@@ -1,381 +1,612 | |||||
1 | import os |
|
1 | import os | |
2 | import datetime |
|
2 | import datetime | |
3 | import numpy |
|
3 | import numpy | |
4 |
|
4 | |||
5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
5 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot | |
7 | from schainpy.utils import log |
|
7 | from schainpy.utils import log | |
8 |
|
8 | |||
9 | EARTH_RADIUS = 6.3710e3 |
|
9 | EARTH_RADIUS = 6.3710e3 | |
10 |
|
10 | |||
11 |
|
11 | |||
12 | def ll2xy(lat1, lon1, lat2, lon2): |
|
12 | def ll2xy(lat1, lon1, lat2, lon2): | |
13 |
|
13 | |||
14 | p = 0.017453292519943295 |
|
14 | p = 0.017453292519943295 | |
15 | a = 0.5 - numpy.cos((lat2 - lat1) * p) / 2 + numpy.cos(lat1 * p) * \ |
|
15 | a = 0.5 - numpy.cos((lat2 - lat1) * p) / 2 + numpy.cos(lat1 * p) * \ | |
16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
18 | theta = numpy.arctan2(numpy.sin((lon2 - lon1) * p) * numpy.cos(lat2 * p), numpy.cos(lat1 * p) |
|
18 | theta = numpy.arctan2(numpy.sin((lon2 - lon1) * p) * numpy.cos(lat2 * p), numpy.cos(lat1 * p) | |
19 | * numpy.sin(lat2 * p) - numpy.sin(lat1 * p) * numpy.cos(lat2 * p) * numpy.cos((lon2 - lon1) * p)) |
|
19 | * numpy.sin(lat2 * p) - numpy.sin(lat1 * p) * numpy.cos(lat2 * p) * numpy.cos((lon2 - lon1) * p)) | |
20 | theta = -theta + numpy.pi / 2 |
|
20 | theta = -theta + numpy.pi / 2 | |
21 | return r * numpy.cos(theta), r * numpy.sin(theta) |
|
21 | return r * numpy.cos(theta), r * numpy.sin(theta) | |
22 |
|
22 | |||
23 |
|
23 | |||
24 | def km2deg(km): |
|
24 | def km2deg(km): | |
25 | ''' |
|
25 | ''' | |
26 | Convert distance in km to degrees |
|
26 | Convert distance in km to degrees | |
27 | ''' |
|
27 | ''' | |
28 |
|
28 | |||
29 | return numpy.rad2deg(km / EARTH_RADIUS) |
|
29 | return numpy.rad2deg(km / EARTH_RADIUS) | |
30 |
|
30 | |||
31 |
|
31 | |||
32 |
|
32 | |||
33 | class SpectralMomentsPlot(SpectraPlot): |
|
33 | class SpectralMomentsPlot(SpectraPlot): | |
34 | ''' |
|
34 | ''' | |
35 | Plot for Spectral Moments |
|
35 | Plot for Spectral Moments | |
36 | ''' |
|
36 | ''' | |
37 | CODE = 'spc_moments' |
|
37 | CODE = 'spc_moments' | |
38 | # colormap = 'jet' |
|
38 | # colormap = 'jet' | |
39 | # plot_type = 'pcolor' |
|
39 | # plot_type = 'pcolor' | |
40 |
|
40 | |||
41 | class DobleGaussianPlot(SpectraPlot): |
|
41 | class DobleGaussianPlot(SpectraPlot): | |
42 | ''' |
|
42 | ''' | |
43 | Plot for Double Gaussian Plot |
|
43 | Plot for Double Gaussian Plot | |
44 | ''' |
|
44 | ''' | |
45 | CODE = 'gaussian_fit' |
|
45 | CODE = 'gaussian_fit' | |
46 | # colormap = 'jet' |
|
46 | # colormap = 'jet' | |
47 | # plot_type = 'pcolor' |
|
47 | # plot_type = 'pcolor' | |
48 |
|
48 | |||
49 |
|
49 | |||
50 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
50 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): | |
51 | ''' |
|
51 | ''' | |
52 | Plot SpectraCut with Double Gaussian Fit |
|
52 | Plot SpectraCut with Double Gaussian Fit | |
53 | ''' |
|
53 | ''' | |
54 | CODE = 'cut_gaussian_fit' |
|
54 | CODE = 'cut_gaussian_fit' | |
55 |
|
55 | |||
56 |
|
56 | |||
57 | class SpectralFitObliquePlot(SpectraPlot): |
|
57 | class SpectralFitObliquePlot(SpectraPlot): | |
58 | ''' |
|
58 | ''' | |
59 | Plot for Spectral Oblique |
|
59 | Plot for Spectral Oblique | |
60 | ''' |
|
60 | ''' | |
61 | CODE = 'spc_moments' |
|
61 | CODE = 'spc_moments' | |
62 | colormap = 'jet' |
|
62 | colormap = 'jet' | |
63 | plot_type = 'pcolor' |
|
63 | plot_type = 'pcolor' | |
64 |
|
64 | |||
65 |
|
65 | |||
66 |
|
66 | |||
67 | class SnrPlot(RTIPlot): |
|
67 | class SnrPlot(RTIPlot): | |
68 | ''' |
|
68 | ''' | |
69 | Plot for SNR Data |
|
69 | Plot for SNR Data | |
70 | ''' |
|
70 | ''' | |
71 |
|
71 | |||
72 | CODE = 'snr' |
|
72 | CODE = 'snr' | |
73 | colormap = 'jet' |
|
73 | colormap = 'jet' | |
74 |
|
74 | |||
75 | def update(self, dataOut): |
|
75 | def update(self, dataOut): | |
76 |
|
76 | |||
77 | data = { |
|
77 | data = { | |
78 | 'snr': 10 * numpy.log10(dataOut.data_snr) |
|
78 | 'snr': 10 * numpy.log10(dataOut.data_snr) | |
79 | } |
|
79 | } | |
80 |
|
80 | |||
81 | return data, {} |
|
81 | return data, {} | |
82 |
|
82 | |||
83 | class DopplerPlot(RTIPlot): |
|
83 | class DopplerPlot(RTIPlot): | |
84 | ''' |
|
84 | ''' | |
85 | Plot for DOPPLER Data (1st moment) |
|
85 | Plot for DOPPLER Data (1st moment) | |
86 | ''' |
|
86 | ''' | |
87 |
|
87 | |||
88 | CODE = 'dop' |
|
88 | CODE = 'dop' | |
89 | colormap = 'RdBu_r' |
|
89 | colormap = 'RdBu_r' | |
90 |
|
90 | |||
91 | def update(self, dataOut): |
|
91 | def update(self, dataOut): | |
92 |
|
92 | |||
93 | data = { |
|
93 | data = { | |
94 | 'dop': dataOut.data_dop |
|
94 | 'dop': dataOut.data_dop | |
95 | } |
|
95 | } | |
96 |
|
96 | |||
97 | return data, {} |
|
97 | return data, {} | |
98 |
|
98 | |||
99 | class PowerPlot(RTIPlot): |
|
99 | class PowerPlot(RTIPlot): | |
100 | ''' |
|
100 | ''' | |
101 | Plot for Power Data (0 moment) |
|
101 | Plot for Power Data (0 moment) | |
102 | ''' |
|
102 | ''' | |
103 |
|
103 | |||
104 | CODE = 'pow' |
|
104 | CODE = 'pow' | |
105 | colormap = 'jet' |
|
105 | colormap = 'jet' | |
106 |
|
106 | |||
107 | def update(self, dataOut): |
|
107 | def update(self, dataOut): | |
108 |
|
108 | |||
109 | data = { |
|
109 | data = { | |
110 | 'pow': 10 * numpy.log10(dataOut.data_pow / dataOut.normFactor) |
|
110 | 'pow': 10 * numpy.log10(dataOut.data_pow / dataOut.normFactor) | |
111 | } |
|
111 | } | |
112 |
|
112 | |||
113 | return data, {} |
|
113 | return data, {} | |
114 |
|
114 | |||
115 | class SpectralWidthPlot(RTIPlot): |
|
115 | class SpectralWidthPlot(RTIPlot): | |
116 | ''' |
|
116 | ''' | |
117 | Plot for Spectral Width Data (2nd moment) |
|
117 | Plot for Spectral Width Data (2nd moment) | |
118 | ''' |
|
118 | ''' | |
119 |
|
119 | |||
120 | CODE = 'width' |
|
120 | CODE = 'width' | |
121 | colormap = 'jet' |
|
121 | colormap = 'jet' | |
122 |
|
122 | |||
123 | def update(self, dataOut): |
|
123 | def update(self, dataOut): | |
124 |
|
124 | |||
125 | data = { |
|
125 | data = { | |
126 | 'width': dataOut.data_width |
|
126 | 'width': dataOut.data_width | |
127 | } |
|
127 | } | |
128 |
|
128 | |||
129 | return data, {} |
|
129 | return data, {} | |
130 |
|
130 | |||
131 | class SkyMapPlot(Plot): |
|
131 | class SkyMapPlot(Plot): | |
132 | ''' |
|
132 | ''' | |
133 | Plot for meteors detection data |
|
133 | Plot for meteors detection data | |
134 | ''' |
|
134 | ''' | |
135 |
|
135 | |||
136 | CODE = 'param' |
|
136 | CODE = 'param' | |
137 |
|
137 | |||
138 | def setup(self): |
|
138 | def setup(self): | |
139 |
|
139 | |||
140 | self.ncols = 1 |
|
140 | self.ncols = 1 | |
141 | self.nrows = 1 |
|
141 | self.nrows = 1 | |
142 | self.width = 7.2 |
|
142 | self.width = 7.2 | |
143 | self.height = 7.2 |
|
143 | self.height = 7.2 | |
144 | self.nplots = 1 |
|
144 | self.nplots = 1 | |
145 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
145 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
146 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
146 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
147 | self.polar = True |
|
147 | self.polar = True | |
148 | self.ymin = -180 |
|
148 | self.ymin = -180 | |
149 | self.ymax = 180 |
|
149 | self.ymax = 180 | |
150 | self.colorbar = False |
|
150 | self.colorbar = False | |
151 |
|
151 | |||
152 | def plot(self): |
|
152 | def plot(self): | |
153 |
|
153 | |||
154 | arrayParameters = numpy.concatenate(self.data['param']) |
|
154 | arrayParameters = numpy.concatenate(self.data['param']) | |
155 | error = arrayParameters[:, -1] |
|
155 | error = arrayParameters[:, -1] | |
156 | indValid = numpy.where(error == 0)[0] |
|
156 | indValid = numpy.where(error == 0)[0] | |
157 | finalMeteor = arrayParameters[indValid, :] |
|
157 | finalMeteor = arrayParameters[indValid, :] | |
158 | finalAzimuth = finalMeteor[:, 3] |
|
158 | finalAzimuth = finalMeteor[:, 3] | |
159 | finalZenith = finalMeteor[:, 4] |
|
159 | finalZenith = finalMeteor[:, 4] | |
160 |
|
160 | |||
161 | x = finalAzimuth * numpy.pi / 180 |
|
161 | x = finalAzimuth * numpy.pi / 180 | |
162 | y = finalZenith |
|
162 | y = finalZenith | |
163 |
|
163 | |||
164 | ax = self.axes[0] |
|
164 | ax = self.axes[0] | |
165 |
|
165 | |||
166 | if ax.firsttime: |
|
166 | if ax.firsttime: | |
167 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
167 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] | |
168 | else: |
|
168 | else: | |
169 | ax.plot.set_data(x, y) |
|
169 | ax.plot.set_data(x, y) | |
170 |
|
170 | |||
171 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
171 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | |
172 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
172 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | |
173 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
173 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
174 | dt2, |
|
174 | dt2, | |
175 | len(x)) |
|
175 | len(x)) | |
176 | self.titles[0] = title |
|
176 | self.titles[0] = title | |
177 |
|
177 | |||
178 |
|
178 | |||
179 | class GenericRTIPlot(Plot): |
|
179 | class GenericRTIPlot(Plot): | |
180 | ''' |
|
180 | ''' | |
181 | Plot for data_xxxx object |
|
181 | Plot for data_xxxx object | |
182 | ''' |
|
182 | ''' | |
183 |
|
183 | |||
184 | CODE = 'param' |
|
184 | CODE = 'param' | |
185 | colormap = 'viridis' |
|
185 | colormap = 'viridis' | |
186 | plot_type = 'pcolorbuffer' |
|
186 | plot_type = 'pcolorbuffer' | |
187 |
|
187 | |||
188 | def setup(self): |
|
188 | def setup(self): | |
189 | self.xaxis = 'time' |
|
189 | self.xaxis = 'time' | |
190 | self.ncols = 1 |
|
190 | self.ncols = 1 | |
191 | self.nrows = self.data.shape('param')[0] |
|
191 | self.nrows = self.data.shape('param')[0] | |
192 | self.nplots = self.nrows |
|
192 | self.nplots = self.nrows | |
193 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
193 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) | |
194 |
|
194 | |||
195 | if not self.xlabel: |
|
195 | if not self.xlabel: | |
196 | self.xlabel = 'Time' |
|
196 | self.xlabel = 'Time' | |
197 |
|
197 | |||
198 | self.ylabel = 'Range [km]' |
|
198 | self.ylabel = 'Range [km]' | |
199 | if not self.titles: |
|
199 | if not self.titles: | |
200 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
200 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] | |
201 |
|
201 | |||
202 | def update(self, dataOut): |
|
202 | def update(self, dataOut): | |
203 |
|
203 | |||
204 | data = { |
|
204 | data = { | |
205 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
205 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) | |
206 | } |
|
206 | } | |
207 |
|
207 | |||
208 | meta = {} |
|
208 | meta = {} | |
209 |
|
209 | |||
210 | return data, meta |
|
210 | return data, meta | |
211 |
|
211 | |||
212 | def plot(self): |
|
212 | def plot(self): | |
213 | # self.data.normalize_heights() |
|
213 | # self.data.normalize_heights() | |
214 | self.x = self.data.times |
|
214 | self.x = self.data.times | |
215 | self.y = self.data.yrange |
|
215 | self.y = self.data.yrange | |
216 | self.z = self.data['param'] |
|
216 | self.z = self.data['param'] | |
217 |
|
217 | |||
218 | self.z = numpy.ma.masked_invalid(self.z) |
|
218 | self.z = numpy.ma.masked_invalid(self.z) | |
219 |
|
219 | |||
220 | if self.decimation is None: |
|
220 | if self.decimation is None: | |
221 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
221 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
222 | else: |
|
222 | else: | |
223 | x, y, z = self.fill_gaps(*self.decimate()) |
|
223 | x, y, z = self.fill_gaps(*self.decimate()) | |
224 |
|
224 | |||
225 | for n, ax in enumerate(self.axes): |
|
225 | for n, ax in enumerate(self.axes): | |
226 |
|
226 | |||
227 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
227 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
228 | self.z[n]) |
|
228 | self.z[n]) | |
229 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
229 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
230 | self.z[n]) |
|
230 | self.z[n]) | |
231 |
|
231 | |||
232 | if ax.firsttime: |
|
232 | if ax.firsttime: | |
233 | if self.zlimits is not None: |
|
233 | if self.zlimits is not None: | |
234 | self.zmin, self.zmax = self.zlimits[n] |
|
234 | self.zmin, self.zmax = self.zlimits[n] | |
235 |
|
235 | |||
236 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
236 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
237 | vmin=self.zmin, |
|
237 | vmin=self.zmin, | |
238 | vmax=self.zmax, |
|
238 | vmax=self.zmax, | |
239 | cmap=self.cmaps[n] |
|
239 | cmap=self.cmaps[n] | |
240 | ) |
|
240 | ) | |
241 | else: |
|
241 | else: | |
242 | if self.zlimits is not None: |
|
242 | if self.zlimits is not None: | |
243 | self.zmin, self.zmax = self.zlimits[n] |
|
243 | self.zmin, self.zmax = self.zlimits[n] | |
244 | ax.plt.remove() |
|
244 | ax.plt.remove() | |
245 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
245 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
246 | vmin=self.zmin, |
|
246 | vmin=self.zmin, | |
247 | vmax=self.zmax, |
|
247 | vmax=self.zmax, | |
248 | cmap=self.cmaps[n] |
|
248 | cmap=self.cmaps[n] | |
249 | ) |
|
249 | ) | |
250 |
|
250 | |||
251 |
|
251 | |||
252 | class PolarMapPlot(Plot): |
|
252 | class PolarMapPlot(Plot): | |
253 | ''' |
|
253 | ''' | |
254 | Plot for weather radar |
|
254 | Plot for weather radar | |
255 | ''' |
|
255 | ''' | |
256 |
|
256 | |||
257 | CODE = 'param' |
|
257 | CODE = 'param' | |
258 | colormap = 'seismic' |
|
258 | colormap = 'seismic' | |
259 |
|
259 | |||
260 | def setup(self): |
|
260 | def setup(self): | |
261 | self.ncols = 1 |
|
261 | self.ncols = 1 | |
262 | self.nrows = 1 |
|
262 | self.nrows = 1 | |
263 | self.width = 9 |
|
263 | self.width = 9 | |
264 | self.height = 8 |
|
264 | self.height = 8 | |
265 | self.mode = self.data.meta['mode'] |
|
265 | self.mode = self.data.meta['mode'] | |
266 | if self.channels is not None: |
|
266 | if self.channels is not None: | |
267 | self.nplots = len(self.channels) |
|
267 | self.nplots = len(self.channels) | |
268 | self.nrows = len(self.channels) |
|
268 | self.nrows = len(self.channels) | |
269 | else: |
|
269 | else: | |
270 | self.nplots = self.data.shape(self.CODE)[0] |
|
270 | self.nplots = self.data.shape(self.CODE)[0] | |
271 | self.nrows = self.nplots |
|
271 | self.nrows = self.nplots | |
272 | self.channels = list(range(self.nplots)) |
|
272 | self.channels = list(range(self.nplots)) | |
273 | if self.mode == 'E': |
|
273 | if self.mode == 'E': | |
274 | self.xlabel = 'Longitude' |
|
274 | self.xlabel = 'Longitude' | |
275 | self.ylabel = 'Latitude' |
|
275 | self.ylabel = 'Latitude' | |
276 | else: |
|
276 | else: | |
277 | self.xlabel = 'Range (km)' |
|
277 | self.xlabel = 'Range (km)' | |
278 | self.ylabel = 'Height (km)' |
|
278 | self.ylabel = 'Height (km)' | |
279 | self.bgcolor = 'white' |
|
279 | self.bgcolor = 'white' | |
280 | self.cb_labels = self.data.meta['units'] |
|
280 | self.cb_labels = self.data.meta['units'] | |
281 | self.lat = self.data.meta['latitude'] |
|
281 | self.lat = self.data.meta['latitude'] | |
282 | self.lon = self.data.meta['longitude'] |
|
282 | self.lon = self.data.meta['longitude'] | |
283 | self.xmin, self.xmax = float( |
|
283 | self.xmin, self.xmax = float( | |
284 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
284 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | |
285 | self.ymin, self.ymax = float( |
|
285 | self.ymin, self.ymax = float( | |
286 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
286 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | |
287 | # self.polar = True |
|
287 | # self.polar = True | |
288 |
|
288 | |||
289 | def plot(self): |
|
289 | def plot(self): | |
290 |
|
290 | |||
291 | for n, ax in enumerate(self.axes): |
|
291 | for n, ax in enumerate(self.axes): | |
292 | data = self.data['param'][self.channels[n]] |
|
292 | data = self.data['param'][self.channels[n]] | |
293 |
|
293 | |||
294 | zeniths = numpy.linspace( |
|
294 | zeniths = numpy.linspace( | |
295 | 0, self.data.meta['max_range'], data.shape[1]) |
|
295 | 0, self.data.meta['max_range'], data.shape[1]) | |
296 | if self.mode == 'E': |
|
296 | if self.mode == 'E': | |
297 | azimuths = -numpy.radians(self.data.yrange) + numpy.pi / 2 |
|
297 | azimuths = -numpy.radians(self.data.yrange) + numpy.pi / 2 | |
298 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
298 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
299 | x, y = r * numpy.cos(theta) * numpy.cos(numpy.radians(self.data.meta['elevation'])), r * numpy.sin( |
|
299 | x, y = r * numpy.cos(theta) * numpy.cos(numpy.radians(self.data.meta['elevation'])), r * numpy.sin( | |
300 | theta) * numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
300 | theta) * numpy.cos(numpy.radians(self.data.meta['elevation'])) | |
301 | x = km2deg(x) + self.lon |
|
301 | x = km2deg(x) + self.lon | |
302 | y = km2deg(y) + self.lat |
|
302 | y = km2deg(y) + self.lat | |
303 | else: |
|
303 | else: | |
304 | azimuths = numpy.radians(self.data.yrange) |
|
304 | azimuths = numpy.radians(self.data.yrange) | |
305 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
305 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
306 | x, y = r * numpy.cos(theta), r * numpy.sin(theta) |
|
306 | x, y = r * numpy.cos(theta), r * numpy.sin(theta) | |
307 | self.y = zeniths |
|
307 | self.y = zeniths | |
308 |
|
308 | |||
309 | if ax.firsttime: |
|
309 | if ax.firsttime: | |
310 | if self.zlimits is not None: |
|
310 | if self.zlimits is not None: | |
311 | self.zmin, self.zmax = self.zlimits[n] |
|
311 | self.zmin, self.zmax = self.zlimits[n] | |
312 | ax.plt = ax.pcolormesh(# r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
312 | ax.plt = ax.pcolormesh(# r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
313 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
313 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
314 | vmin=self.zmin, |
|
314 | vmin=self.zmin, | |
315 | vmax=self.zmax, |
|
315 | vmax=self.zmax, | |
316 | cmap=self.cmaps[n]) |
|
316 | cmap=self.cmaps[n]) | |
317 | else: |
|
317 | else: | |
318 | if self.zlimits is not None: |
|
318 | if self.zlimits is not None: | |
319 | self.zmin, self.zmax = self.zlimits[n] |
|
319 | self.zmin, self.zmax = self.zlimits[n] | |
320 | ax.plt.remove() |
|
320 | ax.plt.remove() | |
321 | ax.plt = ax.pcolormesh(# r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
321 | ax.plt = ax.pcolormesh(# r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
322 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
322 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
323 | vmin=self.zmin, |
|
323 | vmin=self.zmin, | |
324 | vmax=self.zmax, |
|
324 | vmax=self.zmax, | |
325 | cmap=self.cmaps[n]) |
|
325 | cmap=self.cmaps[n]) | |
326 |
|
326 | |||
327 | if self.mode == 'A': |
|
327 | if self.mode == 'A': | |
328 | continue |
|
328 | continue | |
329 |
|
329 | |||
330 | # plot district names |
|
330 | # plot district names | |
331 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
331 | f = open('/data/workspace/schain_scripts/distrito.csv') | |
332 | for line in f: |
|
332 | for line in f: | |
333 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
333 | label, lon, lat = [s.strip() for s in line.split(',') if s] | |
334 | lat = float(lat) |
|
334 | lat = float(lat) | |
335 | lon = float(lon) |
|
335 | lon = float(lon) | |
336 | # ax.plot(lon, lat, '.b', ms=2) |
|
336 | # ax.plot(lon, lat, '.b', ms=2) | |
337 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
337 | ax.text(lon, lat, label.decode('utf8'), ha='center', | |
338 | va='bottom', size='8', color='black') |
|
338 | va='bottom', size='8', color='black') | |
339 |
|
339 | |||
340 | # plot limites |
|
340 | # plot limites | |
341 | limites = [] |
|
341 | limites = [] | |
342 | tmp = [] |
|
342 | tmp = [] | |
343 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
343 | for line in open('/data/workspace/schain_scripts/lima.csv'): | |
344 | if '#' in line: |
|
344 | if '#' in line: | |
345 | if tmp: |
|
345 | if tmp: | |
346 | limites.append(tmp) |
|
346 | limites.append(tmp) | |
347 | tmp = [] |
|
347 | tmp = [] | |
348 | continue |
|
348 | continue | |
349 | values = line.strip().split(',') |
|
349 | values = line.strip().split(',') | |
350 | tmp.append((float(values[0]), float(values[1]))) |
|
350 | tmp.append((float(values[0]), float(values[1]))) | |
351 | for points in limites: |
|
351 | for points in limites: | |
352 | ax.add_patch( |
|
352 | ax.add_patch( | |
353 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
353 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | |
354 |
|
354 | |||
355 | # plot Cuencas |
|
355 | # plot Cuencas | |
356 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
356 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | |
357 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
357 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) | |
358 | values = [line.strip().split(',') for line in f] |
|
358 | values = [line.strip().split(',') for line in f] | |
359 | points = [(float(s[0]), float(s[1])) for s in values] |
|
359 | points = [(float(s[0]), float(s[1])) for s in values] | |
360 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
360 | ax.add_patch(Polygon(points, ec='b', fc='none')) | |
361 |
|
361 | |||
362 | # plot grid |
|
362 | # plot grid | |
363 | for r in (15, 30, 45, 60): |
|
363 | for r in (15, 30, 45, 60): | |
364 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
364 | ax.add_artist(plt.Circle((self.lon, self.lat), | |
365 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
365 | km2deg(r), color='0.6', fill=False, lw=0.2)) | |
366 | ax.text( |
|
366 | ax.text( | |
367 | self.lon + (km2deg(r)) * numpy.cos(60 * numpy.pi / 180), |
|
367 | self.lon + (km2deg(r)) * numpy.cos(60 * numpy.pi / 180), | |
368 | self.lat + (km2deg(r)) * numpy.sin(60 * numpy.pi / 180), |
|
368 | self.lat + (km2deg(r)) * numpy.sin(60 * numpy.pi / 180), | |
369 | '{}km'.format(r), |
|
369 | '{}km'.format(r), | |
370 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
370 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') | |
371 |
|
371 | |||
372 | if self.mode == 'E': |
|
372 | if self.mode == 'E': | |
373 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
373 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | |
374 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
374 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | |
375 | else: |
|
375 | else: | |
376 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
376 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | |
377 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
377 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | |
378 |
|
378 | |||
379 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
379 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
380 | self.titles = ['{} {}'.format( |
|
380 | self.titles = ['{} {}'.format( | |
381 | self.data.parameters[x], title) for x in self.channels] |
|
381 | self.data.parameters[x], title) for x in self.channels] | |
|
382 | ||||
|
383 | class MP150KmRTIPlot(Plot): | |||
|
384 | ''' | |||
|
385 | Plot for data_xxxx object | |||
|
386 | ''' | |||
|
387 | ||||
|
388 | CODE = 'param' | |||
|
389 | colormap = 'viridis' | |||
|
390 | plot_type = 'pcolorbuffer' | |||
|
391 | ||||
|
392 | def setup(self): | |||
|
393 | self.xaxis = 'time' | |||
|
394 | self.ncols = 1 | |||
|
395 | self.nrows = self.data.shape('param')[0] | |||
|
396 | self.nplots = self.nrows | |||
|
397 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) | |||
|
398 | ||||
|
399 | if not self.xlabel: | |||
|
400 | self.xlabel = 'Time' | |||
|
401 | ||||
|
402 | self.ylabel = 'Range [km]' | |||
|
403 | if not self.titles: | |||
|
404 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] | |||
|
405 | ||||
|
406 | def update(self, dataOut): | |||
|
407 | data = { | |||
|
408 | #'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)[0:3,:] # SNL, VERTICAL, ZONAL | |||
|
409 | 'param' : dataOut.data_output[0:3,:] # SNL, VERTICAL, ZONAL | |||
|
410 | } | |||
|
411 | ||||
|
412 | meta = {} | |||
|
413 | ||||
|
414 | return data, meta | |||
|
415 | ||||
|
416 | def plot(self): | |||
|
417 | # self.data.normalize_heights() | |||
|
418 | self.x = self.data.times | |||
|
419 | self.y = self.data.yrange | |||
|
420 | self.z = self.data['param'] | |||
|
421 | ||||
|
422 | ||||
|
423 | self.z = numpy.ma.masked_invalid(self.z) | |||
|
424 | ||||
|
425 | if self.decimation is None: | |||
|
426 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |||
|
427 | else: | |||
|
428 | x, y, z = self.fill_gaps(*self.decimate()) | |||
|
429 | ||||
|
430 | for n, ax in enumerate(self.axes): | |||
|
431 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |||
|
432 | self.z[n]) | |||
|
433 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |||
|
434 | self.z[n]) | |||
|
435 | ||||
|
436 | if ax.firsttime: | |||
|
437 | if self.zlimits is not None: | |||
|
438 | self.zmin, self.zmax = self.zlimits[n] | |||
|
439 | ||||
|
440 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |||
|
441 | vmin=self.zmin, | |||
|
442 | vmax=self.zmax, | |||
|
443 | cmap=self.cmaps[n] | |||
|
444 | ) | |||
|
445 | else: | |||
|
446 | if self.zlimits is not None: | |||
|
447 | self.zmin, self.zmax = self.zlimits[n] | |||
|
448 | ax.plt.remove() | |||
|
449 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |||
|
450 | vmin=self.zmin, | |||
|
451 | vmax=self.zmax, | |||
|
452 | cmap=self.cmaps[n] | |||
|
453 | ) | |||
|
454 | ||||
|
455 | class AverageDriftsPlot_v2(Plot): | |||
|
456 | ''' | |||
|
457 | Plot for average 150 Km echoes | |||
|
458 | ''' | |||
|
459 | ||||
|
460 | CODE = 'average' | |||
|
461 | plot_type = 'scatterbuffer' | |||
|
462 | ||||
|
463 | def setup(self): | |||
|
464 | self.xaxis = 'time' | |||
|
465 | self.ncols = 1 | |||
|
466 | ||||
|
467 | self.nplots = 2 | |||
|
468 | self.nrows = 2 | |||
|
469 | ||||
|
470 | self.ylabel = 'Velocity\nm/s' | |||
|
471 | self.xlabel = 'Local time' | |||
|
472 | #self.titles = ['VERTICAL VELOCITY: AVERAGE AND ERRORS', 'ZONAL VELOCITY: AVERAGE AND ERRORS'] | |||
|
473 | self.titles = ['VERTICAL VELOCITY: AVERAGE', 'ZONAL VELOCITY: AVERAGE'] | |||
|
474 | ||||
|
475 | self.colorbar = False | |||
|
476 | self.plots_adjust.update({'hspace':0.5, 'left': 0.1, 'bottom': 0.1, 'right':0.95, 'top': 0.95 }) | |||
|
477 | ||||
|
478 | ||||
|
479 | def update(self, dataOut): | |||
|
480 | ||||
|
481 | data = {} | |||
|
482 | meta = {} | |||
|
483 | ||||
|
484 | #data['average']= numpy.nanmean(dataOut.data_output[1:3,:], axis=1) # VERTICAL, ZONAL | |||
|
485 | data['average']= numpy.nanmean(dataOut.data_output[1:3,:], axis=1) # VERTICAL, ZONAL | |||
|
486 | data['error']= numpy.nanmean(dataOut.data_output[3:,:], axis=1) # ERROR VERTICAL, ERROR ZONAL | |||
|
487 | meta['yrange'] = numpy.array([]) | |||
|
488 | ||||
|
489 | return data, meta | |||
|
490 | ||||
|
491 | def plot(self): | |||
|
492 | ||||
|
493 | self.x = self.data.times | |||
|
494 | #self.xmin = self.data.min_time | |||
|
495 | #self.xmax = self.xmin + self.xrange * 60 * 60 | |||
|
496 | self.y = self.data['average'] | |||
|
497 | print('self.y:', self.y.shape) | |||
|
498 | self.y_error = self.data['error'] | |||
|
499 | print('self.y_error:', self.y_error.shape) | |||
|
500 | ||||
|
501 | for n, ax in enumerate(self.axes): | |||
|
502 | if ax.firsttime: | |||
|
503 | self.ymin = self.ymin if self.ymin is not None else -50 | |||
|
504 | self.ymax = self.ymax if self.ymax is not None else 50 | |||
|
505 | self.axes[n].plot(self.x, self.y[n], c='r', ls=':', lw=1) | |||
|
506 | else: | |||
|
507 | self.axes[n].lines[0].set_data(self.x, self.y[n]) | |||
|
508 | ''' | |||
|
509 | for n, ax in enumerate(self.axes): | |||
|
510 | ||||
|
511 | if ax.firsttime: | |||
|
512 | self.ymin = self.ymin if self.ymin is not None else -50 | |||
|
513 | self.ymax = self.ymax if self.ymax is not None else 50 | |||
|
514 | ax.scatter(self.x, self.y[n], c='g', s=0.8) | |||
|
515 | #ax.errorbar(self.x, self.y[n], yerr = self.y_error[n,:], ecolor='r', elinewidth=0.2, fmt='|') | |||
|
516 | else: | |||
|
517 | ax.scatter(self.x, self.y[n], c='g', s=0.8) | |||
|
518 | #ax.errorbar(self.x, self.y[n], yerr = self.y_error[n,:], ecolor='r', elinewidth=0.2, fmt='|') | |||
|
519 | ''' | |||
|
520 | class AverageDriftsPlot_bck(Plot): | |||
|
521 | ''' | |||
|
522 | Plot for average 150 Km echoes | |||
|
523 | ''' | |||
|
524 | CODE = 'average' | |||
|
525 | plot_type = 'scatterbuffer' | |||
|
526 | ||||
|
527 | def setup(self): | |||
|
528 | self.xaxis = 'time' | |||
|
529 | self.ncols = 1 | |||
|
530 | self.nplots = 2 | |||
|
531 | self.nrows = 2 | |||
|
532 | self.ylabel = 'Velocity\nm/s' | |||
|
533 | self.xlabel = 'Time' | |||
|
534 | self.titles = ['VERTICAL VELOCITY: AVERAGE', 'ZONAL VELOCITY: AVERAGE'] | |||
|
535 | self.colorbar = False | |||
|
536 | self.plots_adjust.update({'hspace':0.5, 'left': 0.1, 'bottom': 0.1, 'right':0.95, 'top': 0.95 }) | |||
|
537 | ||||
|
538 | ||||
|
539 | ||||
|
540 | def update(self, dataOut): | |||
|
541 | ||||
|
542 | data = {} | |||
|
543 | meta = {} | |||
|
544 | data['average']= numpy.nanmean(dataOut.data_output[1:3,:], axis=1) # VERTICAL, ZONAL | |||
|
545 | meta['yrange'] = numpy.array([]) | |||
|
546 | ||||
|
547 | return data, meta | |||
|
548 | ||||
|
549 | def plot(self): | |||
|
550 | ||||
|
551 | self.x = self.data.times | |||
|
552 | self.y = self.data['average'] | |||
|
553 | ||||
|
554 | for n, ax in enumerate(self.axes): | |||
|
555 | if ax.firsttime: | |||
|
556 | ||||
|
557 | if self.zlimits is not None: | |||
|
558 | self.axes[n].set_ylim(self.zlimits[n]) | |||
|
559 | self.axes[n].plot(self.x, self.y[n], c='r', ls='-', lw=1) | |||
|
560 | else: | |||
|
561 | ||||
|
562 | if self.zlimits is not None: | |||
|
563 | ax.set_ylim((self.zlimits[n])) | |||
|
564 | self.axes[n].lines[0].set_data(self.x, self.y[n]) | |||
|
565 | ||||
|
566 | class AverageDriftsPlot(Plot): | |||
|
567 | ''' | |||
|
568 | Plot for average 150 Km echoes | |||
|
569 | ''' | |||
|
570 | CODE = 'average' | |||
|
571 | plot_type = 'scatterbuffer' | |||
|
572 | ||||
|
573 | def setup(self): | |||
|
574 | self.xaxis = 'time' | |||
|
575 | self.ncols = 1 | |||
|
576 | self.nplots = 2 | |||
|
577 | self.nrows = 2 | |||
|
578 | self.ylabel = 'Velocity\nm/s' | |||
|
579 | self.xlabel = 'Time' | |||
|
580 | self.titles = ['VERTICAL VELOCITY: AVERAGE', 'ZONAL VELOCITY: AVERAGE'] | |||
|
581 | self.colorbar = False | |||
|
582 | self.plots_adjust.update({'hspace':0.5, 'left': 0.1, 'bottom': 0.1, 'right':0.95, 'top': 0.95 }) | |||
|
583 | ||||
|
584 | ||||
|
585 | ||||
|
586 | def update(self, dataOut): | |||
|
587 | ||||
|
588 | data = {} | |||
|
589 | meta = {} | |||
|
590 | data['average']= dataOut.avg_output[0:2] # VERTICAL, ZONAL velocities | |||
|
591 | meta['yrange'] = numpy.array([]) | |||
|
592 | ||||
|
593 | return data, meta | |||
|
594 | ||||
|
595 | def plot(self): | |||
|
596 | ||||
|
597 | self.x = self.data.times | |||
|
598 | self.y = self.data['average'] | |||
|
599 | ||||
|
600 | for n, ax in enumerate(self.axes): | |||
|
601 | ||||
|
602 | if ax.firsttime: | |||
|
603 | ||||
|
604 | if self.zlimits is not None: | |||
|
605 | ax.set_ylim((self.zlimits[n])) | |||
|
606 | self.axes[n].plot(self.x, self.y[n], c='r', ls='-', lw=1) | |||
|
607 | else: | |||
|
608 | ||||
|
609 | if self.zlimits is not None: | |||
|
610 | ax.set_ylim((self.zlimits[n])) | |||
|
611 | self.axes[n].lines[0].set_data(self.x, self.y[n]) | |||
|
612 |
General Comments 0
You need to be logged in to leave comments.
Login now