bfield2.f
676 lines
| 20.8 KiB
| text/x-fortran
|
FortranFixedLexer
r1601 | subroutine geobfield(tm,r,theta,phi,br,bt,bp,b) | |||
c*****evaluate bfield at geocentric coords r,theta,phi | ||||
c and return components of field in r,theta and phi directions | ||||
c and magnitude | ||||
c*****theta and phi are in radians, r is in km, b is in gauss | ||||
c =============================================================== | ||||
c | ||||
c essentially, this is an adaptation of igrfdemo. it interpolates | ||||
c smoothly between the coefficients from 1945 to 1985. | ||||
c | ||||
c subroutines: | ||||
c getshc, interpshc, extrapshc, shval3 | ||||
c | ||||
c igrfdemo is due to: | ||||
c a. zunde | ||||
c usgs, ms 964, box 25046 federal center, denver, co 80225 | ||||
c | ||||
c =============================================================== | ||||
character*8 filmod(17) | ||||
c character*31 fqual | ||||
dimension gh1(220), gh2(220), gha(224), ext(3), dtemod(17) | ||||
data ext /3*0./ | ||||
data filmod / 'dgrf45', 'dgrf50', | ||||
1 'dgrf55', 'dgrf60', 'dgrf65', | ||||
2 'dgrf70', 'dgrf75', 'dgrf80', | ||||
3 'dgrf85', 'dgrf90', 'dgrf95', | ||||
4 'dgrf00', 'dgrf05', 'dgrf10', | ||||
5 'dgrf15', 'igrf20', 'igrf20s'/ | ||||
c data fqual/"/usr/local/lib/faraday/bfmodel/"/ | ||||
data dtemod / 1945., 1950., 1955., 1960., | ||||
1 1965., 1970., 1975., 1980., 1985., 1990., 1995., 2000., | ||||
2 2005.,2010.,2015.,2020.,2025./ | ||||
data iu/98/,ndt/17/ | ||||
c data a2/40680925./, b2/40408588./ | ||||
data a2/40680631.6/, b2/40408296.0/ ! updated 2010 | ||||
c | ||||
data rtd/57.29577951/ | ||||
data tmp/0./,lp/0/ | ||||
character(1024) :: fqual_temp | ||||
character(:), allocatable :: fqual | ||||
call get_path(fqual_temp) | ||||
c write(*,*) "L_BEF: ", fqual_temp, "L_BEF_end" | ||||
fqual = TRIM(fqual_temp) | ||||
c write(*,*) "L: ", fqual, "L_end" | ||||
flat=90. - theta*rtd | ||||
flon=rtd*phi | ||||
c*****if previous time is not equal to current time | ||||
if(tm .ne. tmp)then | ||||
l=0 | ||||
C for i=1,ndt | ||||
DO 1010 i=1,ndt | ||||
C exit for if(tm .lt. dtemod(i)) | ||||
if(tm .lt. dtemod(i)) GO TO 1011 | ||||
l=i | ||||
C end for | ||||
1010 CONTINUE | ||||
1011 CONTINUE | ||||
c write(*,-)tm,l | ||||
if(l .eq. 0)then | ||||
write(*,fmt='(" geobfield: time is before earliest model.")') | ||||
stop | ||||
end if | ||||
if(l .eq. ndt)then | ||||
l=l-1 | ||||
write(*,fmt='(" geobfield: warning - extrapolating beyond ", | ||||
1 "last set of coefficients.")') | ||||
end if | ||||
if(l .ne. lp)then | ||||
c*********if previous epoch not the same, read in new coefs | ||||
c write(*,fmt='(" read coefs"))') | ||||
c write(*,*) "filmod", fqual//filmod(l) | ||||
call getshc2 (iu, fqual//filmod(l), nmax1, erad, gh1, ier) | ||||
c write(*,*) "AA: ", ier, filmod(l) | ||||
if(ier .ne. 0)then | ||||
write(*,fmt='(" geobfield: read error=",i2," on ",a)') | ||||
1 ier,filmod(l) | ||||
stop | ||||
end if | ||||
call getshc2 (iu, fqual//filmod(l+1), nmax2, erad, gh2, ier) | ||||
if(ier .ne. 0)then | ||||
write(*,fmt='(" geobfield: read error=",i2," on ",a)') | ||||
1 ier,filmod(l+1) | ||||
stop | ||||
end if | ||||
end if | ||||
if (l .lt. ndt-1) then | ||||
call interpshc (tm, dtemod(l), nmax1, gh1, dtemod(l+1), | ||||
1 nmax2, gh2, nmax, gha) | ||||
c write(*,fmt='(" interpolate"))') | ||||
else | ||||
call extrapshc (tm, dtemod(l), nmax1, gh1, nmax2, | ||||
1 gh2, nmax, gha) | ||||
c write(*,fmt='(" extrapolate"))') | ||||
end if | ||||
end if | ||||
c tmp=tm | ||||
c lp=l | ||||
call shval3(2,flat,flon,r,erad,a2,b2,nmax,gha,0,ext,x,y,z) | ||||
br=-z/100000. | ||||
bp=y/100000. | ||||
bt=-x/100000. | ||||
b=sqrt(br**2 + bp**2 + bt**2) | ||||
C write(*,*)flat,flon,r,erad,a2,b2,nmax,gha,ext | ||||
C write(*,*)tm,r,theta,phi,br,bt,bp,b | ||||
return | ||||
end | ||||
c | ||||
subroutine convrt(i, gdlat, gdalt, gclat, rkm) | ||||
c convrt converts between geodetic and geocentric coordinates. the | ||||
c reference geoid is that adopted by the iau in 1964. a=6378.16, | ||||
c b=6356.7746, f=1/298.25. the equations for conversion from | ||||
c geocentric to geodetic are from astron. j., vol 66, 1961, p. 15. | ||||
c i=1 geodetic to geocentric | ||||
c i=2 geocentric to geodetic | ||||
c gdlat geodetic latitude (degrees) | ||||
c gdalt altitude above geoid (km) | ||||
c gclat geocentric latitude (degrees) | ||||
c rkm geocentric radial distance (km) | ||||
c | ||||
c data a/6378.16/, ab2/1.0067397/, ep2/.0067397/ | ||||
c update 2010 | ||||
data a/6378.137/, ab2/1.0067396/, ep2/.0067396/ | ||||
data dtr/.0174532925199/ | ||||
if (i .eq. 1) then | ||||
c .....geodetic to geocentric..... | ||||
gdl = dtr*gdlat | ||||
sinlat = sin(gdl) | ||||
coslat = cos(gdl) | ||||
sl2 = sinlat*sinlat | ||||
cl2 = ab2*coslat | ||||
cl2 = cl2*cl2 | ||||
sinbet = sinlat/sqrt(sl2+cl2) | ||||
sb2 = amin1(sinbet*sinbet, 1.) | ||||
cosbet = sqrt(1. - sb2) | ||||
rgeoid = a/sqrt(1. + ep2*sb2) | ||||
x = rgeoid*cosbet + gdalt*coslat | ||||
y = rgeoid*sinbet + gdalt*sinlat | ||||
rkm = sqrt(x*x + y*y) | ||||
gclat = atan2(y,x)/dtr | ||||
return | ||||
else if (i .eq. 2) then | ||||
c .....geocentric to geodetic..... | ||||
rer = rkm/a | ||||
a2 = ((-1.4127348e-8/rer + .94339131e-8)/rer + | ||||
1 .33523288e-2)/rer | ||||
a4 = (((-1.2545063e-10/rer + .11760996e-9)/rer + | ||||
1 .11238084e-4)/rer - .2814244e-5)/rer | ||||
a6 = ((54.939685e-9/rer - 28.301730e-9)/rer + | ||||
1 3.5435979e-9)/rer | ||||
a8 = (((320./rer - 252.)/rer + 64.)/rer - 5.) | ||||
1 /rer*0.98008304e-12 | ||||
gcl = dtr*gclat | ||||
ccl = cos(gcl) | ||||
scl = sin(gcl) | ||||
s2cl = 2.*scl*ccl | ||||
c2cl = 2.*ccl*ccl - 1. | ||||
s4cl = 2.*s2cl*c2cl | ||||
c4cl = 2.*c2cl*c2cl - 1. | ||||
s8cl = 2.*s4cl*c4cl | ||||
s6cl = s2cl*c4cl + c2cl*s4cl | ||||
dltcl = s2cl*a2 + s4cl*a4 + s6cl*a6 + s8cl*a8 | ||||
gdlat = gclat + dltcl/dtr | ||||
gdalt = rkm - a/sqrt(1.+ep2*scl*scl) | ||||
return | ||||
end if | ||||
end | ||||
c | ||||
subroutine getshc2 (iu, fspec, nmax, erad, gh, ier) | ||||
c =============================================================== | ||||
c | ||||
c version 1.01 | ||||
c | ||||
c reads spherical harmonic coefficients from the specified | ||||
c file into an array. | ||||
c | ||||
c input: | ||||
c iu - logical unit number | ||||
c fspec - file specification | ||||
c | ||||
c output: | ||||
c nmax - maximum degree and order of model | ||||
c erad - earth's radius associated with the spherical | ||||
c harmonic coefficients, in the same units as | ||||
c elevation | ||||
c gh - schmidt quasi-normal internal spherical | ||||
c harmonic coefficients | ||||
c ier - error number: = 0, no error | ||||
c = -2, records out of order | ||||
c = fortran run-time error number | ||||
c | ||||
c a. zunde | ||||
c usgs, ms 964, box 25046 federal center, denver, co 80225 | ||||
c | ||||
c =============================================================== | ||||
character fspec*(*) | ||||
dimension gh(*) | ||||
c --------------------------------------------------------------- | ||||
c open coefficient file. read past first header record. | ||||
c read degree and order of model and earth's radius. | ||||
c --------------------------------------------------------------- | ||||
open (iu, file=fspec, status='old', iostat=ier, err=999 ) | ||||
read (iu, *, iostat=ier, err=999) | ||||
read (iu, *, iostat=ier, err=999) nmax, erad | ||||
c --------------------------------------------------------------- | ||||
c read the coefficient file, arranged as follows: | ||||
c | ||||
c n m g h | ||||
c ---------------------- | ||||
c / 1 0 gh(1) - | ||||
c / 1 1 gh(2) gh(3) | ||||
c / 2 0 gh(4) - | ||||
c / 2 1 gh(5) gh(6) | ||||
c nmax*(nmax+3)/2 / 2 2 gh(7) gh(8) | ||||
c records \ 3 0 gh(9) - | ||||
c \ . . . . | ||||
c \ . . . . | ||||
c nmax*(nmax+2) \ . . . . | ||||
c elements in gh \ nmax nmax . . | ||||
c | ||||
c n and m are, respectively, the degree and order of the | ||||
c coefficient. | ||||
c --------------------------------------------------------------- | ||||
i = 0 | ||||
C for nn = 1, nmax | ||||
DO 1010 nn = 1, nmax | ||||
C for mm = 0, nn | ||||
DO 1020 mm = 0, nn | ||||
read (iu, *, iostat=ier, err=999) n, m, g, h | ||||
c write(*,*) n,m,g,h,nn,nmax,mm,ier | ||||
if (nn .ne. n .or. mm .ne. m) then | ||||
ier = -2 | ||||
goto 999 | ||||
endif | ||||
i = i + 1 | ||||
gh(i) = g | ||||
if (m .ne. 0) then | ||||
i = i + 1 | ||||
gh(i) = h | ||||
endif | ||||
C end for | ||||
1020 CONTINUE | ||||
1021 CONTINUE | ||||
C end for | ||||
1010 CONTINUE | ||||
1011 CONTINUE | ||||
999 close (iu) | ||||
return | ||||
end | ||||
c | ||||
c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ bfieldsr ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||||
c | ||||
subroutine interpshc (date, dte1, nmax1, gh1, dte2, | ||||
1 nmax2, gh2, nmax, gh) | ||||
c =============================================================== | ||||
c | ||||
c version 1.01 | ||||
c | ||||
c interpolates linearly, in time, between two spherical | ||||
c harmonic models. | ||||
c | ||||
c input: | ||||
c date - date of resulting model (in decimal year) | ||||
c dte1 - date of earlier model | ||||
c nmax1 - maximum degree and order of earlier model | ||||
c gh1 - schmidt quasi-normal internal spherical | ||||
c harmonic coefficients of earlier model | ||||
c dte2 - date of later model | ||||
c nmax2 - maximum degree and order of later model | ||||
c gh2 - schmidt quasi-normal internal spherical | ||||
c harmonic coefficients of later model | ||||
c | ||||
c output: | ||||
c gh - coefficients of resulting model | ||||
c nmax - maximum degree and order of resulting model | ||||
c | ||||
c a. zunde | ||||
c usgs, ms 964, box 25046 federal center, denver, co 80225 | ||||
c | ||||
c =============================================================== | ||||
dimension gh1(*), gh2(*), gh(*) | ||||
c --------------------------------------------------------------- | ||||
c the coefficients (gh) of the resulting model, at date | ||||
c date, are computed by linearly interpolating between the | ||||
c coefficients of the earlier model (gh1), at date dte1, | ||||
c and those of the later model (gh2), at date dte2. if one | ||||
c model is smaller than the other, the interpolation is | ||||
c performed with the missing coefficients assumed to be 0. | ||||
c --------------------------------------------------------------- | ||||
factor = (date - dte1) / (dte2 - dte1) | ||||
if (nmax1 .eq. nmax2) then | ||||
k = nmax1 * (nmax1 + 2) | ||||
nmax = nmax1 | ||||
else if (nmax1 .gt. nmax2) then | ||||
k = nmax2 * (nmax2 + 2) | ||||
l = nmax1 * (nmax1 + 2) | ||||
C for i = k + 1, l | ||||
DO 1010 i = k + 1, l | ||||
gh(i) = gh1(i) + factor * (-gh1(i)) | ||||
C end for | ||||
1010 CONTINUE | ||||
1011 CONTINUE | ||||
nmax = nmax1 | ||||
else | ||||
k = nmax1 * (nmax1 + 2) | ||||
l = nmax2 * (nmax2 + 2) | ||||
C for i = k + 1, l | ||||
DO 1020 i = k + 1, l | ||||
gh(i) = factor * gh2(i) | ||||
C end for | ||||
1020 CONTINUE | ||||
1021 CONTINUE | ||||
nmax = nmax2 | ||||
endif | ||||
C for i = 1, k | ||||
DO 1030 i = 1, k | ||||
gh(i) = gh1(i) + factor * (gh2(i) - gh1(i)) | ||||
C end for | ||||
1030 CONTINUE | ||||
1031 CONTINUE | ||||
return | ||||
end | ||||
c | ||||
c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ bfieldsr ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||||
c | ||||
subroutine extrapshc (date, dte1, nmax1, gh1, nmax2, | ||||
1 gh2, nmax, gh) | ||||
c =============================================================== | ||||
c | ||||
c version 1.01 | ||||
c | ||||
c extrapolates linearly a spherical harmonic model with a | ||||
c rate-of-change model. | ||||
c | ||||
c input: | ||||
c date - date of resulting model (in decimal year) | ||||
c dte1 - date of base model | ||||
c nmax1 - maximum degree and order of base model | ||||
c gh1 - schmidt quasi-normal internal spherical | ||||
c harmonic coefficients of base model | ||||
c nmax2 - maximum degree and order of rate-of-change | ||||
c model | ||||
c gh2 - schmidt quasi-normal internal spherical | ||||
c harmonic coefficients of rate-of-change model | ||||
c | ||||
c output: | ||||
c gh - coefficients of resulting model | ||||
c nmax - maximum degree and order of resulting model | ||||
c | ||||
c a. zunde | ||||
c usgs, ms 964, box 25046 federal center, denver, co 80225 | ||||
c | ||||
c =============================================================== | ||||
dimension gh1(*), gh2(*), gh(*) | ||||
c --------------------------------------------------------------- | ||||
c the coefficients (gh) of the resulting model, at date | ||||
c date, are computed by linearly extrapolating the coef- | ||||
c ficients of the base model (gh1), at date dte1, using | ||||
c those of the rate-of-change model (gh2), at date dte2. if | ||||
c one model is smaller than the other, the extrapolation is | ||||
c performed with the missing coefficients assumed to be 0. | ||||
c --------------------------------------------------------------- | ||||
factor = (date - dte1) | ||||
if (nmax1 .eq. nmax2) then | ||||
k = nmax1 * (nmax1 + 2) | ||||
nmax = nmax1 | ||||
else if (nmax1 .gt. nmax2) then | ||||
k = nmax2 * (nmax2 + 2) | ||||
l = nmax1 * (nmax1 + 2) | ||||
C for i = k + 1, l | ||||
DO 1010 i = k + 1, l | ||||
gh(i) = gh1(i) | ||||
C end for | ||||
1010 CONTINUE | ||||
1011 CONTINUE | ||||
nmax = nmax1 | ||||
else | ||||
k = nmax1 * (nmax1 + 2) | ||||
l = nmax2 * (nmax2 + 2) | ||||
C for i = k + 1, l | ||||
DO 1020 i = k + 1, l | ||||
gh(i) = factor * gh2(i) | ||||
C end for | ||||
1020 CONTINUE | ||||
1021 CONTINUE | ||||
nmax = nmax2 | ||||
endif | ||||
C for i = 1, k | ||||
DO 1030 i = 1, k | ||||
gh(i) = gh1(i) + factor * gh2(i) | ||||
C end for | ||||
1030 CONTINUE | ||||
1031 CONTINUE | ||||
return | ||||
end | ||||
c | ||||
c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ bfieldsr ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||||
c | ||||
subroutine shval3 (igdgc, flat, flon, elev, erad, a2, b2, | ||||
1 nmax, gh, iext, ext, x, y, z) | ||||
c ================================================================ | ||||
c | ||||
c version 1.01 | ||||
c | ||||
c calculates field components from spherical harmonic (sh) | ||||
c models. | ||||
c | ||||
c input: | ||||
c igdgc - indicates coordinate system used; set equal to | ||||
c 1 if geodetic, 2 if geocentric | ||||
c flat - north latitude, in degrees | ||||
c flon - east longitude, in degrees | ||||
c elev - elevation above mean sea level (igdgc=1), or | ||||
c radial distance from earth's center (igdgc=2) | ||||
c erad - value of earth's radius associated with the sh | ||||
c coefficients, in same units as elev | ||||
c a2,b2 - squares of semi-major and semi-minor axes of | ||||
c the reference spheroid used for transforming | ||||
c between geodetic and geocentric coordinates or | ||||
c components | ||||
c nmax - maximum degree and order of coefficients | ||||
c gh - schmidt quasi-normal internal spherical | ||||
c harmonic coefficients | ||||
c iext - external coefficients flag (= 0 if none) | ||||
c ext - the three 1st-degree external coefficients | ||||
c (not used if iext = 0) | ||||
c | ||||
c output: | ||||
c x - northward component | ||||
c y - eastward component | ||||
c z - vertically-downward component | ||||
c | ||||
c based on subroutine "igrf" by d. r. barraclough and | ||||
c s. r. c. malin, report no. 71/1, institute of geological | ||||
c sciences, u.k. | ||||
c | ||||
c norman w. peddie, u.s. geological survey, mail stop 964, | ||||
c federal center, box 25046, denver, colorado 80225 | ||||
c | ||||
c ================================================================ | ||||
c the required sizes of the arrays used in this subroutine | ||||
c depend on the value of nmax. the minimum dimensions | ||||
c needed are indicated in the table below. (note that this | ||||
c version is dimensioned for nmax of 14 or less). | ||||
c | ||||
c minimum dimension | ||||
c -------------------------- | ||||
c nmax | ||||
dimension sl(14), cl(14) | ||||
c (nmax * (nmax + 3)) / 2 | ||||
dimension p(119), q(119) | ||||
c nmax * (nmax + 2) | ||||
dimension gh(224) | ||||
c 3 | ||||
dimension ext(3) | ||||
c ================================================================ | ||||
parameter (dtr = .01745329) | ||||
r = elev | ||||
slat = sin (flat * dtr) | ||||
if (90. - flat .lt. .001) then | ||||
c 300 ft from n. pole | ||||
aa = 89.999 | ||||
else if (90. + flat .lt. .001) then | ||||
c 300 ft from s. pole | ||||
aa = -89.999 | ||||
else | ||||
aa = flat | ||||
endif | ||||
clat = cos (aa * dtr) | ||||
sl(1) = sin (flon * dtr) | ||||
cl(1) = cos (flon * dtr) | ||||
x = 0. | ||||
y = 0. | ||||
z = 0. | ||||
sd = 0. | ||||
cd = 1. | ||||
n = 0 | ||||
l = 1 | ||||
m = 1 | ||||
npq = (nmax * (nmax + 3)) / 2 | ||||
if (igdgc .eq. 1) then | ||||
aa = a2 * clat * clat | ||||
bb = b2 * slat * slat | ||||
cc = aa + bb | ||||
dd = sqrt (cc) | ||||
r = sqrt (elev * (elev + 2. * dd) | ||||
1 + (a2 * aa + b2 * bb) / cc) | ||||
cd = (elev + dd) / r | ||||
sd = (a2 - b2) / dd * slat * clat / r | ||||
aa = slat | ||||
slat = slat * cd - clat * sd | ||||
clat = clat * cd + aa * sd | ||||
endif | ||||
ratio = erad / r | ||||
aa = sqrt (3.) | ||||
p(1) = 2. * slat | ||||
p(2) = 2. * clat | ||||
p(3) = 4.5 * slat * slat - 1.5 | ||||
p(4) = 3. * aa * clat * slat | ||||
q(1) = -clat | ||||
q(2) = slat | ||||
q(3) = -3. * clat * slat | ||||
q(4) = aa * (slat * slat - clat * clat) | ||||
C for k = 1, npq | ||||
DO 1010 k = 1, npq | ||||
if (n .lt. m) then | ||||
m = 0 | ||||
n = n + 1 | ||||
rr = ratio**(n + 2) | ||||
fn = n | ||||
endif | ||||
fm = m | ||||
if (k .ge. 5) then | ||||
if (m .eq. n) then | ||||
aa = sqrt (1. - .5 / fm) | ||||
j = k - n - 1 | ||||
p(k) = (1. + 1. / fm) * aa * clat * p(j) | ||||
q(k) = aa * (clat * q(j) + slat / fm * p(j)) | ||||
sl(m) = sl(m-1) * cl(1) + cl(m-1) * sl(1) | ||||
cl(m) = cl(m-1) * cl(1) - sl(m-1) * sl(1) | ||||
else | ||||
aa = sqrt (fn * fn - fm * fm) | ||||
bb = sqrt ((fn - 1.)**2 - fm * fm) / aa | ||||
cc = (2. * fn - 1.) / aa | ||||
i = k - n | ||||
j = k - 2 * n + 1 | ||||
p(k) = (fn + 1.) * (cc * slat / fn * p(i) - bb | ||||
1 / (fn - 1.) * p(j)) | ||||
q(k) = cc * (slat * q(i) - clat / fn * p(i)) | ||||
1 - bb * q(j) | ||||
endif | ||||
endif | ||||
aa = rr * gh(l) | ||||
if (m .eq. 0) then | ||||
x = x + aa * q(k) | ||||
z = z - aa * p(k) | ||||
l = l + 1 | ||||
else | ||||
bb = rr * gh(l+1) | ||||
cc = aa * cl(m) + bb * sl(m) | ||||
x = x + cc * q(k) | ||||
z = z - cc * p(k) | ||||
if (clat .gt. 0.) then | ||||
y = y + (aa * sl(m) - bb * cl(m)) * fm * p(k) | ||||
1 / ((fn + 1.) * clat) | ||||
else | ||||
y = y + (aa * sl(m) - bb * cl(m)) * q(k) | ||||
1 * slat | ||||
endif | ||||
l = l + 2 | ||||
endif | ||||
m = m + 1 | ||||
C end for | ||||
1010 CONTINUE | ||||
1011 CONTINUE | ||||
if (iext .ne. 0) then | ||||
aa = ext(2) * cl(1) + ext(3) * sl(1) | ||||
x = x - ext(1) * clat + aa * slat | ||||
y = y + ext(2) * sl(1) - ext(3) * cl(1) | ||||
z = z + ext(1) * slat + aa * clat | ||||
endif | ||||
aa = x | ||||
x = x * cd + z * sd | ||||
z = z * cd - aa * sd | ||||
return | ||||
end | ||||
c | ||||
c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ bfieldsr ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||||
c | ||||
subroutine dihf (x, y, z, d, i, h, f) | ||||
c =============================================================== | ||||
c | ||||
c version 1.01 | ||||
c | ||||
c computes the geomagnetic elements d, i, h, and f from | ||||
c x, y, and z. | ||||
c | ||||
c input: | ||||
c x - northward component | ||||
c y - eastward component | ||||
c z - vertically-downward component | ||||
c | ||||
c output: | ||||
c d - declination | ||||
c i - inclination | ||||
c h - horizontal intensity | ||||
c f - total intensity | ||||
c | ||||
c a. zunde | ||||
c usgs, ms 964, box 25046 federal center, denver, co 80225 | ||||
c | ||||
c =============================================================== | ||||
real i | ||||
parameter ( sn = 0.0001 ) | ||||
c --------------------------------------------------------------- | ||||
c if d and i cannot be determined, set equal to 999.0. | ||||
c --------------------------------------------------------------- | ||||
h2 = x*x + y*y | ||||
h = sqrt (h2) | ||||
f = sqrt (h2 + z*z) | ||||
if (f .lt. sn) then | ||||
d = 999. | ||||
i = 999. | ||||
else | ||||
i = atan2 (z, h) | ||||
if (h .lt. sn) then | ||||
d = 999. | ||||
else | ||||
hpx = h + x | ||||
if (hpx .lt. sn) then | ||||
d = 180. | ||||
else | ||||
d = 2. * atan2 (y, hpx) | ||||
endif | ||||
endif | ||||
endif | ||||
return | ||||
end | ||||