##// END OF EJS Templates
Block360Update
Block360Update

File last commit:

r1439:14a3ab7942a7
r1439:14a3ab7942a7
Show More
jroplot_parameters.py
2378 lines | 94.5 KiB | text/x-python | PythonLexer
Julio Valdez
Processing Modules added:...
r502 import os
import datetime
import numpy
Block360Update
r1439 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
ebocanegra
15/08/2017
r1001
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 from schainpy.model.graphics.jroplot_base import Plot, plt
Danny Scipión
Se inclute SpectralMoments y DoubleGaussianPlot de tipo SpectraPlot
r1358 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 from schainpy.utils import log
19 DE AGOSTO 2021 RM
r1367 # libreria wradlib
import wradlib as wrl
ebocanegra
15/08/2017
r1001
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 EARTH_RADIUS = 6.3710e3
ebocanegra
15/08/2017
r1001
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 def ll2xy(lat1, lon1, lat2, lon2):
ebocanegra
15/08/2017
r1001
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 p = 0.017453292519943295
a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
r = 12742 * numpy.arcsin(numpy.sqrt(a))
theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
* numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
theta = -theta + numpy.pi/2
return r*numpy.cos(theta), r*numpy.sin(theta)
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 def km2deg(km):
'''
Convert distance in km to degrees
'''
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 return numpy.rad2deg(km/EARTH_RADIUS)
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 class SpectralMomentsPlot(SpectraPlot):
'''
Plot for Spectral Moments
'''
CODE = 'spc_moments'
Danny Scipión
Se inclute SpectralMoments y DoubleGaussianPlot de tipo SpectraPlot
r1358 # colormap = 'jet'
# plot_type = 'pcolor'
class DobleGaussianPlot(SpectraPlot):
'''
Plot for Double Gaussian Plot
'''
CODE = 'gaussian_fit'
# colormap = 'jet'
# plot_type = 'pcolor'
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Danny Scipión
Se inclute SpectralMoments y DoubleGaussianPlot de tipo SpectraPlot
r1358 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
'''
Plot SpectraCut with Double Gaussian Fit
'''
CODE = 'cut_gaussian_fit'
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 class SnrPlot(RTIPlot):
'''
Plot for SNR Data
'''
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 CODE = 'snr'
colormap = 'jet'
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Add update method to plots to pass data (no more changes in jrodata)
r1343 def update(self, dataOut):
data = {
19 DE AGOSTO 2021 RM
r1367 'snr': 10*numpy.log10(dataOut.data_snr)
Add update method to plots to pass data (no more changes in jrodata)
r1343 }
return data, {}
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 class DopplerPlot(RTIPlot):
'''
Plot for DOPPLER Data (1st moment)
'''
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 CODE = 'dop'
colormap = 'jet'
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Add update method to plots to pass data (no more changes in jrodata)
r1343 def update(self, dataOut):
data = {
19 DE AGOSTO 2021 RM
r1367 'dop': 10*numpy.log10(dataOut.data_dop)
Add update method to plots to pass data (no more changes in jrodata)
r1343 }
return data, {}
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 class PowerPlot(RTIPlot):
'''
Plot for Power Data (0 moment)
'''
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 CODE = 'pow'
colormap = 'jet'
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Add update method to plots to pass data (no more changes in jrodata)
r1343 def update(self, dataOut):
data = {
19 DE AGOSTO 2021 RM
r1367 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
Add update method to plots to pass data (no more changes in jrodata)
r1343 }
return data, {}
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 class SpectralWidthPlot(RTIPlot):
'''
Plot for Spectral Width Data (2nd moment)
'''
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 CODE = 'width'
colormap = 'jet'
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Add update method to plots to pass data (no more changes in jrodata)
r1343 def update(self, dataOut):
data = {
'width': dataOut.data_width
}
return data, {}
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 class SkyMapPlot(Plot):
'''
Plot for meteors detection data
'''
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 CODE = 'param'
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 def setup(self):
Julio Valdez
Processing Modules added:...
r502
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 self.ncols = 1
self.nrows = 1
self.width = 7.2
self.height = 7.2
self.nplots = 1
self.xlabel = 'Zonal Zenith Angle (deg)'
self.ylabel = 'Meridional Zenith Angle (deg)'
self.polar = True
self.ymin = -180
self.ymax = 180
self.colorbar = False
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 def plot(self):
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 arrayParameters = numpy.concatenate(self.data['param'])
error = arrayParameters[:, -1]
indValid = numpy.where(error == 0)[0]
finalMeteor = arrayParameters[indValid, :]
finalAzimuth = finalMeteor[:, 3]
finalZenith = finalMeteor[:, 4]
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 x = finalAzimuth * numpy.pi / 180
y = finalZenith
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 ax = self.axes[0]
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 if ax.firsttime:
ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
Julio Valdez
-Parameters Plot corrected...
r832 else:
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 ax.plot.set_data(x, y)
dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
dt2,
len(x))
self.titles[0] = title
Add update method to plots to pass data (no more changes in jrodata)
r1343 class GenericRTIPlot(Plot):
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 '''
Add update method to plots to pass data (no more changes in jrodata)
r1343 Plot for data_xxxx object
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 '''
CODE = 'param'
Add update method to plots to pass data (no more changes in jrodata)
r1343 colormap = 'viridis'
plot_type = 'pcolorbuffer'
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285
def setup(self):
self.xaxis = 'time'
self.ncols = 1
Fix bugs in SpectraCutPlot, GenericRTIPlot and saving when using throttle
r1359 self.nrows = self.data.shape('param')[0]
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 self.nplots = self.nrows
Juan C. Espinoza
Fix ParametersPlot & BLTRParamReader
r1322 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
19 DE AGOSTO 2021 RM
r1367
Juan C. Espinoza
Fix ParametersPlot & BLTRParamReader
r1322 if not self.xlabel:
self.xlabel = 'Time'
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285
Danny Scipión
Se inclute SpectralMoments y DoubleGaussianPlot de tipo SpectraPlot
r1358 self.ylabel = 'Range [km]'
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 if not self.titles:
Fix h5py Dataset value attribute deprecation
r1360 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285
Add update method to plots to pass data (no more changes in jrodata)
r1343 def update(self, dataOut):
data = {
Fix bugs in SpectraCutPlot, GenericRTIPlot and saving when using throttle
r1359 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
Add update method to plots to pass data (no more changes in jrodata)
r1343 }
meta = {}
return data, meta
19 DE AGOSTO 2021 RM
r1367
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 def plot(self):
Add update method to plots to pass data (no more changes in jrodata)
r1343 # self.data.normalize_heights()
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 self.x = self.data.times
Add update method to plots to pass data (no more changes in jrodata)
r1343 self.y = self.data.yrange
Fix bugs in SpectraCutPlot, GenericRTIPlot and saving when using throttle
r1359 self.z = self.data['param']
david c
update de procesamiento y revision de ploteo
r1378 self.z = 10*numpy.log10(self.z)
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 self.z = numpy.ma.masked_invalid(self.z)
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 if self.decimation is None:
x, y, z = self.fill_gaps(self.x, self.y, self.z)
Julio Valdez
-Added Radial Velocity graphic ...
r511 else:
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 x, y, z = self.fill_gaps(*self.decimate())
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 for n, ax in enumerate(self.axes):
Miguel Valdez
parametrs plotting: SNR and DOP arguments have been added
r588
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 self.zmax = self.zmax if self.zmax is not None else numpy.max(
self.z[n])
self.zmin = self.zmin if self.zmin is not None else numpy.min(
self.z[n])
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 if ax.firsttime:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n]
)
else:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.collections.remove(ax.collections[0])
ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n]
)
class PolarMapPlot(Plot):
'''
Plot for weather radar
'''
CODE = 'param'
colormap = 'seismic'
def setup(self):
self.ncols = 1
self.nrows = 1
self.width = 9
self.height = 8
self.mode = self.data.meta['mode']
if self.channels is not None:
self.nplots = len(self.channels)
self.nrows = len(self.channels)
MADReader support for HDF5 (mad2 & mad3)
r1065 else:
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 self.nplots = self.data.shape(self.CODE)[0]
self.nrows = self.nplots
self.channels = list(range(self.nplots))
if self.mode == 'E':
self.xlabel = 'Longitude'
self.ylabel = 'Latitude'
else:
self.xlabel = 'Range (km)'
self.ylabel = 'Height (km)'
self.bgcolor = 'white'
self.cb_labels = self.data.meta['units']
self.lat = self.data.meta['latitude']
self.lon = self.data.meta['longitude']
self.xmin, self.xmax = float(
km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
self.ymin, self.ymax = float(
km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
# self.polar = True
def plot(self):
for n, ax in enumerate(self.axes):
data = self.data['param'][self.channels[n]]
zeniths = numpy.linspace(
0, self.data.meta['max_range'], data.shape[1])
if self.mode == 'E':
Add update method to plots to pass data (no more changes in jrodata)
r1343 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 r, theta = numpy.meshgrid(zeniths, azimuths)
x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
x = km2deg(x) + self.lon
y = km2deg(y) + self.lat
MADReader support for HDF5 (mad2 & mad3)
r1065 else:
Add update method to plots to pass data (no more changes in jrodata)
r1343 azimuths = numpy.radians(self.data.yrange)
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 r, theta = numpy.meshgrid(zeniths, azimuths)
x, y = r*numpy.cos(theta), r*numpy.sin(theta)
self.y = zeniths
if ax.firsttime:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n])
Julio Valdez
First Spectral Fitting and EW Drifts operative module inside Signal Chain TRUNK
r513 else:
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.collections.remove(ax.collections[0])
ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n])
if self.mode == 'A':
continue
# plot district names
f = open('/data/workspace/schain_scripts/distrito.csv')
for line in f:
label, lon, lat = [s.strip() for s in line.split(',') if s]
lat = float(lat)
lon = float(lon)
# ax.plot(lon, lat, '.b', ms=2)
ax.text(lon, lat, label.decode('utf8'), ha='center',
va='bottom', size='8', color='black')
# plot limites
limites = []
tmp = []
for line in open('/data/workspace/schain_scripts/lima.csv'):
if '#' in line:
if tmp:
limites.append(tmp)
tmp = []
continue
values = line.strip().split(',')
tmp.append((float(values[0]), float(values[1])))
for points in limites:
ax.add_patch(
Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
# plot Cuencas
for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
values = [line.strip().split(',') for line in f]
points = [(float(s[0]), float(s[1])) for s in values]
ax.add_patch(Polygon(points, ec='b', fc='none'))
# plot grid
for r in (15, 30, 45, 60):
ax.add_artist(plt.Circle((self.lon, self.lat),
km2deg(r), color='0.6', fill=False, lw=0.2))
ax.text(
self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
'{}km'.format(r),
ha='center', va='bottom', size='8', color='0.6', weight='heavy')
if self.mode == 'E':
title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
label = 'E{:02d}'.format(int(self.data.meta['elevation']))
Julio Valdez
data...
r608 else:
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
Juan C. Espinoza
Update and fix plot modules #TODO: correlation & spectraheis
r1285 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
self.titles = ['{} {}'.format(
self.data.parameters[x], title) for x in self.channels]
José Chávez
cambiados los kwargs para cada operacion/unidad de procesamiento
r897
19 DE AGOSTO 2021 RM
r1367 class WeatherPlot(Plot):
CODE = 'weather'
plot_name = 'weather'
plot_type = 'ppistyle'
buffering = False
def setup(self):
self.ncols = 1
self.nrows = 1
avaldezp
2 canales plot
r1435 self.width =8
self.height =8
19 DE AGOSTO 2021 RM
r1367 self.nplots= 1
self.ylabel= 'Range [Km]'
self.titles= ['Weather']
self.colorbar=False
self.ini =0
self.len_azi =0
self.buffer_ini = None
self.buffer_azi = None
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
self.flag =0
self.indicador= 0
avaldezp
last 30-16:19
r1405 self.last_data_azi = None
self.val_mean = None
19 DE AGOSTO 2021 RM
r1367
def update(self, dataOut):
data = {}
meta = {}
valid en jroproc_parameters
r1394 if hasattr(dataOut, 'dataPP_POWER'):
factor = 1
if hasattr(dataOut, 'nFFTPoints'):
factor = dataOut.normFactor
avaldezp
fix RHI UPDATE 15
r1434 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
avaldezp
last 30-16:19
r1405 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
19 DE AGOSTO 2021 RM
r1367 data['azi'] = dataOut.data_azi
avaldezp
fix white plot
r1410 data['ele'] = dataOut.data_ele
19 DE AGOSTO 2021 RM
r1367 return data, meta
avaldezp
correcion de escritura 360 y ploteo completo de PP y Spectro
r1407 def get2List(self,angulos):
list1=[]
list2=[]
for i in reversed(range(len(angulos))):
diff_ = angulos[i]-angulos[i-1]
if diff_ >1.5:
list1.append(i-1)
list2.append(diff_)
return list(reversed(list1)),list(reversed(list2))
def fixData360(self,list_,ang_):
if list_[0]==-1:
vec = numpy.where(ang_<ang_[0])
ang_[vec] = ang_[vec]+360
return ang_
return ang_
def fixData360HL(self,angulos):
vec = numpy.where(angulos>=360)
angulos[vec]=angulos[vec]-360
return angulos
def search_pos(self,pos,list_):
for i in range(len(list_)):
if pos == list_[i]:
return True,i
i=None
return False,i
def fixDataComp(self,ang_,list1_,list2_):
size = len(ang_)
size2 = 0
for i in range(len(list2_)):
avaldezp
work now
r1409 size2=size2+round(list2_[i])-1
avaldezp
correcion de escritura 360 y ploteo completo de PP y Spectro
r1407 new_size= size+size2
ang_new = numpy.zeros(new_size)
ang_new2 = numpy.zeros(new_size)
tmp = 0
c = 0
for i in range(len(ang_)):
ang_new[tmp +c] = ang_[i]
ang_new2[tmp+c] = ang_[i]
condition , value = self.search_pos(i,list1_)
if condition:
pos = tmp + c + 1
avaldezp
fix white plot
r1410 for k in range(round(list2_[value])-1):
avaldezp
correcion de escritura 360 y ploteo completo de PP y Spectro
r1407 ang_new[pos+k] = ang_new[pos+k-1]+1
ang_new2[pos+k] = numpy.nan
tmp = pos +k
c = 0
c=c+1
return ang_new,ang_new2
def globalCheckPED(self,angulos):
l1,l2 = self.get2List(angulos)
if len(l1)>0:
angulos2 = self.fixData360(list_=l1,ang_=angulos)
l1,l2 = self.get2List(angulos2)
ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
ang1_ = self.fixData360HL(ang1_)
ang2_ = self.fixData360HL(ang2_)
else:
ang1_= angulos
ang2_= angulos
return ang1_,ang2_
avaldezp
last 30-16:19
r1405 def analizeDATA(self,data_azi):
list1 = []
list2 = []
dat = data_azi
for i in reversed(range(1,len(dat))):
if dat[i]>dat[i-1]:
diff = int(dat[i])-int(dat[i-1])
else:
diff = 360+int(dat[i])-int(dat[i-1])
if diff > 1:
list1.append(i-1)
list2.append(diff-1)
return list1,list2
def fixDATANEW(self,data_azi,data_weather):
list1,list2 = self.analizeDATA(data_azi)
if len(list1)== 0:
return data_azi,data_weather
else:
resize = 0
for i in range(len(list2)):
resize= resize + list2[i]
new_data_azi = numpy.resize(data_azi,resize)
new_data_weather= numpy.resize(date_weather,resize)
for i in range(len(list2)):
j=0
position=list1[i]+1
for j in range(list2[i]):
new_data_azi[position+j]=new_data_azi[position+j-1]+1
return new_data_azi
def fixDATA(self,data_azi):
data=data_azi
for i in range(len(data)):
if numpy.isnan(data[i]):
data[i]=data[i-1]+1
return data
def replaceNAN(self,data_weather,data_azi,val):
data= data_azi
data_T= data_weather
avaldezp
fix white plot
r1410 if data.shape[0]> data_T.shape[0]:
data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
c = 0
for i in range(len(data)):
if numpy.isnan(data[i]):
data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
else:
data_N[i,:]=data_T[c,:]
avaldezp
last
r1430 c=c+1
return data_N
avaldezp
fix white plot
r1410 else:
for i in range(len(data)):
if numpy.isnan(data[i]):
data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
return data_T
avaldezp
last 30-16:19
r1405
update change RM
r1384 def const_ploteo(self,data_weather,data_azi,step,res):
if self.ini==0:
avaldezp
update y revision RHI
r1411 #-------
update change RM
r1384 n = (360/res)-len(data_azi)
avaldezp
correcion de escritura 360 y ploteo completo de PP y Spectro
r1407 #--------------------- new -------------------------
data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
#------------------------
avaldezp
last 30-16:19
r1405 start = data_azi_new[-1] + res
end = data_azi_new[0] - res
avaldezp
update y revision RHI
r1411 #------ new
avaldezp
last 30-16:19
r1405 self.last_data_azi = end
update change RM
r1384 if start>end:
end = end + 360
azi_vacia = numpy.linspace(start,end,int(n))
azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
avaldezp
last 30-16:19
r1405 data_azi = numpy.hstack((data_azi_new,azi_vacia))
update change RM
r1384 # RADAR
avaldezp
last 30-16:19
r1405 val_mean = numpy.mean(data_weather[:,-1])
self.val_mean = val_mean
update change RM
r1384 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
avaldezp
last 30-16:19
r1405 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
update change RM
r1384 data_weather = numpy.vstack((data_weather,data_weather_cmp))
else:
# azimuth
flag=0
start_azi = self.res_azi[0]
avaldezp
correcion de escritura 360 y ploteo completo de PP y Spectro
r1407 #-----------new------------
data_azi ,data_azi_old= self.globalCheckPED(data_azi)
avaldezp
last 30-16:19
r1405 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
avaldezp
correcion de escritura 360 y ploteo completo de PP y Spectro
r1407 #--------------------------
update change RM
r1384 start = data_azi[0]
end = data_azi[-1]
avaldezp
last 30-16:19
r1405 self.last_data_azi= end
update change RM
r1384 if start< start_azi:
start = start +360
if end <start_azi:
end = end +360
avaldezp
update y revision RHI
r1411
update change RM
r1384 pos_ini = int((start-start_azi)/res)
len_azi = len(data_azi)
if (360-pos_ini)<len_azi:
if pos_ini+1==360:
pos_ini=0
else:
flag=1
dif= 360-pos_ini
comp= len_azi-dif
avaldezp
last 30-16:19
r1405 #-----------------
update change RM
r1384 if flag==0:
# AZIMUTH
self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
# RADAR
self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
else:
# AZIMUTH
self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
self.res_azi[0:comp] = data_azi[dif:]
# RADAR
self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
self.res_weather[0:comp,:] = data_weather[dif:,:]
flag=0
data_azi = self.res_azi
data_weather = self.res_weather
return data_weather,data_azi
19 DE AGOSTO 2021 RM
r1367 def plot(self):
avaldezp
last 30-16:19
r1405 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
update change RM
r1384 data = self.data[-1]
avaldezp
update y revision RHI
r1411 r = self.data.yrange
avaldezp
last 30-16:19
r1405 delta_height = r[1]-r[0]
avaldezp
update y revision RHI
r1411 r_mask = numpy.where(r>=0)[0]
r = numpy.arange(len(r_mask))*delta_height
self.y = 2*r
update change RM
r1384 # RADAR
#data_weather = data['weather']
# PEDESTAL
#data_azi = data['azi']
avaldezp
update y revision RHI
r1411 res = 1
update change RM
r1384 # STEP
avaldezp
update y revision RHI
r1411 step = (360/(res*data['weather'].shape[0]))
avaldezp
last 30-16:19
r1405 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
avaldezp
update y revision RHI
r1411 self.res_ele = numpy.mean(data['ele'])
update change RM
r1384 ################# PLOTEO ###################
19 DE AGOSTO 2021 RM
r1367 for i,ax in enumerate(self.axes):
if ax.firsttime:
plt.clf()
avaldezp
last update
r1427 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
19 DE AGOSTO 2021 RM
r1367 else:
plt.clf()
avaldezp
last update
r1427 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
19 DE AGOSTO 2021 RM
r1367 caax = cgax.parasites[0]
paax = cgax.parasites[1]
cbar = plt.gcf().colorbar(pm, pad=0.075)
caax.set_xlabel('x_range [km]')
caax.set_ylabel('y_range [km]')
avaldezp
fix white plot
r1410 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right')
update change RM
r1384
self.ini= self.ini+1
avaldezp
update y revision RHI
r1411
class WeatherRHIPlot(Plot):
CODE = 'weather'
plot_name = 'weather'
plot_type = 'rhistyle'
buffering = False
avaldezp
last test RHI
r1431 data_ele_tmp = None
avaldezp
update y revision RHI
r1411
def setup(self):
avaldezp
2 canales plot
r1435 print("********************")
print("********************")
print("********************")
print("SETUP WEATHER PLOT")
avaldezp
update y revision RHI
r1411 self.ncols = 1
self.nrows = 1
self.nplots= 1
self.ylabel= 'Range [Km]'
self.titles= ['Weather']
avaldezp
2 canales plot
r1435 if self.channels is not None:
self.nplots = len(self.channels)
self.nrows = len(self.channels)
else:
self.nplots = self.data.shape(self.CODE)[0]
self.nrows = self.nplots
self.channels = list(range(self.nplots))
print("channels",self.channels)
print("que saldra", self.data.shape(self.CODE)[0])
self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
print("self.titles",self.titles)
avaldezp
update y revision RHI
r1411 self.colorbar=False
self.width =8
self.height =8
self.ini =0
self.len_azi =0
self.buffer_ini = None
avaldezp
last_update primeras correciones rhi
r1418 self.buffer_ele = None
avaldezp
update y revision RHI
r1411 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
self.flag =0
self.indicador= 0
avaldezp
last_update primeras correciones rhi
r1418 self.last_data_ele = None
avaldezp
update y revision RHI
r1411 self.val_mean = None
def update(self, dataOut):
data = {}
meta = {}
if hasattr(dataOut, 'dataPP_POWER'):
factor = 1
if hasattr(dataOut, 'nFFTPoints'):
factor = dataOut.normFactor
avaldezp
2 canales plot
r1435 print("dataOut",dataOut.data_360.shape)
#
data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
#
#data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
avaldezp
update y revision RHI
r1411 data['azi'] = dataOut.data_azi
data['ele'] = dataOut.data_ele
PulsePairByblock
r1438 #print("UPDATE")
#print("data[weather]",data['weather'].shape)
#print("data[azi]",data['azi'])
avaldezp
update y revision RHI
r1411 return data, meta
avaldezp
last_update primeras correciones rhi
r1418 def get2List(self,angulos):
list1=[]
list2=[]
for i in reversed(range(len(angulos))):
avaldezp
update
r1429 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
diff_ = angulos[i]-angulos[i-1]
if abs(diff_) >1.5:
list1.append(i-1)
list2.append(diff_)
avaldezp
last_update primeras correciones rhi
r1418 return list(reversed(list1)),list(reversed(list2))
avaldezp
update
r1429 def fixData90(self,list_,ang_):
avaldezp
last_update primeras correciones rhi
r1418 if list_[0]==-1:
vec = numpy.where(ang_<ang_[0])
avaldezp
update
r1429 ang_[vec] = ang_[vec]+90
avaldezp
last_update primeras correciones rhi
r1418 return ang_
return ang_
avaldezp
update
r1429 def fixData90HL(self,angulos):
vec = numpy.where(angulos>=90)
angulos[vec]=angulos[vec]-90
avaldezp
last_update primeras correciones rhi
r1418 return angulos
def search_pos(self,pos,list_):
for i in range(len(list_)):
if pos == list_[i]:
return True,i
i=None
return False,i
avaldezp
update
r1429 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
avaldezp
last_update primeras correciones rhi
r1418 size = len(ang_)
size2 = 0
for i in range(len(list2_)):
avaldezp
update
r1429 size2=size2+round(abs(list2_[i]))-1
avaldezp
last_update primeras correciones rhi
r1418 new_size= size+size2
ang_new = numpy.zeros(new_size)
ang_new2 = numpy.zeros(new_size)
tmp = 0
c = 0
for i in range(len(ang_)):
ang_new[tmp +c] = ang_[i]
ang_new2[tmp+c] = ang_[i]
condition , value = self.search_pos(i,list1_)
if condition:
pos = tmp + c + 1
avaldezp
update
r1429 for k in range(round(abs(list2_[value]))-1):
if tipo_case==0 or tipo_case==3:#subida
ang_new[pos+k] = ang_new[pos+k-1]+1
ang_new2[pos+k] = numpy.nan
elif tipo_case==1 or tipo_case==2:#bajada
ang_new[pos+k] = ang_new[pos+k-1]-1
ang_new2[pos+k] = numpy.nan
avaldezp
last_update primeras correciones rhi
r1418 tmp = pos +k
c = 0
c=c+1
return ang_new,ang_new2
avaldezp
update
r1429 def globalCheckPED(self,angulos,tipo_case):
avaldezp
last_update primeras correciones rhi
r1418 l1,l2 = self.get2List(angulos)
avaldezp
check rhi
r1433 ##print("l1",l1)
##print("l2",l2)
avaldezp
last_update primeras correciones rhi
r1418 if len(l1)>0:
avaldezp
update
r1429 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
#l1,l2 = self.get2List(angulos2)
ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
#ang1_ = self.fixData90HL(ang1_)
#ang2_ = self.fixData90HL(ang2_)
avaldezp
last_update primeras correciones rhi
r1418 else:
ang1_= angulos
ang2_= angulos
return ang1_,ang2_
def replaceNAN(self,data_weather,data_ele,val):
data= data_ele
data_T= data_weather
if data.shape[0]> data_T.shape[0]:
data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
c = 0
for i in range(len(data)):
if numpy.isnan(data[i]):
data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
else:
data_N[i,:]=data_T[c,:]
avaldezp
last
r1430 c=c+1
return data_N
avaldezp
last_update primeras correciones rhi
r1418 else:
for i in range(len(data)):
if numpy.isnan(data[i]):
data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
return data_T
avaldezp
update
r1429 def check_case(self,data_ele,ang_max,ang_min):
start = data_ele[0]
end = data_ele[-1]
number = (end-start)
len_ang=len(data_ele)
PulsePairByblock
r1438 print("start",start)
print("end",end)
print("number",number)
print("len_ang",len_ang)
#exit(1)
avaldezp
update
r1429
avaldezp
last test RHI
r1431 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
avaldezp
update
r1429 return 0
avaldezp
fix RHI UPDATE 15
r1434 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
# return 1
elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
avaldezp
update
r1429 return 1
elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
return 2
avaldezp
last test RHI
r1431 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
avaldezp
update
r1429 return 3
avaldezp
2 canales plot
r1435 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
avaldezp
update
r1429 ang_max= ang_max
ang_min= ang_min
avaldezp
last
r1430 data_weather=data_weather
avaldezp
2 canales plot
r1435 val_ch=val_ch
avaldezp
check rhi
r1433 ##print("*********************DATA WEATHER**************************************")
avaldezp
last test RHI
r1431 ##print(data_weather)
avaldezp
last_update primeras correciones rhi
r1418 if self.ini==0:
avaldezp
check rhi
r1433 '''
avaldezp
update
r1429 print("**********************************************")
print("**********************************************")
print("***************ini**************")
print("**********************************************")
print("**********************************************")
avaldezp
check rhi
r1433 '''
#print("data_ele",data_ele)
avaldezp
update
r1429 #----------------------------------------------------------
tipo_case = self.check_case(data_ele,ang_max,ang_min)
avaldezp
2 canales plot
r1435 print("check_case",tipo_case)
PulsePairByblock
r1438 #exit(1)
avaldezp
last_update primeras correciones rhi
r1418 #--------------------- new -------------------------
avaldezp
update
r1429 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
avaldezp
last
r1430
avaldezp
update
r1429 #-------------------------CAMBIOS RHI---------------------------------
start= ang_min
avaldezp
last
r1430 end = ang_max
avaldezp
update
r1429 n= (ang_max-ang_min)/res
avaldezp
last_update primeras correciones rhi
r1418 #------ new
avaldezp
update
r1429 self.start_data_ele = data_ele_new[0]
self.end_data_ele = data_ele_new[-1]
avaldezp
last test RHI
r1431 if tipo_case==0 or tipo_case==3: # SUBIDA
avaldezp
update
r1429 n1= round(self.start_data_ele)- start
n2= end - round(self.end_data_ele)
PulsePairByblock
r1438 print(self.start_data_ele)
print(self.end_data_ele)
avaldezp
update
r1429 if n1>0:
ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
ele1_nan= numpy.ones(n1)*numpy.nan
data_ele = numpy.hstack((ele1,data_ele_new))
PulsePairByblock
r1438 print("ele1_nan",ele1_nan.shape)
print("data_ele_old",data_ele_old.shape)
avaldezp
update
r1429 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
if n2>0:
ele2= numpy.linspace(self.end_data_ele+1,end,n2)
ele2_nan= numpy.ones(n2)*numpy.nan
data_ele = numpy.hstack((data_ele,ele2))
PulsePairByblock
r1438 print("ele2_nan",ele2_nan.shape)
print("data_ele_old",data_ele_old.shape)
avaldezp
update
r1429 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
avaldezp
last test RHI
r1431 if tipo_case==1 or tipo_case==2: # BAJADA
avaldezp
fix RHI UPDATE 15
r1434 data_ele_new = data_ele_new[::-1] # reversa
data_ele_old = data_ele_old[::-1]# reversa
data_weather = data_weather[::-1,:]# reversa
vec= numpy.where(data_ele_new<ang_max)
data_ele_new = data_ele_new[vec]
data_ele_old = data_ele_old[vec]
data_weather = data_weather[vec[0]]
vec2= numpy.where(0<data_ele_new)
data_ele_new = data_ele_new[vec2]
data_ele_old = data_ele_old[vec2]
data_weather = data_weather[vec2[0]]
self.start_data_ele = data_ele_new[0]
self.end_data_ele = data_ele_new[-1]
n1= round(self.start_data_ele)- start
avaldezp
2 canales plot
r1435 n2= end - round(self.end_data_ele)-1
print(self.start_data_ele)
print(self.end_data_ele)
avaldezp
last
r1430 if n1>0:
avaldezp
fix RHI UPDATE 15
r1434 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
avaldezp
last
r1430 ele1_nan= numpy.ones(n1)*numpy.nan
data_ele = numpy.hstack((ele1,data_ele_new))
data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
if n2>0:
avaldezp
fix RHI UPDATE 15
r1434 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
avaldezp
last
r1430 ele2_nan= numpy.ones(n2)*numpy.nan
data_ele = numpy.hstack((data_ele,ele2))
data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
avaldezp
last_update primeras correciones rhi
r1418 # RADAR
avaldezp
last
r1430 # NOTA data_ele y data_weather es la variable que retorna
avaldezp
last_update primeras correciones rhi
r1418 val_mean = numpy.mean(data_weather[:,-1])
self.val_mean = val_mean
data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
avaldezp
2 canales plot
r1435 self.data_ele_tmp[val_ch]= data_ele_old
avaldezp
last_update primeras correciones rhi
r1418 else:
avaldezp
check rhi
r1433 #print("**********************************************")
#print("****************VARIABLE**********************")
avaldezp
update
r1429 #-------------------------CAMBIOS RHI---------------------------------
#---------------------------------------------------------------------
avaldezp
check rhi
r1433 ##print("INPUT data_ele",data_ele)
avaldezp
last_update primeras correciones rhi
r1418 flag=0
start_ele = self.res_ele[0]
avaldezp
update
r1429 tipo_case = self.check_case(data_ele,ang_max,ang_min)
avaldezp
check rhi
r1433 #print("TIPO DE DATA",tipo_case)
avaldezp
last_update primeras correciones rhi
r1418 #-----------new------------
avaldezp
last test RHI
r1431 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
avaldezp
fix RHI UPDATE 15
r1434
avaldezp
last
r1430 #-------------------------------NEW RHI ITERATIVO-------------------------
avaldezp
last test RHI
r1431
if tipo_case==0 : # SUBIDA
vec = numpy.where(data_ele<ang_max)
data_ele = data_ele[vec]
data_ele_old = data_ele_old[vec]
data_weather = data_weather[vec[0]]
avaldezp
fix RHI UPDATE 15
r1434
vec2 = numpy.where(0<data_ele)
data_ele= data_ele[vec2]
data_ele_old= data_ele_old[vec2]
##print(data_ele_new)
data_weather= data_weather[vec2[0]]
avaldezp
last test RHI
r1431 new_i_ele = int(round(data_ele[0]))
new_f_ele = int(round(data_ele[-1]))
avaldezp
fix RHI UPDATE 15
r1434 #print(new_i_ele)
#print(new_f_ele)
#print(data_ele,len(data_ele))
#print(data_ele_old,len(data_ele_old))
if new_i_ele< 2:
avaldezp
2 canales plot
r1435 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
avaldezp
fix RHI UPDATE 15
r1434 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
avaldezp
2 canales plot
r1435 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
avaldezp
last test RHI
r1431 data_ele = self.res_ele
avaldezp
2 canales plot
r1435 data_weather = self.res_weather[val_ch]
avaldezp
last test RHI
r1431
elif tipo_case==1 : #BAJADA
data_ele = data_ele[::-1] # reversa
data_ele_old = data_ele_old[::-1]# reversa
data_weather = data_weather[::-1,:]# reversa
vec= numpy.where(data_ele<ang_max)
data_ele = data_ele[vec]
data_ele_old = data_ele_old[vec]
data_weather = data_weather[vec[0]]
vec2= numpy.where(0<data_ele)
data_ele = data_ele[vec2]
data_ele_old = data_ele_old[vec2]
data_weather = data_weather[vec2[0]]
new_i_ele = int(round(data_ele[0]))
new_f_ele = int(round(data_ele[-1]))
avaldezp
check rhi
r1433 #print(data_ele)
#print(ang_max)
#print(data_ele_old)
avaldezp
last test RHI
r1431 if new_i_ele <= 1:
new_i_ele = 1
if round(data_ele[-1])>=ang_max-1:
avaldezp
2 canales plot
r1435 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
avaldezp
last test RHI
r1431 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
avaldezp
2 canales plot
r1435 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
avaldezp
last test RHI
r1431 data_ele = self.res_ele
avaldezp
2 canales plot
r1435 data_weather = self.res_weather[val_ch]
avaldezp
last test RHI
r1431
elif tipo_case==2: #bajada
vec = numpy.where(data_ele<ang_max)
data_ele = data_ele[vec]
data_weather= data_weather[vec[0]]
len_vec = len(vec)
data_ele_new = data_ele[::-1] # reversa
data_weather = data_weather[::-1,:]
new_i_ele = int(data_ele_new[0])
new_f_ele = int(data_ele_new[-1])
n1= new_i_ele- ang_min
n2= ang_max - new_f_ele-1
if n1>0:
ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
ele1_nan= numpy.ones(n1)*numpy.nan
data_ele = numpy.hstack((ele1,data_ele_new))
data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
if n2>0:
ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
ele2_nan= numpy.ones(n2)*numpy.nan
data_ele = numpy.hstack((data_ele,ele2))
data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
avaldezp
2 canales plot
r1435 self.data_ele_tmp[val_ch] = data_ele_old
avaldezp
last test RHI
r1431 self.res_ele = data_ele
avaldezp
2 canales plot
r1435 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
avaldezp
last test RHI
r1431 data_ele = self.res_ele
avaldezp
2 canales plot
r1435 data_weather = self.res_weather[val_ch]
avaldezp
last test RHI
r1431
avaldezp
fix RHI UPDATE 15
r1434 elif tipo_case==3:#subida
avaldezp
last test RHI
r1431 vec = numpy.where(0<data_ele)
data_ele= data_ele[vec]
data_ele_new = data_ele
data_ele_old= data_ele_old[vec]
data_weather= data_weather[vec[0]]
avaldezp
fix RHI UPDATE 15
r1434 pos_ini = numpy.argmin(data_ele)
if pos_ini>0:
len_vec= len(data_ele)
vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
#print(vec3)
data_ele= data_ele[vec3]
data_ele_new = data_ele
data_ele_old= data_ele_old[vec3]
data_weather= data_weather[vec3]
avaldezp
last test RHI
r1431 new_i_ele = int(data_ele_new[0])
new_f_ele = int(data_ele_new[-1])
n1= new_i_ele- ang_min
n2= ang_max - new_f_ele-1
if n1>0:
ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
ele1_nan= numpy.ones(n1)*numpy.nan
data_ele = numpy.hstack((ele1,data_ele_new))
data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
if n2>0:
ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
ele2_nan= numpy.ones(n2)*numpy.nan
data_ele = numpy.hstack((data_ele,ele2))
data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
avaldezp
2 canales plot
r1435 self.data_ele_tmp[val_ch] = data_ele_old
avaldezp
last test RHI
r1431 self.res_ele = data_ele
avaldezp
2 canales plot
r1435 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
avaldezp
last test RHI
r1431 data_ele = self.res_ele
avaldezp
2 canales plot
r1435 data_weather = self.res_weather[val_ch]
avaldezp
check rhi
r1433 #print("self.data_ele_tmp",self.data_ele_tmp)
avaldezp
last_update primeras correciones rhi
r1418 return data_weather,data_ele
avaldezp
update y revision RHI
r1411 def plot(self):
thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
data = self.data[-1]
r = self.data.yrange
delta_height = r[1]-r[0]
r_mask = numpy.where(r>=0)[0]
avaldezp
last test RHI
r1431 ##print("delta_height",delta_height)
#print("r_mask",r_mask,len(r_mask))
avaldezp
update y revision RHI
r1411 r = numpy.arange(len(r_mask))*delta_height
self.y = 2*r
avaldezp
update
r1429 res = 1
avaldezp
last test RHI
r1431 ###print("data['weather'].shape[0]",data['weather'].shape[0])
avaldezp
fix RHI UPDATE 15
r1434 ang_max = self.ang_max
ang_min = self.ang_min
avaldezp
update
r1429 var_ang =ang_max - ang_min
step = (int(var_ang)/(res*data['weather'].shape[0]))
avaldezp
last test RHI
r1431 ###print("step",step)
avaldezp
last_update primeras correciones rhi
r1418 #--------------------------------------------------------
avaldezp
check rhi
r1433 ##print('weather',data['weather'].shape)
##print('ele',data['ele'].shape)
avaldezp
last_update primeras correciones rhi
r1418
avaldezp
2 canales plot
r1435 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
###self.res_azi = numpy.mean(data['azi'])
avaldezp
last test RHI
r1431 ###print("self.res_ele",self.res_ele)
avaldezp
2 canales plot
r1435 plt.clf()
subplots = [121, 122]
if self.ini==0:
self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
print("SHAPE",self.data_ele_tmp.shape)
avaldezp
update y revision RHI
r1411 for i,ax in enumerate(self.axes):
avaldezp
2 canales plot
r1435 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
self.res_azi = numpy.mean(data['azi'])
PulsePairByblock
r1438 if i==0:
print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
avaldezp
update y revision RHI
r1411 if ax.firsttime:
avaldezp
2 canales plot
r1435 #plt.clf()
cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
#fig=self.figures[0]
avaldezp
update y revision RHI
r1411 else:
PulsePairByblock
r1438 #plt.clf()
if i==0:
print(self.res_weather[i])
print(self.res_ele)
cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
caax = cgax.parasites[0]
paax = cgax.parasites[1]
cbar = plt.gcf().colorbar(pm, pad=0.075)
caax.set_xlabel('x_range [km]')
caax.set_ylabel('y_range [km]')
plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
print("***************************self.ini****************************",self.ini)
self.ini= self.ini+1
class WeatherRHI_vRF2_Plot(Plot):
CODE = 'weather'
plot_name = 'weather'
plot_type = 'rhistyle'
buffering = False
data_ele_tmp = None
def setup(self):
print("********************")
print("********************")
print("********************")
print("SETUP WEATHER PLOT")
self.ncols = 1
self.nrows = 1
self.nplots= 1
self.ylabel= 'Range [Km]'
self.titles= ['Weather']
if self.channels is not None:
self.nplots = len(self.channels)
self.nrows = len(self.channels)
else:
self.nplots = self.data.shape(self.CODE)[0]
self.nrows = self.nplots
self.channels = list(range(self.nplots))
print("channels",self.channels)
print("que saldra", self.data.shape(self.CODE)[0])
self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
print("self.titles",self.titles)
self.colorbar=False
self.width =8
self.height =8
self.ini =0
self.len_azi =0
self.buffer_ini = None
self.buffer_ele = None
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
self.flag =0
self.indicador= 0
self.last_data_ele = None
self.val_mean = None
def update(self, dataOut):
data = {}
meta = {}
if hasattr(dataOut, 'dataPP_POWER'):
factor = 1
if hasattr(dataOut, 'nFFTPoints'):
factor = dataOut.normFactor
print("dataOut",dataOut.data_360.shape)
#
data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
#
#data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
data['azi'] = dataOut.data_azi
data['ele'] = dataOut.data_ele
data['case_flag'] = dataOut.case_flag
#print("UPDATE")
#print("data[weather]",data['weather'].shape)
#print("data[azi]",data['azi'])
return data, meta
def get2List(self,angulos):
list1=[]
list2=[]
for i in reversed(range(len(angulos))):
if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
diff_ = angulos[i]-angulos[i-1]
if abs(diff_) >1.5:
list1.append(i-1)
list2.append(diff_)
return list(reversed(list1)),list(reversed(list2))
def fixData90(self,list_,ang_):
if list_[0]==-1:
vec = numpy.where(ang_<ang_[0])
ang_[vec] = ang_[vec]+90
return ang_
return ang_
def fixData90HL(self,angulos):
vec = numpy.where(angulos>=90)
angulos[vec]=angulos[vec]-90
return angulos
def search_pos(self,pos,list_):
for i in range(len(list_)):
if pos == list_[i]:
return True,i
i=None
return False,i
def fixDataComp(self,ang_,list1_,list2_,tipo_case):
size = len(ang_)
size2 = 0
for i in range(len(list2_)):
size2=size2+round(abs(list2_[i]))-1
new_size= size+size2
ang_new = numpy.zeros(new_size)
ang_new2 = numpy.zeros(new_size)
tmp = 0
c = 0
for i in range(len(ang_)):
ang_new[tmp +c] = ang_[i]
ang_new2[tmp+c] = ang_[i]
condition , value = self.search_pos(i,list1_)
if condition:
pos = tmp + c + 1
for k in range(round(abs(list2_[value]))-1):
if tipo_case==0 or tipo_case==3:#subida
ang_new[pos+k] = ang_new[pos+k-1]+1
ang_new2[pos+k] = numpy.nan
elif tipo_case==1 or tipo_case==2:#bajada
ang_new[pos+k] = ang_new[pos+k-1]-1
ang_new2[pos+k] = numpy.nan
tmp = pos +k
c = 0
c=c+1
return ang_new,ang_new2
def globalCheckPED(self,angulos,tipo_case):
l1,l2 = self.get2List(angulos)
##print("l1",l1)
##print("l2",l2)
if len(l1)>0:
#angulos2 = self.fixData90(list_=l1,ang_=angulos)
#l1,l2 = self.get2List(angulos2)
ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
#ang1_ = self.fixData90HL(ang1_)
#ang2_ = self.fixData90HL(ang2_)
else:
ang1_= angulos
ang2_= angulos
return ang1_,ang2_
def replaceNAN(self,data_weather,data_ele,val):
data= data_ele
data_T= data_weather
if data.shape[0]> data_T.shape[0]:
data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
c = 0
for i in range(len(data)):
if numpy.isnan(data[i]):
data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
else:
data_N[i,:]=data_T[c,:]
c=c+1
return data_N
else:
for i in range(len(data)):
if numpy.isnan(data[i]):
data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
return data_T
def check_case(self,data_ele,ang_max,ang_min):
start = data_ele[0]
end = data_ele[-1]
number = (end-start)
len_ang=len(data_ele)
print("start",start)
print("end",end)
print("number",number)
print("len_ang",len_ang)
#exit(1)
if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
return 0
#elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
# return 1
elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
return 1
elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
return 2
elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
return 3
def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
ang_max= ang_max
ang_min= ang_min
data_weather=data_weather
val_ch=val_ch
##print("*********************DATA WEATHER**************************************")
##print(data_weather)
if self.ini==0:
'''
print("**********************************************")
print("**********************************************")
print("***************ini**************")
print("**********************************************")
print("**********************************************")
'''
#print("data_ele",data_ele)
#----------------------------------------------------------
tipo_case = case_flag[-1]
#tipo_case = self.check_case(data_ele,ang_max,ang_min)
print("check_case",tipo_case)
#exit(1)
#--------------------- new -------------------------
data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
#-------------------------CAMBIOS RHI---------------------------------
start= ang_min
end = ang_max
n= (ang_max-ang_min)/res
#------ new
self.start_data_ele = data_ele_new[0]
self.end_data_ele = data_ele_new[-1]
if tipo_case==0 or tipo_case==3: # SUBIDA
n1= round(self.start_data_ele)- start
n2= end - round(self.end_data_ele)
print(self.start_data_ele)
print(self.end_data_ele)
if n1>0:
ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
ele1_nan= numpy.ones(n1)*numpy.nan
data_ele = numpy.hstack((ele1,data_ele_new))
print("ele1_nan",ele1_nan.shape)
print("data_ele_old",data_ele_old.shape)
data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
if n2>0:
ele2= numpy.linspace(self.end_data_ele+1,end,n2)
ele2_nan= numpy.ones(n2)*numpy.nan
data_ele = numpy.hstack((data_ele,ele2))
print("ele2_nan",ele2_nan.shape)
print("data_ele_old",data_ele_old.shape)
data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
if tipo_case==1 or tipo_case==2: # BAJADA
data_ele_new = data_ele_new[::-1] # reversa
data_ele_old = data_ele_old[::-1]# reversa
data_weather = data_weather[::-1,:]# reversa
vec= numpy.where(data_ele_new<ang_max)
data_ele_new = data_ele_new[vec]
data_ele_old = data_ele_old[vec]
data_weather = data_weather[vec[0]]
vec2= numpy.where(0<data_ele_new)
data_ele_new = data_ele_new[vec2]
data_ele_old = data_ele_old[vec2]
data_weather = data_weather[vec2[0]]
self.start_data_ele = data_ele_new[0]
self.end_data_ele = data_ele_new[-1]
n1= round(self.start_data_ele)- start
n2= end - round(self.end_data_ele)-1
print(self.start_data_ele)
print(self.end_data_ele)
if n1>0:
ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
ele1_nan= numpy.ones(n1)*numpy.nan
data_ele = numpy.hstack((ele1,data_ele_new))
data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
if n2>0:
ele2= numpy.linspace(self.end_data_ele+1,end,n2)
ele2_nan= numpy.ones(n2)*numpy.nan
data_ele = numpy.hstack((data_ele,ele2))
data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
# RADAR
# NOTA data_ele y data_weather es la variable que retorna
val_mean = numpy.mean(data_weather[:,-1])
self.val_mean = val_mean
data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
print("eleold",data_ele_old)
print(self.data_ele_tmp[val_ch])
print(data_ele_old.shape[0])
print(self.data_ele_tmp[val_ch].shape[0])
if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
import sys
print("EXIT",self.ini)
sys.exit(1)
self.data_ele_tmp[val_ch]= data_ele_old
else:
#print("**********************************************")
#print("****************VARIABLE**********************")
#-------------------------CAMBIOS RHI---------------------------------
#---------------------------------------------------------------------
##print("INPUT data_ele",data_ele)
flag=0
start_ele = self.res_ele[0]
#tipo_case = self.check_case(data_ele,ang_max,ang_min)
tipo_case = case_flag[-1]
#print("TIPO DE DATA",tipo_case)
#-----------new------------
data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
#-------------------------------NEW RHI ITERATIVO-------------------------
if tipo_case==0 : # SUBIDA
vec = numpy.where(data_ele<ang_max)
data_ele = data_ele[vec]
data_ele_old = data_ele_old[vec]
data_weather = data_weather[vec[0]]
vec2 = numpy.where(0<data_ele)
data_ele= data_ele[vec2]
data_ele_old= data_ele_old[vec2]
##print(data_ele_new)
data_weather= data_weather[vec2[0]]
new_i_ele = int(round(data_ele[0]))
new_f_ele = int(round(data_ele[-1]))
#print(new_i_ele)
#print(new_f_ele)
#print(data_ele,len(data_ele))
#print(data_ele_old,len(data_ele_old))
if new_i_ele< 2:
self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
data_ele = self.res_ele
data_weather = self.res_weather[val_ch]
elif tipo_case==1 : #BAJADA
data_ele = data_ele[::-1] # reversa
data_ele_old = data_ele_old[::-1]# reversa
data_weather = data_weather[::-1,:]# reversa
vec= numpy.where(data_ele<ang_max)
data_ele = data_ele[vec]
data_ele_old = data_ele_old[vec]
data_weather = data_weather[vec[0]]
vec2= numpy.where(0<data_ele)
data_ele = data_ele[vec2]
data_ele_old = data_ele_old[vec2]
data_weather = data_weather[vec2[0]]
new_i_ele = int(round(data_ele[0]))
new_f_ele = int(round(data_ele[-1]))
#print(data_ele)
#print(ang_max)
#print(data_ele_old)
if new_i_ele <= 1:
new_i_ele = 1
if round(data_ele[-1])>=ang_max-1:
self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
data_ele = self.res_ele
data_weather = self.res_weather[val_ch]
elif tipo_case==2: #bajada
vec = numpy.where(data_ele<ang_max)
data_ele = data_ele[vec]
data_weather= data_weather[vec[0]]
len_vec = len(vec)
data_ele_new = data_ele[::-1] # reversa
data_weather = data_weather[::-1,:]
new_i_ele = int(data_ele_new[0])
new_f_ele = int(data_ele_new[-1])
n1= new_i_ele- ang_min
n2= ang_max - new_f_ele-1
if n1>0:
ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
ele1_nan= numpy.ones(n1)*numpy.nan
data_ele = numpy.hstack((ele1,data_ele_new))
data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
if n2>0:
ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
ele2_nan= numpy.ones(n2)*numpy.nan
data_ele = numpy.hstack((data_ele,ele2))
data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
self.data_ele_tmp[val_ch] = data_ele_old
self.res_ele = data_ele
self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
data_ele = self.res_ele
data_weather = self.res_weather[val_ch]
elif tipo_case==3:#subida
vec = numpy.where(0<data_ele)
data_ele= data_ele[vec]
data_ele_new = data_ele
data_ele_old= data_ele_old[vec]
data_weather= data_weather[vec[0]]
pos_ini = numpy.argmin(data_ele)
if pos_ini>0:
len_vec= len(data_ele)
vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
#print(vec3)
data_ele= data_ele[vec3]
data_ele_new = data_ele
data_ele_old= data_ele_old[vec3]
data_weather= data_weather[vec3]
new_i_ele = int(data_ele_new[0])
new_f_ele = int(data_ele_new[-1])
n1= new_i_ele- ang_min
n2= ang_max - new_f_ele-1
if n1>0:
ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
ele1_nan= numpy.ones(n1)*numpy.nan
data_ele = numpy.hstack((ele1,data_ele_new))
data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
if n2>0:
ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
ele2_nan= numpy.ones(n2)*numpy.nan
data_ele = numpy.hstack((data_ele,ele2))
data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
self.data_ele_tmp[val_ch] = data_ele_old
self.res_ele = data_ele
self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
data_ele = self.res_ele
data_weather = self.res_weather[val_ch]
#print("self.data_ele_tmp",self.data_ele_tmp)
return data_weather,data_ele
def plot(self):
thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
data = self.data[-1]
r = self.data.yrange
delta_height = r[1]-r[0]
r_mask = numpy.where(r>=0)[0]
##print("delta_height",delta_height)
#print("r_mask",r_mask,len(r_mask))
r = numpy.arange(len(r_mask))*delta_height
self.y = 2*r
res = 1
###print("data['weather'].shape[0]",data['weather'].shape[0])
ang_max = self.ang_max
ang_min = self.ang_min
var_ang =ang_max - ang_min
step = (int(var_ang)/(res*data['weather'].shape[0]))
###print("step",step)
#--------------------------------------------------------
##print('weather',data['weather'].shape)
##print('ele',data['ele'].shape)
###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
###self.res_azi = numpy.mean(data['azi'])
###print("self.res_ele",self.res_ele)
plt.clf()
subplots = [121, 122]
try:
if self.data[-2]['ele'].max()<data['ele'].max():
self.ini=0
except:
pass
if self.ini==0:
self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
print("SHAPE",self.data_ele_tmp.shape)
for i,ax in enumerate(self.axes):
self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
self.res_azi = numpy.mean(data['azi'])
if ax.firsttime:
#plt.clf()
print("Frist Plot")
cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
#fig=self.figures[0]
else:
#plt.clf()
print("ELSE PLOT")
cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
caax = cgax.parasites[0]
paax = cgax.parasites[1]
cbar = plt.gcf().colorbar(pm, pad=0.075)
caax.set_xlabel('x_range [km]')
caax.set_ylabel('y_range [km]')
plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
print("***************************self.ini****************************",self.ini)
self.ini= self.ini+1
class WeatherRHI_vRF_Plot(Plot):
CODE = 'weather'
plot_name = 'weather'
plot_type = 'rhistyle'
buffering = False
data_ele_tmp = None
def setup(self):
print("********************")
print("********************")
print("********************")
print("SETUP WEATHER PLOT")
self.ncols = 1
self.nrows = 1
self.nplots= 1
self.ylabel= 'Range [Km]'
self.titles= ['Weather']
if self.channels is not None:
self.nplots = len(self.channels)
self.nrows = len(self.channels)
else:
self.nplots = self.data.shape(self.CODE)[0]
self.nrows = self.nplots
self.channels = list(range(self.nplots))
print("channels",self.channels)
print("que saldra", self.data.shape(self.CODE)[0])
self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
print("self.titles",self.titles)
self.colorbar=False
self.width =8
self.height =8
self.ini =0
self.len_azi =0
self.buffer_ini = None
self.buffer_ele = None
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
self.flag =0
self.indicador= 0
self.last_data_ele = None
self.val_mean = None
def update(self, dataOut):
data = {}
meta = {}
if hasattr(dataOut, 'dataPP_POWER'):
factor = 1
if hasattr(dataOut, 'nFFTPoints'):
factor = dataOut.normFactor
print("dataOut",dataOut.data_360.shape)
#
data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
#
#data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
data['azi'] = dataOut.data_azi
data['ele'] = dataOut.data_ele
data['case_flag'] = dataOut.case_flag
#print("UPDATE")
#print("data[weather]",data['weather'].shape)
#print("data[azi]",data['azi'])
return data, meta
def get2List(self,angulos):
list1=[]
list2=[]
#print(angulos)
#exit(1)
for i in reversed(range(len(angulos))):
if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
diff_ = angulos[i]-angulos[i-1]
if abs(diff_) >1.5:
list1.append(i-1)
list2.append(diff_)
return list(reversed(list1)),list(reversed(list2))
def fixData90(self,list_,ang_):
if list_[0]==-1:
vec = numpy.where(ang_<ang_[0])
ang_[vec] = ang_[vec]+90
return ang_
return ang_
def fixData90HL(self,angulos):
vec = numpy.where(angulos>=90)
angulos[vec]=angulos[vec]-90
return angulos
def search_pos(self,pos,list_):
for i in range(len(list_)):
if pos == list_[i]:
return True,i
i=None
return False,i
def fixDataComp(self,ang_,list1_,list2_,tipo_case):
size = len(ang_)
size2 = 0
for i in range(len(list2_)):
size2=size2+round(abs(list2_[i]))-1
new_size= size+size2
ang_new = numpy.zeros(new_size)
ang_new2 = numpy.zeros(new_size)
tmp = 0
c = 0
for i in range(len(ang_)):
ang_new[tmp +c] = ang_[i]
ang_new2[tmp+c] = ang_[i]
condition , value = self.search_pos(i,list1_)
if condition:
pos = tmp + c + 1
for k in range(round(abs(list2_[value]))-1):
if tipo_case==0 or tipo_case==3:#subida
ang_new[pos+k] = ang_new[pos+k-1]+1
ang_new2[pos+k] = numpy.nan
elif tipo_case==1 or tipo_case==2:#bajada
ang_new[pos+k] = ang_new[pos+k-1]-1
ang_new2[pos+k] = numpy.nan
tmp = pos +k
c = 0
c=c+1
return ang_new,ang_new2
def globalCheckPED(self,angulos,tipo_case):
l1,l2 = self.get2List(angulos)
print("l1",l1)
print("l2",l2)
if len(l1)>0:
#angulos2 = self.fixData90(list_=l1,ang_=angulos)
#l1,l2 = self.get2List(angulos2)
ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
#ang1_ = self.fixData90HL(ang1_)
#ang2_ = self.fixData90HL(ang2_)
else:
ang1_= angulos
ang2_= angulos
return ang1_,ang2_
def replaceNAN(self,data_weather,data_ele,val):
data= data_ele
data_T= data_weather
#print(data.shape[0])
#print(data_T.shape[0])
#exit(1)
if data.shape[0]> data_T.shape[0]:
data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
c = 0
for i in range(len(data)):
if numpy.isnan(data[i]):
data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
else:
data_N[i,:]=data_T[c,:]
c=c+1
return data_N
else:
for i in range(len(data)):
if numpy.isnan(data[i]):
data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
return data_T
def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
ang_max= ang_max
ang_min= ang_min
data_weather=data_weather
val_ch=val_ch
##print("*********************DATA WEATHER**************************************")
##print(data_weather)
'''
print("**********************************************")
print("**********************************************")
print("***************ini**************")
print("**********************************************")
print("**********************************************")
'''
#print("data_ele",data_ele)
#----------------------------------------------------------
#exit(1)
tipo_case = case_flag[-1]
print("tipo_case",tipo_case)
#--------------------- new -------------------------
data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
#-------------------------CAMBIOS RHI---------------------------------
vec = numpy.where(data_ele<ang_max)
data_ele = data_ele[vec]
data_weather= data_weather[vec[0]]
len_vec = len(vec)
data_ele_new = data_ele[::-1] # reversa
data_weather = data_weather[::-1,:]
new_i_ele = int(data_ele_new[0])
new_f_ele = int(data_ele_new[-1])
n1= new_i_ele- ang_min
n2= ang_max - new_f_ele-1
if n1>0:
ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
ele1_nan= numpy.ones(n1)*numpy.nan
data_ele = numpy.hstack((ele1,data_ele_new))
data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
if n2>0:
ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
ele2_nan= numpy.ones(n2)*numpy.nan
data_ele = numpy.hstack((data_ele,ele2))
data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
print("ele shape",data_ele.shape)
print(data_ele)
#print("self.data_ele_tmp",self.data_ele_tmp)
val_mean = numpy.mean(data_weather[:,-1])
self.val_mean = val_mean
data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
self.data_ele_tmp[val_ch]= data_ele_old
print("data_weather shape",data_weather.shape)
print(data_weather)
#exit(1)
return data_weather,data_ele
def plot(self):
thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
data = self.data[-1]
r = self.data.yrange
delta_height = r[1]-r[0]
r_mask = numpy.where(r>=0)[0]
##print("delta_height",delta_height)
#print("r_mask",r_mask,len(r_mask))
r = numpy.arange(len(r_mask))*delta_height
self.y = 2*r
res = 1
###print("data['weather'].shape[0]",data['weather'].shape[0])
ang_max = self.ang_max
ang_min = self.ang_min
var_ang =ang_max - ang_min
step = (int(var_ang)/(res*data['weather'].shape[0]))
###print("step",step)
#--------------------------------------------------------
##print('weather',data['weather'].shape)
##print('ele',data['ele'].shape)
###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
###self.res_azi = numpy.mean(data['azi'])
###print("self.res_ele",self.res_ele)
plt.clf()
subplots = [121, 122]
if self.ini==0:
self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
print("SHAPE",self.data_ele_tmp.shape)
for i,ax in enumerate(self.axes):
self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
self.res_azi = numpy.mean(data['azi'])
print(self.res_ele)
#exit(1)
if ax.firsttime:
#plt.clf()
cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
#fig=self.figures[0]
else:
avaldezp
2 canales plot
r1435 #plt.clf()
cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
caax = cgax.parasites[0]
paax = cgax.parasites[1]
cbar = plt.gcf().colorbar(pm, pad=0.075)
caax.set_xlabel('x_range [km]')
caax.set_ylabel('y_range [km]')
plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
print("***************************self.ini****************************",self.ini)
avaldezp
update y revision RHI
r1411 self.ini= self.ini+1
Block360Update
r1439
class WeatherRHI_vRF3_Plot(Plot):
CODE = 'weather'
plot_name = 'weather'
plot_type = 'rhistyle'
buffering = False
data_ele_tmp = None
def setup(self):
print("********************")
print("********************")
print("********************")
print("SETUP WEATHER PLOT")
self.ncols = 1
self.nrows = 1
self.nplots= 1
self.ylabel= 'Range [Km]'
self.titles= ['Weather']
if self.channels is not None:
self.nplots = len(self.channels)
self.nrows = len(self.channels)
else:
self.nplots = self.data.shape(self.CODE)[0]
self.nrows = self.nplots
self.channels = list(range(self.nplots))
print("channels",self.channels)
print("que saldra", self.data.shape(self.CODE)[0])
self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
print("self.titles",self.titles)
self.colorbar=False
self.width =8
self.height =8
self.ini =0
self.len_azi =0
self.buffer_ini = None
self.buffer_ele = None
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
self.flag =0
self.indicador= 0
self.last_data_ele = None
self.val_mean = None
def update(self, dataOut):
data = {}
meta = {}
if hasattr(dataOut, 'dataPP_POWER'):
factor = 1
if hasattr(dataOut, 'nFFTPoints'):
factor = dataOut.normFactor
print("dataOut",dataOut.data_360.shape)
#
data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
#
#data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
data['azi'] = dataOut.data_azi
data['ele'] = dataOut.data_ele
#data['case_flag'] = dataOut.case_flag
#print("UPDATE")
#print("data[weather]",data['weather'].shape)
#print("data[azi]",data['azi'])
return data, meta
def get2List(self,angulos):
list1=[]
list2=[]
for i in reversed(range(len(angulos))):
if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
diff_ = angulos[i]-angulos[i-1]
if abs(diff_) >1.5:
list1.append(i-1)
list2.append(diff_)
return list(reversed(list1)),list(reversed(list2))
def fixData90(self,list_,ang_):
if list_[0]==-1:
vec = numpy.where(ang_<ang_[0])
ang_[vec] = ang_[vec]+90
return ang_
return ang_
def fixData90HL(self,angulos):
vec = numpy.where(angulos>=90)
angulos[vec]=angulos[vec]-90
return angulos
def search_pos(self,pos,list_):
for i in range(len(list_)):
if pos == list_[i]:
return True,i
i=None
return False,i
def fixDataComp(self,ang_,list1_,list2_,tipo_case):
size = len(ang_)
size2 = 0
for i in range(len(list2_)):
size2=size2+round(abs(list2_[i]))-1
new_size= size+size2
ang_new = numpy.zeros(new_size)
ang_new2 = numpy.zeros(new_size)
tmp = 0
c = 0
for i in range(len(ang_)):
ang_new[tmp +c] = ang_[i]
ang_new2[tmp+c] = ang_[i]
condition , value = self.search_pos(i,list1_)
if condition:
pos = tmp + c + 1
for k in range(round(abs(list2_[value]))-1):
if tipo_case==0 or tipo_case==3:#subida
ang_new[pos+k] = ang_new[pos+k-1]+1
ang_new2[pos+k] = numpy.nan
elif tipo_case==1 or tipo_case==2:#bajada
ang_new[pos+k] = ang_new[pos+k-1]-1
ang_new2[pos+k] = numpy.nan
tmp = pos +k
c = 0
c=c+1
return ang_new,ang_new2
def globalCheckPED(self,angulos,tipo_case):
l1,l2 = self.get2List(angulos)
##print("l1",l1)
##print("l2",l2)
if len(l1)>0:
#angulos2 = self.fixData90(list_=l1,ang_=angulos)
#l1,l2 = self.get2List(angulos2)
ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
#ang1_ = self.fixData90HL(ang1_)
#ang2_ = self.fixData90HL(ang2_)
else:
ang1_= angulos
ang2_= angulos
return ang1_,ang2_
def replaceNAN(self,data_weather,data_ele,val):
data= data_ele
data_T= data_weather
if data.shape[0]> data_T.shape[0]:
print("IF")
data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
c = 0
for i in range(len(data)):
if numpy.isnan(data[i]):
data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
else:
data_N[i,:]=data_T[c,:]
c=c+1
return data_N
else:
print("else")
for i in range(len(data)):
if numpy.isnan(data[i]):
data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
return data_T
def check_case(self,data_ele,ang_max,ang_min):
start = data_ele[0]
end = data_ele[-1]
number = (end-start)
len_ang=len(data_ele)
print("start",start)
print("end",end)
print("number",number)
print("len_ang",len_ang)
#exit(1)
if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
return 0
#elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
# return 1
elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
return 1
elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
return 2
elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
return 3
def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
ang_max= ang_max
ang_min= ang_min
data_weather=data_weather
val_ch=val_ch
##print("*********************DATA WEATHER**************************************")
##print(data_weather)
if self.ini==0:
#--------------------- new -------------------------
data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
#-------------------------CAMBIOS RHI---------------------------------
start= ang_min
end = ang_max
n= (ang_max-ang_min)/res
#------ new
self.start_data_ele = data_ele_new[0]
self.end_data_ele = data_ele_new[-1]
if tipo_case==0 or tipo_case==3: # SUBIDA
n1= round(self.start_data_ele)- start
n2= end - round(self.end_data_ele)
print(self.start_data_ele)
print(self.end_data_ele)
if n1>0:
ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
ele1_nan= numpy.ones(n1)*numpy.nan
data_ele = numpy.hstack((ele1,data_ele_new))
print("ele1_nan",ele1_nan.shape)
print("data_ele_old",data_ele_old.shape)
data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
if n2>0:
ele2= numpy.linspace(self.end_data_ele+1,end,n2)
ele2_nan= numpy.ones(n2)*numpy.nan
data_ele = numpy.hstack((data_ele,ele2))
print("ele2_nan",ele2_nan.shape)
print("data_ele_old",data_ele_old.shape)
data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
if tipo_case==1 or tipo_case==2: # BAJADA
data_ele_new = data_ele_new[::-1] # reversa
data_ele_old = data_ele_old[::-1]# reversa
data_weather = data_weather[::-1,:]# reversa
vec= numpy.where(data_ele_new<ang_max)
data_ele_new = data_ele_new[vec]
data_ele_old = data_ele_old[vec]
data_weather = data_weather[vec[0]]
vec2= numpy.where(0<data_ele_new)
data_ele_new = data_ele_new[vec2]
data_ele_old = data_ele_old[vec2]
data_weather = data_weather[vec2[0]]
self.start_data_ele = data_ele_new[0]
self.end_data_ele = data_ele_new[-1]
n1= round(self.start_data_ele)- start
n2= end - round(self.end_data_ele)-1
print(self.start_data_ele)
print(self.end_data_ele)
if n1>0:
ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
ele1_nan= numpy.ones(n1)*numpy.nan
data_ele = numpy.hstack((ele1,data_ele_new))
data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
if n2>0:
ele2= numpy.linspace(self.end_data_ele+1,end,n2)
ele2_nan= numpy.ones(n2)*numpy.nan
data_ele = numpy.hstack((data_ele,ele2))
data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
# RADAR
# NOTA data_ele y data_weather es la variable que retorna
val_mean = numpy.mean(data_weather[:,-1])
self.val_mean = val_mean
data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
print("eleold",data_ele_old)
print(self.data_ele_tmp[val_ch])
print(data_ele_old.shape[0])
print(self.data_ele_tmp[val_ch].shape[0])
if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
import sys
print("EXIT",self.ini)
sys.exit(1)
self.data_ele_tmp[val_ch]= data_ele_old
else:
#print("**********************************************")
#print("****************VARIABLE**********************")
#-------------------------CAMBIOS RHI---------------------------------
#---------------------------------------------------------------------
##print("INPUT data_ele",data_ele)
flag=0
start_ele = self.res_ele[0]
#tipo_case = self.check_case(data_ele,ang_max,ang_min)
tipo_case = case_flag[-1]
#print("TIPO DE DATA",tipo_case)
#-----------new------------
data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
#-------------------------------NEW RHI ITERATIVO-------------------------
if tipo_case==0 : # SUBIDA
vec = numpy.where(data_ele<ang_max)
data_ele = data_ele[vec]
data_ele_old = data_ele_old[vec]
data_weather = data_weather[vec[0]]
vec2 = numpy.where(0<data_ele)
data_ele= data_ele[vec2]
data_ele_old= data_ele_old[vec2]
##print(data_ele_new)
data_weather= data_weather[vec2[0]]
new_i_ele = int(round(data_ele[0]))
new_f_ele = int(round(data_ele[-1]))
#print(new_i_ele)
#print(new_f_ele)
#print(data_ele,len(data_ele))
#print(data_ele_old,len(data_ele_old))
if new_i_ele< 2:
self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
data_ele = self.res_ele
data_weather = self.res_weather[val_ch]
elif tipo_case==1 : #BAJADA
data_ele = data_ele[::-1] # reversa
data_ele_old = data_ele_old[::-1]# reversa
data_weather = data_weather[::-1,:]# reversa
vec= numpy.where(data_ele<ang_max)
data_ele = data_ele[vec]
data_ele_old = data_ele_old[vec]
data_weather = data_weather[vec[0]]
vec2= numpy.where(0<data_ele)
data_ele = data_ele[vec2]
data_ele_old = data_ele_old[vec2]
data_weather = data_weather[vec2[0]]
new_i_ele = int(round(data_ele[0]))
new_f_ele = int(round(data_ele[-1]))
#print(data_ele)
#print(ang_max)
#print(data_ele_old)
if new_i_ele <= 1:
new_i_ele = 1
if round(data_ele[-1])>=ang_max-1:
self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
data_ele = self.res_ele
data_weather = self.res_weather[val_ch]
elif tipo_case==2: #bajada
vec = numpy.where(data_ele<ang_max)
data_ele = data_ele[vec]
data_weather= data_weather[vec[0]]
len_vec = len(vec)
data_ele_new = data_ele[::-1] # reversa
data_weather = data_weather[::-1,:]
new_i_ele = int(data_ele_new[0])
new_f_ele = int(data_ele_new[-1])
n1= new_i_ele- ang_min
n2= ang_max - new_f_ele-1
if n1>0:
ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
ele1_nan= numpy.ones(n1)*numpy.nan
data_ele = numpy.hstack((ele1,data_ele_new))
data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
if n2>0:
ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
ele2_nan= numpy.ones(n2)*numpy.nan
data_ele = numpy.hstack((data_ele,ele2))
data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
self.data_ele_tmp[val_ch] = data_ele_old
self.res_ele = data_ele
self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
data_ele = self.res_ele
data_weather = self.res_weather[val_ch]
elif tipo_case==3:#subida
vec = numpy.where(0<data_ele)
data_ele= data_ele[vec]
data_ele_new = data_ele
data_ele_old= data_ele_old[vec]
data_weather= data_weather[vec[0]]
pos_ini = numpy.argmin(data_ele)
if pos_ini>0:
len_vec= len(data_ele)
vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
#print(vec3)
data_ele= data_ele[vec3]
data_ele_new = data_ele
data_ele_old= data_ele_old[vec3]
data_weather= data_weather[vec3]
new_i_ele = int(data_ele_new[0])
new_f_ele = int(data_ele_new[-1])
n1= new_i_ele- ang_min
n2= ang_max - new_f_ele-1
if n1>0:
ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
ele1_nan= numpy.ones(n1)*numpy.nan
data_ele = numpy.hstack((ele1,data_ele_new))
data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
if n2>0:
ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
ele2_nan= numpy.ones(n2)*numpy.nan
data_ele = numpy.hstack((data_ele,ele2))
data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
self.data_ele_tmp[val_ch] = data_ele_old
self.res_ele = data_ele
self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
data_ele = self.res_ele
data_weather = self.res_weather[val_ch]
#print("self.data_ele_tmp",self.data_ele_tmp)
return data_weather,data_ele
def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min):
data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1)
data_ele = data_ele_old.copy()
diff_1 = ang_max - data_ele[0]
angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan
diff_2 = data_ele[-1]-ang_min
angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan
angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan))
print(angles_filled)
data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan
data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan
data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0)
#val_mean = numpy.mean(data_weather[:,-1])
#self.val_mean = val_mean
print(data_filled)
data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan)
print(data_filled)
print(data_filled.shape)
print(angles_filled.shape)
return data_filled,angles_filled
def plot(self):
thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
data = self.data[-1]
r = self.data.yrange
delta_height = r[1]-r[0]
r_mask = numpy.where(r>=0)[0]
self.r_mask =r_mask
##print("delta_height",delta_height)
#print("r_mask",r_mask,len(r_mask))
r = numpy.arange(len(r_mask))*delta_height
self.y = 2*r
res = 1
###print("data['weather'].shape[0]",data['weather'].shape[0])
ang_max = self.ang_max
ang_min = self.ang_min
var_ang =ang_max - ang_min
step = (int(var_ang)/(res*data['weather'].shape[0]))
###print("step",step)
#--------------------------------------------------------
##print('weather',data['weather'].shape)
##print('ele',data['ele'].shape)
###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
###self.res_azi = numpy.mean(data['azi'])
###print("self.res_ele",self.res_ele)
plt.clf()
subplots = [121, 122]
#if self.ini==0:
#self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
#print("SHAPE",self.data_ele_tmp.shape)
for i,ax in enumerate(self.axes):
res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min)
self.res_azi = numpy.mean(data['azi'])
if ax.firsttime:
#plt.clf()
print("Frist Plot")
print(data['weather'][i][:,r_mask].shape)
print(data['ele'].shape)
cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
#cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
gh = cgax.get_grid_helper()
locs = numpy.linspace(ang_min,ang_max,var_ang+1)
gh.grid_finder.grid_locator1 = FixedLocator(locs)
gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
#fig=self.figures[0]
else:
#plt.clf()
print("ELSE PLOT")
cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
#cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
gh = cgax.get_grid_helper()
locs = numpy.linspace(ang_min,ang_max,var_ang+1)
gh.grid_finder.grid_locator1 = FixedLocator(locs)
gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
caax = cgax.parasites[0]
paax = cgax.parasites[1]
cbar = plt.gcf().colorbar(pm, pad=0.075)
caax.set_xlabel('x_range [km]')
caax.set_ylabel('y_range [km]')
plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
print("***************************self.ini****************************",self.ini)
self.ini= self.ini+1