@@ -1,1629 +1,1627 | |||||
1 | import sys |
|
1 | import sys | |
2 | import numpy,math |
|
2 | import numpy,math | |
3 | from scipy import interpolate |
|
3 | from scipy import interpolate | |
4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
5 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon |
|
5 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon | |
6 | from schainpy.utils import log |
|
6 | from schainpy.utils import log | |
7 | from time import time |
|
7 | from time import time | |
8 | # voltage proc master |
|
8 | # voltage proc master | |
9 |
|
9 | |||
10 | class VoltageProc(ProcessingUnit): |
|
10 | class VoltageProc(ProcessingUnit): | |
11 |
|
11 | |||
12 | def __init__(self): |
|
12 | def __init__(self): | |
13 |
|
13 | |||
14 | ProcessingUnit.__init__(self) |
|
14 | ProcessingUnit.__init__(self) | |
15 |
|
15 | |||
16 | self.dataOut = Voltage() |
|
16 | self.dataOut = Voltage() | |
17 | self.flip = 1 |
|
17 | self.flip = 1 | |
18 | self.setupReq = False |
|
18 | self.setupReq = False | |
19 |
|
19 | |||
20 | def run(self, runNextUnit = 0): |
|
20 | def run(self, runNextUnit = 0): | |
21 |
|
21 | |||
22 | if self.dataIn.type == 'AMISR': |
|
22 | if self.dataIn.type == 'AMISR': | |
23 | self.__updateObjFromAmisrInput() |
|
23 | self.__updateObjFromAmisrInput() | |
24 |
|
24 | |||
25 | if self.dataIn.type == 'Voltage': |
|
25 | if self.dataIn.type == 'Voltage': | |
26 | self.dataOut.copy(self.dataIn) |
|
26 | self.dataOut.copy(self.dataIn) | |
27 | self.dataOut.runNextUnit = runNextUnit |
|
27 | self.dataOut.runNextUnit = runNextUnit | |
28 |
|
28 | |||
29 |
|
29 | |||
30 | def __updateObjFromAmisrInput(self): |
|
30 | def __updateObjFromAmisrInput(self): | |
31 |
|
31 | |||
32 | self.dataOut.timeZone = self.dataIn.timeZone |
|
32 | self.dataOut.timeZone = self.dataIn.timeZone | |
33 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
33 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
34 | self.dataOut.errorCount = self.dataIn.errorCount |
|
34 | self.dataOut.errorCount = self.dataIn.errorCount | |
35 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
35 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
36 |
|
36 | |||
37 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
37 | self.dataOut.flagNoData = self.dataIn.flagNoData | |
38 | self.dataOut.data = self.dataIn.data |
|
38 | self.dataOut.data = self.dataIn.data | |
39 | self.dataOut.utctime = self.dataIn.utctime |
|
39 | self.dataOut.utctime = self.dataIn.utctime | |
40 | self.dataOut.channelList = self.dataIn.channelList |
|
40 | self.dataOut.channelList = self.dataIn.channelList | |
41 | #self.dataOut.timeInterval = self.dataIn.timeInterval |
|
41 | #self.dataOut.timeInterval = self.dataIn.timeInterval | |
42 | self.dataOut.heightList = self.dataIn.heightList |
|
42 | self.dataOut.heightList = self.dataIn.heightList | |
43 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
43 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
44 |
|
44 | |||
45 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
45 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
46 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
46 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
47 | self.dataOut.frequency = self.dataIn.frequency |
|
47 | self.dataOut.frequency = self.dataIn.frequency | |
48 |
|
48 | |||
49 | self.dataOut.azimuth = self.dataIn.azimuth |
|
49 | self.dataOut.azimuth = self.dataIn.azimuth | |
50 | self.dataOut.zenith = self.dataIn.zenith |
|
50 | self.dataOut.zenith = self.dataIn.zenith | |
51 |
|
51 | |||
52 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
52 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |
53 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
53 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |
54 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
54 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |
55 |
|
55 | |||
56 |
|
56 | |||
57 | class selectChannels(Operation): |
|
57 | class selectChannels(Operation): | |
58 |
|
58 | |||
59 | def run(self, dataOut, channelList): |
|
59 | def run(self, dataOut, channelList): | |
60 |
|
60 | |||
61 | channelIndexList = [] |
|
61 | channelIndexList = [] | |
62 | self.dataOut = dataOut |
|
62 | self.dataOut = dataOut | |
63 | for channel in channelList: |
|
63 | for channel in channelList: | |
64 | if channel not in self.dataOut.channelList: |
|
64 | if channel not in self.dataOut.channelList: | |
65 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) |
|
65 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) | |
66 |
|
66 | |||
67 | index = self.dataOut.channelList.index(channel) |
|
67 | index = self.dataOut.channelList.index(channel) | |
68 | channelIndexList.append(index) |
|
68 | channelIndexList.append(index) | |
69 | self.selectChannelsByIndex(channelIndexList) |
|
69 | self.selectChannelsByIndex(channelIndexList) | |
70 | return self.dataOut |
|
70 | return self.dataOut | |
71 |
|
71 | |||
72 | def selectChannelsByIndex(self, channelIndexList): |
|
72 | def selectChannelsByIndex(self, channelIndexList): | |
73 | """ |
|
73 | """ | |
74 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
74 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
75 |
|
75 | |||
76 | Input: |
|
76 | Input: | |
77 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
77 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
78 |
|
78 | |||
79 | Affected: |
|
79 | Affected: | |
80 | self.dataOut.data |
|
80 | self.dataOut.data | |
81 | self.dataOut.channelIndexList |
|
81 | self.dataOut.channelIndexList | |
82 | self.dataOut.nChannels |
|
82 | self.dataOut.nChannels | |
83 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
83 | self.dataOut.m_ProcessingHeader.totalSpectra | |
84 | self.dataOut.systemHeaderObj.numChannels |
|
84 | self.dataOut.systemHeaderObj.numChannels | |
85 | self.dataOut.m_ProcessingHeader.blockSize |
|
85 | self.dataOut.m_ProcessingHeader.blockSize | |
86 |
|
86 | |||
87 | Return: |
|
87 | Return: | |
88 | None |
|
88 | None | |
89 | """ |
|
89 | """ | |
90 |
|
90 | |||
91 | for channelIndex in channelIndexList: |
|
91 | for channelIndex in channelIndexList: | |
92 | if channelIndex not in self.dataOut.channelIndexList: |
|
92 | if channelIndex not in self.dataOut.channelIndexList: | |
93 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) |
|
93 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) | |
94 |
|
94 | |||
95 | if self.dataOut.type == 'Voltage': |
|
95 | if self.dataOut.type == 'Voltage': | |
96 | if self.dataOut.flagDataAsBlock: |
|
96 | if self.dataOut.flagDataAsBlock: | |
97 | """ |
|
97 | """ | |
98 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
98 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
99 | """ |
|
99 | """ | |
100 | data = self.dataOut.data[channelIndexList,:,:] |
|
100 | data = self.dataOut.data[channelIndexList,:,:] | |
101 | else: |
|
101 | else: | |
102 | data = self.dataOut.data[channelIndexList,:] |
|
102 | data = self.dataOut.data[channelIndexList,:] | |
103 |
|
103 | |||
104 | self.dataOut.data = data |
|
104 | self.dataOut.data = data | |
105 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
105 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
106 | self.dataOut.channelList = range(len(channelIndexList)) |
|
106 | self.dataOut.channelList = range(len(channelIndexList)) | |
107 |
|
107 | |||
108 | elif self.dataOut.type == 'Spectra': |
|
108 | elif self.dataOut.type == 'Spectra': | |
109 | data_spc = self.dataOut.data_spc[channelIndexList, :] |
|
109 | data_spc = self.dataOut.data_spc[channelIndexList, :] | |
110 | data_dc = self.dataOut.data_dc[channelIndexList, :] |
|
110 | data_dc = self.dataOut.data_dc[channelIndexList, :] | |
111 |
|
111 | |||
112 | self.dataOut.data_spc = data_spc |
|
112 | self.dataOut.data_spc = data_spc | |
113 | self.dataOut.data_dc = data_dc |
|
113 | self.dataOut.data_dc = data_dc | |
114 |
|
114 | |||
115 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
115 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
116 | self.dataOut.channelList = range(len(channelIndexList)) |
|
116 | self.dataOut.channelList = range(len(channelIndexList)) | |
117 | self.__selectPairsByChannel(channelIndexList) |
|
117 | self.__selectPairsByChannel(channelIndexList) | |
118 |
|
118 | |||
119 | return 1 |
|
119 | return 1 | |
120 |
|
120 | |||
121 | def __selectPairsByChannel(self, channelList=None): |
|
121 | def __selectPairsByChannel(self, channelList=None): | |
122 |
|
122 | |||
123 | if channelList == None: |
|
123 | if channelList == None: | |
124 | return |
|
124 | return | |
125 |
|
125 | |||
126 | pairsIndexListSelected = [] |
|
126 | pairsIndexListSelected = [] | |
127 | for pairIndex in self.dataOut.pairsIndexList: |
|
127 | for pairIndex in self.dataOut.pairsIndexList: | |
128 | # First pair |
|
128 | # First pair | |
129 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
129 | if self.dataOut.pairsList[pairIndex][0] not in channelList: | |
130 | continue |
|
130 | continue | |
131 | # Second pair |
|
131 | # Second pair | |
132 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
132 | if self.dataOut.pairsList[pairIndex][1] not in channelList: | |
133 | continue |
|
133 | continue | |
134 |
|
134 | |||
135 | pairsIndexListSelected.append(pairIndex) |
|
135 | pairsIndexListSelected.append(pairIndex) | |
136 |
|
136 | |||
137 | if not pairsIndexListSelected: |
|
137 | if not pairsIndexListSelected: | |
138 | self.dataOut.data_cspc = None |
|
138 | self.dataOut.data_cspc = None | |
139 | self.dataOut.pairsList = [] |
|
139 | self.dataOut.pairsList = [] | |
140 | return |
|
140 | return | |
141 |
|
141 | |||
142 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
142 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |
143 | self.dataOut.pairsList = [self.dataOut.pairsList[i] |
|
143 | self.dataOut.pairsList = [self.dataOut.pairsList[i] | |
144 | for i in pairsIndexListSelected] |
|
144 | for i in pairsIndexListSelected] | |
145 |
|
145 | |||
146 | return |
|
146 | return | |
147 |
|
147 | |||
148 | class selectHeights(Operation): |
|
148 | class selectHeights(Operation): | |
149 |
|
149 | |||
150 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): |
|
150 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): | |
151 | """ |
|
151 | """ | |
152 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
152 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
153 | minHei <= height <= maxHei |
|
153 | minHei <= height <= maxHei | |
154 |
|
154 | |||
155 | Input: |
|
155 | Input: | |
156 | minHei : valor minimo de altura a considerar |
|
156 | minHei : valor minimo de altura a considerar | |
157 | maxHei : valor maximo de altura a considerar |
|
157 | maxHei : valor maximo de altura a considerar | |
158 |
|
158 | |||
159 | Affected: |
|
159 | Affected: | |
160 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
160 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |
161 |
|
161 | |||
162 | Return: |
|
162 | Return: | |
163 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
163 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
164 | """ |
|
164 | """ | |
165 |
|
165 | |||
166 | self.dataOut = dataOut |
|
166 | self.dataOut = dataOut | |
167 |
|
167 | |||
168 | if type(minHei) == int or type(minHei) == float: |
|
168 | if type(minHei) == int or type(minHei) == float: | |
169 | v_minHei= True |
|
169 | v_minHei= True | |
170 | else: |
|
170 | else: | |
171 | v_minHei= False |
|
171 | v_minHei= False | |
172 |
|
172 | |||
173 | if v_minHei and maxHei: |
|
173 | if v_minHei and maxHei: | |
174 | if (minHei < self.dataOut.heightList[0]): |
|
174 | if (minHei < self.dataOut.heightList[0]): | |
175 | minHei = self.dataOut.heightList[0] |
|
175 | minHei = self.dataOut.heightList[0] | |
176 |
|
176 | |||
177 | if (maxHei > self.dataOut.heightList[-1]): |
|
177 | if (maxHei > self.dataOut.heightList[-1]): | |
178 | maxHei = self.dataOut.heightList[-1] |
|
178 | maxHei = self.dataOut.heightList[-1] | |
179 |
|
179 | |||
180 | minIndex = 0 |
|
180 | minIndex = 0 | |
181 | maxIndex = 0 |
|
181 | maxIndex = 0 | |
182 | heights = self.dataOut.heightList |
|
182 | heights = self.dataOut.heightList | |
183 | inda = numpy.where(heights >= minHei) |
|
183 | inda = numpy.where(heights >= minHei) | |
184 | indb = numpy.where(heights <= maxHei) |
|
184 | indb = numpy.where(heights <= maxHei) | |
185 |
|
185 | |||
186 | try: |
|
186 | try: | |
187 | minIndex = inda[0][0] |
|
187 | minIndex = inda[0][0] | |
188 | except: |
|
188 | except: | |
189 | minIndex = 0 |
|
189 | minIndex = 0 | |
190 |
|
190 | |||
191 | try: |
|
191 | try: | |
192 | maxIndex = indb[0][-1] |
|
192 | maxIndex = indb[0][-1] | |
193 | except: |
|
193 | except: | |
194 | maxIndex = len(heights) |
|
194 | maxIndex = len(heights) | |
195 | print(minIndex) |
|
|||
196 | print(maxIndex) |
|
|||
197 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
195 | self.selectHeightsByIndex(minIndex, maxIndex) | |
198 |
|
196 | |||
199 | return self.dataOut |
|
197 | return self.dataOut | |
200 |
|
198 | |||
201 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
199 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
202 | """ |
|
200 | """ | |
203 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
201 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
204 | minIndex <= index <= maxIndex |
|
202 | minIndex <= index <= maxIndex | |
205 |
|
203 | |||
206 | Input: |
|
204 | Input: | |
207 | minIndex : valor de indice minimo de altura a considerar |
|
205 | minIndex : valor de indice minimo de altura a considerar | |
208 | maxIndex : valor de indice maximo de altura a considerar |
|
206 | maxIndex : valor de indice maximo de altura a considerar | |
209 |
|
207 | |||
210 | Affected: |
|
208 | Affected: | |
211 | self.dataOut.data |
|
209 | self.dataOut.data | |
212 | self.dataOut.heightList |
|
210 | self.dataOut.heightList | |
213 |
|
211 | |||
214 | Return: |
|
212 | Return: | |
215 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
213 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
216 | """ |
|
214 | """ | |
217 |
|
215 | |||
218 | if self.dataOut.type == 'Voltage': |
|
216 | if self.dataOut.type == 'Voltage': | |
219 | print(minIndex) |
|
217 | print(minIndex) | |
220 | print(maxIndex) |
|
218 | print(maxIndex) | |
221 | if (minIndex < 0) or (minIndex > maxIndex): |
|
219 | if (minIndex < 0) or (minIndex > maxIndex): | |
222 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
220 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
223 |
|
221 | |||
224 | if (maxIndex >= self.dataOut.nHeights): |
|
222 | if (maxIndex >= self.dataOut.nHeights): | |
225 | maxIndex = self.dataOut.nHeights |
|
223 | maxIndex = self.dataOut.nHeights | |
226 |
|
224 | |||
227 | #voltage |
|
225 | #voltage | |
228 | if self.dataOut.flagDataAsBlock: |
|
226 | if self.dataOut.flagDataAsBlock: | |
229 | """ |
|
227 | """ | |
230 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
228 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
231 | """ |
|
229 | """ | |
232 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
230 | data = self.dataOut.data[:,:, minIndex:maxIndex] | |
233 | else: |
|
231 | else: | |
234 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
232 | data = self.dataOut.data[:, minIndex:maxIndex] | |
235 |
|
233 | |||
236 | # firstHeight = self.dataOut.heightList[minIndex] |
|
234 | # firstHeight = self.dataOut.heightList[minIndex] | |
237 |
|
235 | |||
238 | self.dataOut.data = data |
|
236 | self.dataOut.data = data | |
239 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
237 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] | |
240 |
|
238 | |||
241 | if self.dataOut.nHeights <= 1: |
|
239 | if self.dataOut.nHeights <= 1: | |
242 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) |
|
240 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) | |
243 | elif self.dataOut.type == 'Spectra': |
|
241 | elif self.dataOut.type == 'Spectra': | |
244 | if (minIndex < 0) or (minIndex > maxIndex): |
|
242 | if (minIndex < 0) or (minIndex > maxIndex): | |
245 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( |
|
243 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( | |
246 | minIndex, maxIndex)) |
|
244 | minIndex, maxIndex)) | |
247 |
|
245 | |||
248 | if (maxIndex >= self.dataOut.nHeights): |
|
246 | if (maxIndex >= self.dataOut.nHeights): | |
249 | maxIndex = self.dataOut.nHeights - 1 |
|
247 | maxIndex = self.dataOut.nHeights - 1 | |
250 |
|
248 | |||
251 | # Spectra |
|
249 | # Spectra | |
252 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
250 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
253 |
|
251 | |||
254 | data_cspc = None |
|
252 | data_cspc = None | |
255 | if self.dataOut.data_cspc is not None: |
|
253 | if self.dataOut.data_cspc is not None: | |
256 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
254 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
257 |
|
255 | |||
258 | data_dc = None |
|
256 | data_dc = None | |
259 | if self.dataOut.data_dc is not None: |
|
257 | if self.dataOut.data_dc is not None: | |
260 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
258 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
261 |
|
259 | |||
262 | self.dataOut.data_spc = data_spc |
|
260 | self.dataOut.data_spc = data_spc | |
263 | self.dataOut.data_cspc = data_cspc |
|
261 | self.dataOut.data_cspc = data_cspc | |
264 | self.dataOut.data_dc = data_dc |
|
262 | self.dataOut.data_dc = data_dc | |
265 |
|
263 | |||
266 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
264 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
267 |
|
265 | |||
268 | return 1 |
|
266 | return 1 | |
269 |
|
267 | |||
270 |
|
268 | |||
271 | class filterByHeights(Operation): |
|
269 | class filterByHeights(Operation): | |
272 |
|
270 | |||
273 | def run(self, dataOut, window): |
|
271 | def run(self, dataOut, window): | |
274 |
|
272 | |||
275 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
273 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
276 |
|
274 | |||
277 | if window == None: |
|
275 | if window == None: | |
278 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
276 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight | |
279 |
|
277 | |||
280 | newdelta = deltaHeight * window |
|
278 | newdelta = deltaHeight * window | |
281 | r = dataOut.nHeights % window |
|
279 | r = dataOut.nHeights % window | |
282 | newheights = (dataOut.nHeights-r)/window |
|
280 | newheights = (dataOut.nHeights-r)/window | |
283 |
|
281 | |||
284 | if newheights <= 1: |
|
282 | if newheights <= 1: | |
285 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) |
|
283 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) | |
286 |
|
284 | |||
287 | if dataOut.flagDataAsBlock: |
|
285 | if dataOut.flagDataAsBlock: | |
288 | """ |
|
286 | """ | |
289 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
287 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
290 | """ |
|
288 | """ | |
291 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] |
|
289 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] | |
292 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) |
|
290 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) | |
293 | buffer = numpy.sum(buffer,3) |
|
291 | buffer = numpy.sum(buffer,3) | |
294 |
|
292 | |||
295 | else: |
|
293 | else: | |
296 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] |
|
294 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] | |
297 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) |
|
295 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) | |
298 | buffer = numpy.sum(buffer,2) |
|
296 | buffer = numpy.sum(buffer,2) | |
299 |
|
297 | |||
300 | dataOut.data = buffer |
|
298 | dataOut.data = buffer | |
301 | dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
299 | dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta | |
302 | dataOut.windowOfFilter = window |
|
300 | dataOut.windowOfFilter = window | |
303 |
|
301 | |||
304 | return dataOut |
|
302 | return dataOut | |
305 |
|
303 | |||
306 |
|
304 | |||
307 | class setH0(Operation): |
|
305 | class setH0(Operation): | |
308 |
|
306 | |||
309 | def run(self, dataOut, h0, deltaHeight = None): |
|
307 | def run(self, dataOut, h0, deltaHeight = None): | |
310 |
|
308 | |||
311 | if not deltaHeight: |
|
309 | if not deltaHeight: | |
312 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
310 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
313 |
|
311 | |||
314 | nHeights = dataOut.nHeights |
|
312 | nHeights = dataOut.nHeights | |
315 |
|
313 | |||
316 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
314 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight | |
317 |
|
315 | |||
318 | dataOut.heightList = newHeiRange |
|
316 | dataOut.heightList = newHeiRange | |
319 |
|
317 | |||
320 | return dataOut |
|
318 | return dataOut | |
321 |
|
319 | |||
322 |
|
320 | |||
323 | class deFlip(Operation): |
|
321 | class deFlip(Operation): | |
324 |
|
322 | |||
325 | def run(self, dataOut, channelList = []): |
|
323 | def run(self, dataOut, channelList = []): | |
326 |
|
324 | |||
327 | data = dataOut.data.copy() |
|
325 | data = dataOut.data.copy() | |
328 |
|
326 | |||
329 | if dataOut.flagDataAsBlock: |
|
327 | if dataOut.flagDataAsBlock: | |
330 | flip = self.flip |
|
328 | flip = self.flip | |
331 | profileList = list(range(dataOut.nProfiles)) |
|
329 | profileList = list(range(dataOut.nProfiles)) | |
332 |
|
330 | |||
333 | if not channelList: |
|
331 | if not channelList: | |
334 | for thisProfile in profileList: |
|
332 | for thisProfile in profileList: | |
335 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
333 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip | |
336 | flip *= -1.0 |
|
334 | flip *= -1.0 | |
337 | else: |
|
335 | else: | |
338 | for thisChannel in channelList: |
|
336 | for thisChannel in channelList: | |
339 | if thisChannel not in dataOut.channelList: |
|
337 | if thisChannel not in dataOut.channelList: | |
340 | continue |
|
338 | continue | |
341 |
|
339 | |||
342 | for thisProfile in profileList: |
|
340 | for thisProfile in profileList: | |
343 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
341 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip | |
344 | flip *= -1.0 |
|
342 | flip *= -1.0 | |
345 |
|
343 | |||
346 | self.flip = flip |
|
344 | self.flip = flip | |
347 |
|
345 | |||
348 | else: |
|
346 | else: | |
349 | if not channelList: |
|
347 | if not channelList: | |
350 | data[:,:] = data[:,:]*self.flip |
|
348 | data[:,:] = data[:,:]*self.flip | |
351 | else: |
|
349 | else: | |
352 | for thisChannel in channelList: |
|
350 | for thisChannel in channelList: | |
353 | if thisChannel not in dataOut.channelList: |
|
351 | if thisChannel not in dataOut.channelList: | |
354 | continue |
|
352 | continue | |
355 |
|
353 | |||
356 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
354 | data[thisChannel,:] = data[thisChannel,:]*self.flip | |
357 |
|
355 | |||
358 | self.flip *= -1. |
|
356 | self.flip *= -1. | |
359 |
|
357 | |||
360 | dataOut.data = data |
|
358 | dataOut.data = data | |
361 |
|
359 | |||
362 | return dataOut |
|
360 | return dataOut | |
363 |
|
361 | |||
364 |
|
362 | |||
365 | class setAttribute(Operation): |
|
363 | class setAttribute(Operation): | |
366 | ''' |
|
364 | ''' | |
367 | Set an arbitrary attribute(s) to dataOut |
|
365 | Set an arbitrary attribute(s) to dataOut | |
368 | ''' |
|
366 | ''' | |
369 |
|
367 | |||
370 | def __init__(self): |
|
368 | def __init__(self): | |
371 |
|
369 | |||
372 | Operation.__init__(self) |
|
370 | Operation.__init__(self) | |
373 | self._ready = False |
|
371 | self._ready = False | |
374 |
|
372 | |||
375 | def run(self, dataOut, **kwargs): |
|
373 | def run(self, dataOut, **kwargs): | |
376 |
|
374 | |||
377 | for key, value in kwargs.items(): |
|
375 | for key, value in kwargs.items(): | |
378 | setattr(dataOut, key, value) |
|
376 | setattr(dataOut, key, value) | |
379 |
|
377 | |||
380 | return dataOut |
|
378 | return dataOut | |
381 |
|
379 | |||
382 |
|
380 | |||
383 | @MPDecorator |
|
381 | @MPDecorator | |
384 | class printAttribute(Operation): |
|
382 | class printAttribute(Operation): | |
385 | ''' |
|
383 | ''' | |
386 | Print an arbitrary attribute of dataOut |
|
384 | Print an arbitrary attribute of dataOut | |
387 | ''' |
|
385 | ''' | |
388 |
|
386 | |||
389 | def __init__(self): |
|
387 | def __init__(self): | |
390 |
|
388 | |||
391 | Operation.__init__(self) |
|
389 | Operation.__init__(self) | |
392 |
|
390 | |||
393 | def run(self, dataOut, attributes): |
|
391 | def run(self, dataOut, attributes): | |
394 |
|
392 | |||
395 | if isinstance(attributes, str): |
|
393 | if isinstance(attributes, str): | |
396 | attributes = [attributes] |
|
394 | attributes = [attributes] | |
397 | for attr in attributes: |
|
395 | for attr in attributes: | |
398 | if hasattr(dataOut, attr): |
|
396 | if hasattr(dataOut, attr): | |
399 | log.log(getattr(dataOut, attr), attr) |
|
397 | log.log(getattr(dataOut, attr), attr) | |
400 |
|
398 | |||
401 |
|
399 | |||
402 | class interpolateHeights(Operation): |
|
400 | class interpolateHeights(Operation): | |
403 |
|
401 | |||
404 | def run(self, dataOut, topLim, botLim): |
|
402 | def run(self, dataOut, topLim, botLim): | |
405 | #69 al 72 para julia |
|
403 | #69 al 72 para julia | |
406 | #82-84 para meteoros |
|
404 | #82-84 para meteoros | |
407 | if len(numpy.shape(dataOut.data))==2: |
|
405 | if len(numpy.shape(dataOut.data))==2: | |
408 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 |
|
406 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 | |
409 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
407 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) | |
410 | #dataOut.data[:,botLim:limSup+1] = sampInterp |
|
408 | #dataOut.data[:,botLim:limSup+1] = sampInterp | |
411 | dataOut.data[:,botLim:topLim+1] = sampInterp |
|
409 | dataOut.data[:,botLim:topLim+1] = sampInterp | |
412 | else: |
|
410 | else: | |
413 | nHeights = dataOut.data.shape[2] |
|
411 | nHeights = dataOut.data.shape[2] | |
414 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
412 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) | |
415 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] |
|
413 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] | |
416 | f = interpolate.interp1d(x, y, axis = 2) |
|
414 | f = interpolate.interp1d(x, y, axis = 2) | |
417 | xnew = numpy.arange(botLim,topLim+1) |
|
415 | xnew = numpy.arange(botLim,topLim+1) | |
418 | ynew = f(xnew) |
|
416 | ynew = f(xnew) | |
419 | dataOut.data[:,:,botLim:topLim+1] = ynew |
|
417 | dataOut.data[:,:,botLim:topLim+1] = ynew | |
420 |
|
418 | |||
421 | return dataOut |
|
419 | return dataOut | |
422 |
|
420 | |||
423 |
|
421 | |||
424 | class CohInt(Operation): |
|
422 | class CohInt(Operation): | |
425 |
|
423 | |||
426 | isConfig = False |
|
424 | isConfig = False | |
427 | __profIndex = 0 |
|
425 | __profIndex = 0 | |
428 | __byTime = False |
|
426 | __byTime = False | |
429 | __initime = None |
|
427 | __initime = None | |
430 | __lastdatatime = None |
|
428 | __lastdatatime = None | |
431 | __integrationtime = None |
|
429 | __integrationtime = None | |
432 | __buffer = None |
|
430 | __buffer = None | |
433 | __bufferStride = [] |
|
431 | __bufferStride = [] | |
434 | __dataReady = False |
|
432 | __dataReady = False | |
435 | __profIndexStride = 0 |
|
433 | __profIndexStride = 0 | |
436 | __dataToPutStride = False |
|
434 | __dataToPutStride = False | |
437 | n = None |
|
435 | n = None | |
438 |
|
436 | |||
439 | def __init__(self, **kwargs): |
|
437 | def __init__(self, **kwargs): | |
440 |
|
438 | |||
441 | Operation.__init__(self, **kwargs) |
|
439 | Operation.__init__(self, **kwargs) | |
442 |
|
440 | |||
443 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
441 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): | |
444 | """ |
|
442 | """ | |
445 | Set the parameters of the integration class. |
|
443 | Set the parameters of the integration class. | |
446 |
|
444 | |||
447 | Inputs: |
|
445 | Inputs: | |
448 |
|
446 | |||
449 | n : Number of coherent integrations |
|
447 | n : Number of coherent integrations | |
450 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
448 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
451 | overlapping : |
|
449 | overlapping : | |
452 | """ |
|
450 | """ | |
453 |
|
451 | |||
454 | self.__initime = None |
|
452 | self.__initime = None | |
455 | self.__lastdatatime = 0 |
|
453 | self.__lastdatatime = 0 | |
456 | self.__buffer = None |
|
454 | self.__buffer = None | |
457 | self.__dataReady = False |
|
455 | self.__dataReady = False | |
458 | self.byblock = byblock |
|
456 | self.byblock = byblock | |
459 | self.stride = stride |
|
457 | self.stride = stride | |
460 |
|
458 | |||
461 | if n == None and timeInterval == None: |
|
459 | if n == None and timeInterval == None: | |
462 | raise ValueError("n or timeInterval should be specified ...") |
|
460 | raise ValueError("n or timeInterval should be specified ...") | |
463 |
|
461 | |||
464 | if n != None: |
|
462 | if n != None: | |
465 | self.n = n |
|
463 | self.n = n | |
466 | self.__byTime = False |
|
464 | self.__byTime = False | |
467 | else: |
|
465 | else: | |
468 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
466 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line | |
469 | self.n = 9999 |
|
467 | self.n = 9999 | |
470 | self.__byTime = True |
|
468 | self.__byTime = True | |
471 |
|
469 | |||
472 | if overlapping: |
|
470 | if overlapping: | |
473 | self.__withOverlapping = True |
|
471 | self.__withOverlapping = True | |
474 | self.__buffer = None |
|
472 | self.__buffer = None | |
475 | else: |
|
473 | else: | |
476 | self.__withOverlapping = False |
|
474 | self.__withOverlapping = False | |
477 | self.__buffer = 0 |
|
475 | self.__buffer = 0 | |
478 |
|
476 | |||
479 | self.__profIndex = 0 |
|
477 | self.__profIndex = 0 | |
480 |
|
478 | |||
481 | def putData(self, data): |
|
479 | def putData(self, data): | |
482 |
|
480 | |||
483 | """ |
|
481 | """ | |
484 | Add a profile to the __buffer and increase in one the __profileIndex |
|
482 | Add a profile to the __buffer and increase in one the __profileIndex | |
485 |
|
483 | |||
486 | """ |
|
484 | """ | |
487 |
|
485 | |||
488 | if not self.__withOverlapping: |
|
486 | if not self.__withOverlapping: | |
489 | self.__buffer += data.copy() |
|
487 | self.__buffer += data.copy() | |
490 | self.__profIndex += 1 |
|
488 | self.__profIndex += 1 | |
491 | return |
|
489 | return | |
492 |
|
490 | |||
493 | #Overlapping data |
|
491 | #Overlapping data | |
494 | nChannels, nHeis = data.shape |
|
492 | nChannels, nHeis = data.shape | |
495 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
493 | data = numpy.reshape(data, (1, nChannels, nHeis)) | |
496 |
|
494 | |||
497 | #If the buffer is empty then it takes the data value |
|
495 | #If the buffer is empty then it takes the data value | |
498 | if self.__buffer is None: |
|
496 | if self.__buffer is None: | |
499 | self.__buffer = data |
|
497 | self.__buffer = data | |
500 | self.__profIndex += 1 |
|
498 | self.__profIndex += 1 | |
501 | return |
|
499 | return | |
502 |
|
500 | |||
503 | #If the buffer length is lower than n then stakcing the data value |
|
501 | #If the buffer length is lower than n then stakcing the data value | |
504 | if self.__profIndex < self.n: |
|
502 | if self.__profIndex < self.n: | |
505 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
503 | self.__buffer = numpy.vstack((self.__buffer, data)) | |
506 | self.__profIndex += 1 |
|
504 | self.__profIndex += 1 | |
507 | return |
|
505 | return | |
508 |
|
506 | |||
509 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
507 | #If the buffer length is equal to n then replacing the last buffer value with the data value | |
510 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
508 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) | |
511 | self.__buffer[self.n-1] = data |
|
509 | self.__buffer[self.n-1] = data | |
512 | self.__profIndex = self.n |
|
510 | self.__profIndex = self.n | |
513 | return |
|
511 | return | |
514 |
|
512 | |||
515 |
|
513 | |||
516 | def pushData(self): |
|
514 | def pushData(self): | |
517 | """ |
|
515 | """ | |
518 | Return the sum of the last profiles and the profiles used in the sum. |
|
516 | Return the sum of the last profiles and the profiles used in the sum. | |
519 |
|
517 | |||
520 | Affected: |
|
518 | Affected: | |
521 |
|
519 | |||
522 | self.__profileIndex |
|
520 | self.__profileIndex | |
523 |
|
521 | |||
524 | """ |
|
522 | """ | |
525 |
|
523 | |||
526 | if not self.__withOverlapping: |
|
524 | if not self.__withOverlapping: | |
527 | data = self.__buffer |
|
525 | data = self.__buffer | |
528 | n = self.__profIndex |
|
526 | n = self.__profIndex | |
529 |
|
527 | |||
530 | self.__buffer = 0 |
|
528 | self.__buffer = 0 | |
531 | self.__profIndex = 0 |
|
529 | self.__profIndex = 0 | |
532 |
|
530 | |||
533 | return data, n |
|
531 | return data, n | |
534 |
|
532 | |||
535 | #Integration with Overlapping |
|
533 | #Integration with Overlapping | |
536 | data = numpy.sum(self.__buffer, axis=0) |
|
534 | data = numpy.sum(self.__buffer, axis=0) | |
537 | # print data |
|
535 | # print data | |
538 | # raise |
|
536 | # raise | |
539 | n = self.__profIndex |
|
537 | n = self.__profIndex | |
540 |
|
538 | |||
541 | return data, n |
|
539 | return data, n | |
542 |
|
540 | |||
543 | def byProfiles(self, data): |
|
541 | def byProfiles(self, data): | |
544 |
|
542 | |||
545 | self.__dataReady = False |
|
543 | self.__dataReady = False | |
546 | avgdata = None |
|
544 | avgdata = None | |
547 | # n = None |
|
545 | # n = None | |
548 | # print data |
|
546 | # print data | |
549 | # raise |
|
547 | # raise | |
550 | self.putData(data) |
|
548 | self.putData(data) | |
551 |
|
549 | |||
552 | if self.__profIndex == self.n: |
|
550 | if self.__profIndex == self.n: | |
553 | avgdata, n = self.pushData() |
|
551 | avgdata, n = self.pushData() | |
554 | self.__dataReady = True |
|
552 | self.__dataReady = True | |
555 |
|
553 | |||
556 | return avgdata |
|
554 | return avgdata | |
557 |
|
555 | |||
558 | def byTime(self, data, datatime): |
|
556 | def byTime(self, data, datatime): | |
559 |
|
557 | |||
560 | self.__dataReady = False |
|
558 | self.__dataReady = False | |
561 | avgdata = None |
|
559 | avgdata = None | |
562 | n = None |
|
560 | n = None | |
563 |
|
561 | |||
564 | self.putData(data) |
|
562 | self.putData(data) | |
565 |
|
563 | |||
566 | if (datatime - self.__initime) >= self.__integrationtime: |
|
564 | if (datatime - self.__initime) >= self.__integrationtime: | |
567 | avgdata, n = self.pushData() |
|
565 | avgdata, n = self.pushData() | |
568 | self.n = n |
|
566 | self.n = n | |
569 | self.__dataReady = True |
|
567 | self.__dataReady = True | |
570 |
|
568 | |||
571 | return avgdata |
|
569 | return avgdata | |
572 |
|
570 | |||
573 | def integrateByStride(self, data, datatime): |
|
571 | def integrateByStride(self, data, datatime): | |
574 | # print data |
|
572 | # print data | |
575 | if self.__profIndex == 0: |
|
573 | if self.__profIndex == 0: | |
576 | self.__buffer = [[data.copy(), datatime]] |
|
574 | self.__buffer = [[data.copy(), datatime]] | |
577 | else: |
|
575 | else: | |
578 | self.__buffer.append([data.copy(),datatime]) |
|
576 | self.__buffer.append([data.copy(),datatime]) | |
579 | self.__profIndex += 1 |
|
577 | self.__profIndex += 1 | |
580 | self.__dataReady = False |
|
578 | self.__dataReady = False | |
581 |
|
579 | |||
582 | if self.__profIndex == self.n * self.stride : |
|
580 | if self.__profIndex == self.n * self.stride : | |
583 | self.__dataToPutStride = True |
|
581 | self.__dataToPutStride = True | |
584 | self.__profIndexStride = 0 |
|
582 | self.__profIndexStride = 0 | |
585 | self.__profIndex = 0 |
|
583 | self.__profIndex = 0 | |
586 | self.__bufferStride = [] |
|
584 | self.__bufferStride = [] | |
587 | for i in range(self.stride): |
|
585 | for i in range(self.stride): | |
588 | current = self.__buffer[i::self.stride] |
|
586 | current = self.__buffer[i::self.stride] | |
589 | data = numpy.sum([t[0] for t in current], axis=0) |
|
587 | data = numpy.sum([t[0] for t in current], axis=0) | |
590 | avgdatatime = numpy.average([t[1] for t in current]) |
|
588 | avgdatatime = numpy.average([t[1] for t in current]) | |
591 | # print data |
|
589 | # print data | |
592 | self.__bufferStride.append((data, avgdatatime)) |
|
590 | self.__bufferStride.append((data, avgdatatime)) | |
593 |
|
591 | |||
594 | if self.__dataToPutStride: |
|
592 | if self.__dataToPutStride: | |
595 | self.__dataReady = True |
|
593 | self.__dataReady = True | |
596 | self.__profIndexStride += 1 |
|
594 | self.__profIndexStride += 1 | |
597 | if self.__profIndexStride == self.stride: |
|
595 | if self.__profIndexStride == self.stride: | |
598 | self.__dataToPutStride = False |
|
596 | self.__dataToPutStride = False | |
599 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
597 | # print self.__bufferStride[self.__profIndexStride - 1] | |
600 | # raise |
|
598 | # raise | |
601 | return self.__bufferStride[self.__profIndexStride - 1] |
|
599 | return self.__bufferStride[self.__profIndexStride - 1] | |
602 |
|
600 | |||
603 |
|
601 | |||
604 | return None, None |
|
602 | return None, None | |
605 |
|
603 | |||
606 | def integrate(self, data, datatime=None): |
|
604 | def integrate(self, data, datatime=None): | |
607 |
|
605 | |||
608 | if self.__initime == None: |
|
606 | if self.__initime == None: | |
609 | self.__initime = datatime |
|
607 | self.__initime = datatime | |
610 |
|
608 | |||
611 | if self.__byTime: |
|
609 | if self.__byTime: | |
612 | avgdata = self.byTime(data, datatime) |
|
610 | avgdata = self.byTime(data, datatime) | |
613 | else: |
|
611 | else: | |
614 | avgdata = self.byProfiles(data) |
|
612 | avgdata = self.byProfiles(data) | |
615 |
|
613 | |||
616 |
|
614 | |||
617 | self.__lastdatatime = datatime |
|
615 | self.__lastdatatime = datatime | |
618 |
|
616 | |||
619 | if avgdata is None: |
|
617 | if avgdata is None: | |
620 | return None, None |
|
618 | return None, None | |
621 |
|
619 | |||
622 | avgdatatime = self.__initime |
|
620 | avgdatatime = self.__initime | |
623 |
|
621 | |||
624 | deltatime = datatime - self.__lastdatatime |
|
622 | deltatime = datatime - self.__lastdatatime | |
625 |
|
623 | |||
626 | if not self.__withOverlapping: |
|
624 | if not self.__withOverlapping: | |
627 | self.__initime = datatime |
|
625 | self.__initime = datatime | |
628 | else: |
|
626 | else: | |
629 | self.__initime += deltatime |
|
627 | self.__initime += deltatime | |
630 |
|
628 | |||
631 | return avgdata, avgdatatime |
|
629 | return avgdata, avgdatatime | |
632 |
|
630 | |||
633 | def integrateByBlock(self, dataOut): |
|
631 | def integrateByBlock(self, dataOut): | |
634 |
|
632 | |||
635 | times = int(dataOut.data.shape[1]/self.n) |
|
633 | times = int(dataOut.data.shape[1]/self.n) | |
636 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
634 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) | |
637 |
|
635 | |||
638 | id_min = 0 |
|
636 | id_min = 0 | |
639 | id_max = self.n |
|
637 | id_max = self.n | |
640 |
|
638 | |||
641 | for i in range(times): |
|
639 | for i in range(times): | |
642 | junk = dataOut.data[:,id_min:id_max,:] |
|
640 | junk = dataOut.data[:,id_min:id_max,:] | |
643 | avgdata[:,i,:] = junk.sum(axis=1) |
|
641 | avgdata[:,i,:] = junk.sum(axis=1) | |
644 | id_min += self.n |
|
642 | id_min += self.n | |
645 | id_max += self.n |
|
643 | id_max += self.n | |
646 |
|
644 | |||
647 | timeInterval = dataOut.ippSeconds*self.n |
|
645 | timeInterval = dataOut.ippSeconds*self.n | |
648 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
646 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime | |
649 | self.__dataReady = True |
|
647 | self.__dataReady = True | |
650 | return avgdata, avgdatatime |
|
648 | return avgdata, avgdatatime | |
651 |
|
649 | |||
652 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
650 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): | |
653 |
|
651 | |||
654 | if not self.isConfig: |
|
652 | if not self.isConfig: | |
655 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
653 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) | |
656 | self.isConfig = True |
|
654 | self.isConfig = True | |
657 | if dataOut.flagDataAsBlock: |
|
655 | if dataOut.flagDataAsBlock: | |
658 | """ |
|
656 | """ | |
659 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
657 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
660 | """ |
|
658 | """ | |
661 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
659 | avgdata, avgdatatime = self.integrateByBlock(dataOut) | |
662 | dataOut.nProfiles /= self.n |
|
660 | dataOut.nProfiles /= self.n | |
663 | else: |
|
661 | else: | |
664 | if stride is None: |
|
662 | if stride is None: | |
665 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
663 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) | |
666 | else: |
|
664 | else: | |
667 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
665 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) | |
668 |
|
666 | |||
669 |
|
667 | |||
670 | # dataOut.timeInterval *= n |
|
668 | # dataOut.timeInterval *= n | |
671 | dataOut.flagNoData = True |
|
669 | dataOut.flagNoData = True | |
672 |
|
670 | |||
673 | if self.__dataReady: |
|
671 | if self.__dataReady: | |
674 | dataOut.data = avgdata |
|
672 | dataOut.data = avgdata | |
675 | if not dataOut.flagCohInt: |
|
673 | if not dataOut.flagCohInt: | |
676 | dataOut.nCohInt *= self.n |
|
674 | dataOut.nCohInt *= self.n | |
677 | dataOut.flagCohInt = True |
|
675 | dataOut.flagCohInt = True | |
678 | dataOut.utctime = avgdatatime |
|
676 | dataOut.utctime = avgdatatime | |
679 | # print avgdata, avgdatatime |
|
677 | # print avgdata, avgdatatime | |
680 | # raise |
|
678 | # raise | |
681 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
679 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt | |
682 | dataOut.flagNoData = False |
|
680 | dataOut.flagNoData = False | |
683 | return dataOut |
|
681 | return dataOut | |
684 |
|
682 | |||
685 | class Decoder(Operation): |
|
683 | class Decoder(Operation): | |
686 |
|
684 | |||
687 | isConfig = False |
|
685 | isConfig = False | |
688 | __profIndex = 0 |
|
686 | __profIndex = 0 | |
689 |
|
687 | |||
690 | code = None |
|
688 | code = None | |
691 |
|
689 | |||
692 | nCode = None |
|
690 | nCode = None | |
693 | nBaud = None |
|
691 | nBaud = None | |
694 |
|
692 | |||
695 | def __init__(self, **kwargs): |
|
693 | def __init__(self, **kwargs): | |
696 |
|
694 | |||
697 | Operation.__init__(self, **kwargs) |
|
695 | Operation.__init__(self, **kwargs) | |
698 |
|
696 | |||
699 | self.times = None |
|
697 | self.times = None | |
700 | self.osamp = None |
|
698 | self.osamp = None | |
701 | # self.__setValues = False |
|
699 | # self.__setValues = False | |
702 | self.isConfig = False |
|
700 | self.isConfig = False | |
703 | self.setupReq = False |
|
701 | self.setupReq = False | |
704 | def setup(self, code, osamp, dataOut): |
|
702 | def setup(self, code, osamp, dataOut): | |
705 |
|
703 | |||
706 | self.__profIndex = 0 |
|
704 | self.__profIndex = 0 | |
707 |
|
705 | |||
708 | self.code = code |
|
706 | self.code = code | |
709 |
|
707 | |||
710 | self.nCode = len(code) |
|
708 | self.nCode = len(code) | |
711 | self.nBaud = len(code[0]) |
|
709 | self.nBaud = len(code[0]) | |
712 |
|
710 | |||
713 | if (osamp != None) and (osamp >1): |
|
711 | if (osamp != None) and (osamp >1): | |
714 | self.osamp = osamp |
|
712 | self.osamp = osamp | |
715 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
713 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) | |
716 | self.nBaud = self.nBaud*self.osamp |
|
714 | self.nBaud = self.nBaud*self.osamp | |
717 |
|
715 | |||
718 | self.__nChannels = dataOut.nChannels |
|
716 | self.__nChannels = dataOut.nChannels | |
719 | self.__nProfiles = dataOut.nProfiles |
|
717 | self.__nProfiles = dataOut.nProfiles | |
720 | self.__nHeis = dataOut.nHeights |
|
718 | self.__nHeis = dataOut.nHeights | |
721 |
|
719 | |||
722 | if self.__nHeis < self.nBaud: |
|
720 | if self.__nHeis < self.nBaud: | |
723 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) |
|
721 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) | |
724 |
|
722 | |||
725 | #Frequency |
|
723 | #Frequency | |
726 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
724 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) | |
727 |
|
725 | |||
728 | __codeBuffer[:,0:self.nBaud] = self.code |
|
726 | __codeBuffer[:,0:self.nBaud] = self.code | |
729 |
|
727 | |||
730 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
728 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) | |
731 |
|
729 | |||
732 | if dataOut.flagDataAsBlock: |
|
730 | if dataOut.flagDataAsBlock: | |
733 |
|
731 | |||
734 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
732 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |
735 |
|
733 | |||
736 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
734 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) | |
737 |
|
735 | |||
738 | else: |
|
736 | else: | |
739 |
|
737 | |||
740 | #Time |
|
738 | #Time | |
741 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
739 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |
742 |
|
740 | |||
743 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
741 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) | |
744 |
|
742 | |||
745 | def __convolutionInFreq(self, data): |
|
743 | def __convolutionInFreq(self, data): | |
746 |
|
744 | |||
747 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
745 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |
748 |
|
746 | |||
749 | fft_data = numpy.fft.fft(data, axis=1) |
|
747 | fft_data = numpy.fft.fft(data, axis=1) | |
750 |
|
748 | |||
751 | conv = fft_data*fft_code |
|
749 | conv = fft_data*fft_code | |
752 |
|
750 | |||
753 | data = numpy.fft.ifft(conv,axis=1) |
|
751 | data = numpy.fft.ifft(conv,axis=1) | |
754 |
|
752 | |||
755 | return data |
|
753 | return data | |
756 |
|
754 | |||
757 | def __convolutionInFreqOpt(self, data): |
|
755 | def __convolutionInFreqOpt(self, data): | |
758 |
|
756 | |||
759 | raise NotImplementedError |
|
757 | raise NotImplementedError | |
760 |
|
758 | |||
761 | def __convolutionInTime(self, data): |
|
759 | def __convolutionInTime(self, data): | |
762 |
|
760 | |||
763 | code = self.code[self.__profIndex] |
|
761 | code = self.code[self.__profIndex] | |
764 | for i in range(self.__nChannels): |
|
762 | for i in range(self.__nChannels): | |
765 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
763 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] | |
766 |
|
764 | |||
767 | return self.datadecTime |
|
765 | return self.datadecTime | |
768 |
|
766 | |||
769 | def __convolutionByBlockInTime(self, data): |
|
767 | def __convolutionByBlockInTime(self, data): | |
770 |
|
768 | |||
771 | repetitions = int(self.__nProfiles / self.nCode) |
|
769 | repetitions = int(self.__nProfiles / self.nCode) | |
772 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
770 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) | |
773 | junk = junk.flatten() |
|
771 | junk = junk.flatten() | |
774 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
772 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) | |
775 | profilesList = range(self.__nProfiles) |
|
773 | profilesList = range(self.__nProfiles) | |
776 |
|
774 | |||
777 | for i in range(self.__nChannels): |
|
775 | for i in range(self.__nChannels): | |
778 | for j in profilesList: |
|
776 | for j in profilesList: | |
779 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
777 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] | |
780 | return self.datadecTime |
|
778 | return self.datadecTime | |
781 |
|
779 | |||
782 | def __convolutionByBlockInFreq(self, data): |
|
780 | def __convolutionByBlockInFreq(self, data): | |
783 |
|
781 | |||
784 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") |
|
782 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") | |
785 |
|
783 | |||
786 |
|
784 | |||
787 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
785 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |
788 |
|
786 | |||
789 | fft_data = numpy.fft.fft(data, axis=2) |
|
787 | fft_data = numpy.fft.fft(data, axis=2) | |
790 |
|
788 | |||
791 | conv = fft_data*fft_code |
|
789 | conv = fft_data*fft_code | |
792 |
|
790 | |||
793 | data = numpy.fft.ifft(conv,axis=2) |
|
791 | data = numpy.fft.ifft(conv,axis=2) | |
794 |
|
792 | |||
795 | return data |
|
793 | return data | |
796 |
|
794 | |||
797 |
|
795 | |||
798 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
796 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): | |
799 |
|
797 | |||
800 | if dataOut.flagDecodeData: |
|
798 | if dataOut.flagDecodeData: | |
801 | print("This data is already decoded, recoding again ...") |
|
799 | print("This data is already decoded, recoding again ...") | |
802 |
|
800 | |||
803 | if not self.isConfig: |
|
801 | if not self.isConfig: | |
804 |
|
802 | |||
805 | if code is None: |
|
803 | if code is None: | |
806 | if dataOut.code is None: |
|
804 | if dataOut.code is None: | |
807 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) |
|
805 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) | |
808 |
|
806 | |||
809 | code = dataOut.code |
|
807 | code = dataOut.code | |
810 | else: |
|
808 | else: | |
811 | code = numpy.array(code).reshape(nCode,nBaud) |
|
809 | code = numpy.array(code).reshape(nCode,nBaud) | |
812 | self.setup(code, osamp, dataOut) |
|
810 | self.setup(code, osamp, dataOut) | |
813 |
|
811 | |||
814 | self.isConfig = True |
|
812 | self.isConfig = True | |
815 |
|
813 | |||
816 | if mode == 3: |
|
814 | if mode == 3: | |
817 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
815 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) | |
818 |
|
816 | |||
819 | if times != None: |
|
817 | if times != None: | |
820 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
818 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") | |
821 |
|
819 | |||
822 | if self.code is None: |
|
820 | if self.code is None: | |
823 | print("Fail decoding: Code is not defined.") |
|
821 | print("Fail decoding: Code is not defined.") | |
824 | return |
|
822 | return | |
825 |
|
823 | |||
826 | self.__nProfiles = dataOut.nProfiles |
|
824 | self.__nProfiles = dataOut.nProfiles | |
827 | datadec = None |
|
825 | datadec = None | |
828 |
|
826 | |||
829 | if mode == 3: |
|
827 | if mode == 3: | |
830 | mode = 0 |
|
828 | mode = 0 | |
831 |
|
829 | |||
832 | if dataOut.flagDataAsBlock: |
|
830 | if dataOut.flagDataAsBlock: | |
833 | """ |
|
831 | """ | |
834 | Decoding when data have been read as block, |
|
832 | Decoding when data have been read as block, | |
835 | """ |
|
833 | """ | |
836 |
|
834 | |||
837 | if mode == 0: |
|
835 | if mode == 0: | |
838 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
836 | datadec = self.__convolutionByBlockInTime(dataOut.data) | |
839 | if mode == 1: |
|
837 | if mode == 1: | |
840 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
838 | datadec = self.__convolutionByBlockInFreq(dataOut.data) | |
841 | else: |
|
839 | else: | |
842 | """ |
|
840 | """ | |
843 | Decoding when data have been read profile by profile |
|
841 | Decoding when data have been read profile by profile | |
844 | """ |
|
842 | """ | |
845 | if mode == 0: |
|
843 | if mode == 0: | |
846 | datadec = self.__convolutionInTime(dataOut.data) |
|
844 | datadec = self.__convolutionInTime(dataOut.data) | |
847 |
|
845 | |||
848 | if mode == 1: |
|
846 | if mode == 1: | |
849 | datadec = self.__convolutionInFreq(dataOut.data) |
|
847 | datadec = self.__convolutionInFreq(dataOut.data) | |
850 |
|
848 | |||
851 | if mode == 2: |
|
849 | if mode == 2: | |
852 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
850 | datadec = self.__convolutionInFreqOpt(dataOut.data) | |
853 |
|
851 | |||
854 | if datadec is None: |
|
852 | if datadec is None: | |
855 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) |
|
853 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) | |
856 |
|
854 | |||
857 | dataOut.code = self.code |
|
855 | dataOut.code = self.code | |
858 | dataOut.nCode = self.nCode |
|
856 | dataOut.nCode = self.nCode | |
859 | dataOut.nBaud = self.nBaud |
|
857 | dataOut.nBaud = self.nBaud | |
860 |
|
858 | |||
861 | dataOut.data = datadec |
|
859 | dataOut.data = datadec | |
862 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
860 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] | |
863 |
|
861 | |||
864 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
862 | dataOut.flagDecodeData = True #asumo q la data esta decodificada | |
865 |
|
863 | |||
866 | if self.__profIndex == self.nCode-1: |
|
864 | if self.__profIndex == self.nCode-1: | |
867 | self.__profIndex = 0 |
|
865 | self.__profIndex = 0 | |
868 | return dataOut |
|
866 | return dataOut | |
869 |
|
867 | |||
870 | self.__profIndex += 1 |
|
868 | self.__profIndex += 1 | |
871 |
|
869 | |||
872 | return dataOut |
|
870 | return dataOut | |
873 |
|
871 | |||
874 |
|
872 | |||
875 | class ProfileConcat(Operation): |
|
873 | class ProfileConcat(Operation): | |
876 |
|
874 | |||
877 | isConfig = False |
|
875 | isConfig = False | |
878 | buffer = None |
|
876 | buffer = None | |
879 |
|
877 | |||
880 | def __init__(self, **kwargs): |
|
878 | def __init__(self, **kwargs): | |
881 |
|
879 | |||
882 | Operation.__init__(self, **kwargs) |
|
880 | Operation.__init__(self, **kwargs) | |
883 | self.profileIndex = 0 |
|
881 | self.profileIndex = 0 | |
884 |
|
882 | |||
885 | def reset(self): |
|
883 | def reset(self): | |
886 | self.buffer = numpy.zeros_like(self.buffer) |
|
884 | self.buffer = numpy.zeros_like(self.buffer) | |
887 | self.start_index = 0 |
|
885 | self.start_index = 0 | |
888 | self.times = 1 |
|
886 | self.times = 1 | |
889 |
|
887 | |||
890 | def setup(self, data, m, n=1): |
|
888 | def setup(self, data, m, n=1): | |
891 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
889 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) | |
892 | self.nHeights = data.shape[1]#.nHeights |
|
890 | self.nHeights = data.shape[1]#.nHeights | |
893 | self.start_index = 0 |
|
891 | self.start_index = 0 | |
894 | self.times = 1 |
|
892 | self.times = 1 | |
895 |
|
893 | |||
896 | def concat(self, data): |
|
894 | def concat(self, data): | |
897 |
|
895 | |||
898 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
896 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() | |
899 | self.start_index = self.start_index + self.nHeights |
|
897 | self.start_index = self.start_index + self.nHeights | |
900 |
|
898 | |||
901 | def run(self, dataOut, m): |
|
899 | def run(self, dataOut, m): | |
902 | dataOut.flagNoData = True |
|
900 | dataOut.flagNoData = True | |
903 |
|
901 | |||
904 | if not self.isConfig: |
|
902 | if not self.isConfig: | |
905 | self.setup(dataOut.data, m, 1) |
|
903 | self.setup(dataOut.data, m, 1) | |
906 | self.isConfig = True |
|
904 | self.isConfig = True | |
907 |
|
905 | |||
908 | if dataOut.flagDataAsBlock: |
|
906 | if dataOut.flagDataAsBlock: | |
909 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") |
|
907 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") | |
910 |
|
908 | |||
911 | else: |
|
909 | else: | |
912 | self.concat(dataOut.data) |
|
910 | self.concat(dataOut.data) | |
913 | self.times += 1 |
|
911 | self.times += 1 | |
914 | if self.times > m: |
|
912 | if self.times > m: | |
915 | dataOut.data = self.buffer |
|
913 | dataOut.data = self.buffer | |
916 | self.reset() |
|
914 | self.reset() | |
917 | dataOut.flagNoData = False |
|
915 | dataOut.flagNoData = False | |
918 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
916 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas | |
919 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
917 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
920 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
918 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m | |
921 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
919 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) | |
922 | dataOut.ippSeconds *= m |
|
920 | dataOut.ippSeconds *= m | |
923 | return dataOut |
|
921 | return dataOut | |
924 |
|
922 | |||
925 | class ProfileSelector(Operation): |
|
923 | class ProfileSelector(Operation): | |
926 |
|
924 | |||
927 | profileIndex = None |
|
925 | profileIndex = None | |
928 | # Tamanho total de los perfiles |
|
926 | # Tamanho total de los perfiles | |
929 | nProfiles = None |
|
927 | nProfiles = None | |
930 |
|
928 | |||
931 | def __init__(self, **kwargs): |
|
929 | def __init__(self, **kwargs): | |
932 |
|
930 | |||
933 | Operation.__init__(self, **kwargs) |
|
931 | Operation.__init__(self, **kwargs) | |
934 | self.profileIndex = 0 |
|
932 | self.profileIndex = 0 | |
935 |
|
933 | |||
936 | def incProfileIndex(self): |
|
934 | def incProfileIndex(self): | |
937 |
|
935 | |||
938 | self.profileIndex += 1 |
|
936 | self.profileIndex += 1 | |
939 |
|
937 | |||
940 | if self.profileIndex >= self.nProfiles: |
|
938 | if self.profileIndex >= self.nProfiles: | |
941 | self.profileIndex = 0 |
|
939 | self.profileIndex = 0 | |
942 |
|
940 | |||
943 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
941 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): | |
944 |
|
942 | |||
945 | if profileIndex < minIndex: |
|
943 | if profileIndex < minIndex: | |
946 | return False |
|
944 | return False | |
947 |
|
945 | |||
948 | if profileIndex > maxIndex: |
|
946 | if profileIndex > maxIndex: | |
949 | return False |
|
947 | return False | |
950 |
|
948 | |||
951 | return True |
|
949 | return True | |
952 |
|
950 | |||
953 | def isThisProfileInList(self, profileIndex, profileList): |
|
951 | def isThisProfileInList(self, profileIndex, profileList): | |
954 |
|
952 | |||
955 | if profileIndex not in profileList: |
|
953 | if profileIndex not in profileList: | |
956 | return False |
|
954 | return False | |
957 |
|
955 | |||
958 | return True |
|
956 | return True | |
959 |
|
957 | |||
960 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
958 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): | |
961 |
|
959 | |||
962 | """ |
|
960 | """ | |
963 | ProfileSelector: |
|
961 | ProfileSelector: | |
964 |
|
962 | |||
965 | Inputs: |
|
963 | Inputs: | |
966 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
964 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) | |
967 |
|
965 | |||
968 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
966 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) | |
969 |
|
967 | |||
970 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
968 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) | |
971 |
|
969 | |||
972 | """ |
|
970 | """ | |
973 |
|
971 | |||
974 | if rangeList is not None: |
|
972 | if rangeList is not None: | |
975 | if type(rangeList[0]) not in (tuple, list): |
|
973 | if type(rangeList[0]) not in (tuple, list): | |
976 | rangeList = [rangeList] |
|
974 | rangeList = [rangeList] | |
977 |
|
975 | |||
978 | dataOut.flagNoData = True |
|
976 | dataOut.flagNoData = True | |
979 |
|
977 | |||
980 | if dataOut.flagDataAsBlock: |
|
978 | if dataOut.flagDataAsBlock: | |
981 | """ |
|
979 | """ | |
982 | data dimension = [nChannels, nProfiles, nHeis] |
|
980 | data dimension = [nChannels, nProfiles, nHeis] | |
983 | """ |
|
981 | """ | |
984 | if profileList != None: |
|
982 | if profileList != None: | |
985 | dataOut.data = dataOut.data[:,profileList,:] |
|
983 | dataOut.data = dataOut.data[:,profileList,:] | |
986 |
|
984 | |||
987 | if profileRangeList != None: |
|
985 | if profileRangeList != None: | |
988 | minIndex = profileRangeList[0] |
|
986 | minIndex = profileRangeList[0] | |
989 | maxIndex = profileRangeList[1] |
|
987 | maxIndex = profileRangeList[1] | |
990 | profileList = list(range(minIndex, maxIndex+1)) |
|
988 | profileList = list(range(minIndex, maxIndex+1)) | |
991 |
|
989 | |||
992 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
990 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] | |
993 |
|
991 | |||
994 | if rangeList != None: |
|
992 | if rangeList != None: | |
995 |
|
993 | |||
996 | profileList = [] |
|
994 | profileList = [] | |
997 |
|
995 | |||
998 | for thisRange in rangeList: |
|
996 | for thisRange in rangeList: | |
999 | minIndex = thisRange[0] |
|
997 | minIndex = thisRange[0] | |
1000 | maxIndex = thisRange[1] |
|
998 | maxIndex = thisRange[1] | |
1001 |
|
999 | |||
1002 | profileList.extend(list(range(minIndex, maxIndex+1))) |
|
1000 | profileList.extend(list(range(minIndex, maxIndex+1))) | |
1003 |
|
1001 | |||
1004 | dataOut.data = dataOut.data[:,profileList,:] |
|
1002 | dataOut.data = dataOut.data[:,profileList,:] | |
1005 |
|
1003 | |||
1006 | dataOut.nProfiles = len(profileList) |
|
1004 | dataOut.nProfiles = len(profileList) | |
1007 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
1005 | dataOut.profileIndex = dataOut.nProfiles - 1 | |
1008 | dataOut.flagNoData = False |
|
1006 | dataOut.flagNoData = False | |
1009 |
|
1007 | |||
1010 | return dataOut |
|
1008 | return dataOut | |
1011 |
|
1009 | |||
1012 | """ |
|
1010 | """ | |
1013 | data dimension = [nChannels, nHeis] |
|
1011 | data dimension = [nChannels, nHeis] | |
1014 | """ |
|
1012 | """ | |
1015 |
|
1013 | |||
1016 | if profileList != None: |
|
1014 | if profileList != None: | |
1017 |
|
1015 | |||
1018 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
1016 | if self.isThisProfileInList(dataOut.profileIndex, profileList): | |
1019 |
|
1017 | |||
1020 | self.nProfiles = len(profileList) |
|
1018 | self.nProfiles = len(profileList) | |
1021 | dataOut.nProfiles = self.nProfiles |
|
1019 | dataOut.nProfiles = self.nProfiles | |
1022 | dataOut.profileIndex = self.profileIndex |
|
1020 | dataOut.profileIndex = self.profileIndex | |
1023 | dataOut.flagNoData = False |
|
1021 | dataOut.flagNoData = False | |
1024 |
|
1022 | |||
1025 | self.incProfileIndex() |
|
1023 | self.incProfileIndex() | |
1026 | return dataOut |
|
1024 | return dataOut | |
1027 |
|
1025 | |||
1028 | if profileRangeList != None: |
|
1026 | if profileRangeList != None: | |
1029 |
|
1027 | |||
1030 | minIndex = profileRangeList[0] |
|
1028 | minIndex = profileRangeList[0] | |
1031 | maxIndex = profileRangeList[1] |
|
1029 | maxIndex = profileRangeList[1] | |
1032 |
|
1030 | |||
1033 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1031 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |
1034 |
|
1032 | |||
1035 | self.nProfiles = maxIndex - minIndex + 1 |
|
1033 | self.nProfiles = maxIndex - minIndex + 1 | |
1036 | dataOut.nProfiles = self.nProfiles |
|
1034 | dataOut.nProfiles = self.nProfiles | |
1037 | dataOut.profileIndex = self.profileIndex |
|
1035 | dataOut.profileIndex = self.profileIndex | |
1038 | dataOut.flagNoData = False |
|
1036 | dataOut.flagNoData = False | |
1039 |
|
1037 | |||
1040 | self.incProfileIndex() |
|
1038 | self.incProfileIndex() | |
1041 | return dataOut |
|
1039 | return dataOut | |
1042 |
|
1040 | |||
1043 | if rangeList != None: |
|
1041 | if rangeList != None: | |
1044 |
|
1042 | |||
1045 | nProfiles = 0 |
|
1043 | nProfiles = 0 | |
1046 |
|
1044 | |||
1047 | for thisRange in rangeList: |
|
1045 | for thisRange in rangeList: | |
1048 | minIndex = thisRange[0] |
|
1046 | minIndex = thisRange[0] | |
1049 | maxIndex = thisRange[1] |
|
1047 | maxIndex = thisRange[1] | |
1050 |
|
1048 | |||
1051 | nProfiles += maxIndex - minIndex + 1 |
|
1049 | nProfiles += maxIndex - minIndex + 1 | |
1052 |
|
1050 | |||
1053 | for thisRange in rangeList: |
|
1051 | for thisRange in rangeList: | |
1054 |
|
1052 | |||
1055 | minIndex = thisRange[0] |
|
1053 | minIndex = thisRange[0] | |
1056 | maxIndex = thisRange[1] |
|
1054 | maxIndex = thisRange[1] | |
1057 |
|
1055 | |||
1058 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1056 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |
1059 |
|
1057 | |||
1060 | self.nProfiles = nProfiles |
|
1058 | self.nProfiles = nProfiles | |
1061 | dataOut.nProfiles = self.nProfiles |
|
1059 | dataOut.nProfiles = self.nProfiles | |
1062 | dataOut.profileIndex = self.profileIndex |
|
1060 | dataOut.profileIndex = self.profileIndex | |
1063 | dataOut.flagNoData = False |
|
1061 | dataOut.flagNoData = False | |
1064 |
|
1062 | |||
1065 | self.incProfileIndex() |
|
1063 | self.incProfileIndex() | |
1066 |
|
1064 | |||
1067 | break |
|
1065 | break | |
1068 |
|
1066 | |||
1069 | return dataOut |
|
1067 | return dataOut | |
1070 |
|
1068 | |||
1071 |
|
1069 | |||
1072 | if beam != None: #beam is only for AMISR data |
|
1070 | if beam != None: #beam is only for AMISR data | |
1073 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
1071 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): | |
1074 | dataOut.flagNoData = False |
|
1072 | dataOut.flagNoData = False | |
1075 | dataOut.profileIndex = self.profileIndex |
|
1073 | dataOut.profileIndex = self.profileIndex | |
1076 |
|
1074 | |||
1077 | self.incProfileIndex() |
|
1075 | self.incProfileIndex() | |
1078 |
|
1076 | |||
1079 | return dataOut |
|
1077 | return dataOut | |
1080 |
|
1078 | |||
1081 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") |
|
1079 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") | |
1082 |
|
1080 | |||
1083 |
|
1081 | |||
1084 | class Reshaper(Operation): |
|
1082 | class Reshaper(Operation): | |
1085 |
|
1083 | |||
1086 | def __init__(self, **kwargs): |
|
1084 | def __init__(self, **kwargs): | |
1087 |
|
1085 | |||
1088 | Operation.__init__(self, **kwargs) |
|
1086 | Operation.__init__(self, **kwargs) | |
1089 |
|
1087 | |||
1090 | self.__buffer = None |
|
1088 | self.__buffer = None | |
1091 | self.__nitems = 0 |
|
1089 | self.__nitems = 0 | |
1092 |
|
1090 | |||
1093 | def __appendProfile(self, dataOut, nTxs): |
|
1091 | def __appendProfile(self, dataOut, nTxs): | |
1094 |
|
1092 | |||
1095 | if self.__buffer is None: |
|
1093 | if self.__buffer is None: | |
1096 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
1094 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) | |
1097 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
1095 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) | |
1098 |
|
1096 | |||
1099 | ini = dataOut.nHeights * self.__nitems |
|
1097 | ini = dataOut.nHeights * self.__nitems | |
1100 | end = ini + dataOut.nHeights |
|
1098 | end = ini + dataOut.nHeights | |
1101 |
|
1099 | |||
1102 | self.__buffer[:, ini:end] = dataOut.data |
|
1100 | self.__buffer[:, ini:end] = dataOut.data | |
1103 |
|
1101 | |||
1104 | self.__nitems += 1 |
|
1102 | self.__nitems += 1 | |
1105 |
|
1103 | |||
1106 | return int(self.__nitems*nTxs) |
|
1104 | return int(self.__nitems*nTxs) | |
1107 |
|
1105 | |||
1108 | def __getBuffer(self): |
|
1106 | def __getBuffer(self): | |
1109 |
|
1107 | |||
1110 | if self.__nitems == int(1./self.__nTxs): |
|
1108 | if self.__nitems == int(1./self.__nTxs): | |
1111 |
|
1109 | |||
1112 | self.__nitems = 0 |
|
1110 | self.__nitems = 0 | |
1113 |
|
1111 | |||
1114 | return self.__buffer.copy() |
|
1112 | return self.__buffer.copy() | |
1115 |
|
1113 | |||
1116 | return None |
|
1114 | return None | |
1117 |
|
1115 | |||
1118 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1116 | def __checkInputs(self, dataOut, shape, nTxs): | |
1119 |
|
1117 | |||
1120 | if shape is None and nTxs is None: |
|
1118 | if shape is None and nTxs is None: | |
1121 | raise ValueError("Reshaper: shape of factor should be defined") |
|
1119 | raise ValueError("Reshaper: shape of factor should be defined") | |
1122 |
|
1120 | |||
1123 | if nTxs: |
|
1121 | if nTxs: | |
1124 | if nTxs < 0: |
|
1122 | if nTxs < 0: | |
1125 | raise ValueError("nTxs should be greater than 0") |
|
1123 | raise ValueError("nTxs should be greater than 0") | |
1126 |
|
1124 | |||
1127 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1125 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: | |
1128 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) |
|
1126 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) | |
1129 |
|
1127 | |||
1130 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1128 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] | |
1131 |
|
1129 | |||
1132 | return shape, nTxs |
|
1130 | return shape, nTxs | |
1133 |
|
1131 | |||
1134 | if len(shape) != 2 and len(shape) != 3: |
|
1132 | if len(shape) != 2 and len(shape) != 3: | |
1135 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) |
|
1133 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) | |
1136 |
|
1134 | |||
1137 | if len(shape) == 2: |
|
1135 | if len(shape) == 2: | |
1138 | shape_tuple = [dataOut.nChannels] |
|
1136 | shape_tuple = [dataOut.nChannels] | |
1139 | shape_tuple.extend(shape) |
|
1137 | shape_tuple.extend(shape) | |
1140 | else: |
|
1138 | else: | |
1141 | shape_tuple = list(shape) |
|
1139 | shape_tuple = list(shape) | |
1142 |
|
1140 | |||
1143 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1141 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles | |
1144 |
|
1142 | |||
1145 | return shape_tuple, nTxs |
|
1143 | return shape_tuple, nTxs | |
1146 |
|
1144 | |||
1147 | def run(self, dataOut, shape=None, nTxs=None): |
|
1145 | def run(self, dataOut, shape=None, nTxs=None): | |
1148 |
|
1146 | |||
1149 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1147 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) | |
1150 |
|
1148 | |||
1151 | dataOut.flagNoData = True |
|
1149 | dataOut.flagNoData = True | |
1152 | profileIndex = None |
|
1150 | profileIndex = None | |
1153 |
|
1151 | |||
1154 | if dataOut.flagDataAsBlock: |
|
1152 | if dataOut.flagDataAsBlock: | |
1155 |
|
1153 | |||
1156 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1154 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) | |
1157 | dataOut.flagNoData = False |
|
1155 | dataOut.flagNoData = False | |
1158 |
|
1156 | |||
1159 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1157 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 | |
1160 |
|
1158 | |||
1161 | else: |
|
1159 | else: | |
1162 |
|
1160 | |||
1163 | if self.__nTxs < 1: |
|
1161 | if self.__nTxs < 1: | |
1164 |
|
1162 | |||
1165 | self.__appendProfile(dataOut, self.__nTxs) |
|
1163 | self.__appendProfile(dataOut, self.__nTxs) | |
1166 | new_data = self.__getBuffer() |
|
1164 | new_data = self.__getBuffer() | |
1167 |
|
1165 | |||
1168 | if new_data is not None: |
|
1166 | if new_data is not None: | |
1169 | dataOut.data = new_data |
|
1167 | dataOut.data = new_data | |
1170 | dataOut.flagNoData = False |
|
1168 | dataOut.flagNoData = False | |
1171 |
|
1169 | |||
1172 | profileIndex = dataOut.profileIndex*nTxs |
|
1170 | profileIndex = dataOut.profileIndex*nTxs | |
1173 |
|
1171 | |||
1174 | else: |
|
1172 | else: | |
1175 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") |
|
1173 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") | |
1176 |
|
1174 | |||
1177 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1175 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1178 |
|
1176 | |||
1179 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1177 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] | |
1180 |
|
1178 | |||
1181 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1179 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) | |
1182 |
|
1180 | |||
1183 | dataOut.profileIndex = profileIndex |
|
1181 | dataOut.profileIndex = profileIndex | |
1184 |
|
1182 | |||
1185 | dataOut.ippSeconds /= self.__nTxs |
|
1183 | dataOut.ippSeconds /= self.__nTxs | |
1186 |
|
1184 | |||
1187 | return dataOut |
|
1185 | return dataOut | |
1188 |
|
1186 | |||
1189 | class SplitProfiles(Operation): |
|
1187 | class SplitProfiles(Operation): | |
1190 |
|
1188 | |||
1191 | def __init__(self, **kwargs): |
|
1189 | def __init__(self, **kwargs): | |
1192 |
|
1190 | |||
1193 | Operation.__init__(self, **kwargs) |
|
1191 | Operation.__init__(self, **kwargs) | |
1194 |
|
1192 | |||
1195 | def run(self, dataOut, n): |
|
1193 | def run(self, dataOut, n): | |
1196 |
|
1194 | |||
1197 | dataOut.flagNoData = True |
|
1195 | dataOut.flagNoData = True | |
1198 | profileIndex = None |
|
1196 | profileIndex = None | |
1199 |
|
1197 | |||
1200 | if dataOut.flagDataAsBlock: |
|
1198 | if dataOut.flagDataAsBlock: | |
1201 |
|
1199 | |||
1202 | #nchannels, nprofiles, nsamples |
|
1200 | #nchannels, nprofiles, nsamples | |
1203 | shape = dataOut.data.shape |
|
1201 | shape = dataOut.data.shape | |
1204 |
|
1202 | |||
1205 | if shape[2] % n != 0: |
|
1203 | if shape[2] % n != 0: | |
1206 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) |
|
1204 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) | |
1207 |
|
1205 | |||
1208 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) |
|
1206 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) | |
1209 |
|
1207 | |||
1210 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1208 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |
1211 | dataOut.flagNoData = False |
|
1209 | dataOut.flagNoData = False | |
1212 |
|
1210 | |||
1213 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1211 | profileIndex = int(dataOut.nProfiles/n) - 1 | |
1214 |
|
1212 | |||
1215 | else: |
|
1213 | else: | |
1216 |
|
1214 | |||
1217 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") |
|
1215 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") | |
1218 |
|
1216 | |||
1219 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1217 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1220 |
|
1218 | |||
1221 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1219 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] | |
1222 |
|
1220 | |||
1223 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1221 | dataOut.nProfiles = int(dataOut.nProfiles*n) | |
1224 |
|
1222 | |||
1225 | dataOut.profileIndex = profileIndex |
|
1223 | dataOut.profileIndex = profileIndex | |
1226 |
|
1224 | |||
1227 | dataOut.ippSeconds /= n |
|
1225 | dataOut.ippSeconds /= n | |
1228 |
|
1226 | |||
1229 | return dataOut |
|
1227 | return dataOut | |
1230 |
|
1228 | |||
1231 | class CombineProfiles(Operation): |
|
1229 | class CombineProfiles(Operation): | |
1232 | def __init__(self, **kwargs): |
|
1230 | def __init__(self, **kwargs): | |
1233 |
|
1231 | |||
1234 | Operation.__init__(self, **kwargs) |
|
1232 | Operation.__init__(self, **kwargs) | |
1235 |
|
1233 | |||
1236 | self.__remData = None |
|
1234 | self.__remData = None | |
1237 | self.__profileIndex = 0 |
|
1235 | self.__profileIndex = 0 | |
1238 |
|
1236 | |||
1239 | def run(self, dataOut, n): |
|
1237 | def run(self, dataOut, n): | |
1240 |
|
1238 | |||
1241 | dataOut.flagNoData = True |
|
1239 | dataOut.flagNoData = True | |
1242 | profileIndex = None |
|
1240 | profileIndex = None | |
1243 |
|
1241 | |||
1244 | if dataOut.flagDataAsBlock: |
|
1242 | if dataOut.flagDataAsBlock: | |
1245 |
|
1243 | |||
1246 | #nchannels, nprofiles, nsamples |
|
1244 | #nchannels, nprofiles, nsamples | |
1247 | shape = dataOut.data.shape |
|
1245 | shape = dataOut.data.shape | |
1248 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1246 | new_shape = shape[0], shape[1]/n, shape[2]*n | |
1249 |
|
1247 | |||
1250 | if shape[1] % n != 0: |
|
1248 | if shape[1] % n != 0: | |
1251 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) |
|
1249 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) | |
1252 |
|
1250 | |||
1253 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1251 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |
1254 | dataOut.flagNoData = False |
|
1252 | dataOut.flagNoData = False | |
1255 |
|
1253 | |||
1256 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1254 | profileIndex = int(dataOut.nProfiles*n) - 1 | |
1257 |
|
1255 | |||
1258 | else: |
|
1256 | else: | |
1259 |
|
1257 | |||
1260 | #nchannels, nsamples |
|
1258 | #nchannels, nsamples | |
1261 | if self.__remData is None: |
|
1259 | if self.__remData is None: | |
1262 | newData = dataOut.data |
|
1260 | newData = dataOut.data | |
1263 | else: |
|
1261 | else: | |
1264 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1262 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) | |
1265 |
|
1263 | |||
1266 | self.__profileIndex += 1 |
|
1264 | self.__profileIndex += 1 | |
1267 |
|
1265 | |||
1268 | if self.__profileIndex < n: |
|
1266 | if self.__profileIndex < n: | |
1269 | self.__remData = newData |
|
1267 | self.__remData = newData | |
1270 | #continue |
|
1268 | #continue | |
1271 | return |
|
1269 | return | |
1272 |
|
1270 | |||
1273 | self.__profileIndex = 0 |
|
1271 | self.__profileIndex = 0 | |
1274 | self.__remData = None |
|
1272 | self.__remData = None | |
1275 |
|
1273 | |||
1276 | dataOut.data = newData |
|
1274 | dataOut.data = newData | |
1277 | dataOut.flagNoData = False |
|
1275 | dataOut.flagNoData = False | |
1278 |
|
1276 | |||
1279 | profileIndex = dataOut.profileIndex/n |
|
1277 | profileIndex = dataOut.profileIndex/n | |
1280 |
|
1278 | |||
1281 |
|
1279 | |||
1282 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1280 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1283 |
|
1281 | |||
1284 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1282 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] | |
1285 |
|
1283 | |||
1286 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1284 | dataOut.nProfiles = int(dataOut.nProfiles/n) | |
1287 |
|
1285 | |||
1288 | dataOut.profileIndex = profileIndex |
|
1286 | dataOut.profileIndex = profileIndex | |
1289 |
|
1287 | |||
1290 | dataOut.ippSeconds *= n |
|
1288 | dataOut.ippSeconds *= n | |
1291 |
|
1289 | |||
1292 | return dataOut |
|
1290 | return dataOut | |
1293 |
|
1291 | |||
1294 | class PulsePairVoltage(Operation): |
|
1292 | class PulsePairVoltage(Operation): | |
1295 | ''' |
|
1293 | ''' | |
1296 | Function PulsePair(Signal Power, Velocity) |
|
1294 | Function PulsePair(Signal Power, Velocity) | |
1297 | The real component of Lag[0] provides Intensity Information |
|
1295 | The real component of Lag[0] provides Intensity Information | |
1298 | The imag component of Lag[1] Phase provides Velocity Information |
|
1296 | The imag component of Lag[1] Phase provides Velocity Information | |
1299 |
|
1297 | |||
1300 | Configuration Parameters: |
|
1298 | Configuration Parameters: | |
1301 | nPRF = Number of Several PRF |
|
1299 | nPRF = Number of Several PRF | |
1302 | theta = Degree Azimuth angel Boundaries |
|
1300 | theta = Degree Azimuth angel Boundaries | |
1303 |
|
1301 | |||
1304 | Input: |
|
1302 | Input: | |
1305 | self.dataOut |
|
1303 | self.dataOut | |
1306 | lag[N] |
|
1304 | lag[N] | |
1307 | Affected: |
|
1305 | Affected: | |
1308 | self.dataOut.spc |
|
1306 | self.dataOut.spc | |
1309 | ''' |
|
1307 | ''' | |
1310 | isConfig = False |
|
1308 | isConfig = False | |
1311 | __profIndex = 0 |
|
1309 | __profIndex = 0 | |
1312 | __initime = None |
|
1310 | __initime = None | |
1313 | __lastdatatime = None |
|
1311 | __lastdatatime = None | |
1314 | __buffer = None |
|
1312 | __buffer = None | |
1315 | noise = None |
|
1313 | noise = None | |
1316 | __dataReady = False |
|
1314 | __dataReady = False | |
1317 | n = None |
|
1315 | n = None | |
1318 | __nch = 0 |
|
1316 | __nch = 0 | |
1319 | __nHeis = 0 |
|
1317 | __nHeis = 0 | |
1320 | removeDC = False |
|
1318 | removeDC = False | |
1321 | ipp = None |
|
1319 | ipp = None | |
1322 | lambda_ = 0 |
|
1320 | lambda_ = 0 | |
1323 |
|
1321 | |||
1324 | def __init__(self,**kwargs): |
|
1322 | def __init__(self,**kwargs): | |
1325 | Operation.__init__(self,**kwargs) |
|
1323 | Operation.__init__(self,**kwargs) | |
1326 |
|
1324 | |||
1327 | def setup(self, dataOut, n = None, removeDC=False): |
|
1325 | def setup(self, dataOut, n = None, removeDC=False): | |
1328 | ''' |
|
1326 | ''' | |
1329 | n= Numero de PRF's de entrada |
|
1327 | n= Numero de PRF's de entrada | |
1330 | ''' |
|
1328 | ''' | |
1331 | self.__initime = None |
|
1329 | self.__initime = None | |
1332 | self.__lastdatatime = 0 |
|
1330 | self.__lastdatatime = 0 | |
1333 | self.__dataReady = False |
|
1331 | self.__dataReady = False | |
1334 | self.__buffer = 0 |
|
1332 | self.__buffer = 0 | |
1335 | self.__profIndex = 0 |
|
1333 | self.__profIndex = 0 | |
1336 | self.noise = None |
|
1334 | self.noise = None | |
1337 | self.__nch = dataOut.nChannels |
|
1335 | self.__nch = dataOut.nChannels | |
1338 | self.__nHeis = dataOut.nHeights |
|
1336 | self.__nHeis = dataOut.nHeights | |
1339 | self.removeDC = removeDC |
|
1337 | self.removeDC = removeDC | |
1340 | self.lambda_ = 3.0e8/(9345.0e6) |
|
1338 | self.lambda_ = 3.0e8/(9345.0e6) | |
1341 | self.ippSec = dataOut.ippSeconds |
|
1339 | self.ippSec = dataOut.ippSeconds | |
1342 | self.nCohInt = dataOut.nCohInt |
|
1340 | self.nCohInt = dataOut.nCohInt | |
1343 | print("IPPseconds",dataOut.ippSeconds) |
|
1341 | print("IPPseconds",dataOut.ippSeconds) | |
1344 |
|
1342 | |||
1345 | print("ELVALOR DE n es:", n) |
|
1343 | print("ELVALOR DE n es:", n) | |
1346 | if n == None: |
|
1344 | if n == None: | |
1347 | raise ValueError("n should be specified.") |
|
1345 | raise ValueError("n should be specified.") | |
1348 |
|
1346 | |||
1349 | if n != None: |
|
1347 | if n != None: | |
1350 | if n<2: |
|
1348 | if n<2: | |
1351 | raise ValueError("n should be greater than 2") |
|
1349 | raise ValueError("n should be greater than 2") | |
1352 |
|
1350 | |||
1353 | self.n = n |
|
1351 | self.n = n | |
1354 | self.__nProf = n |
|
1352 | self.__nProf = n | |
1355 |
|
1353 | |||
1356 | self.__buffer = numpy.zeros((dataOut.nChannels, |
|
1354 | self.__buffer = numpy.zeros((dataOut.nChannels, | |
1357 | n, |
|
1355 | n, | |
1358 | dataOut.nHeights), |
|
1356 | dataOut.nHeights), | |
1359 | dtype='complex') |
|
1357 | dtype='complex') | |
1360 |
|
1358 | |||
1361 | def putData(self,data): |
|
1359 | def putData(self,data): | |
1362 | ''' |
|
1360 | ''' | |
1363 | Add a profile to he __buffer and increase in one the __profiel Index |
|
1361 | Add a profile to he __buffer and increase in one the __profiel Index | |
1364 | ''' |
|
1362 | ''' | |
1365 | self.__buffer[:,self.__profIndex,:]= data |
|
1363 | self.__buffer[:,self.__profIndex,:]= data | |
1366 | self.__profIndex += 1 |
|
1364 | self.__profIndex += 1 | |
1367 | return |
|
1365 | return | |
1368 |
|
1366 | |||
1369 | def pushData(self,dataOut): |
|
1367 | def pushData(self,dataOut): | |
1370 | ''' |
|
1368 | ''' | |
1371 | Return the PULSEPAIR and the profiles used in the operation |
|
1369 | Return the PULSEPAIR and the profiles used in the operation | |
1372 | Affected : self.__profileIndex |
|
1370 | Affected : self.__profileIndex | |
1373 | ''' |
|
1371 | ''' | |
1374 | #----------------- Remove DC----------------------------------- |
|
1372 | #----------------- Remove DC----------------------------------- | |
1375 | if self.removeDC==True: |
|
1373 | if self.removeDC==True: | |
1376 | mean = numpy.mean(self.__buffer,1) |
|
1374 | mean = numpy.mean(self.__buffer,1) | |
1377 | tmp = mean.reshape(self.__nch,1,self.__nHeis) |
|
1375 | tmp = mean.reshape(self.__nch,1,self.__nHeis) | |
1378 | dc= numpy.tile(tmp,[1,self.__nProf,1]) |
|
1376 | dc= numpy.tile(tmp,[1,self.__nProf,1]) | |
1379 | self.__buffer = self.__buffer - dc |
|
1377 | self.__buffer = self.__buffer - dc | |
1380 | #------------------Calculo de Potencia ------------------------ |
|
1378 | #------------------Calculo de Potencia ------------------------ | |
1381 | pair0 = self.__buffer*numpy.conj(self.__buffer) |
|
1379 | pair0 = self.__buffer*numpy.conj(self.__buffer) | |
1382 | pair0 = pair0.real |
|
1380 | pair0 = pair0.real | |
1383 | lag_0 = numpy.sum(pair0,1) |
|
1381 | lag_0 = numpy.sum(pair0,1) | |
1384 | #------------------Calculo de Ruido x canal-------------------- |
|
1382 | #------------------Calculo de Ruido x canal-------------------- | |
1385 | self.noise = numpy.zeros(self.__nch) |
|
1383 | self.noise = numpy.zeros(self.__nch) | |
1386 | for i in range(self.__nch): |
|
1384 | for i in range(self.__nch): | |
1387 | daux = numpy.sort(pair0[i,:,:],axis= None) |
|
1385 | daux = numpy.sort(pair0[i,:,:],axis= None) | |
1388 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) |
|
1386 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) | |
1389 |
|
1387 | |||
1390 | self.noise = self.noise.reshape(self.__nch,1) |
|
1388 | self.noise = self.noise.reshape(self.__nch,1) | |
1391 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) |
|
1389 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) | |
1392 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) |
|
1390 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) | |
1393 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) |
|
1391 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) | |
1394 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- |
|
1392 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- | |
1395 | #------------------ P= S+N ,P=lag_0/N --------------------------------- |
|
1393 | #------------------ P= S+N ,P=lag_0/N --------------------------------- | |
1396 | #-------------------- Power -------------------------------------------------- |
|
1394 | #-------------------- Power -------------------------------------------------- | |
1397 | data_power = lag_0/(self.n*self.nCohInt) |
|
1395 | data_power = lag_0/(self.n*self.nCohInt) | |
1398 | #------------------ Senal --------------------------------------------------- |
|
1396 | #------------------ Senal --------------------------------------------------- | |
1399 | data_intensity = pair0 - noise_buffer |
|
1397 | data_intensity = pair0 - noise_buffer | |
1400 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) |
|
1398 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) | |
1401 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) |
|
1399 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) | |
1402 | for i in range(self.__nch): |
|
1400 | for i in range(self.__nch): | |
1403 | for j in range(self.__nHeis): |
|
1401 | for j in range(self.__nHeis): | |
1404 | if data_intensity[i][j] < 0: |
|
1402 | if data_intensity[i][j] < 0: | |
1405 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) |
|
1403 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) | |
1406 |
|
1404 | |||
1407 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- |
|
1405 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- | |
1408 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) |
|
1406 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) | |
1409 | lag_1 = numpy.sum(pair1,1) |
|
1407 | lag_1 = numpy.sum(pair1,1) | |
1410 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) |
|
1408 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) | |
1411 | data_velocity = (self.lambda_/2.0)*data_freq |
|
1409 | data_velocity = (self.lambda_/2.0)*data_freq | |
1412 |
|
1410 | |||
1413 | #---------------- Potencia promedio estimada de la Senal----------- |
|
1411 | #---------------- Potencia promedio estimada de la Senal----------- | |
1414 | lag_0 = lag_0/self.n |
|
1412 | lag_0 = lag_0/self.n | |
1415 | S = lag_0-self.noise |
|
1413 | S = lag_0-self.noise | |
1416 |
|
1414 | |||
1417 | #---------------- Frecuencia Doppler promedio --------------------- |
|
1415 | #---------------- Frecuencia Doppler promedio --------------------- | |
1418 | lag_1 = lag_1/(self.n-1) |
|
1416 | lag_1 = lag_1/(self.n-1) | |
1419 | R1 = numpy.abs(lag_1) |
|
1417 | R1 = numpy.abs(lag_1) | |
1420 |
|
1418 | |||
1421 | #---------------- Calculo del SNR---------------------------------- |
|
1419 | #---------------- Calculo del SNR---------------------------------- | |
1422 | data_snrPP = S/self.noise |
|
1420 | data_snrPP = S/self.noise | |
1423 | for i in range(self.__nch): |
|
1421 | for i in range(self.__nch): | |
1424 | for j in range(self.__nHeis): |
|
1422 | for j in range(self.__nHeis): | |
1425 | if data_snrPP[i][j] < 1.e-20: |
|
1423 | if data_snrPP[i][j] < 1.e-20: | |
1426 | data_snrPP[i][j] = 1.e-20 |
|
1424 | data_snrPP[i][j] = 1.e-20 | |
1427 |
|
1425 | |||
1428 | #----------------- Calculo del ancho espectral ---------------------- |
|
1426 | #----------------- Calculo del ancho espectral ---------------------- | |
1429 | L = S/R1 |
|
1427 | L = S/R1 | |
1430 | L = numpy.where(L<0,1,L) |
|
1428 | L = numpy.where(L<0,1,L) | |
1431 | L = numpy.log(L) |
|
1429 | L = numpy.log(L) | |
1432 | tmp = numpy.sqrt(numpy.absolute(L)) |
|
1430 | tmp = numpy.sqrt(numpy.absolute(L)) | |
1433 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) |
|
1431 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) | |
1434 | n = self.__profIndex |
|
1432 | n = self.__profIndex | |
1435 |
|
1433 | |||
1436 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') |
|
1434 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') | |
1437 | self.__profIndex = 0 |
|
1435 | self.__profIndex = 0 | |
1438 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n |
|
1436 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n | |
1439 |
|
1437 | |||
1440 |
|
1438 | |||
1441 | def pulsePairbyProfiles(self,dataOut): |
|
1439 | def pulsePairbyProfiles(self,dataOut): | |
1442 |
|
1440 | |||
1443 | self.__dataReady = False |
|
1441 | self.__dataReady = False | |
1444 | data_power = None |
|
1442 | data_power = None | |
1445 | data_intensity = None |
|
1443 | data_intensity = None | |
1446 | data_velocity = None |
|
1444 | data_velocity = None | |
1447 | data_specwidth = None |
|
1445 | data_specwidth = None | |
1448 | data_snrPP = None |
|
1446 | data_snrPP = None | |
1449 | self.putData(data=dataOut.data) |
|
1447 | self.putData(data=dataOut.data) | |
1450 | if self.__profIndex == self.n: |
|
1448 | if self.__profIndex == self.n: | |
1451 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) |
|
1449 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) | |
1452 | self.__dataReady = True |
|
1450 | self.__dataReady = True | |
1453 |
|
1451 | |||
1454 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth |
|
1452 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth | |
1455 |
|
1453 | |||
1456 |
|
1454 | |||
1457 | def pulsePairOp(self, dataOut, datatime= None): |
|
1455 | def pulsePairOp(self, dataOut, datatime= None): | |
1458 |
|
1456 | |||
1459 | if self.__initime == None: |
|
1457 | if self.__initime == None: | |
1460 | self.__initime = datatime |
|
1458 | self.__initime = datatime | |
1461 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) |
|
1459 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) | |
1462 | self.__lastdatatime = datatime |
|
1460 | self.__lastdatatime = datatime | |
1463 |
|
1461 | |||
1464 | if data_power is None: |
|
1462 | if data_power is None: | |
1465 | return None, None, None,None,None,None |
|
1463 | return None, None, None,None,None,None | |
1466 |
|
1464 | |||
1467 | avgdatatime = self.__initime |
|
1465 | avgdatatime = self.__initime | |
1468 | deltatime = datatime - self.__lastdatatime |
|
1466 | deltatime = datatime - self.__lastdatatime | |
1469 | self.__initime = datatime |
|
1467 | self.__initime = datatime | |
1470 |
|
1468 | |||
1471 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime |
|
1469 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime | |
1472 |
|
1470 | |||
1473 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): |
|
1471 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): | |
1474 |
|
1472 | |||
1475 | if not self.isConfig: |
|
1473 | if not self.isConfig: | |
1476 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) |
|
1474 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) | |
1477 | self.isConfig = True |
|
1475 | self.isConfig = True | |
1478 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) |
|
1476 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) | |
1479 | dataOut.flagNoData = True |
|
1477 | dataOut.flagNoData = True | |
1480 |
|
1478 | |||
1481 | if self.__dataReady: |
|
1479 | if self.__dataReady: | |
1482 | dataOut.nCohInt *= self.n |
|
1480 | dataOut.nCohInt *= self.n | |
1483 | dataOut.dataPP_POW = data_intensity # S |
|
1481 | dataOut.dataPP_POW = data_intensity # S | |
1484 | dataOut.dataPP_POWER = data_power # P |
|
1482 | dataOut.dataPP_POWER = data_power # P | |
1485 | dataOut.dataPP_DOP = data_velocity |
|
1483 | dataOut.dataPP_DOP = data_velocity | |
1486 | dataOut.dataPP_SNR = data_snrPP |
|
1484 | dataOut.dataPP_SNR = data_snrPP | |
1487 | dataOut.dataPP_WIDTH = data_specwidth |
|
1485 | dataOut.dataPP_WIDTH = data_specwidth | |
1488 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. |
|
1486 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. | |
1489 | dataOut.utctime = avgdatatime |
|
1487 | dataOut.utctime = avgdatatime | |
1490 | dataOut.flagNoData = False |
|
1488 | dataOut.flagNoData = False | |
1491 | return dataOut |
|
1489 | return dataOut | |
1492 |
|
1490 | |||
1493 |
|
1491 | |||
1494 |
|
1492 | |||
1495 | # import collections |
|
1493 | # import collections | |
1496 | # from scipy.stats import mode |
|
1494 | # from scipy.stats import mode | |
1497 | # |
|
1495 | # | |
1498 | # class Synchronize(Operation): |
|
1496 | # class Synchronize(Operation): | |
1499 | # |
|
1497 | # | |
1500 | # isConfig = False |
|
1498 | # isConfig = False | |
1501 | # __profIndex = 0 |
|
1499 | # __profIndex = 0 | |
1502 | # |
|
1500 | # | |
1503 | # def __init__(self, **kwargs): |
|
1501 | # def __init__(self, **kwargs): | |
1504 | # |
|
1502 | # | |
1505 | # Operation.__init__(self, **kwargs) |
|
1503 | # Operation.__init__(self, **kwargs) | |
1506 | # # self.isConfig = False |
|
1504 | # # self.isConfig = False | |
1507 | # self.__powBuffer = None |
|
1505 | # self.__powBuffer = None | |
1508 | # self.__startIndex = 0 |
|
1506 | # self.__startIndex = 0 | |
1509 | # self.__pulseFound = False |
|
1507 | # self.__pulseFound = False | |
1510 | # |
|
1508 | # | |
1511 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1509 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): | |
1512 | # |
|
1510 | # | |
1513 | # #Read data |
|
1511 | # #Read data | |
1514 | # |
|
1512 | # | |
1515 | # powerdB = dataOut.getPower(channel = channel) |
|
1513 | # powerdB = dataOut.getPower(channel = channel) | |
1516 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1514 | # noisedB = dataOut.getNoise(channel = channel)[0] | |
1517 | # |
|
1515 | # | |
1518 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1516 | # self.__powBuffer.extend(powerdB.flatten()) | |
1519 | # |
|
1517 | # | |
1520 | # dataArray = numpy.array(self.__powBuffer) |
|
1518 | # dataArray = numpy.array(self.__powBuffer) | |
1521 | # |
|
1519 | # | |
1522 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1520 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") | |
1523 | # |
|
1521 | # | |
1524 | # maxValue = numpy.nanmax(filteredPower) |
|
1522 | # maxValue = numpy.nanmax(filteredPower) | |
1525 | # |
|
1523 | # | |
1526 | # if maxValue < noisedB + 10: |
|
1524 | # if maxValue < noisedB + 10: | |
1527 | # #No se encuentra ningun pulso de transmision |
|
1525 | # #No se encuentra ningun pulso de transmision | |
1528 | # return None |
|
1526 | # return None | |
1529 | # |
|
1527 | # | |
1530 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1528 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] | |
1531 | # |
|
1529 | # | |
1532 | # if len(maxValuesIndex) < 2: |
|
1530 | # if len(maxValuesIndex) < 2: | |
1533 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1531 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX | |
1534 | # return None |
|
1532 | # return None | |
1535 | # |
|
1533 | # | |
1536 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1534 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples | |
1537 | # |
|
1535 | # | |
1538 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1536 | # #Seleccionar solo valores con un espaciamiento de nSamples | |
1539 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1537 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) | |
1540 | # |
|
1538 | # | |
1541 | # if len(pulseIndex) < 2: |
|
1539 | # if len(pulseIndex) < 2: | |
1542 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1540 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
1543 | # return None |
|
1541 | # return None | |
1544 | # |
|
1542 | # | |
1545 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1543 | # spacing = pulseIndex[1:] - pulseIndex[:-1] | |
1546 | # |
|
1544 | # | |
1547 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1545 | # #remover senales que se distancien menos de 10 unidades o muestras | |
1548 | # #(No deberian existir IPP menor a 10 unidades) |
|
1546 | # #(No deberian existir IPP menor a 10 unidades) | |
1549 | # |
|
1547 | # | |
1550 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1548 | # realIndex = numpy.where(spacing > 10 )[0] | |
1551 | # |
|
1549 | # | |
1552 | # if len(realIndex) < 2: |
|
1550 | # if len(realIndex) < 2: | |
1553 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1551 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
1554 | # return None |
|
1552 | # return None | |
1555 | # |
|
1553 | # | |
1556 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1554 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) | |
1557 | # realPulseIndex = pulseIndex[realIndex] |
|
1555 | # realPulseIndex = pulseIndex[realIndex] | |
1558 | # |
|
1556 | # | |
1559 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1557 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] | |
1560 | # |
|
1558 | # | |
1561 | # print "IPP = %d samples" %period |
|
1559 | # print "IPP = %d samples" %period | |
1562 | # |
|
1560 | # | |
1563 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1561 | # self.__newNSamples = dataOut.nHeights #int(period) | |
1564 | # self.__startIndex = int(realPulseIndex[0]) |
|
1562 | # self.__startIndex = int(realPulseIndex[0]) | |
1565 | # |
|
1563 | # | |
1566 | # return 1 |
|
1564 | # return 1 | |
1567 | # |
|
1565 | # | |
1568 | # |
|
1566 | # | |
1569 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1567 | # def setup(self, nSamples, nChannels, buffer_size = 4): | |
1570 | # |
|
1568 | # | |
1571 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1569 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), | |
1572 | # maxlen = buffer_size*nSamples) |
|
1570 | # maxlen = buffer_size*nSamples) | |
1573 | # |
|
1571 | # | |
1574 | # bufferList = [] |
|
1572 | # bufferList = [] | |
1575 | # |
|
1573 | # | |
1576 | # for i in range(nChannels): |
|
1574 | # for i in range(nChannels): | |
1577 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1575 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, | |
1578 | # maxlen = buffer_size*nSamples) |
|
1576 | # maxlen = buffer_size*nSamples) | |
1579 | # |
|
1577 | # | |
1580 | # bufferList.append(bufferByChannel) |
|
1578 | # bufferList.append(bufferByChannel) | |
1581 | # |
|
1579 | # | |
1582 | # self.__nSamples = nSamples |
|
1580 | # self.__nSamples = nSamples | |
1583 | # self.__nChannels = nChannels |
|
1581 | # self.__nChannels = nChannels | |
1584 | # self.__bufferList = bufferList |
|
1582 | # self.__bufferList = bufferList | |
1585 | # |
|
1583 | # | |
1586 | # def run(self, dataOut, channel = 0): |
|
1584 | # def run(self, dataOut, channel = 0): | |
1587 | # |
|
1585 | # | |
1588 | # if not self.isConfig: |
|
1586 | # if not self.isConfig: | |
1589 | # nSamples = dataOut.nHeights |
|
1587 | # nSamples = dataOut.nHeights | |
1590 | # nChannels = dataOut.nChannels |
|
1588 | # nChannels = dataOut.nChannels | |
1591 | # self.setup(nSamples, nChannels) |
|
1589 | # self.setup(nSamples, nChannels) | |
1592 | # self.isConfig = True |
|
1590 | # self.isConfig = True | |
1593 | # |
|
1591 | # | |
1594 | # #Append new data to internal buffer |
|
1592 | # #Append new data to internal buffer | |
1595 | # for thisChannel in range(self.__nChannels): |
|
1593 | # for thisChannel in range(self.__nChannels): | |
1596 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1594 | # bufferByChannel = self.__bufferList[thisChannel] | |
1597 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1595 | # bufferByChannel.extend(dataOut.data[thisChannel]) | |
1598 | # |
|
1596 | # | |
1599 | # if self.__pulseFound: |
|
1597 | # if self.__pulseFound: | |
1600 | # self.__startIndex -= self.__nSamples |
|
1598 | # self.__startIndex -= self.__nSamples | |
1601 | # |
|
1599 | # | |
1602 | # #Finding Tx Pulse |
|
1600 | # #Finding Tx Pulse | |
1603 | # if not self.__pulseFound: |
|
1601 | # if not self.__pulseFound: | |
1604 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1602 | # indexFound = self.__findTxPulse(dataOut, channel) | |
1605 | # |
|
1603 | # | |
1606 | # if indexFound == None: |
|
1604 | # if indexFound == None: | |
1607 | # dataOut.flagNoData = True |
|
1605 | # dataOut.flagNoData = True | |
1608 | # return |
|
1606 | # return | |
1609 | # |
|
1607 | # | |
1610 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1608 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) | |
1611 | # self.__pulseFound = True |
|
1609 | # self.__pulseFound = True | |
1612 | # self.__startIndex = indexFound |
|
1610 | # self.__startIndex = indexFound | |
1613 | # |
|
1611 | # | |
1614 | # #If pulse was found ... |
|
1612 | # #If pulse was found ... | |
1615 | # for thisChannel in range(self.__nChannels): |
|
1613 | # for thisChannel in range(self.__nChannels): | |
1616 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1614 | # bufferByChannel = self.__bufferList[thisChannel] | |
1617 | # #print self.__startIndex |
|
1615 | # #print self.__startIndex | |
1618 | # x = numpy.array(bufferByChannel) |
|
1616 | # x = numpy.array(bufferByChannel) | |
1619 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1617 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] | |
1620 | # |
|
1618 | # | |
1621 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1619 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1622 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1620 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight | |
1623 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1621 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 | |
1624 | # |
|
1622 | # | |
1625 | # dataOut.data = self.__arrayBuffer |
|
1623 | # dataOut.data = self.__arrayBuffer | |
1626 | # |
|
1624 | # | |
1627 | # self.__startIndex += self.__newNSamples |
|
1625 | # self.__startIndex += self.__newNSamples | |
1628 | # |
|
1626 | # | |
1629 | # return No newline at end of file |
|
1627 | # return |
General Comments 0
You need to be logged in to leave comments.
Login now