jroplot_parameters.py
960 lines
| 33.8 KiB
| text/x-python
|
PythonLexer
|
r502 | import os | ||
import datetime | ||||
import numpy | ||||
|
r1001 | |||
|
r1285 | from schainpy.model.graphics.jroplot_base import Plot, plt | ||
|
r1358 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot | ||
|
r1285 | from schainpy.utils import log | ||
r1367 | # libreria wradlib | |||
import wradlib as wrl | ||||
|
r1001 | |||
|
r1285 | EARTH_RADIUS = 6.3710e3 | ||
|
r1001 | |||
|
r1285 | def ll2xy(lat1, lon1, lat2, lon2): | ||
|
r1001 | |||
|
r1285 | p = 0.017453292519943295 | ||
a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | ||||
numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | ||||
r = 12742 * numpy.arcsin(numpy.sqrt(a)) | ||||
theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | ||||
* numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | ||||
theta = -theta + numpy.pi/2 | ||||
return r*numpy.cos(theta), r*numpy.sin(theta) | ||||
|
r897 | |||
|
r1285 | def km2deg(km): | ||
''' | ||||
Convert distance in km to degrees | ||||
''' | ||||
|
r897 | |||
|
r1285 | return numpy.rad2deg(km/EARTH_RADIUS) | ||
|
r897 | |||
|
r1285 | class SpectralMomentsPlot(SpectraPlot): | ||
''' | ||||
Plot for Spectral Moments | ||||
''' | ||||
CODE = 'spc_moments' | ||||
|
r1358 | # colormap = 'jet' | ||
# plot_type = 'pcolor' | ||||
class DobleGaussianPlot(SpectraPlot): | ||||
''' | ||||
Plot for Double Gaussian Plot | ||||
''' | ||||
CODE = 'gaussian_fit' | ||||
# colormap = 'jet' | ||||
# plot_type = 'pcolor' | ||||
|
r897 | |||
|
r1358 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): | ||
''' | ||||
Plot SpectraCut with Double Gaussian Fit | ||||
''' | ||||
CODE = 'cut_gaussian_fit' | ||||
|
r897 | |||
|
r1285 | class SnrPlot(RTIPlot): | ||
''' | ||||
Plot for SNR Data | ||||
''' | ||||
|
r897 | |||
|
r1285 | CODE = 'snr' | ||
colormap = 'jet' | ||||
|
r897 | |||
r1343 | def update(self, dataOut): | |||
data = { | ||||
r1367 | 'snr': 10*numpy.log10(dataOut.data_snr) | |||
r1343 | } | |||
return data, {} | ||||
|
r897 | |||
|
r1285 | class DopplerPlot(RTIPlot): | ||
''' | ||||
Plot for DOPPLER Data (1st moment) | ||||
''' | ||||
|
r897 | |||
|
r1285 | CODE = 'dop' | ||
colormap = 'jet' | ||||
|
r897 | |||
r1343 | def update(self, dataOut): | |||
data = { | ||||
r1367 | 'dop': 10*numpy.log10(dataOut.data_dop) | |||
r1343 | } | |||
return data, {} | ||||
|
r897 | |||
|
r1285 | class PowerPlot(RTIPlot): | ||
''' | ||||
Plot for Power Data (0 moment) | ||||
''' | ||||
|
r897 | |||
|
r1285 | CODE = 'pow' | ||
colormap = 'jet' | ||||
|
r897 | |||
r1343 | def update(self, dataOut): | |||
data = { | ||||
r1367 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) | |||
r1343 | } | |||
return data, {} | ||||
|
r897 | |||
|
r1285 | class SpectralWidthPlot(RTIPlot): | ||
''' | ||||
Plot for Spectral Width Data (2nd moment) | ||||
''' | ||||
|
r897 | |||
|
r1285 | CODE = 'width' | ||
colormap = 'jet' | ||||
|
r897 | |||
r1343 | def update(self, dataOut): | |||
data = { | ||||
'width': dataOut.data_width | ||||
} | ||||
return data, {} | ||||
|
r897 | |||
|
r1285 | class SkyMapPlot(Plot): | ||
''' | ||||
Plot for meteors detection data | ||||
''' | ||||
|
r897 | |||
|
r1285 | CODE = 'param' | ||
|
r897 | |||
|
r1285 | def setup(self): | ||
|
r502 | |||
|
r1285 | self.ncols = 1 | ||
self.nrows = 1 | ||||
self.width = 7.2 | ||||
self.height = 7.2 | ||||
self.nplots = 1 | ||||
self.xlabel = 'Zonal Zenith Angle (deg)' | ||||
self.ylabel = 'Meridional Zenith Angle (deg)' | ||||
self.polar = True | ||||
self.ymin = -180 | ||||
self.ymax = 180 | ||||
self.colorbar = False | ||||
|
r897 | |||
|
r1285 | def plot(self): | ||
|
r897 | |||
|
r1285 | arrayParameters = numpy.concatenate(self.data['param']) | ||
error = arrayParameters[:, -1] | ||||
indValid = numpy.where(error == 0)[0] | ||||
finalMeteor = arrayParameters[indValid, :] | ||||
finalAzimuth = finalMeteor[:, 3] | ||||
finalZenith = finalMeteor[:, 4] | ||||
|
r897 | |||
|
r1285 | x = finalAzimuth * numpy.pi / 180 | ||
y = finalZenith | ||||
|
r897 | |||
|
r1285 | ax = self.axes[0] | ||
|
r897 | |||
|
r1285 | if ax.firsttime: | ||
ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] | ||||
|
r832 | else: | ||
|
r1285 | ax.plot.set_data(x, y) | ||
dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | ||||
dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | ||||
title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | ||||
dt2, | ||||
len(x)) | ||||
self.titles[0] = title | ||||
r1343 | class GenericRTIPlot(Plot): | |||
|
r1285 | ''' | ||
r1343 | Plot for data_xxxx object | |||
|
r1285 | ''' | ||
CODE = 'param' | ||||
r1343 | colormap = 'viridis' | |||
plot_type = 'pcolorbuffer' | ||||
|
r1285 | |||
def setup(self): | ||||
self.xaxis = 'time' | ||||
self.ncols = 1 | ||||
r1359 | self.nrows = self.data.shape('param')[0] | |||
|
r1285 | self.nplots = self.nrows | ||
|
r1322 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) | ||
r1367 | ||||
|
r1322 | if not self.xlabel: | ||
self.xlabel = 'Time' | ||||
|
r1285 | |||
|
r1358 | self.ylabel = 'Range [km]' | ||
|
r1285 | if not self.titles: | ||
r1360 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] | |||
|
r1285 | |||
r1343 | def update(self, dataOut): | |||
data = { | ||||
r1359 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) | |||
r1343 | } | |||
meta = {} | ||||
return data, meta | ||||
r1367 | ||||
|
r1285 | def plot(self): | ||
r1343 | # self.data.normalize_heights() | |||
|
r1285 | self.x = self.data.times | ||
r1343 | self.y = self.data.yrange | |||
r1359 | self.z = self.data['param'] | |||
|
r1378 | self.z = 10*numpy.log10(self.z) | ||
|
r1285 | self.z = numpy.ma.masked_invalid(self.z) | ||
|
r897 | |||
|
r1285 | if self.decimation is None: | ||
x, y, z = self.fill_gaps(self.x, self.y, self.z) | ||||
|
r511 | else: | ||
|
r1285 | x, y, z = self.fill_gaps(*self.decimate()) | ||
|
r897 | |||
|
r1285 | for n, ax in enumerate(self.axes): | ||
|
r588 | |||
|
r1285 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | ||
self.z[n]) | ||||
self.zmin = self.zmin if self.zmin is not None else numpy.min( | ||||
self.z[n]) | ||||
|
r897 | |||
|
r1285 | if ax.firsttime: | ||
if self.zlimits is not None: | ||||
self.zmin, self.zmax = self.zlimits[n] | ||||
|
r897 | |||
|
r1285 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | ||
vmin=self.zmin, | ||||
vmax=self.zmax, | ||||
cmap=self.cmaps[n] | ||||
) | ||||
else: | ||||
if self.zlimits is not None: | ||||
self.zmin, self.zmax = self.zlimits[n] | ||||
ax.collections.remove(ax.collections[0]) | ||||
ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | ||||
vmin=self.zmin, | ||||
vmax=self.zmax, | ||||
cmap=self.cmaps[n] | ||||
) | ||||
class PolarMapPlot(Plot): | ||||
''' | ||||
Plot for weather radar | ||||
''' | ||||
CODE = 'param' | ||||
colormap = 'seismic' | ||||
def setup(self): | ||||
self.ncols = 1 | ||||
self.nrows = 1 | ||||
self.width = 9 | ||||
self.height = 8 | ||||
self.mode = self.data.meta['mode'] | ||||
if self.channels is not None: | ||||
self.nplots = len(self.channels) | ||||
self.nrows = len(self.channels) | ||||
r1065 | else: | |||
|
r1285 | self.nplots = self.data.shape(self.CODE)[0] | ||
self.nrows = self.nplots | ||||
self.channels = list(range(self.nplots)) | ||||
if self.mode == 'E': | ||||
self.xlabel = 'Longitude' | ||||
self.ylabel = 'Latitude' | ||||
else: | ||||
self.xlabel = 'Range (km)' | ||||
self.ylabel = 'Height (km)' | ||||
self.bgcolor = 'white' | ||||
self.cb_labels = self.data.meta['units'] | ||||
self.lat = self.data.meta['latitude'] | ||||
self.lon = self.data.meta['longitude'] | ||||
self.xmin, self.xmax = float( | ||||
km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | ||||
self.ymin, self.ymax = float( | ||||
km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | ||||
# self.polar = True | ||||
def plot(self): | ||||
for n, ax in enumerate(self.axes): | ||||
data = self.data['param'][self.channels[n]] | ||||
zeniths = numpy.linspace( | ||||
0, self.data.meta['max_range'], data.shape[1]) | ||||
if self.mode == 'E': | ||||
r1343 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 | |||
|
r1285 | r, theta = numpy.meshgrid(zeniths, azimuths) | ||
x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | ||||
theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | ||||
x = km2deg(x) + self.lon | ||||
y = km2deg(y) + self.lat | ||||
r1065 | else: | |||
r1343 | azimuths = numpy.radians(self.data.yrange) | |||
|
r1285 | r, theta = numpy.meshgrid(zeniths, azimuths) | ||
x, y = r*numpy.cos(theta), r*numpy.sin(theta) | ||||
self.y = zeniths | ||||
if ax.firsttime: | ||||
if self.zlimits is not None: | ||||
self.zmin, self.zmax = self.zlimits[n] | ||||
ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | ||||
x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | ||||
vmin=self.zmin, | ||||
vmax=self.zmax, | ||||
cmap=self.cmaps[n]) | ||||
|
r513 | else: | ||
|
r1285 | if self.zlimits is not None: | ||
self.zmin, self.zmax = self.zlimits[n] | ||||
ax.collections.remove(ax.collections[0]) | ||||
ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | ||||
x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | ||||
vmin=self.zmin, | ||||
vmax=self.zmax, | ||||
cmap=self.cmaps[n]) | ||||
if self.mode == 'A': | ||||
continue | ||||
# plot district names | ||||
f = open('/data/workspace/schain_scripts/distrito.csv') | ||||
for line in f: | ||||
label, lon, lat = [s.strip() for s in line.split(',') if s] | ||||
lat = float(lat) | ||||
lon = float(lon) | ||||
# ax.plot(lon, lat, '.b', ms=2) | ||||
ax.text(lon, lat, label.decode('utf8'), ha='center', | ||||
va='bottom', size='8', color='black') | ||||
# plot limites | ||||
limites = [] | ||||
tmp = [] | ||||
for line in open('/data/workspace/schain_scripts/lima.csv'): | ||||
if '#' in line: | ||||
if tmp: | ||||
limites.append(tmp) | ||||
tmp = [] | ||||
continue | ||||
values = line.strip().split(',') | ||||
tmp.append((float(values[0]), float(values[1]))) | ||||
for points in limites: | ||||
ax.add_patch( | ||||
Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | ||||
# plot Cuencas | ||||
for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | ||||
f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) | ||||
values = [line.strip().split(',') for line in f] | ||||
points = [(float(s[0]), float(s[1])) for s in values] | ||||
ax.add_patch(Polygon(points, ec='b', fc='none')) | ||||
# plot grid | ||||
for r in (15, 30, 45, 60): | ||||
ax.add_artist(plt.Circle((self.lon, self.lat), | ||||
km2deg(r), color='0.6', fill=False, lw=0.2)) | ||||
ax.text( | ||||
self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), | ||||
self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), | ||||
'{}km'.format(r), | ||||
ha='center', va='bottom', size='8', color='0.6', weight='heavy') | ||||
if self.mode == 'E': | ||||
title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | ||||
label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | ||||
|
r608 | else: | ||
|
r1285 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | ||
label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | ||||
|
r897 | |||
|
r1285 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | ||
self.titles = ['{} {}'.format( | ||||
self.data.parameters[x], title) for x in self.channels] | ||||
|
r897 | |||
r1367 | class WeatherPlot(Plot): | |||
CODE = 'weather' | ||||
plot_name = 'weather' | ||||
plot_type = 'ppistyle' | ||||
buffering = False | ||||
def setup(self): | ||||
self.ncols = 1 | ||||
self.nrows = 1 | ||||
self.nplots= 1 | ||||
self.ylabel= 'Range [Km]' | ||||
self.titles= ['Weather'] | ||||
self.colorbar=False | ||||
self.width =8 | ||||
self.height =8 | ||||
self.ini =0 | ||||
self.len_azi =0 | ||||
self.buffer_ini = None | ||||
self.buffer_azi = None | ||||
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | ||||
self.flag =0 | ||||
self.indicador= 0 | ||||
|
r1405 | self.last_data_azi = None | ||
self.val_mean = None | ||||
r1367 | ||||
def update(self, dataOut): | ||||
data = {} | ||||
meta = {} | ||||
r1394 | if hasattr(dataOut, 'dataPP_POWER'): | |||
factor = 1 | ||||
if hasattr(dataOut, 'nFFTPoints'): | ||||
factor = dataOut.normFactor | ||||
|
r1427 | print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape) | ||
|
r1405 | data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | ||
r1367 | data['azi'] = dataOut.data_azi | |||
|
r1410 | data['ele'] = dataOut.data_ele | ||
r1367 | return data, meta | |||
|
r1407 | def get2List(self,angulos): | ||
list1=[] | ||||
list2=[] | ||||
for i in reversed(range(len(angulos))): | ||||
diff_ = angulos[i]-angulos[i-1] | ||||
if diff_ >1.5: | ||||
list1.append(i-1) | ||||
list2.append(diff_) | ||||
return list(reversed(list1)),list(reversed(list2)) | ||||
def fixData360(self,list_,ang_): | ||||
if list_[0]==-1: | ||||
vec = numpy.where(ang_<ang_[0]) | ||||
ang_[vec] = ang_[vec]+360 | ||||
return ang_ | ||||
return ang_ | ||||
def fixData360HL(self,angulos): | ||||
vec = numpy.where(angulos>=360) | ||||
angulos[vec]=angulos[vec]-360 | ||||
return angulos | ||||
def search_pos(self,pos,list_): | ||||
for i in range(len(list_)): | ||||
if pos == list_[i]: | ||||
return True,i | ||||
i=None | ||||
return False,i | ||||
def fixDataComp(self,ang_,list1_,list2_): | ||||
size = len(ang_) | ||||
size2 = 0 | ||||
for i in range(len(list2_)): | ||||
|
r1409 | size2=size2+round(list2_[i])-1 | ||
|
r1407 | new_size= size+size2 | ||
ang_new = numpy.zeros(new_size) | ||||
ang_new2 = numpy.zeros(new_size) | ||||
tmp = 0 | ||||
c = 0 | ||||
for i in range(len(ang_)): | ||||
ang_new[tmp +c] = ang_[i] | ||||
ang_new2[tmp+c] = ang_[i] | ||||
condition , value = self.search_pos(i,list1_) | ||||
if condition: | ||||
pos = tmp + c + 1 | ||||
|
r1410 | for k in range(round(list2_[value])-1): | ||
|
r1407 | ang_new[pos+k] = ang_new[pos+k-1]+1 | ||
ang_new2[pos+k] = numpy.nan | ||||
tmp = pos +k | ||||
c = 0 | ||||
c=c+1 | ||||
return ang_new,ang_new2 | ||||
def globalCheckPED(self,angulos): | ||||
l1,l2 = self.get2List(angulos) | ||||
if len(l1)>0: | ||||
angulos2 = self.fixData360(list_=l1,ang_=angulos) | ||||
l1,l2 = self.get2List(angulos2) | ||||
ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2) | ||||
ang1_ = self.fixData360HL(ang1_) | ||||
ang2_ = self.fixData360HL(ang2_) | ||||
else: | ||||
ang1_= angulos | ||||
ang2_= angulos | ||||
return ang1_,ang2_ | ||||
|
r1405 | def analizeDATA(self,data_azi): | ||
list1 = [] | ||||
list2 = [] | ||||
dat = data_azi | ||||
for i in reversed(range(1,len(dat))): | ||||
if dat[i]>dat[i-1]: | ||||
diff = int(dat[i])-int(dat[i-1]) | ||||
else: | ||||
diff = 360+int(dat[i])-int(dat[i-1]) | ||||
if diff > 1: | ||||
list1.append(i-1) | ||||
list2.append(diff-1) | ||||
return list1,list2 | ||||
def fixDATANEW(self,data_azi,data_weather): | ||||
list1,list2 = self.analizeDATA(data_azi) | ||||
if len(list1)== 0: | ||||
return data_azi,data_weather | ||||
else: | ||||
resize = 0 | ||||
for i in range(len(list2)): | ||||
resize= resize + list2[i] | ||||
new_data_azi = numpy.resize(data_azi,resize) | ||||
new_data_weather= numpy.resize(date_weather,resize) | ||||
for i in range(len(list2)): | ||||
j=0 | ||||
position=list1[i]+1 | ||||
for j in range(list2[i]): | ||||
new_data_azi[position+j]=new_data_azi[position+j-1]+1 | ||||
return new_data_azi | ||||
def fixDATA(self,data_azi): | ||||
data=data_azi | ||||
for i in range(len(data)): | ||||
if numpy.isnan(data[i]): | ||||
data[i]=data[i-1]+1 | ||||
return data | ||||
def replaceNAN(self,data_weather,data_azi,val): | ||||
data= data_azi | ||||
data_T= data_weather | ||||
|
r1410 | if data.shape[0]> data_T.shape[0]: | ||
data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | ||||
c = 0 | ||||
for i in range(len(data)): | ||||
if numpy.isnan(data[i]): | ||||
data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | ||||
else: | ||||
data_N[i,:]=data_T[c,:] | ||||
sc=c+1 | ||||
else: | ||||
for i in range(len(data)): | ||||
if numpy.isnan(data[i]): | ||||
data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | ||||
return data_T | ||||
|
r1405 | |||
r1384 | def const_ploteo(self,data_weather,data_azi,step,res): | |||
if self.ini==0: | ||||
|
r1411 | #------- | ||
r1384 | n = (360/res)-len(data_azi) | |||
|
r1407 | #--------------------- new ------------------------- | ||
data_azi_new ,data_azi_old= self.globalCheckPED(data_azi) | ||||
#------------------------ | ||||
|
r1405 | start = data_azi_new[-1] + res | ||
end = data_azi_new[0] - res | ||||
|
r1411 | #------ new | ||
|
r1405 | self.last_data_azi = end | ||
r1384 | if start>end: | |||
end = end + 360 | ||||
azi_vacia = numpy.linspace(start,end,int(n)) | ||||
azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) | ||||
|
r1405 | data_azi = numpy.hstack((data_azi_new,azi_vacia)) | ||
r1384 | # RADAR | |||
|
r1405 | val_mean = numpy.mean(data_weather[:,-1]) | ||
self.val_mean = val_mean | ||||
r1384 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean | |||
|
r1405 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) | ||
r1384 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) | |||
else: | ||||
# azimuth | ||||
flag=0 | ||||
start_azi = self.res_azi[0] | ||||
|
r1407 | #-----------new------------ | ||
data_azi ,data_azi_old= self.globalCheckPED(data_azi) | ||||
|
r1405 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) | ||
|
r1407 | #-------------------------- | ||
r1384 | start = data_azi[0] | |||
end = data_azi[-1] | ||||
|
r1405 | self.last_data_azi= end | ||
r1384 | if start< start_azi: | |||
start = start +360 | ||||
if end <start_azi: | ||||
end = end +360 | ||||
|
r1411 | |||
r1384 | pos_ini = int((start-start_azi)/res) | |||
len_azi = len(data_azi) | ||||
if (360-pos_ini)<len_azi: | ||||
if pos_ini+1==360: | ||||
pos_ini=0 | ||||
else: | ||||
flag=1 | ||||
dif= 360-pos_ini | ||||
comp= len_azi-dif | ||||
|
r1405 | #----------------- | ||
r1384 | if flag==0: | |||
# AZIMUTH | ||||
self.res_azi[pos_ini:pos_ini+len_azi] = data_azi | ||||
# RADAR | ||||
self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather | ||||
else: | ||||
# AZIMUTH | ||||
self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] | ||||
self.res_azi[0:comp] = data_azi[dif:] | ||||
# RADAR | ||||
self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] | ||||
self.res_weather[0:comp,:] = data_weather[dif:,:] | ||||
flag=0 | ||||
data_azi = self.res_azi | ||||
data_weather = self.res_weather | ||||
return data_weather,data_azi | ||||
r1367 | def plot(self): | |||
|
r1405 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | ||
r1384 | data = self.data[-1] | |||
|
r1411 | r = self.data.yrange | ||
|
r1405 | delta_height = r[1]-r[0] | ||
|
r1411 | r_mask = numpy.where(r>=0)[0] | ||
r = numpy.arange(len(r_mask))*delta_height | ||||
self.y = 2*r | ||||
r1384 | # RADAR | |||
#data_weather = data['weather'] | ||||
# PEDESTAL | ||||
#data_azi = data['azi'] | ||||
|
r1411 | res = 1 | ||
r1384 | # STEP | |||
|
r1411 | step = (360/(res*data['weather'].shape[0])) | ||
|
r1405 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res) | ||
|
r1411 | self.res_ele = numpy.mean(data['ele']) | ||
r1384 | ################# PLOTEO ################### | |||
|
r1427 | print("self.axes",self.axes) | ||
r1367 | for i,ax in enumerate(self.axes): | |||
|
r1427 | print("INDICE: ",i) | ||
r1367 | if ax.firsttime: | |||
plt.clf() | ||||
|
r1427 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) | ||
r1367 | else: | |||
plt.clf() | ||||
|
r1427 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) | ||
r1367 | caax = cgax.parasites[0] | |||
paax = cgax.parasites[1] | ||||
cbar = plt.gcf().colorbar(pm, pad=0.075) | ||||
caax.set_xlabel('x_range [km]') | ||||
caax.set_ylabel('y_range [km]') | ||||
|
r1410 | plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right') | ||
r1384 | ||||
self.ini= self.ini+1 | ||||
|
r1411 | |||
class WeatherRHIPlot(Plot): | ||||
CODE = 'weather' | ||||
plot_name = 'weather' | ||||
plot_type = 'rhistyle' | ||||
buffering = False | ||||
def setup(self): | ||||
self.ncols = 1 | ||||
self.nrows = 1 | ||||
self.nplots= 1 | ||||
self.ylabel= 'Range [Km]' | ||||
self.titles= ['Weather'] | ||||
self.colorbar=False | ||||
self.width =8 | ||||
self.height =8 | ||||
self.ini =0 | ||||
self.len_azi =0 | ||||
self.buffer_ini = None | ||||
|
r1418 | self.buffer_ele = None | ||
|
r1411 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | ||
self.flag =0 | ||||
self.indicador= 0 | ||||
|
r1418 | self.last_data_ele = None | ||
|
r1411 | self.val_mean = None | ||
def update(self, dataOut): | ||||
data = {} | ||||
meta = {} | ||||
if hasattr(dataOut, 'dataPP_POWER'): | ||||
factor = 1 | ||||
if hasattr(dataOut, 'nFFTPoints'): | ||||
factor = dataOut.normFactor | ||||
data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | ||||
data['azi'] = dataOut.data_azi | ||||
data['ele'] = dataOut.data_ele | ||||
return data, meta | ||||
|
r1418 | def get2List(self,angulos): | ||
list1=[] | ||||
list2=[] | ||||
for i in reversed(range(len(angulos))): | ||||
|
r1429 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante | ||
diff_ = angulos[i]-angulos[i-1] | ||||
if abs(diff_) >1.5: | ||||
list1.append(i-1) | ||||
list2.append(diff_) | ||||
|
r1418 | return list(reversed(list1)),list(reversed(list2)) | ||
|
r1429 | def fixData90(self,list_,ang_): | ||
|
r1418 | if list_[0]==-1: | ||
vec = numpy.where(ang_<ang_[0]) | ||||
|
r1429 | ang_[vec] = ang_[vec]+90 | ||
|
r1418 | return ang_ | ||
return ang_ | ||||
|
r1429 | def fixData90HL(self,angulos): | ||
vec = numpy.where(angulos>=90) | ||||
angulos[vec]=angulos[vec]-90 | ||||
|
r1418 | return angulos | ||
def search_pos(self,pos,list_): | ||||
for i in range(len(list_)): | ||||
if pos == list_[i]: | ||||
return True,i | ||||
i=None | ||||
return False,i | ||||
|
r1429 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): | ||
|
r1418 | size = len(ang_) | ||
size2 = 0 | ||||
for i in range(len(list2_)): | ||||
|
r1429 | size2=size2+round(abs(list2_[i]))-1 | ||
|
r1418 | new_size= size+size2 | ||
ang_new = numpy.zeros(new_size) | ||||
ang_new2 = numpy.zeros(new_size) | ||||
tmp = 0 | ||||
c = 0 | ||||
for i in range(len(ang_)): | ||||
ang_new[tmp +c] = ang_[i] | ||||
ang_new2[tmp+c] = ang_[i] | ||||
condition , value = self.search_pos(i,list1_) | ||||
if condition: | ||||
pos = tmp + c + 1 | ||||
|
r1429 | for k in range(round(abs(list2_[value]))-1): | ||
if tipo_case==0 or tipo_case==3:#subida | ||||
ang_new[pos+k] = ang_new[pos+k-1]+1 | ||||
ang_new2[pos+k] = numpy.nan | ||||
elif tipo_case==1 or tipo_case==2:#bajada | ||||
ang_new[pos+k] = ang_new[pos+k-1]-1 | ||||
ang_new2[pos+k] = numpy.nan | ||||
|
r1418 | tmp = pos +k | ||
c = 0 | ||||
c=c+1 | ||||
return ang_new,ang_new2 | ||||
|
r1429 | def globalCheckPED(self,angulos,tipo_case): | ||
|
r1418 | l1,l2 = self.get2List(angulos) | ||
|
r1429 | print("l1",l1) | ||
print("l2",l2) | ||||
|
r1418 | if len(l1)>0: | ||
|
r1429 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) | ||
#l1,l2 = self.get2List(angulos2) | ||||
ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) | ||||
#ang1_ = self.fixData90HL(ang1_) | ||||
#ang2_ = self.fixData90HL(ang2_) | ||||
|
r1418 | else: | ||
ang1_= angulos | ||||
ang2_= angulos | ||||
return ang1_,ang2_ | ||||
def replaceNAN(self,data_weather,data_ele,val): | ||||
data= data_ele | ||||
data_T= data_weather | ||||
if data.shape[0]> data_T.shape[0]: | ||||
data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | ||||
c = 0 | ||||
for i in range(len(data)): | ||||
if numpy.isnan(data[i]): | ||||
data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | ||||
else: | ||||
data_N[i,:]=data_T[c,:] | ||||
sc=c+1 | ||||
else: | ||||
for i in range(len(data)): | ||||
if numpy.isnan(data[i]): | ||||
data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | ||||
return data_T | ||||
|
r1429 | def check_case(self,data_ele,ang_max,ang_min): | ||
start = data_ele[0] | ||||
end = data_ele[-1] | ||||
number = (end-start) | ||||
len_ang=len(data_ele) | ||||
if start<end and round(abs(number)+1)>=len_ang:#caso subida | ||||
return 0 | ||||
elif start>end and round(abs(number)+1)>=len_ang:#caso bajada | ||||
return 1 | ||||
elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX | ||||
return 2 | ||||
elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1]:# caso SUBIDA CAMBIO ANG MIN | ||||
return 3 | ||||
def const_ploteo(self,data_weather,data_ele,step,res,ang_max,ang_min): | ||||
ang_max= ang_max | ||||
ang_min= ang_min | ||||
|
r1418 | if self.ini==0: | ||
|
r1429 | print("**********************************************") | ||
print("**********************************************") | ||||
print("***************ini**************") | ||||
print("**********************************************") | ||||
print("**********************************************") | ||||
print("data_ele",data_ele) | ||||
#---------------------------------------------------------- | ||||
tipo_case = self.check_case(data_ele,ang_max,ang_min) | ||||
print("TIPO DE DATA",tipo_case) | ||||
|
r1418 | #--------------------- new ------------------------- | ||
|
r1429 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) | ||
print("data_ele_new",data_ele_new) | ||||
print("data_ele_old",data_ele_old) | ||||
#-------------------------CAMBIOS RHI--------------------------------- | ||||
start= ang_min | ||||
end = ang_min | ||||
n= (ang_max-ang_min)/res | ||||
|
r1418 | #------ new | ||
|
r1429 | self.start_data_ele = data_ele_new[0] | ||
self.end_data_ele = data_ele_new[-1] | ||||
if tipo_case==0 or tipo_case==3: | ||||
n1= round(self.start_data_ele)- start | ||||
n2= end - round(self.end_data_ele) | ||||
if n1>0: | ||||
ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | ||||
ele1_nan= numpy.ones(n1)*numpy.nan | ||||
data_ele = numpy.hstack((ele1,data_ele_new)) | ||||
data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | ||||
if n2>0: | ||||
ele2= numpy.linspace(self.end_data_ele+1,end,n2) | ||||
ele2_nan= numpy.ones(n2)*numpy.nan | ||||
data_ele = numpy.hstack((data_ele,ele2)) | ||||
data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | ||||
# RADAR | ||||
val_mean = numpy.mean(data_weather[:,-1]) | ||||
self.val_mean = val_mean | ||||
data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | ||||
''' | ||||
|
r1418 | ele_vacia = numpy.linspace(start,end,int(n)) | ||
|
r1429 | |||
ele_vacia = numpy.where(ele_vacia>ang_max,ele_vacia-ang_max,ele_vacia) | ||||
|
r1418 | data_ele = numpy.hstack((data_ele_new,ele_vacia)) | ||
# RADAR | ||||
val_mean = numpy.mean(data_weather[:,-1]) | ||||
self.val_mean = val_mean | ||||
|
r1429 | data_weather_cmp = numpy.ones([(ang_max-data_weather.shape[0]),data_weather.shape[1]])*val_mean | ||
|
r1418 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | ||
data_weather = numpy.vstack((data_weather,data_weather_cmp)) | ||||
|
r1429 | ''' | ||
|
r1418 | else: | ||
|
r1429 | print("**********************************************") | ||
print("**********************************************") | ||||
print("****************VARIABLE**********************") | ||||
print("**********************************************") | ||||
print("**********************************************") | ||||
#-------------------------CAMBIOS RHI--------------------------------- | ||||
#--------------------------------------------------------------------- | ||||
print("INPUT data_ele",data_ele) | ||||
|
r1418 | flag=0 | ||
start_ele = self.res_ele[0] | ||||
|
r1429 | tipo_case = self.check_case(data_ele,ang_max,ang_min) | ||
print("TIPO DE DATA",tipo_case) | ||||
|
r1418 | #-----------new------------ | ||
|
r1429 | data_ele ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) | ||
print("data_ele_new",data_ele) | ||||
print("data_ele_old",data_ele_old) | ||||
|
r1418 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | ||
|
r1429 | ''' | ||
|
r1418 | #-------------------------- | ||
start = data_ele[0] | ||||
end = data_ele[-1] | ||||
self.last_data_ele= end | ||||
if start< start_ele: | ||||
|
r1429 | start = start +ang_max | ||
|
r1418 | if end <start_ele: | ||
|
r1429 | end = end +ang_max | ||
|
r1418 | |||
pos_ini = int((start-start_ele)/res) | ||||
len_ele = len(data_ele) | ||||
|
r1429 | if (ang_max-pos_ini)<len_ele: | ||
if pos_ini+1==ang_max: | ||||
|
r1418 | pos_ini=0 | ||
else: | ||||
flag=1 | ||||
|
r1429 | dif= ang_max-pos_ini | ||
|
r1418 | comp= len_ele-dif | ||
#----------------- | ||||
if flag==0: | ||||
# elevacion | ||||
self.res_ele[pos_ini:pos_ini+len_ele] = data_ele | ||||
# RADAR | ||||
self.res_weather[pos_ini:pos_ini+len_ele,:] = data_weather | ||||
else: | ||||
# elevacion | ||||
self.res_ele[pos_ini:pos_ini+dif] = data_ele[0:dif] | ||||
self.res_ele[0:comp] = data_ele[dif:] | ||||
# RADAR | ||||
self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] | ||||
self.res_weather[0:comp,:] = data_weather[dif:,:] | ||||
flag=0 | ||||
data_ele = self.res_ele | ||||
data_weather = self.res_weather | ||||
|
r1429 | ''' | ||
print("OUPUT data_ele",data_ele) | ||||
|
r1418 | |||
return data_weather,data_ele | ||||
|
r1411 | def plot(self): | ||
thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | ||||
data = self.data[-1] | ||||
r = self.data.yrange | ||||
delta_height = r[1]-r[0] | ||||
r_mask = numpy.where(r>=0)[0] | ||||
r = numpy.arange(len(r_mask))*delta_height | ||||
self.y = 2*r | ||||
|
r1429 | res = 1 | ||
print("data['weather'].shape[0]",data['weather'].shape[0]) | ||||
ang_max = 80 | ||||
ang_min = 0 | ||||
var_ang =ang_max - ang_min | ||||
step = (int(var_ang)/(res*data['weather'].shape[0])) | ||||
print("step",step) | ||||
|
r1418 | ''' | ||
#------------------------------------------------------------- | ||||
# RADAR | ||||
#data_weather = data['weather'] | ||||
# PEDESTAL | ||||
#data_azi = data['azi'] | ||||
res = 1 | ||||
# STEP | ||||
step = (180/(res*data['weather'].shape[0])) | ||||
self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res) | ||||
self.res_azi = numpy.mean(data['azi']) | ||||
print("self.res_ele------------------------------:",self.res_ele) | ||||
''' | ||||
#-------------------------------------------------------- | ||||
|
r1429 | print('weather',data['weather'].shape) | ||
print('ele',data['ele'].shape) | ||||
|
r1418 | |||
|
r1429 | self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | ||
self.res_azi = numpy.mean(data['azi']) | ||||
print("self.res_ele",self.res_ele) | ||||
|
r1411 | #------------- | ||
# 90 angulos en el axis 0 | ||||
# 1000 step en el axis 1 | ||||
|
r1429 | ###self.res_weather = numpy.ones([120,1000]) | ||
###r = numpy.linspace(0,1999,1000) | ||||
###self.res_ele = numpy.arange(0,120) | ||||
###self.res_azi = 240 | ||||
|
r1411 | #------------- | ||
|
r1429 | ''' | ||
|
r1411 | for i,ax in enumerate(self.axes): | ||
if ax.firsttime: | ||||
plt.clf() | ||||
cgax, pm = wrl.vis.plot_rhi(self.res_weather,r=r,th=self.res_ele,fig=self.figures[0], proj='cg') | ||||
else: | ||||
plt.clf() | ||||
cgax, pm = wrl.vis.plot_rhi(self.res_weather,r=r,th=self.res_ele,fig=self.figures[0], proj='cg') | ||||
caax = cgax.parasites[0] | ||||
paax = cgax.parasites[1] | ||||
cbar = plt.gcf().colorbar(pm, pad=0.075) | ||||
caax.set_xlabel('x_range [km]') | ||||
caax.set_ylabel('y_range [km]') | ||||
plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') | ||||
|
r1429 | ''' | ||
print("""""""""""""self.ini""""""""""""",self.ini) | ||||
|
r1411 | self.ini= self.ini+1 | ||