@@ -1,2599 +1,2712 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import math |
|
2 | import math | |
3 | from scipy import optimize, interpolate, signal, stats, ndimage |
|
3 | from scipy import optimize, interpolate, signal, stats, ndimage | |
4 | import re |
|
4 | import re | |
5 | import datetime |
|
5 | import datetime | |
6 | import copy |
|
6 | import copy | |
7 | import sys |
|
7 | import sys | |
8 | import importlib |
|
8 | import importlib | |
9 | import itertools |
|
9 | import itertools | |
10 |
|
10 | |||
11 | from jroproc_base import ProcessingUnit, Operation |
|
11 | from jroproc_base import ProcessingUnit, Operation | |
12 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon |
|
12 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | class ParametersProc(ProcessingUnit): |
|
15 | class ParametersProc(ProcessingUnit): | |
16 |
|
16 | |||
17 | nSeconds = None |
|
17 | nSeconds = None | |
18 |
|
18 | |||
19 | def __init__(self): |
|
19 | def __init__(self): | |
20 | ProcessingUnit.__init__(self) |
|
20 | ProcessingUnit.__init__(self) | |
21 |
|
21 | |||
22 | # self.objectDict = {} |
|
22 | # self.objectDict = {} | |
23 | self.buffer = None |
|
23 | self.buffer = None | |
24 | self.firstdatatime = None |
|
24 | self.firstdatatime = None | |
25 | self.profIndex = 0 |
|
25 | self.profIndex = 0 | |
26 | self.dataOut = Parameters() |
|
26 | self.dataOut = Parameters() | |
27 |
|
27 | |||
28 | def __updateObjFromInput(self): |
|
28 | def __updateObjFromInput(self): | |
29 |
|
29 | |||
30 | self.dataOut.inputUnit = self.dataIn.type |
|
30 | self.dataOut.inputUnit = self.dataIn.type | |
31 |
|
31 | |||
32 | self.dataOut.timeZone = self.dataIn.timeZone |
|
32 | self.dataOut.timeZone = self.dataIn.timeZone | |
33 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
33 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
34 | self.dataOut.errorCount = self.dataIn.errorCount |
|
34 | self.dataOut.errorCount = self.dataIn.errorCount | |
35 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
35 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
36 |
|
36 | |||
37 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
37 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
38 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
38 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
39 | self.dataOut.channelList = self.dataIn.channelList |
|
39 | self.dataOut.channelList = self.dataIn.channelList | |
40 | self.dataOut.heightList = self.dataIn.heightList |
|
40 | self.dataOut.heightList = self.dataIn.heightList | |
41 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
41 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
42 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
42 | # self.dataOut.nHeights = self.dataIn.nHeights | |
43 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
43 | # self.dataOut.nChannels = self.dataIn.nChannels | |
44 | self.dataOut.nBaud = self.dataIn.nBaud |
|
44 | self.dataOut.nBaud = self.dataIn.nBaud | |
45 | self.dataOut.nCode = self.dataIn.nCode |
|
45 | self.dataOut.nCode = self.dataIn.nCode | |
46 | self.dataOut.code = self.dataIn.code |
|
46 | self.dataOut.code = self.dataIn.code | |
47 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
47 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
48 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
48 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
49 | # self.dataOut.utctime = self.firstdatatime |
|
49 | # self.dataOut.utctime = self.firstdatatime | |
50 | self.dataOut.utctime = self.dataIn.utctime |
|
50 | self.dataOut.utctime = self.dataIn.utctime | |
51 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
51 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
52 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
52 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
53 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
53 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
54 | # self.dataOut.nIncohInt = 1 |
|
54 | # self.dataOut.nIncohInt = 1 | |
55 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
55 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
56 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
56 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
57 | self.dataOut.timeInterval = self.dataIn.timeInterval |
|
57 | self.dataOut.timeInterval = self.dataIn.timeInterval | |
58 | self.dataOut.heightList = self.dataIn.getHeiRange() |
|
58 | self.dataOut.heightList = self.dataIn.getHeiRange() | |
59 | self.dataOut.frequency = self.dataIn.frequency |
|
59 | self.dataOut.frequency = self.dataIn.frequency | |
60 | self.dataOut.noise = self.dataIn.noise |
|
60 | self.dataOut.noise = self.dataIn.noise | |
61 |
|
61 | |||
62 | def run(self): |
|
62 | def run(self): | |
63 |
|
63 | |||
64 | #---------------------- Voltage Data --------------------------- |
|
64 | #---------------------- Voltage Data --------------------------- | |
65 |
|
65 | |||
66 | if self.dataIn.type == "Voltage": |
|
66 | if self.dataIn.type == "Voltage": | |
67 |
|
67 | |||
68 | self.__updateObjFromInput() |
|
68 | self.__updateObjFromInput() | |
69 | self.dataOut.data_pre = self.dataIn.data.copy() |
|
69 | self.dataOut.data_pre = self.dataIn.data.copy() | |
70 | self.dataOut.flagNoData = False |
|
70 | self.dataOut.flagNoData = False | |
71 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
71 | self.dataOut.utctimeInit = self.dataIn.utctime | |
72 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds |
|
72 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds | |
73 | return |
|
73 | return | |
74 |
|
74 | |||
75 | #---------------------- Spectra Data --------------------------- |
|
75 | #---------------------- Spectra Data --------------------------- | |
76 |
|
76 | |||
77 | if self.dataIn.type == "Spectra": |
|
77 | if self.dataIn.type == "Spectra": | |
78 |
|
78 | |||
79 | self.dataOut.data_pre = (self.dataIn.data_spc,self.dataIn.data_cspc) |
|
79 | self.dataOut.data_pre = (self.dataIn.data_spc,self.dataIn.data_cspc) | |
80 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
80 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
81 | self.dataOut.noise = self.dataIn.getNoise() |
|
81 | self.dataOut.noise = self.dataIn.getNoise() | |
82 | self.dataOut.normFactor = self.dataIn.normFactor |
|
82 | self.dataOut.normFactor = self.dataIn.normFactor | |
83 | self.dataOut.groupList = self.dataIn.pairsList |
|
83 | self.dataOut.groupList = self.dataIn.pairsList | |
84 | self.dataOut.flagNoData = False |
|
84 | self.dataOut.flagNoData = False | |
85 |
|
85 | |||
86 | #---------------------- Correlation Data --------------------------- |
|
86 | #---------------------- Correlation Data --------------------------- | |
87 |
|
87 | |||
88 | if self.dataIn.type == "Correlation": |
|
88 | if self.dataIn.type == "Correlation": | |
89 |
|
89 | |||
90 | if self.dataIn.data_ccf is not None: |
|
90 | if self.dataIn.data_ccf is not None: | |
91 | self.dataOut.data_pre = (self.dataIn.data_acf,self.dataIn.data_ccf) |
|
91 | self.dataOut.data_pre = (self.dataIn.data_acf,self.dataIn.data_ccf) | |
92 | else: |
|
92 | else: | |
93 | self.dataOut.data_pre = self.dataIn.data_acf.copy() |
|
93 | self.dataOut.data_pre = self.dataIn.data_acf.copy() | |
94 |
|
94 | |||
95 | self.dataOut.abscissaList = self.dataIn.lagRange |
|
95 | self.dataOut.abscissaList = self.dataIn.lagRange | |
96 | self.dataOut.noise = self.dataIn.noise |
|
96 | self.dataOut.noise = self.dataIn.noise | |
97 | self.dataOut.normFactor = self.dataIn.normFactor |
|
97 | self.dataOut.normFactor = self.dataIn.normFactor | |
98 | self.dataOut.data_SNR = self.dataIn.SNR |
|
98 | self.dataOut.data_SNR = self.dataIn.SNR | |
99 | self.dataOut.groupList = self.dataIn.pairsList |
|
99 | self.dataOut.groupList = self.dataIn.pairsList | |
100 | self.dataOut.flagNoData = False |
|
100 | self.dataOut.flagNoData = False | |
101 | self.dataOut.nAvg = self.dataIn.nAvg |
|
101 | self.dataOut.nAvg = self.dataIn.nAvg | |
102 |
|
102 | |||
103 | #---------------------- Parameters Data --------------------------- |
|
103 | #---------------------- Parameters Data --------------------------- | |
104 |
|
104 | |||
105 | if self.dataIn.type == "Parameters": |
|
105 | if self.dataIn.type == "Parameters": | |
106 | self.dataOut.copy(self.dataIn) |
|
106 | self.dataOut.copy(self.dataIn) | |
107 | self.dataOut.flagNoData = False |
|
107 | self.dataOut.flagNoData = False | |
108 |
|
108 | |||
109 | return True |
|
109 | return True | |
110 |
|
110 | |||
111 | self.__updateObjFromInput() |
|
111 | self.__updateObjFromInput() | |
112 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
112 | self.dataOut.utctimeInit = self.dataIn.utctime | |
113 | self.dataOut.paramInterval = self.dataIn.timeInterval |
|
113 | self.dataOut.paramInterval = self.dataIn.timeInterval | |
114 |
|
114 | |||
115 | #------------------- Get Moments ---------------------------------- |
|
115 | #------------------- Get Moments ---------------------------------- | |
116 | def GetMoments(self, channelList = None): |
|
116 | def GetMoments(self, channelList = None): | |
117 | ''' |
|
117 | ''' | |
118 | Function GetMoments() |
|
118 | Function GetMoments() | |
119 |
|
119 | |||
120 | Input: |
|
120 | Input: | |
121 | channelList : simple channel list to select e.g. [2,3,7] |
|
121 | channelList : simple channel list to select e.g. [2,3,7] | |
122 | self.dataOut.data_pre |
|
122 | self.dataOut.data_pre | |
123 | self.dataOut.abscissaList |
|
123 | self.dataOut.abscissaList | |
124 | self.dataOut.noise |
|
124 | self.dataOut.noise | |
125 |
|
125 | |||
126 | Affected: |
|
126 | Affected: | |
127 | self.dataOut.data_param |
|
127 | self.dataOut.data_param | |
128 | self.dataOut.data_SNR |
|
128 | self.dataOut.data_SNR | |
129 |
|
129 | |||
130 | ''' |
|
130 | ''' | |
131 | self.dataOut.data_pre = self.dataOut.data_pre[0] |
|
131 | self.dataOut.data_pre = self.dataOut.data_pre[0] | |
132 | data = self.dataOut.data_pre |
|
132 | data = self.dataOut.data_pre | |
133 | absc = self.dataOut.abscissaList[:-1] |
|
133 | absc = self.dataOut.abscissaList[:-1] | |
134 | noise = self.dataOut.noise |
|
134 | noise = self.dataOut.noise | |
135 |
|
135 | |||
136 | data_param = numpy.zeros((data.shape[0], 4, data.shape[2])) |
|
136 | data_param = numpy.zeros((data.shape[0], 4, data.shape[2])) | |
137 |
|
137 | |||
138 | if channelList== None: |
|
138 | if channelList== None: | |
139 | channelList = self.dataIn.channelList |
|
139 | channelList = self.dataIn.channelList | |
140 | self.dataOut.channelList = channelList |
|
140 | self.dataOut.channelList = channelList | |
141 |
|
141 | |||
142 | for ind in channelList: |
|
142 | for ind in channelList: | |
143 | data_param[ind,:,:] = self.__calculateMoments(data[ind,:,:], absc, noise[ind]) |
|
143 | data_param[ind,:,:] = self.__calculateMoments(data[ind,:,:], absc, noise[ind]) | |
144 |
|
144 | |||
145 | self.dataOut.data_param = data_param[:,1:,:] |
|
145 | self.dataOut.data_param = data_param[:,1:,:] | |
146 | self.dataOut.data_SNR = data_param[:,0] |
|
146 | self.dataOut.data_SNR = data_param[:,0] | |
147 | return |
|
147 | return | |
148 |
|
148 | |||
149 | def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
149 | def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |
150 |
|
150 | |||
151 | if (nicoh == None): nicoh = 1 |
|
151 | if (nicoh == None): nicoh = 1 | |
152 | if (graph == None): graph = 0 |
|
152 | if (graph == None): graph = 0 | |
153 | if (smooth == None): smooth = 0 |
|
153 | if (smooth == None): smooth = 0 | |
154 | elif (self.smooth < 3): smooth = 0 |
|
154 | elif (self.smooth < 3): smooth = 0 | |
155 |
|
155 | |||
156 | if (type1 == None): type1 = 0 |
|
156 | if (type1 == None): type1 = 0 | |
157 | if (fwindow == None): fwindow = numpy.zeros(oldfreq.size) + 1 |
|
157 | if (fwindow == None): fwindow = numpy.zeros(oldfreq.size) + 1 | |
158 | if (snrth == None): snrth = -3 |
|
158 | if (snrth == None): snrth = -3 | |
159 | if (dc == None): dc = 0 |
|
159 | if (dc == None): dc = 0 | |
160 | if (aliasing == None): aliasing = 0 |
|
160 | if (aliasing == None): aliasing = 0 | |
161 | if (oldfd == None): oldfd = 0 |
|
161 | if (oldfd == None): oldfd = 0 | |
162 | if (wwauto == None): wwauto = 0 |
|
162 | if (wwauto == None): wwauto = 0 | |
163 |
|
163 | |||
164 | if (n0 < 1.e-20): n0 = 1.e-20 |
|
164 | if (n0 < 1.e-20): n0 = 1.e-20 | |
165 |
|
165 | |||
166 | freq = oldfreq |
|
166 | freq = oldfreq | |
167 | vec_power = numpy.zeros(oldspec.shape[1]) |
|
167 | vec_power = numpy.zeros(oldspec.shape[1]) | |
168 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
168 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
169 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
169 | vec_w = numpy.zeros(oldspec.shape[1]) | |
170 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
170 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
171 |
|
171 | |||
172 | for ind in range(oldspec.shape[1]): |
|
172 | for ind in range(oldspec.shape[1]): | |
173 |
|
173 | |||
174 | spec = oldspec[:,ind] |
|
174 | spec = oldspec[:,ind] | |
175 | aux = spec*fwindow |
|
175 | aux = spec*fwindow | |
176 | max_spec = aux.max() |
|
176 | max_spec = aux.max() | |
177 | m = list(aux).index(max_spec) |
|
177 | m = list(aux).index(max_spec) | |
178 |
|
178 | |||
179 | #Smooth |
|
179 | #Smooth | |
180 | if (smooth == 0): spec2 = spec |
|
180 | if (smooth == 0): spec2 = spec | |
181 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
181 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
182 |
|
182 | |||
183 | # Calculo de Momentos |
|
183 | # Calculo de Momentos | |
184 | bb = spec2[range(m,spec2.size)] |
|
184 | bb = spec2[range(m,spec2.size)] | |
185 | bb = (bb<n0).nonzero() |
|
185 | bb = (bb<n0).nonzero() | |
186 | bb = bb[0] |
|
186 | bb = bb[0] | |
187 |
|
187 | |||
188 | ss = spec2[range(0,m + 1)] |
|
188 | ss = spec2[range(0,m + 1)] | |
189 | ss = (ss<n0).nonzero() |
|
189 | ss = (ss<n0).nonzero() | |
190 | ss = ss[0] |
|
190 | ss = ss[0] | |
191 |
|
191 | |||
192 | if (bb.size == 0): |
|
192 | if (bb.size == 0): | |
193 | bb0 = spec.size - 1 - m |
|
193 | bb0 = spec.size - 1 - m | |
194 | else: |
|
194 | else: | |
195 | bb0 = bb[0] - 1 |
|
195 | bb0 = bb[0] - 1 | |
196 | if (bb0 < 0): |
|
196 | if (bb0 < 0): | |
197 | bb0 = 0 |
|
197 | bb0 = 0 | |
198 |
|
198 | |||
199 | if (ss.size == 0): ss1 = 1 |
|
199 | if (ss.size == 0): ss1 = 1 | |
200 | else: ss1 = max(ss) + 1 |
|
200 | else: ss1 = max(ss) + 1 | |
201 |
|
201 | |||
202 | if (ss1 > m): ss1 = m |
|
202 | if (ss1 > m): ss1 = m | |
203 |
|
203 | |||
204 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 |
|
204 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 | |
205 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() |
|
205 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() | |
206 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power |
|
206 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power | |
207 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) |
|
207 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |
208 | snr = (spec2.mean()-n0)/n0 |
|
208 | snr = (spec2.mean()-n0)/n0 | |
209 |
|
209 | |||
210 | if (snr < 1.e-20) : |
|
210 | if (snr < 1.e-20) : | |
211 | snr = 1.e-20 |
|
211 | snr = 1.e-20 | |
212 |
|
212 | |||
213 | vec_power[ind] = power |
|
213 | vec_power[ind] = power | |
214 | vec_fd[ind] = fd |
|
214 | vec_fd[ind] = fd | |
215 | vec_w[ind] = w |
|
215 | vec_w[ind] = w | |
216 | vec_snr[ind] = snr |
|
216 | vec_snr[ind] = snr | |
217 |
|
217 | |||
218 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
218 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
219 | return moments |
|
219 | return moments | |
220 |
|
220 | |||
221 | #------------------ Get SA Parameters -------------------------- |
|
221 | #------------------ Get SA Parameters -------------------------- | |
222 |
|
222 | |||
223 | def GetSAParameters(self): |
|
223 | def GetSAParameters(self): | |
224 | pairslist = self.dataOut.groupList |
|
224 | pairslist = self.dataOut.groupList | |
225 | num_pairs = len(pairslist) |
|
225 | num_pairs = len(pairslist) | |
226 |
|
226 | |||
227 | vel = self.dataOut.abscissaList |
|
227 | vel = self.dataOut.abscissaList | |
228 | spectra = self.dataOut.data_pre |
|
228 | spectra = self.dataOut.data_pre | |
229 | cspectra = self.dataIn.data_cspc |
|
229 | cspectra = self.dataIn.data_cspc | |
230 | delta_v = vel[1] - vel[0] |
|
230 | delta_v = vel[1] - vel[0] | |
231 |
|
231 | |||
232 | #Calculating the power spectrum |
|
232 | #Calculating the power spectrum | |
233 | spc_pow = numpy.sum(spectra, 3)*delta_v |
|
233 | spc_pow = numpy.sum(spectra, 3)*delta_v | |
234 | #Normalizing Spectra |
|
234 | #Normalizing Spectra | |
235 | norm_spectra = spectra/spc_pow |
|
235 | norm_spectra = spectra/spc_pow | |
236 | #Calculating the norm_spectra at peak |
|
236 | #Calculating the norm_spectra at peak | |
237 | max_spectra = numpy.max(norm_spectra, 3) |
|
237 | max_spectra = numpy.max(norm_spectra, 3) | |
238 |
|
238 | |||
239 | #Normalizing Cross Spectra |
|
239 | #Normalizing Cross Spectra | |
240 | norm_cspectra = numpy.zeros(cspectra.shape) |
|
240 | norm_cspectra = numpy.zeros(cspectra.shape) | |
241 |
|
241 | |||
242 | for i in range(num_chan): |
|
242 | for i in range(num_chan): | |
243 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) |
|
243 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) | |
244 |
|
244 | |||
245 | max_cspectra = numpy.max(norm_cspectra,2) |
|
245 | max_cspectra = numpy.max(norm_cspectra,2) | |
246 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) |
|
246 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) | |
247 |
|
247 | |||
248 | for i in range(num_pairs): |
|
248 | for i in range(num_pairs): | |
249 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) |
|
249 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) | |
250 | #------------------- Get Lags ---------------------------------- |
|
250 | #------------------- Get Lags ---------------------------------- | |
251 |
|
251 | |||
252 | def GetLags(self): |
|
252 | def GetLags(self): | |
253 | ''' |
|
253 | ''' | |
254 | Function GetMoments() |
|
254 | Function GetMoments() | |
255 |
|
255 | |||
256 | Input: |
|
256 | Input: | |
257 | self.dataOut.data_pre |
|
257 | self.dataOut.data_pre | |
258 | self.dataOut.abscissaList |
|
258 | self.dataOut.abscissaList | |
259 | self.dataOut.noise |
|
259 | self.dataOut.noise | |
260 | self.dataOut.normFactor |
|
260 | self.dataOut.normFactor | |
261 | self.dataOut.data_SNR |
|
261 | self.dataOut.data_SNR | |
262 | self.dataOut.groupList |
|
262 | self.dataOut.groupList | |
263 | self.dataOut.nChannels |
|
263 | self.dataOut.nChannels | |
264 |
|
264 | |||
265 | Affected: |
|
265 | Affected: | |
266 | self.dataOut.data_param |
|
266 | self.dataOut.data_param | |
267 |
|
267 | |||
268 | ''' |
|
268 | ''' | |
269 |
|
269 | |||
270 | data = self.dataOut.data_pre |
|
270 | data = self.dataOut.data_pre | |
271 | normFactor = self.dataOut.normFactor |
|
271 | normFactor = self.dataOut.normFactor | |
272 | nHeights = self.dataOut.nHeights |
|
272 | nHeights = self.dataOut.nHeights | |
273 | absc = self.dataOut.abscissaList[:-1] |
|
273 | absc = self.dataOut.abscissaList[:-1] | |
274 | noise = self.dataOut.noise |
|
274 | noise = self.dataOut.noise | |
275 | SNR = self.dataOut.data_SNR |
|
275 | SNR = self.dataOut.data_SNR | |
276 | pairsList = self.dataOut.groupList |
|
276 | pairsList = self.dataOut.groupList | |
277 | nChannels = self.dataOut.nChannels |
|
277 | nChannels = self.dataOut.nChannels | |
278 | pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
278 | pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
279 | self.dataOut.data_param = numpy.zeros((len(pairsCrossCorr)*2 + 1, nHeights)) |
|
279 | self.dataOut.data_param = numpy.zeros((len(pairsCrossCorr)*2 + 1, nHeights)) | |
280 |
|
280 | |||
281 | dataNorm = numpy.abs(data) |
|
281 | dataNorm = numpy.abs(data) | |
282 | for l in range(len(pairsList)): |
|
282 | for l in range(len(pairsList)): | |
283 | dataNorm[l,:,:] = dataNorm[l,:,:]/normFactor[l,:] |
|
283 | dataNorm[l,:,:] = dataNorm[l,:,:]/normFactor[l,:] | |
284 |
|
284 | |||
285 | self.dataOut.data_param[:-1,:] = self.__calculateTaus(dataNorm, pairsCrossCorr, pairsAutoCorr, absc) |
|
285 | self.dataOut.data_param[:-1,:] = self.__calculateTaus(dataNorm, pairsCrossCorr, pairsAutoCorr, absc) | |
286 | self.dataOut.data_param[-1,:] = self.__calculateLag1Phase(data, pairsAutoCorr, absc) |
|
286 | self.dataOut.data_param[-1,:] = self.__calculateLag1Phase(data, pairsAutoCorr, absc) | |
287 | return |
|
287 | return | |
288 |
|
288 | |||
289 | def __getPairsAutoCorr(self, pairsList, nChannels): |
|
289 | def __getPairsAutoCorr(self, pairsList, nChannels): | |
290 |
|
290 | |||
291 | pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
291 | pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
292 |
|
292 | |||
293 | for l in range(len(pairsList)): |
|
293 | for l in range(len(pairsList)): | |
294 | firstChannel = pairsList[l][0] |
|
294 | firstChannel = pairsList[l][0] | |
295 | secondChannel = pairsList[l][1] |
|
295 | secondChannel = pairsList[l][1] | |
296 |
|
296 | |||
297 | #Obteniendo pares de Autocorrelacion |
|
297 | #Obteniendo pares de Autocorrelacion | |
298 | if firstChannel == secondChannel: |
|
298 | if firstChannel == secondChannel: | |
299 | pairsAutoCorr[firstChannel] = int(l) |
|
299 | pairsAutoCorr[firstChannel] = int(l) | |
300 |
|
300 | |||
301 | pairsAutoCorr = pairsAutoCorr.astype(int) |
|
301 | pairsAutoCorr = pairsAutoCorr.astype(int) | |
302 |
|
302 | |||
303 | pairsCrossCorr = range(len(pairsList)) |
|
303 | pairsCrossCorr = range(len(pairsList)) | |
304 | pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
304 | pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
305 |
|
305 | |||
306 | return pairsAutoCorr, pairsCrossCorr |
|
306 | return pairsAutoCorr, pairsCrossCorr | |
307 |
|
307 | |||
308 | def __calculateTaus(self, data, pairsCrossCorr, pairsAutoCorr, lagTRange): |
|
308 | def __calculateTaus(self, data, pairsCrossCorr, pairsAutoCorr, lagTRange): | |
309 |
|
309 | |||
310 | Pt0 = data.shape[1]/2 |
|
310 | Pt0 = data.shape[1]/2 | |
311 | #Funcion de Autocorrelacion |
|
311 | #Funcion de Autocorrelacion | |
312 | dataAutoCorr = stats.nanmean(data[pairsAutoCorr,:,:], axis = 0) |
|
312 | dataAutoCorr = stats.nanmean(data[pairsAutoCorr,:,:], axis = 0) | |
313 |
|
313 | |||
314 | #Obtencion Indice de TauCross |
|
314 | #Obtencion Indice de TauCross | |
315 | indCross = data[pairsCrossCorr,:,:].argmax(axis = 1) |
|
315 | indCross = data[pairsCrossCorr,:,:].argmax(axis = 1) | |
316 | #Obtencion Indice de TauAuto |
|
316 | #Obtencion Indice de TauAuto | |
317 | indAuto = numpy.zeros(indCross.shape,dtype = 'int') |
|
317 | indAuto = numpy.zeros(indCross.shape,dtype = 'int') | |
318 | CCValue = data[pairsCrossCorr,Pt0,:] |
|
318 | CCValue = data[pairsCrossCorr,Pt0,:] | |
319 | for i in range(pairsCrossCorr.size): |
|
319 | for i in range(pairsCrossCorr.size): | |
320 | indAuto[i,:] = numpy.abs(dataAutoCorr - CCValue[i,:]).argmin(axis = 0) |
|
320 | indAuto[i,:] = numpy.abs(dataAutoCorr - CCValue[i,:]).argmin(axis = 0) | |
321 |
|
321 | |||
322 | #Obtencion de TauCross y TauAuto |
|
322 | #Obtencion de TauCross y TauAuto | |
323 | tauCross = lagTRange[indCross] |
|
323 | tauCross = lagTRange[indCross] | |
324 | tauAuto = lagTRange[indAuto] |
|
324 | tauAuto = lagTRange[indAuto] | |
325 |
|
325 | |||
326 | Nan1, Nan2 = numpy.where(tauCross == lagTRange[0]) |
|
326 | Nan1, Nan2 = numpy.where(tauCross == lagTRange[0]) | |
327 |
|
327 | |||
328 | tauCross[Nan1,Nan2] = numpy.nan |
|
328 | tauCross[Nan1,Nan2] = numpy.nan | |
329 | tauAuto[Nan1,Nan2] = numpy.nan |
|
329 | tauAuto[Nan1,Nan2] = numpy.nan | |
330 | tau = numpy.vstack((tauCross,tauAuto)) |
|
330 | tau = numpy.vstack((tauCross,tauAuto)) | |
331 |
|
331 | |||
332 | return tau |
|
332 | return tau | |
333 |
|
333 | |||
334 | def __calculateLag1Phase(self, data, pairs, lagTRange): |
|
334 | def __calculateLag1Phase(self, data, pairs, lagTRange): | |
335 | data1 = stats.nanmean(data[pairs,:,:], axis = 0) |
|
335 | data1 = stats.nanmean(data[pairs,:,:], axis = 0) | |
336 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 |
|
336 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |
337 |
|
337 | |||
338 | phase = numpy.angle(data1[lag1,:]) |
|
338 | phase = numpy.angle(data1[lag1,:]) | |
339 |
|
339 | |||
340 | return phase |
|
340 | return phase | |
341 | #------------------- Detect Meteors ------------------------------ |
|
341 | #------------------- Detect Meteors ------------------------------ | |
342 |
|
342 | |||
343 | def MeteorDetection(self, hei_ref = None, tauindex = 0, |
|
343 | def MeteorDetection(self, hei_ref = None, tauindex = 0, | |
344 | phaseOffsets = None, |
|
344 | phaseOffsets = None, | |
345 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, |
|
345 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |
346 | noise_timeStep = 4, noise_multiple = 4, |
|
346 | noise_timeStep = 4, noise_multiple = 4, | |
347 | multDet_timeLimit = 1, multDet_rangeLimit = 3, |
|
347 | multDet_timeLimit = 1, multDet_rangeLimit = 3, | |
348 |
phaseThresh = 20, SNRThresh = |
|
348 | phaseThresh = 20, SNRThresh = 5, | |
349 | hmin = 50, hmax=150, azimuth = 0, |
|
349 | hmin = 50, hmax=150, azimuth = 0, | |
350 | channel25X = 0, channel20X = 4, channelCentX = 2, |
|
350 | # channel25X = 0, channel20X = 4, channelCentX = 2, | |
351 |
channel25Y = 1, channel20Y = 3, channelCentY = 2 |
|
351 | # channel25Y = 1, channel20Y = 3, channelCentY = 2, | |
|
352 | channelPositions = None) : | |||
352 |
|
353 | |||
353 | ''' |
|
354 | ''' | |
354 | Function DetectMeteors() |
|
355 | Function DetectMeteors() | |
355 | Project developed with paper: |
|
356 | Project developed with paper: | |
356 | HOLDSWORTH ET AL. 2004 |
|
357 | HOLDSWORTH ET AL. 2004 | |
357 |
|
358 | |||
358 | Input: |
|
359 | Input: | |
359 | self.dataOut.data_pre |
|
360 | self.dataOut.data_pre | |
360 |
|
361 | |||
361 | centerReceiverIndex: From the channels, which is the center receiver |
|
362 | centerReceiverIndex: From the channels, which is the center receiver | |
362 |
|
363 | |||
363 | hei_ref: Height reference for the Beacon signal extraction |
|
364 | hei_ref: Height reference for the Beacon signal extraction | |
364 | tauindex: |
|
365 | tauindex: | |
365 | predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
366 | predefinedPhaseShifts: Predefined phase offset for the voltge signals | |
366 |
|
367 | |||
367 | cohDetection: Whether to user Coherent detection or not |
|
368 | cohDetection: Whether to user Coherent detection or not | |
368 | cohDet_timeStep: Coherent Detection calculation time step |
|
369 | cohDet_timeStep: Coherent Detection calculation time step | |
369 | cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
370 | cohDet_thresh: Coherent Detection phase threshold to correct phases | |
370 |
|
371 | |||
371 | noise_timeStep: Noise calculation time step |
|
372 | noise_timeStep: Noise calculation time step | |
372 | noise_multiple: Noise multiple to define signal threshold |
|
373 | noise_multiple: Noise multiple to define signal threshold | |
373 |
|
374 | |||
374 | multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
375 | multDet_timeLimit: Multiple Detection Removal time limit in seconds | |
375 | multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
376 | multDet_rangeLimit: Multiple Detection Removal range limit in km | |
376 |
|
377 | |||
377 | phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
378 | phaseThresh: Maximum phase difference between receiver to be consider a meteor | |
378 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
379 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |
379 |
|
380 | |||
380 | hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
381 | hmin: Minimum Height of the meteor to use it in the further wind estimations | |
381 | hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
382 | hmax: Maximum Height of the meteor to use it in the further wind estimations | |
382 | azimuth: Azimuth angle correction |
|
383 | azimuth: Azimuth angle correction | |
383 |
|
384 | |||
384 | Affected: |
|
385 | Affected: | |
385 | self.dataOut.data_param |
|
386 | self.dataOut.data_param | |
386 |
|
387 | |||
387 | Rejection Criteria (Errors): |
|
388 | Rejection Criteria (Errors): | |
388 | 0: No error; analysis OK |
|
389 | 0: No error; analysis OK | |
389 | 1: SNR < SNR threshold |
|
390 | 1: SNR < SNR threshold | |
390 | 2: angle of arrival (AOA) ambiguously determined |
|
391 | 2: angle of arrival (AOA) ambiguously determined | |
391 | 3: AOA estimate not feasible |
|
392 | 3: AOA estimate not feasible | |
392 | 4: Large difference in AOAs obtained from different antenna baselines |
|
393 | 4: Large difference in AOAs obtained from different antenna baselines | |
393 | 5: echo at start or end of time series |
|
394 | 5: echo at start or end of time series | |
394 | 6: echo less than 5 examples long; too short for analysis |
|
395 | 6: echo less than 5 examples long; too short for analysis | |
395 | 7: echo rise exceeds 0.3s |
|
396 | 7: echo rise exceeds 0.3s | |
396 | 8: echo decay time less than twice rise time |
|
397 | 8: echo decay time less than twice rise time | |
397 | 9: large power level before echo |
|
398 | 9: large power level before echo | |
398 | 10: large power level after echo |
|
399 | 10: large power level after echo | |
399 | 11: poor fit to amplitude for estimation of decay time |
|
400 | 11: poor fit to amplitude for estimation of decay time | |
400 | 12: poor fit to CCF phase variation for estimation of radial drift velocity |
|
401 | 12: poor fit to CCF phase variation for estimation of radial drift velocity | |
401 | 13: height unresolvable echo: not valid height within 70 to 110 km |
|
402 | 13: height unresolvable echo: not valid height within 70 to 110 km | |
402 | 14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
403 | 14: height ambiguous echo: more then one possible height within 70 to 110 km | |
403 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
404 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |
404 | 16: oscilatory echo, indicating event most likely not an underdense echo |
|
405 | 16: oscilatory echo, indicating event most likely not an underdense echo | |
405 |
|
406 | |||
406 | 17: phase difference in meteor Reestimation |
|
407 | 17: phase difference in meteor Reestimation | |
407 |
|
408 | |||
408 | Data Storage: |
|
409 | Data Storage: | |
409 | Meteors for Wind Estimation (8): |
|
410 | Meteors for Wind Estimation (8): | |
410 | Utc Time | Range Height |
|
411 | Utc Time | Range Height | |
411 | Azimuth Zenith errorCosDir |
|
412 | Azimuth Zenith errorCosDir | |
412 | VelRad errorVelRad |
|
413 | VelRad errorVelRad | |
413 | Phase0 Phase1 Phase2 Phase3 |
|
414 | Phase0 Phase1 Phase2 Phase3 | |
414 | TypeError |
|
415 | TypeError | |
415 |
|
416 | |||
416 |
''' |
|
417 | ''' | |
|
418 | #Getting Pairslist | |||
|
419 | if channelPositions == None: | |||
|
420 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |||
|
421 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |||
|
422 | meteorOps = MeteorOperations() | |||
|
423 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |||
|
424 | ||||
417 | #Get Beacon signal |
|
425 | #Get Beacon signal | |
418 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
426 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
419 |
|
427 | |||
420 | if hei_ref != None: |
|
428 | if hei_ref != None: | |
421 | newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
429 | newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
422 |
|
430 | |||
423 | heiRang = self.dataOut.getHeiRange() |
|
431 | heiRang = self.dataOut.getHeiRange() | |
424 | #Pairs List |
|
432 | ||
425 | ''' |
|
|||
426 | Cambiar este pairslist |
|
|||
427 | ''' |
|
|||
428 | pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] |
|
|||
429 |
|
||||
430 | # nChannel = self.dataOut.nChannels |
|
433 | # nChannel = self.dataOut.nChannels | |
431 | # for i in range(nChannel): |
|
434 | # for i in range(nChannel): | |
432 | # if i != centerReceiverIndex: |
|
435 | # if i != centerReceiverIndex: | |
433 | # pairslist.append((centerReceiverIndex,i)) |
|
436 | # pairslist.append((centerReceiverIndex,i)) | |
434 |
|
437 | |||
435 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** |
|
438 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |
436 | # see if the user put in pre defined phase shifts |
|
439 | # see if the user put in pre defined phase shifts | |
437 | voltsPShift = self.dataOut.data_pre.copy() |
|
440 | voltsPShift = self.dataOut.data_pre.copy() | |
438 |
|
441 | |||
439 | # if predefinedPhaseShifts != None: |
|
442 | # if predefinedPhaseShifts != None: | |
440 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 |
|
443 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |
441 | # |
|
444 | # | |
442 | # # elif beaconPhaseShifts: |
|
445 | # # elif beaconPhaseShifts: | |
443 | # # #get hardware phase shifts using beacon signal |
|
446 | # # #get hardware phase shifts using beacon signal | |
444 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) |
|
447 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |
445 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) |
|
448 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |
446 | # |
|
449 | # | |
447 | # else: |
|
450 | # else: | |
448 | # hardwarePhaseShifts = numpy.zeros(5) |
|
451 | # hardwarePhaseShifts = numpy.zeros(5) | |
449 | # |
|
452 | # | |
450 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') |
|
453 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |
451 | # for i in range(self.dataOut.data_pre.shape[0]): |
|
454 | # for i in range(self.dataOut.data_pre.shape[0]): | |
452 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) |
|
455 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |
453 |
|
456 | |||
454 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* |
|
457 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |
455 |
|
458 | |||
456 | #Remove DC |
|
459 | #Remove DC | |
457 | voltsDC = numpy.mean(voltsPShift,1) |
|
460 | voltsDC = numpy.mean(voltsPShift,1) | |
458 | voltsDC = numpy.mean(voltsDC,1) |
|
461 | voltsDC = numpy.mean(voltsDC,1) | |
459 | for i in range(voltsDC.shape[0]): |
|
462 | for i in range(voltsDC.shape[0]): | |
460 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] |
|
463 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |
461 |
|
464 | |||
462 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift |
|
465 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |
463 | voltsPShift = voltsPShift[:,:,:newheis[0][0]] |
|
466 | voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |
464 |
|
467 | |||
465 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** |
|
468 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |
466 | #Coherent Detection |
|
469 | #Coherent Detection | |
467 | if cohDetection: |
|
470 | if cohDetection: | |
468 | #use coherent detection to get the net power |
|
471 | #use coherent detection to get the net power | |
469 | cohDet_thresh = cohDet_thresh*numpy.pi/180 |
|
472 | cohDet_thresh = cohDet_thresh*numpy.pi/180 | |
470 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, self.dataOut.timeInterval, pairslist, cohDet_thresh) |
|
473 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, self.dataOut.timeInterval, pairslist0, cohDet_thresh) | |
471 |
|
474 | |||
472 | #Non-coherent detection! |
|
475 | #Non-coherent detection! | |
473 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) |
|
476 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |
474 | #********** END OF COH/NON-COH POWER CALCULATION********************** |
|
477 | #********** END OF COH/NON-COH POWER CALCULATION********************** | |
475 |
|
478 | |||
476 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** |
|
479 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |
477 | #Get noise |
|
480 | #Get noise | |
478 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, self.dataOut.timeInterval) |
|
481 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, self.dataOut.timeInterval) | |
479 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) |
|
482 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) | |
480 | #Get signal threshold |
|
483 | #Get signal threshold | |
481 | signalThresh = noise_multiple*noise |
|
484 | signalThresh = noise_multiple*noise | |
482 | #Meteor echoes detection |
|
485 | #Meteor echoes detection | |
483 | listMeteors = self.__findMeteors(powerNet, signalThresh) |
|
486 | listMeteors = self.__findMeteors(powerNet, signalThresh) | |
484 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** |
|
487 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |
485 |
|
488 | |||
486 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** |
|
489 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |
487 | #Parameters |
|
490 | #Parameters | |
488 | heiRange = self.dataOut.getHeiRange() |
|
491 | heiRange = self.dataOut.getHeiRange() | |
489 | rangeInterval = heiRange[1] - heiRange[0] |
|
492 | rangeInterval = heiRange[1] - heiRange[0] | |
490 | rangeLimit = multDet_rangeLimit/rangeInterval |
|
493 | rangeLimit = multDet_rangeLimit/rangeInterval | |
491 | timeLimit = multDet_timeLimit/self.dataOut.timeInterval |
|
494 | timeLimit = multDet_timeLimit/self.dataOut.timeInterval | |
492 | #Multiple detection removals |
|
495 | #Multiple detection removals | |
493 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) |
|
496 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |
494 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** |
|
497 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |
495 |
|
498 | |||
496 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** |
|
499 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |
497 | #Parameters |
|
500 | #Parameters | |
498 | phaseThresh = phaseThresh*numpy.pi/180 |
|
501 | phaseThresh = phaseThresh*numpy.pi/180 | |
499 | thresh = [phaseThresh, noise_multiple, SNRThresh] |
|
502 | thresh = [phaseThresh, noise_multiple, SNRThresh] | |
500 | #Meteor reestimation (Errors N 1, 6, 12, 17) |
|
503 | #Meteor reestimation (Errors N 1, 6, 12, 17) | |
501 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist, thresh, noise, self.dataOut.timeInterval, self.dataOut.frequency) |
|
504 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, self.dataOut.timeInterval, self.dataOut.frequency) | |
502 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) |
|
505 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) | |
503 | #Estimation of decay times (Errors N 7, 8, 11) |
|
506 | #Estimation of decay times (Errors N 7, 8, 11) | |
504 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, self.dataOut.timeInterval, self.dataOut.frequency) |
|
507 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, self.dataOut.timeInterval, self.dataOut.frequency) | |
505 | #******************* END OF METEOR REESTIMATION ******************* |
|
508 | #******************* END OF METEOR REESTIMATION ******************* | |
506 |
|
509 | |||
507 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** |
|
510 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |
508 | #Calculating Radial Velocity (Error N 15) |
|
511 | #Calculating Radial Velocity (Error N 15) | |
509 | radialStdThresh = 10 |
|
512 | radialStdThresh = 10 | |
510 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist, self.dataOut.timeInterval) |
|
513 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, self.dataOut.timeInterval) | |
511 |
|
514 | |||
512 | if len(listMeteors4) > 0: |
|
515 | if len(listMeteors4) > 0: | |
513 | #Setting New Array |
|
516 | #Setting New Array | |
514 | date = self.dataOut.utctime |
|
517 | date = self.dataOut.utctime | |
515 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) |
|
518 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |
516 |
|
519 | |||
517 | #Correcting phase offset |
|
520 | #Correcting phase offset | |
518 | if phaseOffsets != None: |
|
521 | if phaseOffsets != None: | |
519 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
522 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
520 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
523 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
521 |
|
524 | |||
522 | #Second Pairslist |
|
525 | #Second Pairslist | |
523 | pairsList = [] |
|
526 | pairsList = [] | |
524 | pairx = (0,1) |
|
527 | pairx = (0,1) | |
525 | pairy = (2,3) |
|
528 | pairy = (2,3) | |
526 | pairsList.append(pairx) |
|
529 | pairsList.append(pairx) | |
527 | pairsList.append(pairy) |
|
530 | pairsList.append(pairy) | |
528 |
|
531 | |||
529 | meteorOps = MeteorOperations() |
|
|||
530 | jph = numpy.array([0,0,0,0]) |
|
532 | jph = numpy.array([0,0,0,0]) | |
531 | h = (hmin,hmax) |
|
533 | h = (hmin,hmax) | |
532 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, jph) |
|
534 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
533 |
|
535 | |||
534 | # #Calculate AOA (Error N 3, 4) |
|
536 | # #Calculate AOA (Error N 3, 4) | |
535 | # #JONES ET AL. 1998 |
|
537 | # #JONES ET AL. 1998 | |
536 | # error = arrayParameters[:,-1] |
|
538 | # error = arrayParameters[:,-1] | |
537 | # AOAthresh = numpy.pi/8 |
|
539 | # AOAthresh = numpy.pi/8 | |
538 | # phases = -arrayParameters[:,9:13] |
|
540 | # phases = -arrayParameters[:,9:13] | |
539 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
541 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |
540 | # |
|
542 | # | |
541 | # #Calculate Heights (Error N 13 and 14) |
|
543 | # #Calculate Heights (Error N 13 and 14) | |
542 | # error = arrayParameters[:,-1] |
|
544 | # error = arrayParameters[:,-1] | |
543 | # Ranges = arrayParameters[:,2] |
|
545 | # Ranges = arrayParameters[:,2] | |
544 | # zenith = arrayParameters[:,5] |
|
546 | # zenith = arrayParameters[:,5] | |
545 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) |
|
547 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) | |
546 | # error = arrayParameters[:,-1] |
|
548 | # error = arrayParameters[:,-1] | |
547 | #********************* END OF PARAMETERS CALCULATION ************************** |
|
549 | #********************* END OF PARAMETERS CALCULATION ************************** | |
548 |
|
550 | |||
549 | #***************************+ PASS DATA TO NEXT STEP ********************** |
|
551 | #***************************+ PASS DATA TO NEXT STEP ********************** | |
550 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) |
|
552 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) | |
551 | self.dataOut.data_param = arrayParameters |
|
553 | self.dataOut.data_param = arrayParameters | |
552 |
|
554 | |||
553 | if arrayParameters == None: |
|
555 | if arrayParameters == None: | |
554 | self.dataOut.flagNoData = True |
|
556 | self.dataOut.flagNoData = True | |
|
557 | else: | |||
|
558 | self.dataOut.flagNoData = True | |||
555 |
|
559 | |||
556 | return |
|
560 | return | |
557 |
|
561 | |||
558 | def CorrectMeteorPhases(self, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45): |
|
562 | def CorrectMeteorPhases(self, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): | |
559 |
|
563 | |||
560 | arrayParameters = self.dataOut.data_param |
|
564 | arrayParameters = self.dataOut.data_param | |
561 | pairsList = [] |
|
565 | pairsList = [] | |
562 | pairx = (0,1) |
|
566 | pairx = (0,1) | |
563 | pairy = (2,3) |
|
567 | pairy = (2,3) | |
564 | pairsList.append(pairx) |
|
568 | pairsList.append(pairx) | |
565 | pairsList.append(pairy) |
|
569 | pairsList.append(pairy) | |
566 | jph = numpy.zeros(4) |
|
570 | jph = numpy.zeros(4) | |
567 |
|
571 | |||
568 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
572 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
569 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
573 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
|
574 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) | |||
570 |
|
575 | |||
571 | meteorOps = MeteorOperations() |
|
576 | meteorOps = MeteorOperations() | |
|
577 | if channelPositions == None: | |||
|
578 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |||
|
579 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |||
|
580 | ||||
|
581 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |||
572 | h = (hmin,hmax) |
|
582 | h = (hmin,hmax) | |
|
583 | ||||
|
584 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |||
573 |
|
585 | |||
574 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, jph) |
|
|||
575 | self.dataOut.data_param = arrayParameters |
|
586 | self.dataOut.data_param = arrayParameters | |
576 | return |
|
587 | return | |
577 |
|
588 | |||
578 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): |
|
589 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |
579 |
|
590 | |||
580 | minIndex = min(newheis[0]) |
|
591 | minIndex = min(newheis[0]) | |
581 | maxIndex = max(newheis[0]) |
|
592 | maxIndex = max(newheis[0]) | |
582 |
|
593 | |||
583 | voltage = voltage0[:,:,minIndex:maxIndex+1] |
|
594 | voltage = voltage0[:,:,minIndex:maxIndex+1] | |
584 | nLength = voltage.shape[1]/n |
|
595 | nLength = voltage.shape[1]/n | |
585 | nMin = 0 |
|
596 | nMin = 0 | |
586 | nMax = 0 |
|
597 | nMax = 0 | |
587 | phaseOffset = numpy.zeros((len(pairslist),n)) |
|
598 | phaseOffset = numpy.zeros((len(pairslist),n)) | |
588 |
|
599 | |||
589 | for i in range(n): |
|
600 | for i in range(n): | |
590 | nMax += nLength |
|
601 | nMax += nLength | |
591 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) |
|
602 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |
592 | phaseCCF = numpy.mean(phaseCCF, axis = 2) |
|
603 | phaseCCF = numpy.mean(phaseCCF, axis = 2) | |
593 | phaseOffset[:,i] = phaseCCF.transpose() |
|
604 | phaseOffset[:,i] = phaseCCF.transpose() | |
594 | nMin = nMax |
|
605 | nMin = nMax | |
595 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) |
|
606 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |
596 |
|
607 | |||
597 | #Remove Outliers |
|
608 | #Remove Outliers | |
598 | factor = 2 |
|
609 | factor = 2 | |
599 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) |
|
610 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |
600 | dw = numpy.std(wt,axis = 1) |
|
611 | dw = numpy.std(wt,axis = 1) | |
601 | dw = dw.reshape((dw.size,1)) |
|
612 | dw = dw.reshape((dw.size,1)) | |
602 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) |
|
613 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |
603 | phaseOffset[ind] = numpy.nan |
|
614 | phaseOffset[ind] = numpy.nan | |
604 | phaseOffset = stats.nanmean(phaseOffset, axis=1) |
|
615 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |
605 |
|
616 | |||
606 | return phaseOffset |
|
617 | return phaseOffset | |
607 |
|
618 | |||
608 | def __shiftPhase(self, data, phaseShift): |
|
619 | def __shiftPhase(self, data, phaseShift): | |
609 | #this will shift the phase of a complex number |
|
620 | #this will shift the phase of a complex number | |
610 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) |
|
621 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |
611 | return dataShifted |
|
622 | return dataShifted | |
612 |
|
623 | |||
613 | def __estimatePhaseDifference(self, array, pairslist): |
|
624 | def __estimatePhaseDifference(self, array, pairslist): | |
614 | nChannel = array.shape[0] |
|
625 | nChannel = array.shape[0] | |
615 | nHeights = array.shape[2] |
|
626 | nHeights = array.shape[2] | |
616 | numPairs = len(pairslist) |
|
627 | numPairs = len(pairslist) | |
617 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) |
|
628 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |
618 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) |
|
629 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |
619 |
|
630 | |||
620 | #Correct phases |
|
631 | #Correct phases | |
621 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] |
|
632 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |
622 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
633 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
623 |
|
634 | |||
624 | if indDer[0].shape[0] > 0: |
|
635 | if indDer[0].shape[0] > 0: | |
625 | for i in range(indDer[0].shape[0]): |
|
636 | for i in range(indDer[0].shape[0]): | |
626 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) |
|
637 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |
627 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi |
|
638 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |
628 |
|
639 | |||
629 | # for j in range(numSides): |
|
640 | # for j in range(numSides): | |
630 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) |
|
641 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |
631 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) |
|
642 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |
632 | # |
|
643 | # | |
633 | #Linear |
|
644 | #Linear | |
634 | phaseInt = numpy.zeros((numPairs,1)) |
|
645 | phaseInt = numpy.zeros((numPairs,1)) | |
635 | angAllCCF = phaseCCF[:,[0,1,3,4],0] |
|
646 | angAllCCF = phaseCCF[:,[0,1,3,4],0] | |
636 | for j in range(numPairs): |
|
647 | for j in range(numPairs): | |
637 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) |
|
648 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) | |
638 | phaseInt[j] = fit[1] |
|
649 | phaseInt[j] = fit[1] | |
639 | #Phase Differences |
|
650 | #Phase Differences | |
640 | phaseDiff = phaseInt - phaseCCF[:,2,:] |
|
651 | phaseDiff = phaseInt - phaseCCF[:,2,:] | |
641 | phaseArrival = phaseInt.reshape(phaseInt.size) |
|
652 | phaseArrival = phaseInt.reshape(phaseInt.size) | |
642 |
|
653 | |||
643 | #Dealias |
|
654 | #Dealias | |
644 | indAlias = numpy.where(phaseArrival > numpy.pi) |
|
655 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) | |
645 | phaseArrival[indAlias] -= 2*numpy.pi |
|
656 | # indAlias = numpy.where(phaseArrival > numpy.pi) | |
646 |
|
|
657 | # phaseArrival[indAlias] -= 2*numpy.pi | |
647 | phaseArrival[indAlias] += 2*numpy.pi |
|
658 | # indAlias = numpy.where(phaseArrival < -numpy.pi) | |
|
659 | # phaseArrival[indAlias] += 2*numpy.pi | |||
648 |
|
660 | |||
649 | return phaseDiff, phaseArrival |
|
661 | return phaseDiff, phaseArrival | |
650 |
|
662 | |||
651 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): |
|
663 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |
652 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power |
|
664 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |
653 | #find the phase shifts of each channel over 1 second intervals |
|
665 | #find the phase shifts of each channel over 1 second intervals | |
654 | #only look at ranges below the beacon signal |
|
666 | #only look at ranges below the beacon signal | |
655 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
667 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
656 | numBlocks = int(volts.shape[1]/numProfPerBlock) |
|
668 | numBlocks = int(volts.shape[1]/numProfPerBlock) | |
657 | numHeights = volts.shape[2] |
|
669 | numHeights = volts.shape[2] | |
658 | nChannel = volts.shape[0] |
|
670 | nChannel = volts.shape[0] | |
659 | voltsCohDet = volts.copy() |
|
671 | voltsCohDet = volts.copy() | |
660 |
|
672 | |||
661 | pairsarray = numpy.array(pairslist) |
|
673 | pairsarray = numpy.array(pairslist) | |
662 | indSides = pairsarray[:,1] |
|
674 | indSides = pairsarray[:,1] | |
663 | # indSides = numpy.array(range(nChannel)) |
|
675 | # indSides = numpy.array(range(nChannel)) | |
664 | # indSides = numpy.delete(indSides, indCenter) |
|
676 | # indSides = numpy.delete(indSides, indCenter) | |
665 | # |
|
677 | # | |
666 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) |
|
678 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |
667 | listBlocks = numpy.array_split(volts, numBlocks, 1) |
|
679 | listBlocks = numpy.array_split(volts, numBlocks, 1) | |
668 |
|
680 | |||
669 | startInd = 0 |
|
681 | startInd = 0 | |
670 | endInd = 0 |
|
682 | endInd = 0 | |
671 |
|
683 | |||
672 | for i in range(numBlocks): |
|
684 | for i in range(numBlocks): | |
673 | startInd = endInd |
|
685 | startInd = endInd | |
674 | endInd = endInd + listBlocks[i].shape[1] |
|
686 | endInd = endInd + listBlocks[i].shape[1] | |
675 |
|
687 | |||
676 | arrayBlock = listBlocks[i] |
|
688 | arrayBlock = listBlocks[i] | |
677 | # arrayBlockCenter = listCenter[i] |
|
689 | # arrayBlockCenter = listCenter[i] | |
678 |
|
690 | |||
679 | #Estimate the Phase Difference |
|
691 | #Estimate the Phase Difference | |
680 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) |
|
692 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |
681 | #Phase Difference RMS |
|
693 | #Phase Difference RMS | |
682 | arrayPhaseRMS = numpy.abs(phaseDiff) |
|
694 | arrayPhaseRMS = numpy.abs(phaseDiff) | |
683 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) |
|
695 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) | |
684 | indPhase = numpy.where(phaseRMSaux==4) |
|
696 | indPhase = numpy.where(phaseRMSaux==4) | |
685 | #Shifting |
|
697 | #Shifting | |
686 | if indPhase[0].shape[0] > 0: |
|
698 | if indPhase[0].shape[0] > 0: | |
687 | for j in range(indSides.size): |
|
699 | for j in range(indSides.size): | |
688 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) |
|
700 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |
689 | voltsCohDet[:,startInd:endInd,:] = arrayBlock |
|
701 | voltsCohDet[:,startInd:endInd,:] = arrayBlock | |
690 |
|
702 | |||
691 | return voltsCohDet |
|
703 | return voltsCohDet | |
692 |
|
704 | |||
693 | def __calculateCCF(self, volts, pairslist ,laglist): |
|
705 | def __calculateCCF(self, volts, pairslist ,laglist): | |
694 |
|
706 | |||
695 | nHeights = volts.shape[2] |
|
707 | nHeights = volts.shape[2] | |
696 | nPoints = volts.shape[1] |
|
708 | nPoints = volts.shape[1] | |
697 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') |
|
709 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |
698 |
|
710 | |||
699 | for i in range(len(pairslist)): |
|
711 | for i in range(len(pairslist)): | |
700 | volts1 = volts[pairslist[i][0]] |
|
712 | volts1 = volts[pairslist[i][0]] | |
701 | volts2 = volts[pairslist[i][1]] |
|
713 | volts2 = volts[pairslist[i][1]] | |
702 |
|
714 | |||
703 | for t in range(len(laglist)): |
|
715 | for t in range(len(laglist)): | |
704 | idxT = laglist[t] |
|
716 | idxT = laglist[t] | |
705 | if idxT >= 0: |
|
717 | if idxT >= 0: | |
706 | vStacked = numpy.vstack((volts2[idxT:,:], |
|
718 | vStacked = numpy.vstack((volts2[idxT:,:], | |
707 | numpy.zeros((idxT, nHeights),dtype='complex'))) |
|
719 | numpy.zeros((idxT, nHeights),dtype='complex'))) | |
708 | else: |
|
720 | else: | |
709 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), |
|
721 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |
710 | volts2[:(nPoints + idxT),:])) |
|
722 | volts2[:(nPoints + idxT),:])) | |
711 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) |
|
723 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |
712 |
|
724 | |||
713 | vStacked = None |
|
725 | vStacked = None | |
714 | return voltsCCF |
|
726 | return voltsCCF | |
715 |
|
727 | |||
716 | def __getNoise(self, power, timeSegment, timeInterval): |
|
728 | def __getNoise(self, power, timeSegment, timeInterval): | |
717 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
729 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
718 | numBlocks = int(power.shape[0]/numProfPerBlock) |
|
730 | numBlocks = int(power.shape[0]/numProfPerBlock) | |
719 | numHeights = power.shape[1] |
|
731 | numHeights = power.shape[1] | |
720 |
|
732 | |||
721 | listPower = numpy.array_split(power, numBlocks, 0) |
|
733 | listPower = numpy.array_split(power, numBlocks, 0) | |
722 | noise = numpy.zeros((power.shape[0], power.shape[1])) |
|
734 | noise = numpy.zeros((power.shape[0], power.shape[1])) | |
723 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) |
|
735 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |
724 |
|
736 | |||
725 | startInd = 0 |
|
737 | startInd = 0 | |
726 | endInd = 0 |
|
738 | endInd = 0 | |
727 |
|
739 | |||
728 | for i in range(numBlocks): #split por canal |
|
740 | for i in range(numBlocks): #split por canal | |
729 | startInd = endInd |
|
741 | startInd = endInd | |
730 | endInd = endInd + listPower[i].shape[0] |
|
742 | endInd = endInd + listPower[i].shape[0] | |
731 |
|
743 | |||
732 | arrayBlock = listPower[i] |
|
744 | arrayBlock = listPower[i] | |
733 | noiseAux = numpy.mean(arrayBlock, 0) |
|
745 | noiseAux = numpy.mean(arrayBlock, 0) | |
734 | # noiseAux = numpy.median(noiseAux) |
|
746 | # noiseAux = numpy.median(noiseAux) | |
735 | # noiseAux = numpy.mean(arrayBlock) |
|
747 | # noiseAux = numpy.mean(arrayBlock) | |
736 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux |
|
748 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |
737 |
|
749 | |||
738 | noiseAux1 = numpy.mean(arrayBlock) |
|
750 | noiseAux1 = numpy.mean(arrayBlock) | |
739 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 |
|
751 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |
740 |
|
752 | |||
741 | return noise, noise1 |
|
753 | return noise, noise1 | |
742 |
|
754 | |||
743 | def __findMeteors(self, power, thresh): |
|
755 | def __findMeteors(self, power, thresh): | |
744 | nProf = power.shape[0] |
|
756 | nProf = power.shape[0] | |
745 | nHeights = power.shape[1] |
|
757 | nHeights = power.shape[1] | |
746 | listMeteors = [] |
|
758 | listMeteors = [] | |
747 |
|
759 | |||
748 | for i in range(nHeights): |
|
760 | for i in range(nHeights): | |
749 | powerAux = power[:,i] |
|
761 | powerAux = power[:,i] | |
750 | threshAux = thresh[:,i] |
|
762 | threshAux = thresh[:,i] | |
751 |
|
763 | |||
752 | indUPthresh = numpy.where(powerAux > threshAux)[0] |
|
764 | indUPthresh = numpy.where(powerAux > threshAux)[0] | |
753 | indDNthresh = numpy.where(powerAux <= threshAux)[0] |
|
765 | indDNthresh = numpy.where(powerAux <= threshAux)[0] | |
754 |
|
766 | |||
755 | j = 0 |
|
767 | j = 0 | |
756 |
|
768 | |||
757 | while (j < indUPthresh.size - 2): |
|
769 | while (j < indUPthresh.size - 2): | |
758 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): |
|
770 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |
759 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) |
|
771 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |
760 | indDNthresh = indDNthresh[indDNAux] |
|
772 | indDNthresh = indDNthresh[indDNAux] | |
761 |
|
773 | |||
762 | if (indDNthresh.size > 0): |
|
774 | if (indDNthresh.size > 0): | |
763 | indEnd = indDNthresh[0] - 1 |
|
775 | indEnd = indDNthresh[0] - 1 | |
764 | indInit = indUPthresh[j] |
|
776 | indInit = indUPthresh[j] | |
765 |
|
777 | |||
766 | meteor = powerAux[indInit:indEnd + 1] |
|
778 | meteor = powerAux[indInit:indEnd + 1] | |
767 | indPeak = meteor.argmax() + indInit |
|
779 | indPeak = meteor.argmax() + indInit | |
768 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) |
|
780 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |
769 |
|
781 | |||
770 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! |
|
782 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |
771 | j = numpy.where(indUPthresh == indEnd)[0] + 1 |
|
783 | j = numpy.where(indUPthresh == indEnd)[0] + 1 | |
772 | else: j+=1 |
|
784 | else: j+=1 | |
773 | else: j+=1 |
|
785 | else: j+=1 | |
774 |
|
786 | |||
775 | return listMeteors |
|
787 | return listMeteors | |
776 |
|
788 | |||
777 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): |
|
789 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |
778 |
|
790 | |||
779 | arrayMeteors = numpy.asarray(listMeteors) |
|
791 | arrayMeteors = numpy.asarray(listMeteors) | |
780 | listMeteors1 = [] |
|
792 | listMeteors1 = [] | |
781 |
|
793 | |||
782 | while arrayMeteors.shape[0] > 0: |
|
794 | while arrayMeteors.shape[0] > 0: | |
783 | FLAs = arrayMeteors[:,4] |
|
795 | FLAs = arrayMeteors[:,4] | |
784 | maxFLA = FLAs.argmax() |
|
796 | maxFLA = FLAs.argmax() | |
785 | listMeteors1.append(arrayMeteors[maxFLA,:]) |
|
797 | listMeteors1.append(arrayMeteors[maxFLA,:]) | |
786 |
|
798 | |||
787 | MeteorInitTime = arrayMeteors[maxFLA,1] |
|
799 | MeteorInitTime = arrayMeteors[maxFLA,1] | |
788 | MeteorEndTime = arrayMeteors[maxFLA,3] |
|
800 | MeteorEndTime = arrayMeteors[maxFLA,3] | |
789 | MeteorHeight = arrayMeteors[maxFLA,0] |
|
801 | MeteorHeight = arrayMeteors[maxFLA,0] | |
790 |
|
802 | |||
791 | #Check neighborhood |
|
803 | #Check neighborhood | |
792 | maxHeightIndex = MeteorHeight + rangeLimit |
|
804 | maxHeightIndex = MeteorHeight + rangeLimit | |
793 | minHeightIndex = MeteorHeight - rangeLimit |
|
805 | minHeightIndex = MeteorHeight - rangeLimit | |
794 | minTimeIndex = MeteorInitTime - timeLimit |
|
806 | minTimeIndex = MeteorInitTime - timeLimit | |
795 | maxTimeIndex = MeteorEndTime + timeLimit |
|
807 | maxTimeIndex = MeteorEndTime + timeLimit | |
796 |
|
808 | |||
797 | #Check Heights |
|
809 | #Check Heights | |
798 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) |
|
810 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |
799 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) |
|
811 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |
800 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) |
|
812 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |
801 |
|
813 | |||
802 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) |
|
814 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |
803 |
|
815 | |||
804 | return listMeteors1 |
|
816 | return listMeteors1 | |
805 |
|
817 | |||
806 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): |
|
818 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |
807 | numHeights = volts.shape[2] |
|
819 | numHeights = volts.shape[2] | |
808 | nChannel = volts.shape[0] |
|
820 | nChannel = volts.shape[0] | |
809 |
|
821 | |||
810 | thresholdPhase = thresh[0] |
|
822 | thresholdPhase = thresh[0] | |
811 | thresholdNoise = thresh[1] |
|
823 | thresholdNoise = thresh[1] | |
812 | thresholdDB = float(thresh[2]) |
|
824 | thresholdDB = float(thresh[2]) | |
813 |
|
825 | |||
814 | thresholdDB1 = 10**(thresholdDB/10) |
|
826 | thresholdDB1 = 10**(thresholdDB/10) | |
815 | pairsarray = numpy.array(pairslist) |
|
827 | pairsarray = numpy.array(pairslist) | |
816 | indSides = pairsarray[:,1] |
|
828 | indSides = pairsarray[:,1] | |
817 |
|
829 | |||
818 | pairslist1 = list(pairslist) |
|
830 | pairslist1 = list(pairslist) | |
819 | pairslist1.append((0,1)) |
|
831 | pairslist1.append((0,1)) | |
820 | pairslist1.append((3,4)) |
|
832 | pairslist1.append((3,4)) | |
821 |
|
833 | |||
822 | listMeteors1 = [] |
|
834 | listMeteors1 = [] | |
823 | listPowerSeries = [] |
|
835 | listPowerSeries = [] | |
824 | listVoltageSeries = [] |
|
836 | listVoltageSeries = [] | |
825 | #volts has the war data |
|
837 | #volts has the war data | |
826 |
|
838 | |||
827 | if frequency == 30e6: |
|
839 | if frequency == 30e6: | |
828 | timeLag = 45*10**-3 |
|
840 | timeLag = 45*10**-3 | |
829 | else: |
|
841 | else: | |
830 | timeLag = 15*10**-3 |
|
842 | timeLag = 15*10**-3 | |
831 | lag = numpy.ceil(timeLag/timeInterval) |
|
843 | lag = numpy.ceil(timeLag/timeInterval) | |
832 |
|
844 | |||
833 | for i in range(len(listMeteors)): |
|
845 | for i in range(len(listMeteors)): | |
834 |
|
846 | |||
835 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### |
|
847 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |
836 | meteorAux = numpy.zeros(16) |
|
848 | meteorAux = numpy.zeros(16) | |
837 |
|
849 | |||
838 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) |
|
850 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |
839 | mHeight = listMeteors[i][0] |
|
851 | mHeight = listMeteors[i][0] | |
840 | mStart = listMeteors[i][1] |
|
852 | mStart = listMeteors[i][1] | |
841 | mPeak = listMeteors[i][2] |
|
853 | mPeak = listMeteors[i][2] | |
842 | mEnd = listMeteors[i][3] |
|
854 | mEnd = listMeteors[i][3] | |
843 |
|
855 | |||
844 | #get the volt data between the start and end times of the meteor |
|
856 | #get the volt data between the start and end times of the meteor | |
845 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] |
|
857 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |
846 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
858 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
847 |
|
859 | |||
848 | #3.6. Phase Difference estimation |
|
860 | #3.6. Phase Difference estimation | |
849 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) |
|
861 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |
850 |
|
862 | |||
851 | #3.7. Phase difference removal & meteor start, peak and end times reestimated |
|
863 | #3.7. Phase difference removal & meteor start, peak and end times reestimated | |
852 | #meteorVolts0.- all Channels, all Profiles |
|
864 | #meteorVolts0.- all Channels, all Profiles | |
853 | meteorVolts0 = volts[:,:,mHeight] |
|
865 | meteorVolts0 = volts[:,:,mHeight] | |
854 | meteorThresh = noise[:,mHeight]*thresholdNoise |
|
866 | meteorThresh = noise[:,mHeight]*thresholdNoise | |
855 | meteorNoise = noise[:,mHeight] |
|
867 | meteorNoise = noise[:,mHeight] | |
856 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting |
|
868 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |
857 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power |
|
869 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |
858 |
|
870 | |||
859 | #Times reestimation |
|
871 | #Times reestimation | |
860 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] |
|
872 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |
861 | if mStart1.size > 0: |
|
873 | if mStart1.size > 0: | |
862 | mStart1 = mStart1[-1] + 1 |
|
874 | mStart1 = mStart1[-1] + 1 | |
863 |
|
875 | |||
864 | else: |
|
876 | else: | |
865 | mStart1 = mPeak |
|
877 | mStart1 = mPeak | |
866 |
|
878 | |||
867 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 |
|
879 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |
868 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] |
|
880 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |
869 | if mEndDecayTime1.size == 0: |
|
881 | if mEndDecayTime1.size == 0: | |
870 | mEndDecayTime1 = powerNet0.size |
|
882 | mEndDecayTime1 = powerNet0.size | |
871 | else: |
|
883 | else: | |
872 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 |
|
884 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |
873 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() |
|
885 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |
874 |
|
886 | |||
875 | #meteorVolts1.- all Channels, from start to end |
|
887 | #meteorVolts1.- all Channels, from start to end | |
876 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] |
|
888 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |
877 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] |
|
889 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |
878 | if meteorVolts2.shape[1] == 0: |
|
890 | if meteorVolts2.shape[1] == 0: | |
879 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] |
|
891 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] | |
880 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) |
|
892 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |
881 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) |
|
893 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |
882 | ##################### END PARAMETERS REESTIMATION ######################### |
|
894 | ##################### END PARAMETERS REESTIMATION ######################### | |
883 |
|
895 | |||
884 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## |
|
896 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |
885 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis |
|
897 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |
886 | if meteorVolts2.shape[1] > 0: |
|
898 | if meteorVolts2.shape[1] > 0: | |
887 | #Phase Difference re-estimation |
|
899 | #Phase Difference re-estimation | |
888 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation |
|
900 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |
889 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) |
|
901 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |
890 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) |
|
902 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |
891 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) |
|
903 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |
892 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting |
|
904 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |
893 |
|
905 | |||
894 | #Phase Difference RMS |
|
906 | #Phase Difference RMS | |
895 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) |
|
907 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |
896 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) |
|
908 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |
897 | #Data from Meteor |
|
909 | #Data from Meteor | |
898 | mPeak1 = powerNet1.argmax() + mStart1 |
|
910 | mPeak1 = powerNet1.argmax() + mStart1 | |
899 | mPeakPower1 = powerNet1.max() |
|
911 | mPeakPower1 = powerNet1.max() | |
900 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) |
|
912 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) | |
901 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux |
|
913 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux | |
902 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) |
|
914 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) | |
903 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) |
|
915 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) | |
904 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] |
|
916 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] | |
905 | #Vectorize |
|
917 | #Vectorize | |
906 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] |
|
918 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |
907 | meteorAux[7:11] = phaseDiffint[0:4] |
|
919 | meteorAux[7:11] = phaseDiffint[0:4] | |
908 |
|
920 | |||
909 | #Rejection Criterions |
|
921 | #Rejection Criterions | |
910 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation |
|
922 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |
911 | meteorAux[-1] = 17 |
|
923 | meteorAux[-1] = 17 | |
912 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB |
|
924 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |
913 | meteorAux[-1] = 1 |
|
925 | meteorAux[-1] = 1 | |
914 |
|
926 | |||
915 |
|
927 | |||
916 | else: |
|
928 | else: | |
917 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] |
|
929 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |
918 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis |
|
930 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |
919 | PowerSeries = 0 |
|
931 | PowerSeries = 0 | |
920 |
|
932 | |||
921 | listMeteors1.append(meteorAux) |
|
933 | listMeteors1.append(meteorAux) | |
922 | listPowerSeries.append(PowerSeries) |
|
934 | listPowerSeries.append(PowerSeries) | |
923 | listVoltageSeries.append(meteorVolts1) |
|
935 | listVoltageSeries.append(meteorVolts1) | |
924 |
|
936 | |||
925 | return listMeteors1, listPowerSeries, listVoltageSeries |
|
937 | return listMeteors1, listPowerSeries, listVoltageSeries | |
926 |
|
938 | |||
927 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): |
|
939 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |
928 |
|
940 | |||
929 | threshError = 10 |
|
941 | threshError = 10 | |
930 | #Depending if it is 30 or 50 MHz |
|
942 | #Depending if it is 30 or 50 MHz | |
931 | if frequency == 30e6: |
|
943 | if frequency == 30e6: | |
932 | timeLag = 45*10**-3 |
|
944 | timeLag = 45*10**-3 | |
933 | else: |
|
945 | else: | |
934 | timeLag = 15*10**-3 |
|
946 | timeLag = 15*10**-3 | |
935 | lag = numpy.ceil(timeLag/timeInterval) |
|
947 | lag = numpy.ceil(timeLag/timeInterval) | |
936 |
|
948 | |||
937 | listMeteors1 = [] |
|
949 | listMeteors1 = [] | |
938 |
|
950 | |||
939 | for i in range(len(listMeteors)): |
|
951 | for i in range(len(listMeteors)): | |
940 | meteorPower = listPower[i] |
|
952 | meteorPower = listPower[i] | |
941 | meteorAux = listMeteors[i] |
|
953 | meteorAux = listMeteors[i] | |
942 |
|
954 | |||
943 | if meteorAux[-1] == 0: |
|
955 | if meteorAux[-1] == 0: | |
944 |
|
956 | |||
945 | try: |
|
957 | try: | |
946 | indmax = meteorPower.argmax() |
|
958 | indmax = meteorPower.argmax() | |
947 | indlag = indmax + lag |
|
959 | indlag = indmax + lag | |
948 |
|
960 | |||
949 | y = meteorPower[indlag:] |
|
961 | y = meteorPower[indlag:] | |
950 | x = numpy.arange(0, y.size)*timeLag |
|
962 | x = numpy.arange(0, y.size)*timeLag | |
951 |
|
963 | |||
952 | #first guess |
|
964 | #first guess | |
953 | a = y[0] |
|
965 | a = y[0] | |
954 | tau = timeLag |
|
966 | tau = timeLag | |
955 | #exponential fit |
|
967 | #exponential fit | |
956 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) |
|
968 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) | |
957 | y1 = self.__exponential_function(x, *popt) |
|
969 | y1 = self.__exponential_function(x, *popt) | |
958 | #error estimation |
|
970 | #error estimation | |
959 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) |
|
971 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |
960 |
|
972 | |||
961 | decayTime = popt[1] |
|
973 | decayTime = popt[1] | |
962 | riseTime = indmax*timeInterval |
|
974 | riseTime = indmax*timeInterval | |
963 | meteorAux[11:13] = [decayTime, error] |
|
975 | meteorAux[11:13] = [decayTime, error] | |
964 |
|
976 | |||
965 | #Table items 7, 8 and 11 |
|
977 | #Table items 7, 8 and 11 | |
966 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s |
|
978 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |
967 | meteorAux[-1] = 7 |
|
979 | meteorAux[-1] = 7 | |
968 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time |
|
980 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |
969 | meteorAux[-1] = 8 |
|
981 | meteorAux[-1] = 8 | |
970 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time |
|
982 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |
971 | meteorAux[-1] = 11 |
|
983 | meteorAux[-1] = 11 | |
972 |
|
984 | |||
973 |
|
985 | |||
974 | except: |
|
986 | except: | |
975 | meteorAux[-1] = 11 |
|
987 | meteorAux[-1] = 11 | |
976 |
|
988 | |||
977 |
|
989 | |||
978 | listMeteors1.append(meteorAux) |
|
990 | listMeteors1.append(meteorAux) | |
979 |
|
991 | |||
980 | return listMeteors1 |
|
992 | return listMeteors1 | |
981 |
|
993 | |||
982 | #Exponential Function |
|
994 | #Exponential Function | |
983 |
|
995 | |||
984 | def __exponential_function(self, x, a, tau): |
|
996 | def __exponential_function(self, x, a, tau): | |
985 | y = a*numpy.exp(-x/tau) |
|
997 | y = a*numpy.exp(-x/tau) | |
986 | return y |
|
998 | return y | |
987 |
|
999 | |||
988 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): |
|
1000 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |
989 |
|
1001 | |||
990 | pairslist1 = list(pairslist) |
|
1002 | pairslist1 = list(pairslist) | |
991 | pairslist1.append((0,1)) |
|
1003 | pairslist1.append((0,1)) | |
992 | pairslist1.append((3,4)) |
|
1004 | pairslist1.append((3,4)) | |
993 | numPairs = len(pairslist1) |
|
1005 | numPairs = len(pairslist1) | |
994 | #Time Lag |
|
1006 | #Time Lag | |
995 | timeLag = 45*10**-3 |
|
1007 | timeLag = 45*10**-3 | |
996 | c = 3e8 |
|
1008 | c = 3e8 | |
997 | lag = numpy.ceil(timeLag/timeInterval) |
|
1009 | lag = numpy.ceil(timeLag/timeInterval) | |
998 | freq = 30e6 |
|
1010 | freq = 30e6 | |
999 |
|
1011 | |||
1000 | listMeteors1 = [] |
|
1012 | listMeteors1 = [] | |
1001 |
|
1013 | |||
1002 | for i in range(len(listMeteors)): |
|
1014 | for i in range(len(listMeteors)): | |
1003 | meteorAux = listMeteors[i] |
|
1015 | meteorAux = listMeteors[i] | |
1004 | if meteorAux[-1] == 0: |
|
1016 | if meteorAux[-1] == 0: | |
1005 | mStart = listMeteors[i][1] |
|
1017 | mStart = listMeteors[i][1] | |
1006 | mPeak = listMeteors[i][2] |
|
1018 | mPeak = listMeteors[i][2] | |
1007 | mLag = mPeak - mStart + lag |
|
1019 | mLag = mPeak - mStart + lag | |
1008 |
|
1020 | |||
1009 | #get the volt data between the start and end times of the meteor |
|
1021 | #get the volt data between the start and end times of the meteor | |
1010 | meteorVolts = listVolts[i] |
|
1022 | meteorVolts = listVolts[i] | |
1011 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
1023 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
1012 |
|
1024 | |||
1013 | #Get CCF |
|
1025 | #Get CCF | |
1014 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) |
|
1026 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |
1015 |
|
1027 | |||
1016 | #Method 2 |
|
1028 | #Method 2 | |
1017 | slopes = numpy.zeros(numPairs) |
|
1029 | slopes = numpy.zeros(numPairs) | |
1018 | time = numpy.array([-2,-1,1,2])*timeInterval |
|
1030 | time = numpy.array([-2,-1,1,2])*timeInterval | |
1019 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) |
|
1031 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) | |
1020 |
|
1032 | |||
1021 | #Correct phases |
|
1033 | #Correct phases | |
1022 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] |
|
1034 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |
1023 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
1035 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
1024 |
|
1036 | |||
1025 | if indDer[0].shape[0] > 0: |
|
1037 | if indDer[0].shape[0] > 0: | |
1026 | for i in range(indDer[0].shape[0]): |
|
1038 | for i in range(indDer[0].shape[0]): | |
1027 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) |
|
1039 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |
1028 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi |
|
1040 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |
1029 |
|
1041 | |||
1030 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) |
|
1042 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) | |
1031 | for j in range(numPairs): |
|
1043 | for j in range(numPairs): | |
1032 | fit = stats.linregress(time, angAllCCF[j,:]) |
|
1044 | fit = stats.linregress(time, angAllCCF[j,:]) | |
1033 | slopes[j] = fit[0] |
|
1045 | slopes[j] = fit[0] | |
1034 |
|
1046 | |||
1035 | #Remove Outlier |
|
1047 | #Remove Outlier | |
1036 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
1048 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
1037 | # slopes = numpy.delete(slopes,indOut) |
|
1049 | # slopes = numpy.delete(slopes,indOut) | |
1038 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
1050 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
1039 | # slopes = numpy.delete(slopes,indOut) |
|
1051 | # slopes = numpy.delete(slopes,indOut) | |
1040 |
|
1052 | |||
1041 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) |
|
1053 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |
1042 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) |
|
1054 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |
1043 | meteorAux[-2] = radialError |
|
1055 | meteorAux[-2] = radialError | |
1044 | meteorAux[-3] = radialVelocity |
|
1056 | meteorAux[-3] = radialVelocity | |
1045 |
|
1057 | |||
1046 | #Setting Error |
|
1058 | #Setting Error | |
1047 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s |
|
1059 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |
1048 | if numpy.abs(radialVelocity) > 200: |
|
1060 | if numpy.abs(radialVelocity) > 200: | |
1049 | meteorAux[-1] = 15 |
|
1061 | meteorAux[-1] = 15 | |
1050 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity |
|
1062 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |
1051 | elif radialError > radialStdThresh: |
|
1063 | elif radialError > radialStdThresh: | |
1052 | meteorAux[-1] = 12 |
|
1064 | meteorAux[-1] = 12 | |
1053 |
|
1065 | |||
1054 | listMeteors1.append(meteorAux) |
|
1066 | listMeteors1.append(meteorAux) | |
1055 | return listMeteors1 |
|
1067 | return listMeteors1 | |
1056 |
|
1068 | |||
1057 | def __setNewArrays(self, listMeteors, date, heiRang): |
|
1069 | def __setNewArrays(self, listMeteors, date, heiRang): | |
1058 |
|
1070 | |||
1059 | #New arrays |
|
1071 | #New arrays | |
1060 | arrayMeteors = numpy.array(listMeteors) |
|
1072 | arrayMeteors = numpy.array(listMeteors) | |
1061 | arrayParameters = numpy.zeros((len(listMeteors), 13)) |
|
1073 | arrayParameters = numpy.zeros((len(listMeteors), 13)) | |
1062 |
|
1074 | |||
1063 | #Date inclusion |
|
1075 | #Date inclusion | |
1064 | # date = re.findall(r'\((.*?)\)', date) |
|
1076 | # date = re.findall(r'\((.*?)\)', date) | |
1065 | # date = date[0].split(',') |
|
1077 | # date = date[0].split(',') | |
1066 | # date = map(int, date) |
|
1078 | # date = map(int, date) | |
1067 | # |
|
1079 | # | |
1068 | # if len(date)<6: |
|
1080 | # if len(date)<6: | |
1069 | # date.append(0) |
|
1081 | # date.append(0) | |
1070 | # |
|
1082 | # | |
1071 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] |
|
1083 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |
1072 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) |
|
1084 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |
1073 | arrayDate = numpy.tile(date, (len(listMeteors))) |
|
1085 | arrayDate = numpy.tile(date, (len(listMeteors))) | |
1074 |
|
1086 | |||
1075 | #Meteor array |
|
1087 | #Meteor array | |
1076 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] |
|
1088 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |
1077 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) |
|
1089 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |
1078 |
|
1090 | |||
1079 | #Parameters Array |
|
1091 | #Parameters Array | |
1080 | arrayParameters[:,0] = arrayDate #Date |
|
1092 | arrayParameters[:,0] = arrayDate #Date | |
1081 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range |
|
1093 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range | |
1082 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error |
|
1094 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error | |
1083 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases |
|
1095 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases | |
1084 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error |
|
1096 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error | |
1085 |
|
1097 | |||
1086 |
|
1098 | |||
1087 | return arrayParameters |
|
1099 | return arrayParameters | |
1088 |
|
1100 | |||
1089 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
1101 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |
1090 | # |
|
1102 | # | |
1091 | # arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
1103 | # arrayAOA = numpy.zeros((phases.shape[0],3)) | |
1092 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
1104 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |
1093 | # |
|
1105 | # | |
1094 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
1106 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
1095 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
1107 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
1096 | # arrayAOA[:,2] = cosDirError |
|
1108 | # arrayAOA[:,2] = cosDirError | |
1097 | # |
|
1109 | # | |
1098 | # azimuthAngle = arrayAOA[:,0] |
|
1110 | # azimuthAngle = arrayAOA[:,0] | |
1099 | # zenithAngle = arrayAOA[:,1] |
|
1111 | # zenithAngle = arrayAOA[:,1] | |
1100 | # |
|
1112 | # | |
1101 | # #Setting Error |
|
1113 | # #Setting Error | |
1102 | # #Number 3: AOA not fesible |
|
1114 | # #Number 3: AOA not fesible | |
1103 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
1115 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
1104 | # error[indInvalid] = 3 |
|
1116 | # error[indInvalid] = 3 | |
1105 | # #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
1117 | # #Number 4: Large difference in AOAs obtained from different antenna baselines | |
1106 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
1118 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
1107 | # error[indInvalid] = 4 |
|
1119 | # error[indInvalid] = 4 | |
1108 | # return arrayAOA, error |
|
1120 | # return arrayAOA, error | |
1109 | # |
|
1121 | # | |
1110 | # def __getDirectionCosines(self, arrayPhase, pairsList): |
|
1122 | # def __getDirectionCosines(self, arrayPhase, pairsList): | |
1111 | # |
|
1123 | # | |
1112 | # #Initializing some variables |
|
1124 | # #Initializing some variables | |
1113 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
1125 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
1114 | # ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
1126 | # ang_aux = ang_aux.reshape(1,ang_aux.size) | |
1115 | # |
|
1127 | # | |
1116 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
1128 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
1117 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
1129 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
1118 | # |
|
1130 | # | |
1119 | # |
|
1131 | # | |
1120 | # for i in range(2): |
|
1132 | # for i in range(2): | |
1121 | # #First Estimation |
|
1133 | # #First Estimation | |
1122 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
1134 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |
1123 | # #Dealias |
|
1135 | # #Dealias | |
1124 | # indcsi = numpy.where(phi0_aux > numpy.pi) |
|
1136 | # indcsi = numpy.where(phi0_aux > numpy.pi) | |
1125 | # phi0_aux[indcsi] -= 2*numpy.pi |
|
1137 | # phi0_aux[indcsi] -= 2*numpy.pi | |
1126 | # indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
1138 | # indcsi = numpy.where(phi0_aux < -numpy.pi) | |
1127 | # phi0_aux[indcsi] += 2*numpy.pi |
|
1139 | # phi0_aux[indcsi] += 2*numpy.pi | |
1128 | # #Direction Cosine 0 |
|
1140 | # #Direction Cosine 0 | |
1129 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
1141 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |
1130 | # |
|
1142 | # | |
1131 | # #Most-Accurate Second Estimation |
|
1143 | # #Most-Accurate Second Estimation | |
1132 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
1144 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |
1133 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
1145 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
1134 | # #Direction Cosine 1 |
|
1146 | # #Direction Cosine 1 | |
1135 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) |
|
1147 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |
1136 | # |
|
1148 | # | |
1137 | # #Searching the correct Direction Cosine |
|
1149 | # #Searching the correct Direction Cosine | |
1138 | # cosdir0_aux = cosdir0[:,i] |
|
1150 | # cosdir0_aux = cosdir0[:,i] | |
1139 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
1151 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
1140 | # #Minimum Distance |
|
1152 | # #Minimum Distance | |
1141 | # cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
1153 | # cosDiff = (cosdir1 - cosdir0_aux)**2 | |
1142 | # indcos = cosDiff.argmin(axis = 1) |
|
1154 | # indcos = cosDiff.argmin(axis = 1) | |
1143 | # #Saving Value obtained |
|
1155 | # #Saving Value obtained | |
1144 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
1156 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
1145 | # |
|
1157 | # | |
1146 | # return cosdir0, cosdir |
|
1158 | # return cosdir0, cosdir | |
1147 | # |
|
1159 | # | |
1148 | # def __calculateAOA(self, cosdir, azimuth): |
|
1160 | # def __calculateAOA(self, cosdir, azimuth): | |
1149 | # cosdirX = cosdir[:,0] |
|
1161 | # cosdirX = cosdir[:,0] | |
1150 | # cosdirY = cosdir[:,1] |
|
1162 | # cosdirY = cosdir[:,1] | |
1151 | # |
|
1163 | # | |
1152 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
1164 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
1153 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east |
|
1165 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |
1154 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
1166 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
1155 | # |
|
1167 | # | |
1156 | # return angles |
|
1168 | # return angles | |
1157 | # |
|
1169 | # | |
1158 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
1170 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
1159 | # |
|
1171 | # | |
1160 | # Ramb = 375 #Ramb = c/(2*PRF) |
|
1172 | # Ramb = 375 #Ramb = c/(2*PRF) | |
1161 | # Re = 6371 #Earth Radius |
|
1173 | # Re = 6371 #Earth Radius | |
1162 | # heights = numpy.zeros(Ranges.shape) |
|
1174 | # heights = numpy.zeros(Ranges.shape) | |
1163 | # |
|
1175 | # | |
1164 | # R_aux = numpy.array([0,1,2])*Ramb |
|
1176 | # R_aux = numpy.array([0,1,2])*Ramb | |
1165 | # R_aux = R_aux.reshape(1,R_aux.size) |
|
1177 | # R_aux = R_aux.reshape(1,R_aux.size) | |
1166 | # |
|
1178 | # | |
1167 | # Ranges = Ranges.reshape(Ranges.size,1) |
|
1179 | # Ranges = Ranges.reshape(Ranges.size,1) | |
1168 | # |
|
1180 | # | |
1169 | # Ri = Ranges + R_aux |
|
1181 | # Ri = Ranges + R_aux | |
1170 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
1182 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
1171 | # |
|
1183 | # | |
1172 | # #Check if there is a height between 70 and 110 km |
|
1184 | # #Check if there is a height between 70 and 110 km | |
1173 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
1185 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
1174 | # ind_h = numpy.where(h_bool == 1)[0] |
|
1186 | # ind_h = numpy.where(h_bool == 1)[0] | |
1175 | # |
|
1187 | # | |
1176 | # hCorr = hi[ind_h, :] |
|
1188 | # hCorr = hi[ind_h, :] | |
1177 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
1189 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
1178 | # |
|
1190 | # | |
1179 | # hCorr = hi[ind_hCorr] |
|
1191 | # hCorr = hi[ind_hCorr] | |
1180 | # heights[ind_h] = hCorr |
|
1192 | # heights[ind_h] = hCorr | |
1181 | # |
|
1193 | # | |
1182 | # #Setting Error |
|
1194 | # #Setting Error | |
1183 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
1195 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
1184 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
1196 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
1185 | # |
|
1197 | # | |
1186 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
1198 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
1187 | # error[indInvalid2] = 14 |
|
1199 | # error[indInvalid2] = 14 | |
1188 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
1200 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
1189 | # error[indInvalid1] = 13 |
|
1201 | # error[indInvalid1] = 13 | |
1190 | # |
|
1202 | # | |
1191 | # return heights, error |
|
1203 | # return heights, error | |
1192 |
|
1204 | |||
1193 | def SpectralFitting(self, getSNR = True, path=None, file=None, groupList=None): |
|
1205 | def SpectralFitting(self, getSNR = True, path=None, file=None, groupList=None): | |
1194 |
|
1206 | |||
1195 | ''' |
|
1207 | ''' | |
1196 | Function GetMoments() |
|
1208 | Function GetMoments() | |
1197 |
|
1209 | |||
1198 | Input: |
|
1210 | Input: | |
1199 | Output: |
|
1211 | Output: | |
1200 | Variables modified: |
|
1212 | Variables modified: | |
1201 | ''' |
|
1213 | ''' | |
1202 | if path != None: |
|
1214 | if path != None: | |
1203 | sys.path.append(path) |
|
1215 | sys.path.append(path) | |
1204 | self.dataOut.library = importlib.import_module(file) |
|
1216 | self.dataOut.library = importlib.import_module(file) | |
1205 |
|
1217 | |||
1206 | #To be inserted as a parameter |
|
1218 | #To be inserted as a parameter | |
1207 | groupArray = numpy.array(groupList) |
|
1219 | groupArray = numpy.array(groupList) | |
1208 | # groupArray = numpy.array([[0,1],[2,3]]) |
|
1220 | # groupArray = numpy.array([[0,1],[2,3]]) | |
1209 | self.dataOut.groupList = groupArray |
|
1221 | self.dataOut.groupList = groupArray | |
1210 |
|
1222 | |||
1211 | nGroups = groupArray.shape[0] |
|
1223 | nGroups = groupArray.shape[0] | |
1212 | nChannels = self.dataIn.nChannels |
|
1224 | nChannels = self.dataIn.nChannels | |
1213 | nHeights=self.dataIn.heightList.size |
|
1225 | nHeights=self.dataIn.heightList.size | |
1214 |
|
1226 | |||
1215 | #Parameters Array |
|
1227 | #Parameters Array | |
1216 | self.dataOut.data_param = None |
|
1228 | self.dataOut.data_param = None | |
1217 |
|
1229 | |||
1218 | #Set constants |
|
1230 | #Set constants | |
1219 | constants = self.dataOut.library.setConstants(self.dataIn) |
|
1231 | constants = self.dataOut.library.setConstants(self.dataIn) | |
1220 | self.dataOut.constants = constants |
|
1232 | self.dataOut.constants = constants | |
1221 | M = self.dataIn.normFactor |
|
1233 | M = self.dataIn.normFactor | |
1222 | N = self.dataIn.nFFTPoints |
|
1234 | N = self.dataIn.nFFTPoints | |
1223 | ippSeconds = self.dataIn.ippSeconds |
|
1235 | ippSeconds = self.dataIn.ippSeconds | |
1224 | K = self.dataIn.nIncohInt |
|
1236 | K = self.dataIn.nIncohInt | |
1225 | pairsArray = numpy.array(self.dataIn.pairsList) |
|
1237 | pairsArray = numpy.array(self.dataIn.pairsList) | |
1226 |
|
1238 | |||
1227 | #List of possible combinations |
|
1239 | #List of possible combinations | |
1228 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) |
|
1240 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |
1229 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') |
|
1241 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |
1230 |
|
1242 | |||
1231 | if getSNR: |
|
1243 | if getSNR: | |
1232 | listChannels = groupArray.reshape((groupArray.size)) |
|
1244 | listChannels = groupArray.reshape((groupArray.size)) | |
1233 | listChannels.sort() |
|
1245 | listChannels.sort() | |
1234 | noise = self.dataIn.getNoise() |
|
1246 | noise = self.dataIn.getNoise() | |
1235 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) |
|
1247 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) | |
1236 |
|
1248 | |||
1237 | for i in range(nGroups): |
|
1249 | for i in range(nGroups): | |
1238 | coord = groupArray[i,:] |
|
1250 | coord = groupArray[i,:] | |
1239 |
|
1251 | |||
1240 | #Input data array |
|
1252 | #Input data array | |
1241 | data = self.dataIn.data_spc[coord,:,:]/(M*N) |
|
1253 | data = self.dataIn.data_spc[coord,:,:]/(M*N) | |
1242 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) |
|
1254 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |
1243 |
|
1255 | |||
1244 | #Cross Spectra data array for Covariance Matrixes |
|
1256 | #Cross Spectra data array for Covariance Matrixes | |
1245 | ind = 0 |
|
1257 | ind = 0 | |
1246 | for pairs in listComb: |
|
1258 | for pairs in listComb: | |
1247 | pairsSel = numpy.array([coord[x],coord[y]]) |
|
1259 | pairsSel = numpy.array([coord[x],coord[y]]) | |
1248 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) |
|
1260 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |
1249 | ind += 1 |
|
1261 | ind += 1 | |
1250 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) |
|
1262 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) | |
1251 | dataCross = dataCross**2/K |
|
1263 | dataCross = dataCross**2/K | |
1252 |
|
1264 | |||
1253 | for h in range(nHeights): |
|
1265 | for h in range(nHeights): | |
1254 | # print self.dataOut.heightList[h] |
|
1266 | # print self.dataOut.heightList[h] | |
1255 |
|
1267 | |||
1256 | #Input |
|
1268 | #Input | |
1257 | d = data[:,h] |
|
1269 | d = data[:,h] | |
1258 |
|
1270 | |||
1259 | #Covariance Matrix |
|
1271 | #Covariance Matrix | |
1260 | D = numpy.diag(d**2/K) |
|
1272 | D = numpy.diag(d**2/K) | |
1261 | ind = 0 |
|
1273 | ind = 0 | |
1262 | for pairs in listComb: |
|
1274 | for pairs in listComb: | |
1263 | #Coordinates in Covariance Matrix |
|
1275 | #Coordinates in Covariance Matrix | |
1264 | x = pairs[0] |
|
1276 | x = pairs[0] | |
1265 | y = pairs[1] |
|
1277 | y = pairs[1] | |
1266 | #Channel Index |
|
1278 | #Channel Index | |
1267 | S12 = dataCross[ind,:,h] |
|
1279 | S12 = dataCross[ind,:,h] | |
1268 | D12 = numpy.diag(S12) |
|
1280 | D12 = numpy.diag(S12) | |
1269 | #Completing Covariance Matrix with Cross Spectras |
|
1281 | #Completing Covariance Matrix with Cross Spectras | |
1270 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 |
|
1282 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |
1271 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 |
|
1283 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |
1272 | ind += 1 |
|
1284 | ind += 1 | |
1273 | Dinv=numpy.linalg.inv(D) |
|
1285 | Dinv=numpy.linalg.inv(D) | |
1274 | L=numpy.linalg.cholesky(Dinv) |
|
1286 | L=numpy.linalg.cholesky(Dinv) | |
1275 | LT=L.T |
|
1287 | LT=L.T | |
1276 |
|
1288 | |||
1277 | dp = numpy.dot(LT,d) |
|
1289 | dp = numpy.dot(LT,d) | |
1278 |
|
1290 | |||
1279 | #Initial values |
|
1291 | #Initial values | |
1280 | data_spc = self.dataIn.data_spc[coord,:,h] |
|
1292 | data_spc = self.dataIn.data_spc[coord,:,h] | |
1281 |
|
1293 | |||
1282 | if (h>0)and(error1[3]<5): |
|
1294 | if (h>0)and(error1[3]<5): | |
1283 | p0 = self.dataOut.data_param[i,:,h-1] |
|
1295 | p0 = self.dataOut.data_param[i,:,h-1] | |
1284 | else: |
|
1296 | else: | |
1285 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) |
|
1297 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) | |
1286 |
|
1298 | |||
1287 | try: |
|
1299 | try: | |
1288 | #Least Squares |
|
1300 | #Least Squares | |
1289 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) |
|
1301 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |
1290 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) |
|
1302 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |
1291 | #Chi square error |
|
1303 | #Chi square error | |
1292 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) |
|
1304 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |
1293 | #Error with Jacobian |
|
1305 | #Error with Jacobian | |
1294 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) |
|
1306 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) | |
1295 | except: |
|
1307 | except: | |
1296 | minp = p0*numpy.nan |
|
1308 | minp = p0*numpy.nan | |
1297 | error0 = numpy.nan |
|
1309 | error0 = numpy.nan | |
1298 | error1 = p0*numpy.nan |
|
1310 | error1 = p0*numpy.nan | |
1299 |
|
1311 | |||
1300 | #Save |
|
1312 | #Save | |
1301 | if self.dataOut.data_param == None: |
|
1313 | if self.dataOut.data_param == None: | |
1302 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan |
|
1314 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |
1303 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan |
|
1315 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |
1304 |
|
1316 | |||
1305 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) |
|
1317 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |
1306 | self.dataOut.data_param[i,:,h] = minp |
|
1318 | self.dataOut.data_param[i,:,h] = minp | |
1307 | return |
|
1319 | return | |
1308 |
|
1320 | |||
1309 | def __residFunction(self, p, dp, LT, constants): |
|
1321 | def __residFunction(self, p, dp, LT, constants): | |
1310 |
|
1322 | |||
1311 | fm = self.dataOut.library.modelFunction(p, constants) |
|
1323 | fm = self.dataOut.library.modelFunction(p, constants) | |
1312 | fmp=numpy.dot(LT,fm) |
|
1324 | fmp=numpy.dot(LT,fm) | |
1313 |
|
1325 | |||
1314 | return dp-fmp |
|
1326 | return dp-fmp | |
1315 |
|
1327 | |||
1316 | def __getSNR(self, z, noise): |
|
1328 | def __getSNR(self, z, noise): | |
1317 |
|
1329 | |||
1318 | avg = numpy.average(z, axis=1) |
|
1330 | avg = numpy.average(z, axis=1) | |
1319 | SNR = (avg.T-noise)/noise |
|
1331 | SNR = (avg.T-noise)/noise | |
1320 | SNR = SNR.T |
|
1332 | SNR = SNR.T | |
1321 | return SNR |
|
1333 | return SNR | |
1322 |
|
1334 | |||
1323 | def __chisq(p,chindex,hindex): |
|
1335 | def __chisq(p,chindex,hindex): | |
1324 | #similar to Resid but calculates CHI**2 |
|
1336 | #similar to Resid but calculates CHI**2 | |
1325 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) |
|
1337 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |
1326 | dp=numpy.dot(LT,d) |
|
1338 | dp=numpy.dot(LT,d) | |
1327 | fmp=numpy.dot(LT,fm) |
|
1339 | fmp=numpy.dot(LT,fm) | |
1328 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) |
|
1340 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |
1329 | return chisq |
|
1341 | return chisq | |
1330 |
|
1342 | |||
1331 | def NonSpecularMeteorDetection(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): |
|
1343 | def NonSpecularMeteorDetection(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): | |
1332 | data_acf = self.dataOut.data_pre[0] |
|
1344 | data_acf = self.dataOut.data_pre[0] | |
1333 | data_ccf = self.dataOut.data_pre[1] |
|
1345 | data_ccf = self.dataOut.data_pre[1] | |
1334 |
|
1346 | |||
1335 | lamb = self.dataOut.C/self.dataOut.frequency |
|
1347 | lamb = self.dataOut.C/self.dataOut.frequency | |
1336 | tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt |
|
1348 | tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt | |
1337 | paramInterval = self.dataOut.paramInterval |
|
1349 | paramInterval = self.dataOut.paramInterval | |
1338 |
|
1350 | |||
1339 | nChannels = data_acf.shape[0] |
|
1351 | nChannels = data_acf.shape[0] | |
1340 | nLags = data_acf.shape[1] |
|
1352 | nLags = data_acf.shape[1] | |
1341 | nProfiles = data_acf.shape[2] |
|
1353 | nProfiles = data_acf.shape[2] | |
1342 | nHeights = self.dataOut.nHeights |
|
1354 | nHeights = self.dataOut.nHeights | |
1343 | nCohInt = self.dataOut.nCohInt |
|
1355 | nCohInt = self.dataOut.nCohInt | |
1344 | sec = numpy.round(nProfiles/self.dataOut.paramInterval) |
|
1356 | sec = numpy.round(nProfiles/self.dataOut.paramInterval) | |
1345 | heightList = self.dataOut.heightList |
|
1357 | heightList = self.dataOut.heightList | |
1346 | ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg |
|
1358 | ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg | |
1347 | utctime = self.dataOut.utctime |
|
1359 | utctime = self.dataOut.utctime | |
1348 |
|
1360 | |||
1349 | self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) |
|
1361 | self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) | |
1350 |
|
1362 | |||
1351 | #------------------------ SNR -------------------------------------- |
|
1363 | #------------------------ SNR -------------------------------------- | |
1352 | power = data_acf[:,0,:,:].real |
|
1364 | power = data_acf[:,0,:,:].real | |
1353 | noise = numpy.zeros(nChannels) |
|
1365 | noise = numpy.zeros(nChannels) | |
1354 | SNR = numpy.zeros(power.shape) |
|
1366 | SNR = numpy.zeros(power.shape) | |
1355 | for i in range(nChannels): |
|
1367 | for i in range(nChannels): | |
1356 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) |
|
1368 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) | |
1357 | SNR[i] = (power[i]-noise[i])/noise[i] |
|
1369 | SNR[i] = (power[i]-noise[i])/noise[i] | |
1358 | SNRm = numpy.nanmean(SNR, axis = 0) |
|
1370 | SNRm = numpy.nanmean(SNR, axis = 0) | |
1359 | SNRdB = 10*numpy.log10(SNR) |
|
1371 | SNRdB = 10*numpy.log10(SNR) | |
1360 |
|
1372 | |||
1361 | if mode == 'SA': |
|
1373 | if mode == 'SA': | |
1362 | nPairs = data_ccf.shape[0] |
|
1374 | nPairs = data_ccf.shape[0] | |
1363 | #---------------------- Coherence and Phase -------------------------- |
|
1375 | #---------------------- Coherence and Phase -------------------------- | |
1364 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
1376 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) | |
1365 | # phase1 = numpy.copy(phase) |
|
1377 | # phase1 = numpy.copy(phase) | |
1366 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
1378 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) | |
1367 |
|
1379 | |||
1368 | for p in range(nPairs): |
|
1380 | for p in range(nPairs): | |
1369 | ch0 = self.dataOut.groupList[p][0] |
|
1381 | ch0 = self.dataOut.groupList[p][0] | |
1370 | ch1 = self.dataOut.groupList[p][1] |
|
1382 | ch1 = self.dataOut.groupList[p][1] | |
1371 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) |
|
1383 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) | |
1372 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter |
|
1384 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter | |
1373 | # phase1[p,:,:] = numpy.angle(ccf) #median filter |
|
1385 | # phase1[p,:,:] = numpy.angle(ccf) #median filter | |
1374 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter |
|
1386 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter | |
1375 | # coh1[p,:,:] = numpy.abs(ccf) #median filter |
|
1387 | # coh1[p,:,:] = numpy.abs(ccf) #median filter | |
1376 | coh = numpy.nanmax(coh1, axis = 0) |
|
1388 | coh = numpy.nanmax(coh1, axis = 0) | |
1377 | # struc = numpy.ones((5,1)) |
|
1389 | # struc = numpy.ones((5,1)) | |
1378 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) |
|
1390 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) | |
1379 | #---------------------- Radial Velocity ---------------------------- |
|
1391 | #---------------------- Radial Velocity ---------------------------- | |
1380 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) |
|
1392 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) | |
1381 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) |
|
1393 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) | |
1382 |
|
1394 | |||
1383 | if allData: |
|
1395 | if allData: | |
1384 | boolMetFin = ~numpy.isnan(SNRm) |
|
1396 | boolMetFin = ~numpy.isnan(SNRm) | |
1385 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
1397 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
1386 | else: |
|
1398 | else: | |
1387 | #------------------------ Meteor mask --------------------------------- |
|
1399 | #------------------------ Meteor mask --------------------------------- | |
1388 | # #SNR mask |
|
1400 | # #SNR mask | |
1389 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) |
|
1401 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) | |
1390 | # |
|
1402 | # | |
1391 | # #Erase small objects |
|
1403 | # #Erase small objects | |
1392 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) |
|
1404 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) | |
1393 | # |
|
1405 | # | |
1394 | # auxEEJ = numpy.sum(boolMet1,axis=0) |
|
1406 | # auxEEJ = numpy.sum(boolMet1,axis=0) | |
1395 | # indOver = auxEEJ>nProfiles*0.8 #Use this later |
|
1407 | # indOver = auxEEJ>nProfiles*0.8 #Use this later | |
1396 | # indEEJ = numpy.where(indOver)[0] |
|
1408 | # indEEJ = numpy.where(indOver)[0] | |
1397 | # indNEEJ = numpy.where(~indOver)[0] |
|
1409 | # indNEEJ = numpy.where(~indOver)[0] | |
1398 | # |
|
1410 | # | |
1399 | # boolMetFin = boolMet1 |
|
1411 | # boolMetFin = boolMet1 | |
1400 | # |
|
1412 | # | |
1401 | # if indEEJ.size > 0: |
|
1413 | # if indEEJ.size > 0: | |
1402 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ |
|
1414 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ | |
1403 | # |
|
1415 | # | |
1404 | # boolMet2 = coh > cohThresh |
|
1416 | # boolMet2 = coh > cohThresh | |
1405 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) |
|
1417 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) | |
1406 | # |
|
1418 | # | |
1407 | # #Final Meteor mask |
|
1419 | # #Final Meteor mask | |
1408 | # boolMetFin = boolMet1|boolMet2 |
|
1420 | # boolMetFin = boolMet1|boolMet2 | |
1409 |
|
1421 | |||
1410 | #Coherence mask |
|
1422 | #Coherence mask | |
1411 | boolMet1 = coh > 0.75 |
|
1423 | boolMet1 = coh > 0.75 | |
1412 | struc = numpy.ones((30,1)) |
|
1424 | struc = numpy.ones((30,1)) | |
1413 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) |
|
1425 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) | |
1414 |
|
1426 | |||
1415 | #Derivative mask |
|
1427 | #Derivative mask | |
1416 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
1428 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
1417 | boolMet2 = derPhase < 0.2 |
|
1429 | boolMet2 = derPhase < 0.2 | |
1418 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) |
|
1430 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) | |
1419 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) |
|
1431 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) | |
1420 | boolMet2 = ndimage.median_filter(boolMet2,size=5) |
|
1432 | boolMet2 = ndimage.median_filter(boolMet2,size=5) | |
1421 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) |
|
1433 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) | |
1422 | # #Final mask |
|
1434 | # #Final mask | |
1423 | # boolMetFin = boolMet2 |
|
1435 | # boolMetFin = boolMet2 | |
1424 | boolMetFin = boolMet1&boolMet2 |
|
1436 | boolMetFin = boolMet1&boolMet2 | |
1425 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) |
|
1437 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) | |
1426 | #Creating data_param |
|
1438 | #Creating data_param | |
1427 | coordMet = numpy.where(boolMetFin) |
|
1439 | coordMet = numpy.where(boolMetFin) | |
1428 |
|
1440 | |||
1429 | tmet = coordMet[0] |
|
1441 | tmet = coordMet[0] | |
1430 | hmet = coordMet[1] |
|
1442 | hmet = coordMet[1] | |
1431 |
|
1443 | |||
1432 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) |
|
1444 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) | |
1433 | data_param[:,0] = utctime |
|
1445 | data_param[:,0] = utctime | |
1434 | data_param[:,1] = tmet |
|
1446 | data_param[:,1] = tmet | |
1435 | data_param[:,2] = hmet |
|
1447 | data_param[:,2] = hmet | |
1436 | data_param[:,3] = SNRm[tmet,hmet] |
|
1448 | data_param[:,3] = SNRm[tmet,hmet] | |
1437 | data_param[:,4] = velRad[tmet,hmet] |
|
1449 | data_param[:,4] = velRad[tmet,hmet] | |
1438 | data_param[:,5] = coh[tmet,hmet] |
|
1450 | data_param[:,5] = coh[tmet,hmet] | |
1439 | data_param[:,6:] = phase[:,tmet,hmet].T |
|
1451 | data_param[:,6:] = phase[:,tmet,hmet].T | |
1440 |
|
1452 | |||
1441 | elif mode == 'DBS': |
|
1453 | elif mode == 'DBS': | |
1442 | self.dataOut.groupList = numpy.arange(nChannels) |
|
1454 | self.dataOut.groupList = numpy.arange(nChannels) | |
1443 |
|
1455 | |||
1444 | #Radial Velocities |
|
1456 | #Radial Velocities | |
1445 | # phase = numpy.angle(data_acf[:,1,:,:]) |
|
1457 | # phase = numpy.angle(data_acf[:,1,:,:]) | |
1446 | phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) |
|
1458 | phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) | |
1447 | velRad = phase*lamb/(4*numpy.pi*tSamp) |
|
1459 | velRad = phase*lamb/(4*numpy.pi*tSamp) | |
1448 |
|
1460 | |||
1449 | #Spectral width |
|
1461 | #Spectral width | |
1450 | acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) |
|
1462 | acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) | |
1451 | acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) |
|
1463 | acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) | |
1452 |
|
1464 | |||
1453 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) |
|
1465 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) | |
1454 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) |
|
1466 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) | |
1455 | if allData: |
|
1467 | if allData: | |
1456 | boolMetFin = ~numpy.isnan(SNRdB) |
|
1468 | boolMetFin = ~numpy.isnan(SNRdB) | |
1457 | else: |
|
1469 | else: | |
1458 | #SNR |
|
1470 | #SNR | |
1459 | boolMet1 = (SNRdB>SNRthresh) #SNR mask |
|
1471 | boolMet1 = (SNRdB>SNRthresh) #SNR mask | |
1460 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) |
|
1472 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) | |
1461 |
|
1473 | |||
1462 | #Radial velocity |
|
1474 | #Radial velocity | |
1463 | boolMet2 = numpy.abs(velRad) < 30 |
|
1475 | boolMet2 = numpy.abs(velRad) < 30 | |
1464 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) |
|
1476 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) | |
1465 |
|
1477 | |||
1466 | #Spectral Width |
|
1478 | #Spectral Width | |
1467 | boolMet3 = spcWidth < 30 |
|
1479 | boolMet3 = spcWidth < 30 | |
1468 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) |
|
1480 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) | |
1469 | # boolMetFin = self.__erase_small(boolMet1, 10,5) |
|
1481 | # boolMetFin = self.__erase_small(boolMet1, 10,5) | |
1470 | boolMetFin = boolMet1&boolMet2&boolMet3 |
|
1482 | boolMetFin = boolMet1&boolMet2&boolMet3 | |
1471 |
|
1483 | |||
1472 | #Creating data_param |
|
1484 | #Creating data_param | |
1473 | coordMet = numpy.where(boolMetFin) |
|
1485 | coordMet = numpy.where(boolMetFin) | |
1474 |
|
1486 | |||
1475 | cmet = coordMet[0] |
|
1487 | cmet = coordMet[0] | |
1476 | tmet = coordMet[1] |
|
1488 | tmet = coordMet[1] | |
1477 | hmet = coordMet[2] |
|
1489 | hmet = coordMet[2] | |
1478 |
|
1490 | |||
1479 | data_param = numpy.zeros((tmet.size, 7)) |
|
1491 | data_param = numpy.zeros((tmet.size, 7)) | |
1480 | data_param[:,0] = utctime |
|
1492 | data_param[:,0] = utctime | |
1481 | data_param[:,1] = cmet |
|
1493 | data_param[:,1] = cmet | |
1482 | data_param[:,2] = tmet |
|
1494 | data_param[:,2] = tmet | |
1483 | data_param[:,3] = hmet |
|
1495 | data_param[:,3] = hmet | |
1484 | data_param[:,4] = SNR[cmet,tmet,hmet].T |
|
1496 | data_param[:,4] = SNR[cmet,tmet,hmet].T | |
1485 | data_param[:,5] = velRad[cmet,tmet,hmet].T |
|
1497 | data_param[:,5] = velRad[cmet,tmet,hmet].T | |
1486 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T |
|
1498 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T | |
1487 |
|
1499 | |||
1488 | # self.dataOut.data_param = data_int |
|
1500 | # self.dataOut.data_param = data_int | |
1489 | if len(data_param) == 0: |
|
1501 | if len(data_param) == 0: | |
1490 | self.dataOut.flagNoData = True |
|
1502 | self.dataOut.flagNoData = True | |
1491 | else: |
|
1503 | else: | |
1492 | self.dataOut.data_param = data_param |
|
1504 | self.dataOut.data_param = data_param | |
1493 |
|
1505 | |||
1494 | def __erase_small(self, binArray, threshX, threshY): |
|
1506 | def __erase_small(self, binArray, threshX, threshY): | |
1495 | labarray, numfeat = ndimage.measurements.label(binArray) |
|
1507 | labarray, numfeat = ndimage.measurements.label(binArray) | |
1496 | binArray1 = numpy.copy(binArray) |
|
1508 | binArray1 = numpy.copy(binArray) | |
1497 |
|
1509 | |||
1498 | for i in range(1,numfeat + 1): |
|
1510 | for i in range(1,numfeat + 1): | |
1499 | auxBin = (labarray==i) |
|
1511 | auxBin = (labarray==i) | |
1500 | auxSize = auxBin.sum() |
|
1512 | auxSize = auxBin.sum() | |
1501 |
|
1513 | |||
1502 | x,y = numpy.where(auxBin) |
|
1514 | x,y = numpy.where(auxBin) | |
1503 | widthX = x.max() - x.min() |
|
1515 | widthX = x.max() - x.min() | |
1504 | widthY = y.max() - y.min() |
|
1516 | widthY = y.max() - y.min() | |
1505 |
|
1517 | |||
1506 | #width X: 3 seg -> 12.5*3 |
|
1518 | #width X: 3 seg -> 12.5*3 | |
1507 | #width Y: |
|
1519 | #width Y: | |
1508 |
|
1520 | |||
1509 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): |
|
1521 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): | |
1510 | binArray1[auxBin] = False |
|
1522 | binArray1[auxBin] = False | |
1511 |
|
1523 | |||
1512 | return binArray1 |
|
1524 | return binArray1 | |
1513 |
|
1525 | |||
1514 | def WeirdEcho(self): |
|
1526 | def WeirdEcho(self): | |
1515 | # data_pre = self.dataOut.data_pre |
|
1527 | # data_pre = self.dataOut.data_pre | |
1516 | # nHeights = self.dataOut.nHeights |
|
1528 | # nHeights = self.dataOut.nHeights | |
1517 | # # nProfiles = self.dataOut.data_pre.shape[1] |
|
1529 | # # nProfiles = self.dataOut.data_pre.shape[1] | |
1518 | # # data_param = numpy.zeros((len(pairslist),nProfiles,nHeights)) |
|
1530 | # # data_param = numpy.zeros((len(pairslist),nProfiles,nHeights)) | |
1519 | # data_param = numpy.zeros((len(pairslist),nHeights)) |
|
1531 | # data_param = numpy.zeros((len(pairslist),nHeights)) | |
1520 | # |
|
1532 | # | |
1521 | # for i in range(len(pairslist)): |
|
1533 | # for i in range(len(pairslist)): | |
1522 | # chan0 = data_pre[pairslist[i][0],:] |
|
1534 | # chan0 = data_pre[pairslist[i][0],:] | |
1523 | # chan1 = data_pre[pairslist[i][1],:] |
|
1535 | # chan1 = data_pre[pairslist[i][1],:] | |
1524 | # #calcular correlacion cruzada |
|
1536 | # #calcular correlacion cruzada | |
1525 | # #magnitud es coherencia |
|
1537 | # #magnitud es coherencia | |
1526 | # #fase es dif fase |
|
1538 | # #fase es dif fase | |
1527 | # correl = chan0*numpy.conj(chan1) |
|
1539 | # correl = chan0*numpy.conj(chan1) | |
1528 | # coherence = numpy.abs(correl)/(numpy.abs(chan0)*numpy.abs(chan1)) |
|
1540 | # coherence = numpy.abs(correl)/(numpy.abs(chan0)*numpy.abs(chan1)) | |
1529 | # phase = numpy.angle(correl) |
|
1541 | # phase = numpy.angle(correl) | |
1530 | # # data_param[2*i,:,:] = coherence |
|
1542 | # # data_param[2*i,:,:] = coherence | |
1531 | # data_param[i,:] = phase |
|
1543 | # data_param[i,:] = phase | |
1532 | # |
|
1544 | # | |
1533 | # self.dataOut.data_param = data_param |
|
1545 | # self.dataOut.data_param = data_param | |
1534 | # self.dataOut.groupList = pairslist |
|
1546 | # self.dataOut.groupList = pairslist | |
1535 | data_cspc = self.dataOut.data_pre[1] |
|
1547 | data_cspc = self.dataOut.data_pre[1] | |
1536 | ccf = numpy.average(data_cspc,axis=1) |
|
1548 | ccf = numpy.average(data_cspc,axis=1) | |
1537 | phases = numpy.angle(ccf).T |
|
1549 | phases = numpy.angle(ccf).T | |
1538 |
|
1550 | |||
1539 | meteorOps = MeteorOperations() |
|
1551 | meteorOps = MeteorOperations() | |
1540 | pairsList = ((0,1),(2,3)) |
|
1552 | pairsList = ((0,1),(2,3)) | |
1541 | jph = numpy.array([0,0,0,0]) |
|
1553 | jph = numpy.array([0,0,0,0]) | |
1542 | AOAthresh = numpy.pi/8 |
|
1554 | AOAthresh = numpy.pi/8 | |
1543 | azimuth = 45 |
|
1555 | azimuth = 45 | |
1544 | error = numpy.zeros((phases.shape[0],1)) |
|
1556 | error = numpy.zeros((phases.shape[0],1)) | |
1545 | AOA,error = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
1557 | AOA,error = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |
1546 | self.dataOut.data_param = AOA.T |
|
1558 | self.dataOut.data_param = AOA.T | |
1547 |
|
1559 | |||
1548 | class WindProfiler(Operation): |
|
1560 | class WindProfiler(Operation): | |
1549 |
|
1561 | |||
1550 | __isConfig = False |
|
1562 | __isConfig = False | |
1551 |
|
1563 | |||
1552 | __initime = None |
|
1564 | __initime = None | |
1553 | __lastdatatime = None |
|
1565 | __lastdatatime = None | |
1554 | __integrationtime = None |
|
1566 | __integrationtime = None | |
1555 |
|
1567 | |||
1556 | __buffer = None |
|
1568 | __buffer = None | |
1557 |
|
1569 | |||
1558 | __dataReady = False |
|
1570 | __dataReady = False | |
1559 |
|
1571 | |||
1560 | __firstdata = None |
|
1572 | __firstdata = None | |
1561 |
|
1573 | |||
1562 | n = None |
|
1574 | n = None | |
1563 |
|
1575 | |||
1564 | def __init__(self): |
|
1576 | def __init__(self): | |
1565 | Operation.__init__(self) |
|
1577 | Operation.__init__(self) | |
1566 |
|
1578 | |||
1567 | def __calculateCosDir(self, elev, azim): |
|
1579 | def __calculateCosDir(self, elev, azim): | |
1568 | zen = (90 - elev)*numpy.pi/180 |
|
1580 | zen = (90 - elev)*numpy.pi/180 | |
1569 | azim = azim*numpy.pi/180 |
|
1581 | azim = azim*numpy.pi/180 | |
1570 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) |
|
1582 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |
1571 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) |
|
1583 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |
1572 |
|
1584 | |||
1573 | signX = numpy.sign(numpy.cos(azim)) |
|
1585 | signX = numpy.sign(numpy.cos(azim)) | |
1574 | signY = numpy.sign(numpy.sin(azim)) |
|
1586 | signY = numpy.sign(numpy.sin(azim)) | |
1575 |
|
1587 | |||
1576 | cosDirX = numpy.copysign(cosDirX, signX) |
|
1588 | cosDirX = numpy.copysign(cosDirX, signX) | |
1577 | cosDirY = numpy.copysign(cosDirY, signY) |
|
1589 | cosDirY = numpy.copysign(cosDirY, signY) | |
1578 | return cosDirX, cosDirY |
|
1590 | return cosDirX, cosDirY | |
1579 |
|
1591 | |||
1580 | def __calculateAngles(self, theta_x, theta_y, azimuth): |
|
1592 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |
1581 |
|
1593 | |||
1582 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) |
|
1594 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |
1583 | zenith_arr = numpy.arccos(dir_cosw) |
|
1595 | zenith_arr = numpy.arccos(dir_cosw) | |
1584 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 |
|
1596 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |
1585 |
|
1597 | |||
1586 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) |
|
1598 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |
1587 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) |
|
1599 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |
1588 |
|
1600 | |||
1589 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw |
|
1601 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |
1590 |
|
1602 | |||
1591 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): |
|
1603 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |
1592 |
|
1604 | |||
1593 | # |
|
1605 | # | |
1594 | if horOnly: |
|
1606 | if horOnly: | |
1595 | A = numpy.c_[dir_cosu,dir_cosv] |
|
1607 | A = numpy.c_[dir_cosu,dir_cosv] | |
1596 | else: |
|
1608 | else: | |
1597 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] |
|
1609 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] | |
1598 | A = numpy.asmatrix(A) |
|
1610 | A = numpy.asmatrix(A) | |
1599 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() |
|
1611 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() | |
1600 |
|
1612 | |||
1601 | return A1 |
|
1613 | return A1 | |
1602 |
|
1614 | |||
1603 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
1615 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
1604 | listPhi = phi.tolist() |
|
1616 | listPhi = phi.tolist() | |
1605 | maxid = listPhi.index(max(listPhi)) |
|
1617 | maxid = listPhi.index(max(listPhi)) | |
1606 | minid = listPhi.index(min(listPhi)) |
|
1618 | minid = listPhi.index(min(listPhi)) | |
1607 |
|
1619 | |||
1608 | rango = range(len(phi)) |
|
1620 | rango = range(len(phi)) | |
1609 | # rango = numpy.delete(rango,maxid) |
|
1621 | # rango = numpy.delete(rango,maxid) | |
1610 |
|
1622 | |||
1611 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
1623 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
1612 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
1624 | heiRangAux = heiRang*math.cos(phi[minid]) | |
1613 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
1625 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
1614 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
1626 | heiRang1 = numpy.delete(heiRang1,indOut) | |
1615 |
|
1627 | |||
1616 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1628 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1617 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1629 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1618 |
|
1630 | |||
1619 | for i in rango: |
|
1631 | for i in rango: | |
1620 | x = heiRang*math.cos(phi[i]) |
|
1632 | x = heiRang*math.cos(phi[i]) | |
1621 | y1 = velRadial[i,:] |
|
1633 | y1 = velRadial[i,:] | |
1622 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
1634 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
1623 |
|
1635 | |||
1624 | x1 = heiRang1 |
|
1636 | x1 = heiRang1 | |
1625 | y11 = f1(x1) |
|
1637 | y11 = f1(x1) | |
1626 |
|
1638 | |||
1627 | y2 = SNR[i,:] |
|
1639 | y2 = SNR[i,:] | |
1628 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
1640 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
1629 | y21 = f2(x1) |
|
1641 | y21 = f2(x1) | |
1630 |
|
1642 | |||
1631 | velRadial1[i,:] = y11 |
|
1643 | velRadial1[i,:] = y11 | |
1632 | SNR1[i,:] = y21 |
|
1644 | SNR1[i,:] = y21 | |
1633 |
|
1645 | |||
1634 | return heiRang1, velRadial1, SNR1 |
|
1646 | return heiRang1, velRadial1, SNR1 | |
1635 |
|
1647 | |||
1636 | def __calculateVelUVW(self, A, velRadial): |
|
1648 | def __calculateVelUVW(self, A, velRadial): | |
1637 |
|
1649 | |||
1638 | #Operacion Matricial |
|
1650 | #Operacion Matricial | |
1639 | # velUVW = numpy.zeros((velRadial.shape[1],3)) |
|
1651 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |
1640 | # for ind in range(velRadial.shape[1]): |
|
1652 | # for ind in range(velRadial.shape[1]): | |
1641 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) |
|
1653 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) | |
1642 | # velUVW = velUVW.transpose() |
|
1654 | # velUVW = velUVW.transpose() | |
1643 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) |
|
1655 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |
1644 | velUVW[:,:] = numpy.dot(A,velRadial) |
|
1656 | velUVW[:,:] = numpy.dot(A,velRadial) | |
1645 |
|
1657 | |||
1646 |
|
1658 | |||
1647 | return velUVW |
|
1659 | return velUVW | |
1648 |
|
1660 | |||
1649 | def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): |
|
1661 | def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |
1650 | """ |
|
1662 | """ | |
1651 | Function that implements Doppler Beam Swinging (DBS) technique. |
|
1663 | Function that implements Doppler Beam Swinging (DBS) technique. | |
1652 |
|
1664 | |||
1653 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1665 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1654 | Direction correction (if necessary), Ranges and SNR |
|
1666 | Direction correction (if necessary), Ranges and SNR | |
1655 |
|
1667 | |||
1656 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1668 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1657 |
|
1669 | |||
1658 | Parameters affected: Winds, height range, SNR |
|
1670 | Parameters affected: Winds, height range, SNR | |
1659 | """ |
|
1671 | """ | |
1660 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(dirCosx, disrCosy, azimuth) |
|
1672 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(dirCosx, disrCosy, azimuth) | |
1661 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correct*velRadial0, SNR0) |
|
1673 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correct*velRadial0, SNR0) | |
1662 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) |
|
1674 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |
1663 |
|
1675 | |||
1664 | #Calculo de Componentes de la velocidad con DBS |
|
1676 | #Calculo de Componentes de la velocidad con DBS | |
1665 | winds = self.__calculateVelUVW(A,velRadial1) |
|
1677 | winds = self.__calculateVelUVW(A,velRadial1) | |
1666 |
|
1678 | |||
1667 | return winds, heiRang1, SNR1 |
|
1679 | return winds, heiRang1, SNR1 | |
1668 |
|
1680 | |||
1669 | def __calculateDistance(self, posx, posy, pairsCrossCorr, pairsList, pairs, azimuth = None): |
|
1681 | def __calculateDistance(self, posx, posy, pairsCrossCorr, pairsList, pairs, azimuth = None): | |
1670 |
|
1682 | |||
1671 | posx = numpy.asarray(posx) |
|
1683 | posx = numpy.asarray(posx) | |
1672 | posy = numpy.asarray(posy) |
|
1684 | posy = numpy.asarray(posy) | |
1673 |
|
1685 | |||
1674 | #Rotacion Inversa para alinear con el azimuth |
|
1686 | #Rotacion Inversa para alinear con el azimuth | |
1675 | if azimuth!= None: |
|
1687 | if azimuth!= None: | |
1676 | azimuth = azimuth*math.pi/180 |
|
1688 | azimuth = azimuth*math.pi/180 | |
1677 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) |
|
1689 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) | |
1678 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) |
|
1690 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) | |
1679 | else: |
|
1691 | else: | |
1680 | posx1 = posx |
|
1692 | posx1 = posx | |
1681 | posy1 = posy |
|
1693 | posy1 = posy | |
1682 |
|
1694 | |||
1683 | #Calculo de Distancias |
|
1695 | #Calculo de Distancias | |
1684 | distx = numpy.zeros(pairsCrossCorr.size) |
|
1696 | distx = numpy.zeros(pairsCrossCorr.size) | |
1685 | disty = numpy.zeros(pairsCrossCorr.size) |
|
1697 | disty = numpy.zeros(pairsCrossCorr.size) | |
1686 | dist = numpy.zeros(pairsCrossCorr.size) |
|
1698 | dist = numpy.zeros(pairsCrossCorr.size) | |
1687 | ang = numpy.zeros(pairsCrossCorr.size) |
|
1699 | ang = numpy.zeros(pairsCrossCorr.size) | |
1688 |
|
1700 | |||
1689 | for i in range(pairsCrossCorr.size): |
|
1701 | for i in range(pairsCrossCorr.size): | |
1690 | distx[i] = posx1[pairsList[pairsCrossCorr[i]][1]] - posx1[pairsList[pairsCrossCorr[i]][0]] |
|
1702 | distx[i] = posx1[pairsList[pairsCrossCorr[i]][1]] - posx1[pairsList[pairsCrossCorr[i]][0]] | |
1691 | disty[i] = posy1[pairsList[pairsCrossCorr[i]][1]] - posy1[pairsList[pairsCrossCorr[i]][0]] |
|
1703 | disty[i] = posy1[pairsList[pairsCrossCorr[i]][1]] - posy1[pairsList[pairsCrossCorr[i]][0]] | |
1692 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) |
|
1704 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |
1693 | ang[i] = numpy.arctan2(disty[i],distx[i]) |
|
1705 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |
1694 | #Calculo de Matrices |
|
1706 | #Calculo de Matrices | |
1695 | nPairs = len(pairs) |
|
1707 | nPairs = len(pairs) | |
1696 | ang1 = numpy.zeros((nPairs, 2, 1)) |
|
1708 | ang1 = numpy.zeros((nPairs, 2, 1)) | |
1697 | dist1 = numpy.zeros((nPairs, 2, 1)) |
|
1709 | dist1 = numpy.zeros((nPairs, 2, 1)) | |
1698 |
|
1710 | |||
1699 | for j in range(nPairs): |
|
1711 | for j in range(nPairs): | |
1700 | dist1[j,0,0] = dist[pairs[j][0]] |
|
1712 | dist1[j,0,0] = dist[pairs[j][0]] | |
1701 | dist1[j,1,0] = dist[pairs[j][1]] |
|
1713 | dist1[j,1,0] = dist[pairs[j][1]] | |
1702 | ang1[j,0,0] = ang[pairs[j][0]] |
|
1714 | ang1[j,0,0] = ang[pairs[j][0]] | |
1703 | ang1[j,1,0] = ang[pairs[j][1]] |
|
1715 | ang1[j,1,0] = ang[pairs[j][1]] | |
1704 |
|
1716 | |||
1705 | return distx,disty, dist1,ang1 |
|
1717 | return distx,disty, dist1,ang1 | |
1706 |
|
1718 | |||
1707 | def __calculateVelVer(self, phase, lagTRange, _lambda): |
|
1719 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |
1708 |
|
1720 | |||
1709 | Ts = lagTRange[1] - lagTRange[0] |
|
1721 | Ts = lagTRange[1] - lagTRange[0] | |
1710 | velW = -_lambda*phase/(4*math.pi*Ts) |
|
1722 | velW = -_lambda*phase/(4*math.pi*Ts) | |
1711 |
|
1723 | |||
1712 | return velW |
|
1724 | return velW | |
1713 |
|
1725 | |||
1714 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): |
|
1726 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |
1715 | nPairs = tau1.shape[0] |
|
1727 | nPairs = tau1.shape[0] | |
1716 | vel = numpy.zeros((nPairs,3,tau1.shape[2])) |
|
1728 | vel = numpy.zeros((nPairs,3,tau1.shape[2])) | |
1717 |
|
1729 | |||
1718 | angCos = numpy.cos(ang) |
|
1730 | angCos = numpy.cos(ang) | |
1719 | angSin = numpy.sin(ang) |
|
1731 | angSin = numpy.sin(ang) | |
1720 |
|
1732 | |||
1721 | vel0 = dist*tau1/(2*tau2**2) |
|
1733 | vel0 = dist*tau1/(2*tau2**2) | |
1722 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) |
|
1734 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |
1723 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) |
|
1735 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |
1724 |
|
1736 | |||
1725 | ind = numpy.where(numpy.isinf(vel)) |
|
1737 | ind = numpy.where(numpy.isinf(vel)) | |
1726 | vel[ind] = numpy.nan |
|
1738 | vel[ind] = numpy.nan | |
1727 |
|
1739 | |||
1728 | return vel |
|
1740 | return vel | |
1729 |
|
1741 | |||
1730 | def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1742 | def __getPairsAutoCorr(self, pairsList, nChannels): | |
1731 |
|
1743 | |||
1732 | pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1744 | pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1733 |
|
1745 | |||
1734 | for l in range(len(pairsList)): |
|
1746 | for l in range(len(pairsList)): | |
1735 | firstChannel = pairsList[l][0] |
|
1747 | firstChannel = pairsList[l][0] | |
1736 | secondChannel = pairsList[l][1] |
|
1748 | secondChannel = pairsList[l][1] | |
1737 |
|
1749 | |||
1738 | #Obteniendo pares de Autocorrelacion |
|
1750 | #Obteniendo pares de Autocorrelacion | |
1739 | if firstChannel == secondChannel: |
|
1751 | if firstChannel == secondChannel: | |
1740 | pairsAutoCorr[firstChannel] = int(l) |
|
1752 | pairsAutoCorr[firstChannel] = int(l) | |
1741 |
|
1753 | |||
1742 | pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1754 | pairsAutoCorr = pairsAutoCorr.astype(int) | |
1743 |
|
1755 | |||
1744 | pairsCrossCorr = range(len(pairsList)) |
|
1756 | pairsCrossCorr = range(len(pairsList)) | |
1745 | pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1757 | pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1746 |
|
1758 | |||
1747 | return pairsAutoCorr, pairsCrossCorr |
|
1759 | return pairsAutoCorr, pairsCrossCorr | |
1748 |
|
1760 | |||
1749 | def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): |
|
1761 | def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |
1750 | """ |
|
1762 | """ | |
1751 | Function that implements Spaced Antenna (SA) technique. |
|
1763 | Function that implements Spaced Antenna (SA) technique. | |
1752 |
|
1764 | |||
1753 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1765 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1754 | Direction correction (if necessary), Ranges and SNR |
|
1766 | Direction correction (if necessary), Ranges and SNR | |
1755 |
|
1767 | |||
1756 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1768 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1757 |
|
1769 | |||
1758 | Parameters affected: Winds |
|
1770 | Parameters affected: Winds | |
1759 | """ |
|
1771 | """ | |
1760 | #Cross Correlation pairs obtained |
|
1772 | #Cross Correlation pairs obtained | |
1761 | pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
1773 | pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
1762 | pairsArray = numpy.array(pairsList)[pairsCrossCorr] |
|
1774 | pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |
1763 | pairsSelArray = numpy.array(pairsSelected) |
|
1775 | pairsSelArray = numpy.array(pairsSelected) | |
1764 | pairs = [] |
|
1776 | pairs = [] | |
1765 |
|
1777 | |||
1766 | #Wind estimation pairs obtained |
|
1778 | #Wind estimation pairs obtained | |
1767 | for i in range(pairsSelArray.shape[0]/2): |
|
1779 | for i in range(pairsSelArray.shape[0]/2): | |
1768 | ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] |
|
1780 | ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |
1769 | ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] |
|
1781 | ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |
1770 | pairs.append((ind1,ind2)) |
|
1782 | pairs.append((ind1,ind2)) | |
1771 |
|
1783 | |||
1772 | indtau = tau.shape[0]/2 |
|
1784 | indtau = tau.shape[0]/2 | |
1773 | tau1 = tau[:indtau,:] |
|
1785 | tau1 = tau[:indtau,:] | |
1774 | tau2 = tau[indtau:-1,:] |
|
1786 | tau2 = tau[indtau:-1,:] | |
1775 | tau1 = tau1[pairs,:] |
|
1787 | tau1 = tau1[pairs,:] | |
1776 | tau2 = tau2[pairs,:] |
|
1788 | tau2 = tau2[pairs,:] | |
1777 | phase1 = tau[-1,:] |
|
1789 | phase1 = tau[-1,:] | |
1778 |
|
1790 | |||
1779 | #--------------------------------------------------------------------- |
|
1791 | #--------------------------------------------------------------------- | |
1780 | #Metodo Directo |
|
1792 | #Metodo Directo | |
1781 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairsCrossCorr, pairsList, pairs,azimuth) |
|
1793 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairsCrossCorr, pairsList, pairs,azimuth) | |
1782 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) |
|
1794 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |
1783 | winds = stats.nanmean(winds, axis=0) |
|
1795 | winds = stats.nanmean(winds, axis=0) | |
1784 | #--------------------------------------------------------------------- |
|
1796 | #--------------------------------------------------------------------- | |
1785 | #Metodo General |
|
1797 | #Metodo General | |
1786 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) |
|
1798 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) | |
1787 | # #Calculo Coeficientes de Funcion de Correlacion |
|
1799 | # #Calculo Coeficientes de Funcion de Correlacion | |
1788 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) |
|
1800 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) | |
1789 | # #Calculo de Velocidades |
|
1801 | # #Calculo de Velocidades | |
1790 | # winds = self.calculateVelUV(F,G,A,B,H) |
|
1802 | # winds = self.calculateVelUV(F,G,A,B,H) | |
1791 |
|
1803 | |||
1792 | #--------------------------------------------------------------------- |
|
1804 | #--------------------------------------------------------------------- | |
1793 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) |
|
1805 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |
1794 | winds = correctFactor*winds |
|
1806 | winds = correctFactor*winds | |
1795 | return winds |
|
1807 | return winds | |
1796 |
|
1808 | |||
1797 | def __checkTime(self, currentTime, paramInterval, outputInterval): |
|
1809 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |
1798 |
|
1810 | |||
1799 | dataTime = currentTime + paramInterval |
|
1811 | dataTime = currentTime + paramInterval | |
1800 | deltaTime = dataTime - self.__initime |
|
1812 | deltaTime = dataTime - self.__initime | |
1801 |
|
1813 | |||
1802 | if deltaTime >= outputInterval or deltaTime < 0: |
|
1814 | if deltaTime >= outputInterval or deltaTime < 0: | |
1803 | self.__dataReady = True |
|
1815 | self.__dataReady = True | |
1804 | return |
|
1816 | return | |
1805 |
|
1817 | |||
1806 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): |
|
1818 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |
1807 | ''' |
|
1819 | ''' | |
1808 | Function that implements winds estimation technique with detected meteors. |
|
1820 | Function that implements winds estimation technique with detected meteors. | |
1809 |
|
1821 | |||
1810 | Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
1822 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |
1811 |
|
1823 | |||
1812 | Output: Winds estimation (Zonal and Meridional) |
|
1824 | Output: Winds estimation (Zonal and Meridional) | |
1813 |
|
1825 | |||
1814 | Parameters affected: Winds |
|
1826 | Parameters affected: Winds | |
1815 | ''' |
|
1827 | ''' | |
1816 | # print arrayMeteor.shape |
|
1828 | # print arrayMeteor.shape | |
1817 | #Settings |
|
1829 | #Settings | |
1818 | nInt = (heightMax - heightMin)/2 |
|
1830 | nInt = (heightMax - heightMin)/2 | |
1819 | # print nInt |
|
1831 | # print nInt | |
1820 | nInt = int(nInt) |
|
1832 | nInt = int(nInt) | |
1821 | # print nInt |
|
1833 | # print nInt | |
1822 | winds = numpy.zeros((2,nInt))*numpy.nan |
|
1834 | winds = numpy.zeros((2,nInt))*numpy.nan | |
1823 |
|
1835 | |||
1824 | #Filter errors |
|
1836 | #Filter errors | |
1825 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] |
|
1837 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] | |
1826 | finalMeteor = arrayMeteor[error,:] |
|
1838 | finalMeteor = arrayMeteor[error,:] | |
1827 |
|
1839 | |||
1828 | #Meteor Histogram |
|
1840 | #Meteor Histogram | |
1829 | finalHeights = finalMeteor[:,2] |
|
1841 | finalHeights = finalMeteor[:,2] | |
1830 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) |
|
1842 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |
1831 | nMeteorsPerI = hist[0] |
|
1843 | nMeteorsPerI = hist[0] | |
1832 | heightPerI = hist[1] |
|
1844 | heightPerI = hist[1] | |
1833 |
|
1845 | |||
1834 | #Sort of meteors |
|
1846 | #Sort of meteors | |
1835 | indSort = finalHeights.argsort() |
|
1847 | indSort = finalHeights.argsort() | |
1836 | finalMeteor2 = finalMeteor[indSort,:] |
|
1848 | finalMeteor2 = finalMeteor[indSort,:] | |
1837 |
|
1849 | |||
1838 | # Calculating winds |
|
1850 | # Calculating winds | |
1839 | ind1 = 0 |
|
1851 | ind1 = 0 | |
1840 | ind2 = 0 |
|
1852 | ind2 = 0 | |
1841 |
|
1853 | |||
1842 | for i in range(nInt): |
|
1854 | for i in range(nInt): | |
1843 | nMet = nMeteorsPerI[i] |
|
1855 | nMet = nMeteorsPerI[i] | |
1844 | ind1 = ind2 |
|
1856 | ind1 = ind2 | |
1845 | ind2 = ind1 + nMet |
|
1857 | ind2 = ind1 + nMet | |
1846 |
|
1858 | |||
1847 | meteorAux = finalMeteor2[ind1:ind2,:] |
|
1859 | meteorAux = finalMeteor2[ind1:ind2,:] | |
1848 |
|
1860 | |||
1849 | if meteorAux.shape[0] >= meteorThresh: |
|
1861 | if meteorAux.shape[0] >= meteorThresh: | |
1850 | vel = meteorAux[:, 6] |
|
1862 | vel = meteorAux[:, 6] | |
1851 | zen = meteorAux[:, 4]*numpy.pi/180 |
|
1863 | zen = meteorAux[:, 4]*numpy.pi/180 | |
1852 | azim = meteorAux[:, 3]*numpy.pi/180 |
|
1864 | azim = meteorAux[:, 3]*numpy.pi/180 | |
1853 |
|
1865 | |||
1854 | n = numpy.cos(zen) |
|
1866 | n = numpy.cos(zen) | |
1855 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) |
|
1867 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |
1856 | # l = m*numpy.tan(azim) |
|
1868 | # l = m*numpy.tan(azim) | |
1857 | l = numpy.sin(zen)*numpy.sin(azim) |
|
1869 | l = numpy.sin(zen)*numpy.sin(azim) | |
1858 | m = numpy.sin(zen)*numpy.cos(azim) |
|
1870 | m = numpy.sin(zen)*numpy.cos(azim) | |
1859 |
|
1871 | |||
1860 | A = numpy.vstack((l, m)).transpose() |
|
1872 | A = numpy.vstack((l, m)).transpose() | |
1861 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) |
|
1873 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |
1862 | windsAux = numpy.dot(A1, vel) |
|
1874 | windsAux = numpy.dot(A1, vel) | |
1863 |
|
1875 | |||
1864 | winds[0,i] = windsAux[0] |
|
1876 | winds[0,i] = windsAux[0] | |
1865 | winds[1,i] = windsAux[1] |
|
1877 | winds[1,i] = windsAux[1] | |
1866 |
|
1878 | |||
1867 | return winds, heightPerI[:-1] |
|
1879 | return winds, heightPerI[:-1] | |
1868 |
|
1880 | |||
1869 | def techniqueNSM_SA(self, **kwargs): |
|
1881 | def techniqueNSM_SA(self, **kwargs): | |
1870 | metArray = kwargs['metArray'] |
|
1882 | metArray = kwargs['metArray'] | |
1871 | heightList = kwargs['heightList'] |
|
1883 | heightList = kwargs['heightList'] | |
1872 | timeList = kwargs['timeList'] |
|
1884 | timeList = kwargs['timeList'] | |
1873 |
|
1885 | |||
1874 | rx_location = kwargs['rx_location'] |
|
1886 | rx_location = kwargs['rx_location'] | |
1875 | groupList = kwargs['groupList'] |
|
1887 | groupList = kwargs['groupList'] | |
1876 | azimuth = kwargs['azimuth'] |
|
1888 | azimuth = kwargs['azimuth'] | |
1877 | dfactor = kwargs['dfactor'] |
|
1889 | dfactor = kwargs['dfactor'] | |
1878 | k = kwargs['k'] |
|
1890 | k = kwargs['k'] | |
1879 |
|
1891 | |||
1880 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) |
|
1892 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) | |
1881 | d = dist*dfactor |
|
1893 | d = dist*dfactor | |
1882 | #Phase calculation |
|
1894 | #Phase calculation | |
1883 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) |
|
1895 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) | |
1884 |
|
1896 | |||
1885 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities |
|
1897 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities | |
1886 |
|
1898 | |||
1887 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
1899 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
1888 | azimuth1 = azimuth1*numpy.pi/180 |
|
1900 | azimuth1 = azimuth1*numpy.pi/180 | |
1889 |
|
1901 | |||
1890 | for i in range(heightList.size): |
|
1902 | for i in range(heightList.size): | |
1891 | h = heightList[i] |
|
1903 | h = heightList[i] | |
1892 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] |
|
1904 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] | |
1893 | metHeight = metArray1[indH,:] |
|
1905 | metHeight = metArray1[indH,:] | |
1894 | if metHeight.shape[0] >= 2: |
|
1906 | if metHeight.shape[0] >= 2: | |
1895 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities |
|
1907 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities | |
1896 | iazim = metHeight[:,1].astype(int) |
|
1908 | iazim = metHeight[:,1].astype(int) | |
1897 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths |
|
1909 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths | |
1898 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) |
|
1910 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) | |
1899 | A = numpy.asmatrix(A) |
|
1911 | A = numpy.asmatrix(A) | |
1900 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() |
|
1912 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() | |
1901 | velHor = numpy.dot(A1,velAux) |
|
1913 | velHor = numpy.dot(A1,velAux) | |
1902 |
|
1914 | |||
1903 | velEst[i,:] = numpy.squeeze(velHor) |
|
1915 | velEst[i,:] = numpy.squeeze(velHor) | |
1904 | return velEst |
|
1916 | return velEst | |
1905 |
|
1917 | |||
1906 | def __getPhaseSlope(self, metArray, heightList, timeList): |
|
1918 | def __getPhaseSlope(self, metArray, heightList, timeList): | |
1907 | meteorList = [] |
|
1919 | meteorList = [] | |
1908 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 |
|
1920 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 | |
1909 | #Putting back together the meteor matrix |
|
1921 | #Putting back together the meteor matrix | |
1910 | utctime = metArray[:,0] |
|
1922 | utctime = metArray[:,0] | |
1911 | uniqueTime = numpy.unique(utctime) |
|
1923 | uniqueTime = numpy.unique(utctime) | |
1912 |
|
1924 | |||
1913 | phaseDerThresh = 0.5 |
|
1925 | phaseDerThresh = 0.5 | |
1914 | ippSeconds = timeList[1] - timeList[0] |
|
1926 | ippSeconds = timeList[1] - timeList[0] | |
1915 | sec = numpy.where(timeList>1)[0][0] |
|
1927 | sec = numpy.where(timeList>1)[0][0] | |
1916 | nPairs = metArray.shape[1] - 6 |
|
1928 | nPairs = metArray.shape[1] - 6 | |
1917 | nHeights = len(heightList) |
|
1929 | nHeights = len(heightList) | |
1918 |
|
1930 | |||
1919 | for t in uniqueTime: |
|
1931 | for t in uniqueTime: | |
1920 | metArray1 = metArray[utctime==t,:] |
|
1932 | metArray1 = metArray[utctime==t,:] | |
1921 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh |
|
1933 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh | |
1922 | tmet = metArray1[:,1].astype(int) |
|
1934 | tmet = metArray1[:,1].astype(int) | |
1923 | hmet = metArray1[:,2].astype(int) |
|
1935 | hmet = metArray1[:,2].astype(int) | |
1924 |
|
1936 | |||
1925 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) |
|
1937 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) | |
1926 | metPhase[:,:] = numpy.nan |
|
1938 | metPhase[:,:] = numpy.nan | |
1927 | metPhase[:,hmet,tmet] = metArray1[:,6:].T |
|
1939 | metPhase[:,hmet,tmet] = metArray1[:,6:].T | |
1928 |
|
1940 | |||
1929 | #Delete short trails |
|
1941 | #Delete short trails | |
1930 | metBool = ~numpy.isnan(metPhase[0,:,:]) |
|
1942 | metBool = ~numpy.isnan(metPhase[0,:,:]) | |
1931 | heightVect = numpy.sum(metBool, axis = 1) |
|
1943 | heightVect = numpy.sum(metBool, axis = 1) | |
1932 | metBool[heightVect<sec,:] = False |
|
1944 | metBool[heightVect<sec,:] = False | |
1933 | metPhase[:,heightVect<sec,:] = numpy.nan |
|
1945 | metPhase[:,heightVect<sec,:] = numpy.nan | |
1934 |
|
1946 | |||
1935 | #Derivative |
|
1947 | #Derivative | |
1936 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) |
|
1948 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) | |
1937 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) |
|
1949 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) | |
1938 | metPhase[phDerAux] = numpy.nan |
|
1950 | metPhase[phDerAux] = numpy.nan | |
1939 |
|
1951 | |||
1940 | #--------------------------METEOR DETECTION ----------------------------------------- |
|
1952 | #--------------------------METEOR DETECTION ----------------------------------------- | |
1941 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] |
|
1953 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] | |
1942 |
|
1954 | |||
1943 | for p in numpy.arange(nPairs): |
|
1955 | for p in numpy.arange(nPairs): | |
1944 | phase = metPhase[p,:,:] |
|
1956 | phase = metPhase[p,:,:] | |
1945 | phDer = metDer[p,:,:] |
|
1957 | phDer = metDer[p,:,:] | |
1946 |
|
1958 | |||
1947 | for h in indMet: |
|
1959 | for h in indMet: | |
1948 | height = heightList[h] |
|
1960 | height = heightList[h] | |
1949 | phase1 = phase[h,:] #82 |
|
1961 | phase1 = phase[h,:] #82 | |
1950 | phDer1 = phDer[h,:] |
|
1962 | phDer1 = phDer[h,:] | |
1951 |
|
1963 | |||
1952 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap |
|
1964 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap | |
1953 |
|
1965 | |||
1954 | indValid = numpy.where(~numpy.isnan(phase1))[0] |
|
1966 | indValid = numpy.where(~numpy.isnan(phase1))[0] | |
1955 | initMet = indValid[0] |
|
1967 | initMet = indValid[0] | |
1956 | endMet = 0 |
|
1968 | endMet = 0 | |
1957 |
|
1969 | |||
1958 | for i in range(len(indValid)-1): |
|
1970 | for i in range(len(indValid)-1): | |
1959 |
|
1971 | |||
1960 | #Time difference |
|
1972 | #Time difference | |
1961 | inow = indValid[i] |
|
1973 | inow = indValid[i] | |
1962 | inext = indValid[i+1] |
|
1974 | inext = indValid[i+1] | |
1963 | idiff = inext - inow |
|
1975 | idiff = inext - inow | |
1964 | #Phase difference |
|
1976 | #Phase difference | |
1965 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) |
|
1977 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) | |
1966 |
|
1978 | |||
1967 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor |
|
1979 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor | |
1968 | sizeTrail = inow - initMet + 1 |
|
1980 | sizeTrail = inow - initMet + 1 | |
1969 | if sizeTrail>3*sec: #Too short meteors |
|
1981 | if sizeTrail>3*sec: #Too short meteors | |
1970 | x = numpy.arange(initMet,inow+1)*ippSeconds |
|
1982 | x = numpy.arange(initMet,inow+1)*ippSeconds | |
1971 | y = phase1[initMet:inow+1] |
|
1983 | y = phase1[initMet:inow+1] | |
1972 | ynnan = ~numpy.isnan(y) |
|
1984 | ynnan = ~numpy.isnan(y) | |
1973 | x = x[ynnan] |
|
1985 | x = x[ynnan] | |
1974 | y = y[ynnan] |
|
1986 | y = y[ynnan] | |
1975 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) |
|
1987 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) | |
1976 | ylin = x*slope + intercept |
|
1988 | ylin = x*slope + intercept | |
1977 | rsq = r_value**2 |
|
1989 | rsq = r_value**2 | |
1978 | if rsq > 0.5: |
|
1990 | if rsq > 0.5: | |
1979 | vel = slope#*height*1000/(k*d) |
|
1991 | vel = slope#*height*1000/(k*d) | |
1980 | estAux = numpy.array([utctime,p,height, vel, rsq]) |
|
1992 | estAux = numpy.array([utctime,p,height, vel, rsq]) | |
1981 | meteorList.append(estAux) |
|
1993 | meteorList.append(estAux) | |
1982 | initMet = inext |
|
1994 | initMet = inext | |
1983 | metArray2 = numpy.array(meteorList) |
|
1995 | metArray2 = numpy.array(meteorList) | |
1984 |
|
1996 | |||
1985 | return metArray2 |
|
1997 | return metArray2 | |
1986 |
|
1998 | |||
1987 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): |
|
1999 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): | |
1988 |
|
2000 | |||
1989 | azimuth1 = numpy.zeros(len(pairslist)) |
|
2001 | azimuth1 = numpy.zeros(len(pairslist)) | |
1990 | dist = numpy.zeros(len(pairslist)) |
|
2002 | dist = numpy.zeros(len(pairslist)) | |
1991 |
|
2003 | |||
1992 | for i in range(len(rx_location)): |
|
2004 | for i in range(len(rx_location)): | |
1993 | ch0 = pairslist[i][0] |
|
2005 | ch0 = pairslist[i][0] | |
1994 | ch1 = pairslist[i][1] |
|
2006 | ch1 = pairslist[i][1] | |
1995 |
|
2007 | |||
1996 | diffX = rx_location[ch0][0] - rx_location[ch1][0] |
|
2008 | diffX = rx_location[ch0][0] - rx_location[ch1][0] | |
1997 | diffY = rx_location[ch0][1] - rx_location[ch1][1] |
|
2009 | diffY = rx_location[ch0][1] - rx_location[ch1][1] | |
1998 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi |
|
2010 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi | |
1999 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) |
|
2011 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) | |
2000 |
|
2012 | |||
2001 | azimuth1 -= azimuth0 |
|
2013 | azimuth1 -= azimuth0 | |
2002 | return azimuth1, dist |
|
2014 | return azimuth1, dist | |
2003 |
|
2015 | |||
2004 | def techniqueNSM_DBS(self, **kwargs): |
|
2016 | def techniqueNSM_DBS(self, **kwargs): | |
2005 | metArray = kwargs['metArray'] |
|
2017 | metArray = kwargs['metArray'] | |
2006 | heightList = kwargs['heightList'] |
|
2018 | heightList = kwargs['heightList'] | |
2007 | timeList = kwargs['timeList'] |
|
2019 | timeList = kwargs['timeList'] | |
2008 | zenithList = kwargs['zenithList'] |
|
2020 | zenithList = kwargs['zenithList'] | |
2009 | nChan = numpy.max(cmet) + 1 |
|
2021 | nChan = numpy.max(cmet) + 1 | |
2010 | nHeights = len(heightList) |
|
2022 | nHeights = len(heightList) | |
2011 |
|
2023 | |||
2012 | utctime = metArray[:,0] |
|
2024 | utctime = metArray[:,0] | |
2013 | cmet = metArray[:,1] |
|
2025 | cmet = metArray[:,1] | |
2014 | hmet = metArray1[:,3].astype(int) |
|
2026 | hmet = metArray1[:,3].astype(int) | |
2015 | h1met = heightList[hmet]*zenithList[cmet] |
|
2027 | h1met = heightList[hmet]*zenithList[cmet] | |
2016 | vmet = metArray1[:,5] |
|
2028 | vmet = metArray1[:,5] | |
2017 |
|
2029 | |||
2018 | for i in range(nHeights - 1): |
|
2030 | for i in range(nHeights - 1): | |
2019 | hmin = heightList[i] |
|
2031 | hmin = heightList[i] | |
2020 | hmax = heightList[i + 1] |
|
2032 | hmax = heightList[i + 1] | |
2021 |
|
2033 | |||
2022 | vthisH = vmet[(h1met>=hmin) & (h1met<hmax)] |
|
2034 | vthisH = vmet[(h1met>=hmin) & (h1met<hmax)] | |
2023 |
|
2035 | |||
2024 |
|
2036 | |||
2025 |
|
2037 | |||
2026 | return data_output |
|
2038 | return data_output | |
2027 |
|
2039 | |||
2028 | def run(self, dataOut, technique, **kwargs): |
|
2040 | def run(self, dataOut, technique, **kwargs): | |
2029 |
|
2041 | |||
2030 | param = dataOut.data_param |
|
2042 | param = dataOut.data_param | |
2031 | if dataOut.abscissaList != None: |
|
2043 | if dataOut.abscissaList != None: | |
2032 | absc = dataOut.abscissaList[:-1] |
|
2044 | absc = dataOut.abscissaList[:-1] | |
2033 | noise = dataOut.noise |
|
2045 | noise = dataOut.noise | |
2034 | heightList = dataOut.heightList |
|
2046 | heightList = dataOut.heightList | |
2035 | SNR = dataOut.data_SNR |
|
2047 | SNR = dataOut.data_SNR | |
2036 |
|
2048 | |||
2037 | if technique == 'DBS': |
|
2049 | if technique == 'DBS': | |
2038 |
|
2050 | |||
2039 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): |
|
2051 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): | |
2040 | theta_x = numpy.array(kwargs['dirCosx']) |
|
2052 | theta_x = numpy.array(kwargs['dirCosx']) | |
2041 | theta_y = numpy.array(kwargs['dirCosy']) |
|
2053 | theta_y = numpy.array(kwargs['dirCosy']) | |
2042 | else: |
|
2054 | else: | |
2043 | elev = numpy.array(kwargs['elevation']) |
|
2055 | elev = numpy.array(kwargs['elevation']) | |
2044 | azim = numpy.array(kwargs['azimuth']) |
|
2056 | azim = numpy.array(kwargs['azimuth']) | |
2045 | theta_x, theta_y = self.__calculateCosDir(elev, azim) |
|
2057 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |
2046 | azimuth = kwargs['correctAzimuth'] |
|
2058 | azimuth = kwargs['correctAzimuth'] | |
2047 | if kwargs.has_key('horizontalOnly'): |
|
2059 | if kwargs.has_key('horizontalOnly'): | |
2048 | horizontalOnly = kwargs['horizontalOnly'] |
|
2060 | horizontalOnly = kwargs['horizontalOnly'] | |
2049 | else: horizontalOnly = False |
|
2061 | else: horizontalOnly = False | |
2050 | if kwargs.has_key('correctFactor'): |
|
2062 | if kwargs.has_key('correctFactor'): | |
2051 | correctFactor = kwargs['correctFactor'] |
|
2063 | correctFactor = kwargs['correctFactor'] | |
2052 | else: correctFactor = 1 |
|
2064 | else: correctFactor = 1 | |
2053 | if kwargs.has_key('channelList'): |
|
2065 | if kwargs.has_key('channelList'): | |
2054 | channelList = kwargs['channelList'] |
|
2066 | channelList = kwargs['channelList'] | |
2055 | if len(channelList) == 2: |
|
2067 | if len(channelList) == 2: | |
2056 | horizontalOnly = True |
|
2068 | horizontalOnly = True | |
2057 | arrayChannel = numpy.array(channelList) |
|
2069 | arrayChannel = numpy.array(channelList) | |
2058 | param = param[arrayChannel,:,:] |
|
2070 | param = param[arrayChannel,:,:] | |
2059 | theta_x = theta_x[arrayChannel] |
|
2071 | theta_x = theta_x[arrayChannel] | |
2060 | theta_y = theta_y[arrayChannel] |
|
2072 | theta_y = theta_y[arrayChannel] | |
2061 |
|
2073 | |||
2062 | velRadial0 = param[:,1,:] #Radial velocity |
|
2074 | velRadial0 = param[:,1,:] #Radial velocity | |
2063 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(velRadial0, theta_x, theta_y, azimuth, correctFactor, horizontalOnly, heightList, SNR) #DBS Function |
|
2075 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(velRadial0, theta_x, theta_y, azimuth, correctFactor, horizontalOnly, heightList, SNR) #DBS Function | |
2064 | dataOut.utctimeInit = dataOut.utctime |
|
2076 | dataOut.utctimeInit = dataOut.utctime | |
2065 | dataOut.outputInterval = dataOut.paramInterval |
|
2077 | dataOut.outputInterval = dataOut.paramInterval | |
2066 |
|
2078 | |||
2067 | elif technique == 'SA': |
|
2079 | elif technique == 'SA': | |
2068 |
|
2080 | |||
2069 | #Parameters |
|
2081 | #Parameters | |
2070 | position_x = kwargs['positionX'] |
|
2082 | position_x = kwargs['positionX'] | |
2071 | position_y = kwargs['positionY'] |
|
2083 | position_y = kwargs['positionY'] | |
2072 | azimuth = kwargs['azimuth'] |
|
2084 | azimuth = kwargs['azimuth'] | |
2073 |
|
2085 | |||
2074 | if kwargs.has_key('crosspairsList'): |
|
2086 | if kwargs.has_key('crosspairsList'): | |
2075 | pairs = kwargs['crosspairsList'] |
|
2087 | pairs = kwargs['crosspairsList'] | |
2076 | else: |
|
2088 | else: | |
2077 | pairs = None |
|
2089 | pairs = None | |
2078 |
|
2090 | |||
2079 | if kwargs.has_key('correctFactor'): |
|
2091 | if kwargs.has_key('correctFactor'): | |
2080 | correctFactor = kwargs['correctFactor'] |
|
2092 | correctFactor = kwargs['correctFactor'] | |
2081 | else: |
|
2093 | else: | |
2082 | correctFactor = 1 |
|
2094 | correctFactor = 1 | |
2083 |
|
2095 | |||
2084 | tau = dataOut.data_param |
|
2096 | tau = dataOut.data_param | |
2085 | _lambda = dataOut.C/dataOut.frequency |
|
2097 | _lambda = dataOut.C/dataOut.frequency | |
2086 | pairsList = dataOut.groupList |
|
2098 | pairsList = dataOut.groupList | |
2087 | nChannels = dataOut.nChannels |
|
2099 | nChannels = dataOut.nChannels | |
2088 |
|
2100 | |||
2089 | dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) |
|
2101 | dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) | |
2090 | dataOut.utctimeInit = dataOut.utctime |
|
2102 | dataOut.utctimeInit = dataOut.utctime | |
2091 | dataOut.outputInterval = dataOut.timeInterval |
|
2103 | dataOut.outputInterval = dataOut.timeInterval | |
2092 |
|
2104 | |||
2093 | elif technique == 'Meteors': |
|
2105 | elif technique == 'Meteors': | |
2094 | dataOut.flagNoData = True |
|
2106 | dataOut.flagNoData = True | |
2095 | self.__dataReady = False |
|
2107 | self.__dataReady = False | |
2096 |
|
2108 | |||
2097 | if kwargs.has_key('nHours'): |
|
2109 | if kwargs.has_key('nHours'): | |
2098 | nHours = kwargs['nHours'] |
|
2110 | nHours = kwargs['nHours'] | |
2099 | else: |
|
2111 | else: | |
2100 | nHours = 1 |
|
2112 | nHours = 1 | |
2101 |
|
2113 | |||
2102 | if kwargs.has_key('meteorsPerBin'): |
|
2114 | if kwargs.has_key('meteorsPerBin'): | |
2103 | meteorThresh = kwargs['meteorsPerBin'] |
|
2115 | meteorThresh = kwargs['meteorsPerBin'] | |
2104 | else: |
|
2116 | else: | |
2105 | meteorThresh = 6 |
|
2117 | meteorThresh = 6 | |
2106 |
|
2118 | |||
2107 | if kwargs.has_key('hmin'): |
|
2119 | if kwargs.has_key('hmin'): | |
2108 | hmin = kwargs['hmin'] |
|
2120 | hmin = kwargs['hmin'] | |
2109 | else: hmin = 70 |
|
2121 | else: hmin = 70 | |
2110 | if kwargs.has_key('hmax'): |
|
2122 | if kwargs.has_key('hmax'): | |
2111 | hmax = kwargs['hmax'] |
|
2123 | hmax = kwargs['hmax'] | |
2112 | else: hmax = 110 |
|
2124 | else: hmax = 110 | |
2113 |
|
2125 | |||
2114 | dataOut.outputInterval = nHours*3600 |
|
2126 | dataOut.outputInterval = nHours*3600 | |
2115 |
|
2127 | |||
2116 | if self.__isConfig == False: |
|
2128 | if self.__isConfig == False: | |
2117 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2129 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2118 | #Get Initial LTC time |
|
2130 | #Get Initial LTC time | |
2119 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2131 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2120 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2132 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2121 |
|
2133 | |||
2122 | self.__isConfig = True |
|
2134 | self.__isConfig = True | |
2123 |
|
2135 | |||
2124 | if self.__buffer == None: |
|
2136 | if self.__buffer == None: | |
2125 | self.__buffer = dataOut.data_param |
|
2137 | self.__buffer = dataOut.data_param | |
2126 | self.__firstdata = copy.copy(dataOut) |
|
2138 | self.__firstdata = copy.copy(dataOut) | |
2127 |
|
2139 | |||
2128 | else: |
|
2140 | else: | |
2129 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2141 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2130 |
|
2142 | |||
2131 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2143 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2132 |
|
2144 | |||
2133 | if self.__dataReady: |
|
2145 | if self.__dataReady: | |
2134 | dataOut.utctimeInit = self.__initime |
|
2146 | dataOut.utctimeInit = self.__initime | |
2135 |
|
2147 | |||
2136 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2148 | self.__initime += dataOut.outputInterval #to erase time offset | |
2137 |
|
2149 | |||
2138 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) |
|
2150 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |
2139 | dataOut.flagNoData = False |
|
2151 | dataOut.flagNoData = False | |
2140 | self.__buffer = None |
|
2152 | self.__buffer = None | |
2141 |
|
2153 | |||
2142 | elif technique == 'Meteors1': |
|
2154 | elif technique == 'Meteors1': | |
2143 | dataOut.flagNoData = True |
|
2155 | dataOut.flagNoData = True | |
2144 | self.__dataReady = False |
|
2156 | self.__dataReady = False | |
2145 |
|
2157 | |||
2146 | if kwargs.has_key('nMins'): |
|
2158 | if kwargs.has_key('nMins'): | |
2147 | nMins = kwargs['nMins'] |
|
2159 | nMins = kwargs['nMins'] | |
2148 | else: nMins = 20 |
|
2160 | else: nMins = 20 | |
2149 | if kwargs.has_key('rx_location'): |
|
2161 | if kwargs.has_key('rx_location'): | |
2150 | rx_location = kwargs['rx_location'] |
|
2162 | rx_location = kwargs['rx_location'] | |
2151 | else: rx_location = [(0,1),(1,1),(1,0)] |
|
2163 | else: rx_location = [(0,1),(1,1),(1,0)] | |
2152 | if kwargs.has_key('azimuth'): |
|
2164 | if kwargs.has_key('azimuth'): | |
2153 | azimuth = kwargs['azimuth'] |
|
2165 | azimuth = kwargs['azimuth'] | |
2154 | else: azimuth = 51 |
|
2166 | else: azimuth = 51 | |
2155 | if kwargs.has_key('dfactor'): |
|
2167 | if kwargs.has_key('dfactor'): | |
2156 | dfactor = kwargs['dfactor'] |
|
2168 | dfactor = kwargs['dfactor'] | |
2157 | if kwargs.has_key('mode'): |
|
2169 | if kwargs.has_key('mode'): | |
2158 | mode = kwargs['mode'] |
|
2170 | mode = kwargs['mode'] | |
2159 | else: mode = 'SA' |
|
2171 | else: mode = 'SA' | |
2160 |
|
2172 | |||
2161 | #Borrar luego esto |
|
2173 | #Borrar luego esto | |
2162 | if dataOut.groupList == None: |
|
2174 | if dataOut.groupList == None: | |
2163 | dataOut.groupList = [(0,1),(0,2),(1,2)] |
|
2175 | dataOut.groupList = [(0,1),(0,2),(1,2)] | |
2164 | groupList = dataOut.groupList |
|
2176 | groupList = dataOut.groupList | |
2165 | C = 3e8 |
|
2177 | C = 3e8 | |
2166 | freq = 50e6 |
|
2178 | freq = 50e6 | |
2167 | lamb = C/freq |
|
2179 | lamb = C/freq | |
2168 | k = 2*numpy.pi/lamb |
|
2180 | k = 2*numpy.pi/lamb | |
2169 |
|
2181 | |||
2170 | timeList = dataOut.abscissaList |
|
2182 | timeList = dataOut.abscissaList | |
2171 | heightList = dataOut.heightList |
|
2183 | heightList = dataOut.heightList | |
2172 |
|
2184 | |||
2173 | if self.__isConfig == False: |
|
2185 | if self.__isConfig == False: | |
2174 | dataOut.outputInterval = nMins*60 |
|
2186 | dataOut.outputInterval = nMins*60 | |
2175 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2187 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2176 | #Get Initial LTC time |
|
2188 | #Get Initial LTC time | |
2177 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2189 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2178 | minuteAux = initime.minute |
|
2190 | minuteAux = initime.minute | |
2179 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) |
|
2191 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) | |
2180 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2192 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2181 |
|
2193 | |||
2182 | self.__isConfig = True |
|
2194 | self.__isConfig = True | |
2183 |
|
2195 | |||
2184 | if self.__buffer == None: |
|
2196 | if self.__buffer == None: | |
2185 | self.__buffer = dataOut.data_param |
|
2197 | self.__buffer = dataOut.data_param | |
2186 | self.__firstdata = copy.copy(dataOut) |
|
2198 | self.__firstdata = copy.copy(dataOut) | |
2187 |
|
2199 | |||
2188 | else: |
|
2200 | else: | |
2189 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2201 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2190 |
|
2202 | |||
2191 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2203 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2192 |
|
2204 | |||
2193 | if self.__dataReady: |
|
2205 | if self.__dataReady: | |
2194 | dataOut.utctimeInit = self.__initime |
|
2206 | dataOut.utctimeInit = self.__initime | |
2195 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2207 | self.__initime += dataOut.outputInterval #to erase time offset | |
2196 |
|
2208 | |||
2197 | metArray = self.__buffer |
|
2209 | metArray = self.__buffer | |
2198 | if mode == 'SA': |
|
2210 | if mode == 'SA': | |
2199 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) |
|
2211 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) | |
2200 | elif mode == 'DBS': |
|
2212 | elif mode == 'DBS': | |
2201 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList) |
|
2213 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList) | |
2202 | dataOut.data_output = dataOut.data_output.T |
|
2214 | dataOut.data_output = dataOut.data_output.T | |
2203 | dataOut.flagNoData = False |
|
2215 | dataOut.flagNoData = False | |
2204 | self.__buffer = None |
|
2216 | self.__buffer = None | |
2205 |
|
2217 | |||
2206 | return |
|
2218 | return | |
2207 |
|
2219 | |||
2208 | class EWDriftsEstimation(Operation): |
|
2220 | class EWDriftsEstimation(Operation): | |
2209 |
|
2221 | |||
2210 | def __init__(self): |
|
2222 | def __init__(self): | |
2211 | Operation.__init__(self) |
|
2223 | Operation.__init__(self) | |
2212 |
|
2224 | |||
2213 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
2225 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
2214 | listPhi = phi.tolist() |
|
2226 | listPhi = phi.tolist() | |
2215 | maxid = listPhi.index(max(listPhi)) |
|
2227 | maxid = listPhi.index(max(listPhi)) | |
2216 | minid = listPhi.index(min(listPhi)) |
|
2228 | minid = listPhi.index(min(listPhi)) | |
2217 |
|
2229 | |||
2218 | rango = range(len(phi)) |
|
2230 | rango = range(len(phi)) | |
2219 | # rango = numpy.delete(rango,maxid) |
|
2231 | # rango = numpy.delete(rango,maxid) | |
2220 |
|
2232 | |||
2221 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
2233 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
2222 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
2234 | heiRangAux = heiRang*math.cos(phi[minid]) | |
2223 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
2235 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
2224 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
2236 | heiRang1 = numpy.delete(heiRang1,indOut) | |
2225 |
|
2237 | |||
2226 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2238 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2227 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2239 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2228 |
|
2240 | |||
2229 | for i in rango: |
|
2241 | for i in rango: | |
2230 | x = heiRang*math.cos(phi[i]) |
|
2242 | x = heiRang*math.cos(phi[i]) | |
2231 | y1 = velRadial[i,:] |
|
2243 | y1 = velRadial[i,:] | |
2232 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
2244 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
2233 |
|
2245 | |||
2234 | x1 = heiRang1 |
|
2246 | x1 = heiRang1 | |
2235 | y11 = f1(x1) |
|
2247 | y11 = f1(x1) | |
2236 |
|
2248 | |||
2237 | y2 = SNR[i,:] |
|
2249 | y2 = SNR[i,:] | |
2238 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
2250 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
2239 | y21 = f2(x1) |
|
2251 | y21 = f2(x1) | |
2240 |
|
2252 | |||
2241 | velRadial1[i,:] = y11 |
|
2253 | velRadial1[i,:] = y11 | |
2242 | SNR1[i,:] = y21 |
|
2254 | SNR1[i,:] = y21 | |
2243 |
|
2255 | |||
2244 | return heiRang1, velRadial1, SNR1 |
|
2256 | return heiRang1, velRadial1, SNR1 | |
2245 |
|
2257 | |||
2246 | def run(self, dataOut, zenith, zenithCorrection): |
|
2258 | def run(self, dataOut, zenith, zenithCorrection): | |
2247 | heiRang = dataOut.heightList |
|
2259 | heiRang = dataOut.heightList | |
2248 | velRadial = dataOut.data_param[:,3,:] |
|
2260 | velRadial = dataOut.data_param[:,3,:] | |
2249 | SNR = dataOut.data_SNR |
|
2261 | SNR = dataOut.data_SNR | |
2250 |
|
2262 | |||
2251 | zenith = numpy.array(zenith) |
|
2263 | zenith = numpy.array(zenith) | |
2252 | zenith -= zenithCorrection |
|
2264 | zenith -= zenithCorrection | |
2253 | zenith *= numpy.pi/180 |
|
2265 | zenith *= numpy.pi/180 | |
2254 |
|
2266 | |||
2255 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) |
|
2267 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |
2256 |
|
2268 | |||
2257 | alp = zenith[0] |
|
2269 | alp = zenith[0] | |
2258 | bet = zenith[1] |
|
2270 | bet = zenith[1] | |
2259 |
|
2271 | |||
2260 | w_w = velRadial1[0,:] |
|
2272 | w_w = velRadial1[0,:] | |
2261 | w_e = velRadial1[1,:] |
|
2273 | w_e = velRadial1[1,:] | |
2262 |
|
2274 | |||
2263 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) |
|
2275 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |
2264 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) |
|
2276 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |
2265 |
|
2277 | |||
2266 | winds = numpy.vstack((u,w)) |
|
2278 | winds = numpy.vstack((u,w)) | |
2267 |
|
2279 | |||
2268 | dataOut.heightList = heiRang1 |
|
2280 | dataOut.heightList = heiRang1 | |
2269 | dataOut.data_output = winds |
|
2281 | dataOut.data_output = winds | |
2270 | dataOut.data_SNR = SNR1 |
|
2282 | dataOut.data_SNR = SNR1 | |
2271 |
|
2283 | |||
2272 | dataOut.utctimeInit = dataOut.utctime |
|
2284 | dataOut.utctimeInit = dataOut.utctime | |
2273 | dataOut.outputInterval = dataOut.timeInterval |
|
2285 | dataOut.outputInterval = dataOut.timeInterval | |
2274 | return |
|
2286 | return | |
2275 |
|
2287 | |||
2276 | class PhaseCalibration(Operation): |
|
2288 | class PhaseCalibration(Operation): | |
2277 |
|
2289 | |||
2278 | __buffer = None |
|
2290 | __buffer = None | |
2279 |
|
2291 | |||
2280 | __initime = None |
|
2292 | __initime = None | |
2281 |
|
2293 | |||
2282 | __dataReady = False |
|
2294 | __dataReady = False | |
2283 |
|
2295 | |||
2284 | __isConfig = False |
|
2296 | __isConfig = False | |
2285 |
|
2297 | |||
2286 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): |
|
2298 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): | |
2287 |
|
2299 | |||
2288 | dataTime = currentTime + paramInterval |
|
2300 | dataTime = currentTime + paramInterval | |
2289 | deltaTime = dataTime - initTime |
|
2301 | deltaTime = dataTime - initTime | |
2290 |
|
2302 | |||
2291 | if deltaTime >= outputInterval or deltaTime < 0: |
|
2303 | if deltaTime >= outputInterval or deltaTime < 0: | |
2292 | return True |
|
2304 | return True | |
2293 |
|
2305 | |||
2294 | return False |
|
2306 | return False | |
2295 |
|
2307 | |||
2296 |
def __getGammas(self, pairs, |
|
2308 | def __getGammas(self, pairs, d, phases): | |
2297 | gammas = numpy.zeros(2) |
|
2309 | gammas = numpy.zeros(2) | |
2298 |
|
2310 | |||
2299 | for i in range(len(pairs)): |
|
2311 | for i in range(len(pairs)): | |
2300 |
|
2312 | |||
2301 | pairi = pairs[i] |
|
2313 | pairi = pairs[i] | |
2302 |
|
2314 | |||
|
2315 | phip3 = phases[:,pairi[1]] | |||
|
2316 | d3 = d[pairi[1]] | |||
|
2317 | phip2 = phases[:,pairi[0]] | |||
|
2318 | d2 = d[pairi[0]] | |||
2303 | #Calculating gamma |
|
2319 | #Calculating gamma | |
2304 |
jdcos = |
|
2320 | # jdcos = alp1/(k*d1) | |
2305 |
jgamma = numpy.angle(numpy.exp(1j*( |
|
2321 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) | |
2306 |
|
2322 | jgamma = -phip2*d3/d2 - phip3 | ||
|
2323 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) | |||
|
2324 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi | |||
|
2325 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi | |||
|
2326 | ||||
2307 | #Revised distribution |
|
2327 | #Revised distribution | |
2308 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) |
|
2328 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) | |
2309 |
|
2329 | |||
2310 | #Histogram |
|
2330 | #Histogram | |
2311 | nBins = 64.0 |
|
2331 | nBins = 64.0 | |
2312 | rmin = -0.5*numpy.pi |
|
2332 | rmin = -0.5*numpy.pi | |
2313 | rmax = 0.5*numpy.pi |
|
2333 | rmax = 0.5*numpy.pi | |
2314 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) |
|
2334 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) | |
2315 |
|
2335 | |||
2316 | meteorsY = phaseHisto[0] |
|
2336 | meteorsY = phaseHisto[0] | |
2317 | phasesX = phaseHisto[1][:-1] |
|
2337 | phasesX = phaseHisto[1][:-1] | |
2318 | width = phasesX[1] - phasesX[0] |
|
2338 | width = phasesX[1] - phasesX[0] | |
2319 | phasesX += width/2 |
|
2339 | phasesX += width/2 | |
2320 |
|
2340 | |||
2321 | #Gaussian aproximation |
|
2341 | #Gaussian aproximation | |
2322 | bpeak = meteorsY.argmax() |
|
2342 | bpeak = meteorsY.argmax() | |
2323 | peak = meteorsY.max() |
|
2343 | peak = meteorsY.max() | |
2324 | jmin = bpeak - 5 |
|
2344 | jmin = bpeak - 5 | |
2325 | jmax = bpeak + 5 + 1 |
|
2345 | jmax = bpeak + 5 + 1 | |
2326 |
|
2346 | |||
2327 | if jmin<0: |
|
2347 | if jmin<0: | |
2328 | jmin = 0 |
|
2348 | jmin = 0 | |
2329 | jmax = 6 |
|
2349 | jmax = 6 | |
2330 | elif jmax > meteorsY.size: |
|
2350 | elif jmax > meteorsY.size: | |
2331 | jmin = meteorsY.size - 6 |
|
2351 | jmin = meteorsY.size - 6 | |
2332 | jmax = meteorsY.size |
|
2352 | jmax = meteorsY.size | |
2333 |
|
2353 | |||
2334 | x0 = numpy.array([peak,bpeak,50]) |
|
2354 | x0 = numpy.array([peak,bpeak,50]) | |
2335 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) |
|
2355 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) | |
2336 |
|
2356 | |||
2337 | #Gammas |
|
2357 | #Gammas | |
2338 | gammas[i] = coeff[0][1] |
|
2358 | gammas[i] = coeff[0][1] | |
2339 |
|
2359 | |||
2340 | return gammas |
|
2360 | return gammas | |
2341 |
|
2361 | |||
2342 | def __residualFunction(self, coeffs, y, t): |
|
2362 | def __residualFunction(self, coeffs, y, t): | |
2343 |
|
2363 | |||
2344 | return y - self.__gauss_function(t, coeffs) |
|
2364 | return y - self.__gauss_function(t, coeffs) | |
2345 |
|
2365 | |||
2346 | def __gauss_function(self, t, coeffs): |
|
2366 | def __gauss_function(self, t, coeffs): | |
2347 |
|
2367 | |||
2348 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) |
|
2368 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) | |
2349 |
|
2369 | |||
2350 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): |
|
2370 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): | |
2351 | meteorOps = MeteorOperations() |
|
2371 | meteorOps = MeteorOperations() | |
2352 | nchan = 4 |
|
2372 | nchan = 4 | |
2353 | pairx = pairsList[0] |
|
2373 | pairx = pairsList[0] | |
2354 | pairy = pairsList[1] |
|
2374 | pairy = pairsList[1] | |
2355 | center_xangle = 0 |
|
2375 | center_xangle = 0 | |
2356 | center_yangle = 0 |
|
2376 | center_yangle = 0 | |
2357 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) |
|
2377 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) | |
2358 | ntimes = len(range_angle) |
|
2378 | ntimes = len(range_angle) | |
2359 |
|
2379 | |||
2360 | nstepsx = 20.0 |
|
2380 | nstepsx = 20.0 | |
2361 | nstepsy = 20.0 |
|
2381 | nstepsy = 20.0 | |
2362 |
|
2382 | |||
2363 | for iz in range(ntimes): |
|
2383 | for iz in range(ntimes): | |
2364 | min_xangle = -range_angle[iz]/2 + center_xangle |
|
2384 | min_xangle = -range_angle[iz]/2 + center_xangle | |
2365 | max_xangle = range_angle[iz]/2 + center_xangle |
|
2385 | max_xangle = range_angle[iz]/2 + center_xangle | |
2366 | min_yangle = -range_angle[iz]/2 + center_yangle |
|
2386 | min_yangle = -range_angle[iz]/2 + center_yangle | |
2367 | max_yangle = range_angle[iz]/2 + center_yangle |
|
2387 | max_yangle = range_angle[iz]/2 + center_yangle | |
2368 |
|
2388 | |||
2369 | inc_x = (max_xangle-min_xangle)/nstepsx |
|
2389 | inc_x = (max_xangle-min_xangle)/nstepsx | |
2370 | inc_y = (max_yangle-min_yangle)/nstepsy |
|
2390 | inc_y = (max_yangle-min_yangle)/nstepsy | |
2371 |
|
2391 | |||
2372 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle |
|
2392 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle | |
2373 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle |
|
2393 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle | |
2374 | penalty = numpy.zeros((nstepsx,nstepsy)) |
|
2394 | penalty = numpy.zeros((nstepsx,nstepsy)) | |
2375 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) |
|
2395 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) | |
2376 | jph = numpy.zeros(nchan) |
|
2396 | jph = numpy.zeros(nchan) | |
2377 |
|
2397 | |||
2378 | # Iterations looking for the offset |
|
2398 | # Iterations looking for the offset | |
2379 | for iy in range(int(nstepsy)): |
|
2399 | for iy in range(int(nstepsy)): | |
2380 | for ix in range(int(nstepsx)): |
|
2400 | for ix in range(int(nstepsx)): | |
2381 | jph[pairy[1]] = alpha_y[iy] |
|
2401 | jph[pairy[1]] = alpha_y[iy] | |
2382 |
jph[pairy[0]] = -gammas[1] |
|
2402 | jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] | |
2383 |
|
2403 | |||
2384 | jph[pairx[1]] = alpha_x[ix] |
|
2404 | jph[pairx[1]] = alpha_x[ix] | |
2385 |
jph[pairx[0]] = -gammas[0] |
|
2405 | jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] | |
2386 |
|
2406 | |||
2387 | jph_array[:,ix,iy] = jph |
|
2407 | jph_array[:,ix,iy] = jph | |
2388 |
|
2408 | |||
2389 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, jph) |
|
2409 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) | |
2390 | error = meteorsArray1[:,-1] |
|
2410 | error = meteorsArray1[:,-1] | |
2391 | ind1 = numpy.where(error==0)[0] |
|
2411 | ind1 = numpy.where(error==0)[0] | |
2392 | penalty[ix,iy] = ind1.size |
|
2412 | penalty[ix,iy] = ind1.size | |
2393 |
|
2413 | |||
2394 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) |
|
2414 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) | |
2395 | phOffset = jph_array[:,i,j] |
|
2415 | phOffset = jph_array[:,i,j] | |
2396 |
|
2416 | |||
2397 | center_xangle = phOffset[pairx[1]] |
|
2417 | center_xangle = phOffset[pairx[1]] | |
2398 | center_yangle = phOffset[pairy[1]] |
|
2418 | center_yangle = phOffset[pairy[1]] | |
2399 |
|
2419 | |||
2400 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) |
|
2420 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) | |
2401 | phOffset = phOffset*180/numpy.pi |
|
2421 | phOffset = phOffset*180/numpy.pi | |
2402 | return phOffset |
|
2422 | return phOffset | |
2403 |
|
2423 | |||
2404 |
|
2424 | |||
2405 |
def run(self, dataOut, hmin, hmax, |
|
2425 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): | |
2406 |
|
2426 | |||
2407 | dataOut.flagNoData = True |
|
2427 | dataOut.flagNoData = True | |
2408 | self.__dataReady = False |
|
2428 | self.__dataReady = False | |
2409 | dataOut.outputInterval = nHours*3600 |
|
2429 | dataOut.outputInterval = nHours*3600 | |
2410 |
|
2430 | |||
2411 | if self.__isConfig == False: |
|
2431 | if self.__isConfig == False: | |
2412 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2432 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2413 | #Get Initial LTC time |
|
2433 | #Get Initial LTC time | |
2414 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2434 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2415 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2435 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2416 |
|
2436 | |||
2417 | self.__isConfig = True |
|
2437 | self.__isConfig = True | |
2418 |
|
2438 | |||
2419 | if self.__buffer == None: |
|
2439 | if self.__buffer == None: | |
2420 | self.__buffer = dataOut.data_param.copy() |
|
2440 | self.__buffer = dataOut.data_param.copy() | |
2421 |
|
2441 | |||
2422 | else: |
|
2442 | else: | |
2423 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2443 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2424 |
|
2444 | |||
2425 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2445 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2426 |
|
2446 | |||
2427 | if self.__dataReady: |
|
2447 | if self.__dataReady: | |
2428 | dataOut.utctimeInit = self.__initime |
|
2448 | dataOut.utctimeInit = self.__initime | |
2429 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2449 | self.__initime += dataOut.outputInterval #to erase time offset | |
2430 |
|
2450 | |||
2431 | freq = dataOut.frequency |
|
2451 | freq = dataOut.frequency | |
2432 | c = dataOut.C #m/s |
|
2452 | c = dataOut.C #m/s | |
2433 | lamb = c/freq |
|
2453 | lamb = c/freq | |
2434 | k = 2*numpy.pi/lamb |
|
2454 | k = 2*numpy.pi/lamb | |
2435 | azimuth = 0 |
|
2455 | azimuth = 0 | |
2436 | h = (hmin, hmax) |
|
2456 | h = (hmin, hmax) | |
2437 | pairs = ((0,1),(2,3)) |
|
2457 | pairs = ((0,1),(2,3)) | |
2438 | distances = [direction25X*2.5*lamb, direction20X*2*lamb, direction25Y*2.5*lamb, direction20Y*2*lamb] |
|
2458 | ||
|
2459 | if channelPositions == None: | |||
|
2460 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |||
|
2461 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |||
|
2462 | meteorOps = MeteorOperations() | |||
|
2463 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |||
|
2464 | ||||
|
2465 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] | |||
2439 |
|
2466 | |||
2440 | meteorsArray = self.__buffer |
|
2467 | meteorsArray = self.__buffer | |
2441 | error = meteorsArray[:,-1] |
|
2468 | error = meteorsArray[:,-1] | |
2442 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) |
|
2469 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) | |
2443 | ind1 = numpy.where(boolError)[0] |
|
2470 | ind1 = numpy.where(boolError)[0] | |
2444 | meteorsArray = meteorsArray[ind1,:] |
|
2471 | meteorsArray = meteorsArray[ind1,:] | |
2445 | meteorsArray[:,-1] = 0 |
|
2472 | meteorsArray[:,-1] = 0 | |
2446 | phases = meteorsArray[:,8:12] |
|
2473 | phases = meteorsArray[:,8:12] | |
2447 |
|
2474 | |||
2448 | #Calculate Gammas |
|
2475 | #Calculate Gammas | |
2449 |
gammas = self.__getGammas(pairs, |
|
2476 | gammas = self.__getGammas(pairs, distances, phases) | |
2450 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 |
|
2477 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 | |
2451 | #Calculate Phases |
|
2478 | #Calculate Phases | |
2452 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) |
|
2479 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) | |
2453 | phasesOff = phasesOff.reshape((1,phasesOff.size)) |
|
2480 | phasesOff = phasesOff.reshape((1,phasesOff.size)) | |
2454 | dataOut.data_output = -phasesOff |
|
2481 | dataOut.data_output = -phasesOff | |
2455 | dataOut.flagNoData = False |
|
2482 | dataOut.flagNoData = False | |
2456 | self.__buffer = None |
|
2483 | self.__buffer = None | |
2457 |
|
2484 | |||
2458 |
|
2485 | |||
2459 | return |
|
2486 | return | |
2460 |
|
2487 | |||
2461 | class MeteorOperations(): |
|
2488 | class MeteorOperations(): | |
2462 |
|
2489 | |||
2463 | def __init__(self): |
|
2490 | def __init__(self): | |
2464 |
|
2491 | |||
2465 | return |
|
2492 | return | |
2466 |
|
2493 | |||
2467 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, jph): |
|
2494 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): | |
2468 |
|
2495 | |||
2469 | arrayParameters = arrayParameters0.copy() |
|
2496 | arrayParameters = arrayParameters0.copy() | |
2470 | hmin = h[0] |
|
2497 | hmin = h[0] | |
2471 | hmax = h[1] |
|
2498 | hmax = h[1] | |
2472 |
|
2499 | |||
2473 | #Calculate AOA (Error N 3, 4) |
|
2500 | #Calculate AOA (Error N 3, 4) | |
2474 | #JONES ET AL. 1998 |
|
2501 | #JONES ET AL. 1998 | |
2475 | AOAthresh = numpy.pi/8 |
|
2502 | AOAthresh = numpy.pi/8 | |
2476 | error = arrayParameters[:,-1] |
|
2503 | error = arrayParameters[:,-1] | |
2477 | phases = -arrayParameters[:,8:12] + jph |
|
2504 | phases = -arrayParameters[:,8:12] + jph | |
2478 | # phases = numpy.unwrap(phases) |
|
2505 | # phases = numpy.unwrap(phases) | |
2479 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
2506 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) | |
2480 |
|
2507 | |||
2481 | #Calculate Heights (Error N 13 and 14) |
|
2508 | #Calculate Heights (Error N 13 and 14) | |
2482 | error = arrayParameters[:,-1] |
|
2509 | error = arrayParameters[:,-1] | |
2483 | Ranges = arrayParameters[:,1] |
|
2510 | Ranges = arrayParameters[:,1] | |
2484 | zenith = arrayParameters[:,4] |
|
2511 | zenith = arrayParameters[:,4] | |
2485 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) |
|
2512 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |
2486 |
|
2513 | |||
2487 | #----------------------- Get Final data ------------------------------------ |
|
2514 | #----------------------- Get Final data ------------------------------------ | |
2488 | # error = arrayParameters[:,-1] |
|
2515 | # error = arrayParameters[:,-1] | |
2489 | # ind1 = numpy.where(error==0)[0] |
|
2516 | # ind1 = numpy.where(error==0)[0] | |
2490 | # arrayParameters = arrayParameters[ind1,:] |
|
2517 | # arrayParameters = arrayParameters[ind1,:] | |
2491 |
|
2518 | |||
2492 | return arrayParameters |
|
2519 | return arrayParameters | |
2493 |
|
2520 | |||
2494 | def getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
2521 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): | |
2495 |
|
2522 | |||
2496 | arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
2523 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |
2497 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
2524 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) | |
2498 |
|
2525 | |||
2499 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
2526 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
2500 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
2527 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
2501 | arrayAOA[:,2] = cosDirError |
|
2528 | arrayAOA[:,2] = cosDirError | |
2502 |
|
2529 | |||
2503 | azimuthAngle = arrayAOA[:,0] |
|
2530 | azimuthAngle = arrayAOA[:,0] | |
2504 | zenithAngle = arrayAOA[:,1] |
|
2531 | zenithAngle = arrayAOA[:,1] | |
2505 |
|
2532 | |||
2506 | #Setting Error |
|
2533 | #Setting Error | |
2507 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] |
|
2534 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] | |
2508 | error[indError] = 0 |
|
2535 | error[indError] = 0 | |
2509 | #Number 3: AOA not fesible |
|
2536 | #Number 3: AOA not fesible | |
2510 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
2537 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
2511 | error[indInvalid] = 3 |
|
2538 | error[indInvalid] = 3 | |
2512 | #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
2539 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |
2513 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
2540 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
2514 | error[indInvalid] = 4 |
|
2541 | error[indInvalid] = 4 | |
2515 | return arrayAOA, error |
|
2542 | return arrayAOA, error | |
2516 |
|
2543 | |||
2517 | def __getDirectionCosines(self, arrayPhase, pairsList): |
|
2544 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): | |
2518 |
|
2545 | |||
2519 | #Initializing some variables |
|
2546 | #Initializing some variables | |
2520 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
2547 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
2521 | ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
2548 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |
2522 |
|
2549 | |||
2523 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
2550 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
2524 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
2551 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
2525 |
|
2552 | |||
2526 |
|
2553 | |||
2527 | for i in range(2): |
|
2554 | for i in range(2): | |
|
2555 | ph0 = arrayPhase[:,pairsList[i][0]] | |||
|
2556 | ph1 = arrayPhase[:,pairsList[i][1]] | |||
|
2557 | d0 = distances[pairsList[i][0]] | |||
|
2558 | d1 = distances[pairsList[i][1]] | |||
|
2559 | ||||
|
2560 | ph0_aux = ph0 + ph1 | |||
|
2561 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) | |||
|
2562 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi | |||
|
2563 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi | |||
2528 | #First Estimation |
|
2564 | #First Estimation | |
2529 | phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
2565 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) | |
2530 | #Dealias |
|
|||
2531 | indcsi = numpy.where(phi0_aux > numpy.pi) |
|
|||
2532 | phi0_aux[indcsi] -= 2*numpy.pi |
|
|||
2533 | indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
|||
2534 | phi0_aux[indcsi] += 2*numpy.pi |
|
|||
2535 | #Direction Cosine 0 |
|
|||
2536 | cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
|||
2537 |
|
2566 | |||
2538 | #Most-Accurate Second Estimation |
|
2567 | #Most-Accurate Second Estimation | |
2539 | phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
2568 | phi1_aux = ph0 - ph1 | |
2540 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
2569 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
2541 | #Direction Cosine 1 |
|
2570 | #Direction Cosine 1 | |
2542 |
cosdir1 = |
|
2571 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) | |
2543 |
|
2572 | |||
2544 | #Searching the correct Direction Cosine |
|
2573 | #Searching the correct Direction Cosine | |
2545 | cosdir0_aux = cosdir0[:,i] |
|
2574 | cosdir0_aux = cosdir0[:,i] | |
2546 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
2575 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
2547 | #Minimum Distance |
|
2576 | #Minimum Distance | |
2548 | cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
2577 | cosDiff = (cosdir1 - cosdir0_aux)**2 | |
2549 | indcos = cosDiff.argmin(axis = 1) |
|
2578 | indcos = cosDiff.argmin(axis = 1) | |
2550 | #Saving Value obtained |
|
2579 | #Saving Value obtained | |
2551 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
2580 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
2552 |
|
2581 | |||
2553 | return cosdir0, cosdir |
|
2582 | return cosdir0, cosdir | |
2554 |
|
2583 | |||
2555 | def __calculateAOA(self, cosdir, azimuth): |
|
2584 | def __calculateAOA(self, cosdir, azimuth): | |
2556 | cosdirX = cosdir[:,0] |
|
2585 | cosdirX = cosdir[:,0] | |
2557 | cosdirY = cosdir[:,1] |
|
2586 | cosdirY = cosdir[:,1] | |
2558 |
|
2587 | |||
2559 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
2588 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
2560 |
azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth |
|
2589 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east | |
2561 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
2590 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
2562 |
|
2591 | |||
2563 | return angles |
|
2592 | return angles | |
2564 |
|
2593 | |||
2565 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
2594 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
2566 |
|
2595 | |||
2567 | Ramb = 375 #Ramb = c/(2*PRF) |
|
2596 | Ramb = 375 #Ramb = c/(2*PRF) | |
2568 | Re = 6371 #Earth Radius |
|
2597 | Re = 6371 #Earth Radius | |
2569 | heights = numpy.zeros(Ranges.shape) |
|
2598 | heights = numpy.zeros(Ranges.shape) | |
2570 |
|
2599 | |||
2571 | R_aux = numpy.array([0,1,2])*Ramb |
|
2600 | R_aux = numpy.array([0,1,2])*Ramb | |
2572 | R_aux = R_aux.reshape(1,R_aux.size) |
|
2601 | R_aux = R_aux.reshape(1,R_aux.size) | |
2573 |
|
2602 | |||
2574 | Ranges = Ranges.reshape(Ranges.size,1) |
|
2603 | Ranges = Ranges.reshape(Ranges.size,1) | |
2575 |
|
2604 | |||
2576 | Ri = Ranges + R_aux |
|
2605 | Ri = Ranges + R_aux | |
2577 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
2606 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
2578 |
|
2607 | |||
2579 | #Check if there is a height between 70 and 110 km |
|
2608 | #Check if there is a height between 70 and 110 km | |
2580 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
2609 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
2581 | ind_h = numpy.where(h_bool == 1)[0] |
|
2610 | ind_h = numpy.where(h_bool == 1)[0] | |
2582 |
|
2611 | |||
2583 | hCorr = hi[ind_h, :] |
|
2612 | hCorr = hi[ind_h, :] | |
2584 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
2613 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
2585 |
|
2614 | |||
2586 | hCorr = hi[ind_hCorr] |
|
2615 | hCorr = hi[ind_hCorr] | |
2587 | heights[ind_h] = hCorr |
|
2616 | heights[ind_h] = hCorr | |
2588 |
|
2617 | |||
2589 | #Setting Error |
|
2618 | #Setting Error | |
2590 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
2619 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
2591 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
2620 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
2592 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] |
|
2621 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] | |
2593 | error[indError] = 0 |
|
2622 | error[indError] = 0 | |
2594 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
2623 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
2595 | error[indInvalid2] = 14 |
|
2624 | error[indInvalid2] = 14 | |
2596 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
2625 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
2597 | error[indInvalid1] = 13 |
|
2626 | error[indInvalid1] = 13 | |
2598 |
|
2627 | |||
2599 | return heights, error No newline at end of file |
|
2628 | return heights, error | |
|
2629 | ||||
|
2630 | def getPhasePairs(self, channelPositions): | |||
|
2631 | chanPos = numpy.array(channelPositions) | |||
|
2632 | listOper = list(itertools.combinations(range(5),2)) | |||
|
2633 | ||||
|
2634 | distances = numpy.zeros(4) | |||
|
2635 | axisX = [] | |||
|
2636 | axisY = [] | |||
|
2637 | distX = numpy.zeros(3) | |||
|
2638 | distY = numpy.zeros(3) | |||
|
2639 | ix = 0 | |||
|
2640 | iy = 0 | |||
|
2641 | ||||
|
2642 | pairX = numpy.zeros((2,2)) | |||
|
2643 | pairY = numpy.zeros((2,2)) | |||
|
2644 | ||||
|
2645 | for i in range(len(listOper)): | |||
|
2646 | pairi = listOper[i] | |||
|
2647 | ||||
|
2648 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) | |||
|
2649 | ||||
|
2650 | if posDif[0] == 0: | |||
|
2651 | axisY.append(pairi) | |||
|
2652 | distY[iy] = posDif[1] | |||
|
2653 | iy += 1 | |||
|
2654 | elif posDif[1] == 0: | |||
|
2655 | axisX.append(pairi) | |||
|
2656 | distX[ix] = posDif[0] | |||
|
2657 | ix += 1 | |||
|
2658 | ||||
|
2659 | for i in range(2): | |||
|
2660 | if i==0: | |||
|
2661 | dist0 = distX | |||
|
2662 | axis0 = axisX | |||
|
2663 | else: | |||
|
2664 | dist0 = distY | |||
|
2665 | axis0 = axisY | |||
|
2666 | ||||
|
2667 | side = numpy.argsort(dist0)[:-1] | |||
|
2668 | axis0 = numpy.array(axis0)[side,:] | |||
|
2669 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) | |||
|
2670 | axis1 = numpy.unique(numpy.reshape(axis0,4)) | |||
|
2671 | side = axis1[axis1 != chanC] | |||
|
2672 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] | |||
|
2673 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] | |||
|
2674 | if diff1<0: | |||
|
2675 | chan2 = side[0] | |||
|
2676 | d2 = numpy.abs(diff1) | |||
|
2677 | chan1 = side[1] | |||
|
2678 | d1 = numpy.abs(diff2) | |||
|
2679 | else: | |||
|
2680 | chan2 = side[1] | |||
|
2681 | d2 = numpy.abs(diff2) | |||
|
2682 | chan1 = side[0] | |||
|
2683 | d1 = numpy.abs(diff1) | |||
|
2684 | ||||
|
2685 | if i==0: | |||
|
2686 | chanCX = chanC | |||
|
2687 | chan1X = chan1 | |||
|
2688 | chan2X = chan2 | |||
|
2689 | distances[0:2] = numpy.array([d1,d2]) | |||
|
2690 | else: | |||
|
2691 | chanCY = chanC | |||
|
2692 | chan1Y = chan1 | |||
|
2693 | chan2Y = chan2 | |||
|
2694 | distances[2:4] = numpy.array([d1,d2]) | |||
|
2695 | # axisXsides = numpy.reshape(axisX[ix,:],4) | |||
|
2696 | # | |||
|
2697 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) | |||
|
2698 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) | |||
|
2699 | # | |||
|
2700 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] | |||
|
2701 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] | |||
|
2702 | # channel25X = int(pairX[0,ind25X]) | |||
|
2703 | # channel20X = int(pairX[1,ind20X]) | |||
|
2704 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] | |||
|
2705 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] | |||
|
2706 | # channel25Y = int(pairY[0,ind25Y]) | |||
|
2707 | # channel20Y = int(pairY[1,ind20Y]) | |||
|
2708 | ||||
|
2709 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] | |||
|
2710 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] | |||
|
2711 | ||||
|
2712 | return pairslist, distances No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now