cbesi.f
261 lines
| 11.3 KiB
| text/x-fortran
|
FortranFixedLexer
r1601 | *DECK CBESI | |||
SUBROUTINE CBESI (Z, FNU, KODE, N, CY, NZ, IERR) | ||||
C***BEGIN PROLOGUE CBESI | ||||
C***PURPOSE Compute a sequence of the Bessel functions I(a,z) for | ||||
C complex argument z and real nonnegative orders a=b,b+1, | ||||
C b+2,... where b>0. A scaling option is available to | ||||
C help avoid overflow. | ||||
C***LIBRARY SLATEC | ||||
C***CATEGORY C10B4 | ||||
C***TYPE COMPLEX (CBESI-C, ZBESI-C) | ||||
C***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT, I BESSEL FUNCTIONS, | ||||
C MODIFIED BESSEL FUNCTIONS | ||||
C***AUTHOR Amos, D. E., (SNL) | ||||
C***DESCRIPTION | ||||
C | ||||
C On KODE=1, CBESI computes an N-member sequence of complex | ||||
C Bessel functions CY(L)=I(FNU+L-1,Z) for real nonnegative | ||||
C orders FNU+L-1, L=1,...,N and complex Z in the cut plane | ||||
C -pi<arg(Z)<=pi. On KODE=2, CBESI returns the scaled functions | ||||
C | ||||
C CY(L) = exp(-abs(X))*I(FNU+L-1,Z), L=1,...,N and X=Re(Z) | ||||
C | ||||
C which removes the exponential growth in both the left and | ||||
C right half-planes as Z goes to infinity. | ||||
C | ||||
C Input | ||||
C Z - Argument of type COMPLEX | ||||
C FNU - Initial order of type REAL, FNU>=0 | ||||
C KODE - A parameter to indicate the scaling option | ||||
C KODE=1 returns | ||||
C CY(L)=I(FNU+L-1,Z), L=1,...,N | ||||
C =2 returns | ||||
C CY(L)=exp(-abs(X))*I(FNU+L-1,Z), L=1,...,N | ||||
C where X=Re(Z) | ||||
C N - Number of terms in the sequence, N>=1 | ||||
C | ||||
C Output | ||||
C CY - Result vector of type COMPLEX | ||||
C NZ - Number of underflows set to zero | ||||
C NZ=0 Normal return | ||||
C NZ>0 CY(L)=0, L=N-NZ+1,...,N | ||||
C IERR - Error flag | ||||
C IERR=0 Normal return - COMPUTATION COMPLETED | ||||
C IERR=1 Input error - NO COMPUTATION | ||||
C IERR=2 Overflow - NO COMPUTATION | ||||
C (Re(Z) too large on KODE=1) | ||||
C IERR=3 Precision warning - COMPUTATION COMPLETED | ||||
C (Result has half precision or less | ||||
C because abs(Z) or FNU+N-1 is large) | ||||
C IERR=4 Precision error - NO COMPUTATION | ||||
C (Result has no precision because | ||||
C abs(Z) or FNU+N-1 is too large) | ||||
C IERR=5 Algorithmic error - NO COMPUTATION | ||||
C (Termination condition not met) | ||||
C | ||||
C *Long Description: | ||||
C | ||||
C The computation of I(a,z) is carried out by the power series | ||||
C for small abs(z), the asymptotic expansion for large abs(z), | ||||
C the Miller algorithm normalized by the Wronskian and a | ||||
C Neumann series for intermediate magnitudes of z, and the | ||||
C uniform asymptotic expansions for I(a,z) and J(a,z) for | ||||
C large orders a. Backward recurrence is used to generate | ||||
C sequences or reduce orders when necessary. | ||||
C | ||||
C The calculations above are done in the right half plane and | ||||
C continued into the left half plane by the formula | ||||
C | ||||
C I(a,z*exp(t)) = exp(t*a)*I(a,z), Re(z)>0 | ||||
C t = i*pi or -i*pi | ||||
C | ||||
C For negative orders, the formula | ||||
C | ||||
C I(-a,z) = I(a,z) + (2/pi)*sin(pi*a)*K(a,z) | ||||
C | ||||
C can be used. However, for large orders close to integers the | ||||
C the function changes radically. When a is a large positive | ||||
C integer, the magnitude of I(-a,z)=I(a,z) is a large | ||||
C negative power of ten. But when a is not an integer, | ||||
C K(a,z) dominates in magnitude with a large positive power of | ||||
C ten and the most that the second term can be reduced is by | ||||
C unit roundoff from the coefficient. Thus, wide changes can | ||||
C occur within unit roundoff of a large integer for a. Here, | ||||
C large means a>abs(z). | ||||
C | ||||
C In most complex variable computation, one must evaluate ele- | ||||
C mentary functions. When the magnitude of Z or FNU+N-1 is | ||||
C large, losses of significance by argument reduction occur. | ||||
C Consequently, if either one exceeds U1=SQRT(0.5/UR), then | ||||
C losses exceeding half precision are likely and an error flag | ||||
C IERR=3 is triggered where UR=R1MACH(4)=UNIT ROUNDOFF. Also, | ||||
C if either is larger than U2=0.5/UR, then all significance is | ||||
C lost and IERR=4. In order to use the INT function, arguments | ||||
C must be further restricted not to exceed the largest machine | ||||
C integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1 | ||||
C is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and | ||||
C U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision | ||||
C and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This | ||||
C makes U2 limiting in single precision and U3 limiting in | ||||
C double precision. This means that one can expect to retain, | ||||
C in the worst cases on IEEE machines, no digits in single pre- | ||||
C cision and only 6 digits in double precision. Similar con- | ||||
C siderations hold for other machines. | ||||
C | ||||
C The approximate relative error in the magnitude of a complex | ||||
C Bessel function can be expressed as P*10**S where P=MAX(UNIT | ||||
C ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre- | ||||
C sents the increase in error due to argument reduction in the | ||||
C elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))), | ||||
C ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF | ||||
C ABS(Z),ABS(EXPONENT OF FNU)) ). However, the phase angle may | ||||
C have only absolute accuracy. This is most likely to occur | ||||
C when one component (in magnitude) is larger than the other by | ||||
C several orders of magnitude. If one component is 10**K larger | ||||
C than the other, then one can expect only MAX(ABS(LOG10(P))-K, | ||||
C 0) significant digits; or, stated another way, when K exceeds | ||||
C the exponent of P, no significant digits remain in the smaller | ||||
C component. However, the phase angle retains absolute accuracy | ||||
C because, in complex arithmetic with precision P, the smaller | ||||
C component will not (as a rule) decrease below P times the | ||||
C magnitude of the larger component. In these extreme cases, | ||||
C the principal phase angle is on the order of +P, -P, PI/2-P, | ||||
C or -PI/2+P. | ||||
C | ||||
C***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe- | ||||
C matical Functions, National Bureau of Standards | ||||
C Applied Mathematics Series 55, U. S. Department | ||||
C of Commerce, Tenth Printing (1972) or later. | ||||
C 2. D. E. Amos, Computation of Bessel Functions of | ||||
C Complex Argument, Report SAND83-0086, Sandia National | ||||
C Laboratories, Albuquerque, NM, May 1983. | ||||
C 3. D. E. Amos, Computation of Bessel Functions of | ||||
C Complex Argument and Large Order, Report SAND83-0643, | ||||
C Sandia National Laboratories, Albuquerque, NM, May | ||||
C 1983. | ||||
C 4. D. E. Amos, A Subroutine Package for Bessel Functions | ||||
C of a Complex Argument and Nonnegative Order, Report | ||||
C SAND85-1018, Sandia National Laboratory, Albuquerque, | ||||
C NM, May 1985. | ||||
C 5. D. E. Amos, A portable package for Bessel functions | ||||
C of a complex argument and nonnegative order, ACM | ||||
C Transactions on Mathematical Software, 12 (September | ||||
C 1986), pp. 265-273. | ||||
C | ||||
C***ROUTINES CALLED CBINU, I1MACH, R1MACH | ||||
C***REVISION HISTORY (YYMMDD) | ||||
C 830501 DATE WRITTEN | ||||
C 890801 REVISION DATE from Version 3.2 | ||||
C 910415 Prologue converted to Version 4.0 format. (BAB) | ||||
C 920128 Category corrected. (WRB) | ||||
C 920811 Prologue revised. (DWL) | ||||
C***END PROLOGUE CBESI | ||||
COMPLEX CONE, CSGN, CY, Z, ZN | ||||
REAL AA, ALIM, ARG, DIG, ELIM, FNU, FNUL, PI, RL, R1M5, S1, S2, | ||||
* TOL, XX, YY, R1MACH, AZ, FN, BB, ASCLE, RTOL, ATOL | ||||
INTEGER I, IERR, INU, K, KODE, K1, K2, N, NN, NZ, I1MACH | ||||
DIMENSION CY(N) | ||||
DATA PI /3.14159265358979324E0/ | ||||
DATA CONE / (1.0E0,0.0E0) / | ||||
C | ||||
C***FIRST EXECUTABLE STATEMENT CBESI | ||||
IERR = 0 | ||||
NZ=0 | ||||
IF (FNU.LT.0.0E0) IERR=1 | ||||
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1 | ||||
IF (N.LT.1) IERR=1 | ||||
IF (IERR.NE.0) RETURN | ||||
XX = REAL(Z) | ||||
YY = AIMAG(Z) | ||||
C----------------------------------------------------------------------- | ||||
C SET PARAMETERS RELATED TO MACHINE CONSTANTS. | ||||
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18. | ||||
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT. | ||||
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND | ||||
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR | ||||
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE. | ||||
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z. | ||||
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG). | ||||
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU. | ||||
C----------------------------------------------------------------------- | ||||
TOL = MAX(R1MACH(4),1.0E-18) | ||||
K1 = I1MACH(12) | ||||
K2 = I1MACH(13) | ||||
R1M5 = R1MACH(5) | ||||
K = MIN(ABS(K1),ABS(K2)) | ||||
ELIM = 2.303E0*(K*R1M5-3.0E0) | ||||
K1 = I1MACH(11) - 1 | ||||
AA = R1M5*K1 | ||||
DIG = MIN(AA,18.0E0) | ||||
AA = AA*2.303E0 | ||||
ALIM = ELIM + MAX(-AA,-41.45E0) | ||||
RL = 1.2E0*DIG + 3.0E0 | ||||
FNUL = 10.0E0 + 6.0E0*(DIG-3.0E0) | ||||
AZ = ABS(Z) | ||||
C----------------------------------------------------------------------- | ||||
C TEST FOR RANGE | ||||
C----------------------------------------------------------------------- | ||||
AA = 0.5E0/TOL | ||||
BB=I1MACH(9)*0.5E0 | ||||
AA=MIN(AA,BB) | ||||
IF(AZ.GT.AA) GO TO 140 | ||||
FN=FNU+(N-1) | ||||
IF(FN.GT.AA) GO TO 140 | ||||
AA=SQRT(AA) | ||||
IF(AZ.GT.AA) IERR=3 | ||||
IF(FN.GT.AA) IERR=3 | ||||
ZN = Z | ||||
CSGN = CONE | ||||
IF (XX.GE.0.0E0) GO TO 40 | ||||
ZN = -Z | ||||
C----------------------------------------------------------------------- | ||||
C CALCULATE CSGN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE | ||||
C WHEN FNU IS LARGE | ||||
C----------------------------------------------------------------------- | ||||
INU = FNU | ||||
ARG = (FNU-INU)*PI | ||||
IF (YY.LT.0.0E0) ARG = -ARG | ||||
S1 = COS(ARG) | ||||
S2 = SIN(ARG) | ||||
CSGN = CMPLX(S1,S2) | ||||
IF (MOD(INU,2).EQ.1) CSGN = -CSGN | ||||
40 CONTINUE | ||||
CALL CBINU(ZN, FNU, KODE, N, CY, NZ, RL, FNUL, TOL, ELIM, ALIM) | ||||
IF (NZ.LT.0) GO TO 120 | ||||
IF (XX.GE.0.0E0) RETURN | ||||
C----------------------------------------------------------------------- | ||||
C ANALYTIC CONTINUATION TO THE LEFT HALF PLANE | ||||
C----------------------------------------------------------------------- | ||||
NN = N - NZ | ||||
IF (NN.EQ.0) RETURN | ||||
RTOL = 1.0E0/TOL | ||||
ASCLE = R1MACH(1)*RTOL*1.0E+3 | ||||
DO 50 I=1,NN | ||||
C CY(I) = CY(I)*CSGN | ||||
ZN=CY(I) | ||||
AA=REAL(ZN) | ||||
BB=AIMAG(ZN) | ||||
ATOL=1.0E0 | ||||
IF (MAX(ABS(AA),ABS(BB)).GT.ASCLE) GO TO 55 | ||||
ZN = ZN*CMPLX(RTOL,0.0E0) | ||||
ATOL = TOL | ||||
55 CONTINUE | ||||
ZN = ZN*CSGN | ||||
CY(I) = ZN*CMPLX(ATOL,0.0E0) | ||||
CSGN = -CSGN | ||||
50 CONTINUE | ||||
RETURN | ||||
120 CONTINUE | ||||
IF(NZ.EQ.(-2)) GO TO 130 | ||||
NZ = 0 | ||||
IERR=2 | ||||
RETURN | ||||
130 CONTINUE | ||||
NZ=0 | ||||
IERR=5 | ||||
RETURN | ||||
140 CONTINUE | ||||
NZ=0 | ||||
IERR=4 | ||||
RETURN | ||||
END | ||||