qcheb.f
160 lines
| 5.1 KiB
| text/x-fortran
|
FortranFixedLexer
r1601 | *DECK QCHEB | |||
SUBROUTINE QCHEB (X, FVAL, CHEB12, CHEB24) | ||||
C***BEGIN PROLOGUE QCHEB | ||||
C***SUBSIDIARY | ||||
C***PURPOSE This routine computes the CHEBYSHEV series expansion | ||||
C of degrees 12 and 24 of a function using A | ||||
C FAST FOURIER TRANSFORM METHOD | ||||
C F(X) = SUM(K=1,..,13) (CHEB12(K)*T(K-1,X)), | ||||
C F(X) = SUM(K=1,..,25) (CHEB24(K)*T(K-1,X)), | ||||
C Where T(K,X) is the CHEBYSHEV POLYNOMIAL OF DEGREE K. | ||||
C***LIBRARY SLATEC | ||||
C***TYPE SINGLE PRECISION (QCHEB-S, DQCHEB-D) | ||||
C***KEYWORDS CHEBYSHEV SERIES EXPANSION, FAST FOURIER TRANSFORM | ||||
C***AUTHOR Piessens, Robert | ||||
C Applied Mathematics and Programming Division | ||||
C K. U. Leuven | ||||
C de Doncker, Elise | ||||
C Applied Mathematics and Programming Division | ||||
C K. U. Leuven | ||||
C***DESCRIPTION | ||||
C | ||||
C Chebyshev Series Expansion | ||||
C Standard Fortran Subroutine | ||||
C Real version | ||||
C | ||||
C PARAMETERS | ||||
C ON ENTRY | ||||
C X - Real | ||||
C Vector of dimension 11 containing the | ||||
C Values COS(K*PI/24), K = 1, ..., 11 | ||||
C | ||||
C FVAL - Real | ||||
C Vector of dimension 25 containing the | ||||
C function values at the points | ||||
C (B+A+(B-A)*COS(K*PI/24))/2, K = 0, ...,24, | ||||
C where (A,B) is the approximation interval. | ||||
C FVAL(1) and FVAL(25) are divided by two | ||||
C (these values are destroyed at output). | ||||
C | ||||
C ON RETURN | ||||
C CHEB12 - Real | ||||
C Vector of dimension 13 containing the | ||||
C CHEBYSHEV coefficients for degree 12 | ||||
C | ||||
C CHEB24 - Real | ||||
C Vector of dimension 25 containing the | ||||
C CHEBYSHEV Coefficients for degree 24 | ||||
C | ||||
C***SEE ALSO QC25C, QC25F, QC25S | ||||
C***ROUTINES CALLED (NONE) | ||||
C***REVISION HISTORY (YYMMDD) | ||||
C 810101 DATE WRITTEN | ||||
C 830518 REVISION DATE from Version 3.2 | ||||
C 891214 Prologue converted to Version 4.0 format. (BAB) | ||||
C 900328 Added TYPE section. (WRB) | ||||
C***END PROLOGUE QCHEB | ||||
C | ||||
REAL ALAM,ALAM1,ALAM2,CHEB12,CHEB24, | ||||
1 FVAL,PART1,PART2,PART3,V,X | ||||
INTEGER I,J | ||||
C | ||||
DIMENSION CHEB12(13),CHEB24(25),FVAL(25),V(12),X(11) | ||||
C | ||||
C***FIRST EXECUTABLE STATEMENT QCHEB | ||||
DO 10 I=1,12 | ||||
J = 26-I | ||||
V(I) = FVAL(I)-FVAL(J) | ||||
FVAL(I) = FVAL(I)+FVAL(J) | ||||
10 CONTINUE | ||||
ALAM1 = V(1)-V(9) | ||||
ALAM2 = X(6)*(V(3)-V(7)-V(11)) | ||||
CHEB12(4) = ALAM1+ALAM2 | ||||
CHEB12(10) = ALAM1-ALAM2 | ||||
ALAM1 = V(2)-V(8)-V(10) | ||||
ALAM2 = V(4)-V(6)-V(12) | ||||
ALAM = X(3)*ALAM1+X(9)*ALAM2 | ||||
CHEB24(4) = CHEB12(4)+ALAM | ||||
CHEB24(22) = CHEB12(4)-ALAM | ||||
ALAM = X(9)*ALAM1-X(3)*ALAM2 | ||||
CHEB24(10) = CHEB12(10)+ALAM | ||||
CHEB24(16) = CHEB12(10)-ALAM | ||||
PART1 = X(4)*V(5) | ||||
PART2 = X(8)*V(9) | ||||
PART3 = X(6)*V(7) | ||||
ALAM1 = V(1)+PART1+PART2 | ||||
ALAM2 = X(2)*V(3)+PART3+X(10)*V(11) | ||||
CHEB12(2) = ALAM1+ALAM2 | ||||
CHEB12(12) = ALAM1-ALAM2 | ||||
ALAM = X(1)*V(2)+X(3)*V(4)+X(5)*V(6)+X(7)*V(8) | ||||
1 +X(9)*V(10)+X(11)*V(12) | ||||
CHEB24(2) = CHEB12(2)+ALAM | ||||
CHEB24(24) = CHEB12(2)-ALAM | ||||
ALAM = X(11)*V(2)-X(9)*V(4)+X(7)*V(6)-X(5)*V(8) | ||||
1 +X(3)*V(10)-X(1)*V(12) | ||||
CHEB24(12) = CHEB12(12)+ALAM | ||||
CHEB24(14) = CHEB12(12)-ALAM | ||||
ALAM1 = V(1)-PART1+PART2 | ||||
ALAM2 = X(10)*V(3)-PART3+X(2)*V(11) | ||||
CHEB12(6) = ALAM1+ALAM2 | ||||
CHEB12(8) = ALAM1-ALAM2 | ||||
ALAM = X(5)*V(2)-X(9)*V(4)-X(1)*V(6) | ||||
1 -X(11)*V(8)+X(3)*V(10)+X(7)*V(12) | ||||
CHEB24(6) = CHEB12(6)+ALAM | ||||
CHEB24(20) = CHEB12(6)-ALAM | ||||
ALAM = X(7)*V(2)-X(3)*V(4)-X(11)*V(6)+X(1)*V(8) | ||||
1 -X(9)*V(10)-X(5)*V(12) | ||||
CHEB24(8) = CHEB12(8)+ALAM | ||||
CHEB24(18) = CHEB12(8)-ALAM | ||||
DO 20 I=1,6 | ||||
J = 14-I | ||||
V(I) = FVAL(I)-FVAL(J) | ||||
FVAL(I) = FVAL(I)+FVAL(J) | ||||
20 CONTINUE | ||||
ALAM1 = V(1)+X(8)*V(5) | ||||
ALAM2 = X(4)*V(3) | ||||
CHEB12(3) = ALAM1+ALAM2 | ||||
CHEB12(11) = ALAM1-ALAM2 | ||||
CHEB12(7) = V(1)-V(5) | ||||
ALAM = X(2)*V(2)+X(6)*V(4)+X(10)*V(6) | ||||
CHEB24(3) = CHEB12(3)+ALAM | ||||
CHEB24(23) = CHEB12(3)-ALAM | ||||
ALAM = X(6)*(V(2)-V(4)-V(6)) | ||||
CHEB24(7) = CHEB12(7)+ALAM | ||||
CHEB24(19) = CHEB12(7)-ALAM | ||||
ALAM = X(10)*V(2)-X(6)*V(4)+X(2)*V(6) | ||||
CHEB24(11) = CHEB12(11)+ALAM | ||||
CHEB24(15) = CHEB12(11)-ALAM | ||||
DO 30 I=1,3 | ||||
J = 8-I | ||||
V(I) = FVAL(I)-FVAL(J) | ||||
FVAL(I) = FVAL(I)+FVAL(J) | ||||
30 CONTINUE | ||||
CHEB12(5) = V(1)+X(8)*V(3) | ||||
CHEB12(9) = FVAL(1)-X(8)*FVAL(3) | ||||
ALAM = X(4)*V(2) | ||||
CHEB24(5) = CHEB12(5)+ALAM | ||||
CHEB24(21) = CHEB12(5)-ALAM | ||||
ALAM = X(8)*FVAL(2)-FVAL(4) | ||||
CHEB24(9) = CHEB12(9)+ALAM | ||||
CHEB24(17) = CHEB12(9)-ALAM | ||||
CHEB12(1) = FVAL(1)+FVAL(3) | ||||
ALAM = FVAL(2)+FVAL(4) | ||||
CHEB24(1) = CHEB12(1)+ALAM | ||||
CHEB24(25) = CHEB12(1)-ALAM | ||||
CHEB12(13) = V(1)-V(3) | ||||
CHEB24(13) = CHEB12(13) | ||||
ALAM = 0.1E+01/0.6E+01 | ||||
DO 40 I=2,12 | ||||
CHEB12(I) = CHEB12(I)*ALAM | ||||
40 CONTINUE | ||||
ALAM = 0.5E+00*ALAM | ||||
CHEB12(1) = CHEB12(1)*ALAM | ||||
CHEB12(13) = CHEB12(13)*ALAM | ||||
DO 50 I=2,24 | ||||
CHEB24(I) = CHEB24(I)*ALAM | ||||
50 CONTINUE | ||||
CHEB24(1) = 0.5E+00*ALAM*CHEB24(1) | ||||
CHEB24(25) = 0.5E+00*ALAM*CHEB24(25) | ||||
RETURN | ||||
END | ||||