diff --git a/schainpy/model/graphics/jroplot_base.py b/schainpy/model/graphics/jroplot_base.py index 7a0762b..a968f72 100644 --- a/schainpy/model/graphics/jroplot_base.py +++ b/schainpy/model/graphics/jroplot_base.py @@ -251,7 +251,7 @@ class Plot(Operation): self.ang_min = kwargs.get('ang_min', None) self.ang_max = kwargs.get('ang_max', None) self.mode = kwargs.get('mode', None) - self.snr_threshold = kwargs.get('snr_threshold', 0) + self.mask = kwargs.get('mask', False) if self.server: diff --git a/schainpy/model/graphics/jroplot_parameters.py b/schainpy/model/graphics/jroplot_parameters.py index b8132c7..b9be431 100644 --- a/schainpy/model/graphics/jroplot_parameters.py +++ b/schainpy/model/graphics/jroplot_parameters.py @@ -426,14 +426,15 @@ class WeatherParamsPlot(Plot): else: factor = 1 - mask = dataOut.data_param[:,3,:] < self.snr_threshold - - if 'S' in self.attr_data[0]: - # data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor)) - tmp = numpy.ma.masked_array(10*numpy.log10(10.0*getattr(dataOut, 'data_param')[:,0,:]/(factor)), mask=mask) + if 'S' in self.attr_data[0]: + tmp = 10*numpy.log10(10.0*getattr(dataOut, 'data_param')[:,0,:]/(factor)) else: - tmp = numpy.ma.masked_array(getattr(dataOut, 'data_param')[:,vars[self.attr_data[0]],:], mask=mask) - # tmp = getattr(dataOut, self.attr_data[0]) + tmp = getattr(dataOut, 'data_param')[:,vars[self.attr_data[0]],:] + + + if self.mask: + mask = dataOut.data_param[:,3,:] < self.mask + tmp = numpy.ma.masked_array(tmp, mask=mask) r = dataOut.heightList delta_height = r[1]-r[0] @@ -458,9 +459,14 @@ class WeatherParamsPlot(Plot): var = data['data'].flatten() r = numpy.tile(data['r'], data['data'].shape[0]).reshape(data['data'].shape)*1000 lla = georef.spherical_to_proj(r, data['azi'], data['ele'], (-75.295893, -12.040436, 3379.2147)) - meta['lat'] = lla[:,:,1].flatten()[var.mask==False] - meta['lon'] = lla[:,:,0].flatten()[var.mask==False] - data['var'] = numpy.array([var[var.mask==False]]) + if self.mask: + meta['lat'] = lla[:,:,1].flatten()[var.mask==False] + meta['lon'] = lla[:,:,0].flatten()[var.mask==False] + data['var'] = numpy.array([var[var.mask==False]]) + else: + meta['lat'] = lla[:,:,1].flatten() + meta['lon'] = lla[:,:,0].flatten() + data['var'] = numpy.array([var]) return data, meta