diff --git a/schainpy/scripts/sophy_proc_rev006.py b/schainpy/scripts/sophy_proc_rev006.py index 51b355e..fe5540c 100644 --- a/schainpy/scripts/sophy_proc_rev006.py +++ b/schainpy/scripts/sophy_proc_rev006.py @@ -17,6 +17,8 @@ for name, cb_table in sophy_cb_tables: ncmap = matplotlib.colors.ListedColormap(cb_table, name=name) matplotlib.pyplot.register_cmap(cmap=ncmap) #LINUX bash: export WRADLIB_DATA=/path/to/wradlib-data +#example +#export WRADLIB_DATA="/home/soporte/Documents/EVENTO/HYO_PM@2022-06-09T15-05-12/paramC0N36.0/2022-06-09T18-00-00/" warnings.filterwarnings('ignore') PARAM = { 'S': {'var': 'power','vmin': -45, 'vmax': -15, 'cmap': 'jet', 'label': 'Power','unit': 'dBm'}, @@ -91,6 +93,22 @@ class Readsophy(): new_h = heightList[minIndex:maxIndex] return new_h + def readAttributes(self,obj,variable): + var = PARAM[variable]['var'] + unit = PARAM[variable]['unit'] + cmap = PARAM[variable]['cmap'] + vmin = PARAM[variable]['vmin'] + vmax = PARAM[variable]['vmax'] + label = PARAM[variable]['label'] + var_ = 'Data/'+var+'/H' + data_arr = numpy.array(obj[var_]['data']) # data + utc_time = numpy.array(obj['Data/time']['data']) + data_azi = numpy.array(obj['Metadata/azimuth']['data']) # th + data_ele = numpy.array(obj["Metadata/elevation"]['data']) + heightList = numpy.array(obj["Metadata/range"]['data']) # r + + return data_arr, utc_time, data_azi,data_ele, heightList,unit,cmap,vmin,vmax,label + def run(self): count= 0 len_files = len(self.list_file) @@ -101,24 +119,14 @@ class Readsophy(): filename = get_wradlib_data_file(fullpathfile) test_hdf5 = read_generic_hdf5(filename) - var = PARAM[self.variable]['var'] - unit = PARAM[self.variable]['unit'] - cmap = PARAM[self.variable]['cmap'] - vmin = PARAM[self.variable]['vmin'] - vmax = PARAM[self.variable]['vmax'] - label = PARAM[self.variable]['label'] - var_ = 'Data/'+var+'/H' - data_arr = numpy.array(test_hdf5[var_]['data']) # data - utc_time = numpy.array(test_hdf5['Data/time']['data']) - data_azi = numpy.array(test_hdf5['Metadata/azimuth']['data']) # th - data_ele = numpy.array(test_hdf5["Metadata/elevation"]['data']) - heightList = numpy.array(test_hdf5["Metadata/range"]['data']) # r + # LECTURA + data_arr, utc_time, data_azi,data_ele, heightList,unit,cmap,vmin,vmax,label = self.readAttributes(obj= test_hdf5,variable=self.variable) if self.range==0: self.range == heightList[-1] new_heightList,minIndex,maxIndex = self.selectHeights(heightList,0.06,self.range) - + # TIEMPO my_time = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(utc_time[0])) time_save = time.strftime('%Y%m%d_%H%M%S',time.localtime(utc_time[0]))