@@ -1,702 +1,711 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Classes to plot Spectra data |
|
5 | """Classes to plot Spectra data | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import numpy |
|
10 | import numpy | |
11 |
|
11 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | class SpectraPlot(Plot): |
|
15 | class SpectraPlot(Plot): | |
16 | ''' |
|
16 | ''' | |
17 | Plot for Spectra data |
|
17 | Plot for Spectra data | |
18 | ''' |
|
18 | ''' | |
19 |
|
19 | |||
20 | CODE = 'spc' |
|
20 | CODE = 'spc' | |
21 | colormap = 'jet' |
|
21 | colormap = 'jet' | |
22 | plot_type = 'pcolor' |
|
22 | plot_type = 'pcolor' | |
23 | buffering = False |
|
23 | buffering = False | |
|
24 | channelList = None | |||
24 |
|
25 | |||
25 | def setup(self): |
|
26 | def setup(self): | |
26 | self.nplots = len(self.data.channels) |
|
27 | self.nplots = len(self.data.channels) | |
27 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
28 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
29 | self.height = 2.6 * self.nrows |
|
30 | self.height = 2.6 * self.nrows | |
|
31 | ||||
30 | self.cb_label = 'dB' |
|
32 | self.cb_label = 'dB' | |
31 | if self.showprofile: |
|
33 | if self.showprofile: | |
32 | self.width = 4 * self.ncols |
|
34 | self.width = 4 * self.ncols | |
33 | else: |
|
35 | else: | |
34 | self.width = 3.5 * self.ncols |
|
36 | self.width = 3.5 * self.ncols | |
35 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
37 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
36 | self.ylabel = 'Range [km]' |
|
38 | self.ylabel = 'Range [km]' | |
37 |
|
39 | |||
38 | def update(self, dataOut): |
|
40 | def update(self, dataOut): | |
39 |
|
41 | if self.channelList == None: | ||
|
42 | self.channelList = dataOut.channelList | |||
40 | data = {} |
|
43 | data = {} | |
41 | meta = {} |
|
44 | meta = {} | |
42 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
45 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
43 | data['spc'] = spc |
|
46 | data['spc'] = spc | |
44 | data['rti'] = dataOut.getPower() |
|
47 | data['rti'] = dataOut.getPower() | |
45 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
48 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
46 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
49 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
47 | if self.CODE == 'spc_moments': |
|
50 | if self.CODE == 'spc_moments': | |
48 | data['moments'] = dataOut.moments |
|
51 | data['moments'] = dataOut.moments | |
49 |
|
52 | |||
50 |
return data, meta |
|
53 | return data, meta | |
51 |
|
54 | |||
52 | def plot(self): |
|
55 | def plot(self): | |
53 | if self.xaxis == "frequency": |
|
56 | if self.xaxis == "frequency": | |
54 | x = self.data.xrange[0] |
|
57 | x = self.data.xrange[0] | |
55 | self.xlabel = "Frequency (kHz)" |
|
58 | self.xlabel = "Frequency (kHz)" | |
56 | elif self.xaxis == "time": |
|
59 | elif self.xaxis == "time": | |
57 | x = self.data.xrange[1] |
|
60 | x = self.data.xrange[1] | |
58 | self.xlabel = "Time (ms)" |
|
61 | self.xlabel = "Time (ms)" | |
59 | else: |
|
62 | else: | |
60 | x = self.data.xrange[2] |
|
63 | x = self.data.xrange[2] | |
61 | self.xlabel = "Velocity (m/s)" |
|
64 | self.xlabel = "Velocity (m/s)" | |
62 |
|
65 | |||
63 | if self.CODE == 'spc_moments': |
|
66 | if self.CODE == 'spc_moments': | |
64 | x = self.data.xrange[2] |
|
67 | x = self.data.xrange[2] | |
65 | self.xlabel = "Velocity (m/s)" |
|
68 | self.xlabel = "Velocity (m/s)" | |
66 |
|
69 | |||
67 | self.titles = [] |
|
70 | self.titles = [] | |
68 |
|
71 | |||
69 | y = self.data.yrange |
|
72 | y = self.data.yrange | |
70 | self.y = y |
|
73 | self.y = y | |
71 |
|
74 | |||
72 | data = self.data[-1] |
|
75 | data = self.data[-1] | |
73 | z = data['spc'] |
|
76 | z = data['spc'] | |
74 |
|
77 | |||
75 | for n, ax in enumerate(self.axes): |
|
78 | for n, ax in enumerate(self.axes): | |
76 | noise = data['noise'][n] |
|
79 | noise = data['noise'][n] | |
77 | if self.CODE == 'spc_moments': |
|
80 | if self.CODE == 'spc_moments': | |
78 | mean = data['moments'][n, 1] |
|
81 | mean = data['moments'][n, 1] | |
79 | if ax.firsttime: |
|
82 | if ax.firsttime: | |
80 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
83 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
81 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
84 | self.xmin = self.xmin if self.xmin else -self.xmax | |
82 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
85 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
83 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
86 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
84 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
87 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
85 | vmin=self.zmin, |
|
88 | vmin=self.zmin, | |
86 | vmax=self.zmax, |
|
89 | vmax=self.zmax, | |
87 | cmap=plt.get_cmap(self.colormap) |
|
90 | cmap=plt.get_cmap(self.colormap) | |
88 | ) |
|
91 | ) | |
89 |
|
92 | |||
90 | if self.showprofile: |
|
93 | if self.showprofile: | |
91 | ax.plt_profile = self.pf_axes[n].plot( |
|
94 | ax.plt_profile = self.pf_axes[n].plot( | |
92 | data['rti'][n], y)[0] |
|
95 | data['rti'][n], y)[0] | |
93 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
96 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
94 | color="k", linestyle="dashed", lw=1)[0] |
|
97 | color="k", linestyle="dashed", lw=1)[0] | |
95 | if self.CODE == 'spc_moments': |
|
98 | if self.CODE == 'spc_moments': | |
96 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
99 | ax.plt_mean = ax.plot(mean, y, color='k')[0] | |
97 | else: |
|
100 | else: | |
98 | ax.plt.set_array(z[n].T.ravel()) |
|
101 | ax.plt.set_array(z[n].T.ravel()) | |
99 | if self.showprofile: |
|
102 | if self.showprofile: | |
100 | ax.plt_profile.set_data(data['rti'][n], y) |
|
103 | ax.plt_profile.set_data(data['rti'][n], y) | |
101 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
104 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
102 | if self.CODE == 'spc_moments': |
|
105 | if self.CODE == 'spc_moments': | |
103 | ax.plt_mean.set_data(mean, y) |
|
106 | ax.plt_mean.set_data(mean, y) | |
104 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
107 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) | |
105 |
|
108 | |||
106 |
|
109 | |||
107 | class CrossSpectraPlot(Plot): |
|
110 | class CrossSpectraPlot(Plot): | |
108 |
|
111 | |||
109 | CODE = 'cspc' |
|
112 | CODE = 'cspc' | |
110 | colormap = 'jet' |
|
113 | colormap = 'jet' | |
111 | plot_type = 'pcolor' |
|
114 | plot_type = 'pcolor' | |
112 | zmin_coh = None |
|
115 | zmin_coh = None | |
113 | zmax_coh = None |
|
116 | zmax_coh = None | |
114 | zmin_phase = None |
|
117 | zmin_phase = None | |
115 | zmax_phase = None |
|
118 | zmax_phase = None | |
116 |
|
119 | |||
117 | def setup(self): |
|
120 | def setup(self): | |
118 |
|
121 | |||
119 | self.ncols = 4 |
|
122 | self.ncols = 4 | |
120 | self.nplots = len(self.data.pairs) * 2 |
|
123 | self.nplots = len(self.data.pairs) * 2 | |
121 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
124 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
122 | self.width = 3.1 * self.ncols |
|
125 | self.width = 3.1 * self.ncols | |
123 | self.height = 2.6 * self.nrows |
|
126 | self.height = 2.6 * self.nrows | |
124 | self.ylabel = 'Range [km]' |
|
127 | self.ylabel = 'Range [km]' | |
125 | self.showprofile = False |
|
128 | self.showprofile = False | |
126 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
129 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
127 |
|
130 | |||
128 | def update(self, dataOut): |
|
131 | def update(self, dataOut): | |
129 |
|
132 | |||
130 | data = {} |
|
133 | data = {} | |
131 | meta = {} |
|
134 | meta = {} | |
132 |
|
135 | |||
133 | spc = dataOut.data_spc |
|
136 | spc = dataOut.data_spc | |
134 | cspc = dataOut.data_cspc |
|
137 | cspc = dataOut.data_cspc | |
135 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
138 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
136 | meta['pairs'] = dataOut.pairsList |
|
139 | meta['pairs'] = dataOut.pairsList | |
137 |
|
140 | |||
138 | tmp = [] |
|
141 | tmp = [] | |
139 |
|
142 | |||
140 | for n, pair in enumerate(meta['pairs']): |
|
143 | for n, pair in enumerate(meta['pairs']): | |
141 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
144 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
142 | coh = numpy.abs(out) |
|
145 | coh = numpy.abs(out) | |
143 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
146 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
144 | tmp.append(coh) |
|
147 | tmp.append(coh) | |
145 | tmp.append(phase) |
|
148 | tmp.append(phase) | |
146 |
|
149 | |||
147 | data['cspc'] = numpy.array(tmp) |
|
150 | data['cspc'] = numpy.array(tmp) | |
148 |
|
151 | |||
149 |
return data, meta |
|
152 | return data, meta | |
150 |
|
153 | |||
151 | def plot(self): |
|
154 | def plot(self): | |
152 |
|
155 | |||
153 | if self.xaxis == "frequency": |
|
156 | if self.xaxis == "frequency": | |
154 | x = self.data.xrange[0] |
|
157 | x = self.data.xrange[0] | |
155 | self.xlabel = "Frequency (kHz)" |
|
158 | self.xlabel = "Frequency (kHz)" | |
156 | elif self.xaxis == "time": |
|
159 | elif self.xaxis == "time": | |
157 | x = self.data.xrange[1] |
|
160 | x = self.data.xrange[1] | |
158 | self.xlabel = "Time (ms)" |
|
161 | self.xlabel = "Time (ms)" | |
159 | else: |
|
162 | else: | |
160 | x = self.data.xrange[2] |
|
163 | x = self.data.xrange[2] | |
161 | self.xlabel = "Velocity (m/s)" |
|
164 | self.xlabel = "Velocity (m/s)" | |
162 |
|
165 | |||
163 | self.titles = [] |
|
166 | self.titles = [] | |
164 |
|
167 | |||
165 | y = self.data.yrange |
|
168 | y = self.data.yrange | |
166 | self.y = y |
|
169 | self.y = y | |
167 |
|
170 | |||
168 | data = self.data[-1] |
|
171 | data = self.data[-1] | |
169 | cspc = data['cspc'] |
|
172 | cspc = data['cspc'] | |
170 |
|
173 | |||
171 | for n in range(len(self.data.pairs)): |
|
174 | for n in range(len(self.data.pairs)): | |
172 | pair = self.data.pairs[n] |
|
175 | pair = self.data.pairs[n] | |
173 | coh = cspc[n*2] |
|
176 | coh = cspc[n*2] | |
174 | phase = cspc[n*2+1] |
|
177 | phase = cspc[n*2+1] | |
175 | ax = self.axes[2 * n] |
|
178 | ax = self.axes[2 * n] | |
176 | if ax.firsttime: |
|
179 | if ax.firsttime: | |
177 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
180 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
178 | vmin=0, |
|
181 | vmin=0, | |
179 | vmax=1, |
|
182 | vmax=1, | |
180 | cmap=plt.get_cmap(self.colormap_coh) |
|
183 | cmap=plt.get_cmap(self.colormap_coh) | |
181 | ) |
|
184 | ) | |
182 | else: |
|
185 | else: | |
183 | ax.plt.set_array(coh.T.ravel()) |
|
186 | ax.plt.set_array(coh.T.ravel()) | |
184 | self.titles.append( |
|
187 | self.titles.append( | |
185 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
188 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
186 |
|
189 | |||
187 | ax = self.axes[2 * n + 1] |
|
190 | ax = self.axes[2 * n + 1] | |
188 | if ax.firsttime: |
|
191 | if ax.firsttime: | |
189 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
192 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
190 | vmin=-180, |
|
193 | vmin=-180, | |
191 | vmax=180, |
|
194 | vmax=180, | |
192 |
cmap=plt.get_cmap(self.colormap_phase) |
|
195 | cmap=plt.get_cmap(self.colormap_phase) | |
193 | ) |
|
196 | ) | |
194 | else: |
|
197 | else: | |
195 | ax.plt.set_array(phase.T.ravel()) |
|
198 | ax.plt.set_array(phase.T.ravel()) | |
196 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
199 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
197 |
|
200 | |||
198 |
|
201 | |||
199 | class RTIPlot(Plot): |
|
202 | class RTIPlot(Plot): | |
200 | ''' |
|
203 | ''' | |
201 | Plot for RTI data |
|
204 | Plot for RTI data | |
202 | ''' |
|
205 | ''' | |
203 |
|
206 | |||
204 | CODE = 'rti' |
|
207 | CODE = 'rti' | |
205 | colormap = 'jet' |
|
208 | colormap = 'jet' | |
206 | plot_type = 'pcolorbuffer' |
|
209 | plot_type = 'pcolorbuffer' | |
|
210 | titles = None | |||
|
211 | channelList = None | |||
207 |
|
212 | |||
208 | def setup(self): |
|
213 | def setup(self): | |
209 | self.xaxis = 'time' |
|
214 | self.xaxis = 'time' | |
210 | self.ncols = 1 |
|
215 | self.ncols = 1 | |
211 | self.nrows = len(self.data.channels) |
|
216 | self.nrows = len(self.data.channels) | |
212 | self.nplots = len(self.data.channels) |
|
217 | self.nplots = len(self.data.channels) | |
213 | self.ylabel = 'Range [km]' |
|
218 | self.ylabel = 'Range [km]' | |
214 | self.xlabel = 'Time' |
|
219 | self.xlabel = 'Time' | |
215 | self.cb_label = 'dB' |
|
220 | self.cb_label = 'dB' | |
216 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
221 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) | |
217 | self.titles = ['{} Channel {}'.format( |
|
222 | self.titles = ['{} Channel {}'.format( | |
218 |
self.CODE.upper(), x) for x in range(self.n |
|
223 | self.CODE.upper(), x) for x in range(self.nplots)] | |
219 |
|
224 | |||
220 | def update(self, dataOut): |
|
225 | def update(self, dataOut): | |
221 |
|
226 | if self.channelList == None: | ||
|
227 | self.channelList = dataOut.channelList | |||
222 | data = {} |
|
228 | data = {} | |
223 | meta = {} |
|
229 | meta = {} | |
224 | data['rti'] = dataOut.getPower() |
|
230 | data['rti'] = dataOut.getPower() | |
225 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
231 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
226 |
|
232 | |||
227 | return data, meta |
|
233 | return data, meta | |
228 |
|
234 | |||
229 | def plot(self): |
|
235 | def plot(self): | |
230 | self.x = self.data.times |
|
236 | self.x = self.data.times | |
231 | self.y = self.data.yrange |
|
237 | self.y = self.data.yrange | |
232 | self.z = self.data[self.CODE] |
|
238 | self.z = self.data[self.CODE] | |
233 | self.z = numpy.ma.masked_invalid(self.z) |
|
239 | self.z = numpy.ma.masked_invalid(self.z) | |
|
240 | if self.channelList != None: | |||
|
241 | self.titles = ['{} Channel {}'.format( | |||
|
242 | self.CODE.upper(), x) for x in self.channelList] | |||
234 |
|
243 | |||
235 | if self.decimation is None: |
|
244 | if self.decimation is None: | |
236 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
245 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
237 | else: |
|
246 | else: | |
238 | x, y, z = self.fill_gaps(*self.decimate()) |
|
247 | x, y, z = self.fill_gaps(*self.decimate()) | |
239 |
|
248 | |||
240 | for n, ax in enumerate(self.axes): |
|
249 | for n, ax in enumerate(self.axes): | |
241 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
250 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
242 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
251 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
243 | data = self.data[-1] |
|
252 | data = self.data[-1] | |
244 | if ax.firsttime: |
|
253 | if ax.firsttime: | |
245 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
254 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
246 | vmin=self.zmin, |
|
255 | vmin=self.zmin, | |
247 | vmax=self.zmax, |
|
256 | vmax=self.zmax, | |
248 | cmap=plt.get_cmap(self.colormap) |
|
257 | cmap=plt.get_cmap(self.colormap) | |
249 | ) |
|
258 | ) | |
250 | if self.showprofile: |
|
259 | if self.showprofile: | |
251 | ax.plot_profile = self.pf_axes[n].plot( |
|
260 | ax.plot_profile = self.pf_axes[n].plot( | |
252 | data['rti'][n], self.y)[0] |
|
261 | data['rti'][n], self.y)[0] | |
253 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
262 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, | |
254 | color="k", linestyle="dashed", lw=1)[0] |
|
263 | color="k", linestyle="dashed", lw=1)[0] | |
255 | else: |
|
264 | else: | |
256 | ax.collections.remove(ax.collections[0]) |
|
265 | ax.collections.remove(ax.collections[0]) | |
257 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
266 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
258 | vmin=self.zmin, |
|
267 | vmin=self.zmin, | |
259 | vmax=self.zmax, |
|
268 | vmax=self.zmax, | |
260 | cmap=plt.get_cmap(self.colormap) |
|
269 | cmap=plt.get_cmap(self.colormap) | |
261 | ) |
|
270 | ) | |
262 | if self.showprofile: |
|
271 | if self.showprofile: | |
263 | ax.plot_profile.set_data(data['rti'][n], self.y) |
|
272 | ax.plot_profile.set_data(data['rti'][n], self.y) | |
264 | ax.plot_noise.set_data(numpy.repeat( |
|
273 | ax.plot_noise.set_data(numpy.repeat( | |
265 | data['noise'][n], len(self.y)), self.y) |
|
274 | data['noise'][n], len(self.y)), self.y) | |
266 |
|
275 | |||
267 |
|
276 | |||
268 | class CoherencePlot(RTIPlot): |
|
277 | class CoherencePlot(RTIPlot): | |
269 | ''' |
|
278 | ''' | |
270 | Plot for Coherence data |
|
279 | Plot for Coherence data | |
271 | ''' |
|
280 | ''' | |
272 |
|
281 | |||
273 | CODE = 'coh' |
|
282 | CODE = 'coh' | |
274 |
|
283 | |||
275 | def setup(self): |
|
284 | def setup(self): | |
276 | self.xaxis = 'time' |
|
285 | self.xaxis = 'time' | |
277 | self.ncols = 1 |
|
286 | self.ncols = 1 | |
278 | self.nrows = len(self.data.pairs) |
|
287 | self.nrows = len(self.data.pairs) | |
279 | self.nplots = len(self.data.pairs) |
|
288 | self.nplots = len(self.data.pairs) | |
280 | self.ylabel = 'Range [km]' |
|
289 | self.ylabel = 'Range [km]' | |
281 | self.xlabel = 'Time' |
|
290 | self.xlabel = 'Time' | |
282 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
291 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) | |
283 | if self.CODE == 'coh': |
|
292 | if self.CODE == 'coh': | |
284 | self.cb_label = '' |
|
293 | self.cb_label = '' | |
285 | self.titles = [ |
|
294 | self.titles = [ | |
286 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
295 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
287 | else: |
|
296 | else: | |
288 | self.cb_label = 'Degrees' |
|
297 | self.cb_label = 'Degrees' | |
289 | self.titles = [ |
|
298 | self.titles = [ | |
290 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
299 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
291 |
|
300 | |||
292 | def update(self, dataOut): |
|
301 | def update(self, dataOut): | |
293 |
|
302 | |||
294 | data = {} |
|
303 | data = {} | |
295 | meta = {} |
|
304 | meta = {} | |
296 | data['coh'] = dataOut.getCoherence() |
|
305 | data['coh'] = dataOut.getCoherence() | |
297 | meta['pairs'] = dataOut.pairsList |
|
306 | meta['pairs'] = dataOut.pairsList | |
298 |
|
307 | |||
299 | return data, meta |
|
308 | return data, meta | |
300 |
|
309 | |||
301 | class PhasePlot(CoherencePlot): |
|
310 | class PhasePlot(CoherencePlot): | |
302 | ''' |
|
311 | ''' | |
303 | Plot for Phase map data |
|
312 | Plot for Phase map data | |
304 | ''' |
|
313 | ''' | |
305 |
|
314 | |||
306 | CODE = 'phase' |
|
315 | CODE = 'phase' | |
307 | colormap = 'seismic' |
|
316 | colormap = 'seismic' | |
308 |
|
317 | |||
309 | def update(self, dataOut): |
|
318 | def update(self, dataOut): | |
310 |
|
319 | |||
311 | data = {} |
|
320 | data = {} | |
312 | meta = {} |
|
321 | meta = {} | |
313 | data['phase'] = dataOut.getCoherence(phase=True) |
|
322 | data['phase'] = dataOut.getCoherence(phase=True) | |
314 | meta['pairs'] = dataOut.pairsList |
|
323 | meta['pairs'] = dataOut.pairsList | |
315 |
|
324 | |||
316 | return data, meta |
|
325 | return data, meta | |
317 |
|
326 | |||
318 | class NoisePlot(Plot): |
|
327 | class NoisePlot(Plot): | |
319 | ''' |
|
328 | ''' | |
320 |
Plot for noise |
|
329 | Plot for noise | |
321 | ''' |
|
330 | ''' | |
322 |
|
331 | |||
323 | CODE = 'noise' |
|
332 | CODE = 'noise' | |
324 | plot_type = 'scatterbuffer' |
|
333 | plot_type = 'scatterbuffer' | |
325 |
|
334 | |||
326 | def setup(self): |
|
335 | def setup(self): | |
327 | self.xaxis = 'time' |
|
336 | self.xaxis = 'time' | |
328 | self.ncols = 1 |
|
337 | self.ncols = 1 | |
329 | self.nrows = 1 |
|
338 | self.nrows = 1 | |
330 | self.nplots = 1 |
|
339 | self.nplots = 1 | |
331 | self.ylabel = 'Intensity [dB]' |
|
340 | self.ylabel = 'Intensity [dB]' | |
332 | self.xlabel = 'Time' |
|
341 | self.xlabel = 'Time' | |
333 | self.titles = ['Noise'] |
|
342 | self.titles = ['Noise'] | |
334 | self.colorbar = False |
|
343 | self.colorbar = False | |
335 | self.plots_adjust.update({'right': 0.85 }) |
|
344 | self.plots_adjust.update({'right': 0.85 }) | |
336 |
|
345 | |||
337 | def update(self, dataOut): |
|
346 | def update(self, dataOut): | |
338 |
|
347 | |||
339 | data = {} |
|
348 | data = {} | |
340 | meta = {} |
|
349 | meta = {} | |
341 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
350 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) | |
342 | meta['yrange'] = numpy.array([]) |
|
351 | meta['yrange'] = numpy.array([]) | |
343 |
|
352 | |||
344 | return data, meta |
|
353 | return data, meta | |
345 |
|
354 | |||
346 | def plot(self): |
|
355 | def plot(self): | |
347 |
|
356 | |||
348 | x = self.data.times |
|
357 | x = self.data.times | |
349 | xmin = self.data.min_time |
|
358 | xmin = self.data.min_time | |
350 | xmax = xmin + self.xrange * 60 * 60 |
|
359 | xmax = xmin + self.xrange * 60 * 60 | |
351 | Y = self.data['noise'] |
|
360 | Y = self.data['noise'] | |
352 |
|
361 | |||
353 | if self.axes[0].firsttime: |
|
362 | if self.axes[0].firsttime: | |
354 | self.ymin = numpy.nanmin(Y) - 5 |
|
363 | self.ymin = numpy.nanmin(Y) - 5 | |
355 | self.ymax = numpy.nanmax(Y) + 5 |
|
364 | self.ymax = numpy.nanmax(Y) + 5 | |
356 | for ch in self.data.channels: |
|
365 | for ch in self.data.channels: | |
357 | y = Y[ch] |
|
366 | y = Y[ch] | |
358 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
367 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
359 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
368 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
360 | else: |
|
369 | else: | |
361 | for ch in self.data.channels: |
|
370 | for ch in self.data.channels: | |
362 | y = Y[ch] |
|
371 | y = Y[ch] | |
363 | self.axes[0].lines[ch].set_data(x, y) |
|
372 | self.axes[0].lines[ch].set_data(x, y) | |
364 |
|
373 | |||
365 |
|
374 | |||
366 | class PowerProfilePlot(Plot): |
|
375 | class PowerProfilePlot(Plot): | |
367 |
|
376 | |||
368 | CODE = 'pow_profile' |
|
377 | CODE = 'pow_profile' | |
369 | plot_type = 'scatter' |
|
378 | plot_type = 'scatter' | |
370 |
|
379 | |||
371 | def setup(self): |
|
380 | def setup(self): | |
372 |
|
381 | |||
373 | self.ncols = 1 |
|
382 | self.ncols = 1 | |
374 | self.nrows = 1 |
|
383 | self.nrows = 1 | |
375 | self.nplots = 1 |
|
384 | self.nplots = 1 | |
376 | self.height = 4 |
|
385 | self.height = 4 | |
377 | self.width = 3 |
|
386 | self.width = 3 | |
378 | self.ylabel = 'Range [km]' |
|
387 | self.ylabel = 'Range [km]' | |
379 | self.xlabel = 'Intensity [dB]' |
|
388 | self.xlabel = 'Intensity [dB]' | |
380 | self.titles = ['Power Profile'] |
|
389 | self.titles = ['Power Profile'] | |
381 | self.colorbar = False |
|
390 | self.colorbar = False | |
382 |
|
391 | |||
383 | def update(self, dataOut): |
|
392 | def update(self, dataOut): | |
384 |
|
393 | |||
385 | data = {} |
|
394 | data = {} | |
386 | meta = {} |
|
395 | meta = {} | |
387 | data[self.CODE] = dataOut.getPower() |
|
396 | data[self.CODE] = dataOut.getPower() | |
388 |
|
397 | |||
389 | return data, meta |
|
398 | return data, meta | |
390 |
|
399 | |||
391 | def plot(self): |
|
400 | def plot(self): | |
392 |
|
401 | |||
393 | y = self.data.yrange |
|
402 | y = self.data.yrange | |
394 | self.y = y |
|
403 | self.y = y | |
395 |
|
404 | |||
396 | x = self.data[-1][self.CODE] |
|
405 | x = self.data[-1][self.CODE] | |
397 |
|
406 | |||
398 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
407 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 | |
399 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
408 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 | |
400 |
|
409 | |||
401 | if self.axes[0].firsttime: |
|
410 | if self.axes[0].firsttime: | |
402 | for ch in self.data.channels: |
|
411 | for ch in self.data.channels: | |
403 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
412 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) | |
404 | plt.legend() |
|
413 | plt.legend() | |
405 | else: |
|
414 | else: | |
406 | for ch in self.data.channels: |
|
415 | for ch in self.data.channels: | |
407 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
416 | self.axes[0].lines[ch].set_data(x[ch], y) | |
408 |
|
417 | |||
409 |
|
418 | |||
410 | class SpectraCutPlot(Plot): |
|
419 | class SpectraCutPlot(Plot): | |
411 |
|
420 | |||
412 | CODE = 'spc_cut' |
|
421 | CODE = 'spc_cut' | |
413 | plot_type = 'scatter' |
|
422 | plot_type = 'scatter' | |
414 | buffering = False |
|
423 | buffering = False | |
415 |
|
424 | |||
416 | def setup(self): |
|
425 | def setup(self): | |
417 |
|
426 | |||
418 | self.nplots = len(self.data.channels) |
|
427 | self.nplots = len(self.data.channels) | |
419 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
428 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
420 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
429 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
421 | self.width = 3.4 * self.ncols + 1.5 |
|
430 | self.width = 3.4 * self.ncols + 1.5 | |
422 | self.height = 3 * self.nrows |
|
431 | self.height = 3 * self.nrows | |
423 | self.ylabel = 'Power [dB]' |
|
432 | self.ylabel = 'Power [dB]' | |
424 | self.colorbar = False |
|
433 | self.colorbar = False | |
425 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
434 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) | |
426 |
|
435 | |||
427 | def update(self, dataOut): |
|
436 | def update(self, dataOut): | |
428 |
|
437 | |||
429 | data = {} |
|
438 | data = {} | |
430 | meta = {} |
|
439 | meta = {} | |
431 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
440 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
432 | data['spc'] = spc |
|
441 | data['spc'] = spc | |
433 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
442 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
434 |
|
443 | |||
435 | return data, meta |
|
444 | return data, meta | |
436 |
|
445 | |||
437 | def plot(self): |
|
446 | def plot(self): | |
438 | if self.xaxis == "frequency": |
|
447 | if self.xaxis == "frequency": | |
439 | x = self.data.xrange[0][1:] |
|
448 | x = self.data.xrange[0][1:] | |
440 | self.xlabel = "Frequency (kHz)" |
|
449 | self.xlabel = "Frequency (kHz)" | |
441 | elif self.xaxis == "time": |
|
450 | elif self.xaxis == "time": | |
442 | x = self.data.xrange[1] |
|
451 | x = self.data.xrange[1] | |
443 | self.xlabel = "Time (ms)" |
|
452 | self.xlabel = "Time (ms)" | |
444 | else: |
|
453 | else: | |
445 | x = self.data.xrange[2] |
|
454 | x = self.data.xrange[2] | |
446 | self.xlabel = "Velocity (m/s)" |
|
455 | self.xlabel = "Velocity (m/s)" | |
447 |
|
456 | |||
448 | self.titles = [] |
|
457 | self.titles = [] | |
449 |
|
458 | |||
450 | y = self.data.yrange |
|
459 | y = self.data.yrange | |
451 | z = self.data[-1]['spc'] |
|
460 | z = self.data[-1]['spc'] | |
452 |
|
461 | |||
453 | if self.height_index: |
|
462 | if self.height_index: | |
454 | index = numpy.array(self.height_index) |
|
463 | index = numpy.array(self.height_index) | |
455 | else: |
|
464 | else: | |
456 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
465 | index = numpy.arange(0, len(y), int((len(y))/9)) | |
457 |
|
466 | |||
458 | for n, ax in enumerate(self.axes): |
|
467 | for n, ax in enumerate(self.axes): | |
459 | if ax.firsttime: |
|
468 | if ax.firsttime: | |
460 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
469 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
461 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
470 | self.xmin = self.xmin if self.xmin else -self.xmax | |
462 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
471 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) | |
463 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
472 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) | |
464 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
473 | ax.plt = ax.plot(x, z[n, :, index].T) | |
465 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
474 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] | |
466 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
475 | self.figures[0].legend(ax.plt, labels, loc='center right') | |
467 | else: |
|
476 | else: | |
468 | for i, line in enumerate(ax.plt): |
|
477 | for i, line in enumerate(ax.plt): | |
469 | line.set_data(x, z[n, :, index[i]]) |
|
478 | line.set_data(x, z[n, :, index[i]]) | |
470 | self.titles.append('CH {}'.format(n)) |
|
479 | self.titles.append('CH {}'.format(n)) | |
471 |
|
480 | |||
472 |
|
481 | |||
473 | class BeaconPhase(Plot): |
|
482 | class BeaconPhase(Plot): | |
474 |
|
483 | |||
475 | __isConfig = None |
|
484 | __isConfig = None | |
476 | __nsubplots = None |
|
485 | __nsubplots = None | |
477 |
|
486 | |||
478 | PREFIX = 'beacon_phase' |
|
487 | PREFIX = 'beacon_phase' | |
479 |
|
488 | |||
480 | def __init__(self): |
|
489 | def __init__(self): | |
481 | Plot.__init__(self) |
|
490 | Plot.__init__(self) | |
482 | self.timerange = 24*60*60 |
|
491 | self.timerange = 24*60*60 | |
483 | self.isConfig = False |
|
492 | self.isConfig = False | |
484 | self.__nsubplots = 1 |
|
493 | self.__nsubplots = 1 | |
485 | self.counter_imagwr = 0 |
|
494 | self.counter_imagwr = 0 | |
486 | self.WIDTH = 800 |
|
495 | self.WIDTH = 800 | |
487 | self.HEIGHT = 400 |
|
496 | self.HEIGHT = 400 | |
488 | self.WIDTHPROF = 120 |
|
497 | self.WIDTHPROF = 120 | |
489 | self.HEIGHTPROF = 0 |
|
498 | self.HEIGHTPROF = 0 | |
490 | self.xdata = None |
|
499 | self.xdata = None | |
491 | self.ydata = None |
|
500 | self.ydata = None | |
492 |
|
501 | |||
493 | self.PLOT_CODE = BEACON_CODE |
|
502 | self.PLOT_CODE = BEACON_CODE | |
494 |
|
503 | |||
495 | self.FTP_WEI = None |
|
504 | self.FTP_WEI = None | |
496 | self.EXP_CODE = None |
|
505 | self.EXP_CODE = None | |
497 | self.SUB_EXP_CODE = None |
|
506 | self.SUB_EXP_CODE = None | |
498 | self.PLOT_POS = None |
|
507 | self.PLOT_POS = None | |
499 |
|
508 | |||
500 | self.filename_phase = None |
|
509 | self.filename_phase = None | |
501 |
|
510 | |||
502 | self.figfile = None |
|
511 | self.figfile = None | |
503 |
|
512 | |||
504 | self.xmin = None |
|
513 | self.xmin = None | |
505 | self.xmax = None |
|
514 | self.xmax = None | |
506 |
|
515 | |||
507 | def getSubplots(self): |
|
516 | def getSubplots(self): | |
508 |
|
517 | |||
509 | ncol = 1 |
|
518 | ncol = 1 | |
510 | nrow = 1 |
|
519 | nrow = 1 | |
511 |
|
520 | |||
512 | return nrow, ncol |
|
521 | return nrow, ncol | |
513 |
|
522 | |||
514 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
523 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
515 |
|
524 | |||
516 | self.__showprofile = showprofile |
|
525 | self.__showprofile = showprofile | |
517 | self.nplots = nplots |
|
526 | self.nplots = nplots | |
518 |
|
527 | |||
519 | ncolspan = 7 |
|
528 | ncolspan = 7 | |
520 | colspan = 6 |
|
529 | colspan = 6 | |
521 | self.__nsubplots = 2 |
|
530 | self.__nsubplots = 2 | |
522 |
|
531 | |||
523 | self.createFigure(id = id, |
|
532 | self.createFigure(id = id, | |
524 | wintitle = wintitle, |
|
533 | wintitle = wintitle, | |
525 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
534 | widthplot = self.WIDTH+self.WIDTHPROF, | |
526 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
535 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
527 | show=show) |
|
536 | show=show) | |
528 |
|
537 | |||
529 | nrow, ncol = self.getSubplots() |
|
538 | nrow, ncol = self.getSubplots() | |
530 |
|
539 | |||
531 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
540 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
532 |
|
541 | |||
533 | def save_phase(self, filename_phase): |
|
542 | def save_phase(self, filename_phase): | |
534 | f = open(filename_phase,'w+') |
|
543 | f = open(filename_phase,'w+') | |
535 | f.write('\n\n') |
|
544 | f.write('\n\n') | |
536 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
545 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
537 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
546 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
538 | f.close() |
|
547 | f.close() | |
539 |
|
548 | |||
540 | def save_data(self, filename_phase, data, data_datetime): |
|
549 | def save_data(self, filename_phase, data, data_datetime): | |
541 | f=open(filename_phase,'a') |
|
550 | f=open(filename_phase,'a') | |
542 | timetuple_data = data_datetime.timetuple() |
|
551 | timetuple_data = data_datetime.timetuple() | |
543 | day = str(timetuple_data.tm_mday) |
|
552 | day = str(timetuple_data.tm_mday) | |
544 | month = str(timetuple_data.tm_mon) |
|
553 | month = str(timetuple_data.tm_mon) | |
545 | year = str(timetuple_data.tm_year) |
|
554 | year = str(timetuple_data.tm_year) | |
546 | hour = str(timetuple_data.tm_hour) |
|
555 | hour = str(timetuple_data.tm_hour) | |
547 | minute = str(timetuple_data.tm_min) |
|
556 | minute = str(timetuple_data.tm_min) | |
548 | second = str(timetuple_data.tm_sec) |
|
557 | second = str(timetuple_data.tm_sec) | |
549 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
558 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
550 | f.close() |
|
559 | f.close() | |
551 |
|
560 | |||
552 | def plot(self): |
|
561 | def plot(self): | |
553 | log.warning('TODO: Not yet implemented...') |
|
562 | log.warning('TODO: Not yet implemented...') | |
554 |
|
563 | |||
555 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
564 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
556 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
565 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
557 | timerange=None, |
|
566 | timerange=None, | |
558 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
567 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
559 | server=None, folder=None, username=None, password=None, |
|
568 | server=None, folder=None, username=None, password=None, | |
560 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
569 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
561 |
|
570 | |||
562 |
if dataOut.flagNoData: |
|
571 | if dataOut.flagNoData: | |
563 | return dataOut |
|
572 | return dataOut | |
564 |
|
573 | |||
565 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
574 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
566 | return |
|
575 | return | |
567 |
|
576 | |||
568 | if pairsList == None: |
|
577 | if pairsList == None: | |
569 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
578 | pairsIndexList = dataOut.pairsIndexList[:10] | |
570 | else: |
|
579 | else: | |
571 | pairsIndexList = [] |
|
580 | pairsIndexList = [] | |
572 | for pair in pairsList: |
|
581 | for pair in pairsList: | |
573 | if pair not in dataOut.pairsList: |
|
582 | if pair not in dataOut.pairsList: | |
574 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
583 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) | |
575 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
584 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
576 |
|
585 | |||
577 | if pairsIndexList == []: |
|
586 | if pairsIndexList == []: | |
578 | return |
|
587 | return | |
579 |
|
588 | |||
580 | # if len(pairsIndexList) > 4: |
|
589 | # if len(pairsIndexList) > 4: | |
581 | # pairsIndexList = pairsIndexList[0:4] |
|
590 | # pairsIndexList = pairsIndexList[0:4] | |
582 |
|
591 | |||
583 | hmin_index = None |
|
592 | hmin_index = None | |
584 | hmax_index = None |
|
593 | hmax_index = None | |
585 |
|
594 | |||
586 | if hmin != None and hmax != None: |
|
595 | if hmin != None and hmax != None: | |
587 | indexes = numpy.arange(dataOut.nHeights) |
|
596 | indexes = numpy.arange(dataOut.nHeights) | |
588 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
597 | hmin_list = indexes[dataOut.heightList >= hmin] | |
589 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
598 | hmax_list = indexes[dataOut.heightList <= hmax] | |
590 |
|
599 | |||
591 | if hmin_list.any(): |
|
600 | if hmin_list.any(): | |
592 | hmin_index = hmin_list[0] |
|
601 | hmin_index = hmin_list[0] | |
593 |
|
602 | |||
594 | if hmax_list.any(): |
|
603 | if hmax_list.any(): | |
595 | hmax_index = hmax_list[-1]+1 |
|
604 | hmax_index = hmax_list[-1]+1 | |
596 |
|
605 | |||
597 | x = dataOut.getTimeRange() |
|
606 | x = dataOut.getTimeRange() | |
598 |
|
607 | |||
599 | thisDatetime = dataOut.datatime |
|
608 | thisDatetime = dataOut.datatime | |
600 |
|
609 | |||
601 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
610 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
602 | xlabel = "Local Time" |
|
611 | xlabel = "Local Time" | |
603 | ylabel = "Phase (degrees)" |
|
612 | ylabel = "Phase (degrees)" | |
604 |
|
613 | |||
605 | update_figfile = False |
|
614 | update_figfile = False | |
606 |
|
615 | |||
607 | nplots = len(pairsIndexList) |
|
616 | nplots = len(pairsIndexList) | |
608 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
617 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
609 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
618 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
610 | for i in range(nplots): |
|
619 | for i in range(nplots): | |
611 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
620 | pair = dataOut.pairsList[pairsIndexList[i]] | |
612 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
621 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
613 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
622 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
614 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
623 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
615 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
624 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
616 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
625 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
617 |
|
626 | |||
618 | if dataOut.beacon_heiIndexList: |
|
627 | if dataOut.beacon_heiIndexList: | |
619 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
628 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
620 | else: |
|
629 | else: | |
621 | phase_beacon[i] = numpy.average(phase) |
|
630 | phase_beacon[i] = numpy.average(phase) | |
622 |
|
631 | |||
623 | if not self.isConfig: |
|
632 | if not self.isConfig: | |
624 |
|
633 | |||
625 | nplots = len(pairsIndexList) |
|
634 | nplots = len(pairsIndexList) | |
626 |
|
635 | |||
627 | self.setup(id=id, |
|
636 | self.setup(id=id, | |
628 | nplots=nplots, |
|
637 | nplots=nplots, | |
629 | wintitle=wintitle, |
|
638 | wintitle=wintitle, | |
630 | showprofile=showprofile, |
|
639 | showprofile=showprofile, | |
631 | show=show) |
|
640 | show=show) | |
632 |
|
641 | |||
633 | if timerange != None: |
|
642 | if timerange != None: | |
634 | self.timerange = timerange |
|
643 | self.timerange = timerange | |
635 |
|
644 | |||
636 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
645 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
637 |
|
646 | |||
638 | if ymin == None: ymin = 0 |
|
647 | if ymin == None: ymin = 0 | |
639 | if ymax == None: ymax = 360 |
|
648 | if ymax == None: ymax = 360 | |
640 |
|
649 | |||
641 | self.FTP_WEI = ftp_wei |
|
650 | self.FTP_WEI = ftp_wei | |
642 | self.EXP_CODE = exp_code |
|
651 | self.EXP_CODE = exp_code | |
643 | self.SUB_EXP_CODE = sub_exp_code |
|
652 | self.SUB_EXP_CODE = sub_exp_code | |
644 | self.PLOT_POS = plot_pos |
|
653 | self.PLOT_POS = plot_pos | |
645 |
|
654 | |||
646 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
655 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
647 | self.isConfig = True |
|
656 | self.isConfig = True | |
648 | self.figfile = figfile |
|
657 | self.figfile = figfile | |
649 | self.xdata = numpy.array([]) |
|
658 | self.xdata = numpy.array([]) | |
650 | self.ydata = numpy.array([]) |
|
659 | self.ydata = numpy.array([]) | |
651 |
|
660 | |||
652 | update_figfile = True |
|
661 | update_figfile = True | |
653 |
|
662 | |||
654 | #open file beacon phase |
|
663 | #open file beacon phase | |
655 | path = '%s%03d' %(self.PREFIX, self.id) |
|
664 | path = '%s%03d' %(self.PREFIX, self.id) | |
656 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
665 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
657 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
666 | self.filename_phase = os.path.join(figpath,beacon_file) | |
658 | #self.save_phase(self.filename_phase) |
|
667 | #self.save_phase(self.filename_phase) | |
659 |
|
668 | |||
660 |
|
669 | |||
661 | #store data beacon phase |
|
670 | #store data beacon phase | |
662 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
671 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
663 |
|
672 | |||
664 | self.setWinTitle(title) |
|
673 | self.setWinTitle(title) | |
665 |
|
674 | |||
666 |
|
675 | |||
667 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
676 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
668 |
|
677 | |||
669 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
678 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
670 |
|
679 | |||
671 | axes = self.axesList[0] |
|
680 | axes = self.axesList[0] | |
672 |
|
681 | |||
673 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
682 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
674 |
|
683 | |||
675 | if len(self.ydata)==0: |
|
684 | if len(self.ydata)==0: | |
676 | self.ydata = phase_beacon.reshape(-1,1) |
|
685 | self.ydata = phase_beacon.reshape(-1,1) | |
677 | else: |
|
686 | else: | |
678 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
687 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
679 |
|
688 | |||
680 |
|
689 | |||
681 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
690 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
682 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
691 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
683 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
692 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
684 | XAxisAsTime=True, grid='both' |
|
693 | XAxisAsTime=True, grid='both' | |
685 | ) |
|
694 | ) | |
686 |
|
695 | |||
687 | self.draw() |
|
696 | self.draw() | |
688 |
|
697 | |||
689 | if dataOut.ltctime >= self.xmax: |
|
698 | if dataOut.ltctime >= self.xmax: | |
690 | self.counter_imagwr = wr_period |
|
699 | self.counter_imagwr = wr_period | |
691 | self.isConfig = False |
|
700 | self.isConfig = False | |
692 | update_figfile = True |
|
701 | update_figfile = True | |
693 |
|
702 | |||
694 | self.save(figpath=figpath, |
|
703 | self.save(figpath=figpath, | |
695 | figfile=figfile, |
|
704 | figfile=figfile, | |
696 | save=save, |
|
705 | save=save, | |
697 | ftp=ftp, |
|
706 | ftp=ftp, | |
698 | wr_period=wr_period, |
|
707 | wr_period=wr_period, | |
699 | thisDatetime=thisDatetime, |
|
708 | thisDatetime=thisDatetime, | |
700 | update_figfile=update_figfile) |
|
709 | update_figfile=update_figfile) | |
701 |
|
710 | |||
702 | return dataOut |
|
711 | return dataOut |
@@ -1,1457 +1,1456 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Spectra processing Unit and operations |
|
5 | """Spectra processing Unit and operations | |
6 |
|
6 | |||
7 | Here you will find the processing unit `SpectraProc` and several operations |
|
7 | Here you will find the processing unit `SpectraProc` and several operations | |
8 | to work with Spectra data type |
|
8 | to work with Spectra data type | |
9 | """ |
|
9 | """ | |
10 |
|
10 | |||
11 | import time |
|
11 | import time | |
12 | import itertools |
|
12 | import itertools | |
13 |
|
13 | |||
14 | import numpy |
|
14 | import numpy | |
15 | import math |
|
15 | import math | |
16 |
|
16 | |||
17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation | |
18 | from schainpy.model.data.jrodata import Spectra |
|
18 | from schainpy.model.data.jrodata import Spectra | |
19 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
19 | from schainpy.model.data.jrodata import hildebrand_sekhon | |
20 | from schainpy.utils import log |
|
20 | from schainpy.utils import log | |
21 |
|
21 | |||
22 | from scipy.optimize import curve_fit |
|
22 | from scipy.optimize import curve_fit | |
23 |
|
23 | |||
24 |
|
24 | |||
25 | class SpectraProc(ProcessingUnit): |
|
25 | class SpectraProc(ProcessingUnit): | |
26 |
|
26 | |||
27 | def __init__(self): |
|
27 | def __init__(self): | |
28 |
|
28 | |||
29 | ProcessingUnit.__init__(self) |
|
29 | ProcessingUnit.__init__(self) | |
30 |
|
30 | |||
31 | self.buffer = None |
|
31 | self.buffer = None | |
32 | self.firstdatatime = None |
|
32 | self.firstdatatime = None | |
33 | self.profIndex = 0 |
|
33 | self.profIndex = 0 | |
34 | self.dataOut = Spectra() |
|
34 | self.dataOut = Spectra() | |
35 | self.id_min = None |
|
35 | self.id_min = None | |
36 | self.id_max = None |
|
36 | self.id_max = None | |
37 | self.setupReq = False #Agregar a todas las unidades de proc |
|
37 | self.setupReq = False #Agregar a todas las unidades de proc | |
38 |
|
38 | |||
39 | def __updateSpecFromVoltage(self): |
|
39 | def __updateSpecFromVoltage(self): | |
40 |
|
40 | |||
41 | self.dataOut.timeZone = self.dataIn.timeZone |
|
41 | self.dataOut.timeZone = self.dataIn.timeZone | |
42 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
42 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
43 | self.dataOut.errorCount = self.dataIn.errorCount |
|
43 | self.dataOut.errorCount = self.dataIn.errorCount | |
44 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
44 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
45 | try: |
|
45 | try: | |
46 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
46 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
47 | except: |
|
47 | except: | |
48 | pass |
|
48 | pass | |
49 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
49 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
50 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
50 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
51 | self.dataOut.channelList = self.dataIn.channelList |
|
51 | self.dataOut.channelList = self.dataIn.channelList | |
52 | self.dataOut.heightList = self.dataIn.heightList |
|
52 | self.dataOut.heightList = self.dataIn.heightList | |
53 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
53 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
54 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
54 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
55 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
55 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
56 | self.dataOut.utctime = self.firstdatatime |
|
56 | self.dataOut.utctime = self.firstdatatime | |
57 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
57 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData | |
58 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
58 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData | |
59 | self.dataOut.flagShiftFFT = False |
|
59 | self.dataOut.flagShiftFFT = False | |
60 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
60 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
61 | self.dataOut.nIncohInt = 1 |
|
61 | self.dataOut.nIncohInt = 1 | |
62 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
62 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
63 | self.dataOut.frequency = self.dataIn.frequency |
|
63 | self.dataOut.frequency = self.dataIn.frequency | |
64 | self.dataOut.realtime = self.dataIn.realtime |
|
64 | self.dataOut.realtime = self.dataIn.realtime | |
65 | self.dataOut.azimuth = self.dataIn.azimuth |
|
65 | self.dataOut.azimuth = self.dataIn.azimuth | |
66 | self.dataOut.zenith = self.dataIn.zenith |
|
66 | self.dataOut.zenith = self.dataIn.zenith | |
67 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
67 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |
68 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
68 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |
69 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
69 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |
70 |
|
70 | |||
71 | def __getFft(self): |
|
71 | def __getFft(self): | |
72 | """ |
|
72 | """ | |
73 | Convierte valores de Voltaje a Spectra |
|
73 | Convierte valores de Voltaje a Spectra | |
74 |
|
74 | |||
75 | Affected: |
|
75 | Affected: | |
76 | self.dataOut.data_spc |
|
76 | self.dataOut.data_spc | |
77 | self.dataOut.data_cspc |
|
77 | self.dataOut.data_cspc | |
78 | self.dataOut.data_dc |
|
78 | self.dataOut.data_dc | |
79 | self.dataOut.heightList |
|
79 | self.dataOut.heightList | |
80 | self.profIndex |
|
80 | self.profIndex | |
81 | self.buffer |
|
81 | self.buffer | |
82 | self.dataOut.flagNoData |
|
82 | self.dataOut.flagNoData | |
83 | """ |
|
83 | """ | |
84 | fft_volt = numpy.fft.fft( |
|
84 | fft_volt = numpy.fft.fft( | |
85 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
85 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) | |
86 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
86 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |
87 | dc = fft_volt[:, 0, :] |
|
87 | dc = fft_volt[:, 0, :] | |
88 |
|
88 | |||
89 | # calculo de self-spectra |
|
89 | # calculo de self-spectra | |
90 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
90 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) | |
91 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
91 | spc = fft_volt * numpy.conjugate(fft_volt) | |
92 | spc = spc.real |
|
92 | spc = spc.real | |
93 |
|
93 | |||
94 | blocksize = 0 |
|
94 | blocksize = 0 | |
95 | blocksize += dc.size |
|
95 | blocksize += dc.size | |
96 | blocksize += spc.size |
|
96 | blocksize += spc.size | |
97 |
|
97 | |||
98 | cspc = None |
|
98 | cspc = None | |
99 | pairIndex = 0 |
|
99 | pairIndex = 0 | |
100 | if self.dataOut.pairsList != None: |
|
100 | if self.dataOut.pairsList != None: | |
101 | # calculo de cross-spectra |
|
101 | # calculo de cross-spectra | |
102 | cspc = numpy.zeros( |
|
102 | cspc = numpy.zeros( | |
103 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
103 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |
104 | for pair in self.dataOut.pairsList: |
|
104 | for pair in self.dataOut.pairsList: | |
105 | if pair[0] not in self.dataOut.channelList: |
|
105 | if pair[0] not in self.dataOut.channelList: | |
106 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
106 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( | |
107 | str(pair), str(self.dataOut.channelList))) |
|
107 | str(pair), str(self.dataOut.channelList))) | |
108 | if pair[1] not in self.dataOut.channelList: |
|
108 | if pair[1] not in self.dataOut.channelList: | |
109 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
109 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( | |
110 | str(pair), str(self.dataOut.channelList))) |
|
110 | str(pair), str(self.dataOut.channelList))) | |
111 |
|
111 | |||
112 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
112 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ | |
113 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
113 | numpy.conjugate(fft_volt[pair[1], :, :]) | |
114 | pairIndex += 1 |
|
114 | pairIndex += 1 | |
115 | blocksize += cspc.size |
|
115 | blocksize += cspc.size | |
116 |
|
116 | |||
117 | self.dataOut.data_spc = spc |
|
117 | self.dataOut.data_spc = spc | |
118 | self.dataOut.data_cspc = cspc |
|
118 | self.dataOut.data_cspc = cspc | |
119 | self.dataOut.data_dc = dc |
|
119 | self.dataOut.data_dc = dc | |
120 | self.dataOut.blockSize = blocksize |
|
120 | self.dataOut.blockSize = blocksize | |
121 | self.dataOut.flagShiftFFT = False |
|
121 | self.dataOut.flagShiftFFT = False | |
122 |
|
122 | |||
123 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): |
|
123 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): | |
124 |
|
124 | |||
125 | if self.dataIn.type == "Spectra": |
|
125 | if self.dataIn.type == "Spectra": | |
126 | self.dataOut.copy(self.dataIn) |
|
126 | self.dataOut.copy(self.dataIn) | |
127 | if shift_fft: |
|
127 | if shift_fft: | |
128 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
128 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
129 | shift = int(self.dataOut.nFFTPoints/2) |
|
129 | shift = int(self.dataOut.nFFTPoints/2) | |
130 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
130 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) | |
131 |
|
131 | |||
132 | if self.dataOut.data_cspc is not None: |
|
132 | if self.dataOut.data_cspc is not None: | |
133 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
133 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
134 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
134 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) | |
135 | if pairsList: |
|
135 | if pairsList: | |
136 | self.__selectPairs(pairsList) |
|
136 | self.__selectPairs(pairsList) | |
137 |
|
137 | |||
138 | elif self.dataIn.type == "Voltage": |
|
138 | elif self.dataIn.type == "Voltage": | |
139 |
|
139 | |||
140 | self.dataOut.flagNoData = True |
|
140 | self.dataOut.flagNoData = True | |
141 |
|
141 | |||
142 | if nFFTPoints == None: |
|
142 | if nFFTPoints == None: | |
143 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
143 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") | |
144 |
|
144 | |||
145 | if nProfiles == None: |
|
145 | if nProfiles == None: | |
146 | nProfiles = nFFTPoints |
|
146 | nProfiles = nFFTPoints | |
147 |
|
147 | |||
148 | if ippFactor == None: |
|
148 | if ippFactor == None: | |
149 | self.dataOut.ippFactor = 1 |
|
149 | self.dataOut.ippFactor = 1 | |
150 |
|
150 | |||
151 | self.dataOut.nFFTPoints = nFFTPoints |
|
151 | self.dataOut.nFFTPoints = nFFTPoints | |
152 |
|
152 | |||
153 | if self.buffer is None: |
|
153 | if self.buffer is None: | |
154 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
154 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
155 | nProfiles, |
|
155 | nProfiles, | |
156 | self.dataIn.nHeights), |
|
156 | self.dataIn.nHeights), | |
157 | dtype='complex') |
|
157 | dtype='complex') | |
158 |
|
158 | |||
159 | if self.dataIn.flagDataAsBlock: |
|
159 | if self.dataIn.flagDataAsBlock: | |
160 | nVoltProfiles = self.dataIn.data.shape[1] |
|
160 | nVoltProfiles = self.dataIn.data.shape[1] | |
161 |
|
161 | |||
162 | if nVoltProfiles == nProfiles: |
|
162 | if nVoltProfiles == nProfiles: | |
163 | self.buffer = self.dataIn.data.copy() |
|
163 | self.buffer = self.dataIn.data.copy() | |
164 | self.profIndex = nVoltProfiles |
|
164 | self.profIndex = nVoltProfiles | |
165 |
|
165 | |||
166 | elif nVoltProfiles < nProfiles: |
|
166 | elif nVoltProfiles < nProfiles: | |
167 |
|
167 | |||
168 | if self.profIndex == 0: |
|
168 | if self.profIndex == 0: | |
169 | self.id_min = 0 |
|
169 | self.id_min = 0 | |
170 | self.id_max = nVoltProfiles |
|
170 | self.id_max = nVoltProfiles | |
171 |
|
171 | |||
172 | self.buffer[:, self.id_min:self.id_max, |
|
172 | self.buffer[:, self.id_min:self.id_max, | |
173 | :] = self.dataIn.data |
|
173 | :] = self.dataIn.data | |
174 | self.profIndex += nVoltProfiles |
|
174 | self.profIndex += nVoltProfiles | |
175 | self.id_min += nVoltProfiles |
|
175 | self.id_min += nVoltProfiles | |
176 | self.id_max += nVoltProfiles |
|
176 | self.id_max += nVoltProfiles | |
177 | else: |
|
177 | else: | |
178 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
178 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( | |
179 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
179 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) | |
180 | self.dataOut.flagNoData = True |
|
180 | self.dataOut.flagNoData = True | |
181 | else: |
|
181 | else: | |
182 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
182 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() | |
183 | self.profIndex += 1 |
|
183 | self.profIndex += 1 | |
184 |
|
184 | |||
185 | if self.firstdatatime == None: |
|
185 | if self.firstdatatime == None: | |
186 | self.firstdatatime = self.dataIn.utctime |
|
186 | self.firstdatatime = self.dataIn.utctime | |
187 |
|
187 | |||
188 | if self.profIndex == nProfiles: |
|
188 | if self.profIndex == nProfiles: | |
189 | self.__updateSpecFromVoltage() |
|
189 | self.__updateSpecFromVoltage() | |
190 | if pairsList == None: |
|
190 | if pairsList == None: | |
191 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
191 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] | |
192 | else: |
|
192 | else: | |
193 | self.dataOut.pairsList = pairsList |
|
193 | self.dataOut.pairsList = pairsList | |
194 | self.__getFft() |
|
194 | self.__getFft() | |
195 | self.dataOut.flagNoData = False |
|
195 | self.dataOut.flagNoData = False | |
196 | self.firstdatatime = None |
|
196 | self.firstdatatime = None | |
197 | self.profIndex = 0 |
|
197 | self.profIndex = 0 | |
198 | else: |
|
198 | else: | |
199 | raise ValueError("The type of input object '%s' is not valid".format( |
|
199 | raise ValueError("The type of input object '%s' is not valid".format( | |
200 | self.dataIn.type)) |
|
200 | self.dataIn.type)) | |
201 |
|
201 | |||
202 | def __selectPairs(self, pairsList): |
|
202 | def __selectPairs(self, pairsList): | |
203 |
|
203 | |||
204 | if not pairsList: |
|
204 | if not pairsList: | |
205 | return |
|
205 | return | |
206 |
|
206 | |||
207 | pairs = [] |
|
207 | pairs = [] | |
208 | pairsIndex = [] |
|
208 | pairsIndex = [] | |
209 |
|
209 | |||
210 | for pair in pairsList: |
|
210 | for pair in pairsList: | |
211 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
211 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: | |
212 | continue |
|
212 | continue | |
213 | pairs.append(pair) |
|
213 | pairs.append(pair) | |
214 | pairsIndex.append(pairs.index(pair)) |
|
214 | pairsIndex.append(pairs.index(pair)) | |
215 |
|
215 | |||
216 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
216 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] | |
217 | self.dataOut.pairsList = pairs |
|
217 | self.dataOut.pairsList = pairs | |
218 |
|
218 | |||
219 | return |
|
219 | return | |
220 |
|
220 | |||
221 | def selectFFTs(self, minFFT, maxFFT ): |
|
221 | def selectFFTs(self, minFFT, maxFFT ): | |
222 | """ |
|
222 | """ | |
223 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
223 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |
224 | minFFT<= FFT <= maxFFT |
|
224 | minFFT<= FFT <= maxFFT | |
225 | """ |
|
225 | """ | |
226 |
|
226 | |||
227 | if (minFFT > maxFFT): |
|
227 | if (minFFT > maxFFT): | |
228 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
228 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) | |
229 |
|
229 | |||
230 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
230 | if (minFFT < self.dataOut.getFreqRange()[0]): | |
231 | minFFT = self.dataOut.getFreqRange()[0] |
|
231 | minFFT = self.dataOut.getFreqRange()[0] | |
232 |
|
232 | |||
233 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
233 | if (maxFFT > self.dataOut.getFreqRange()[-1]): | |
234 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
234 | maxFFT = self.dataOut.getFreqRange()[-1] | |
235 |
|
235 | |||
236 | minIndex = 0 |
|
236 | minIndex = 0 | |
237 | maxIndex = 0 |
|
237 | maxIndex = 0 | |
238 | FFTs = self.dataOut.getFreqRange() |
|
238 | FFTs = self.dataOut.getFreqRange() | |
239 |
|
239 | |||
240 | inda = numpy.where(FFTs >= minFFT) |
|
240 | inda = numpy.where(FFTs >= minFFT) | |
241 | indb = numpy.where(FFTs <= maxFFT) |
|
241 | indb = numpy.where(FFTs <= maxFFT) | |
242 |
|
242 | |||
243 | try: |
|
243 | try: | |
244 | minIndex = inda[0][0] |
|
244 | minIndex = inda[0][0] | |
245 | except: |
|
245 | except: | |
246 | minIndex = 0 |
|
246 | minIndex = 0 | |
247 |
|
247 | |||
248 | try: |
|
248 | try: | |
249 | maxIndex = indb[0][-1] |
|
249 | maxIndex = indb[0][-1] | |
250 | except: |
|
250 | except: | |
251 | maxIndex = len(FFTs) |
|
251 | maxIndex = len(FFTs) | |
252 |
|
252 | |||
253 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
253 | self.selectFFTsByIndex(minIndex, maxIndex) | |
254 |
|
254 | |||
255 | return 1 |
|
255 | return 1 | |
256 |
|
256 | |||
257 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
257 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): | |
258 | newheis = numpy.where( |
|
258 | newheis = numpy.where( | |
259 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
259 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
260 |
|
260 | |||
261 | if hei_ref != None: |
|
261 | if hei_ref != None: | |
262 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
262 | newheis = numpy.where(self.dataOut.heightList > hei_ref) | |
263 |
|
263 | |||
264 | minIndex = min(newheis[0]) |
|
264 | minIndex = min(newheis[0]) | |
265 | maxIndex = max(newheis[0]) |
|
265 | maxIndex = max(newheis[0]) | |
266 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
266 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
267 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
267 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
268 |
|
268 | |||
269 | # determina indices |
|
269 | # determina indices | |
270 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
270 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / | |
271 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
271 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) | |
272 | avg_dB = 10 * \ |
|
272 | avg_dB = 10 * \ | |
273 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
273 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) | |
274 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
274 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |
275 | beacon_heiIndexList = [] |
|
275 | beacon_heiIndexList = [] | |
276 | for val in avg_dB.tolist(): |
|
276 | for val in avg_dB.tolist(): | |
277 | if val >= beacon_dB[0]: |
|
277 | if val >= beacon_dB[0]: | |
278 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
278 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |
279 |
|
279 | |||
280 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
280 | #data_spc = data_spc[:,:,beacon_heiIndexList] | |
281 | data_cspc = None |
|
281 | data_cspc = None | |
282 | if self.dataOut.data_cspc is not None: |
|
282 | if self.dataOut.data_cspc is not None: | |
283 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
283 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
284 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
284 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] | |
285 |
|
285 | |||
286 | data_dc = None |
|
286 | data_dc = None | |
287 | if self.dataOut.data_dc is not None: |
|
287 | if self.dataOut.data_dc is not None: | |
288 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
288 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
289 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
289 | #data_dc = data_dc[:,beacon_heiIndexList] | |
290 |
|
290 | |||
291 | self.dataOut.data_spc = data_spc |
|
291 | self.dataOut.data_spc = data_spc | |
292 | self.dataOut.data_cspc = data_cspc |
|
292 | self.dataOut.data_cspc = data_cspc | |
293 | self.dataOut.data_dc = data_dc |
|
293 | self.dataOut.data_dc = data_dc | |
294 | self.dataOut.heightList = heightList |
|
294 | self.dataOut.heightList = heightList | |
295 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
295 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |
296 |
|
296 | |||
297 | return 1 |
|
297 | return 1 | |
298 |
|
298 | |||
299 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
299 | def selectFFTsByIndex(self, minIndex, maxIndex): | |
300 | """ |
|
300 | """ | |
301 |
|
301 | |||
302 | """ |
|
302 | """ | |
303 |
|
303 | |||
304 | if (minIndex < 0) or (minIndex > maxIndex): |
|
304 | if (minIndex < 0) or (minIndex > maxIndex): | |
305 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
305 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
306 |
|
306 | |||
307 | if (maxIndex >= self.dataOut.nProfiles): |
|
307 | if (maxIndex >= self.dataOut.nProfiles): | |
308 | maxIndex = self.dataOut.nProfiles-1 |
|
308 | maxIndex = self.dataOut.nProfiles-1 | |
309 |
|
309 | |||
310 | #Spectra |
|
310 | #Spectra | |
311 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
311 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] | |
312 |
|
312 | |||
313 | data_cspc = None |
|
313 | data_cspc = None | |
314 | if self.dataOut.data_cspc is not None: |
|
314 | if self.dataOut.data_cspc is not None: | |
315 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
315 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] | |
316 |
|
316 | |||
317 | data_dc = None |
|
317 | data_dc = None | |
318 | if self.dataOut.data_dc is not None: |
|
318 | if self.dataOut.data_dc is not None: | |
319 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
319 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] | |
320 |
|
320 | |||
321 | self.dataOut.data_spc = data_spc |
|
321 | self.dataOut.data_spc = data_spc | |
322 | self.dataOut.data_cspc = data_cspc |
|
322 | self.dataOut.data_cspc = data_cspc | |
323 | self.dataOut.data_dc = data_dc |
|
323 | self.dataOut.data_dc = data_dc | |
324 |
|
324 | |||
325 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
325 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) | |
326 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
326 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] | |
327 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
327 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] | |
328 |
|
328 | |||
329 | return 1 |
|
329 | return 1 | |
330 |
|
330 | |||
331 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
331 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |
332 | # validacion de rango |
|
332 | # validacion de rango | |
333 | if minHei == None: |
|
333 | if minHei == None: | |
334 | minHei = self.dataOut.heightList[0] |
|
334 | minHei = self.dataOut.heightList[0] | |
335 |
|
335 | |||
336 | if maxHei == None: |
|
336 | if maxHei == None: | |
337 | maxHei = self.dataOut.heightList[-1] |
|
337 | maxHei = self.dataOut.heightList[-1] | |
338 |
|
338 | |||
339 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
339 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
340 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
340 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
341 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
341 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
342 | minHei = self.dataOut.heightList[0] |
|
342 | minHei = self.dataOut.heightList[0] | |
343 |
|
343 | |||
344 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
344 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
345 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
345 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
346 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
346 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
347 | maxHei = self.dataOut.heightList[-1] |
|
347 | maxHei = self.dataOut.heightList[-1] | |
348 |
|
348 | |||
349 | # validacion de velocidades |
|
349 | # validacion de velocidades | |
350 | velrange = self.dataOut.getVelRange(1) |
|
350 | velrange = self.dataOut.getVelRange(1) | |
351 |
|
351 | |||
352 | if minVel == None: |
|
352 | if minVel == None: | |
353 | minVel = velrange[0] |
|
353 | minVel = velrange[0] | |
354 |
|
354 | |||
355 | if maxVel == None: |
|
355 | if maxVel == None: | |
356 | maxVel = velrange[-1] |
|
356 | maxVel = velrange[-1] | |
357 |
|
357 | |||
358 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
358 | if (minVel < velrange[0]) or (minVel > maxVel): | |
359 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
359 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |
360 | print('minVel is setting to %.2f' % (velrange[0])) |
|
360 | print('minVel is setting to %.2f' % (velrange[0])) | |
361 | minVel = velrange[0] |
|
361 | minVel = velrange[0] | |
362 |
|
362 | |||
363 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
363 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
364 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
364 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |
365 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
365 | print('maxVel is setting to %.2f' % (velrange[-1])) | |
366 | maxVel = velrange[-1] |
|
366 | maxVel = velrange[-1] | |
367 |
|
367 | |||
368 | # seleccion de indices para rango |
|
368 | # seleccion de indices para rango | |
369 | minIndex = 0 |
|
369 | minIndex = 0 | |
370 | maxIndex = 0 |
|
370 | maxIndex = 0 | |
371 | heights = self.dataOut.heightList |
|
371 | heights = self.dataOut.heightList | |
372 |
|
372 | |||
373 | inda = numpy.where(heights >= minHei) |
|
373 | inda = numpy.where(heights >= minHei) | |
374 | indb = numpy.where(heights <= maxHei) |
|
374 | indb = numpy.where(heights <= maxHei) | |
375 |
|
375 | |||
376 | try: |
|
376 | try: | |
377 | minIndex = inda[0][0] |
|
377 | minIndex = inda[0][0] | |
378 | except: |
|
378 | except: | |
379 | minIndex = 0 |
|
379 | minIndex = 0 | |
380 |
|
380 | |||
381 | try: |
|
381 | try: | |
382 | maxIndex = indb[0][-1] |
|
382 | maxIndex = indb[0][-1] | |
383 | except: |
|
383 | except: | |
384 | maxIndex = len(heights) |
|
384 | maxIndex = len(heights) | |
385 |
|
385 | |||
386 | if (minIndex < 0) or (minIndex > maxIndex): |
|
386 | if (minIndex < 0) or (minIndex > maxIndex): | |
387 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
387 | raise ValueError("some value in (%d,%d) is not valid" % ( | |
388 | minIndex, maxIndex)) |
|
388 | minIndex, maxIndex)) | |
389 |
|
389 | |||
390 | if (maxIndex >= self.dataOut.nHeights): |
|
390 | if (maxIndex >= self.dataOut.nHeights): | |
391 | maxIndex = self.dataOut.nHeights - 1 |
|
391 | maxIndex = self.dataOut.nHeights - 1 | |
392 |
|
392 | |||
393 | # seleccion de indices para velocidades |
|
393 | # seleccion de indices para velocidades | |
394 | indminvel = numpy.where(velrange >= minVel) |
|
394 | indminvel = numpy.where(velrange >= minVel) | |
395 | indmaxvel = numpy.where(velrange <= maxVel) |
|
395 | indmaxvel = numpy.where(velrange <= maxVel) | |
396 | try: |
|
396 | try: | |
397 | minIndexVel = indminvel[0][0] |
|
397 | minIndexVel = indminvel[0][0] | |
398 | except: |
|
398 | except: | |
399 | minIndexVel = 0 |
|
399 | minIndexVel = 0 | |
400 |
|
400 | |||
401 | try: |
|
401 | try: | |
402 | maxIndexVel = indmaxvel[0][-1] |
|
402 | maxIndexVel = indmaxvel[0][-1] | |
403 | except: |
|
403 | except: | |
404 | maxIndexVel = len(velrange) |
|
404 | maxIndexVel = len(velrange) | |
405 |
|
405 | |||
406 | # seleccion del espectro |
|
406 | # seleccion del espectro | |
407 | data_spc = self.dataOut.data_spc[:, |
|
407 | data_spc = self.dataOut.data_spc[:, | |
408 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
408 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] | |
409 | # estimacion de ruido |
|
409 | # estimacion de ruido | |
410 | noise = numpy.zeros(self.dataOut.nChannels) |
|
410 | noise = numpy.zeros(self.dataOut.nChannels) | |
411 |
|
411 | |||
412 | for channel in range(self.dataOut.nChannels): |
|
412 | for channel in range(self.dataOut.nChannels): | |
413 | daux = data_spc[channel, :, :] |
|
413 | daux = data_spc[channel, :, :] | |
414 | sortdata = numpy.sort(daux, axis=None) |
|
414 | sortdata = numpy.sort(daux, axis=None) | |
415 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
415 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) | |
416 |
|
416 | |||
417 | self.dataOut.noise_estimation = noise.copy() |
|
417 | self.dataOut.noise_estimation = noise.copy() | |
418 |
|
418 | |||
419 | return 1 |
|
419 | return 1 | |
420 |
|
420 | |||
421 | class removeDC(Operation): |
|
421 | class removeDC(Operation): | |
422 |
|
422 | |||
423 | def run(self, dataOut, mode=2): |
|
423 | def run(self, dataOut, mode=2): | |
424 | self.dataOut = dataOut |
|
424 | self.dataOut = dataOut | |
425 | jspectra = self.dataOut.data_spc |
|
425 | jspectra = self.dataOut.data_spc | |
426 | jcspectra = self.dataOut.data_cspc |
|
426 | jcspectra = self.dataOut.data_cspc | |
427 |
|
427 | |||
428 | num_chan = jspectra.shape[0] |
|
428 | num_chan = jspectra.shape[0] | |
429 | num_hei = jspectra.shape[2] |
|
429 | num_hei = jspectra.shape[2] | |
430 |
|
430 | |||
431 | if jcspectra is not None: |
|
431 | if jcspectra is not None: | |
432 | jcspectraExist = True |
|
432 | jcspectraExist = True | |
433 | num_pairs = jcspectra.shape[0] |
|
433 | num_pairs = jcspectra.shape[0] | |
434 | else: |
|
434 | else: | |
435 | jcspectraExist = False |
|
435 | jcspectraExist = False | |
436 |
|
436 | |||
437 | freq_dc = int(jspectra.shape[1] / 2) |
|
437 | freq_dc = int(jspectra.shape[1] / 2) | |
438 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
438 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
439 | ind_vel = ind_vel.astype(int) |
|
439 | ind_vel = ind_vel.astype(int) | |
440 |
|
440 | |||
441 | if ind_vel[0] < 0: |
|
441 | if ind_vel[0] < 0: | |
442 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
442 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof | |
443 |
|
443 | |||
444 | if mode == 1: |
|
444 | if mode == 1: | |
445 | jspectra[:, freq_dc, :] = ( |
|
445 | jspectra[:, freq_dc, :] = ( | |
446 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
446 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
447 |
|
447 | |||
448 | if jcspectraExist: |
|
448 | if jcspectraExist: | |
449 | jcspectra[:, freq_dc, :] = ( |
|
449 | jcspectra[:, freq_dc, :] = ( | |
450 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
450 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 | |
451 |
|
451 | |||
452 | if mode == 2: |
|
452 | if mode == 2: | |
453 |
|
453 | |||
454 | vel = numpy.array([-2, -1, 1, 2]) |
|
454 | vel = numpy.array([-2, -1, 1, 2]) | |
455 | xx = numpy.zeros([4, 4]) |
|
455 | xx = numpy.zeros([4, 4]) | |
456 |
|
456 | |||
457 | for fil in range(4): |
|
457 | for fil in range(4): | |
458 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
458 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
459 |
|
459 | |||
460 | xx_inv = numpy.linalg.inv(xx) |
|
460 | xx_inv = numpy.linalg.inv(xx) | |
461 | xx_aux = xx_inv[0, :] |
|
461 | xx_aux = xx_inv[0, :] | |
462 |
|
462 | |||
463 | for ich in range(num_chan): |
|
463 | for ich in range(num_chan): | |
464 | yy = jspectra[ich, ind_vel, :] |
|
464 | yy = jspectra[ich, ind_vel, :] | |
465 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
465 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
466 |
|
466 | |||
467 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
467 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
468 | cjunkid = sum(junkid) |
|
468 | cjunkid = sum(junkid) | |
469 |
|
469 | |||
470 | if cjunkid.any(): |
|
470 | if cjunkid.any(): | |
471 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
471 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
472 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
472 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
473 |
|
473 | |||
474 | if jcspectraExist: |
|
474 | if jcspectraExist: | |
475 | for ip in range(num_pairs): |
|
475 | for ip in range(num_pairs): | |
476 | yy = jcspectra[ip, ind_vel, :] |
|
476 | yy = jcspectra[ip, ind_vel, :] | |
477 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
477 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) | |
478 |
|
478 | |||
479 | self.dataOut.data_spc = jspectra |
|
479 | self.dataOut.data_spc = jspectra | |
480 | self.dataOut.data_cspc = jcspectra |
|
480 | self.dataOut.data_cspc = jcspectra | |
481 |
|
481 | |||
482 | return self.dataOut |
|
482 | return self.dataOut | |
483 |
|
483 | |||
484 | # import matplotlib.pyplot as plt |
|
484 | # import matplotlib.pyplot as plt | |
485 |
|
485 | |||
486 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): |
|
486 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): | |
487 | z = (x - a1) / a2 |
|
487 | z = (x - a1) / a2 | |
488 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 |
|
488 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 | |
489 | return y |
|
489 | return y | |
490 | class CleanRayleigh(Operation): |
|
490 | class CleanRayleigh(Operation): | |
491 |
|
491 | |||
492 | def __init__(self): |
|
492 | def __init__(self): | |
493 |
|
493 | |||
494 | Operation.__init__(self) |
|
494 | Operation.__init__(self) | |
495 | self.i=0 |
|
495 | self.i=0 | |
496 | self.isConfig = False |
|
496 | self.isConfig = False | |
497 | self.__dataReady = False |
|
497 | self.__dataReady = False | |
498 | self.__profIndex = 0 |
|
498 | self.__profIndex = 0 | |
499 | self.byTime = False |
|
499 | self.byTime = False | |
500 | self.byProfiles = False |
|
500 | self.byProfiles = False | |
501 |
|
501 | |||
502 | self.bloques = None |
|
502 | self.bloques = None | |
503 | self.bloque0 = None |
|
503 | self.bloque0 = None | |
504 |
|
504 | |||
505 | self.index = 0 |
|
505 | self.index = 0 | |
506 |
|
506 | |||
507 | self.buffer = 0 |
|
507 | self.buffer = 0 | |
508 | self.buffer2 = 0 |
|
508 | self.buffer2 = 0 | |
509 | self.buffer3 = 0 |
|
509 | self.buffer3 = 0 | |
510 | #self.min_hei = None |
|
510 | ||
511 | #self.max_hei = None |
|
|||
512 |
|
511 | |||
513 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): |
|
512 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): | |
514 |
|
513 | |||
515 | self.nChannels = dataOut.nChannels |
|
514 | self.nChannels = dataOut.nChannels | |
516 | self.nProf = dataOut.nProfiles |
|
515 | self.nProf = dataOut.nProfiles | |
517 | self.nPairs = dataOut.data_cspc.shape[0] |
|
516 | self.nPairs = dataOut.data_cspc.shape[0] | |
518 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
517 | self.pairsArray = numpy.array(dataOut.pairsList) | |
519 | self.spectra = dataOut.data_spc |
|
518 | self.spectra = dataOut.data_spc | |
520 | self.cspectra = dataOut.data_cspc |
|
519 | self.cspectra = dataOut.data_cspc | |
521 | self.heights = dataOut.heightList #alturas totales |
|
520 | self.heights = dataOut.heightList #alturas totales | |
522 | self.nHeights = len(self.heights) |
|
521 | self.nHeights = len(self.heights) | |
523 | self.min_hei = min_hei |
|
522 | self.min_hei = min_hei | |
524 | self.max_hei = max_hei |
|
523 | self.max_hei = max_hei | |
525 | if (self.min_hei == None): |
|
524 | if (self.min_hei == None): | |
526 | self.min_hei = 0 |
|
525 | self.min_hei = 0 | |
527 | if (self.max_hei == None): |
|
526 | if (self.max_hei == None): | |
528 | self.max_hei = dataOut.heightList[-1] |
|
527 | self.max_hei = dataOut.heightList[-1] | |
529 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() |
|
528 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() | |
530 | self.heightsClean = self.heights[self.hval] #alturas filtradas |
|
529 | self.heightsClean = self.heights[self.hval] #alturas filtradas | |
531 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas |
|
530 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas | |
532 | self.nHeightsClean = len(self.heightsClean) |
|
531 | self.nHeightsClean = len(self.heightsClean) | |
533 | self.channels = dataOut.channelList |
|
532 | self.channels = dataOut.channelList | |
534 | self.nChan = len(self.channels) |
|
533 | self.nChan = len(self.channels) | |
535 | self.nIncohInt = dataOut.nIncohInt |
|
534 | self.nIncohInt = dataOut.nIncohInt | |
536 | self.__initime = dataOut.utctime |
|
535 | self.__initime = dataOut.utctime | |
537 | self.maxAltInd = self.hval[-1]+1 |
|
536 | self.maxAltInd = self.hval[-1]+1 | |
538 | self.minAltInd = self.hval[0] |
|
537 | self.minAltInd = self.hval[0] | |
539 |
|
538 | |||
540 | self.crosspairs = dataOut.pairsList |
|
539 | self.crosspairs = dataOut.pairsList | |
541 | self.nPairs = len(self.crosspairs) |
|
540 | self.nPairs = len(self.crosspairs) | |
542 | self.normFactor = dataOut.normFactor |
|
541 | self.normFactor = dataOut.normFactor | |
543 | self.nFFTPoints = dataOut.nFFTPoints |
|
542 | self.nFFTPoints = dataOut.nFFTPoints | |
544 | self.ippSeconds = dataOut.ippSeconds |
|
543 | self.ippSeconds = dataOut.ippSeconds | |
545 | self.currentTime = self.__initime |
|
544 | self.currentTime = self.__initime | |
546 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
545 | self.pairsArray = numpy.array(dataOut.pairsList) | |
547 | self.factor_stdv = factor_stdv |
|
546 | self.factor_stdv = factor_stdv | |
548 |
|
547 | print("CHANNELS: ",[x for x in self.channels]) | ||
549 |
|
||||
550 |
|
548 | |||
551 | if n != None : |
|
549 | if n != None : | |
552 | self.byProfiles = True |
|
550 | self.byProfiles = True | |
553 | self.nIntProfiles = n |
|
551 | self.nIntProfiles = n | |
554 | else: |
|
552 | else: | |
555 | self.__integrationtime = timeInterval |
|
553 | self.__integrationtime = timeInterval | |
556 |
|
554 | |||
557 | self.__dataReady = False |
|
555 | self.__dataReady = False | |
558 | self.isConfig = True |
|
556 | self.isConfig = True | |
559 |
|
557 | |||
560 |
|
558 | |||
561 |
|
559 | |||
562 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): |
|
560 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): | |
563 | #print (dataOut.utctime) |
|
561 | #print (dataOut.utctime) | |
564 | if not self.isConfig : |
|
562 | if not self.isConfig : | |
565 | #print("Setting config") |
|
563 | #print("Setting config") | |
566 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) |
|
564 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) | |
567 | #print("Config Done") |
|
565 | #print("Config Done") | |
568 | tini=dataOut.utctime |
|
566 | tini=dataOut.utctime | |
569 |
|
567 | |||
570 | if self.byProfiles: |
|
568 | if self.byProfiles: | |
571 | if self.__profIndex == self.nIntProfiles: |
|
569 | if self.__profIndex == self.nIntProfiles: | |
572 | self.__dataReady = True |
|
570 | self.__dataReady = True | |
573 | else: |
|
571 | else: | |
574 | if (tini - self.__initime) >= self.__integrationtime: |
|
572 | if (tini - self.__initime) >= self.__integrationtime: | |
575 | #print(tini - self.__initime,self.__profIndex) |
|
573 | #print(tini - self.__initime,self.__profIndex) | |
576 | self.__dataReady = True |
|
574 | self.__dataReady = True | |
577 | self.__initime = tini |
|
575 | self.__initime = tini | |
578 |
|
576 | |||
579 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): |
|
577 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): | |
580 |
|
578 | |||
581 | if self.__dataReady: |
|
579 | if self.__dataReady: | |
582 | print("Data ready",self.__profIndex) |
|
580 | print("Data ready",self.__profIndex) | |
583 | self.__profIndex = 0 |
|
581 | self.__profIndex = 0 | |
584 | jspc = self.buffer |
|
582 | jspc = self.buffer | |
585 | jcspc = self.buffer2 |
|
583 | jcspc = self.buffer2 | |
586 | #jnoise = self.buffer3 |
|
584 | #jnoise = self.buffer3 | |
587 | self.buffer = dataOut.data_spc |
|
585 | self.buffer = dataOut.data_spc | |
588 | self.buffer2 = dataOut.data_cspc |
|
586 | self.buffer2 = dataOut.data_cspc | |
589 | #self.buffer3 = dataOut.noise |
|
587 | #self.buffer3 = dataOut.noise | |
590 | self.currentTime = dataOut.utctime |
|
588 | self.currentTime = dataOut.utctime | |
591 | if numpy.any(jspc) : |
|
589 | if numpy.any(jspc) : | |
592 | #print( jspc.shape, jcspc.shape) |
|
590 | #print( jspc.shape, jcspc.shape) | |
593 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) |
|
591 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) | |
594 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) |
|
592 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) | |
595 | self.__dataReady = False |
|
593 | self.__dataReady = False | |
596 | #print( jspc.shape, jcspc.shape) |
|
594 | #print( jspc.shape, jcspc.shape) | |
597 | dataOut.flagNoData = False |
|
595 | dataOut.flagNoData = False | |
598 | else: |
|
596 | else: | |
599 | dataOut.flagNoData = True |
|
597 | dataOut.flagNoData = True | |
600 | self.__dataReady = False |
|
598 | self.__dataReady = False | |
601 | return dataOut |
|
599 | return dataOut | |
602 | else: |
|
600 | else: | |
603 | #print( len(self.buffer)) |
|
601 | #print( len(self.buffer)) | |
604 | if numpy.any(self.buffer): |
|
602 | if numpy.any(self.buffer): | |
605 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) |
|
603 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) | |
606 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) |
|
604 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) | |
607 | self.buffer3 += dataOut.data_dc |
|
605 | self.buffer3 += dataOut.data_dc | |
608 | else: |
|
606 | else: | |
609 | self.buffer = dataOut.data_spc |
|
607 | self.buffer = dataOut.data_spc | |
610 | self.buffer2 = dataOut.data_cspc |
|
608 | self.buffer2 = dataOut.data_cspc | |
611 | self.buffer3 = dataOut.data_dc |
|
609 | self.buffer3 = dataOut.data_dc | |
612 | #print self.index, self.fint |
|
610 | #print self.index, self.fint | |
613 | #print self.buffer2.shape |
|
611 | #print self.buffer2.shape | |
614 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO |
|
612 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO | |
615 | self.__profIndex += 1 |
|
613 | self.__profIndex += 1 | |
616 | return dataOut ## NOTE: REV |
|
614 | return dataOut ## NOTE: REV | |
617 |
|
615 | |||
618 | # if self.index == 0 and self.fint == 1 : |
|
616 | # if self.index == 0 and self.fint == 1 : | |
619 | # if jspc != None: |
|
617 | # if jspc != None: | |
620 | # print len(jspc), jspc.shape |
|
618 | # print len(jspc), jspc.shape | |
621 | # jspc= numpy.reshape(jspc,(4,128,63,len(jspc)/4)) |
|
619 | # jspc= numpy.reshape(jspc,(4,128,63,len(jspc)/4)) | |
622 | # print jspc.shape |
|
620 | # print jspc.shape | |
623 | # dataOut.flagNoData = True |
|
621 | # dataOut.flagNoData = True | |
624 | # return dataOut |
|
622 | # return dataOut | |
625 | # if path != None: |
|
623 | # if path != None: | |
626 | # sys.path.append(path) |
|
624 | # sys.path.append(path) | |
627 | # self.library = importlib.import_module(file) |
|
625 | # self.library = importlib.import_module(file) | |
628 | # |
|
626 | # | |
629 | # To be inserted as a parameter |
|
627 | # To be inserted as a parameter | |
630 |
|
628 | |||
631 | #Set constants |
|
629 | #Set constants | |
632 | #constants = self.library.setConstants(dataOut) |
|
630 | #constants = self.library.setConstants(dataOut) | |
633 | #dataOut.constants = constants |
|
631 | #dataOut.constants = constants | |
634 |
|
632 | |||
635 | #snrth= 20 |
|
633 | #snrth= 20 | |
636 |
|
634 | |||
637 | #crosspairs = dataOut.groupList |
|
635 | #crosspairs = dataOut.groupList | |
638 | #noise = dataOut.noise |
|
636 | #noise = dataOut.noise | |
639 | #print( nProf,heights) |
|
637 | #print( nProf,heights) | |
640 | #print( jspc.shape, jspc.shape[0]) |
|
638 | #print( jspc.shape, jspc.shape[0]) | |
641 | #print noise |
|
639 | #print noise | |
642 | #print jnoise[len(jnoise)-1,:], numpy.nansum(jnoise,axis=0)/len(jnoise) |
|
640 | #print jnoise[len(jnoise)-1,:], numpy.nansum(jnoise,axis=0)/len(jnoise) | |
643 | #jnoise = jnoise/N |
|
641 | #jnoise = jnoise/N | |
644 | #noise = numpy.nansum(jnoise,axis=0)#/len(jnoise) |
|
642 | #noise = numpy.nansum(jnoise,axis=0)#/len(jnoise) | |
645 | #print( noise) |
|
643 | #print( noise) | |
646 | #power = numpy.sum(spectra, axis=1) |
|
644 | #power = numpy.sum(spectra, axis=1) | |
647 | #print power[0,:] |
|
645 | #print power[0,:] | |
648 | #print("CROSSPAIRS",crosspairs) |
|
646 | #print("CROSSPAIRS",crosspairs) | |
649 | #nPairs = len(crosspairs) |
|
647 | #nPairs = len(crosspairs) | |
650 | #print(numpy.shape(dataOut.data_spc)) |
|
648 | #print(numpy.shape(dataOut.data_spc)) | |
651 |
|
649 | |||
652 | #absc = dataOut.abscissaList[:-1] |
|
650 | #absc = dataOut.abscissaList[:-1] | |
653 |
|
651 | |||
654 | #print absc.shape |
|
652 | #print absc.shape | |
655 | #nBlocks=149 |
|
653 | #nBlocks=149 | |
656 | #print('spectra', spectra.shape) |
|
654 | #print('spectra', spectra.shape) | |
657 | #print('noise print', crosspairs) |
|
655 | #print('noise print', crosspairs) | |
658 | #print('spectra', spectra.shape) |
|
656 | #print('spectra', spectra.shape) | |
659 | #print('cspectra', cspectra.shape) |
|
657 | #print('cspectra', cspectra.shape) | |
660 | #print numpy.array(dataOut.data_pre[1]).shape |
|
658 | #print numpy.array(dataOut.data_pre[1]).shape | |
661 | #spec, cspec = self.__DiffCoherent(snrth, spectra, cspectra, nProf, heights,nChan, nHei, nPairs, channels, noise*nProf, crosspairs) |
|
659 | #spec, cspec = self.__DiffCoherent(snrth, spectra, cspectra, nProf, heights,nChan, nHei, nPairs, channels, noise*nProf, crosspairs) | |
662 |
|
660 | |||
663 |
|
661 | |||
664 | #index = tini.tm_hour*12+tini.tm_min/5 |
|
662 | #index = tini.tm_hour*12+tini.tm_min/5 | |
665 | # jspc = jspc/self.nFFTPoints/self.normFactor |
|
663 | # jspc = jspc/self.nFFTPoints/self.normFactor | |
666 | # jcspc = jcspc/self.nFFTPoints/self.normFactor |
|
664 | # jcspc = jcspc/self.nFFTPoints/self.normFactor | |
667 |
|
665 | |||
668 |
|
666 | |||
669 |
|
667 | |||
670 | #dataOut.data_spc,dataOut.data_cspc = self.CleanRayleigh(dataOut,jspc,jcspc,crosspairs,heights,channels,nProf,nHei,nChan,nPairs,nIncohInt,nBlocks=nBlocks) |
|
668 | #dataOut.data_spc,dataOut.data_cspc = self.CleanRayleigh(dataOut,jspc,jcspc,crosspairs,heights,channels,nProf,nHei,nChan,nPairs,nIncohInt,nBlocks=nBlocks) | |
671 | #tmp_spectra,tmp_cspectra,sat_spectra,sat_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.min_hei,self.max_hei) |
|
669 | #tmp_spectra,tmp_cspectra,sat_spectra,sat_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.min_hei,self.max_hei) | |
672 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
670 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) | |
673 | #jspectra = tmp_spectra*len(jspc[:,0,0,0]) |
|
671 | #jspectra = tmp_spectra*len(jspc[:,0,0,0]) | |
674 | #jcspectra = tmp_cspectra*len(jspc[:,0,0,0]) |
|
672 | #jcspectra = tmp_cspectra*len(jspc[:,0,0,0]) | |
675 |
|
673 | |||
676 | dataOut.data_spc = tmp_spectra |
|
674 | dataOut.data_spc = tmp_spectra | |
677 | dataOut.data_cspc = tmp_cspectra |
|
675 | dataOut.data_cspc = tmp_cspectra | |
678 | dataOut.data_dc = self.buffer3 |
|
676 | dataOut.data_dc = self.buffer3 | |
679 | dataOut.nIncohInt *= self.nIntProfiles |
|
677 | dataOut.nIncohInt *= self.nIntProfiles | |
680 | dataOut.utctime = self.currentTime #tiempo promediado |
|
678 | dataOut.utctime = self.currentTime #tiempo promediado | |
681 | print("Time: ",time.localtime(dataOut.utctime)) |
|
679 | #print("Time: ",time.localtime(dataOut.utctime)) | |
682 | # dataOut.data_spc = sat_spectra |
|
680 | # dataOut.data_spc = sat_spectra | |
683 | # dataOut.data_cspc = sat_cspectra |
|
681 | # dataOut.data_cspc = sat_cspectra | |
684 | self.buffer = 0 |
|
682 | self.buffer = 0 | |
685 | self.buffer2 = 0 |
|
683 | self.buffer2 = 0 | |
686 | self.buffer3 = 0 |
|
684 | self.buffer3 = 0 | |
687 |
|
685 | |||
688 | return dataOut |
|
686 | return dataOut | |
689 |
|
687 | |||
690 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): |
|
688 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): | |
691 | print("OP cleanRayleigh") |
|
689 | print("OP cleanRayleigh") | |
692 | #import matplotlib.pyplot as plt |
|
690 | #import matplotlib.pyplot as plt | |
693 | #for k in range(149): |
|
691 | #for k in range(149): | |
694 |
|
692 | |||
695 | rfunc = cspectra.copy() #self.bloques |
|
693 | rfunc = cspectra.copy() #self.bloques | |
696 | val_spc = spectra*0.0 #self.bloque0*0.0 |
|
694 | val_spc = spectra*0.0 #self.bloque0*0.0 | |
697 | val_cspc = cspectra*0.0 #self.bloques*0.0 |
|
695 | val_cspc = cspectra*0.0 #self.bloques*0.0 | |
698 | in_sat_spectra = spectra.copy() #self.bloque0 |
|
696 | in_sat_spectra = spectra.copy() #self.bloque0 | |
699 | in_sat_cspectra = cspectra.copy() #self.bloques |
|
697 | in_sat_cspectra = cspectra.copy() #self.bloques | |
700 |
|
698 | |||
701 | raxs = math.ceil(math.sqrt(self.nPairs)) |
|
699 | raxs = math.ceil(math.sqrt(self.nPairs)) | |
702 | caxs = math.ceil(self.nPairs/raxs) |
|
700 | caxs = math.ceil(self.nPairs/raxs) | |
703 |
|
701 | |||
704 | #print(self.hval) |
|
702 | #print(self.hval) | |
705 | #print numpy.absolute(rfunc[:,0,0,14]) |
|
703 | #print numpy.absolute(rfunc[:,0,0,14]) | |
706 | for ih in range(self.minAltInd,self.maxAltInd): |
|
704 | for ih in range(self.minAltInd,self.maxAltInd): | |
707 | for ifreq in range(self.nFFTPoints): |
|
705 | for ifreq in range(self.nFFTPoints): | |
708 | # fig, axs = plt.subplots(raxs, caxs) |
|
706 | # fig, axs = plt.subplots(raxs, caxs) | |
709 | # fig2, axs2 = plt.subplots(raxs, caxs) |
|
707 | # fig2, axs2 = plt.subplots(raxs, caxs) | |
710 | col_ax = 0 |
|
708 | col_ax = 0 | |
711 | row_ax = 0 |
|
709 | row_ax = 0 | |
712 | for ii in range(self.nPairs): #PARES DE CANALES SELF y CROSS |
|
710 | for ii in range(self.nPairs): #PARES DE CANALES SELF y CROSS | |
713 | #print("ii: ",ii) |
|
711 | #print("ii: ",ii) | |
714 | if (col_ax%caxs==0 and col_ax!=0): |
|
712 | if (col_ax%caxs==0 and col_ax!=0): | |
715 | col_ax = 0 |
|
713 | col_ax = 0 | |
716 | row_ax += 1 |
|
714 | row_ax += 1 | |
717 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? |
|
715 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? | |
718 | #print(func2clean.shape) |
|
716 | #print(func2clean.shape) | |
719 | val = (numpy.isfinite(func2clean)==True).nonzero() |
|
717 | val = (numpy.isfinite(func2clean)==True).nonzero() | |
720 |
|
718 | |||
721 | if len(val)>0: #limitador |
|
719 | if len(val)>0: #limitador | |
722 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) |
|
720 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) | |
723 | if min_val <= -40 : |
|
721 | if min_val <= -40 : | |
724 | min_val = -40 |
|
722 | min_val = -40 | |
725 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 |
|
723 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 | |
726 | if max_val >= 200 : |
|
724 | if max_val >= 200 : | |
727 | max_val = 200 |
|
725 | max_val = 200 | |
728 | #print min_val, max_val |
|
726 | #print min_val, max_val | |
729 | step = 1 |
|
727 | step = 1 | |
730 | #print("Getting bins and the histogram") |
|
728 | #print("Getting bins and the histogram") | |
731 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step |
|
729 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step | |
732 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
730 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
733 | #print(len(y_dist),len(binstep[:-1])) |
|
731 | #print(len(y_dist),len(binstep[:-1])) | |
734 | #print(row_ax,col_ax, " ..") |
|
732 | #print(row_ax,col_ax, " ..") | |
735 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) |
|
733 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) | |
736 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) |
|
734 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) | |
737 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) |
|
735 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) | |
738 | parg = [numpy.amax(y_dist),mean,sigma] |
|
736 | parg = [numpy.amax(y_dist),mean,sigma] | |
739 | gauss_fit, covariance = None, None |
|
737 | gauss_fit, covariance = None, None | |
740 | newY = None |
|
738 | newY = None | |
741 | try : |
|
739 | try : | |
742 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) |
|
740 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) | |
743 | mode = gauss_fit[1] |
|
741 | mode = gauss_fit[1] | |
744 | stdv = gauss_fit[2] |
|
742 | stdv = gauss_fit[2] | |
745 | #print(" FIT OK",gauss_fit) |
|
743 | #print(" FIT OK",gauss_fit) | |
746 | ''' |
|
744 | ''' | |
747 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) |
|
745 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) | |
748 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
746 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
749 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
747 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
750 | axs[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii]))''' |
|
748 | axs[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii]))''' | |
751 | except: |
|
749 | except: | |
752 | mode = mean |
|
750 | mode = mean | |
753 | stdv = sigma |
|
751 | stdv = sigma | |
754 | #print("FIT FAIL") |
|
752 | #print("FIT FAIL") | |
755 |
|
753 | |||
756 |
|
754 | |||
757 | #print(mode,stdv) |
|
755 | #print(mode,stdv) | |
758 | #Removing echoes greater than mode + 3*stdv |
|
756 | #Removing echoes greater than mode + 3*stdv | |
759 | #factor_stdv = 2 |
|
757 | #factor_stdv = 2 | |
760 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() |
|
758 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() | |
761 | #noval tiene los indices que se van a remover |
|
759 | #noval tiene los indices que se van a remover | |
762 | #print("Pair ",ii," novals: ",len(noval[0])) |
|
760 | #print("Pair ",ii," novals: ",len(noval[0])) | |
763 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) |
|
761 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) | |
764 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() |
|
762 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() | |
765 | #print(novall) |
|
763 | #print(novall) | |
766 | #print(" ") |
|
764 | #print(" ",self.pairsArray[ii]) | |
767 | cross_pairs = self.pairsArray[ii] |
|
765 | cross_pairs = self.pairsArray[ii] | |
768 | #Getting coherent echoes which are removed. |
|
766 | #Getting coherent echoes which are removed. | |
769 | if len(novall[0]) > 0: |
|
767 | # if len(novall[0]) > 0: | |
770 |
|
768 | # | ||
771 | val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 |
|
769 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 | |
772 | val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 |
|
770 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 | |
773 | val_cspc[novall[0],ii,ifreq,ih] = 1 |
|
771 | # val_cspc[novall[0],ii,ifreq,ih] = 1 | |
774 | #print("OUT NOVALL 1") |
|
772 | #print("OUT NOVALL 1") | |
775 | #Removing coherent from ISR data |
|
773 | #Removing coherent from ISR data | |
|
774 | chA = self.channels.index(cross_pairs[0]) | |||
|
775 | chB = self.channels.index(cross_pairs[1]) | |||
776 |
|
776 | |||
777 | #print(spectra[:,ii,ifreq,ih]) |
|
|||
778 | new_a = numpy.delete(cspectra[:,ii,ifreq,ih], noval[0]) |
|
777 | new_a = numpy.delete(cspectra[:,ii,ifreq,ih], noval[0]) | |
779 | mean_cspc = numpy.mean(new_a) |
|
778 | mean_cspc = numpy.mean(new_a) | |
780 |
new_b = numpy.delete(spectra[:,c |
|
779 | new_b = numpy.delete(spectra[:,chA,ifreq,ih], noval[0]) | |
781 | mean_spc0 = numpy.mean(new_b) |
|
780 | mean_spc0 = numpy.mean(new_b) | |
782 |
new_c = numpy.delete(spectra[:,c |
|
781 | new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) | |
783 | mean_spc1 = numpy.mean(new_c) |
|
782 | mean_spc1 = numpy.mean(new_c) | |
784 |
spectra[noval,c |
|
783 | spectra[noval,chA,ifreq,ih] = mean_spc0 | |
785 |
spectra[noval,c |
|
784 | spectra[noval,chB,ifreq,ih] = mean_spc1 | |
786 | cspectra[noval,ii,ifreq,ih] = mean_cspc |
|
785 | cspectra[noval,ii,ifreq,ih] = mean_cspc | |
787 |
|
786 | |||
788 | ''' |
|
787 | ''' | |
789 | func2clean = 10*numpy.log10(numpy.absolute(cspectra[:,ii,ifreq,ih])) |
|
788 | func2clean = 10*numpy.log10(numpy.absolute(cspectra[:,ii,ifreq,ih])) | |
790 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
789 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
791 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
790 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
792 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
791 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
793 | axs2[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii])) |
|
792 | axs2[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii])) | |
794 | ''' |
|
793 | ''' | |
795 |
|
794 | |||
796 | col_ax += 1 #contador de ploteo columnas |
|
795 | col_ax += 1 #contador de ploteo columnas | |
797 | ##print(col_ax) |
|
796 | ##print(col_ax) | |
798 | ''' |
|
797 | ''' | |
799 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" |
|
798 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" | |
800 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" |
|
799 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" | |
801 | fig.suptitle(title) |
|
800 | fig.suptitle(title) | |
802 | fig2.suptitle(title2) |
|
801 | fig2.suptitle(title2) | |
803 | plt.show()''' |
|
802 | plt.show()''' | |
804 |
|
803 | |||
805 | ''' channels = channels |
|
804 | ''' channels = channels | |
806 | cross_pairs = cross_pairs |
|
805 | cross_pairs = cross_pairs | |
807 | #print("OUT NOVALL 2") |
|
806 | #print("OUT NOVALL 2") | |
808 |
|
807 | |||
809 | vcross0 = (cross_pairs[0] == channels[ii]).nonzero() |
|
808 | vcross0 = (cross_pairs[0] == channels[ii]).nonzero() | |
810 | vcross1 = (cross_pairs[1] == channels[ii]).nonzero() |
|
809 | vcross1 = (cross_pairs[1] == channels[ii]).nonzero() | |
811 | vcross = numpy.concatenate((vcross0,vcross1),axis=None) |
|
810 | vcross = numpy.concatenate((vcross0,vcross1),axis=None) | |
812 | #print('vcros =', vcross) |
|
811 | #print('vcros =', vcross) | |
813 |
|
812 | |||
814 | #Getting coherent echoes which are removed. |
|
813 | #Getting coherent echoes which are removed. | |
815 | if len(novall) > 0: |
|
814 | if len(novall) > 0: | |
816 | #val_spc[novall,ii,ifreq,ih] = 1 |
|
815 | #val_spc[novall,ii,ifreq,ih] = 1 | |
817 | val_spc[ii,ifreq,ih,novall] = 1 |
|
816 | val_spc[ii,ifreq,ih,novall] = 1 | |
818 | if len(vcross) > 0: |
|
817 | if len(vcross) > 0: | |
819 | val_cspc[vcross,ifreq,ih,novall] = 1 |
|
818 | val_cspc[vcross,ifreq,ih,novall] = 1 | |
820 |
|
819 | |||
821 | #Removing coherent from ISR data. |
|
820 | #Removing coherent from ISR data. | |
822 | self.bloque0[ii,ifreq,ih,noval] = numpy.nan |
|
821 | self.bloque0[ii,ifreq,ih,noval] = numpy.nan | |
823 | if len(vcross) > 0: |
|
822 | if len(vcross) > 0: | |
824 | self.bloques[vcross,ifreq,ih,noval] = numpy.nan |
|
823 | self.bloques[vcross,ifreq,ih,noval] = numpy.nan | |
825 | ''' |
|
824 | ''' | |
826 |
|
825 | |||
827 | print("Getting average of the spectra and cross-spectra from incoherent echoes.") |
|
826 | print("Getting average of the spectra and cross-spectra from incoherent echoes.") | |
828 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan |
|
827 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan | |
829 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan |
|
828 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan | |
830 | for ih in range(self.nHeights): |
|
829 | for ih in range(self.nHeights): | |
831 | for ifreq in range(self.nFFTPoints): |
|
830 | for ifreq in range(self.nFFTPoints): | |
832 | for ich in range(self.nChan): |
|
831 | for ich in range(self.nChan): | |
833 | tmp = spectra[:,ich,ifreq,ih] |
|
832 | tmp = spectra[:,ich,ifreq,ih] | |
834 | valid = (numpy.isfinite(tmp[:])==True).nonzero() |
|
833 | valid = (numpy.isfinite(tmp[:])==True).nonzero() | |
835 | # if ich == 0 and ifreq == 0 and ih == 17 : |
|
834 | # if ich == 0 and ifreq == 0 and ih == 17 : | |
836 | # print tmp |
|
835 | # print tmp | |
837 | # print valid |
|
836 | # print valid | |
838 | # print len(valid[0]) |
|
837 | # print len(valid[0]) | |
839 | #print('TMP',tmp) |
|
838 | #print('TMP',tmp) | |
840 | if len(valid[0]) >0 : |
|
839 | if len(valid[0]) >0 : | |
841 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
840 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) | |
842 | #for icr in range(nPairs): |
|
841 | #for icr in range(nPairs): | |
843 | for icr in range(self.nPairs): |
|
842 | for icr in range(self.nPairs): | |
844 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) |
|
843 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) | |
845 | valid = (numpy.isfinite(tmp)==True).nonzero() |
|
844 | valid = (numpy.isfinite(tmp)==True).nonzero() | |
846 | if len(valid[0]) > 0: |
|
845 | if len(valid[0]) > 0: | |
847 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
846 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) | |
848 | ''' |
|
847 | ''' | |
849 | # print('##########################################################') |
|
848 | # print('##########################################################') | |
850 | print("Removing fake coherent echoes (at least 4 points around the point)") |
|
849 | print("Removing fake coherent echoes (at least 4 points around the point)") | |
851 |
|
850 | |||
852 | val_spectra = numpy.sum(val_spc,0) |
|
851 | val_spectra = numpy.sum(val_spc,0) | |
853 | val_cspectra = numpy.sum(val_cspc,0) |
|
852 | val_cspectra = numpy.sum(val_cspc,0) | |
854 |
|
853 | |||
855 | val_spectra = self.REM_ISOLATED_POINTS(val_spectra,4) |
|
854 | val_spectra = self.REM_ISOLATED_POINTS(val_spectra,4) | |
856 | val_cspectra = self.REM_ISOLATED_POINTS(val_cspectra,4) |
|
855 | val_cspectra = self.REM_ISOLATED_POINTS(val_cspectra,4) | |
857 |
|
856 | |||
858 | for i in range(nChan): |
|
857 | for i in range(nChan): | |
859 | for j in range(nProf): |
|
858 | for j in range(nProf): | |
860 | for k in range(nHeights): |
|
859 | for k in range(nHeights): | |
861 | if numpy.isfinite(val_spectra[i,j,k]) and val_spectra[i,j,k] < 1 : |
|
860 | if numpy.isfinite(val_spectra[i,j,k]) and val_spectra[i,j,k] < 1 : | |
862 | val_spc[:,i,j,k] = 0.0 |
|
861 | val_spc[:,i,j,k] = 0.0 | |
863 | for i in range(nPairs): |
|
862 | for i in range(nPairs): | |
864 | for j in range(nProf): |
|
863 | for j in range(nProf): | |
865 | for k in range(nHeights): |
|
864 | for k in range(nHeights): | |
866 | if numpy.isfinite(val_cspectra[i,j,k]) and val_cspectra[i,j,k] < 1 : |
|
865 | if numpy.isfinite(val_cspectra[i,j,k]) and val_cspectra[i,j,k] < 1 : | |
867 | val_cspc[:,i,j,k] = 0.0 |
|
866 | val_cspc[:,i,j,k] = 0.0 | |
868 |
|
867 | |||
869 | # val_spc = numpy.reshape(val_spc, (len(spectra[:,0,0,0]),nProf*nHeights*nChan)) |
|
868 | # val_spc = numpy.reshape(val_spc, (len(spectra[:,0,0,0]),nProf*nHeights*nChan)) | |
870 | # if numpy.isfinite(val_spectra)==str(True): |
|
869 | # if numpy.isfinite(val_spectra)==str(True): | |
871 | # noval = (val_spectra<1).nonzero() |
|
870 | # noval = (val_spectra<1).nonzero() | |
872 | # if len(noval) > 0: |
|
871 | # if len(noval) > 0: | |
873 | # val_spc[:,noval] = 0.0 |
|
872 | # val_spc[:,noval] = 0.0 | |
874 | # val_spc = numpy.reshape(val_spc, (149,nChan,nProf,nHeights)) |
|
873 | # val_spc = numpy.reshape(val_spc, (149,nChan,nProf,nHeights)) | |
875 |
|
874 | |||
876 | #val_cspc = numpy.reshape(val_spc, (149,nChan*nHeights*nProf)) |
|
875 | #val_cspc = numpy.reshape(val_spc, (149,nChan*nHeights*nProf)) | |
877 | #if numpy.isfinite(val_cspectra)==str(True): |
|
876 | #if numpy.isfinite(val_cspectra)==str(True): | |
878 | # noval = (val_cspectra<1).nonzero() |
|
877 | # noval = (val_cspectra<1).nonzero() | |
879 | # if len(noval) > 0: |
|
878 | # if len(noval) > 0: | |
880 | # val_cspc[:,noval] = 0.0 |
|
879 | # val_cspc[:,noval] = 0.0 | |
881 | # val_cspc = numpy.reshape(val_cspc, (149,nChan,nProf,nHeights)) |
|
880 | # val_cspc = numpy.reshape(val_cspc, (149,nChan,nProf,nHeights)) | |
882 | tmp_sat_spectra = spectra.copy() |
|
881 | tmp_sat_spectra = spectra.copy() | |
883 | tmp_sat_spectra = tmp_sat_spectra*numpy.nan |
|
882 | tmp_sat_spectra = tmp_sat_spectra*numpy.nan | |
884 | tmp_sat_cspectra = cspectra.copy() |
|
883 | tmp_sat_cspectra = cspectra.copy() | |
885 | tmp_sat_cspectra = tmp_sat_cspectra*numpy.nan |
|
884 | tmp_sat_cspectra = tmp_sat_cspectra*numpy.nan | |
886 | ''' |
|
885 | ''' | |
887 | # fig = plt.figure(figsize=(6,5)) |
|
886 | # fig = plt.figure(figsize=(6,5)) | |
888 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
887 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
889 | # ax = fig.add_axes([left, bottom, width, height]) |
|
888 | # ax = fig.add_axes([left, bottom, width, height]) | |
890 | # cp = ax.contour(10*numpy.log10(numpy.absolute(spectra[0,0,:,:]))) |
|
889 | # cp = ax.contour(10*numpy.log10(numpy.absolute(spectra[0,0,:,:]))) | |
891 | # ax.clabel(cp, inline=True,fontsize=10) |
|
890 | # ax.clabel(cp, inline=True,fontsize=10) | |
892 | # plt.show() |
|
891 | # plt.show() | |
893 | ''' |
|
892 | ''' | |
894 | val = (val_spc > 0).nonzero() |
|
893 | val = (val_spc > 0).nonzero() | |
895 | if len(val[0]) > 0: |
|
894 | if len(val[0]) > 0: | |
896 | tmp_sat_spectra[val] = in_sat_spectra[val] |
|
895 | tmp_sat_spectra[val] = in_sat_spectra[val] | |
897 | val = (val_cspc > 0).nonzero() |
|
896 | val = (val_cspc > 0).nonzero() | |
898 | if len(val[0]) > 0: |
|
897 | if len(val[0]) > 0: | |
899 | tmp_sat_cspectra[val] = in_sat_cspectra[val] |
|
898 | tmp_sat_cspectra[val] = in_sat_cspectra[val] | |
900 |
|
899 | |||
901 | print("Getting average of the spectra and cross-spectra from incoherent echoes 2") |
|
900 | print("Getting average of the spectra and cross-spectra from incoherent echoes 2") | |
902 | sat_spectra = numpy.zeros((nChan,nProf,nHeights), dtype=float) |
|
901 | sat_spectra = numpy.zeros((nChan,nProf,nHeights), dtype=float) | |
903 | sat_cspectra = numpy.zeros((nPairs,nProf,nHeights), dtype=complex) |
|
902 | sat_cspectra = numpy.zeros((nPairs,nProf,nHeights), dtype=complex) | |
904 | for ih in range(nHeights): |
|
903 | for ih in range(nHeights): | |
905 | for ifreq in range(nProf): |
|
904 | for ifreq in range(nProf): | |
906 | for ich in range(nChan): |
|
905 | for ich in range(nChan): | |
907 | tmp = numpy.squeeze(tmp_sat_spectra[:,ich,ifreq,ih]) |
|
906 | tmp = numpy.squeeze(tmp_sat_spectra[:,ich,ifreq,ih]) | |
908 | valid = (numpy.isfinite(tmp)).nonzero() |
|
907 | valid = (numpy.isfinite(tmp)).nonzero() | |
909 | if len(valid[0]) > 0: |
|
908 | if len(valid[0]) > 0: | |
910 | sat_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
909 | sat_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |
911 |
|
910 | |||
912 | for icr in range(nPairs): |
|
911 | for icr in range(nPairs): | |
913 | tmp = numpy.squeeze(tmp_sat_cspectra[:,icr,ifreq,ih]) |
|
912 | tmp = numpy.squeeze(tmp_sat_cspectra[:,icr,ifreq,ih]) | |
914 | valid = (numpy.isfinite(tmp)).nonzero() |
|
913 | valid = (numpy.isfinite(tmp)).nonzero() | |
915 | if len(valid[0]) > 0: |
|
914 | if len(valid[0]) > 0: | |
916 | sat_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
915 | sat_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |
917 | ''' |
|
916 | ''' | |
918 | #self.__dataReady= True |
|
917 | #self.__dataReady= True | |
919 | #sat_spectra, sat_cspectra= sat_spectra, sat_cspectra |
|
918 | #sat_spectra, sat_cspectra= sat_spectra, sat_cspectra | |
920 | #if not self.__dataReady: |
|
919 | #if not self.__dataReady: | |
921 | #return None, None |
|
920 | #return None, None | |
922 | #return out_spectra, out_cspectra ,sat_spectra,sat_cspectra |
|
921 | #return out_spectra, out_cspectra ,sat_spectra,sat_cspectra | |
923 | return out_spectra, out_cspectra |
|
922 | return out_spectra, out_cspectra | |
924 |
|
923 | |||
925 | def REM_ISOLATED_POINTS(self,array,rth): |
|
924 | def REM_ISOLATED_POINTS(self,array,rth): | |
926 | # import matplotlib.pyplot as plt |
|
925 | # import matplotlib.pyplot as plt | |
927 | if rth == None : |
|
926 | if rth == None : | |
928 | rth = 4 |
|
927 | rth = 4 | |
929 | print("REM ISO") |
|
928 | print("REM ISO") | |
930 | num_prof = len(array[0,:,0]) |
|
929 | num_prof = len(array[0,:,0]) | |
931 | num_hei = len(array[0,0,:]) |
|
930 | num_hei = len(array[0,0,:]) | |
932 | n2d = len(array[:,0,0]) |
|
931 | n2d = len(array[:,0,0]) | |
933 |
|
932 | |||
934 | for ii in range(n2d) : |
|
933 | for ii in range(n2d) : | |
935 | #print ii,n2d |
|
934 | #print ii,n2d | |
936 | tmp = array[ii,:,:] |
|
935 | tmp = array[ii,:,:] | |
937 | #print tmp.shape, array[ii,101,:],array[ii,102,:] |
|
936 | #print tmp.shape, array[ii,101,:],array[ii,102,:] | |
938 |
|
937 | |||
939 | # fig = plt.figure(figsize=(6,5)) |
|
938 | # fig = plt.figure(figsize=(6,5)) | |
940 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
939 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
941 | # ax = fig.add_axes([left, bottom, width, height]) |
|
940 | # ax = fig.add_axes([left, bottom, width, height]) | |
942 | # x = range(num_prof) |
|
941 | # x = range(num_prof) | |
943 | # y = range(num_hei) |
|
942 | # y = range(num_hei) | |
944 | # cp = ax.contour(y,x,tmp) |
|
943 | # cp = ax.contour(y,x,tmp) | |
945 | # ax.clabel(cp, inline=True,fontsize=10) |
|
944 | # ax.clabel(cp, inline=True,fontsize=10) | |
946 | # plt.show() |
|
945 | # plt.show() | |
947 |
|
946 | |||
948 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) |
|
947 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) | |
949 | tmp = numpy.reshape(tmp,num_prof*num_hei) |
|
948 | tmp = numpy.reshape(tmp,num_prof*num_hei) | |
950 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() |
|
949 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() | |
951 | indxs2 = (tmp > 0).nonzero() |
|
950 | indxs2 = (tmp > 0).nonzero() | |
952 |
|
951 | |||
953 | indxs1 = (indxs1[0]) |
|
952 | indxs1 = (indxs1[0]) | |
954 | indxs2 = indxs2[0] |
|
953 | indxs2 = indxs2[0] | |
955 | #indxs1 = numpy.array(indxs1[0]) |
|
954 | #indxs1 = numpy.array(indxs1[0]) | |
956 | #indxs2 = numpy.array(indxs2[0]) |
|
955 | #indxs2 = numpy.array(indxs2[0]) | |
957 | indxs = None |
|
956 | indxs = None | |
958 | #print indxs1 , indxs2 |
|
957 | #print indxs1 , indxs2 | |
959 | for iv in range(len(indxs2)): |
|
958 | for iv in range(len(indxs2)): | |
960 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) |
|
959 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) | |
961 | #print len(indxs2), indv |
|
960 | #print len(indxs2), indv | |
962 | if len(indv[0]) > 0 : |
|
961 | if len(indv[0]) > 0 : | |
963 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) |
|
962 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) | |
964 | # print indxs |
|
963 | # print indxs | |
965 | indxs = indxs[1:] |
|
964 | indxs = indxs[1:] | |
966 | #print(indxs, len(indxs)) |
|
965 | #print(indxs, len(indxs)) | |
967 | if len(indxs) < 4 : |
|
966 | if len(indxs) < 4 : | |
968 | array[ii,:,:] = 0. |
|
967 | array[ii,:,:] = 0. | |
969 | return |
|
968 | return | |
970 |
|
969 | |||
971 | xpos = numpy.mod(indxs ,num_hei) |
|
970 | xpos = numpy.mod(indxs ,num_hei) | |
972 | ypos = (indxs / num_hei) |
|
971 | ypos = (indxs / num_hei) | |
973 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) |
|
972 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) | |
974 | #print sx |
|
973 | #print sx | |
975 | xpos = xpos[sx] |
|
974 | xpos = xpos[sx] | |
976 | ypos = ypos[sx] |
|
975 | ypos = ypos[sx] | |
977 |
|
976 | |||
978 | # *********************************** Cleaning isolated points ********************************** |
|
977 | # *********************************** Cleaning isolated points ********************************** | |
979 | ic = 0 |
|
978 | ic = 0 | |
980 | while True : |
|
979 | while True : | |
981 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) |
|
980 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) | |
982 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) |
|
981 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) | |
983 | #plt.plot(r) |
|
982 | #plt.plot(r) | |
984 | #plt.show() |
|
983 | #plt.show() | |
985 | no_coh1 = (numpy.isfinite(r)==True).nonzero() |
|
984 | no_coh1 = (numpy.isfinite(r)==True).nonzero() | |
986 | no_coh2 = (r <= rth).nonzero() |
|
985 | no_coh2 = (r <= rth).nonzero() | |
987 | #print r, no_coh1, no_coh2 |
|
986 | #print r, no_coh1, no_coh2 | |
988 | no_coh1 = numpy.array(no_coh1[0]) |
|
987 | no_coh1 = numpy.array(no_coh1[0]) | |
989 | no_coh2 = numpy.array(no_coh2[0]) |
|
988 | no_coh2 = numpy.array(no_coh2[0]) | |
990 | no_coh = None |
|
989 | no_coh = None | |
991 | #print valid1 , valid2 |
|
990 | #print valid1 , valid2 | |
992 | for iv in range(len(no_coh2)): |
|
991 | for iv in range(len(no_coh2)): | |
993 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) |
|
992 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) | |
994 | if len(indv[0]) > 0 : |
|
993 | if len(indv[0]) > 0 : | |
995 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) |
|
994 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) | |
996 | no_coh = no_coh[1:] |
|
995 | no_coh = no_coh[1:] | |
997 | #print len(no_coh), no_coh |
|
996 | #print len(no_coh), no_coh | |
998 | if len(no_coh) < 4 : |
|
997 | if len(no_coh) < 4 : | |
999 | #print xpos[ic], ypos[ic], ic |
|
998 | #print xpos[ic], ypos[ic], ic | |
1000 | # plt.plot(r) |
|
999 | # plt.plot(r) | |
1001 | # plt.show() |
|
1000 | # plt.show() | |
1002 | xpos[ic] = numpy.nan |
|
1001 | xpos[ic] = numpy.nan | |
1003 | ypos[ic] = numpy.nan |
|
1002 | ypos[ic] = numpy.nan | |
1004 |
|
1003 | |||
1005 | ic = ic + 1 |
|
1004 | ic = ic + 1 | |
1006 | if (ic == len(indxs)) : |
|
1005 | if (ic == len(indxs)) : | |
1007 | break |
|
1006 | break | |
1008 | #print( xpos, ypos) |
|
1007 | #print( xpos, ypos) | |
1009 |
|
1008 | |||
1010 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() |
|
1009 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() | |
1011 | #print indxs[0] |
|
1010 | #print indxs[0] | |
1012 | if len(indxs[0]) < 4 : |
|
1011 | if len(indxs[0]) < 4 : | |
1013 | array[ii,:,:] = 0. |
|
1012 | array[ii,:,:] = 0. | |
1014 | return |
|
1013 | return | |
1015 |
|
1014 | |||
1016 | xpos = xpos[indxs[0]] |
|
1015 | xpos = xpos[indxs[0]] | |
1017 | ypos = ypos[indxs[0]] |
|
1016 | ypos = ypos[indxs[0]] | |
1018 | for i in range(0,len(ypos)): |
|
1017 | for i in range(0,len(ypos)): | |
1019 | ypos[i]=int(ypos[i]) |
|
1018 | ypos[i]=int(ypos[i]) | |
1020 | junk = tmp |
|
1019 | junk = tmp | |
1021 | tmp = junk*0.0 |
|
1020 | tmp = junk*0.0 | |
1022 |
|
1021 | |||
1023 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] |
|
1022 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] | |
1024 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1023 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) | |
1025 |
|
1024 | |||
1026 | #print array.shape |
|
1025 | #print array.shape | |
1027 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1026 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) | |
1028 | #print tmp.shape |
|
1027 | #print tmp.shape | |
1029 |
|
1028 | |||
1030 | # fig = plt.figure(figsize=(6,5)) |
|
1029 | # fig = plt.figure(figsize=(6,5)) | |
1031 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
1030 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
1032 | # ax = fig.add_axes([left, bottom, width, height]) |
|
1031 | # ax = fig.add_axes([left, bottom, width, height]) | |
1033 | # x = range(num_prof) |
|
1032 | # x = range(num_prof) | |
1034 | # y = range(num_hei) |
|
1033 | # y = range(num_hei) | |
1035 | # cp = ax.contour(y,x,array[ii,:,:]) |
|
1034 | # cp = ax.contour(y,x,array[ii,:,:]) | |
1036 | # ax.clabel(cp, inline=True,fontsize=10) |
|
1035 | # ax.clabel(cp, inline=True,fontsize=10) | |
1037 | # plt.show() |
|
1036 | # plt.show() | |
1038 | return array |
|
1037 | return array | |
1039 |
|
1038 | |||
1040 | class removeInterference(Operation): |
|
1039 | class removeInterference(Operation): | |
1041 |
|
1040 | |||
1042 | def removeInterference2(self): |
|
1041 | def removeInterference2(self): | |
1043 |
|
1042 | |||
1044 | cspc = self.dataOut.data_cspc |
|
1043 | cspc = self.dataOut.data_cspc | |
1045 | spc = self.dataOut.data_spc |
|
1044 | spc = self.dataOut.data_spc | |
1046 | Heights = numpy.arange(cspc.shape[2]) |
|
1045 | Heights = numpy.arange(cspc.shape[2]) | |
1047 | realCspc = numpy.abs(cspc) |
|
1046 | realCspc = numpy.abs(cspc) | |
1048 |
|
1047 | |||
1049 | for i in range(cspc.shape[0]): |
|
1048 | for i in range(cspc.shape[0]): | |
1050 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
1049 | LinePower= numpy.sum(realCspc[i], axis=0) | |
1051 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
1050 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] | |
1052 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
1051 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] | |
1053 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
1052 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) | |
1054 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
1053 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] | |
1055 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
1054 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] | |
1056 |
|
1055 | |||
1057 |
|
1056 | |||
1058 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
1057 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) | |
1059 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
1058 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) | |
1060 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
1059 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): | |
1061 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
1060 | cspc[i,InterferenceRange,:] = numpy.NaN | |
1062 |
|
1061 | |||
1063 | self.dataOut.data_cspc = cspc |
|
1062 | self.dataOut.data_cspc = cspc | |
1064 |
|
1063 | |||
1065 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
1064 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): | |
1066 |
|
1065 | |||
1067 | jspectra = self.dataOut.data_spc |
|
1066 | jspectra = self.dataOut.data_spc | |
1068 | jcspectra = self.dataOut.data_cspc |
|
1067 | jcspectra = self.dataOut.data_cspc | |
1069 | jnoise = self.dataOut.getNoise() |
|
1068 | jnoise = self.dataOut.getNoise() | |
1070 | num_incoh = self.dataOut.nIncohInt |
|
1069 | num_incoh = self.dataOut.nIncohInt | |
1071 |
|
1070 | |||
1072 | num_channel = jspectra.shape[0] |
|
1071 | num_channel = jspectra.shape[0] | |
1073 | num_prof = jspectra.shape[1] |
|
1072 | num_prof = jspectra.shape[1] | |
1074 | num_hei = jspectra.shape[2] |
|
1073 | num_hei = jspectra.shape[2] | |
1075 |
|
1074 | |||
1076 | # hei_interf |
|
1075 | # hei_interf | |
1077 | if hei_interf is None: |
|
1076 | if hei_interf is None: | |
1078 | count_hei = int(num_hei / 2) |
|
1077 | count_hei = int(num_hei / 2) | |
1079 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
1078 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei | |
1080 | hei_interf = numpy.asarray(hei_interf)[0] |
|
1079 | hei_interf = numpy.asarray(hei_interf)[0] | |
1081 | # nhei_interf |
|
1080 | # nhei_interf | |
1082 | if (nhei_interf == None): |
|
1081 | if (nhei_interf == None): | |
1083 | nhei_interf = 5 |
|
1082 | nhei_interf = 5 | |
1084 | if (nhei_interf < 1): |
|
1083 | if (nhei_interf < 1): | |
1085 | nhei_interf = 1 |
|
1084 | nhei_interf = 1 | |
1086 | if (nhei_interf > count_hei): |
|
1085 | if (nhei_interf > count_hei): | |
1087 | nhei_interf = count_hei |
|
1086 | nhei_interf = count_hei | |
1088 | if (offhei_interf == None): |
|
1087 | if (offhei_interf == None): | |
1089 | offhei_interf = 0 |
|
1088 | offhei_interf = 0 | |
1090 |
|
1089 | |||
1091 | ind_hei = list(range(num_hei)) |
|
1090 | ind_hei = list(range(num_hei)) | |
1092 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
1091 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |
1093 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
1092 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |
1094 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
1093 | mask_prof = numpy.asarray(list(range(num_prof))) | |
1095 | num_mask_prof = mask_prof.size |
|
1094 | num_mask_prof = mask_prof.size | |
1096 | comp_mask_prof = [0, num_prof / 2] |
|
1095 | comp_mask_prof = [0, num_prof / 2] | |
1097 |
|
1096 | |||
1098 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
1097 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |
1099 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
1098 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |
1100 | jnoise = numpy.nan |
|
1099 | jnoise = numpy.nan | |
1101 | noise_exist = jnoise[0] < numpy.Inf |
|
1100 | noise_exist = jnoise[0] < numpy.Inf | |
1102 |
|
1101 | |||
1103 | # Subrutina de Remocion de la Interferencia |
|
1102 | # Subrutina de Remocion de la Interferencia | |
1104 | for ich in range(num_channel): |
|
1103 | for ich in range(num_channel): | |
1105 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1104 | # Se ordena los espectros segun su potencia (menor a mayor) | |
1106 | power = jspectra[ich, mask_prof, :] |
|
1105 | power = jspectra[ich, mask_prof, :] | |
1107 | power = power[:, hei_interf] |
|
1106 | power = power[:, hei_interf] | |
1108 | power = power.sum(axis=0) |
|
1107 | power = power.sum(axis=0) | |
1109 | psort = power.ravel().argsort() |
|
1108 | psort = power.ravel().argsort() | |
1110 |
|
1109 | |||
1111 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
1110 | # Se estima la interferencia promedio en los Espectros de Potencia empleando | |
1112 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
1111 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( | |
1113 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1112 | offhei_interf, nhei_interf + offhei_interf))]]] | |
1114 |
|
1113 | |||
1115 | if noise_exist: |
|
1114 | if noise_exist: | |
1116 | # tmp_noise = jnoise[ich] / num_prof |
|
1115 | # tmp_noise = jnoise[ich] / num_prof | |
1117 | tmp_noise = jnoise[ich] |
|
1116 | tmp_noise = jnoise[ich] | |
1118 | junkspc_interf = junkspc_interf - tmp_noise |
|
1117 | junkspc_interf = junkspc_interf - tmp_noise | |
1119 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
1118 | #junkspc_interf[:,comp_mask_prof] = 0 | |
1120 |
|
1119 | |||
1121 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
1120 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf | |
1122 | jspc_interf = jspc_interf.transpose() |
|
1121 | jspc_interf = jspc_interf.transpose() | |
1123 | # Calculando el espectro de interferencia promedio |
|
1122 | # Calculando el espectro de interferencia promedio | |
1124 | noiseid = numpy.where( |
|
1123 | noiseid = numpy.where( | |
1125 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
1124 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) | |
1126 | noiseid = noiseid[0] |
|
1125 | noiseid = noiseid[0] | |
1127 | cnoiseid = noiseid.size |
|
1126 | cnoiseid = noiseid.size | |
1128 | interfid = numpy.where( |
|
1127 | interfid = numpy.where( | |
1129 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
1128 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) | |
1130 | interfid = interfid[0] |
|
1129 | interfid = interfid[0] | |
1131 | cinterfid = interfid.size |
|
1130 | cinterfid = interfid.size | |
1132 |
|
1131 | |||
1133 | if (cnoiseid > 0): |
|
1132 | if (cnoiseid > 0): | |
1134 | jspc_interf[noiseid] = 0 |
|
1133 | jspc_interf[noiseid] = 0 | |
1135 |
|
1134 | |||
1136 | # Expandiendo los perfiles a limpiar |
|
1135 | # Expandiendo los perfiles a limpiar | |
1137 | if (cinterfid > 0): |
|
1136 | if (cinterfid > 0): | |
1138 | new_interfid = ( |
|
1137 | new_interfid = ( | |
1139 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
1138 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof | |
1140 | new_interfid = numpy.asarray(new_interfid) |
|
1139 | new_interfid = numpy.asarray(new_interfid) | |
1141 | new_interfid = {x for x in new_interfid} |
|
1140 | new_interfid = {x for x in new_interfid} | |
1142 | new_interfid = numpy.array(list(new_interfid)) |
|
1141 | new_interfid = numpy.array(list(new_interfid)) | |
1143 | new_cinterfid = new_interfid.size |
|
1142 | new_cinterfid = new_interfid.size | |
1144 | else: |
|
1143 | else: | |
1145 | new_cinterfid = 0 |
|
1144 | new_cinterfid = 0 | |
1146 |
|
1145 | |||
1147 | for ip in range(new_cinterfid): |
|
1146 | for ip in range(new_cinterfid): | |
1148 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
1147 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() | |
1149 | jspc_interf[new_interfid[ip] |
|
1148 | jspc_interf[new_interfid[ip] | |
1150 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
1149 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] | |
1151 |
|
1150 | |||
1152 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
1151 | jspectra[ich, :, ind_hei] = jspectra[ich, :, | |
1153 | ind_hei] - jspc_interf # Corregir indices |
|
1152 | ind_hei] - jspc_interf # Corregir indices | |
1154 |
|
1153 | |||
1155 | # Removiendo la interferencia del punto de mayor interferencia |
|
1154 | # Removiendo la interferencia del punto de mayor interferencia | |
1156 | ListAux = jspc_interf[mask_prof].tolist() |
|
1155 | ListAux = jspc_interf[mask_prof].tolist() | |
1157 | maxid = ListAux.index(max(ListAux)) |
|
1156 | maxid = ListAux.index(max(ListAux)) | |
1158 |
|
1157 | |||
1159 | if cinterfid > 0: |
|
1158 | if cinterfid > 0: | |
1160 | for ip in range(cinterfid * (interf == 2) - 1): |
|
1159 | for ip in range(cinterfid * (interf == 2) - 1): | |
1161 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
1160 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * | |
1162 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1161 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() | |
1163 | cind = len(ind) |
|
1162 | cind = len(ind) | |
1164 |
|
1163 | |||
1165 | if (cind > 0): |
|
1164 | if (cind > 0): | |
1166 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
1165 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ | |
1167 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
1166 | (1 + (numpy.random.uniform(cind) - 0.5) / | |
1168 | numpy.sqrt(num_incoh)) |
|
1167 | numpy.sqrt(num_incoh)) | |
1169 |
|
1168 | |||
1170 | ind = numpy.array([-2, -1, 1, 2]) |
|
1169 | ind = numpy.array([-2, -1, 1, 2]) | |
1171 | xx = numpy.zeros([4, 4]) |
|
1170 | xx = numpy.zeros([4, 4]) | |
1172 |
|
1171 | |||
1173 | for id1 in range(4): |
|
1172 | for id1 in range(4): | |
1174 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1173 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
1175 |
|
1174 | |||
1176 | xx_inv = numpy.linalg.inv(xx) |
|
1175 | xx_inv = numpy.linalg.inv(xx) | |
1177 | xx = xx_inv[:, 0] |
|
1176 | xx = xx_inv[:, 0] | |
1178 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1177 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
1179 | yy = jspectra[ich, mask_prof[ind], :] |
|
1178 | yy = jspectra[ich, mask_prof[ind], :] | |
1180 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
1179 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( | |
1181 | yy.transpose(), xx) |
|
1180 | yy.transpose(), xx) | |
1182 |
|
1181 | |||
1183 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
1182 | indAux = (jspectra[ich, :, :] < tmp_noise * | |
1184 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1183 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() | |
1185 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
1184 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ | |
1186 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
1185 | (1 - 1 / numpy.sqrt(num_incoh)) | |
1187 |
|
1186 | |||
1188 | # Remocion de Interferencia en el Cross Spectra |
|
1187 | # Remocion de Interferencia en el Cross Spectra | |
1189 | if jcspectra is None: |
|
1188 | if jcspectra is None: | |
1190 | return jspectra, jcspectra |
|
1189 | return jspectra, jcspectra | |
1191 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
1190 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) | |
1192 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
1191 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |
1193 |
|
1192 | |||
1194 | for ip in range(num_pairs): |
|
1193 | for ip in range(num_pairs): | |
1195 |
|
1194 | |||
1196 | #------------------------------------------- |
|
1195 | #------------------------------------------- | |
1197 |
|
1196 | |||
1198 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
1197 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) | |
1199 | cspower = cspower[:, hei_interf] |
|
1198 | cspower = cspower[:, hei_interf] | |
1200 | cspower = cspower.sum(axis=0) |
|
1199 | cspower = cspower.sum(axis=0) | |
1201 |
|
1200 | |||
1202 | cspsort = cspower.ravel().argsort() |
|
1201 | cspsort = cspower.ravel().argsort() | |
1203 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
1202 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( | |
1204 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1203 | offhei_interf, nhei_interf + offhei_interf))]]] | |
1205 | junkcspc_interf = junkcspc_interf.transpose() |
|
1204 | junkcspc_interf = junkcspc_interf.transpose() | |
1206 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
1205 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf | |
1207 |
|
1206 | |||
1208 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1207 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |
1209 |
|
1208 | |||
1210 | median_real = int(numpy.median(numpy.real( |
|
1209 | median_real = int(numpy.median(numpy.real( | |
1211 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1210 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
1212 | median_imag = int(numpy.median(numpy.imag( |
|
1211 | median_imag = int(numpy.median(numpy.imag( | |
1213 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1212 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
1214 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
1213 | comp_mask_prof = [int(e) for e in comp_mask_prof] | |
1215 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
1214 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( | |
1216 | median_real, median_imag) |
|
1215 | median_real, median_imag) | |
1217 |
|
1216 | |||
1218 | for iprof in range(num_prof): |
|
1217 | for iprof in range(num_prof): | |
1219 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
1218 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() | |
1220 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
1219 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] | |
1221 |
|
1220 | |||
1222 | # Removiendo la Interferencia |
|
1221 | # Removiendo la Interferencia | |
1223 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
1222 | jcspectra[ip, :, ind_hei] = jcspectra[ip, | |
1224 | :, ind_hei] - jcspc_interf |
|
1223 | :, ind_hei] - jcspc_interf | |
1225 |
|
1224 | |||
1226 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1225 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |
1227 | maxid = ListAux.index(max(ListAux)) |
|
1226 | maxid = ListAux.index(max(ListAux)) | |
1228 |
|
1227 | |||
1229 | ind = numpy.array([-2, -1, 1, 2]) |
|
1228 | ind = numpy.array([-2, -1, 1, 2]) | |
1230 | xx = numpy.zeros([4, 4]) |
|
1229 | xx = numpy.zeros([4, 4]) | |
1231 |
|
1230 | |||
1232 | for id1 in range(4): |
|
1231 | for id1 in range(4): | |
1233 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1232 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
1234 |
|
1233 | |||
1235 | xx_inv = numpy.linalg.inv(xx) |
|
1234 | xx_inv = numpy.linalg.inv(xx) | |
1236 | xx = xx_inv[:, 0] |
|
1235 | xx = xx_inv[:, 0] | |
1237 |
|
1236 | |||
1238 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1237 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
1239 | yy = jcspectra[ip, mask_prof[ind], :] |
|
1238 | yy = jcspectra[ip, mask_prof[ind], :] | |
1240 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1239 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) | |
1241 |
|
1240 | |||
1242 | # Guardar Resultados |
|
1241 | # Guardar Resultados | |
1243 | self.dataOut.data_spc = jspectra |
|
1242 | self.dataOut.data_spc = jspectra | |
1244 | self.dataOut.data_cspc = jcspectra |
|
1243 | self.dataOut.data_cspc = jcspectra | |
1245 |
|
1244 | |||
1246 | return 1 |
|
1245 | return 1 | |
1247 |
|
1246 | |||
1248 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): |
|
1247 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): | |
1249 |
|
1248 | |||
1250 | self.dataOut = dataOut |
|
1249 | self.dataOut = dataOut | |
1251 |
|
1250 | |||
1252 | if mode == 1: |
|
1251 | if mode == 1: | |
1253 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
1252 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) | |
1254 | elif mode == 2: |
|
1253 | elif mode == 2: | |
1255 | self.removeInterference2() |
|
1254 | self.removeInterference2() | |
1256 |
|
1255 | |||
1257 | return self.dataOut |
|
1256 | return self.dataOut | |
1258 |
|
1257 | |||
1259 |
|
1258 | |||
1260 | class IncohInt(Operation): |
|
1259 | class IncohInt(Operation): | |
1261 |
|
1260 | |||
1262 | __profIndex = 0 |
|
1261 | __profIndex = 0 | |
1263 | __withOverapping = False |
|
1262 | __withOverapping = False | |
1264 |
|
1263 | |||
1265 | __byTime = False |
|
1264 | __byTime = False | |
1266 | __initime = None |
|
1265 | __initime = None | |
1267 | __lastdatatime = None |
|
1266 | __lastdatatime = None | |
1268 | __integrationtime = None |
|
1267 | __integrationtime = None | |
1269 |
|
1268 | |||
1270 | __buffer_spc = None |
|
1269 | __buffer_spc = None | |
1271 | __buffer_cspc = None |
|
1270 | __buffer_cspc = None | |
1272 | __buffer_dc = None |
|
1271 | __buffer_dc = None | |
1273 |
|
1272 | |||
1274 | __dataReady = False |
|
1273 | __dataReady = False | |
1275 |
|
1274 | |||
1276 | __timeInterval = None |
|
1275 | __timeInterval = None | |
1277 |
|
1276 | |||
1278 | n = None |
|
1277 | n = None | |
1279 |
|
1278 | |||
1280 | def __init__(self): |
|
1279 | def __init__(self): | |
1281 |
|
1280 | |||
1282 | Operation.__init__(self) |
|
1281 | Operation.__init__(self) | |
1283 |
|
1282 | |||
1284 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1283 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
1285 | """ |
|
1284 | """ | |
1286 | Set the parameters of the integration class. |
|
1285 | Set the parameters of the integration class. | |
1287 |
|
1286 | |||
1288 | Inputs: |
|
1287 | Inputs: | |
1289 |
|
1288 | |||
1290 | n : Number of coherent integrations |
|
1289 | n : Number of coherent integrations | |
1291 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1290 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
1292 | overlapping : |
|
1291 | overlapping : | |
1293 |
|
1292 | |||
1294 | """ |
|
1293 | """ | |
1295 |
|
1294 | |||
1296 | self.__initime = None |
|
1295 | self.__initime = None | |
1297 | self.__lastdatatime = 0 |
|
1296 | self.__lastdatatime = 0 | |
1298 |
|
1297 | |||
1299 | self.__buffer_spc = 0 |
|
1298 | self.__buffer_spc = 0 | |
1300 | self.__buffer_cspc = 0 |
|
1299 | self.__buffer_cspc = 0 | |
1301 | self.__buffer_dc = 0 |
|
1300 | self.__buffer_dc = 0 | |
1302 |
|
1301 | |||
1303 | self.__profIndex = 0 |
|
1302 | self.__profIndex = 0 | |
1304 | self.__dataReady = False |
|
1303 | self.__dataReady = False | |
1305 | self.__byTime = False |
|
1304 | self.__byTime = False | |
1306 |
|
1305 | |||
1307 | if n is None and timeInterval is None: |
|
1306 | if n is None and timeInterval is None: | |
1308 | raise ValueError("n or timeInterval should be specified ...") |
|
1307 | raise ValueError("n or timeInterval should be specified ...") | |
1309 |
|
1308 | |||
1310 | if n is not None: |
|
1309 | if n is not None: | |
1311 | self.n = int(n) |
|
1310 | self.n = int(n) | |
1312 | else: |
|
1311 | else: | |
1313 |
|
1312 | |||
1314 | self.__integrationtime = int(timeInterval) |
|
1313 | self.__integrationtime = int(timeInterval) | |
1315 | self.n = None |
|
1314 | self.n = None | |
1316 | self.__byTime = True |
|
1315 | self.__byTime = True | |
1317 |
|
1316 | |||
1318 | def putData(self, data_spc, data_cspc, data_dc): |
|
1317 | def putData(self, data_spc, data_cspc, data_dc): | |
1319 | """ |
|
1318 | """ | |
1320 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1319 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
1321 |
|
1320 | |||
1322 | """ |
|
1321 | """ | |
1323 |
|
1322 | |||
1324 | self.__buffer_spc += data_spc |
|
1323 | self.__buffer_spc += data_spc | |
1325 |
|
1324 | |||
1326 | if data_cspc is None: |
|
1325 | if data_cspc is None: | |
1327 | self.__buffer_cspc = None |
|
1326 | self.__buffer_cspc = None | |
1328 | else: |
|
1327 | else: | |
1329 | self.__buffer_cspc += data_cspc |
|
1328 | self.__buffer_cspc += data_cspc | |
1330 |
|
1329 | |||
1331 | if data_dc is None: |
|
1330 | if data_dc is None: | |
1332 | self.__buffer_dc = None |
|
1331 | self.__buffer_dc = None | |
1333 | else: |
|
1332 | else: | |
1334 | self.__buffer_dc += data_dc |
|
1333 | self.__buffer_dc += data_dc | |
1335 |
|
1334 | |||
1336 | self.__profIndex += 1 |
|
1335 | self.__profIndex += 1 | |
1337 |
|
1336 | |||
1338 | return |
|
1337 | return | |
1339 |
|
1338 | |||
1340 | def pushData(self): |
|
1339 | def pushData(self): | |
1341 | """ |
|
1340 | """ | |
1342 | Return the sum of the last profiles and the profiles used in the sum. |
|
1341 | Return the sum of the last profiles and the profiles used in the sum. | |
1343 |
|
1342 | |||
1344 | Affected: |
|
1343 | Affected: | |
1345 |
|
1344 | |||
1346 | self.__profileIndex |
|
1345 | self.__profileIndex | |
1347 |
|
1346 | |||
1348 | """ |
|
1347 | """ | |
1349 |
|
1348 | |||
1350 | data_spc = self.__buffer_spc |
|
1349 | data_spc = self.__buffer_spc | |
1351 | data_cspc = self.__buffer_cspc |
|
1350 | data_cspc = self.__buffer_cspc | |
1352 | data_dc = self.__buffer_dc |
|
1351 | data_dc = self.__buffer_dc | |
1353 | n = self.__profIndex |
|
1352 | n = self.__profIndex | |
1354 |
|
1353 | |||
1355 | self.__buffer_spc = 0 |
|
1354 | self.__buffer_spc = 0 | |
1356 | self.__buffer_cspc = 0 |
|
1355 | self.__buffer_cspc = 0 | |
1357 | self.__buffer_dc = 0 |
|
1356 | self.__buffer_dc = 0 | |
1358 | self.__profIndex = 0 |
|
1357 | self.__profIndex = 0 | |
1359 |
|
1358 | |||
1360 | return data_spc, data_cspc, data_dc, n |
|
1359 | return data_spc, data_cspc, data_dc, n | |
1361 |
|
1360 | |||
1362 | def byProfiles(self, *args): |
|
1361 | def byProfiles(self, *args): | |
1363 |
|
1362 | |||
1364 | self.__dataReady = False |
|
1363 | self.__dataReady = False | |
1365 | avgdata_spc = None |
|
1364 | avgdata_spc = None | |
1366 | avgdata_cspc = None |
|
1365 | avgdata_cspc = None | |
1367 | avgdata_dc = None |
|
1366 | avgdata_dc = None | |
1368 |
|
1367 | |||
1369 | self.putData(*args) |
|
1368 | self.putData(*args) | |
1370 |
|
1369 | |||
1371 | if self.__profIndex == self.n: |
|
1370 | if self.__profIndex == self.n: | |
1372 |
|
1371 | |||
1373 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1372 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1374 | self.n = n |
|
1373 | self.n = n | |
1375 | self.__dataReady = True |
|
1374 | self.__dataReady = True | |
1376 |
|
1375 | |||
1377 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1376 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1378 |
|
1377 | |||
1379 | def byTime(self, datatime, *args): |
|
1378 | def byTime(self, datatime, *args): | |
1380 |
|
1379 | |||
1381 | self.__dataReady = False |
|
1380 | self.__dataReady = False | |
1382 | avgdata_spc = None |
|
1381 | avgdata_spc = None | |
1383 | avgdata_cspc = None |
|
1382 | avgdata_cspc = None | |
1384 | avgdata_dc = None |
|
1383 | avgdata_dc = None | |
1385 |
|
1384 | |||
1386 | self.putData(*args) |
|
1385 | self.putData(*args) | |
1387 |
|
1386 | |||
1388 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1387 | if (datatime - self.__initime) >= self.__integrationtime: | |
1389 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1388 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1390 | self.n = n |
|
1389 | self.n = n | |
1391 | self.__dataReady = True |
|
1390 | self.__dataReady = True | |
1392 |
|
1391 | |||
1393 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1392 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1394 |
|
1393 | |||
1395 | def integrate(self, datatime, *args): |
|
1394 | def integrate(self, datatime, *args): | |
1396 |
|
1395 | |||
1397 | if self.__profIndex == 0: |
|
1396 | if self.__profIndex == 0: | |
1398 | self.__initime = datatime |
|
1397 | self.__initime = datatime | |
1399 |
|
1398 | |||
1400 | if self.__byTime: |
|
1399 | if self.__byTime: | |
1401 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1400 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |
1402 | datatime, *args) |
|
1401 | datatime, *args) | |
1403 | else: |
|
1402 | else: | |
1404 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1403 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
1405 |
|
1404 | |||
1406 | if not self.__dataReady: |
|
1405 | if not self.__dataReady: | |
1407 | return None, None, None, None |
|
1406 | return None, None, None, None | |
1408 |
|
1407 | |||
1409 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1408 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |
1410 |
|
1409 | |||
1411 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1410 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | |
1412 | if n == 1: |
|
1411 | if n == 1: | |
1413 | return dataOut |
|
1412 | return dataOut | |
1414 |
|
1413 | |||
1415 | dataOut.flagNoData = True |
|
1414 | dataOut.flagNoData = True | |
1416 |
|
1415 | |||
1417 | if not self.isConfig: |
|
1416 | if not self.isConfig: | |
1418 | self.setup(n, timeInterval, overlapping) |
|
1417 | self.setup(n, timeInterval, overlapping) | |
1419 | self.isConfig = True |
|
1418 | self.isConfig = True | |
1420 |
|
1419 | |||
1421 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1420 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |
1422 | dataOut.data_spc, |
|
1421 | dataOut.data_spc, | |
1423 | dataOut.data_cspc, |
|
1422 | dataOut.data_cspc, | |
1424 | dataOut.data_dc) |
|
1423 | dataOut.data_dc) | |
1425 |
|
1424 | |||
1426 | if self.__dataReady: |
|
1425 | if self.__dataReady: | |
1427 |
|
1426 | |||
1428 | dataOut.data_spc = avgdata_spc |
|
1427 | dataOut.data_spc = avgdata_spc | |
1429 | dataOut.data_cspc = avgdata_cspc |
|
1428 | dataOut.data_cspc = avgdata_cspc | |
1430 | dataOut.data_dc = avgdata_dc |
|
1429 | dataOut.data_dc = avgdata_dc | |
1431 | dataOut.nIncohInt *= self.n |
|
1430 | dataOut.nIncohInt *= self.n | |
1432 | dataOut.utctime = avgdatatime |
|
1431 | dataOut.utctime = avgdatatime | |
1433 | dataOut.flagNoData = False |
|
1432 | dataOut.flagNoData = False | |
1434 |
|
1433 | |||
1435 | return dataOut |
|
1434 | return dataOut | |
1436 |
|
1435 | |||
1437 | class dopplerFlip(Operation): |
|
1436 | class dopplerFlip(Operation): | |
1438 |
|
1437 | |||
1439 | def run(self, dataOut): |
|
1438 | def run(self, dataOut): | |
1440 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1439 | # arreglo 1: (num_chan, num_profiles, num_heights) | |
1441 | self.dataOut = dataOut |
|
1440 | self.dataOut = dataOut | |
1442 | # JULIA-oblicua, indice 2 |
|
1441 | # JULIA-oblicua, indice 2 | |
1443 | # arreglo 2: (num_profiles, num_heights) |
|
1442 | # arreglo 2: (num_profiles, num_heights) | |
1444 | jspectra = self.dataOut.data_spc[2] |
|
1443 | jspectra = self.dataOut.data_spc[2] | |
1445 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
1444 | jspectra_tmp = numpy.zeros(jspectra.shape) | |
1446 | num_profiles = jspectra.shape[0] |
|
1445 | num_profiles = jspectra.shape[0] | |
1447 | freq_dc = int(num_profiles / 2) |
|
1446 | freq_dc = int(num_profiles / 2) | |
1448 | # Flip con for |
|
1447 | # Flip con for | |
1449 | for j in range(num_profiles): |
|
1448 | for j in range(num_profiles): | |
1450 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1449 | jspectra_tmp[num_profiles-j-1]= jspectra[j] | |
1451 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1450 | # Intercambio perfil de DC con perfil inmediato anterior | |
1452 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1451 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] | |
1453 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1452 | jspectra_tmp[freq_dc]= jspectra[freq_dc] | |
1454 | # canal modificado es re-escrito en el arreglo de canales |
|
1453 | # canal modificado es re-escrito en el arreglo de canales | |
1455 | self.dataOut.data_spc[2] = jspectra_tmp |
|
1454 | self.dataOut.data_spc[2] = jspectra_tmp | |
1456 |
|
1455 | |||
1457 | return self.dataOut |
|
1456 | return self.dataOut |
@@ -1,1624 +1,1624 | |||||
1 | import sys |
|
1 | import sys | |
2 | import numpy,math |
|
2 | import numpy,math | |
3 | from scipy import interpolate |
|
3 | from scipy import interpolate | |
4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
5 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon |
|
5 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon | |
6 | from schainpy.utils import log |
|
6 | from schainpy.utils import log | |
7 | from time import time |
|
7 | from time import time | |
8 |
|
8 | |||
9 |
|
9 | |||
10 |
|
10 | |||
11 | class VoltageProc(ProcessingUnit): |
|
11 | class VoltageProc(ProcessingUnit): | |
12 |
|
12 | |||
13 | def __init__(self): |
|
13 | def __init__(self): | |
14 |
|
14 | |||
15 | ProcessingUnit.__init__(self) |
|
15 | ProcessingUnit.__init__(self) | |
16 |
|
16 | |||
17 | self.dataOut = Voltage() |
|
17 | self.dataOut = Voltage() | |
18 | self.flip = 1 |
|
18 | self.flip = 1 | |
19 | self.setupReq = False |
|
19 | self.setupReq = False | |
20 |
|
20 | |||
21 | def run(self): |
|
21 | def run(self): | |
22 |
|
22 | |||
23 | if self.dataIn.type == 'AMISR': |
|
23 | if self.dataIn.type == 'AMISR': | |
24 | self.__updateObjFromAmisrInput() |
|
24 | self.__updateObjFromAmisrInput() | |
25 |
|
25 | |||
26 | if self.dataIn.type == 'Voltage': |
|
26 | if self.dataIn.type == 'Voltage': | |
27 | self.dataOut.copy(self.dataIn) |
|
27 | self.dataOut.copy(self.dataIn) | |
28 |
|
28 | |||
29 | def __updateObjFromAmisrInput(self): |
|
29 | def __updateObjFromAmisrInput(self): | |
30 |
|
30 | |||
31 | self.dataOut.timeZone = self.dataIn.timeZone |
|
31 | self.dataOut.timeZone = self.dataIn.timeZone | |
32 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
32 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
33 | self.dataOut.errorCount = self.dataIn.errorCount |
|
33 | self.dataOut.errorCount = self.dataIn.errorCount | |
34 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
34 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
35 |
|
35 | |||
36 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
36 | self.dataOut.flagNoData = self.dataIn.flagNoData | |
37 | self.dataOut.data = self.dataIn.data |
|
37 | self.dataOut.data = self.dataIn.data | |
38 | self.dataOut.utctime = self.dataIn.utctime |
|
38 | self.dataOut.utctime = self.dataIn.utctime | |
39 | self.dataOut.channelList = self.dataIn.channelList |
|
39 | self.dataOut.channelList = self.dataIn.channelList | |
40 | #self.dataOut.timeInterval = self.dataIn.timeInterval |
|
40 | #self.dataOut.timeInterval = self.dataIn.timeInterval | |
41 | self.dataOut.heightList = self.dataIn.heightList |
|
41 | self.dataOut.heightList = self.dataIn.heightList | |
42 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
42 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
43 |
|
43 | |||
44 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
44 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
45 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
45 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
46 | self.dataOut.frequency = self.dataIn.frequency |
|
46 | self.dataOut.frequency = self.dataIn.frequency | |
47 |
|
47 | |||
48 | self.dataOut.azimuth = self.dataIn.azimuth |
|
48 | self.dataOut.azimuth = self.dataIn.azimuth | |
49 | self.dataOut.zenith = self.dataIn.zenith |
|
49 | self.dataOut.zenith = self.dataIn.zenith | |
50 |
|
50 | |||
51 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
51 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |
52 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
52 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |
53 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
53 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |
54 |
|
54 | |||
55 |
|
55 | |||
56 | class selectChannels(Operation): |
|
56 | class selectChannels(Operation): | |
57 |
|
57 | |||
58 | def run(self, dataOut, channelList): |
|
58 | def run(self, dataOut, channelList): | |
59 |
|
59 | |||
60 | channelIndexList = [] |
|
60 | channelIndexList = [] | |
61 | self.dataOut = dataOut |
|
61 | self.dataOut = dataOut | |
62 | for channel in channelList: |
|
62 | for channel in channelList: | |
63 | if channel not in self.dataOut.channelList: |
|
63 | if channel not in self.dataOut.channelList: | |
64 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) |
|
64 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) | |
65 |
|
65 | |||
66 | index = self.dataOut.channelList.index(channel) |
|
66 | index = self.dataOut.channelList.index(channel) | |
67 | channelIndexList.append(index) |
|
67 | channelIndexList.append(index) | |
68 | self.selectChannelsByIndex(channelIndexList) |
|
68 | self.selectChannelsByIndex(channelIndexList) | |
69 | return self.dataOut |
|
69 | return self.dataOut | |
70 |
|
70 | |||
71 | def selectChannelsByIndex(self, channelIndexList): |
|
71 | def selectChannelsByIndex(self, channelIndexList): | |
72 | """ |
|
72 | """ | |
73 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
73 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
74 |
|
74 | |||
75 | Input: |
|
75 | Input: | |
76 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
76 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
77 |
|
77 | |||
78 | Affected: |
|
78 | Affected: | |
79 | self.dataOut.data |
|
79 | self.dataOut.data | |
80 | self.dataOut.channelIndexList |
|
80 | self.dataOut.channelIndexList | |
81 | self.dataOut.nChannels |
|
81 | self.dataOut.nChannels | |
82 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
82 | self.dataOut.m_ProcessingHeader.totalSpectra | |
83 | self.dataOut.systemHeaderObj.numChannels |
|
83 | self.dataOut.systemHeaderObj.numChannels | |
84 | self.dataOut.m_ProcessingHeader.blockSize |
|
84 | self.dataOut.m_ProcessingHeader.blockSize | |
85 |
|
85 | |||
86 | Return: |
|
86 | Return: | |
87 | None |
|
87 | None | |
88 | """ |
|
88 | """ | |
89 |
|
89 | |||
90 | for channelIndex in channelIndexList: |
|
90 | for channelIndex in channelIndexList: | |
91 | if channelIndex not in self.dataOut.channelIndexList: |
|
91 | if channelIndex not in self.dataOut.channelIndexList: | |
92 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) |
|
92 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) | |
93 |
|
93 | |||
94 | if self.dataOut.type == 'Voltage': |
|
94 | if self.dataOut.type == 'Voltage': | |
95 | if self.dataOut.flagDataAsBlock: |
|
95 | if self.dataOut.flagDataAsBlock: | |
96 | """ |
|
96 | """ | |
97 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
97 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
98 | """ |
|
98 | """ | |
99 | data = self.dataOut.data[channelIndexList,:,:] |
|
99 | data = self.dataOut.data[channelIndexList,:,:] | |
100 | else: |
|
100 | else: | |
101 | data = self.dataOut.data[channelIndexList,:] |
|
101 | data = self.dataOut.data[channelIndexList,:] | |
102 |
|
102 | |||
103 | self.dataOut.data = data |
|
103 | self.dataOut.data = data | |
104 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
104 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
105 | self.dataOut.channelList = range(len(channelIndexList)) |
|
105 | self.dataOut.channelList = range(len(channelIndexList)) | |
106 |
|
106 | |||
107 | elif self.dataOut.type == 'Spectra': |
|
107 | elif self.dataOut.type == 'Spectra': | |
108 | data_spc = self.dataOut.data_spc[channelIndexList, :] |
|
108 | data_spc = self.dataOut.data_spc[channelIndexList, :] | |
109 | data_dc = self.dataOut.data_dc[channelIndexList, :] |
|
109 | data_dc = self.dataOut.data_dc[channelIndexList, :] | |
110 |
|
110 | |||
111 | self.dataOut.data_spc = data_spc |
|
111 | self.dataOut.data_spc = data_spc | |
112 | self.dataOut.data_dc = data_dc |
|
112 | self.dataOut.data_dc = data_dc | |
113 |
|
113 | |||
114 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
114 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
115 |
self.dataOut.channelList = |
|
115 | self.dataOut.channelList = channelIndexList | |
116 | self.__selectPairsByChannel(channelIndexList) |
|
116 | self.__selectPairsByChannel(channelIndexList) | |
117 |
|
117 | |||
118 | return 1 |
|
118 | return 1 | |
119 |
|
119 | |||
120 | def __selectPairsByChannel(self, channelList=None): |
|
120 | def __selectPairsByChannel(self, channelList=None): | |
121 |
|
121 | |||
122 | if channelList == None: |
|
122 | if channelList == None: | |
123 | return |
|
123 | return | |
124 |
|
124 | |||
125 | pairsIndexListSelected = [] |
|
125 | pairsIndexListSelected = [] | |
126 | for pairIndex in self.dataOut.pairsIndexList: |
|
126 | for pairIndex in self.dataOut.pairsIndexList: | |
127 | # First pair |
|
127 | # First pair | |
128 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
128 | if self.dataOut.pairsList[pairIndex][0] not in channelList: | |
129 | continue |
|
129 | continue | |
130 | # Second pair |
|
130 | # Second pair | |
131 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
131 | if self.dataOut.pairsList[pairIndex][1] not in channelList: | |
132 | continue |
|
132 | continue | |
133 |
|
133 | |||
134 | pairsIndexListSelected.append(pairIndex) |
|
134 | pairsIndexListSelected.append(pairIndex) | |
135 |
|
135 | |||
136 | if not pairsIndexListSelected: |
|
136 | if not pairsIndexListSelected: | |
137 | self.dataOut.data_cspc = None |
|
137 | self.dataOut.data_cspc = None | |
138 | self.dataOut.pairsList = [] |
|
138 | self.dataOut.pairsList = [] | |
139 | return |
|
139 | return | |
140 |
|
140 | |||
141 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
141 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |
142 | self.dataOut.pairsList = [self.dataOut.pairsList[i] |
|
142 | self.dataOut.pairsList = [self.dataOut.pairsList[i] | |
143 | for i in pairsIndexListSelected] |
|
143 | for i in pairsIndexListSelected] | |
144 |
|
144 | |||
145 | return |
|
145 | return | |
146 |
|
146 | |||
147 | class selectHeights(Operation): |
|
147 | class selectHeights(Operation): | |
148 |
|
148 | |||
149 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): |
|
149 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): | |
150 | """ |
|
150 | """ | |
151 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
151 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
152 | minHei <= height <= maxHei |
|
152 | minHei <= height <= maxHei | |
153 |
|
153 | |||
154 | Input: |
|
154 | Input: | |
155 | minHei : valor minimo de altura a considerar |
|
155 | minHei : valor minimo de altura a considerar | |
156 | maxHei : valor maximo de altura a considerar |
|
156 | maxHei : valor maximo de altura a considerar | |
157 |
|
157 | |||
158 | Affected: |
|
158 | Affected: | |
159 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
159 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |
160 |
|
160 | |||
161 | Return: |
|
161 | Return: | |
162 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
162 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
163 | """ |
|
163 | """ | |
164 |
|
164 | |||
165 | self.dataOut = dataOut |
|
165 | self.dataOut = dataOut | |
166 |
|
166 | |||
167 | if minHei and maxHei: |
|
167 | if minHei and maxHei: | |
168 |
|
168 | |||
169 | if (minHei < self.dataOut.heightList[0]): |
|
169 | if (minHei < self.dataOut.heightList[0]): | |
170 | minHei = self.dataOut.heightList[0] |
|
170 | minHei = self.dataOut.heightList[0] | |
171 |
|
171 | |||
172 | if (maxHei > self.dataOut.heightList[-1]): |
|
172 | if (maxHei > self.dataOut.heightList[-1]): | |
173 | maxHei = self.dataOut.heightList[-1] |
|
173 | maxHei = self.dataOut.heightList[-1] | |
174 |
|
174 | |||
175 | minIndex = 0 |
|
175 | minIndex = 0 | |
176 | maxIndex = 0 |
|
176 | maxIndex = 0 | |
177 | heights = self.dataOut.heightList |
|
177 | heights = self.dataOut.heightList | |
178 |
|
178 | |||
179 | inda = numpy.where(heights >= minHei) |
|
179 | inda = numpy.where(heights >= minHei) | |
180 | indb = numpy.where(heights <= maxHei) |
|
180 | indb = numpy.where(heights <= maxHei) | |
181 |
|
181 | |||
182 | try: |
|
182 | try: | |
183 | minIndex = inda[0][0] |
|
183 | minIndex = inda[0][0] | |
184 | except: |
|
184 | except: | |
185 | minIndex = 0 |
|
185 | minIndex = 0 | |
186 |
|
186 | |||
187 | try: |
|
187 | try: | |
188 | maxIndex = indb[0][-1] |
|
188 | maxIndex = indb[0][-1] | |
189 | except: |
|
189 | except: | |
190 | maxIndex = len(heights) |
|
190 | maxIndex = len(heights) | |
191 |
|
191 | |||
192 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
192 | self.selectHeightsByIndex(minIndex, maxIndex) | |
193 |
|
193 | |||
194 | return self.dataOut |
|
194 | return self.dataOut | |
195 |
|
195 | |||
196 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
196 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
197 | """ |
|
197 | """ | |
198 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
198 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
199 | minIndex <= index <= maxIndex |
|
199 | minIndex <= index <= maxIndex | |
200 |
|
200 | |||
201 | Input: |
|
201 | Input: | |
202 | minIndex : valor de indice minimo de altura a considerar |
|
202 | minIndex : valor de indice minimo de altura a considerar | |
203 | maxIndex : valor de indice maximo de altura a considerar |
|
203 | maxIndex : valor de indice maximo de altura a considerar | |
204 |
|
204 | |||
205 | Affected: |
|
205 | Affected: | |
206 | self.dataOut.data |
|
206 | self.dataOut.data | |
207 | self.dataOut.heightList |
|
207 | self.dataOut.heightList | |
208 |
|
208 | |||
209 | Return: |
|
209 | Return: | |
210 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
210 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
211 | """ |
|
211 | """ | |
212 |
|
212 | |||
213 | if self.dataOut.type == 'Voltage': |
|
213 | if self.dataOut.type == 'Voltage': | |
214 | if (minIndex < 0) or (minIndex > maxIndex): |
|
214 | if (minIndex < 0) or (minIndex > maxIndex): | |
215 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
215 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
216 |
|
216 | |||
217 | if (maxIndex >= self.dataOut.nHeights): |
|
217 | if (maxIndex >= self.dataOut.nHeights): | |
218 | maxIndex = self.dataOut.nHeights |
|
218 | maxIndex = self.dataOut.nHeights | |
219 |
|
219 | |||
220 | #voltage |
|
220 | #voltage | |
221 | if self.dataOut.flagDataAsBlock: |
|
221 | if self.dataOut.flagDataAsBlock: | |
222 | """ |
|
222 | """ | |
223 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
223 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
224 | """ |
|
224 | """ | |
225 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
225 | data = self.dataOut.data[:,:, minIndex:maxIndex] | |
226 | else: |
|
226 | else: | |
227 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
227 | data = self.dataOut.data[:, minIndex:maxIndex] | |
228 |
|
228 | |||
229 | # firstHeight = self.dataOut.heightList[minIndex] |
|
229 | # firstHeight = self.dataOut.heightList[minIndex] | |
230 |
|
230 | |||
231 | self.dataOut.data = data |
|
231 | self.dataOut.data = data | |
232 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
232 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] | |
233 |
|
233 | |||
234 | if self.dataOut.nHeights <= 1: |
|
234 | if self.dataOut.nHeights <= 1: | |
235 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) |
|
235 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) | |
236 | elif self.dataOut.type == 'Spectra': |
|
236 | elif self.dataOut.type == 'Spectra': | |
237 | if (minIndex < 0) or (minIndex > maxIndex): |
|
237 | if (minIndex < 0) or (minIndex > maxIndex): | |
238 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( |
|
238 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( | |
239 | minIndex, maxIndex)) |
|
239 | minIndex, maxIndex)) | |
240 |
|
240 | |||
241 | if (maxIndex >= self.dataOut.nHeights): |
|
241 | if (maxIndex >= self.dataOut.nHeights): | |
242 | maxIndex = self.dataOut.nHeights - 1 |
|
242 | maxIndex = self.dataOut.nHeights - 1 | |
243 |
|
243 | |||
244 | # Spectra |
|
244 | # Spectra | |
245 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
245 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
246 |
|
246 | |||
247 | data_cspc = None |
|
247 | data_cspc = None | |
248 | if self.dataOut.data_cspc is not None: |
|
248 | if self.dataOut.data_cspc is not None: | |
249 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
249 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
250 |
|
250 | |||
251 | data_dc = None |
|
251 | data_dc = None | |
252 | if self.dataOut.data_dc is not None: |
|
252 | if self.dataOut.data_dc is not None: | |
253 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
253 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
254 |
|
254 | |||
255 | self.dataOut.data_spc = data_spc |
|
255 | self.dataOut.data_spc = data_spc | |
256 | self.dataOut.data_cspc = data_cspc |
|
256 | self.dataOut.data_cspc = data_cspc | |
257 | self.dataOut.data_dc = data_dc |
|
257 | self.dataOut.data_dc = data_dc | |
258 |
|
258 | |||
259 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
259 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
260 |
|
260 | |||
261 | return 1 |
|
261 | return 1 | |
262 |
|
262 | |||
263 |
|
263 | |||
264 | class filterByHeights(Operation): |
|
264 | class filterByHeights(Operation): | |
265 |
|
265 | |||
266 | def run(self, dataOut, window): |
|
266 | def run(self, dataOut, window): | |
267 |
|
267 | |||
268 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
268 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
269 |
|
269 | |||
270 | if window == None: |
|
270 | if window == None: | |
271 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
271 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight | |
272 |
|
272 | |||
273 | newdelta = deltaHeight * window |
|
273 | newdelta = deltaHeight * window | |
274 | r = dataOut.nHeights % window |
|
274 | r = dataOut.nHeights % window | |
275 | newheights = (dataOut.nHeights-r)/window |
|
275 | newheights = (dataOut.nHeights-r)/window | |
276 |
|
276 | |||
277 | if newheights <= 1: |
|
277 | if newheights <= 1: | |
278 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) |
|
278 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) | |
279 |
|
279 | |||
280 | if dataOut.flagDataAsBlock: |
|
280 | if dataOut.flagDataAsBlock: | |
281 | """ |
|
281 | """ | |
282 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
282 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
283 | """ |
|
283 | """ | |
284 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] |
|
284 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] | |
285 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) |
|
285 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) | |
286 | buffer = numpy.sum(buffer,3) |
|
286 | buffer = numpy.sum(buffer,3) | |
287 |
|
287 | |||
288 | else: |
|
288 | else: | |
289 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] |
|
289 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] | |
290 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) |
|
290 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) | |
291 | buffer = numpy.sum(buffer,2) |
|
291 | buffer = numpy.sum(buffer,2) | |
292 |
|
292 | |||
293 | dataOut.data = buffer |
|
293 | dataOut.data = buffer | |
294 | dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
294 | dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta | |
295 | dataOut.windowOfFilter = window |
|
295 | dataOut.windowOfFilter = window | |
296 |
|
296 | |||
297 | return dataOut |
|
297 | return dataOut | |
298 |
|
298 | |||
299 |
|
299 | |||
300 | class setH0(Operation): |
|
300 | class setH0(Operation): | |
301 |
|
301 | |||
302 | def run(self, dataOut, h0, deltaHeight = None): |
|
302 | def run(self, dataOut, h0, deltaHeight = None): | |
303 |
|
303 | |||
304 | if not deltaHeight: |
|
304 | if not deltaHeight: | |
305 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
305 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
306 |
|
306 | |||
307 | nHeights = dataOut.nHeights |
|
307 | nHeights = dataOut.nHeights | |
308 |
|
308 | |||
309 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
309 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight | |
310 |
|
310 | |||
311 | dataOut.heightList = newHeiRange |
|
311 | dataOut.heightList = newHeiRange | |
312 |
|
312 | |||
313 | return dataOut |
|
313 | return dataOut | |
314 |
|
314 | |||
315 |
|
315 | |||
316 | class deFlip(Operation): |
|
316 | class deFlip(Operation): | |
317 |
|
317 | |||
318 | def run(self, dataOut, channelList = []): |
|
318 | def run(self, dataOut, channelList = []): | |
319 |
|
319 | |||
320 | data = dataOut.data.copy() |
|
320 | data = dataOut.data.copy() | |
321 |
|
321 | |||
322 | if dataOut.flagDataAsBlock: |
|
322 | if dataOut.flagDataAsBlock: | |
323 | flip = self.flip |
|
323 | flip = self.flip | |
324 | profileList = list(range(dataOut.nProfiles)) |
|
324 | profileList = list(range(dataOut.nProfiles)) | |
325 |
|
325 | |||
326 | if not channelList: |
|
326 | if not channelList: | |
327 | for thisProfile in profileList: |
|
327 | for thisProfile in profileList: | |
328 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
328 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip | |
329 | flip *= -1.0 |
|
329 | flip *= -1.0 | |
330 | else: |
|
330 | else: | |
331 | for thisChannel in channelList: |
|
331 | for thisChannel in channelList: | |
332 | if thisChannel not in dataOut.channelList: |
|
332 | if thisChannel not in dataOut.channelList: | |
333 | continue |
|
333 | continue | |
334 |
|
334 | |||
335 | for thisProfile in profileList: |
|
335 | for thisProfile in profileList: | |
336 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
336 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip | |
337 | flip *= -1.0 |
|
337 | flip *= -1.0 | |
338 |
|
338 | |||
339 | self.flip = flip |
|
339 | self.flip = flip | |
340 |
|
340 | |||
341 | else: |
|
341 | else: | |
342 | if not channelList: |
|
342 | if not channelList: | |
343 | data[:,:] = data[:,:]*self.flip |
|
343 | data[:,:] = data[:,:]*self.flip | |
344 | else: |
|
344 | else: | |
345 | for thisChannel in channelList: |
|
345 | for thisChannel in channelList: | |
346 | if thisChannel not in dataOut.channelList: |
|
346 | if thisChannel not in dataOut.channelList: | |
347 | continue |
|
347 | continue | |
348 |
|
348 | |||
349 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
349 | data[thisChannel,:] = data[thisChannel,:]*self.flip | |
350 |
|
350 | |||
351 | self.flip *= -1. |
|
351 | self.flip *= -1. | |
352 |
|
352 | |||
353 | dataOut.data = data |
|
353 | dataOut.data = data | |
354 |
|
354 | |||
355 | return dataOut |
|
355 | return dataOut | |
356 |
|
356 | |||
357 |
|
357 | |||
358 | class setAttribute(Operation): |
|
358 | class setAttribute(Operation): | |
359 | ''' |
|
359 | ''' | |
360 | Set an arbitrary attribute(s) to dataOut |
|
360 | Set an arbitrary attribute(s) to dataOut | |
361 | ''' |
|
361 | ''' | |
362 |
|
362 | |||
363 | def __init__(self): |
|
363 | def __init__(self): | |
364 |
|
364 | |||
365 | Operation.__init__(self) |
|
365 | Operation.__init__(self) | |
366 | self._ready = False |
|
366 | self._ready = False | |
367 |
|
367 | |||
368 | def run(self, dataOut, **kwargs): |
|
368 | def run(self, dataOut, **kwargs): | |
369 |
|
369 | |||
370 | for key, value in kwargs.items(): |
|
370 | for key, value in kwargs.items(): | |
371 | setattr(dataOut, key, value) |
|
371 | setattr(dataOut, key, value) | |
372 |
|
372 | |||
373 | return dataOut |
|
373 | return dataOut | |
374 |
|
374 | |||
375 |
|
375 | |||
376 | @MPDecorator |
|
376 | @MPDecorator | |
377 | class printAttribute(Operation): |
|
377 | class printAttribute(Operation): | |
378 | ''' |
|
378 | ''' | |
379 | Print an arbitrary attribute of dataOut |
|
379 | Print an arbitrary attribute of dataOut | |
380 | ''' |
|
380 | ''' | |
381 |
|
381 | |||
382 | def __init__(self): |
|
382 | def __init__(self): | |
383 |
|
383 | |||
384 | Operation.__init__(self) |
|
384 | Operation.__init__(self) | |
385 |
|
385 | |||
386 | def run(self, dataOut, attributes): |
|
386 | def run(self, dataOut, attributes): | |
387 |
|
387 | |||
388 | if isinstance(attributes, str): |
|
388 | if isinstance(attributes, str): | |
389 | attributes = [attributes] |
|
389 | attributes = [attributes] | |
390 | for attr in attributes: |
|
390 | for attr in attributes: | |
391 | if hasattr(dataOut, attr): |
|
391 | if hasattr(dataOut, attr): | |
392 | log.log(getattr(dataOut, attr), attr) |
|
392 | log.log(getattr(dataOut, attr), attr) | |
393 |
|
393 | |||
394 |
|
394 | |||
395 | class interpolateHeights(Operation): |
|
395 | class interpolateHeights(Operation): | |
396 |
|
396 | |||
397 | def run(self, dataOut, topLim, botLim): |
|
397 | def run(self, dataOut, topLim, botLim): | |
398 | #69 al 72 para julia |
|
398 | #69 al 72 para julia | |
399 | #82-84 para meteoros |
|
399 | #82-84 para meteoros | |
400 | if len(numpy.shape(dataOut.data))==2: |
|
400 | if len(numpy.shape(dataOut.data))==2: | |
401 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 |
|
401 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 | |
402 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
402 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) | |
403 | #dataOut.data[:,botLim:limSup+1] = sampInterp |
|
403 | #dataOut.data[:,botLim:limSup+1] = sampInterp | |
404 | dataOut.data[:,botLim:topLim+1] = sampInterp |
|
404 | dataOut.data[:,botLim:topLim+1] = sampInterp | |
405 | else: |
|
405 | else: | |
406 | nHeights = dataOut.data.shape[2] |
|
406 | nHeights = dataOut.data.shape[2] | |
407 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
407 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) | |
408 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] |
|
408 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] | |
409 | f = interpolate.interp1d(x, y, axis = 2) |
|
409 | f = interpolate.interp1d(x, y, axis = 2) | |
410 | xnew = numpy.arange(botLim,topLim+1) |
|
410 | xnew = numpy.arange(botLim,topLim+1) | |
411 | ynew = f(xnew) |
|
411 | ynew = f(xnew) | |
412 | dataOut.data[:,:,botLim:topLim+1] = ynew |
|
412 | dataOut.data[:,:,botLim:topLim+1] = ynew | |
413 |
|
413 | |||
414 | return dataOut |
|
414 | return dataOut | |
415 |
|
415 | |||
416 |
|
416 | |||
417 | class CohInt(Operation): |
|
417 | class CohInt(Operation): | |
418 |
|
418 | |||
419 | isConfig = False |
|
419 | isConfig = False | |
420 | __profIndex = 0 |
|
420 | __profIndex = 0 | |
421 | __byTime = False |
|
421 | __byTime = False | |
422 | __initime = None |
|
422 | __initime = None | |
423 | __lastdatatime = None |
|
423 | __lastdatatime = None | |
424 | __integrationtime = None |
|
424 | __integrationtime = None | |
425 | __buffer = None |
|
425 | __buffer = None | |
426 | __bufferStride = [] |
|
426 | __bufferStride = [] | |
427 | __dataReady = False |
|
427 | __dataReady = False | |
428 | __profIndexStride = 0 |
|
428 | __profIndexStride = 0 | |
429 | __dataToPutStride = False |
|
429 | __dataToPutStride = False | |
430 | n = None |
|
430 | n = None | |
431 |
|
431 | |||
432 | def __init__(self, **kwargs): |
|
432 | def __init__(self, **kwargs): | |
433 |
|
433 | |||
434 | Operation.__init__(self, **kwargs) |
|
434 | Operation.__init__(self, **kwargs) | |
435 |
|
435 | |||
436 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
436 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): | |
437 | """ |
|
437 | """ | |
438 | Set the parameters of the integration class. |
|
438 | Set the parameters of the integration class. | |
439 |
|
439 | |||
440 | Inputs: |
|
440 | Inputs: | |
441 |
|
441 | |||
442 | n : Number of coherent integrations |
|
442 | n : Number of coherent integrations | |
443 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
443 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
444 | overlapping : |
|
444 | overlapping : | |
445 | """ |
|
445 | """ | |
446 |
|
446 | |||
447 | self.__initime = None |
|
447 | self.__initime = None | |
448 | self.__lastdatatime = 0 |
|
448 | self.__lastdatatime = 0 | |
449 | self.__buffer = None |
|
449 | self.__buffer = None | |
450 | self.__dataReady = False |
|
450 | self.__dataReady = False | |
451 | self.byblock = byblock |
|
451 | self.byblock = byblock | |
452 | self.stride = stride |
|
452 | self.stride = stride | |
453 |
|
453 | |||
454 | if n == None and timeInterval == None: |
|
454 | if n == None and timeInterval == None: | |
455 | raise ValueError("n or timeInterval should be specified ...") |
|
455 | raise ValueError("n or timeInterval should be specified ...") | |
456 |
|
456 | |||
457 | if n != None: |
|
457 | if n != None: | |
458 | self.n = n |
|
458 | self.n = n | |
459 | self.__byTime = False |
|
459 | self.__byTime = False | |
460 | else: |
|
460 | else: | |
461 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
461 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line | |
462 | self.n = 9999 |
|
462 | self.n = 9999 | |
463 | self.__byTime = True |
|
463 | self.__byTime = True | |
464 |
|
464 | |||
465 | if overlapping: |
|
465 | if overlapping: | |
466 | self.__withOverlapping = True |
|
466 | self.__withOverlapping = True | |
467 | self.__buffer = None |
|
467 | self.__buffer = None | |
468 | else: |
|
468 | else: | |
469 | self.__withOverlapping = False |
|
469 | self.__withOverlapping = False | |
470 | self.__buffer = 0 |
|
470 | self.__buffer = 0 | |
471 |
|
471 | |||
472 | self.__profIndex = 0 |
|
472 | self.__profIndex = 0 | |
473 |
|
473 | |||
474 | def putData(self, data): |
|
474 | def putData(self, data): | |
475 |
|
475 | |||
476 | """ |
|
476 | """ | |
477 | Add a profile to the __buffer and increase in one the __profileIndex |
|
477 | Add a profile to the __buffer and increase in one the __profileIndex | |
478 |
|
478 | |||
479 | """ |
|
479 | """ | |
480 |
|
480 | |||
481 | if not self.__withOverlapping: |
|
481 | if not self.__withOverlapping: | |
482 | self.__buffer += data.copy() |
|
482 | self.__buffer += data.copy() | |
483 | self.__profIndex += 1 |
|
483 | self.__profIndex += 1 | |
484 | return |
|
484 | return | |
485 |
|
485 | |||
486 | #Overlapping data |
|
486 | #Overlapping data | |
487 | nChannels, nHeis = data.shape |
|
487 | nChannels, nHeis = data.shape | |
488 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
488 | data = numpy.reshape(data, (1, nChannels, nHeis)) | |
489 |
|
489 | |||
490 | #If the buffer is empty then it takes the data value |
|
490 | #If the buffer is empty then it takes the data value | |
491 | if self.__buffer is None: |
|
491 | if self.__buffer is None: | |
492 | self.__buffer = data |
|
492 | self.__buffer = data | |
493 | self.__profIndex += 1 |
|
493 | self.__profIndex += 1 | |
494 | return |
|
494 | return | |
495 |
|
495 | |||
496 | #If the buffer length is lower than n then stakcing the data value |
|
496 | #If the buffer length is lower than n then stakcing the data value | |
497 | if self.__profIndex < self.n: |
|
497 | if self.__profIndex < self.n: | |
498 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
498 | self.__buffer = numpy.vstack((self.__buffer, data)) | |
499 | self.__profIndex += 1 |
|
499 | self.__profIndex += 1 | |
500 | return |
|
500 | return | |
501 |
|
501 | |||
502 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
502 | #If the buffer length is equal to n then replacing the last buffer value with the data value | |
503 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
503 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) | |
504 | self.__buffer[self.n-1] = data |
|
504 | self.__buffer[self.n-1] = data | |
505 | self.__profIndex = self.n |
|
505 | self.__profIndex = self.n | |
506 | return |
|
506 | return | |
507 |
|
507 | |||
508 |
|
508 | |||
509 | def pushData(self): |
|
509 | def pushData(self): | |
510 | """ |
|
510 | """ | |
511 | Return the sum of the last profiles and the profiles used in the sum. |
|
511 | Return the sum of the last profiles and the profiles used in the sum. | |
512 |
|
512 | |||
513 | Affected: |
|
513 | Affected: | |
514 |
|
514 | |||
515 | self.__profileIndex |
|
515 | self.__profileIndex | |
516 |
|
516 | |||
517 | """ |
|
517 | """ | |
518 |
|
518 | |||
519 | if not self.__withOverlapping: |
|
519 | if not self.__withOverlapping: | |
520 | data = self.__buffer |
|
520 | data = self.__buffer | |
521 | n = self.__profIndex |
|
521 | n = self.__profIndex | |
522 |
|
522 | |||
523 | self.__buffer = 0 |
|
523 | self.__buffer = 0 | |
524 | self.__profIndex = 0 |
|
524 | self.__profIndex = 0 | |
525 |
|
525 | |||
526 | return data, n |
|
526 | return data, n | |
527 |
|
527 | |||
528 | #Integration with Overlapping |
|
528 | #Integration with Overlapping | |
529 | data = numpy.sum(self.__buffer, axis=0) |
|
529 | data = numpy.sum(self.__buffer, axis=0) | |
530 | # print data |
|
530 | # print data | |
531 | # raise |
|
531 | # raise | |
532 | n = self.__profIndex |
|
532 | n = self.__profIndex | |
533 |
|
533 | |||
534 | return data, n |
|
534 | return data, n | |
535 |
|
535 | |||
536 | def byProfiles(self, data): |
|
536 | def byProfiles(self, data): | |
537 |
|
537 | |||
538 | self.__dataReady = False |
|
538 | self.__dataReady = False | |
539 | avgdata = None |
|
539 | avgdata = None | |
540 | # n = None |
|
540 | # n = None | |
541 | # print data |
|
541 | # print data | |
542 | # raise |
|
542 | # raise | |
543 | self.putData(data) |
|
543 | self.putData(data) | |
544 |
|
544 | |||
545 | if self.__profIndex == self.n: |
|
545 | if self.__profIndex == self.n: | |
546 | avgdata, n = self.pushData() |
|
546 | avgdata, n = self.pushData() | |
547 | self.__dataReady = True |
|
547 | self.__dataReady = True | |
548 |
|
548 | |||
549 | return avgdata |
|
549 | return avgdata | |
550 |
|
550 | |||
551 | def byTime(self, data, datatime): |
|
551 | def byTime(self, data, datatime): | |
552 |
|
552 | |||
553 | self.__dataReady = False |
|
553 | self.__dataReady = False | |
554 | avgdata = None |
|
554 | avgdata = None | |
555 | n = None |
|
555 | n = None | |
556 |
|
556 | |||
557 | self.putData(data) |
|
557 | self.putData(data) | |
558 |
|
558 | |||
559 | if (datatime - self.__initime) >= self.__integrationtime: |
|
559 | if (datatime - self.__initime) >= self.__integrationtime: | |
560 | avgdata, n = self.pushData() |
|
560 | avgdata, n = self.pushData() | |
561 | self.n = n |
|
561 | self.n = n | |
562 | self.__dataReady = True |
|
562 | self.__dataReady = True | |
563 |
|
563 | |||
564 | return avgdata |
|
564 | return avgdata | |
565 |
|
565 | |||
566 | def integrateByStride(self, data, datatime): |
|
566 | def integrateByStride(self, data, datatime): | |
567 | # print data |
|
567 | # print data | |
568 | if self.__profIndex == 0: |
|
568 | if self.__profIndex == 0: | |
569 | self.__buffer = [[data.copy(), datatime]] |
|
569 | self.__buffer = [[data.copy(), datatime]] | |
570 | else: |
|
570 | else: | |
571 | self.__buffer.append([data.copy(),datatime]) |
|
571 | self.__buffer.append([data.copy(),datatime]) | |
572 | self.__profIndex += 1 |
|
572 | self.__profIndex += 1 | |
573 | self.__dataReady = False |
|
573 | self.__dataReady = False | |
574 |
|
574 | |||
575 | if self.__profIndex == self.n * self.stride : |
|
575 | if self.__profIndex == self.n * self.stride : | |
576 | self.__dataToPutStride = True |
|
576 | self.__dataToPutStride = True | |
577 | self.__profIndexStride = 0 |
|
577 | self.__profIndexStride = 0 | |
578 | self.__profIndex = 0 |
|
578 | self.__profIndex = 0 | |
579 | self.__bufferStride = [] |
|
579 | self.__bufferStride = [] | |
580 | for i in range(self.stride): |
|
580 | for i in range(self.stride): | |
581 | current = self.__buffer[i::self.stride] |
|
581 | current = self.__buffer[i::self.stride] | |
582 | data = numpy.sum([t[0] for t in current], axis=0) |
|
582 | data = numpy.sum([t[0] for t in current], axis=0) | |
583 | avgdatatime = numpy.average([t[1] for t in current]) |
|
583 | avgdatatime = numpy.average([t[1] for t in current]) | |
584 | # print data |
|
584 | # print data | |
585 | self.__bufferStride.append((data, avgdatatime)) |
|
585 | self.__bufferStride.append((data, avgdatatime)) | |
586 |
|
586 | |||
587 | if self.__dataToPutStride: |
|
587 | if self.__dataToPutStride: | |
588 | self.__dataReady = True |
|
588 | self.__dataReady = True | |
589 | self.__profIndexStride += 1 |
|
589 | self.__profIndexStride += 1 | |
590 | if self.__profIndexStride == self.stride: |
|
590 | if self.__profIndexStride == self.stride: | |
591 | self.__dataToPutStride = False |
|
591 | self.__dataToPutStride = False | |
592 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
592 | # print self.__bufferStride[self.__profIndexStride - 1] | |
593 | # raise |
|
593 | # raise | |
594 | return self.__bufferStride[self.__profIndexStride - 1] |
|
594 | return self.__bufferStride[self.__profIndexStride - 1] | |
595 |
|
595 | |||
596 |
|
596 | |||
597 | return None, None |
|
597 | return None, None | |
598 |
|
598 | |||
599 | def integrate(self, data, datatime=None): |
|
599 | def integrate(self, data, datatime=None): | |
600 |
|
600 | |||
601 | if self.__initime == None: |
|
601 | if self.__initime == None: | |
602 | self.__initime = datatime |
|
602 | self.__initime = datatime | |
603 |
|
603 | |||
604 | if self.__byTime: |
|
604 | if self.__byTime: | |
605 | avgdata = self.byTime(data, datatime) |
|
605 | avgdata = self.byTime(data, datatime) | |
606 | else: |
|
606 | else: | |
607 | avgdata = self.byProfiles(data) |
|
607 | avgdata = self.byProfiles(data) | |
608 |
|
608 | |||
609 |
|
609 | |||
610 | self.__lastdatatime = datatime |
|
610 | self.__lastdatatime = datatime | |
611 |
|
611 | |||
612 | if avgdata is None: |
|
612 | if avgdata is None: | |
613 | return None, None |
|
613 | return None, None | |
614 |
|
614 | |||
615 | avgdatatime = self.__initime |
|
615 | avgdatatime = self.__initime | |
616 |
|
616 | |||
617 | deltatime = datatime - self.__lastdatatime |
|
617 | deltatime = datatime - self.__lastdatatime | |
618 |
|
618 | |||
619 | if not self.__withOverlapping: |
|
619 | if not self.__withOverlapping: | |
620 | self.__initime = datatime |
|
620 | self.__initime = datatime | |
621 | else: |
|
621 | else: | |
622 | self.__initime += deltatime |
|
622 | self.__initime += deltatime | |
623 |
|
623 | |||
624 | return avgdata, avgdatatime |
|
624 | return avgdata, avgdatatime | |
625 |
|
625 | |||
626 | def integrateByBlock(self, dataOut): |
|
626 | def integrateByBlock(self, dataOut): | |
627 |
|
627 | |||
628 | times = int(dataOut.data.shape[1]/self.n) |
|
628 | times = int(dataOut.data.shape[1]/self.n) | |
629 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
629 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) | |
630 |
|
630 | |||
631 | id_min = 0 |
|
631 | id_min = 0 | |
632 | id_max = self.n |
|
632 | id_max = self.n | |
633 |
|
633 | |||
634 | for i in range(times): |
|
634 | for i in range(times): | |
635 | junk = dataOut.data[:,id_min:id_max,:] |
|
635 | junk = dataOut.data[:,id_min:id_max,:] | |
636 | avgdata[:,i,:] = junk.sum(axis=1) |
|
636 | avgdata[:,i,:] = junk.sum(axis=1) | |
637 | id_min += self.n |
|
637 | id_min += self.n | |
638 | id_max += self.n |
|
638 | id_max += self.n | |
639 |
|
639 | |||
640 | timeInterval = dataOut.ippSeconds*self.n |
|
640 | timeInterval = dataOut.ippSeconds*self.n | |
641 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
641 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime | |
642 | self.__dataReady = True |
|
642 | self.__dataReady = True | |
643 | return avgdata, avgdatatime |
|
643 | return avgdata, avgdatatime | |
644 |
|
644 | |||
645 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
645 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): | |
646 |
|
646 | |||
647 | if not self.isConfig: |
|
647 | if not self.isConfig: | |
648 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
648 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) | |
649 | self.isConfig = True |
|
649 | self.isConfig = True | |
650 |
|
650 | |||
651 | if dataOut.flagDataAsBlock: |
|
651 | if dataOut.flagDataAsBlock: | |
652 | """ |
|
652 | """ | |
653 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
653 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
654 | """ |
|
654 | """ | |
655 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
655 | avgdata, avgdatatime = self.integrateByBlock(dataOut) | |
656 | dataOut.nProfiles /= self.n |
|
656 | dataOut.nProfiles /= self.n | |
657 | else: |
|
657 | else: | |
658 | if stride is None: |
|
658 | if stride is None: | |
659 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
659 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) | |
660 | else: |
|
660 | else: | |
661 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
661 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) | |
662 |
|
662 | |||
663 |
|
663 | |||
664 | # dataOut.timeInterval *= n |
|
664 | # dataOut.timeInterval *= n | |
665 | dataOut.flagNoData = True |
|
665 | dataOut.flagNoData = True | |
666 |
|
666 | |||
667 | if self.__dataReady: |
|
667 | if self.__dataReady: | |
668 | dataOut.data = avgdata |
|
668 | dataOut.data = avgdata | |
669 | if not dataOut.flagCohInt: |
|
669 | if not dataOut.flagCohInt: | |
670 | dataOut.nCohInt *= self.n |
|
670 | dataOut.nCohInt *= self.n | |
671 | dataOut.flagCohInt = True |
|
671 | dataOut.flagCohInt = True | |
672 | dataOut.utctime = avgdatatime |
|
672 | dataOut.utctime = avgdatatime | |
673 | # print avgdata, avgdatatime |
|
673 | # print avgdata, avgdatatime | |
674 | # raise |
|
674 | # raise | |
675 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
675 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt | |
676 | dataOut.flagNoData = False |
|
676 | dataOut.flagNoData = False | |
677 | return dataOut |
|
677 | return dataOut | |
678 |
|
678 | |||
679 | class Decoder(Operation): |
|
679 | class Decoder(Operation): | |
680 |
|
680 | |||
681 | isConfig = False |
|
681 | isConfig = False | |
682 | __profIndex = 0 |
|
682 | __profIndex = 0 | |
683 |
|
683 | |||
684 | code = None |
|
684 | code = None | |
685 |
|
685 | |||
686 | nCode = None |
|
686 | nCode = None | |
687 | nBaud = None |
|
687 | nBaud = None | |
688 |
|
688 | |||
689 | def __init__(self, **kwargs): |
|
689 | def __init__(self, **kwargs): | |
690 |
|
690 | |||
691 | Operation.__init__(self, **kwargs) |
|
691 | Operation.__init__(self, **kwargs) | |
692 |
|
692 | |||
693 | self.times = None |
|
693 | self.times = None | |
694 | self.osamp = None |
|
694 | self.osamp = None | |
695 | # self.__setValues = False |
|
695 | # self.__setValues = False | |
696 | self.isConfig = False |
|
696 | self.isConfig = False | |
697 | self.setupReq = False |
|
697 | self.setupReq = False | |
698 | def setup(self, code, osamp, dataOut): |
|
698 | def setup(self, code, osamp, dataOut): | |
699 |
|
699 | |||
700 | self.__profIndex = 0 |
|
700 | self.__profIndex = 0 | |
701 |
|
701 | |||
702 | self.code = code |
|
702 | self.code = code | |
703 |
|
703 | |||
704 | self.nCode = len(code) |
|
704 | self.nCode = len(code) | |
705 | self.nBaud = len(code[0]) |
|
705 | self.nBaud = len(code[0]) | |
706 | if (osamp != None) and (osamp >1): |
|
706 | if (osamp != None) and (osamp >1): | |
707 | self.osamp = osamp |
|
707 | self.osamp = osamp | |
708 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
708 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) | |
709 | self.nBaud = self.nBaud*self.osamp |
|
709 | self.nBaud = self.nBaud*self.osamp | |
710 |
|
710 | |||
711 | self.__nChannels = dataOut.nChannels |
|
711 | self.__nChannels = dataOut.nChannels | |
712 | self.__nProfiles = dataOut.nProfiles |
|
712 | self.__nProfiles = dataOut.nProfiles | |
713 | self.__nHeis = dataOut.nHeights |
|
713 | self.__nHeis = dataOut.nHeights | |
714 |
|
714 | |||
715 | if self.__nHeis < self.nBaud: |
|
715 | if self.__nHeis < self.nBaud: | |
716 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) |
|
716 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) | |
717 |
|
717 | |||
718 | #Frequency |
|
718 | #Frequency | |
719 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
719 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) | |
720 |
|
720 | |||
721 | __codeBuffer[:,0:self.nBaud] = self.code |
|
721 | __codeBuffer[:,0:self.nBaud] = self.code | |
722 |
|
722 | |||
723 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
723 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) | |
724 |
|
724 | |||
725 | if dataOut.flagDataAsBlock: |
|
725 | if dataOut.flagDataAsBlock: | |
726 |
|
726 | |||
727 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
727 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |
728 |
|
728 | |||
729 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
729 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) | |
730 |
|
730 | |||
731 | else: |
|
731 | else: | |
732 |
|
732 | |||
733 | #Time |
|
733 | #Time | |
734 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
734 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |
735 |
|
735 | |||
736 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
736 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) | |
737 |
|
737 | |||
738 | def __convolutionInFreq(self, data): |
|
738 | def __convolutionInFreq(self, data): | |
739 |
|
739 | |||
740 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
740 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |
741 |
|
741 | |||
742 | fft_data = numpy.fft.fft(data, axis=1) |
|
742 | fft_data = numpy.fft.fft(data, axis=1) | |
743 |
|
743 | |||
744 | conv = fft_data*fft_code |
|
744 | conv = fft_data*fft_code | |
745 |
|
745 | |||
746 | data = numpy.fft.ifft(conv,axis=1) |
|
746 | data = numpy.fft.ifft(conv,axis=1) | |
747 |
|
747 | |||
748 | return data |
|
748 | return data | |
749 |
|
749 | |||
750 | def __convolutionInFreqOpt(self, data): |
|
750 | def __convolutionInFreqOpt(self, data): | |
751 |
|
751 | |||
752 | raise NotImplementedError |
|
752 | raise NotImplementedError | |
753 |
|
753 | |||
754 | def __convolutionInTime(self, data): |
|
754 | def __convolutionInTime(self, data): | |
755 |
|
755 | |||
756 | code = self.code[self.__profIndex] |
|
756 | code = self.code[self.__profIndex] | |
757 | for i in range(self.__nChannels): |
|
757 | for i in range(self.__nChannels): | |
758 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
758 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] | |
759 |
|
759 | |||
760 | return self.datadecTime |
|
760 | return self.datadecTime | |
761 |
|
761 | |||
762 | def __convolutionByBlockInTime(self, data): |
|
762 | def __convolutionByBlockInTime(self, data): | |
763 |
|
763 | |||
764 | repetitions = int(self.__nProfiles / self.nCode) |
|
764 | repetitions = int(self.__nProfiles / self.nCode) | |
765 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
765 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) | |
766 | junk = junk.flatten() |
|
766 | junk = junk.flatten() | |
767 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
767 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) | |
768 | profilesList = range(self.__nProfiles) |
|
768 | profilesList = range(self.__nProfiles) | |
769 |
|
769 | |||
770 | for i in range(self.__nChannels): |
|
770 | for i in range(self.__nChannels): | |
771 | for j in profilesList: |
|
771 | for j in profilesList: | |
772 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
772 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] | |
773 | return self.datadecTime |
|
773 | return self.datadecTime | |
774 |
|
774 | |||
775 | def __convolutionByBlockInFreq(self, data): |
|
775 | def __convolutionByBlockInFreq(self, data): | |
776 |
|
776 | |||
777 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") |
|
777 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") | |
778 |
|
778 | |||
779 |
|
779 | |||
780 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
780 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |
781 |
|
781 | |||
782 | fft_data = numpy.fft.fft(data, axis=2) |
|
782 | fft_data = numpy.fft.fft(data, axis=2) | |
783 |
|
783 | |||
784 | conv = fft_data*fft_code |
|
784 | conv = fft_data*fft_code | |
785 |
|
785 | |||
786 | data = numpy.fft.ifft(conv,axis=2) |
|
786 | data = numpy.fft.ifft(conv,axis=2) | |
787 |
|
787 | |||
788 | return data |
|
788 | return data | |
789 |
|
789 | |||
790 |
|
790 | |||
791 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
791 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): | |
792 |
|
792 | |||
793 | if dataOut.flagDecodeData: |
|
793 | if dataOut.flagDecodeData: | |
794 | print("This data is already decoded, recoding again ...") |
|
794 | print("This data is already decoded, recoding again ...") | |
795 |
|
795 | |||
796 | if not self.isConfig: |
|
796 | if not self.isConfig: | |
797 |
|
797 | |||
798 | if code is None: |
|
798 | if code is None: | |
799 | if dataOut.code is None: |
|
799 | if dataOut.code is None: | |
800 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) |
|
800 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) | |
801 |
|
801 | |||
802 | code = dataOut.code |
|
802 | code = dataOut.code | |
803 | else: |
|
803 | else: | |
804 | code = numpy.array(code).reshape(nCode,nBaud) |
|
804 | code = numpy.array(code).reshape(nCode,nBaud) | |
805 | self.setup(code, osamp, dataOut) |
|
805 | self.setup(code, osamp, dataOut) | |
806 |
|
806 | |||
807 | self.isConfig = True |
|
807 | self.isConfig = True | |
808 |
|
808 | |||
809 | if mode == 3: |
|
809 | if mode == 3: | |
810 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
810 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) | |
811 |
|
811 | |||
812 | if times != None: |
|
812 | if times != None: | |
813 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
813 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") | |
814 |
|
814 | |||
815 | if self.code is None: |
|
815 | if self.code is None: | |
816 | print("Fail decoding: Code is not defined.") |
|
816 | print("Fail decoding: Code is not defined.") | |
817 | return |
|
817 | return | |
818 |
|
818 | |||
819 | self.__nProfiles = dataOut.nProfiles |
|
819 | self.__nProfiles = dataOut.nProfiles | |
820 | datadec = None |
|
820 | datadec = None | |
821 |
|
821 | |||
822 | if mode == 3: |
|
822 | if mode == 3: | |
823 | mode = 0 |
|
823 | mode = 0 | |
824 |
|
824 | |||
825 | if dataOut.flagDataAsBlock: |
|
825 | if dataOut.flagDataAsBlock: | |
826 | """ |
|
826 | """ | |
827 | Decoding when data have been read as block, |
|
827 | Decoding when data have been read as block, | |
828 | """ |
|
828 | """ | |
829 |
|
829 | |||
830 | if mode == 0: |
|
830 | if mode == 0: | |
831 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
831 | datadec = self.__convolutionByBlockInTime(dataOut.data) | |
832 | if mode == 1: |
|
832 | if mode == 1: | |
833 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
833 | datadec = self.__convolutionByBlockInFreq(dataOut.data) | |
834 | else: |
|
834 | else: | |
835 | """ |
|
835 | """ | |
836 | Decoding when data have been read profile by profile |
|
836 | Decoding when data have been read profile by profile | |
837 | """ |
|
837 | """ | |
838 | if mode == 0: |
|
838 | if mode == 0: | |
839 | datadec = self.__convolutionInTime(dataOut.data) |
|
839 | datadec = self.__convolutionInTime(dataOut.data) | |
840 |
|
840 | |||
841 | if mode == 1: |
|
841 | if mode == 1: | |
842 | datadec = self.__convolutionInFreq(dataOut.data) |
|
842 | datadec = self.__convolutionInFreq(dataOut.data) | |
843 |
|
843 | |||
844 | if mode == 2: |
|
844 | if mode == 2: | |
845 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
845 | datadec = self.__convolutionInFreqOpt(dataOut.data) | |
846 |
|
846 | |||
847 | if datadec is None: |
|
847 | if datadec is None: | |
848 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) |
|
848 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) | |
849 |
|
849 | |||
850 | dataOut.code = self.code |
|
850 | dataOut.code = self.code | |
851 | dataOut.nCode = self.nCode |
|
851 | dataOut.nCode = self.nCode | |
852 | dataOut.nBaud = self.nBaud |
|
852 | dataOut.nBaud = self.nBaud | |
853 |
|
853 | |||
854 | dataOut.data = datadec |
|
854 | dataOut.data = datadec | |
855 |
|
855 | |||
856 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
856 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] | |
857 |
|
857 | |||
858 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
858 | dataOut.flagDecodeData = True #asumo q la data esta decodificada | |
859 |
|
859 | |||
860 | if self.__profIndex == self.nCode-1: |
|
860 | if self.__profIndex == self.nCode-1: | |
861 | self.__profIndex = 0 |
|
861 | self.__profIndex = 0 | |
862 | return dataOut |
|
862 | return dataOut | |
863 |
|
863 | |||
864 | self.__profIndex += 1 |
|
864 | self.__profIndex += 1 | |
865 |
|
865 | |||
866 | return dataOut |
|
866 | return dataOut | |
867 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
867 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip | |
868 |
|
868 | |||
869 |
|
869 | |||
870 | class ProfileConcat(Operation): |
|
870 | class ProfileConcat(Operation): | |
871 |
|
871 | |||
872 | isConfig = False |
|
872 | isConfig = False | |
873 | buffer = None |
|
873 | buffer = None | |
874 |
|
874 | |||
875 | def __init__(self, **kwargs): |
|
875 | def __init__(self, **kwargs): | |
876 |
|
876 | |||
877 | Operation.__init__(self, **kwargs) |
|
877 | Operation.__init__(self, **kwargs) | |
878 | self.profileIndex = 0 |
|
878 | self.profileIndex = 0 | |
879 |
|
879 | |||
880 | def reset(self): |
|
880 | def reset(self): | |
881 | self.buffer = numpy.zeros_like(self.buffer) |
|
881 | self.buffer = numpy.zeros_like(self.buffer) | |
882 | self.start_index = 0 |
|
882 | self.start_index = 0 | |
883 | self.times = 1 |
|
883 | self.times = 1 | |
884 |
|
884 | |||
885 | def setup(self, data, m, n=1): |
|
885 | def setup(self, data, m, n=1): | |
886 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
886 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) | |
887 | self.nHeights = data.shape[1]#.nHeights |
|
887 | self.nHeights = data.shape[1]#.nHeights | |
888 | self.start_index = 0 |
|
888 | self.start_index = 0 | |
889 | self.times = 1 |
|
889 | self.times = 1 | |
890 |
|
890 | |||
891 | def concat(self, data): |
|
891 | def concat(self, data): | |
892 |
|
892 | |||
893 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
893 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() | |
894 | self.start_index = self.start_index + self.nHeights |
|
894 | self.start_index = self.start_index + self.nHeights | |
895 |
|
895 | |||
896 | def run(self, dataOut, m): |
|
896 | def run(self, dataOut, m): | |
897 | dataOut.flagNoData = True |
|
897 | dataOut.flagNoData = True | |
898 |
|
898 | |||
899 | if not self.isConfig: |
|
899 | if not self.isConfig: | |
900 | self.setup(dataOut.data, m, 1) |
|
900 | self.setup(dataOut.data, m, 1) | |
901 | self.isConfig = True |
|
901 | self.isConfig = True | |
902 |
|
902 | |||
903 | if dataOut.flagDataAsBlock: |
|
903 | if dataOut.flagDataAsBlock: | |
904 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") |
|
904 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") | |
905 |
|
905 | |||
906 | else: |
|
906 | else: | |
907 | self.concat(dataOut.data) |
|
907 | self.concat(dataOut.data) | |
908 | self.times += 1 |
|
908 | self.times += 1 | |
909 | if self.times > m: |
|
909 | if self.times > m: | |
910 | dataOut.data = self.buffer |
|
910 | dataOut.data = self.buffer | |
911 | self.reset() |
|
911 | self.reset() | |
912 | dataOut.flagNoData = False |
|
912 | dataOut.flagNoData = False | |
913 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
913 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas | |
914 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
914 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
915 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
915 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m | |
916 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
916 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) | |
917 | dataOut.ippSeconds *= m |
|
917 | dataOut.ippSeconds *= m | |
918 | return dataOut |
|
918 | return dataOut | |
919 |
|
919 | |||
920 | class ProfileSelector(Operation): |
|
920 | class ProfileSelector(Operation): | |
921 |
|
921 | |||
922 | profileIndex = None |
|
922 | profileIndex = None | |
923 | # Tamanho total de los perfiles |
|
923 | # Tamanho total de los perfiles | |
924 | nProfiles = None |
|
924 | nProfiles = None | |
925 |
|
925 | |||
926 | def __init__(self, **kwargs): |
|
926 | def __init__(self, **kwargs): | |
927 |
|
927 | |||
928 | Operation.__init__(self, **kwargs) |
|
928 | Operation.__init__(self, **kwargs) | |
929 | self.profileIndex = 0 |
|
929 | self.profileIndex = 0 | |
930 |
|
930 | |||
931 | def incProfileIndex(self): |
|
931 | def incProfileIndex(self): | |
932 |
|
932 | |||
933 | self.profileIndex += 1 |
|
933 | self.profileIndex += 1 | |
934 |
|
934 | |||
935 | if self.profileIndex >= self.nProfiles: |
|
935 | if self.profileIndex >= self.nProfiles: | |
936 | self.profileIndex = 0 |
|
936 | self.profileIndex = 0 | |
937 |
|
937 | |||
938 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
938 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): | |
939 |
|
939 | |||
940 | if profileIndex < minIndex: |
|
940 | if profileIndex < minIndex: | |
941 | return False |
|
941 | return False | |
942 |
|
942 | |||
943 | if profileIndex > maxIndex: |
|
943 | if profileIndex > maxIndex: | |
944 | return False |
|
944 | return False | |
945 |
|
945 | |||
946 | return True |
|
946 | return True | |
947 |
|
947 | |||
948 | def isThisProfileInList(self, profileIndex, profileList): |
|
948 | def isThisProfileInList(self, profileIndex, profileList): | |
949 |
|
949 | |||
950 | if profileIndex not in profileList: |
|
950 | if profileIndex not in profileList: | |
951 | return False |
|
951 | return False | |
952 |
|
952 | |||
953 | return True |
|
953 | return True | |
954 |
|
954 | |||
955 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
955 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): | |
956 |
|
956 | |||
957 | """ |
|
957 | """ | |
958 | ProfileSelector: |
|
958 | ProfileSelector: | |
959 |
|
959 | |||
960 | Inputs: |
|
960 | Inputs: | |
961 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
961 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) | |
962 |
|
962 | |||
963 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
963 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) | |
964 |
|
964 | |||
965 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
965 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) | |
966 |
|
966 | |||
967 | """ |
|
967 | """ | |
968 |
|
968 | |||
969 | if rangeList is not None: |
|
969 | if rangeList is not None: | |
970 | if type(rangeList[0]) not in (tuple, list): |
|
970 | if type(rangeList[0]) not in (tuple, list): | |
971 | rangeList = [rangeList] |
|
971 | rangeList = [rangeList] | |
972 |
|
972 | |||
973 | dataOut.flagNoData = True |
|
973 | dataOut.flagNoData = True | |
974 |
|
974 | |||
975 | if dataOut.flagDataAsBlock: |
|
975 | if dataOut.flagDataAsBlock: | |
976 | """ |
|
976 | """ | |
977 | data dimension = [nChannels, nProfiles, nHeis] |
|
977 | data dimension = [nChannels, nProfiles, nHeis] | |
978 | """ |
|
978 | """ | |
979 | if profileList != None: |
|
979 | if profileList != None: | |
980 | dataOut.data = dataOut.data[:,profileList,:] |
|
980 | dataOut.data = dataOut.data[:,profileList,:] | |
981 |
|
981 | |||
982 | if profileRangeList != None: |
|
982 | if profileRangeList != None: | |
983 | minIndex = profileRangeList[0] |
|
983 | minIndex = profileRangeList[0] | |
984 | maxIndex = profileRangeList[1] |
|
984 | maxIndex = profileRangeList[1] | |
985 | profileList = list(range(minIndex, maxIndex+1)) |
|
985 | profileList = list(range(minIndex, maxIndex+1)) | |
986 |
|
986 | |||
987 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
987 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] | |
988 |
|
988 | |||
989 | if rangeList != None: |
|
989 | if rangeList != None: | |
990 |
|
990 | |||
991 | profileList = [] |
|
991 | profileList = [] | |
992 |
|
992 | |||
993 | for thisRange in rangeList: |
|
993 | for thisRange in rangeList: | |
994 | minIndex = thisRange[0] |
|
994 | minIndex = thisRange[0] | |
995 | maxIndex = thisRange[1] |
|
995 | maxIndex = thisRange[1] | |
996 |
|
996 | |||
997 | profileList.extend(list(range(minIndex, maxIndex+1))) |
|
997 | profileList.extend(list(range(minIndex, maxIndex+1))) | |
998 |
|
998 | |||
999 | dataOut.data = dataOut.data[:,profileList,:] |
|
999 | dataOut.data = dataOut.data[:,profileList,:] | |
1000 |
|
1000 | |||
1001 | dataOut.nProfiles = len(profileList) |
|
1001 | dataOut.nProfiles = len(profileList) | |
1002 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
1002 | dataOut.profileIndex = dataOut.nProfiles - 1 | |
1003 | dataOut.flagNoData = False |
|
1003 | dataOut.flagNoData = False | |
1004 |
|
1004 | |||
1005 | return dataOut |
|
1005 | return dataOut | |
1006 |
|
1006 | |||
1007 | """ |
|
1007 | """ | |
1008 | data dimension = [nChannels, nHeis] |
|
1008 | data dimension = [nChannels, nHeis] | |
1009 | """ |
|
1009 | """ | |
1010 |
|
1010 | |||
1011 | if profileList != None: |
|
1011 | if profileList != None: | |
1012 |
|
1012 | |||
1013 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
1013 | if self.isThisProfileInList(dataOut.profileIndex, profileList): | |
1014 |
|
1014 | |||
1015 | self.nProfiles = len(profileList) |
|
1015 | self.nProfiles = len(profileList) | |
1016 | dataOut.nProfiles = self.nProfiles |
|
1016 | dataOut.nProfiles = self.nProfiles | |
1017 | dataOut.profileIndex = self.profileIndex |
|
1017 | dataOut.profileIndex = self.profileIndex | |
1018 | dataOut.flagNoData = False |
|
1018 | dataOut.flagNoData = False | |
1019 |
|
1019 | |||
1020 | self.incProfileIndex() |
|
1020 | self.incProfileIndex() | |
1021 | return dataOut |
|
1021 | return dataOut | |
1022 |
|
1022 | |||
1023 | if profileRangeList != None: |
|
1023 | if profileRangeList != None: | |
1024 |
|
1024 | |||
1025 | minIndex = profileRangeList[0] |
|
1025 | minIndex = profileRangeList[0] | |
1026 | maxIndex = profileRangeList[1] |
|
1026 | maxIndex = profileRangeList[1] | |
1027 |
|
1027 | |||
1028 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1028 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |
1029 |
|
1029 | |||
1030 | self.nProfiles = maxIndex - minIndex + 1 |
|
1030 | self.nProfiles = maxIndex - minIndex + 1 | |
1031 | dataOut.nProfiles = self.nProfiles |
|
1031 | dataOut.nProfiles = self.nProfiles | |
1032 | dataOut.profileIndex = self.profileIndex |
|
1032 | dataOut.profileIndex = self.profileIndex | |
1033 | dataOut.flagNoData = False |
|
1033 | dataOut.flagNoData = False | |
1034 |
|
1034 | |||
1035 | self.incProfileIndex() |
|
1035 | self.incProfileIndex() | |
1036 | return dataOut |
|
1036 | return dataOut | |
1037 |
|
1037 | |||
1038 | if rangeList != None: |
|
1038 | if rangeList != None: | |
1039 |
|
1039 | |||
1040 | nProfiles = 0 |
|
1040 | nProfiles = 0 | |
1041 |
|
1041 | |||
1042 | for thisRange in rangeList: |
|
1042 | for thisRange in rangeList: | |
1043 | minIndex = thisRange[0] |
|
1043 | minIndex = thisRange[0] | |
1044 | maxIndex = thisRange[1] |
|
1044 | maxIndex = thisRange[1] | |
1045 |
|
1045 | |||
1046 | nProfiles += maxIndex - minIndex + 1 |
|
1046 | nProfiles += maxIndex - minIndex + 1 | |
1047 |
|
1047 | |||
1048 | for thisRange in rangeList: |
|
1048 | for thisRange in rangeList: | |
1049 |
|
1049 | |||
1050 | minIndex = thisRange[0] |
|
1050 | minIndex = thisRange[0] | |
1051 | maxIndex = thisRange[1] |
|
1051 | maxIndex = thisRange[1] | |
1052 |
|
1052 | |||
1053 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1053 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |
1054 |
|
1054 | |||
1055 | self.nProfiles = nProfiles |
|
1055 | self.nProfiles = nProfiles | |
1056 | dataOut.nProfiles = self.nProfiles |
|
1056 | dataOut.nProfiles = self.nProfiles | |
1057 | dataOut.profileIndex = self.profileIndex |
|
1057 | dataOut.profileIndex = self.profileIndex | |
1058 | dataOut.flagNoData = False |
|
1058 | dataOut.flagNoData = False | |
1059 |
|
1059 | |||
1060 | self.incProfileIndex() |
|
1060 | self.incProfileIndex() | |
1061 |
|
1061 | |||
1062 | break |
|
1062 | break | |
1063 |
|
1063 | |||
1064 | return dataOut |
|
1064 | return dataOut | |
1065 |
|
1065 | |||
1066 |
|
1066 | |||
1067 | if beam != None: #beam is only for AMISR data |
|
1067 | if beam != None: #beam is only for AMISR data | |
1068 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
1068 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): | |
1069 | dataOut.flagNoData = False |
|
1069 | dataOut.flagNoData = False | |
1070 | dataOut.profileIndex = self.profileIndex |
|
1070 | dataOut.profileIndex = self.profileIndex | |
1071 |
|
1071 | |||
1072 | self.incProfileIndex() |
|
1072 | self.incProfileIndex() | |
1073 |
|
1073 | |||
1074 | return dataOut |
|
1074 | return dataOut | |
1075 |
|
1075 | |||
1076 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") |
|
1076 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") | |
1077 |
|
1077 | |||
1078 |
|
1078 | |||
1079 | class Reshaper(Operation): |
|
1079 | class Reshaper(Operation): | |
1080 |
|
1080 | |||
1081 | def __init__(self, **kwargs): |
|
1081 | def __init__(self, **kwargs): | |
1082 |
|
1082 | |||
1083 | Operation.__init__(self, **kwargs) |
|
1083 | Operation.__init__(self, **kwargs) | |
1084 |
|
1084 | |||
1085 | self.__buffer = None |
|
1085 | self.__buffer = None | |
1086 | self.__nitems = 0 |
|
1086 | self.__nitems = 0 | |
1087 |
|
1087 | |||
1088 | def __appendProfile(self, dataOut, nTxs): |
|
1088 | def __appendProfile(self, dataOut, nTxs): | |
1089 |
|
1089 | |||
1090 | if self.__buffer is None: |
|
1090 | if self.__buffer is None: | |
1091 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
1091 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) | |
1092 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
1092 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) | |
1093 |
|
1093 | |||
1094 | ini = dataOut.nHeights * self.__nitems |
|
1094 | ini = dataOut.nHeights * self.__nitems | |
1095 | end = ini + dataOut.nHeights |
|
1095 | end = ini + dataOut.nHeights | |
1096 |
|
1096 | |||
1097 | self.__buffer[:, ini:end] = dataOut.data |
|
1097 | self.__buffer[:, ini:end] = dataOut.data | |
1098 |
|
1098 | |||
1099 | self.__nitems += 1 |
|
1099 | self.__nitems += 1 | |
1100 |
|
1100 | |||
1101 | return int(self.__nitems*nTxs) |
|
1101 | return int(self.__nitems*nTxs) | |
1102 |
|
1102 | |||
1103 | def __getBuffer(self): |
|
1103 | def __getBuffer(self): | |
1104 |
|
1104 | |||
1105 | if self.__nitems == int(1./self.__nTxs): |
|
1105 | if self.__nitems == int(1./self.__nTxs): | |
1106 |
|
1106 | |||
1107 | self.__nitems = 0 |
|
1107 | self.__nitems = 0 | |
1108 |
|
1108 | |||
1109 | return self.__buffer.copy() |
|
1109 | return self.__buffer.copy() | |
1110 |
|
1110 | |||
1111 | return None |
|
1111 | return None | |
1112 |
|
1112 | |||
1113 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1113 | def __checkInputs(self, dataOut, shape, nTxs): | |
1114 |
|
1114 | |||
1115 | if shape is None and nTxs is None: |
|
1115 | if shape is None and nTxs is None: | |
1116 | raise ValueError("Reshaper: shape of factor should be defined") |
|
1116 | raise ValueError("Reshaper: shape of factor should be defined") | |
1117 |
|
1117 | |||
1118 | if nTxs: |
|
1118 | if nTxs: | |
1119 | if nTxs < 0: |
|
1119 | if nTxs < 0: | |
1120 | raise ValueError("nTxs should be greater than 0") |
|
1120 | raise ValueError("nTxs should be greater than 0") | |
1121 |
|
1121 | |||
1122 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1122 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: | |
1123 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) |
|
1123 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) | |
1124 |
|
1124 | |||
1125 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1125 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] | |
1126 |
|
1126 | |||
1127 | return shape, nTxs |
|
1127 | return shape, nTxs | |
1128 |
|
1128 | |||
1129 | if len(shape) != 2 and len(shape) != 3: |
|
1129 | if len(shape) != 2 and len(shape) != 3: | |
1130 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) |
|
1130 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) | |
1131 |
|
1131 | |||
1132 | if len(shape) == 2: |
|
1132 | if len(shape) == 2: | |
1133 | shape_tuple = [dataOut.nChannels] |
|
1133 | shape_tuple = [dataOut.nChannels] | |
1134 | shape_tuple.extend(shape) |
|
1134 | shape_tuple.extend(shape) | |
1135 | else: |
|
1135 | else: | |
1136 | shape_tuple = list(shape) |
|
1136 | shape_tuple = list(shape) | |
1137 |
|
1137 | |||
1138 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1138 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles | |
1139 |
|
1139 | |||
1140 | return shape_tuple, nTxs |
|
1140 | return shape_tuple, nTxs | |
1141 |
|
1141 | |||
1142 | def run(self, dataOut, shape=None, nTxs=None): |
|
1142 | def run(self, dataOut, shape=None, nTxs=None): | |
1143 |
|
1143 | |||
1144 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1144 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) | |
1145 |
|
1145 | |||
1146 | dataOut.flagNoData = True |
|
1146 | dataOut.flagNoData = True | |
1147 | profileIndex = None |
|
1147 | profileIndex = None | |
1148 |
|
1148 | |||
1149 | if dataOut.flagDataAsBlock: |
|
1149 | if dataOut.flagDataAsBlock: | |
1150 |
|
1150 | |||
1151 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1151 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) | |
1152 | dataOut.flagNoData = False |
|
1152 | dataOut.flagNoData = False | |
1153 |
|
1153 | |||
1154 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1154 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 | |
1155 |
|
1155 | |||
1156 | else: |
|
1156 | else: | |
1157 |
|
1157 | |||
1158 | if self.__nTxs < 1: |
|
1158 | if self.__nTxs < 1: | |
1159 |
|
1159 | |||
1160 | self.__appendProfile(dataOut, self.__nTxs) |
|
1160 | self.__appendProfile(dataOut, self.__nTxs) | |
1161 | new_data = self.__getBuffer() |
|
1161 | new_data = self.__getBuffer() | |
1162 |
|
1162 | |||
1163 | if new_data is not None: |
|
1163 | if new_data is not None: | |
1164 | dataOut.data = new_data |
|
1164 | dataOut.data = new_data | |
1165 | dataOut.flagNoData = False |
|
1165 | dataOut.flagNoData = False | |
1166 |
|
1166 | |||
1167 | profileIndex = dataOut.profileIndex*nTxs |
|
1167 | profileIndex = dataOut.profileIndex*nTxs | |
1168 |
|
1168 | |||
1169 | else: |
|
1169 | else: | |
1170 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") |
|
1170 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") | |
1171 |
|
1171 | |||
1172 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1172 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1173 |
|
1173 | |||
1174 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1174 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] | |
1175 |
|
1175 | |||
1176 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1176 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) | |
1177 |
|
1177 | |||
1178 | dataOut.profileIndex = profileIndex |
|
1178 | dataOut.profileIndex = profileIndex | |
1179 |
|
1179 | |||
1180 | dataOut.ippSeconds /= self.__nTxs |
|
1180 | dataOut.ippSeconds /= self.__nTxs | |
1181 |
|
1181 | |||
1182 | return dataOut |
|
1182 | return dataOut | |
1183 |
|
1183 | |||
1184 | class SplitProfiles(Operation): |
|
1184 | class SplitProfiles(Operation): | |
1185 |
|
1185 | |||
1186 | def __init__(self, **kwargs): |
|
1186 | def __init__(self, **kwargs): | |
1187 |
|
1187 | |||
1188 | Operation.__init__(self, **kwargs) |
|
1188 | Operation.__init__(self, **kwargs) | |
1189 |
|
1189 | |||
1190 | def run(self, dataOut, n): |
|
1190 | def run(self, dataOut, n): | |
1191 |
|
1191 | |||
1192 | dataOut.flagNoData = True |
|
1192 | dataOut.flagNoData = True | |
1193 | profileIndex = None |
|
1193 | profileIndex = None | |
1194 |
|
1194 | |||
1195 | if dataOut.flagDataAsBlock: |
|
1195 | if dataOut.flagDataAsBlock: | |
1196 |
|
1196 | |||
1197 | #nchannels, nprofiles, nsamples |
|
1197 | #nchannels, nprofiles, nsamples | |
1198 | shape = dataOut.data.shape |
|
1198 | shape = dataOut.data.shape | |
1199 |
|
1199 | |||
1200 | if shape[2] % n != 0: |
|
1200 | if shape[2] % n != 0: | |
1201 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) |
|
1201 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) | |
1202 |
|
1202 | |||
1203 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) |
|
1203 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) | |
1204 |
|
1204 | |||
1205 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1205 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |
1206 | dataOut.flagNoData = False |
|
1206 | dataOut.flagNoData = False | |
1207 |
|
1207 | |||
1208 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1208 | profileIndex = int(dataOut.nProfiles/n) - 1 | |
1209 |
|
1209 | |||
1210 | else: |
|
1210 | else: | |
1211 |
|
1211 | |||
1212 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") |
|
1212 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") | |
1213 |
|
1213 | |||
1214 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1214 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1215 |
|
1215 | |||
1216 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1216 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] | |
1217 |
|
1217 | |||
1218 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1218 | dataOut.nProfiles = int(dataOut.nProfiles*n) | |
1219 |
|
1219 | |||
1220 | dataOut.profileIndex = profileIndex |
|
1220 | dataOut.profileIndex = profileIndex | |
1221 |
|
1221 | |||
1222 | dataOut.ippSeconds /= n |
|
1222 | dataOut.ippSeconds /= n | |
1223 |
|
1223 | |||
1224 | return dataOut |
|
1224 | return dataOut | |
1225 |
|
1225 | |||
1226 | class CombineProfiles(Operation): |
|
1226 | class CombineProfiles(Operation): | |
1227 | def __init__(self, **kwargs): |
|
1227 | def __init__(self, **kwargs): | |
1228 |
|
1228 | |||
1229 | Operation.__init__(self, **kwargs) |
|
1229 | Operation.__init__(self, **kwargs) | |
1230 |
|
1230 | |||
1231 | self.__remData = None |
|
1231 | self.__remData = None | |
1232 | self.__profileIndex = 0 |
|
1232 | self.__profileIndex = 0 | |
1233 |
|
1233 | |||
1234 | def run(self, dataOut, n): |
|
1234 | def run(self, dataOut, n): | |
1235 |
|
1235 | |||
1236 | dataOut.flagNoData = True |
|
1236 | dataOut.flagNoData = True | |
1237 | profileIndex = None |
|
1237 | profileIndex = None | |
1238 |
|
1238 | |||
1239 | if dataOut.flagDataAsBlock: |
|
1239 | if dataOut.flagDataAsBlock: | |
1240 |
|
1240 | |||
1241 | #nchannels, nprofiles, nsamples |
|
1241 | #nchannels, nprofiles, nsamples | |
1242 | shape = dataOut.data.shape |
|
1242 | shape = dataOut.data.shape | |
1243 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1243 | new_shape = shape[0], shape[1]/n, shape[2]*n | |
1244 |
|
1244 | |||
1245 | if shape[1] % n != 0: |
|
1245 | if shape[1] % n != 0: | |
1246 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) |
|
1246 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) | |
1247 |
|
1247 | |||
1248 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1248 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |
1249 | dataOut.flagNoData = False |
|
1249 | dataOut.flagNoData = False | |
1250 |
|
1250 | |||
1251 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1251 | profileIndex = int(dataOut.nProfiles*n) - 1 | |
1252 |
|
1252 | |||
1253 | else: |
|
1253 | else: | |
1254 |
|
1254 | |||
1255 | #nchannels, nsamples |
|
1255 | #nchannels, nsamples | |
1256 | if self.__remData is None: |
|
1256 | if self.__remData is None: | |
1257 | newData = dataOut.data |
|
1257 | newData = dataOut.data | |
1258 | else: |
|
1258 | else: | |
1259 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1259 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) | |
1260 |
|
1260 | |||
1261 | self.__profileIndex += 1 |
|
1261 | self.__profileIndex += 1 | |
1262 |
|
1262 | |||
1263 | if self.__profileIndex < n: |
|
1263 | if self.__profileIndex < n: | |
1264 | self.__remData = newData |
|
1264 | self.__remData = newData | |
1265 | #continue |
|
1265 | #continue | |
1266 | return |
|
1266 | return | |
1267 |
|
1267 | |||
1268 | self.__profileIndex = 0 |
|
1268 | self.__profileIndex = 0 | |
1269 | self.__remData = None |
|
1269 | self.__remData = None | |
1270 |
|
1270 | |||
1271 | dataOut.data = newData |
|
1271 | dataOut.data = newData | |
1272 | dataOut.flagNoData = False |
|
1272 | dataOut.flagNoData = False | |
1273 |
|
1273 | |||
1274 | profileIndex = dataOut.profileIndex/n |
|
1274 | profileIndex = dataOut.profileIndex/n | |
1275 |
|
1275 | |||
1276 |
|
1276 | |||
1277 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1277 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1278 |
|
1278 | |||
1279 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1279 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] | |
1280 |
|
1280 | |||
1281 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1281 | dataOut.nProfiles = int(dataOut.nProfiles/n) | |
1282 |
|
1282 | |||
1283 | dataOut.profileIndex = profileIndex |
|
1283 | dataOut.profileIndex = profileIndex | |
1284 |
|
1284 | |||
1285 | dataOut.ippSeconds *= n |
|
1285 | dataOut.ippSeconds *= n | |
1286 |
|
1286 | |||
1287 | return dataOut |
|
1287 | return dataOut | |
1288 |
|
1288 | |||
1289 | class PulsePairVoltage(Operation): |
|
1289 | class PulsePairVoltage(Operation): | |
1290 | ''' |
|
1290 | ''' | |
1291 | Function PulsePair(Signal Power, Velocity) |
|
1291 | Function PulsePair(Signal Power, Velocity) | |
1292 | The real component of Lag[0] provides Intensity Information |
|
1292 | The real component of Lag[0] provides Intensity Information | |
1293 | The imag component of Lag[1] Phase provides Velocity Information |
|
1293 | The imag component of Lag[1] Phase provides Velocity Information | |
1294 |
|
1294 | |||
1295 | Configuration Parameters: |
|
1295 | Configuration Parameters: | |
1296 | nPRF = Number of Several PRF |
|
1296 | nPRF = Number of Several PRF | |
1297 | theta = Degree Azimuth angel Boundaries |
|
1297 | theta = Degree Azimuth angel Boundaries | |
1298 |
|
1298 | |||
1299 | Input: |
|
1299 | Input: | |
1300 | self.dataOut |
|
1300 | self.dataOut | |
1301 | lag[N] |
|
1301 | lag[N] | |
1302 | Affected: |
|
1302 | Affected: | |
1303 | self.dataOut.spc |
|
1303 | self.dataOut.spc | |
1304 | ''' |
|
1304 | ''' | |
1305 | isConfig = False |
|
1305 | isConfig = False | |
1306 | __profIndex = 0 |
|
1306 | __profIndex = 0 | |
1307 | __initime = None |
|
1307 | __initime = None | |
1308 | __lastdatatime = None |
|
1308 | __lastdatatime = None | |
1309 | __buffer = None |
|
1309 | __buffer = None | |
1310 | noise = None |
|
1310 | noise = None | |
1311 | __dataReady = False |
|
1311 | __dataReady = False | |
1312 | n = None |
|
1312 | n = None | |
1313 | __nch = 0 |
|
1313 | __nch = 0 | |
1314 | __nHeis = 0 |
|
1314 | __nHeis = 0 | |
1315 | removeDC = False |
|
1315 | removeDC = False | |
1316 | ipp = None |
|
1316 | ipp = None | |
1317 | lambda_ = 0 |
|
1317 | lambda_ = 0 | |
1318 |
|
1318 | |||
1319 | def __init__(self,**kwargs): |
|
1319 | def __init__(self,**kwargs): | |
1320 | Operation.__init__(self,**kwargs) |
|
1320 | Operation.__init__(self,**kwargs) | |
1321 |
|
1321 | |||
1322 | def setup(self, dataOut, n = None, removeDC=False): |
|
1322 | def setup(self, dataOut, n = None, removeDC=False): | |
1323 | ''' |
|
1323 | ''' | |
1324 | n= Numero de PRF's de entrada |
|
1324 | n= Numero de PRF's de entrada | |
1325 | ''' |
|
1325 | ''' | |
1326 | self.__initime = None |
|
1326 | self.__initime = None | |
1327 | self.__lastdatatime = 0 |
|
1327 | self.__lastdatatime = 0 | |
1328 | self.__dataReady = False |
|
1328 | self.__dataReady = False | |
1329 | self.__buffer = 0 |
|
1329 | self.__buffer = 0 | |
1330 | self.__profIndex = 0 |
|
1330 | self.__profIndex = 0 | |
1331 | self.noise = None |
|
1331 | self.noise = None | |
1332 | self.__nch = dataOut.nChannels |
|
1332 | self.__nch = dataOut.nChannels | |
1333 | self.__nHeis = dataOut.nHeights |
|
1333 | self.__nHeis = dataOut.nHeights | |
1334 | self.removeDC = removeDC |
|
1334 | self.removeDC = removeDC | |
1335 | self.lambda_ = 3.0e8/(9345.0e6) |
|
1335 | self.lambda_ = 3.0e8/(9345.0e6) | |
1336 | self.ippSec = dataOut.ippSeconds |
|
1336 | self.ippSec = dataOut.ippSeconds | |
1337 | self.nCohInt = dataOut.nCohInt |
|
1337 | self.nCohInt = dataOut.nCohInt | |
1338 | print("IPPseconds",dataOut.ippSeconds) |
|
1338 | print("IPPseconds",dataOut.ippSeconds) | |
1339 |
|
1339 | |||
1340 | print("ELVALOR DE n es:", n) |
|
1340 | print("ELVALOR DE n es:", n) | |
1341 | if n == None: |
|
1341 | if n == None: | |
1342 | raise ValueError("n should be specified.") |
|
1342 | raise ValueError("n should be specified.") | |
1343 |
|
1343 | |||
1344 | if n != None: |
|
1344 | if n != None: | |
1345 | if n<2: |
|
1345 | if n<2: | |
1346 | raise ValueError("n should be greater than 2") |
|
1346 | raise ValueError("n should be greater than 2") | |
1347 |
|
1347 | |||
1348 | self.n = n |
|
1348 | self.n = n | |
1349 | self.__nProf = n |
|
1349 | self.__nProf = n | |
1350 |
|
1350 | |||
1351 | self.__buffer = numpy.zeros((dataOut.nChannels, |
|
1351 | self.__buffer = numpy.zeros((dataOut.nChannels, | |
1352 | n, |
|
1352 | n, | |
1353 | dataOut.nHeights), |
|
1353 | dataOut.nHeights), | |
1354 | dtype='complex') |
|
1354 | dtype='complex') | |
1355 |
|
1355 | |||
1356 | def putData(self,data): |
|
1356 | def putData(self,data): | |
1357 | ''' |
|
1357 | ''' | |
1358 | Add a profile to he __buffer and increase in one the __profiel Index |
|
1358 | Add a profile to he __buffer and increase in one the __profiel Index | |
1359 | ''' |
|
1359 | ''' | |
1360 | self.__buffer[:,self.__profIndex,:]= data |
|
1360 | self.__buffer[:,self.__profIndex,:]= data | |
1361 | self.__profIndex += 1 |
|
1361 | self.__profIndex += 1 | |
1362 | return |
|
1362 | return | |
1363 |
|
1363 | |||
1364 | def pushData(self,dataOut): |
|
1364 | def pushData(self,dataOut): | |
1365 | ''' |
|
1365 | ''' | |
1366 | Return the PULSEPAIR and the profiles used in the operation |
|
1366 | Return the PULSEPAIR and the profiles used in the operation | |
1367 | Affected : self.__profileIndex |
|
1367 | Affected : self.__profileIndex | |
1368 | ''' |
|
1368 | ''' | |
1369 | #----------------- Remove DC----------------------------------- |
|
1369 | #----------------- Remove DC----------------------------------- | |
1370 | if self.removeDC==True: |
|
1370 | if self.removeDC==True: | |
1371 | mean = numpy.mean(self.__buffer,1) |
|
1371 | mean = numpy.mean(self.__buffer,1) | |
1372 | tmp = mean.reshape(self.__nch,1,self.__nHeis) |
|
1372 | tmp = mean.reshape(self.__nch,1,self.__nHeis) | |
1373 | dc= numpy.tile(tmp,[1,self.__nProf,1]) |
|
1373 | dc= numpy.tile(tmp,[1,self.__nProf,1]) | |
1374 | self.__buffer = self.__buffer - dc |
|
1374 | self.__buffer = self.__buffer - dc | |
1375 | #------------------Calculo de Potencia ------------------------ |
|
1375 | #------------------Calculo de Potencia ------------------------ | |
1376 | pair0 = self.__buffer*numpy.conj(self.__buffer) |
|
1376 | pair0 = self.__buffer*numpy.conj(self.__buffer) | |
1377 | pair0 = pair0.real |
|
1377 | pair0 = pair0.real | |
1378 | lag_0 = numpy.sum(pair0,1) |
|
1378 | lag_0 = numpy.sum(pair0,1) | |
1379 | #------------------Calculo de Ruido x canal-------------------- |
|
1379 | #------------------Calculo de Ruido x canal-------------------- | |
1380 | self.noise = numpy.zeros(self.__nch) |
|
1380 | self.noise = numpy.zeros(self.__nch) | |
1381 | for i in range(self.__nch): |
|
1381 | for i in range(self.__nch): | |
1382 | daux = numpy.sort(pair0[i,:,:],axis= None) |
|
1382 | daux = numpy.sort(pair0[i,:,:],axis= None) | |
1383 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) |
|
1383 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) | |
1384 |
|
1384 | |||
1385 | self.noise = self.noise.reshape(self.__nch,1) |
|
1385 | self.noise = self.noise.reshape(self.__nch,1) | |
1386 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) |
|
1386 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) | |
1387 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) |
|
1387 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) | |
1388 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) |
|
1388 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) | |
1389 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- |
|
1389 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- | |
1390 | #------------------ P= S+N ,P=lag_0/N --------------------------------- |
|
1390 | #------------------ P= S+N ,P=lag_0/N --------------------------------- | |
1391 | #-------------------- Power -------------------------------------------------- |
|
1391 | #-------------------- Power -------------------------------------------------- | |
1392 | data_power = lag_0/(self.n*self.nCohInt) |
|
1392 | data_power = lag_0/(self.n*self.nCohInt) | |
1393 | #------------------ Senal --------------------------------------------------- |
|
1393 | #------------------ Senal --------------------------------------------------- | |
1394 | data_intensity = pair0 - noise_buffer |
|
1394 | data_intensity = pair0 - noise_buffer | |
1395 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) |
|
1395 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) | |
1396 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) |
|
1396 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) | |
1397 | for i in range(self.__nch): |
|
1397 | for i in range(self.__nch): | |
1398 | for j in range(self.__nHeis): |
|
1398 | for j in range(self.__nHeis): | |
1399 | if data_intensity[i][j] < 0: |
|
1399 | if data_intensity[i][j] < 0: | |
1400 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) |
|
1400 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) | |
1401 |
|
1401 | |||
1402 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- |
|
1402 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- | |
1403 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) |
|
1403 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) | |
1404 | lag_1 = numpy.sum(pair1,1) |
|
1404 | lag_1 = numpy.sum(pair1,1) | |
1405 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) |
|
1405 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) | |
1406 | data_velocity = (self.lambda_/2.0)*data_freq |
|
1406 | data_velocity = (self.lambda_/2.0)*data_freq | |
1407 |
|
1407 | |||
1408 | #---------------- Potencia promedio estimada de la Senal----------- |
|
1408 | #---------------- Potencia promedio estimada de la Senal----------- | |
1409 | lag_0 = lag_0/self.n |
|
1409 | lag_0 = lag_0/self.n | |
1410 | S = lag_0-self.noise |
|
1410 | S = lag_0-self.noise | |
1411 |
|
1411 | |||
1412 | #---------------- Frecuencia Doppler promedio --------------------- |
|
1412 | #---------------- Frecuencia Doppler promedio --------------------- | |
1413 | lag_1 = lag_1/(self.n-1) |
|
1413 | lag_1 = lag_1/(self.n-1) | |
1414 | R1 = numpy.abs(lag_1) |
|
1414 | R1 = numpy.abs(lag_1) | |
1415 |
|
1415 | |||
1416 | #---------------- Calculo del SNR---------------------------------- |
|
1416 | #---------------- Calculo del SNR---------------------------------- | |
1417 | data_snrPP = S/self.noise |
|
1417 | data_snrPP = S/self.noise | |
1418 | for i in range(self.__nch): |
|
1418 | for i in range(self.__nch): | |
1419 | for j in range(self.__nHeis): |
|
1419 | for j in range(self.__nHeis): | |
1420 | if data_snrPP[i][j] < 1.e-20: |
|
1420 | if data_snrPP[i][j] < 1.e-20: | |
1421 | data_snrPP[i][j] = 1.e-20 |
|
1421 | data_snrPP[i][j] = 1.e-20 | |
1422 |
|
1422 | |||
1423 | #----------------- Calculo del ancho espectral ---------------------- |
|
1423 | #----------------- Calculo del ancho espectral ---------------------- | |
1424 | L = S/R1 |
|
1424 | L = S/R1 | |
1425 | L = numpy.where(L<0,1,L) |
|
1425 | L = numpy.where(L<0,1,L) | |
1426 | L = numpy.log(L) |
|
1426 | L = numpy.log(L) | |
1427 | tmp = numpy.sqrt(numpy.absolute(L)) |
|
1427 | tmp = numpy.sqrt(numpy.absolute(L)) | |
1428 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) |
|
1428 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) | |
1429 | n = self.__profIndex |
|
1429 | n = self.__profIndex | |
1430 |
|
1430 | |||
1431 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') |
|
1431 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') | |
1432 | self.__profIndex = 0 |
|
1432 | self.__profIndex = 0 | |
1433 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n |
|
1433 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n | |
1434 |
|
1434 | |||
1435 |
|
1435 | |||
1436 | def pulsePairbyProfiles(self,dataOut): |
|
1436 | def pulsePairbyProfiles(self,dataOut): | |
1437 |
|
1437 | |||
1438 | self.__dataReady = False |
|
1438 | self.__dataReady = False | |
1439 | data_power = None |
|
1439 | data_power = None | |
1440 | data_intensity = None |
|
1440 | data_intensity = None | |
1441 | data_velocity = None |
|
1441 | data_velocity = None | |
1442 | data_specwidth = None |
|
1442 | data_specwidth = None | |
1443 | data_snrPP = None |
|
1443 | data_snrPP = None | |
1444 | self.putData(data=dataOut.data) |
|
1444 | self.putData(data=dataOut.data) | |
1445 | if self.__profIndex == self.n: |
|
1445 | if self.__profIndex == self.n: | |
1446 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) |
|
1446 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) | |
1447 | self.__dataReady = True |
|
1447 | self.__dataReady = True | |
1448 |
|
1448 | |||
1449 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth |
|
1449 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth | |
1450 |
|
1450 | |||
1451 |
|
1451 | |||
1452 | def pulsePairOp(self, dataOut, datatime= None): |
|
1452 | def pulsePairOp(self, dataOut, datatime= None): | |
1453 |
|
1453 | |||
1454 | if self.__initime == None: |
|
1454 | if self.__initime == None: | |
1455 | self.__initime = datatime |
|
1455 | self.__initime = datatime | |
1456 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) |
|
1456 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) | |
1457 | self.__lastdatatime = datatime |
|
1457 | self.__lastdatatime = datatime | |
1458 |
|
1458 | |||
1459 | if data_power is None: |
|
1459 | if data_power is None: | |
1460 | return None, None, None,None,None,None |
|
1460 | return None, None, None,None,None,None | |
1461 |
|
1461 | |||
1462 | avgdatatime = self.__initime |
|
1462 | avgdatatime = self.__initime | |
1463 | deltatime = datatime - self.__lastdatatime |
|
1463 | deltatime = datatime - self.__lastdatatime | |
1464 | self.__initime = datatime |
|
1464 | self.__initime = datatime | |
1465 |
|
1465 | |||
1466 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime |
|
1466 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime | |
1467 |
|
1467 | |||
1468 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): |
|
1468 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): | |
1469 |
|
1469 | |||
1470 | if not self.isConfig: |
|
1470 | if not self.isConfig: | |
1471 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) |
|
1471 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) | |
1472 | self.isConfig = True |
|
1472 | self.isConfig = True | |
1473 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) |
|
1473 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) | |
1474 | dataOut.flagNoData = True |
|
1474 | dataOut.flagNoData = True | |
1475 |
|
1475 | |||
1476 | if self.__dataReady: |
|
1476 | if self.__dataReady: | |
1477 | dataOut.nCohInt *= self.n |
|
1477 | dataOut.nCohInt *= self.n | |
1478 | dataOut.dataPP_POW = data_intensity # S |
|
1478 | dataOut.dataPP_POW = data_intensity # S | |
1479 | dataOut.dataPP_POWER = data_power # P |
|
1479 | dataOut.dataPP_POWER = data_power # P | |
1480 | dataOut.dataPP_DOP = data_velocity |
|
1480 | dataOut.dataPP_DOP = data_velocity | |
1481 | dataOut.dataPP_SNR = data_snrPP |
|
1481 | dataOut.dataPP_SNR = data_snrPP | |
1482 | dataOut.dataPP_WIDTH = data_specwidth |
|
1482 | dataOut.dataPP_WIDTH = data_specwidth | |
1483 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. |
|
1483 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. | |
1484 | dataOut.utctime = avgdatatime |
|
1484 | dataOut.utctime = avgdatatime | |
1485 | dataOut.flagNoData = False |
|
1485 | dataOut.flagNoData = False | |
1486 | return dataOut |
|
1486 | return dataOut | |
1487 |
|
1487 | |||
1488 |
|
1488 | |||
1489 |
|
1489 | |||
1490 | # import collections |
|
1490 | # import collections | |
1491 | # from scipy.stats import mode |
|
1491 | # from scipy.stats import mode | |
1492 | # |
|
1492 | # | |
1493 | # class Synchronize(Operation): |
|
1493 | # class Synchronize(Operation): | |
1494 | # |
|
1494 | # | |
1495 | # isConfig = False |
|
1495 | # isConfig = False | |
1496 | # __profIndex = 0 |
|
1496 | # __profIndex = 0 | |
1497 | # |
|
1497 | # | |
1498 | # def __init__(self, **kwargs): |
|
1498 | # def __init__(self, **kwargs): | |
1499 | # |
|
1499 | # | |
1500 | # Operation.__init__(self, **kwargs) |
|
1500 | # Operation.__init__(self, **kwargs) | |
1501 | # # self.isConfig = False |
|
1501 | # # self.isConfig = False | |
1502 | # self.__powBuffer = None |
|
1502 | # self.__powBuffer = None | |
1503 | # self.__startIndex = 0 |
|
1503 | # self.__startIndex = 0 | |
1504 | # self.__pulseFound = False |
|
1504 | # self.__pulseFound = False | |
1505 | # |
|
1505 | # | |
1506 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1506 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): | |
1507 | # |
|
1507 | # | |
1508 | # #Read data |
|
1508 | # #Read data | |
1509 | # |
|
1509 | # | |
1510 | # powerdB = dataOut.getPower(channel = channel) |
|
1510 | # powerdB = dataOut.getPower(channel = channel) | |
1511 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1511 | # noisedB = dataOut.getNoise(channel = channel)[0] | |
1512 | # |
|
1512 | # | |
1513 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1513 | # self.__powBuffer.extend(powerdB.flatten()) | |
1514 | # |
|
1514 | # | |
1515 | # dataArray = numpy.array(self.__powBuffer) |
|
1515 | # dataArray = numpy.array(self.__powBuffer) | |
1516 | # |
|
1516 | # | |
1517 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1517 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") | |
1518 | # |
|
1518 | # | |
1519 | # maxValue = numpy.nanmax(filteredPower) |
|
1519 | # maxValue = numpy.nanmax(filteredPower) | |
1520 | # |
|
1520 | # | |
1521 | # if maxValue < noisedB + 10: |
|
1521 | # if maxValue < noisedB + 10: | |
1522 | # #No se encuentra ningun pulso de transmision |
|
1522 | # #No se encuentra ningun pulso de transmision | |
1523 | # return None |
|
1523 | # return None | |
1524 | # |
|
1524 | # | |
1525 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1525 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] | |
1526 | # |
|
1526 | # | |
1527 | # if len(maxValuesIndex) < 2: |
|
1527 | # if len(maxValuesIndex) < 2: | |
1528 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1528 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX | |
1529 | # return None |
|
1529 | # return None | |
1530 | # |
|
1530 | # | |
1531 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1531 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples | |
1532 | # |
|
1532 | # | |
1533 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1533 | # #Seleccionar solo valores con un espaciamiento de nSamples | |
1534 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1534 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) | |
1535 | # |
|
1535 | # | |
1536 | # if len(pulseIndex) < 2: |
|
1536 | # if len(pulseIndex) < 2: | |
1537 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1537 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
1538 | # return None |
|
1538 | # return None | |
1539 | # |
|
1539 | # | |
1540 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1540 | # spacing = pulseIndex[1:] - pulseIndex[:-1] | |
1541 | # |
|
1541 | # | |
1542 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1542 | # #remover senales que se distancien menos de 10 unidades o muestras | |
1543 | # #(No deberian existir IPP menor a 10 unidades) |
|
1543 | # #(No deberian existir IPP menor a 10 unidades) | |
1544 | # |
|
1544 | # | |
1545 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1545 | # realIndex = numpy.where(spacing > 10 )[0] | |
1546 | # |
|
1546 | # | |
1547 | # if len(realIndex) < 2: |
|
1547 | # if len(realIndex) < 2: | |
1548 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1548 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
1549 | # return None |
|
1549 | # return None | |
1550 | # |
|
1550 | # | |
1551 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1551 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) | |
1552 | # realPulseIndex = pulseIndex[realIndex] |
|
1552 | # realPulseIndex = pulseIndex[realIndex] | |
1553 | # |
|
1553 | # | |
1554 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1554 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] | |
1555 | # |
|
1555 | # | |
1556 | # print "IPP = %d samples" %period |
|
1556 | # print "IPP = %d samples" %period | |
1557 | # |
|
1557 | # | |
1558 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1558 | # self.__newNSamples = dataOut.nHeights #int(period) | |
1559 | # self.__startIndex = int(realPulseIndex[0]) |
|
1559 | # self.__startIndex = int(realPulseIndex[0]) | |
1560 | # |
|
1560 | # | |
1561 | # return 1 |
|
1561 | # return 1 | |
1562 | # |
|
1562 | # | |
1563 | # |
|
1563 | # | |
1564 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1564 | # def setup(self, nSamples, nChannels, buffer_size = 4): | |
1565 | # |
|
1565 | # | |
1566 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1566 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), | |
1567 | # maxlen = buffer_size*nSamples) |
|
1567 | # maxlen = buffer_size*nSamples) | |
1568 | # |
|
1568 | # | |
1569 | # bufferList = [] |
|
1569 | # bufferList = [] | |
1570 | # |
|
1570 | # | |
1571 | # for i in range(nChannels): |
|
1571 | # for i in range(nChannels): | |
1572 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1572 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, | |
1573 | # maxlen = buffer_size*nSamples) |
|
1573 | # maxlen = buffer_size*nSamples) | |
1574 | # |
|
1574 | # | |
1575 | # bufferList.append(bufferByChannel) |
|
1575 | # bufferList.append(bufferByChannel) | |
1576 | # |
|
1576 | # | |
1577 | # self.__nSamples = nSamples |
|
1577 | # self.__nSamples = nSamples | |
1578 | # self.__nChannels = nChannels |
|
1578 | # self.__nChannels = nChannels | |
1579 | # self.__bufferList = bufferList |
|
1579 | # self.__bufferList = bufferList | |
1580 | # |
|
1580 | # | |
1581 | # def run(self, dataOut, channel = 0): |
|
1581 | # def run(self, dataOut, channel = 0): | |
1582 | # |
|
1582 | # | |
1583 | # if not self.isConfig: |
|
1583 | # if not self.isConfig: | |
1584 | # nSamples = dataOut.nHeights |
|
1584 | # nSamples = dataOut.nHeights | |
1585 | # nChannels = dataOut.nChannels |
|
1585 | # nChannels = dataOut.nChannels | |
1586 | # self.setup(nSamples, nChannels) |
|
1586 | # self.setup(nSamples, nChannels) | |
1587 | # self.isConfig = True |
|
1587 | # self.isConfig = True | |
1588 | # |
|
1588 | # | |
1589 | # #Append new data to internal buffer |
|
1589 | # #Append new data to internal buffer | |
1590 | # for thisChannel in range(self.__nChannels): |
|
1590 | # for thisChannel in range(self.__nChannels): | |
1591 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1591 | # bufferByChannel = self.__bufferList[thisChannel] | |
1592 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1592 | # bufferByChannel.extend(dataOut.data[thisChannel]) | |
1593 | # |
|
1593 | # | |
1594 | # if self.__pulseFound: |
|
1594 | # if self.__pulseFound: | |
1595 | # self.__startIndex -= self.__nSamples |
|
1595 | # self.__startIndex -= self.__nSamples | |
1596 | # |
|
1596 | # | |
1597 | # #Finding Tx Pulse |
|
1597 | # #Finding Tx Pulse | |
1598 | # if not self.__pulseFound: |
|
1598 | # if not self.__pulseFound: | |
1599 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1599 | # indexFound = self.__findTxPulse(dataOut, channel) | |
1600 | # |
|
1600 | # | |
1601 | # if indexFound == None: |
|
1601 | # if indexFound == None: | |
1602 | # dataOut.flagNoData = True |
|
1602 | # dataOut.flagNoData = True | |
1603 | # return |
|
1603 | # return | |
1604 | # |
|
1604 | # | |
1605 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1605 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) | |
1606 | # self.__pulseFound = True |
|
1606 | # self.__pulseFound = True | |
1607 | # self.__startIndex = indexFound |
|
1607 | # self.__startIndex = indexFound | |
1608 | # |
|
1608 | # | |
1609 | # #If pulse was found ... |
|
1609 | # #If pulse was found ... | |
1610 | # for thisChannel in range(self.__nChannels): |
|
1610 | # for thisChannel in range(self.__nChannels): | |
1611 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1611 | # bufferByChannel = self.__bufferList[thisChannel] | |
1612 | # #print self.__startIndex |
|
1612 | # #print self.__startIndex | |
1613 | # x = numpy.array(bufferByChannel) |
|
1613 | # x = numpy.array(bufferByChannel) | |
1614 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1614 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] | |
1615 | # |
|
1615 | # | |
1616 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1616 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1617 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1617 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight | |
1618 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1618 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 | |
1619 | # |
|
1619 | # | |
1620 | # dataOut.data = self.__arrayBuffer |
|
1620 | # dataOut.data = self.__arrayBuffer | |
1621 | # |
|
1621 | # | |
1622 | # self.__startIndex += self.__newNSamples |
|
1622 | # self.__startIndex += self.__newNSamples | |
1623 | # |
|
1623 | # | |
1624 | # return |
|
1624 | # return |
General Comments 0
You need to be logged in to leave comments.
Login now