diff --git a/schainpy/model/proc/jroproc_parameters.py b/schainpy/model/proc/jroproc_parameters.py index acc2205..07b9ae6 100755 --- a/schainpy/model/proc/jroproc_parameters.py +++ b/schainpy/model/proc/jroproc_parameters.py @@ -23,6 +23,7 @@ import warnings from numpy import NaN from scipy.optimize.optimize import OptimizeWarning warnings.filterwarnings('ignore') +import pdb SPEED_OF_LIGHT = 299792458 @@ -2732,7 +2733,6 @@ class SpectralFitting(Operation): dataOut.nIncohInt= int(dataOut.nIncohInt) dataOut.nProfiles = int(dataOut.nProfiles) dataOut.nCohInt = int(dataOut.nCohInt) - print('sale',dataOut.nProfiles,dataOut.nHeights) #dataOut.nFFTPoints=nprofs #dataOut.normFactor = nprofs dataOut.channelList = channelList @@ -2741,8 +2741,6 @@ class SpectralFitting(Operation): vmax = (300000000/49920000.0/2) / (dataOut.ippSeconds) #dataOut.ippSeconds=ipp absc = vmax*( numpy.arange(nProf,dtype='float')-nProf/2.)/nProf - print('sale 2',dataOut.ippSeconds,M,N) - print('Empieza procesamiento offline') if path != None: sys.path.append(path) self.library = importlib.import_module(file) @@ -2786,6 +2784,7 @@ class SpectralFitting(Operation): jvelr = numpy.zeros(nHeights, dtype = 'float') hvalid = [0] coh2 = abs(dataOut.data_cspc[i,1:nProf,:])**2/(dataOut.data_spc[0+i*2,1:nProf-0,:]*dataOut.data_spc[1+i*2,1:nProf-0,:]) + for h in range(nHeights): smooth = clean_num_aver[i+1,h] signalpn0 = (dataOut.data_spc[i*2,1:(nProf-0),h])/smooth @@ -2821,7 +2820,7 @@ class SpectralFitting(Operation): snr0 = numpy.sum(signal0/n0)/(nProf-1) snr1 = numpy.sum(signal1/n1)/(nProf-1) if snr0 > snrth and snr1 > snrth and clean_num_aver[i+1,h] > 0 : - #Covariance Matrix + #Covariance Matrix D = numpy.diag(d**2) ind = 0 for pairs in listComb: @@ -2846,27 +2845,23 @@ class SpectralFitting(Operation): LT=L.T dp = numpy.dot(LT,d) - #Initial values + #Initial values data_spc = dataOut.data_spc[coord,:,h] w = data_spc/data_spc if filec != None: w = self.weightf.weightfit(w,tini.tm_year,tini.tm_yday,index,h,i) if (h>6)and(error1[3]<25): - p0 = dataOut.data_param[i,:,h-1] + p0 = dataOut.data_param[i,:,h-1].copy() else: p0 = numpy.array(self.library.initialValuesFunction(data_spc*w, constants))# sin el i(data_spc, constants, i) - #print("AQUI REEMPLAZAS CON EL fd0",fd0) p0[3] = fd0 + if filec != None: p0 = self.weightf.Vrfit(p0,tini.tm_year,tini.tm_yday,index,h,i) - #print("minP0-ANTES DE OPTIMIZE") - #print(p0) try: #Least Squares minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) - print("VERIFICAR SI ESTA VARIANDO minp--------------------------------", minp[3]) - print("COMPARACION ---- p0[3],fd0",p0[3],fd0) #minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) #Chi square error error0 = numpy.sum(infodict['fvec']**2)/(2*N) @@ -2882,13 +2877,13 @@ class SpectralFitting(Operation): p0 = numpy.array(self.library.initialValuesFunction(data_spc, constants)) minp = p0*numpy.nan error0 = numpy.nan - error1 = p0*numpy.nan + error1 = p0*numpy.nan if dataOut.data_param is None: dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan - print("CLASE SF minp- ?????",minp) dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) dataOut.data_param[i,:,h] = minp + for ht in range(nHeights-1) : smooth = coh_num_aver[i+1,ht] #datc[0,ht,0,beam] dataOut.data_paramC[4*i,ht,1] = smooth @@ -2927,7 +2922,6 @@ class SpectralFitting(Operation): mom1 = self.moments(doppler,signalpn1_n1,nProf) dataOut.data_paramC[2+4*i,ht,0] = (mom0[0]+mom1[0])/2. dataOut.data_paramC[3+4*i,ht,0] = (mom0[1]+mom1[1])/2. - dataOut.data_spc = jspectra dataOut.spc_noise = my_noises*nProf*M if numpy.any(proc): dataOut.spc_noise = my_noises*nProf*M @@ -3654,7 +3648,6 @@ class EWDriftsEstimation(Operation): else : moments=numpy.vstack(([velRadialm[0,:]],[velRadialm[0,:]])) dataOut.moments=moments - print("CLASE EWD Estimation",moments) # Coherent smooth_wC = ebufc[0,:] p_w0C = rbufc[0,:]