diff --git a/schainpy/model/proc/jroproc_parameters.py b/schainpy/model/proc/jroproc_parameters.py index 15531d4..92306b7 100755 --- a/schainpy/model/proc/jroproc_parameters.py +++ b/schainpy/model/proc/jroproc_parameters.py @@ -3392,6 +3392,7 @@ class SpectralFitting(Operation): incoh_aver[pair[1],incoh_echoes]=1 return my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver + def __CleanCoherent(self,snrth, spectra, cspectra, coh_aver,dataOut, noise,clean_coh_echoes,index): nProf = dataOut.nProfiles @@ -3718,14 +3719,6 @@ class SpectralFitting(Operation): dataOut.clean_num_aver = clean_num_aver dataOut.coh_num_aver = coh_num_aver - #List of possible combinations - #listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) - #indCross = numpy.zeros(len(list(listComb)), dtype = 'int') - #if getSNR: - # listChannels = groupArray.reshape((groupArray.size)) - # listChannels.sort() - # print("AQUI ESTOY") - # dataOut.data_SNR = self.__getSNR(dataOut.data_spc[listChannels,:,:], noise[listChannels]) else: clean_num_aver = dataOut.clean_num_aver coh_num_aver = dataOut.coh_num_aver @@ -3940,13 +3933,12 @@ class SpectralFitting(Operation): dataOut.spc_noise = my_noises*self.nProf*self.M if numpy.any(proc): dataOut.spc_noise = my_noises*self.nProf*self.M if getSNR: - print("self.groupArray",self.groupArray.size,self.groupArray) listChannels = self.groupArray.reshape((self.groupArray.size)) listChannels.sort() # TEST noise_C = numpy.zeros(self.nChannels) noise_C = dataOut.getNoise() - print("noise_C",noise_C) + #print("noise_C",noise_C) dataOut.data_snr = self.__getSNR(dataOut.data_spc[listChannels,:,:],noise_C/(600.0*1.15))# PRUEBA *nProf*M #dataOut.data_snr = self.__getSNR(dataOut.data_spc[listChannels,:,:], noise_C[listChannels])# PRUEBA *nProf*M dataOut.flagNoData = False @@ -3962,11 +3954,6 @@ class SpectralFitting(Operation): avg = numpy.average(z, axis=1) SNR = (avg.T-noise)/noise - print("------------------------------------------------------") - print("T - Noise", noise.shape) - print("T - Noise", 10*numpy.log10(noise[0])) - print("T - avg.T" , avg.T.shape) - print("T - avg.T" , 10*numpy.log10(avg.T[:,0])) SNR = SNR.T return SNR @@ -4736,7 +4723,7 @@ class EWDriftsEstimation(Operation): dataOut.data_output = winds #snr1 = 10*numpy.log10(SNR1[0])# estaba comentado dataOut.data_snr1 = numpy.reshape(snr1,(1,snr1.shape[0])) - print("data_snr1",dataOut.data_snr1) + #print("data_snr1",dataOut.data_snr1) dataOut.utctimeInit = dataOut.utctime dataOut.outputInterval = dataOut.timeInterval