diff --git a/schainpy/model/io/jroIO_param.py b/schainpy/model/io/jroIO_param.py index bc4f63f..7c0e4ab 100644 --- a/schainpy/model/io/jroIO_param.py +++ b/schainpy/model/io/jroIO_param.py @@ -440,7 +440,7 @@ class HDFWriter(Operation): if dataAux is None: continue - elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): + elif isinstance(dataAux, (int, float, numpy.integer, numpy.float_)): dsDict['nDim'] = 0 else: dsDict['nDim'] = len(dataAux.shape) diff --git a/schainpy/model/proc/jroproc_parameters.py b/schainpy/model/proc/jroproc_parameters.py index 754be2e..a8c9476 100644 --- a/schainpy/model/proc/jroproc_parameters.py +++ b/schainpy/model/proc/jroproc_parameters.py @@ -4079,11 +4079,11 @@ class WeatherRadar(Operation): for i in range(len(self.variableList)): if self.variableList[i] == 'Z': - dataOut.data_param[:,4,:] =self.getReflectividad_D(dataOut=dataOut,type='N') + dataOut.data_param[:,4,:] = self.getReflectividad_D(dataOut=dataOut,type='N') if self.variableList[i] == 'D' and dataOut.nChannels>1: - dataOut.data_param[:,5,:] =self.getReflectividad_D(dataOut=dataOut,type='D') + dataOut.data_param[:,5,:] = self.getReflectividad_D(dataOut=dataOut,type='D') if self.variableList[i] == 'P' and dataOut.nChannels>1: - dataOut.data_param[:,6,:] =self.getFasediferencialPhiD_P(dataOut=dataOut, phase=True) + dataOut.data_param[:,6,:] = self.getFasediferencialPhiD_P(dataOut=dataOut, phase=True) if self.variableList[i] == 'R' and dataOut.nChannels>1: dataOut.data_param[:,7,:] = self.getCoeficienteCorrelacionROhv_R(dataOut) @@ -4422,7 +4422,7 @@ class MergeProc(ProcessingUnit): def __init__(self): ProcessingUnit.__init__(self) - def run(self, attr_data, mode=0): + def run(self, attr_data, mode=0, index=0): #exit(1) self.dataOut = getattr(self, self.inputs[0]) @@ -4473,30 +4473,25 @@ class MergeProc(ProcessingUnit): self.dataOut.NSCAN = 128 #print(numpy.shape(self.dataOut.data_spc)) - #exit(1) - if mode==2: #HAE 2022 data = numpy.sum([getattr(data, attr_data) for data in data_inputs],axis=0) setattr(self.dataOut, attr_data, data) self.dataOut.nIncohInt *= 2 - #meta = self.dataOut.getFreqRange(1)/1000. self.dataOut.freqRange = self.dataOut.getFreqRange(1)/1000. - #exit(1) - if mode==7: #RM - f = [getattr(data, attr_data) for data in data_inputs][0] - g = [getattr(data, attr_data) for data in data_inputs][1] - data = numpy.concatenate((f,g),axis=3) + f = [getattr(data, attr_data) for data in data_inputs][0][:,:,:,0:index] + g = [getattr(data, attr_data) for data in data_inputs][1][:,:,:,index:] + data = numpy.concatenate((f,g), axis=3) setattr(self.dataOut, attr_data, data) # snr # self.dataOut.data_snr = numpy.concatenate((data_inputs[0].data_snr, data_inputs[1].data_snr), axis=2) # ranges - dh = self.dataOut.heightList[1]-self.dataOut.heightList[0] - heightList_2 = (self.dataOut.heightList[-1]+dh) + numpy.arange(g.shape[-1], dtype=numpy.float) * dh + # dh = self.dataOut.heightList[1]-self.dataOut.heightList[0] + # heightList_2 = (self.dataOut.heightList[-1]+dh) + numpy.arange(g.shape[-1], dtype=numpy.float) * dh - self.dataOut.heightList = numpy.concatenate((self.dataOut.heightList,heightList_2)) + # self.dataOut.heightList = numpy.concatenate((self.dataOut.heightList,heightList_2))