size | |
724 |
|
726 | |||
725 | cspc = None |
|
727 | cspc = None | |
726 | pairIndex = 0 |
|
728 | pairIndex = 0 | |
727 | if self.dataOut.pairsList != None: |
|
729 | if self.dataOut.pairsList != None: | |
728 | #calculo de cross-spectra |
|
730 | #calculo de cross-spectra | |
729 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
731 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |
730 | for pair in self.dataOut.pairsList: |
|
732 | for pair in self.dataOut.pairsList: | |
731 | cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:]) |
|
733 | cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:]) | |
732 | pairIndex += 1 |
|
734 | pairIndex += 1 | |
733 | blocksize += cspc.size |
|
735 | blocksize += cspc.size | |
734 |
|
736 | |||
735 | self.dataOut.data_spc = spc |
|
737 | self.dataOut.data_spc = spc | |
736 | self.dataOut.data_cspc = cspc |
|
738 | self.dataOut.data_cspc = cspc | |
737 | self.dataOut.data_dc = dc |
|
739 | self.dataOut.data_dc = dc | |
738 | self.dataOut.blockSize = blocksize |
|
740 | self.dataOut.blockSize = blocksize | |
739 |
|
741 | |||
740 | def init(self, nFFTPoints=None, pairsList=None): |
|
742 | def init(self, nFFTPoints=None, pairsList=None): | |
741 |
|
743 | |||
742 | self.dataOut.flagNoData = True |
|
744 | self.dataOut.flagNoData = True | |
743 |
|
745 | |||
744 | if self.dataIn.type == "Spectra": |
|
746 | if self.dataIn.type == "Spectra": | |
745 | self.dataOut.copy(self.dataIn) |
|
747 | self.dataOut.copy(self.dataIn) | |
746 | return |
|
748 | return | |
747 |
|
749 | |||
748 | if self.dataIn.type == "Voltage": |
|
750 | if self.dataIn.type == "Voltage": | |
749 |
|
751 | |||
750 | if nFFTPoints == None: |
|
752 | if nFFTPoints == None: | |
751 | raise ValueError, "This SpectraProc.init() need nFFTPoints input variable" |
|
753 | raise ValueError, "This SpectraProc.init() need nFFTPoints input variable" | |
752 |
|
754 | |||
753 | if pairsList == None: |
|
755 | if pairsList == None: | |
754 | nPairs = 0 |
|
756 | nPairs = 0 | |
755 | else: |
|
757 | else: | |
756 | nPairs = len(pairsList) |
|
758 | nPairs = len(pairsList) | |
757 |
|
759 | |||
758 | self.dataOut.nFFTPoints = nFFTPoints |
|
760 | self.dataOut.nFFTPoints = nFFTPoints | |
759 | self.dataOut.pairsList = pairsList |
|
761 | self.dataOut.pairsList = pairsList | |
760 | self.dataOut.nPairs = nPairs |
|
762 | self.dataOut.nPairs = nPairs | |
761 |
|
763 | |||
762 | if self.buffer == None: |
|
764 | if self.buffer == None: | |
763 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
765 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
764 | self.dataOut.nFFTPoints, |
|
766 | self.dataOut.nFFTPoints, | |
765 | self.dataIn.nHeights), |
|
767 | self.dataIn.nHeights), | |
766 | dtype='complex') |
|
768 | dtype='complex') | |
767 |
|
769 | |||
768 |
|
770 | |||
769 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() |
|
771 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() | |
770 | self.profIndex += 1 |
|
772 | self.profIndex += 1 | |
771 |
|
773 | |||
772 | if self.firstdatatime == None: |
|
774 | if self.firstdatatime == None: | |
773 | self.firstdatatime = self.dataIn.utctime |
|
775 | self.firstdatatime = self.dataIn.utctime | |
774 |
|
776 | |||
775 | if self.profIndex == self.dataOut.nFFTPoints: |
|
777 | if self.profIndex == self.dataOut.nFFTPoints: | |
776 | self.__updateObjFromInput() |
|
778 | self.__updateObjFromInput() | |
777 | self.__getFft() |
|
779 | self.__getFft() | |
778 |
|
780 | |||
779 | self.dataOut.flagNoData = False |
|
781 | self.dataOut.flagNoData = False | |
780 |
|
782 | |||
781 | self.buffer = None |
|
783 | self.buffer = None | |
782 | self.firstdatatime = None |
|
784 | self.firstdatatime = None | |
783 | self.profIndex = 0 |
|
785 | self.profIndex = 0 | |
784 |
|
786 | |||
785 | return |
|
787 | return | |
786 |
|
788 | |||
787 | raise ValuError, "The type object %s is not valid"%(self.dataIn.type) |
|
789 | raise ValuError, "The type object %s is not valid"%(self.dataIn.type) | |
788 |
|
790 | |||
789 | def selectChannels(self, channelList): |
|
791 | def selectChannels(self, channelList): | |
790 |
|
792 | |||
791 | channelIndexList = [] |
|
793 | channelIndexList = [] | |
792 |
|
794 | |||
793 | for channel in channelList: |
|
795 | for channel in channelList: | |
794 | index = self.dataOut.channelList.index(channel) |
|
796 | index = self.dataOut.channelList.index(channel) | |
795 | channelIndexList.append(index) |
|
797 | channelIndexList.append(index) | |
796 |
|
798 | |||
797 | self.selectChannelsByIndex(channelIndexList) |
|
799 | self.selectChannelsByIndex(channelIndexList) | |
798 |
|
800 | |||
799 | def selectChannelsByIndex(self, channelIndexList): |
|
801 | def selectChannelsByIndex(self, channelIndexList): | |
800 | """ |
|
802 | """ | |
801 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
803 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
802 |
|
804 | |||
803 | Input: |
|
805 | Input: | |
804 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
806 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
805 |
|
807 | |||
806 | Affected: |
|
808 | Affected: | |
807 | self.dataOut.data_spc |
|
809 | self.dataOut.data_spc | |
808 | self.dataOut.channelIndexList |
|
810 | self.dataOut.channelIndexList | |
809 | self.dataOut.nChannels |
|
811 | self.dataOut.nChannels | |
810 |
|
812 | |||
811 | Return: |
|
813 | Return: | |
812 | None |
|
814 | None | |
813 | """ |
|
815 | """ | |
814 |
|
816 | |||
815 | for channelIndex in channelIndexList: |
|
817 | for channelIndex in channelIndexList: | |
816 | if channelIndex not in self.dataOut.channelIndexList: |
|
818 | if channelIndex not in self.dataOut.channelIndexList: | |
817 | print channelIndexList |
|
819 | print channelIndexList | |
818 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
820 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex | |
819 |
|
821 | |||
820 | nChannels = len(channelIndexList) |
|
822 | nChannels = len(channelIndexList) | |
821 |
|
823 | |||
822 | data_spc = self.dataOut.data_spc[channelIndexList,:] |
|
824 | data_spc = self.dataOut.data_spc[channelIndexList,:] | |
823 |
|
825 | |||
824 | self.dataOut.data_spc = data_spc |
|
826 | self.dataOut.data_spc = data_spc | |
825 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
827 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
826 | # self.dataOut.nChannels = nChannels |
|
828 | # self.dataOut.nChannels = nChannels | |
827 |
|
829 | |||
828 | return 1 |
|
830 | return 1 | |
829 |
|
831 | |||
830 |
|
832 | |||
831 | class IncohInt(Operation): |
|
833 | class IncohInt(Operation): | |
832 |
|
834 | |||
833 |
|
835 | |||
834 | __profIndex = 0 |
|
836 | __profIndex = 0 | |
835 | __withOverapping = False |
|
837 | __withOverapping = False | |
836 |
|
838 | |||
837 | __byTime = False |
|
839 | __byTime = False | |
838 | __initime = None |
|
840 | __initime = None | |
839 | __lastdatatime = None |
|
841 | __lastdatatime = None | |
840 | __integrationtime = None |
|
842 | __integrationtime = None | |
841 |
|
843 | |||
842 | __buffer_spc = None |
|
844 | __buffer_spc = None | |
843 | __buffer_cspc = None |
|
845 | __buffer_cspc = None | |
844 | __buffer_dc = None |
|
846 | __buffer_dc = None | |
845 |
|
847 | |||
846 | __dataReady = False |
|
848 | __dataReady = False | |
847 |
|
849 | |||
848 | n = None |
|
850 | n = None | |
849 |
|
851 | |||
850 |
|
852 | |||
851 | def __init__(self): |
|
853 | def __init__(self): | |
852 |
|
854 | |||
853 | self.__isConfig = False |
|
855 | self.__isConfig = False | |
854 |
|
856 | |||
855 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
857 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
856 | """ |
|
858 | """ | |
857 | Set the parameters of the integration class. |
|
859 | Set the parameters of the integration class. | |
858 |
|
860 | |||
859 | Inputs: |
|
861 | Inputs: | |
860 |
|
862 | |||
861 | n : Number of coherent integrations |
|
863 | n : Number of coherent integrations | |
862 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
864 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
863 | overlapping : |
|
865 | overlapping : | |
864 |
|
866 | |||
865 | """ |
|
867 | """ | |
866 |
|
868 | |||
867 | self.__initime = None |
|
869 | self.__initime = None | |
868 | self.__lastdatatime = 0 |
|
870 | self.__lastdatatime = 0 | |
869 | self.__buffer_spc = None |
|
871 | self.__buffer_spc = None | |
870 | self.__buffer_cspc = None |
|
872 | self.__buffer_cspc = None | |
871 | self.__buffer_dc = None |
|
873 | self.__buffer_dc = None | |
872 | self.__dataReady = False |
|
874 | self.__dataReady = False | |
873 |
|
875 | |||
874 |
|
876 | |||
875 | if n == None and timeInterval == None: |
|
877 | if n == None and timeInterval == None: | |
876 | raise ValueError, "n or timeInterval should be specified ..." |
|
878 | raise ValueError, "n or timeInterval should be specified ..." | |
877 |
|
879 | |||
878 | if n != None: |
|
880 | if n != None: | |
879 | self.n = n |
|
881 | self.n = n | |
880 | self.__byTime = False |
|
882 | self.__byTime = False | |
881 | else: |
|
883 | else: | |
882 | self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line |
|
884 | self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line | |
883 | self.n = 9999 |
|
885 | self.n = 9999 | |
884 | self.__byTime = True |
|
886 | self.__byTime = True | |
885 |
|
887 | |||
886 | if overlapping: |
|
888 | if overlapping: | |
887 | self.__withOverapping = True |
|
889 | self.__withOverapping = True | |
888 | else: |
|
890 | else: | |
889 | self.__withOverapping = False |
|
891 | self.__withOverapping = False | |
890 | self.__buffer_spc = 0 |
|
892 | self.__buffer_spc = 0 | |
891 | self.__buffer_cspc = 0 |
|
893 | self.__buffer_cspc = 0 | |
892 | self.__buffer_dc = 0 |
|
894 | self.__buffer_dc = 0 | |
893 |
|
895 | |||
894 | self.__profIndex = 0 |
|
896 | self.__profIndex = 0 | |
895 |
|
897 | |||
896 | def putData(self, data_spc, data_cspc, data_dc): |
|
898 | def putData(self, data_spc, data_cspc, data_dc): | |
897 |
|
899 | |||
898 | """ |
|
900 | """ | |
899 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
901 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
900 |
|
902 | |||
901 | """ |
|
903 | """ | |
902 |
|
904 | |||
903 | if not self.__withOverapping: |
|
905 | if not self.__withOverapping: | |
904 | self.__buffer_spc += data_spc |
|
906 | self.__buffer_spc += data_spc | |
905 |
|
907 | |||
906 | if data_cspc == None: |
|
908 | if data_cspc == None: | |
907 | self.__buffer_cspc = None |
|
909 | self.__buffer_cspc = None | |
908 | else: |
|
910 | else: | |
909 | self.__buffer_cspc += data_cspc |
|
911 | self.__buffer_cspc += data_cspc | |
910 |
|
912 | |||
911 | if data_dc == None: |
|
913 | if data_dc == None: | |
912 | self.__buffer_dc = None |
|
914 | self.__buffer_dc = None | |
913 | else: |
|
915 | else: | |
914 | self.__buffer_dc += data_dc |
|
916 | self.__buffer_dc += data_dc | |
915 |
|
917 | |||
916 | self.__profIndex += 1 |
|
918 | self.__profIndex += 1 | |
917 | return |
|
919 | return | |
918 |
|
920 | |||
919 | #Overlapping data |
|
921 | #Overlapping data | |
920 | nChannels, nFFTPoints, nHeis = data_spc.shape |
|
922 | nChannels, nFFTPoints, nHeis = data_spc.shape | |
921 | data_spc = numpy.reshape(data_spc, (1, nChannels, nFFTPoints, nHeis)) |
|
923 | data_spc = numpy.reshape(data_spc, (1, nChannels, nFFTPoints, nHeis)) | |
922 | if data_cspc != None: |
|
924 | if data_cspc != None: | |
923 | data_cspc = numpy.reshape(data_cspc, (1, -1, nFFTPoints, nHeis)) |
|
925 | data_cspc = numpy.reshape(data_cspc, (1, -1, nFFTPoints, nHeis)) | |
924 | if data_dc != None: |
|
926 | if data_dc != None: | |
925 | data_dc = numpy.reshape(data_dc, (1, -1, nHeis)) |
|
927 | data_dc = numpy.reshape(data_dc, (1, -1, nHeis)) | |
926 |
|
928 | |||
927 | #If the buffer is empty then it takes the data value |
|
929 | #If the buffer is empty then it takes the data value | |
928 | if self.__buffer_spc == None: |
|
930 | if self.__buffer_spc == None: | |
929 | self.__buffer_spc = data_spc |
|
931 | self.__buffer_spc = data_spc | |
930 |
|
932 | |||
931 | if data_cspc == None: |
|
933 | if data_cspc == None: | |
932 | self.__buffer_cspc = None |
|
934 | self.__buffer_cspc = None | |
933 | else: |
|
935 | else: | |
934 | self.__buffer_cspc += data_cspc |
|
936 | self.__buffer_cspc += data_cspc | |
935 |
|
937 | |||
936 | if data_dc == None: |
|
938 | if data_dc == None: | |
937 | self.__buffer_dc = None |
|
939 | self.__buffer_dc = None | |
938 | else: |
|
940 | else: | |
939 | self.__buffer_dc += data_dc |
|
941 | self.__buffer_dc += data_dc | |
940 |
|
942 | |||
941 | self.__profIndex += 1 |
|
943 | self.__profIndex += 1 | |
942 | return |
|
944 | return | |
943 |
|
945 | |||
944 | #If the buffer length is lower than n then stakcing the data value |
|
946 | #If the buffer length is lower than n then stakcing the data value | |
945 | if self.__profIndex < self.n: |
|
947 | if self.__profIndex < self.n: | |
946 | self.__buffer_spc = numpy.vstack((self.__buffer_spc, data_spc)) |
|
948 | self.__buffer_spc = numpy.vstack((self.__buffer_spc, data_spc)) | |
947 |
|
949 | |||
948 | if data_cspc != None: |
|
950 | if data_cspc != None: | |
949 | self.__buffer_cspc = numpy.vstack((self.__buffer_cspc, data_cspc)) |
|
951 | self.__buffer_cspc = numpy.vstack((self.__buffer_cspc, data_cspc)) | |
950 |
|
952 | |||
951 | if data_dc != None: |
|
953 | if data_dc != None: | |
952 | self.__buffer_dc = numpy.vstack((self.__buffer_dc, data_dc)) |
|
954 | self.__buffer_dc = numpy.vstack((self.__buffer_dc, data_dc)) | |
953 |
|
955 | |||
954 | self.__profIndex += 1 |
|
956 | self.__profIndex += 1 | |
955 | return |
|
957 | return | |
956 |
|
958 | |||
957 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
959 | #If the buffer length is equal to n then replacing the last buffer value with the data value | |
958 | self.__buffer_spc = numpy.roll(self.__buffer_spc, -1, axis=0) |
|
960 | self.__buffer_spc = numpy.roll(self.__buffer_spc, -1, axis=0) | |
959 | self.__buffer_spc[self.n-1] = data_spc |
|
961 | self.__buffer_spc[self.n-1] = data_spc | |
960 |
|
962 | |||
961 | if data_cspc != None: |
|
963 | if data_cspc != None: | |
962 | self.__buffer_cspc = numpy.roll(self.__buffer_cspc, -1, axis=0) |
|
964 | self.__buffer_cspc = numpy.roll(self.__buffer_cspc, -1, axis=0) | |
963 | self.__buffer_cspc[self.n-1] = data_cspc |
|
965 | self.__buffer_cspc[self.n-1] = data_cspc | |
964 |
|
966 | |||
965 | if data_dc != None: |
|
967 | if data_dc != None: | |
966 | self.__buffer_dc = numpy.roll(self.__buffer_dc, -1, axis=0) |
|
968 | self.__buffer_dc = numpy.roll(self.__buffer_dc, -1, axis=0) | |
967 | self.__buffer_dc[self.n-1] = data_dc |
|
969 | self.__buffer_dc[self.n-1] = data_dc | |
968 |
|
970 | |||
969 | self.__profIndex = self.n |
|
971 | self.__profIndex = self.n | |
970 | return |
|
972 | return | |
971 |
|
973 | |||
972 |
|
974 | |||
973 | def pushData(self): |
|
975 | def pushData(self): | |
974 | """ |
|
976 | """ | |
975 | Return the sum of the last profiles and the profiles used in the sum. |
|
977 | Return the sum of the last profiles and the profiles used in the sum. | |
976 |
|
978 | |||
977 | Affected: |
|
979 | Affected: | |
978 |
|
980 | |||
979 | self.__profileIndex |
|
981 | self.__profileIndex | |
980 |
|
982 | |||
981 | """ |
|
983 | """ | |
982 | data_spc = None |
|
984 | data_spc = None | |
983 | data_cspc = None |
|
985 | data_cspc = None | |
984 | data_dc = None |
|
986 | data_dc = None | |
985 |
|
987 | |||
986 | if not self.__withOverapping: |
|
988 | if not self.__withOverapping: | |
987 | data_spc = self.__buffer_spc |
|
989 | data_spc = self.__buffer_spc | |
988 | data_cspc = self.__buffer_cspc |
|
990 | data_cspc = self.__buffer_cspc | |
989 | data_dc = self.__buffer_dc |
|
991 | data_dc = self.__buffer_dc | |
990 |
|
992 | |||
991 | n = self.__profIndex |
|
993 | n = self.__profIndex | |
992 |
|
994 | |||
993 | self.__buffer_spc = 0 |
|
995 | self.__buffer_spc = 0 | |
994 | self.__buffer_cspc = 0 |
|
996 | self.__buffer_cspc = 0 | |
995 | self.__buffer_dc = 0 |
|
997 | self.__buffer_dc = 0 | |
996 | self.__profIndex = 0 |
|
998 | self.__profIndex = 0 | |
997 |
|
999 | |||
998 | return data_spc, data_cspc, data_dc, n |
|
1000 | return data_spc, data_cspc, data_dc, n | |
999 |
|
1001 | |||
1000 | #Integration with Overlapping |
|
1002 | #Integration with Overlapping | |
1001 | data_spc = numpy.sum(self.__buffer_spc, axis=0) |
|
1003 | data_spc = numpy.sum(self.__buffer_spc, axis=0) | |
1002 |
|
1004 | |||
1003 | if self.__buffer_cspc != None: |
|
1005 | if self.__buffer_cspc != None: | |
1004 | data_cspc = numpy.sum(self.__buffer_cspc, axis=0) |
|
1006 | data_cspc = numpy.sum(self.__buffer_cspc, axis=0) | |
1005 |
|
1007 | |||
1006 | if self.__buffer_dc != None: |
|
1008 | if self.__buffer_dc != None: | |
1007 | data_dc = numpy.sum(self.__buffer_dc, axis=0) |
|
1009 | data_dc = numpy.sum(self.__buffer_dc, axis=0) | |
1008 |
|
1010 | |||
1009 | n = self.__profIndex |
|
1011 | n = self.__profIndex | |
1010 |
|
1012 | |||
1011 | return data_spc, data_cspc, data_dc, n |
|
1013 | return data_spc, data_cspc, data_dc, n | |
1012 |
|
1014 | |||
1013 | def byProfiles(self, *args): |
|
1015 | def byProfiles(self, *args): | |
1014 |
|
1016 | |||
1015 | self.__dataReady = False |
|
1017 | self.__dataReady = False | |
1016 | avgdata_spc = None |
|
1018 | avgdata_spc = None | |
1017 | avgdata_cspc = None |
|
1019 | avgdata_cspc = None | |
1018 | avgdata_dc = None |
|
1020 | avgdata_dc = None | |
1019 | n = None |
|
1021 | n = None | |
1020 |
|
1022 | |||
1021 | self.putData(*args) |
|
1023 | self.putData(*args) | |
1022 |
|
1024 | |||
1023 | if self.__profIndex == self.n: |
|
1025 | if self.__profIndex == self.n: | |
1024 |
|
1026 | |||
1025 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1027 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1026 | self.__dataReady = True |
|
1028 | self.__dataReady = True | |
1027 |
|
1029 | |||
1028 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1030 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1029 |
|
1031 | |||
1030 | def byTime(self, datatime, *args): |
|
1032 | def byTime(self, datatime, *args): | |
1031 |
|
1033 | |||
1032 | self.__dataReady = False |
|
1034 | self.__dataReady = False | |
1033 | avgdata_spc = None |
|
1035 | avgdata_spc = None | |
1034 | avgdata_cspc = None |
|
1036 | avgdata_cspc = None | |
1035 | avgdata_dc = None |
|
1037 | avgdata_dc = None | |
1036 | n = None |
|
1038 | n = None | |
1037 |
|
1039 | |||
1038 | self.putData(*args) |
|
1040 | self.putData(*args) | |
1039 |
|
1041 | |||
1040 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1042 | if (datatime - self.__initime) >= self.__integrationtime: | |
1041 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1043 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1042 | self.n = n |
|
1044 | self.n = n | |
1043 | self.__dataReady = True |
|
1045 | self.__dataReady = True | |
1044 |
|
1046 | |||
1045 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1047 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1046 |
|
1048 | |||
1047 | def integrate(self, datatime, *args): |
|
1049 | def integrate(self, datatime, *args): | |
1048 |
|
1050 | |||
1049 | if self.__initime == None: |
|
1051 | if self.__initime == None: | |
1050 | self.__initime = datatime |
|
1052 | self.__initime = datatime | |
1051 |
|
1053 | |||
1052 | if self.__byTime: |
|
1054 | if self.__byTime: | |
1053 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args) |
|
1055 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args) | |
1054 | else: |
|
1056 | else: | |
1055 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1057 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
1056 |
|
1058 | |||
1057 | self.__lastdatatime = datatime |
|
1059 | self.__lastdatatime = datatime | |
1058 |
|
1060 | |||
1059 | if avgdata_spc == None: |
|
1061 | if avgdata_spc == None: | |
1060 | return None, None, None, None |
|
1062 | return None, None, None, None | |
1061 |
|
1063 | |||
1062 | avgdatatime = self.__initime |
|
1064 | avgdatatime = self.__initime | |
1063 |
|
1065 | |||
1064 | deltatime = datatime -self.__lastdatatime |
|
1066 | deltatime = datatime -self.__lastdatatime | |
1065 |
|
1067 | |||
1066 | if not self.__withOverapping: |
|
1068 | if not self.__withOverapping: | |
1067 | self.__initime = datatime |
|
1069 | self.__initime = datatime | |
1068 | else: |
|
1070 | else: | |
1069 | self.__initime += deltatime |
|
1071 | self.__initime += deltatime | |
1070 |
|
1072 | |||
1071 | return avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1073 | return avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc | |
1072 |
|
1074 | |||
1073 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1075 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | |
1074 |
|
1076 | |||
1075 | if not self.__isConfig: |
|
1077 | if not self.__isConfig: | |
1076 | self.setup(n, timeInterval, overlapping) |
|
1078 | self.setup(n, timeInterval, overlapping) | |
1077 | self.__isConfig = True |
|
1079 | self.__isConfig = True | |
1078 |
|
1080 | |||
1079 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1081 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |
1080 | dataOut.data_spc, |
|
1082 | dataOut.data_spc, | |
1081 | dataOut.data_cspc, |
|
1083 | dataOut.data_cspc, | |
1082 | dataOut.data_dc) |
|
1084 | dataOut.data_dc) | |
1083 |
|
1085 | |||
1084 | # dataOut.timeInterval *= n |
|
1086 | # dataOut.timeInterval *= n | |
1085 | dataOut.flagNoData = True |
|
1087 | dataOut.flagNoData = True | |
1086 |
|
1088 | |||
1087 | if self.__dataReady: |
|
1089 | if self.__dataReady: | |
1088 |
|
1090 | |||
1089 |
dataOut.data_spc = avgdata_spc |
|
1091 | dataOut.data_spc = avgdata_spc | |
1090 |
dataOut.data_cspc = avgdata_cspc |
|
1092 | dataOut.data_cspc = avgdata_cspc | |
1091 |
dataOut.data_dc = avgdata_dc |
|
1093 | dataOut.data_dc = avgdata_dc | |
1092 |
|
1094 | |||
1093 | dataOut.nIncohInt *= self.n |
|
1095 | dataOut.nIncohInt *= self.n | |
1094 | dataOut.utctime = avgdatatime |
|
1096 | dataOut.utctime = avgdatatime | |
1095 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt * dataOut.nIncohInt * dataOut.nFFTPoints |
|
1097 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt * dataOut.nIncohInt * dataOut.nFFTPoints | |
1096 | dataOut.flagNoData = False |
|
1098 | dataOut.flagNoData = False | |
1097 |
|
1099 | |||
1098 | class ProfileSelector(Operation): |
|
1100 | class ProfileSelector(Operation): | |
1099 |
|
1101 | |||
1100 | profileIndex = None |
|
1102 | profileIndex = None | |
1101 | # Tamanho total de los perfiles |
|
1103 | # Tamanho total de los perfiles | |
1102 | nProfiles = None |
|
1104 | nProfiles = None | |
1103 |
|
1105 | |||
1104 | def __init__(self): |
|
1106 | def __init__(self): | |
1105 |
|
1107 | |||
1106 | self.profileIndex = 0 |
|
1108 | self.profileIndex = 0 | |
1107 |
|
1109 | |||
1108 | def incIndex(self): |
|
1110 | def incIndex(self): | |
1109 | self.profileIndex += 1 |
|
1111 | self.profileIndex += 1 | |
1110 |
|
1112 | |||
1111 | if self.profileIndex >= self.nProfiles: |
|
1113 | if self.profileIndex >= self.nProfiles: | |
1112 | self.profileIndex = 0 |
|
1114 | self.profileIndex = 0 | |
1113 |
|
1115 | |||
1114 | def isProfileInRange(self, minIndex, maxIndex): |
|
1116 | def isProfileInRange(self, minIndex, maxIndex): | |
1115 |
|
1117 | |||
1116 | if self.profileIndex < minIndex: |
|
1118 | if self.profileIndex < minIndex: | |
1117 | return False |
|
1119 | return False | |
1118 |
|
1120 | |||
1119 | if self.profileIndex > maxIndex: |
|
1121 | if self.profileIndex > maxIndex: | |
1120 | return False |
|
1122 | return False | |
1121 |
|
1123 | |||
1122 | return True |
|
1124 | return True | |
1123 |
|
1125 | |||
1124 | def isProfileInList(self, profileList): |
|
1126 | def isProfileInList(self, profileList): | |
1125 |
|
1127 | |||
1126 | if self.profileIndex not in profileList: |
|
1128 | if self.profileIndex not in profileList: | |
1127 | return False |
|
1129 | return False | |
1128 |
|
1130 | |||
1129 | return True |
|
1131 | return True | |
1130 |
|
1132 | |||
1131 | def run(self, dataOut, profileList=None, profileRangeList=None): |
|
1133 | def run(self, dataOut, profileList=None, profileRangeList=None): | |
1132 |
|
1134 | |||
1133 | dataOut.flagNoData = True |
|
1135 | dataOut.flagNoData = True | |
1134 | self.nProfiles = dataOut.nProfiles |
|
1136 | self.nProfiles = dataOut.nProfiles | |
1135 |
|
1137 | |||
1136 | if profileList != None: |
|
1138 | if profileList != None: | |
1137 | if self.isProfileInList(profileList): |
|
1139 | if self.isProfileInList(profileList): | |
1138 | dataOut.flagNoData = False |
|
1140 | dataOut.flagNoData = False | |
1139 |
|
1141 | |||
1140 | self.incIndex() |
|
1142 | self.incIndex() | |
1141 | return 1 |
|
1143 | return 1 | |
1142 |
|
1144 | |||
1143 |
|
1145 | |||
1144 | elif profileRangeList != None: |
|
1146 | elif profileRangeList != None: | |
1145 | minIndex = profileRangeList[0] |
|
1147 | minIndex = profileRangeList[0] | |
1146 | maxIndex = profileRangeList[1] |
|
1148 | maxIndex = profileRangeList[1] | |
1147 | if self.isProfileInRange(minIndex, maxIndex): |
|
1149 | if self.isProfileInRange(minIndex, maxIndex): | |
1148 | dataOut.flagNoData = False |
|
1150 | dataOut.flagNoData = False | |
1149 |
|
1151 | |||
1150 | self.incIndex() |
|
1152 | self.incIndex() | |
1151 | return 1 |
|
1153 | return 1 | |
1152 |
|
1154 | |||
1153 | else: |
|
1155 | else: | |
1154 | raise ValueError, "ProfileSelector needs profileList or profileRangeList" |
|
1156 | raise ValueError, "ProfileSelector needs profileList or profileRangeList" | |
1155 |
|
1157 | |||
1156 | return 0 |
|
1158 | return 0 | |
1157 |
|
1159 |
General Comments 0
You need to be logged in to leave comments.
Login now