cairy.f
342 lines
| 13.1 KiB
| text/x-fortran
|
FortranFixedLexer
r1601 | *DECK CAIRY | |||
SUBROUTINE CAIRY (Z, ID, KODE, AI, NZ, IERR) | ||||
C***BEGIN PROLOGUE CAIRY | ||||
C***PURPOSE Compute the Airy function Ai(z) or its derivative dAi/dz | ||||
C for complex argument z. A scaling option is available | ||||
C to help avoid underflow and overflow. | ||||
C***LIBRARY SLATEC | ||||
C***CATEGORY C10D | ||||
C***TYPE COMPLEX (CAIRY-C, ZAIRY-C) | ||||
C***KEYWORDS AIRY FUNCTION, BESSEL FUNCTION OF ORDER ONE THIRD, | ||||
C BESSEL FUNCTION OF ORDER TWO THIRDS | ||||
C***AUTHOR Amos, D. E., (SNL) | ||||
C***DESCRIPTION | ||||
C | ||||
C On KODE=1, CAIRY computes the complex Airy function Ai(z) | ||||
C or its derivative dAi/dz on ID=0 or ID=1 respectively. On | ||||
C KODE=2, a scaling option exp(zeta)*Ai(z) or exp(zeta)*dAi/dz | ||||
C is provided to remove the exponential decay in -pi/3<arg(z) | ||||
C <pi/3 and the exponential growth in pi/3<abs(arg(z))<pi where | ||||
C zeta=(2/3)*z**(3/2). | ||||
C | ||||
C While the Airy functions Ai(z) and dAi/dz are analytic in | ||||
C the whole z-plane, the corresponding scaled functions defined | ||||
C for KODE=2 have a cut along the negative real axis. | ||||
C | ||||
C Input | ||||
C Z - Argument of type COMPLEX | ||||
C ID - Order of derivative, ID=0 or ID=1 | ||||
C KODE - A parameter to indicate the scaling option | ||||
C KODE=1 returns | ||||
C AI=Ai(z) on ID=0 | ||||
C AI=dAi/dz on ID=1 | ||||
C at z=Z | ||||
C =2 returns | ||||
C AI=exp(zeta)*Ai(z) on ID=0 | ||||
C AI=exp(zeta)*dAi/dz on ID=1 | ||||
C at z=Z where zeta=(2/3)*z**(3/2) | ||||
C | ||||
C Output | ||||
C AI - Result of type COMPLEX | ||||
C NZ - Underflow indicator | ||||
C NZ=0 Normal return | ||||
C NZ=1 AI=0 due to underflow in | ||||
C -pi/3<arg(Z)<pi/3 on KODE=1 | ||||
C IERR - Error flag | ||||
C IERR=0 Normal return - COMPUTATION COMPLETED | ||||
C IERR=1 Input error - NO COMPUTATION | ||||
C IERR=2 Overflow - NO COMPUTATION | ||||
C (Re(Z) too large with KODE=1) | ||||
C IERR=3 Precision warning - COMPUTATION COMPLETED | ||||
C (Result has less than half precision) | ||||
C IERR=4 Precision error - NO COMPUTATION | ||||
C (Result has no precision) | ||||
C IERR=5 Algorithmic error - NO COMPUTATION | ||||
C (Termination condition not met) | ||||
C | ||||
C *Long Description: | ||||
C | ||||
C Ai(z) and dAi/dz are computed from K Bessel functions by | ||||
C | ||||
C Ai(z) = c*sqrt(z)*K(1/3,zeta) | ||||
C dAi/dz = -c* z *K(2/3,zeta) | ||||
C c = 1/(pi*sqrt(3)) | ||||
C zeta = (2/3)*z**(3/2) | ||||
C | ||||
C when abs(z)>1 and from power series when abs(z)<=1. | ||||
C | ||||
C In most complex variable computation, one must evaluate ele- | ||||
C mentary functions. When the magnitude of Z is large, losses | ||||
C of significance by argument reduction occur. Consequently, if | ||||
C the magnitude of ZETA=(2/3)*Z**(3/2) exceeds U1=SQRT(0.5/UR), | ||||
C then losses exceeding half precision are likely and an error | ||||
C flag IERR=3 is triggered where UR=R1MACH(4)=UNIT ROUNDOFF. | ||||
C Also, if the magnitude of ZETA is larger than U2=0.5/UR, then | ||||
C all significance is lost and IERR=4. In order to use the INT | ||||
C function, ZETA must be further restricted not to exceed | ||||
C U3=I1MACH(9)=LARGEST INTEGER. Thus, the magnitude of ZETA | ||||
C must be restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, | ||||
C and U3 are approximately 2.0E+3, 4.2E+6, 2.1E+9 in single | ||||
C precision and 4.7E+7, 2.3E+15, 2.1E+9 in double precision. | ||||
C This makes U2 limiting is single precision and U3 limiting | ||||
C in double precision. This means that the magnitude of Z | ||||
C cannot exceed approximately 3.4E+4 in single precision and | ||||
C 2.1E+6 in double precision. This also means that one can | ||||
C expect to retain, in the worst cases on 32-bit machines, | ||||
C no digits in single precision and only 6 digits in double | ||||
C precision. | ||||
C | ||||
C The approximate relative error in the magnitude of a complex | ||||
C Bessel function can be expressed as P*10**S where P=MAX(UNIT | ||||
C ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre- | ||||
C sents the increase in error due to argument reduction in the | ||||
C elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))), | ||||
C ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF | ||||
C ABS(Z),ABS(EXPONENT OF FNU)) ). However, the phase angle may | ||||
C have only absolute accuracy. This is most likely to occur | ||||
C when one component (in magnitude) is larger than the other by | ||||
C several orders of magnitude. If one component is 10**K larger | ||||
C than the other, then one can expect only MAX(ABS(LOG10(P))-K, | ||||
C 0) significant digits; or, stated another way, when K exceeds | ||||
C the exponent of P, no significant digits remain in the smaller | ||||
C component. However, the phase angle retains absolute accuracy | ||||
C because, in complex arithmetic with precision P, the smaller | ||||
C component will not (as a rule) decrease below P times the | ||||
C magnitude of the larger component. In these extreme cases, | ||||
C the principal phase angle is on the order of +P, -P, PI/2-P, | ||||
C or -PI/2+P. | ||||
C | ||||
C***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe- | ||||
C matical Functions, National Bureau of Standards | ||||
C Applied Mathematics Series 55, U. S. Department | ||||
C of Commerce, Tenth Printing (1972) or later. | ||||
C 2. D. E. Amos, Computation of Bessel Functions of | ||||
C Complex Argument and Large Order, Report SAND83-0643, | ||||
C Sandia National Laboratories, Albuquerque, NM, May | ||||
C 1983. | ||||
C 3. D. E. Amos, A Subroutine Package for Bessel Functions | ||||
C of a Complex Argument and Nonnegative Order, Report | ||||
C SAND85-1018, Sandia National Laboratory, Albuquerque, | ||||
C NM, May 1985. | ||||
C 4. D. E. Amos, A portable package for Bessel functions | ||||
C of a complex argument and nonnegative order, ACM | ||||
C Transactions on Mathematical Software, 12 (September | ||||
C 1986), pp. 265-273. | ||||
C | ||||
C***ROUTINES CALLED CACAI, CBKNU, I1MACH, R1MACH | ||||
C***REVISION HISTORY (YYMMDD) | ||||
C 830501 DATE WRITTEN | ||||
C 890801 REVISION DATE from Version 3.2 | ||||
C 910415 Prologue converted to Version 4.0 format. (BAB) | ||||
C 920128 Category corrected. (WRB) | ||||
C 920811 Prologue revised. (DWL) | ||||
C***END PROLOGUE CAIRY | ||||
COMPLEX AI, CONE, CSQ, CY, S1, S2, TRM1, TRM2, Z, ZTA, Z3 | ||||
REAL AA, AD, AK, ALIM, ATRM, AZ, AZ3, BK, CK, COEF, C1, C2, DIG, | ||||
* DK, D1, D2, ELIM, FID, FNU, RL, R1M5, SFAC, TOL, TTH, ZI, ZR, | ||||
* Z3I, Z3R, R1MACH, BB, ALAZ | ||||
INTEGER ID, IERR, IFLAG, K, KODE, K1, K2, MR, NN, NZ, I1MACH | ||||
DIMENSION CY(1) | ||||
DATA TTH, C1, C2, COEF /6.66666666666666667E-01, | ||||
* 3.55028053887817240E-01,2.58819403792806799E-01, | ||||
* 1.83776298473930683E-01/ | ||||
DATA CONE / (1.0E0,0.0E0) / | ||||
C***FIRST EXECUTABLE STATEMENT CAIRY | ||||
IERR = 0 | ||||
NZ=0 | ||||
IF (ID.LT.0 .OR. ID.GT.1) IERR=1 | ||||
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1 | ||||
IF (IERR.NE.0) RETURN | ||||
AZ = ABS(Z) | ||||
TOL = MAX(R1MACH(4),1.0E-18) | ||||
FID = ID | ||||
IF (AZ.GT.1.0E0) GO TO 60 | ||||
C----------------------------------------------------------------------- | ||||
C POWER SERIES FOR ABS(Z).LE.1. | ||||
C----------------------------------------------------------------------- | ||||
S1 = CONE | ||||
S2 = CONE | ||||
IF (AZ.LT.TOL) GO TO 160 | ||||
AA = AZ*AZ | ||||
IF (AA.LT.TOL/AZ) GO TO 40 | ||||
TRM1 = CONE | ||||
TRM2 = CONE | ||||
ATRM = 1.0E0 | ||||
Z3 = Z*Z*Z | ||||
AZ3 = AZ*AA | ||||
AK = 2.0E0 + FID | ||||
BK = 3.0E0 - FID - FID | ||||
CK = 4.0E0 - FID | ||||
DK = 3.0E0 + FID + FID | ||||
D1 = AK*DK | ||||
D2 = BK*CK | ||||
AD = MIN(D1,D2) | ||||
AK = 24.0E0 + 9.0E0*FID | ||||
BK = 30.0E0 - 9.0E0*FID | ||||
Z3R = REAL(Z3) | ||||
Z3I = AIMAG(Z3) | ||||
DO 30 K=1,25 | ||||
TRM1 = TRM1*CMPLX(Z3R/D1,Z3I/D1) | ||||
S1 = S1 + TRM1 | ||||
TRM2 = TRM2*CMPLX(Z3R/D2,Z3I/D2) | ||||
S2 = S2 + TRM2 | ||||
ATRM = ATRM*AZ3/AD | ||||
D1 = D1 + AK | ||||
D2 = D2 + BK | ||||
AD = MIN(D1,D2) | ||||
IF (ATRM.LT.TOL*AD) GO TO 40 | ||||
AK = AK + 18.0E0 | ||||
BK = BK + 18.0E0 | ||||
30 CONTINUE | ||||
40 CONTINUE | ||||
IF (ID.EQ.1) GO TO 50 | ||||
AI = S1*CMPLX(C1,0.0E0) - Z*S2*CMPLX(C2,0.0E0) | ||||
IF (KODE.EQ.1) RETURN | ||||
ZTA = Z*CSQRT(Z)*CMPLX(TTH,0.0E0) | ||||
AI = AI*CEXP(ZTA) | ||||
RETURN | ||||
50 CONTINUE | ||||
AI = -S2*CMPLX(C2,0.0E0) | ||||
IF (AZ.GT.TOL) AI = AI + Z*Z*S1*CMPLX(C1/(1.0E0+FID),0.0E0) | ||||
IF (KODE.EQ.1) RETURN | ||||
ZTA = Z*CSQRT(Z)*CMPLX(TTH,0.0E0) | ||||
AI = AI*CEXP(ZTA) | ||||
RETURN | ||||
C----------------------------------------------------------------------- | ||||
C CASE FOR ABS(Z).GT.1.0 | ||||
C----------------------------------------------------------------------- | ||||
60 CONTINUE | ||||
FNU = (1.0E0+FID)/3.0E0 | ||||
C----------------------------------------------------------------------- | ||||
C SET PARAMETERS RELATED TO MACHINE CONSTANTS. | ||||
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18. | ||||
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT. | ||||
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND | ||||
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR | ||||
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE. | ||||
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z. | ||||
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG). | ||||
C----------------------------------------------------------------------- | ||||
K1 = I1MACH(12) | ||||
K2 = I1MACH(13) | ||||
R1M5 = R1MACH(5) | ||||
K = MIN(ABS(K1),ABS(K2)) | ||||
ELIM = 2.303E0*(K*R1M5-3.0E0) | ||||
K1 = I1MACH(11) - 1 | ||||
AA = R1M5*K1 | ||||
DIG = MIN(AA,18.0E0) | ||||
AA = AA*2.303E0 | ||||
ALIM = ELIM + MAX(-AA,-41.45E0) | ||||
RL = 1.2E0*DIG + 3.0E0 | ||||
ALAZ=ALOG(AZ) | ||||
C----------------------------------------------------------------------- | ||||
C TEST FOR RANGE | ||||
C----------------------------------------------------------------------- | ||||
AA=0.5E0/TOL | ||||
BB=I1MACH(9)*0.5E0 | ||||
AA=MIN(AA,BB) | ||||
AA=AA**TTH | ||||
IF (AZ.GT.AA) GO TO 260 | ||||
AA=SQRT(AA) | ||||
IF (AZ.GT.AA) IERR=3 | ||||
CSQ=CSQRT(Z) | ||||
ZTA=Z*CSQ*CMPLX(TTH,0.0E0) | ||||
C----------------------------------------------------------------------- | ||||
C RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL | ||||
C----------------------------------------------------------------------- | ||||
IFLAG = 0 | ||||
SFAC = 1.0E0 | ||||
ZI = AIMAG(Z) | ||||
ZR = REAL(Z) | ||||
AK = AIMAG(ZTA) | ||||
IF (ZR.GE.0.0E0) GO TO 70 | ||||
BK = REAL(ZTA) | ||||
CK = -ABS(BK) | ||||
ZTA = CMPLX(CK,AK) | ||||
70 CONTINUE | ||||
IF (ZI.NE.0.0E0) GO TO 80 | ||||
IF (ZR.GT.0.0E0) GO TO 80 | ||||
ZTA = CMPLX(0.0E0,AK) | ||||
80 CONTINUE | ||||
AA = REAL(ZTA) | ||||
IF (AA.GE.0.0E0 .AND. ZR.GT.0.0E0) GO TO 100 | ||||
IF (KODE.EQ.2) GO TO 90 | ||||
C----------------------------------------------------------------------- | ||||
C OVERFLOW TEST | ||||
C----------------------------------------------------------------------- | ||||
IF (AA.GT.(-ALIM)) GO TO 90 | ||||
AA = -AA + 0.25E0*ALAZ | ||||
IFLAG = 1 | ||||
SFAC = TOL | ||||
IF (AA.GT.ELIM) GO TO 240 | ||||
90 CONTINUE | ||||
C----------------------------------------------------------------------- | ||||
C CBKNU AND CACAI RETURN EXP(ZTA)*K(FNU,ZTA) ON KODE=2 | ||||
C----------------------------------------------------------------------- | ||||
MR = 1 | ||||
IF (ZI.LT.0.0E0) MR = -1 | ||||
CALL CACAI(ZTA, FNU, KODE, MR, 1, CY, NN, RL, TOL, ELIM, ALIM) | ||||
IF (NN.LT.0) GO TO 250 | ||||
NZ = NZ + NN | ||||
GO TO 120 | ||||
100 CONTINUE | ||||
IF (KODE.EQ.2) GO TO 110 | ||||
C----------------------------------------------------------------------- | ||||
C UNDERFLOW TEST | ||||
C----------------------------------------------------------------------- | ||||
IF (AA.LT.ALIM) GO TO 110 | ||||
AA = -AA - 0.25E0*ALAZ | ||||
IFLAG = 2 | ||||
SFAC = 1.0E0/TOL | ||||
IF (AA.LT.(-ELIM)) GO TO 180 | ||||
110 CONTINUE | ||||
CALL CBKNU(ZTA, FNU, KODE, 1, CY, NZ, TOL, ELIM, ALIM) | ||||
120 CONTINUE | ||||
S1 = CY(1)*CMPLX(COEF,0.0E0) | ||||
IF (IFLAG.NE.0) GO TO 140 | ||||
IF (ID.EQ.1) GO TO 130 | ||||
AI = CSQ*S1 | ||||
RETURN | ||||
130 AI = -Z*S1 | ||||
RETURN | ||||
140 CONTINUE | ||||
S1 = S1*CMPLX(SFAC,0.0E0) | ||||
IF (ID.EQ.1) GO TO 150 | ||||
S1 = S1*CSQ | ||||
AI = S1*CMPLX(1.0E0/SFAC,0.0E0) | ||||
RETURN | ||||
150 CONTINUE | ||||
S1 = -S1*Z | ||||
AI = S1*CMPLX(1.0E0/SFAC,0.0E0) | ||||
RETURN | ||||
160 CONTINUE | ||||
AA = 1.0E+3*R1MACH(1) | ||||
S1 = CMPLX(0.0E0,0.0E0) | ||||
IF (ID.EQ.1) GO TO 170 | ||||
IF (AZ.GT.AA) S1 = CMPLX(C2,0.0E0)*Z | ||||
AI = CMPLX(C1,0.0E0) - S1 | ||||
RETURN | ||||
170 CONTINUE | ||||
AI = -CMPLX(C2,0.0E0) | ||||
AA = SQRT(AA) | ||||
IF (AZ.GT.AA) S1 = Z*Z*CMPLX(0.5E0,0.0E0) | ||||
AI = AI + S1*CMPLX(C1,0.0E0) | ||||
RETURN | ||||
180 CONTINUE | ||||
NZ = 1 | ||||
AI = CMPLX(0.0E0,0.0E0) | ||||
RETURN | ||||
240 CONTINUE | ||||
NZ = 0 | ||||
IERR=2 | ||||
RETURN | ||||
250 CONTINUE | ||||
IF(NN.EQ.(-1)) GO TO 240 | ||||
NZ=0 | ||||
IERR=5 | ||||
RETURN | ||||
260 CONTINUE | ||||
IERR=4 | ||||
NZ=0 | ||||
RETURN | ||||
END | ||||