SpectraIO.py
948 lines
| 31.0 KiB
| text/x-python
|
PythonLexer
|
r126 | ''' | |
|
r121 | ||
|
r126 | $Author$ | |
$Id$ | |||
|
r121 | ''' | |
import os, sys | |||
import numpy | |||
|
r163 | ||
|
r173 | import pyfits | |
|
r121 | import glob | |
import fnmatch | |||
import time, datetime | |||
path = os.path.split(os.getcwd())[0] | |||
sys.path.append(path) | |||
|
r137 | from JROHeaderIO import * | |
|
r121 | from JRODataIO import JRODataReader | |
from JRODataIO import JRODataWriter | |||
|
r137 | from Data.JROData import Spectra | |
|
r121 | ||
|
r163 | from Data.JROData import SpectraHeis | |
|
r121 | class SpectraReader(JRODataReader): | |
""" | |||
Esta clase permite leer datos de espectros desde archivos procesados (.pdata). La lectura | |||
de los datos siempre se realiza por bloques. Los datos leidos (array de 3 dimensiones) | |||
son almacenados en tres buffer's para el Self Spectra, el Cross Spectra y el DC Channel. | |||
paresCanalesIguales * alturas * perfiles (Self Spectra) | |||
paresCanalesDiferentes * alturas * perfiles (Cross Spectra) | |||
canales * alturas (DC Channels) | |||
Esta clase contiene instancias (objetos) de las clases BasicHeader, SystemHeader, | |||
RadarControllerHeader y Spectra. Los tres primeros se usan para almacenar informacion de la | |||
cabecera de datos (metadata), y el cuarto (Spectra) para obtener y almacenar un bloque de | |||
datos desde el "buffer" cada vez que se ejecute el metodo "getData". | |||
Example: | |||
dpath = "/home/myuser/data" | |||
startTime = datetime.datetime(2010,1,20,0,0,0,0,0,0) | |||
endTime = datetime.datetime(2010,1,21,23,59,59,0,0,0) | |||
readerObj = SpectraReader() | |||
readerObj.setup(dpath, startTime, endTime) | |||
while(True): | |||
readerObj.getData() | |||
|
r137 | print readerObj.data_spc | |
print readerObj.data_cspc | |||
print readerObj.data_dc | |||
|
r121 | ||
if readerObj.flagNoMoreFiles: | |||
break | |||
""" | |||
pts2read_SelfSpectra = 0 | |||
pts2read_CrossSpectra = 0 | |||
pts2read_DCchannels = 0 | |||
ext = ".pdata" | |||
optchar = "P" | |||
|
r122 | dataOutObj = None | |
nRdChannels = None | |||
nRdPairs = None | |||
rdPairList = [] | |||
|
r121 | ||
def __init__(self, dataOutObj=None): | |||
""" | |||
Inicializador de la clase SpectraReader para la lectura de datos de espectros. | |||
Inputs: | |||
dataOutObj : Objeto de la clase Spectra. Este objeto sera utilizado para | |||
almacenar un perfil de datos cada vez que se haga un requerimiento | |||
(getData). El perfil sera obtenido a partir del buffer de datos, | |||
si el buffer esta vacio se hara un nuevo proceso de lectura de un | |||
bloque de datos. | |||
Si este parametro no es pasado se creara uno internamente. | |||
Affected: | |||
self.dataOutObj | |||
Return : None | |||
""" | |||
self.pts2read_SelfSpectra = 0 | |||
self.pts2read_CrossSpectra = 0 | |||
|
r122 | self.pts2read_DCchannels = 0 | |
|
r121 | ||
self.datablock = None | |||
self.utc = None | |||
self.ext = ".pdata" | |||
self.optchar = "P" | |||
self.basicHeaderObj = BasicHeader() | |||
self.systemHeaderObj = SystemHeader() | |||
self.radarControllerHeaderObj = RadarControllerHeader() | |||
self.processingHeaderObj = ProcessingHeader() | |||
self.online = 0 | |||
self.fp = None | |||
self.idFile = None | |||
self.dtype = None | |||
self.fileSizeByHeader = None | |||
self.filenameList = [] | |||
self.filename = None | |||
self.fileSize = None | |||
self.firstHeaderSize = 0 | |||
self.basicHeaderSize = 24 | |||
self.pathList = [] | |||
self.lastUTTime = 0 | |||
self.maxTimeStep = 30 | |||
self.flagNoMoreFiles = 0 | |||
self.set = 0 | |||
self.path = None | |||
self.delay = 3 #seconds | |||
self.nTries = 3 #quantity tries | |||
self.nFiles = 3 #number of files for searching | |||
self.nReadBlocks = 0 | |||
self.flagIsNewFile = 1 | |||
self.ippSeconds = 0 | |||
self.flagTimeBlock = 0 | |||
self.flagIsNewBlock = 0 | |||
self.nTotalBlocks = 0 | |||
self.blocksize = 0 | |||
def createObjByDefault(self): | |||
dataObj = Spectra() | |||
return dataObj | |||
def __hasNotDataInBuffer(self): | |||
return 1 | |||
def getBlockDimension(self): | |||
""" | |||
Obtiene la cantidad de puntos a leer por cada bloque de datos | |||
Affected: | |||
|
r122 | self.nRdChannels | |
self.nRdPairs | |||
|
r121 | self.pts2read_SelfSpectra | |
self.pts2read_CrossSpectra | |||
self.pts2read_DCchannels | |||
self.blocksize | |||
self.dataOutObj.nChannels | |||
self.dataOutObj.nPairs | |||
Return: | |||
None | |||
""" | |||
|
r122 | self.nRdChannels = 0 | |
self.nRdPairs = 0 | |||
self.rdPairList = [] | |||
|
r121 | ||
|
r124 | for i in range(0, self.processingHeaderObj.totalSpectra*2, 2): | |
|
r121 | if self.processingHeaderObj.spectraComb[i] == self.processingHeaderObj.spectraComb[i+1]: | |
|
r124 | self.nRdChannels = self.nRdChannels + 1 #par de canales iguales | |
|
r121 | else: | |
|
r122 | self.nRdPairs = self.nRdPairs + 1 #par de canales diferentes | |
|
r124 | self.rdPairList.append((self.processingHeaderObj.spectraComb[i], self.processingHeaderObj.spectraComb[i+1])) | |
|
r121 | ||
|
r122 | pts2read = self.processingHeaderObj.nHeights * self.processingHeaderObj.profilesPerBlock | |
|
r121 | ||
|
r122 | self.pts2read_SelfSpectra = int(self.nRdChannels * pts2read) | |
|
r121 | self.blocksize = self.pts2read_SelfSpectra | |
if self.processingHeaderObj.flag_cspc: | |||
|
r122 | self.pts2read_CrossSpectra = int(self.nRdPairs * pts2read) | |
|
r121 | self.blocksize += self.pts2read_CrossSpectra | |
if self.processingHeaderObj.flag_dc: | |||
|
r122 | self.pts2read_DCchannels = int(self.systemHeaderObj.nChannels * self.processingHeaderObj.nHeights) | |
|
r121 | self.blocksize += self.pts2read_DCchannels | |
# self.blocksize = self.pts2read_SelfSpectra + self.pts2read_CrossSpectra + self.pts2read_DCchannels | |||
def readBlock(self): | |||
""" | |||
Lee el bloque de datos desde la posicion actual del puntero del archivo | |||
(self.fp) y actualiza todos los parametros relacionados al bloque de datos | |||
(metadata + data). La data leida es almacenada en el buffer y el contador del buffer | |||
es seteado a 0 | |||
Return: None | |||
Variables afectadas: | |||
|
r122 | ||
|
r121 | self.flagIsNewFile | |
self.flagIsNewBlock | |||
self.nTotalBlocks | |||
self.data_spc | |||
self.data_cspc | |||
self.data_dc | |||
Exceptions: | |||
Si un bloque leido no es un bloque valido | |||
""" | |||
blockOk_flag = False | |||
fpointer = self.fp.tell() | |||
|
r122 | spc = numpy.fromfile( self.fp, self.dtype[0], self.pts2read_SelfSpectra ) | |
spc = spc.reshape( (self.nRdChannels, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) ) #transforma a un arreglo 3D | |||
|
r121 | ||
|
r122 | if self.processingHeaderObj.flag_cspc: | |
cspc = numpy.fromfile( self.fp, self.dtype, self.pts2read_CrossSpectra ) | |||
cspc = cspc.reshape( (self.nRdPairs, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) ) #transforma a un arreglo 3D | |||
|
r121 | ||
if self.processingHeaderObj.flag_dc: | |||
|
r122 | dc = numpy.fromfile( self.fp, self.dtype, self.pts2read_DCchannels ) #int(self.processingHeaderObj.nHeights*self.systemHeaderObj.nChannels) ) | |
dc = dc.reshape( (self.systemHeaderObj.nChannels, self.processingHeaderObj.nHeights) ) #transforma a un arreglo 2D | |||
|
r121 | ||
if not(self.processingHeaderObj.shif_fft): | |||
spc = numpy.roll( spc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones | |||
|
r122 | if self.processingHeaderObj.flag_cspc: | |
|
r121 | cspc = numpy.roll( cspc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones | |
spc = numpy.transpose( spc, (0,2,1) ) | |||
self.data_spc = spc | |||
|
r122 | if self.processingHeaderObj.flag_cspc: | |
|
r121 | cspc = numpy.transpose( cspc, (0,2,1) ) | |
self.data_cspc = cspc['real'] + cspc['imag']*1j | |||
else: | |||
self.data_cspc = None | |||
if self.processingHeaderObj.flag_dc: | |||
self.data_dc = dc['real'] + dc['imag']*1j | |||
else: | |||
self.data_dc = None | |||
self.flagIsNewFile = 0 | |||
self.flagIsNewBlock = 1 | |||
self.nTotalBlocks += 1 | |||
self.nReadBlocks += 1 | |||
return 1 | |||
def getData(self): | |||
""" | |||
Copia el buffer de lectura a la clase "Spectra", | |||
con todos los parametros asociados a este (metadata). cuando no hay datos en el buffer de | |||
lectura es necesario hacer una nueva lectura de los bloques de datos usando "readNextBlock" | |||
Return: | |||
0 : Si no hay mas archivos disponibles | |||
1 : Si hizo una buena copia del buffer | |||
Affected: | |||
self.dataOutObj | |||
|
r122 | ||
|
r121 | self.flagTimeBlock | |
self.flagIsNewBlock | |||
""" | |||
if self.flagNoMoreFiles: return 0 | |||
self.flagTimeBlock = 0 | |||
self.flagIsNewBlock = 0 | |||
if self.__hasNotDataInBuffer(): | |||
if not( self.readNextBlock() ): | |||
return 0 | |||
|
r122 | # self.updateDataHeader() | |
|
r121 | ||
if self.flagNoMoreFiles == 1: | |||
print 'Process finished' | |||
return 0 | |||
#data es un numpy array de 3 dmensiones (perfiles, alturas y canales) | |||
if self.data_dc == None: | |||
self.dataOutObj.flagNoData = True | |||
return 0 | |||
|
r122 | ||
|
r121 | self.dataOutObj.data_spc = self.data_spc | |
|
r122 | ||
|
r121 | self.dataOutObj.data_cspc = self.data_cspc | |
|
r122 | ||
|
r121 | self.dataOutObj.data_dc = self.data_dc | |
|
r122 | ||
self.dataOutObj.flagTimeBlock = self.flagTimeBlock | |||
self.dataOutObj.flagNoData = False | |||
self.dataOutObj.dtype = self.dtype | |||
self.dataOutObj.nChannels = self.nRdChannels | |||
self.dataOutObj.nPairs = self.nRdPairs | |||
self.dataOutObj.pairsList = self.rdPairList | |||
self.dataOutObj.nHeights = self.processingHeaderObj.nHeights | |||
self.dataOutObj.nProfiles = self.processingHeaderObj.profilesPerBlock | |||
self.dataOutObj.nFFTPoints = self.processingHeaderObj.profilesPerBlock | |||
self.dataOutObj.nIncohInt = self.processingHeaderObj.nIncohInt | |||
xf = self.processingHeaderObj.firstHeight + self.processingHeaderObj.nHeights*self.processingHeaderObj.deltaHeight | |||
self.dataOutObj.heightList = numpy.arange(self.processingHeaderObj.firstHeight, xf, self.processingHeaderObj.deltaHeight) | |||
self.dataOutObj.channelList = range(self.systemHeaderObj.nChannels) | |||
self.dataOutObj.channelIndexList = range(self.systemHeaderObj.nChannels) | |||
|
r153 | self.dataOutObj.utctime = self.basicHeaderObj.utc + self.basicHeaderObj.miliSecond/1000.#+ self.profileIndex * self.ippSeconds | |
|
r122 | ||
|
r159 | self.dataOutObj.ippSeconds = self.ippSeconds | |
self.dataOutObj.timeInterval = self.ippSeconds * self.processingHeaderObj.nCohInt * self.processingHeaderObj.nIncohInt * self.dataOutObj.nFFTPoints | |||
|
r124 | self.dataOutObj.flagShiftFFT = self.processingHeaderObj.shif_fft | |
|
r122 | # self.profileIndex += 1 | |
self.dataOutObj.systemHeaderObj = self.systemHeaderObj.copy() | |||
self.dataOutObj.radarControllerHeaderObj = self.radarControllerHeaderObj.copy() | |||
|
r121 | ||
|
r144 | return self.dataOutObj.data_spc | |
|
r121 | ||
class SpectraWriter(JRODataWriter): | |||
""" | |||
Esta clase permite escribir datos de espectros a archivos procesados (.pdata). La escritura | |||
de los datos siempre se realiza por bloques. | |||
""" | |||
|
r124 | ext = ".pdata" | |
optchar = "P" | |||
|
r121 | ||
shape_spc_Buffer = None | |||
|
r124 | ||
|
r121 | shape_cspc_Buffer = None | |
|
r124 | ||
|
r121 | shape_dc_Buffer = None | |
|
r124 | ||
data_spc = None | |||
data_cspc = None | |||
data_dc = None | |||
wrPairList = [] | |||
nWrPairs = 0 | |||
nWrChannels = 0 | |||
# dataOutObj = None | |||
|
r121 | ||
def __init__(self, dataOutObj=None): | |||
""" | |||
Inicializador de la clase SpectraWriter para la escritura de datos de espectros. | |||
Affected: | |||
self.dataOutObj | |||
self.basicHeaderObj | |||
self.systemHeaderObj | |||
self.radarControllerHeaderObj | |||
self.processingHeaderObj | |||
Return: None | |||
""" | |||
if dataOutObj == None: | |||
dataOutObj = Spectra() | |||
if not( isinstance(dataOutObj, Spectra) ): | |||
raise ValueError, "in SpectraReader, dataOutObj must be an Spectra class object" | |||
self.dataOutObj = dataOutObj | |||
|
r124 | self.nTotalBlocks = 0 | |
|
r121 | ||
|
r124 | self.nWrChannels = self.dataOutObj.nChannels | |
|
r121 | ||
|
r124 | # if len(pairList) > 0: | |
# self.wrPairList = pairList | |||
# | |||
# self.nWrPairs = len(pairList) | |||
|
r121 | ||
|
r125 | self.wrPairList = self.dataOutObj.pairsList | |
|
r121 | ||
|
r124 | self.nWrPairs = self.dataOutObj.nPairs | |
|
r163 | ||
|
r124 | # self.data_spc = None | |
# self.data_cspc = None | |||
# self.data_dc = None | |||
# self.fp = None | |||
# self.flagIsNewFile = 1 | |||
# | |||
# self.nTotalBlocks = 0 | |||
# | |||
# self.flagIsNewBlock = 0 | |||
# | |||
# self.flagNoMoreFiles = 0 | |||
# | |||
# self.setFile = None | |||
# | |||
# self.dtype = None | |||
# | |||
# self.path = None | |||
# | |||
# self.noMoreFiles = 0 | |||
# | |||
# self.filename = None | |||
# | |||
# self.basicHeaderObj = BasicHeader() | |||
# | |||
# self.systemHeaderObj = SystemHeader() | |||
# | |||
# self.radarControllerHeaderObj = RadarControllerHeader() | |||
# | |||
# self.processingHeaderObj = ProcessingHeader() | |||
|
r121 | ||
def hasAllDataInBuffer(self): | |||
return 1 | |||
def setBlockDimension(self): | |||
""" | |||
Obtiene las formas dimensionales del los subbloques de datos que componen un bloque | |||
Affected: | |||
self.shape_spc_Buffer | |||
self.shape_cspc_Buffer | |||
self.shape_dc_Buffer | |||
Return: None | |||
""" | |||
self.shape_spc_Buffer = (self.dataOutObj.nChannels, | |||
|
r122 | self.processingHeaderObj.nHeights, | |
|
r121 | self.processingHeaderObj.profilesPerBlock) | |
self.shape_cspc_Buffer = (self.dataOutObj.nPairs, | |||
|
r122 | self.processingHeaderObj.nHeights, | |
|
r121 | self.processingHeaderObj.profilesPerBlock) | |
|
r125 | self.shape_dc_Buffer = (self.dataOutObj.nChannels, | |
|
r122 | self.processingHeaderObj.nHeights) | |
|
r121 | ||
def writeBlock(self): | |||
""" | |||
Escribe el buffer en el file designado | |||
Affected: | |||
self.data_spc | |||
self.data_cspc | |||
self.data_dc | |||
self.flagIsNewFile | |||
self.flagIsNewBlock | |||
self.nTotalBlocks | |||
self.nWriteBlocks | |||
Return: None | |||
""" | |||
spc = numpy.transpose( self.data_spc, (0,2,1) ) | |||
if not( self.processingHeaderObj.shif_fft ): | |||
spc = numpy.roll( spc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones | |||
data = spc.reshape((-1)) | |||
data.tofile(self.fp) | |||
if self.data_cspc != None: | |||
|
r122 | data = numpy.zeros( self.shape_cspc_Buffer, self.dtype ) | |
|
r121 | cspc = numpy.transpose( self.data_cspc, (0,2,1) ) | |
if not( self.processingHeaderObj.shif_fft ): | |||
cspc = numpy.roll( cspc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones | |||
data['real'] = cspc.real | |||
data['imag'] = cspc.imag | |||
data = data.reshape((-1)) | |||
data.tofile(self.fp) | |||
|
r126 | ||
if self.data_dc != None: | |||
data = numpy.zeros( self.shape_dc_Buffer, self.dtype ) | |||
dc = self.data_dc | |||
data['real'] = dc.real | |||
data['imag'] = dc.imag | |||
data = data.reshape((-1)) | |||
data.tofile(self.fp) | |||
|
r121 | ||
self.data_spc.fill(0) | |||
self.data_dc.fill(0) | |||
if self.data_cspc != None: | |||
self.data_cspc.fill(0) | |||
self.flagIsNewFile = 0 | |||
self.flagIsNewBlock = 1 | |||
self.nTotalBlocks += 1 | |||
self.nWriteBlocks += 1 | |||
|
r126 | self.blockIndex += 1 | |
|
r121 | ||
def putData(self): | |||
""" | |||
Setea un bloque de datos y luego los escribe en un file | |||
Affected: | |||
self.data_spc | |||
self.data_cspc | |||
self.data_dc | |||
Return: | |||
0 : Si no hay data o no hay mas files que puedan escribirse | |||
1 : Si se escribio la data de un bloque en un file | |||
""" | |||
self.flagIsNewBlock = 0 | |||
if self.dataOutObj.flagNoData: | |||
return 0 | |||
if self.dataOutObj.flagTimeBlock: | |||
self.data_spc.fill(0) | |||
self.data_cspc.fill(0) | |||
self.data_dc.fill(0) | |||
self.setNextFile() | |||
|
r125 | if self.flagIsNewFile == 0: | |
self.getBasicHeader() | |||
|
r121 | self.data_spc = self.dataOutObj.data_spc | |
self.data_cspc = self.dataOutObj.data_cspc | |||
self.data_dc = self.dataOutObj.data_dc | |||
# #self.processingHeaderObj.dataBlocksPerFile) | |||
if self.hasAllDataInBuffer(): | |||
|
r125 | # self.getDataHeader() | |
|
r121 | self.writeNextBlock() | |
if self.flagNoMoreFiles: | |||
#print 'Process finished' | |||
|
r171 | return 0 | |
|
r124 | return 1 | |
def __getProcessFlags(self): | |||
processFlags = 0 | |||
dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')]) | |||
dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')]) | |||
dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')]) | |||
dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')]) | |||
dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')]) | |||
dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')]) | |||
dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5] | |||
datatypeValueList = [PROCFLAG.DATATYPE_CHAR, | |||
PROCFLAG.DATATYPE_SHORT, | |||
PROCFLAG.DATATYPE_LONG, | |||
PROCFLAG.DATATYPE_INT64, | |||
PROCFLAG.DATATYPE_FLOAT, | |||
PROCFLAG.DATATYPE_DOUBLE] | |||
for index in range(len(dtypeList)): | |||
if self.dataOutObj.dtype == dtypeList[index]: | |||
dtypeValue = datatypeValueList[index] | |||
break | |||
processFlags += dtypeValue | |||
if self.dataOutObj.flagDecodeData: | |||
processFlags += PROCFLAG.DECODE_DATA | |||
if self.dataOutObj.flagDeflipData: | |||
processFlags += PROCFLAG.DEFLIP_DATA | |||
if self.dataOutObj.code != None: | |||
processFlags += PROCFLAG.DEFINE_PROCESS_CODE | |||
if self.dataOutObj.nIncohInt > 1: | |||
processFlags += PROCFLAG.INCOHERENT_INTEGRATION | |||
if self.dataOutObj.data_dc != None: | |||
processFlags += PROCFLAG.SAVE_CHANNELS_DC | |||
return processFlags | |||
def __getBlockSize(self): | |||
''' | |||
Este metodos determina el cantidad de bytes para un bloque de datos de tipo Spectra | |||
''' | |||
dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')]) | |||
dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')]) | |||
dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')]) | |||
dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')]) | |||
dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')]) | |||
dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')]) | |||
dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5] | |||
datatypeValueList = [1,2,4,8,4,8] | |||
for index in range(len(dtypeList)): | |||
if self.dataOutObj.dtype == dtypeList[index]: | |||
datatypeValue = datatypeValueList[index] | |||
break | |||
pts2write = self.dataOutObj.nHeights * self.dataOutObj.nFFTPoints | |||
pts2write_SelfSpectra = int(self.nWrChannels * pts2write) | |||
|
r126 | blocksize = (pts2write_SelfSpectra*datatypeValue) | |
|
r124 | ||
if self.dataOutObj.data_cspc != None: | |||
pts2write_CrossSpectra = int(self.nWrPairs * pts2write) | |||
|
r126 | blocksize += (pts2write_CrossSpectra*datatypeValue*2) | |
|
r124 | ||
if self.dataOutObj.data_dc != None: | |||
pts2write_DCchannels = int(self.nWrChannels * self.dataOutObj.nHeights) | |||
|
r126 | blocksize += (pts2write_DCchannels*datatypeValue*2) | |
|
r124 | ||
|
r126 | blocksize = blocksize #* datatypeValue * 2 #CORREGIR ESTO | |
|
r124 | ||
return blocksize | |||
def getBasicHeader(self): | |||
self.basicHeaderObj.size = self.basicHeaderSize #bytes | |||
self.basicHeaderObj.version = self.versionFile | |||
self.basicHeaderObj.dataBlock = self.nTotalBlocks | |||
|
r153 | utc = numpy.floor(self.dataOutObj.utctime) | |
milisecond = (self.dataOutObj.utctime - utc)* 1000.0 | |||
|
r124 | ||
self.basicHeaderObj.utc = utc | |||
self.basicHeaderObj.miliSecond = milisecond | |||
self.basicHeaderObj.timeZone = 0 | |||
self.basicHeaderObj.dstFlag = 0 | |||
self.basicHeaderObj.errorCount = 0 | |||
def getDataHeader(self): | |||
""" | |||
Obtiene una copia del First Header | |||
Affected: | |||
self.systemHeaderObj | |||
self.radarControllerHeaderObj | |||
self.dtype | |||
Return: | |||
None | |||
""" | |||
self.systemHeaderObj = self.dataOutObj.systemHeaderObj.copy() | |||
|
r125 | self.systemHeaderObj.nChannels = self.dataOutObj.nChannels | |
|
r124 | self.radarControllerHeaderObj = self.dataOutObj.radarControllerHeaderObj.copy() | |
self.getBasicHeader() | |||
processingHeaderSize = 40 # bytes | |||
self.processingHeaderObj.dtype = 0 # Voltage | |||
self.processingHeaderObj.blockSize = self.__getBlockSize() | |||
|
r125 | self.processingHeaderObj.profilesPerBlock = self.dataOutObj.nFFTPoints | |
|
r124 | self.processingHeaderObj.dataBlocksPerFile = self.blocksPerFile | |
self.processingHeaderObj.nWindows = 1 #podria ser 1 o self.dataOutObj.processingHeaderObj.nWindows | |||
self.processingHeaderObj.processFlags = self.__getProcessFlags() | |||
|
r162 | self.processingHeaderObj.nCohInt = self.dataOutObj.nCohInt# Se requiere para determinar el valor de timeInterval | |
|
r125 | self.processingHeaderObj.nIncohInt = self.dataOutObj.nIncohInt | |
self.processingHeaderObj.totalSpectra = self.dataOutObj.nPairs + self.dataOutObj.nChannels | |||
if self.processingHeaderObj.totalSpectra > 0: | |||
channelList = [] | |||
for channel in range(self.dataOutObj.nChannels): | |||
channelList.append(channel) | |||
channelList.append(channel) | |||
pairsList = [] | |||
for pair in self.dataOutObj.pairsList: | |||
pairsList.append(pair[0]) | |||
pairsList.append(pair[1]) | |||
spectraComb = channelList + pairsList | |||
spectraComb = numpy.array(spectraComb,dtype="u1") | |||
self.processingHeaderObj.spectraComb = spectraComb | |||
sizeOfSpcComb = len(spectraComb) | |||
processingHeaderSize += sizeOfSpcComb | |||
|
r124 | ||
if self.dataOutObj.code != None: | |||
self.processingHeaderObj.code = self.dataOutObj.code | |||
self.processingHeaderObj.nCode = self.dataOutObj.nCode | |||
self.processingHeaderObj.nBaud = self.dataOutObj.nBaud | |||
|
r125 | nCodeSize = 4 # bytes | |
nBaudSize = 4 # bytes | |||
codeSize = 4 # bytes | |||
sizeOfCode = int(nCodeSize + nBaudSize + codeSize * self.dataOutObj.nCode * self.dataOutObj.nBaud) | |||
processingHeaderSize += sizeOfCode | |||
|
r124 | ||
if self.processingHeaderObj.nWindows != 0: | |||
self.processingHeaderObj.firstHeight = self.dataOutObj.heightList[0] | |||
self.processingHeaderObj.deltaHeight = self.dataOutObj.heightList[1] - self.dataOutObj.heightList[0] | |||
self.processingHeaderObj.nHeights = self.dataOutObj.nHeights | |||
self.processingHeaderObj.samplesWin = self.dataOutObj.nHeights | |||
|
r125 | sizeOfFirstHeight = 4 | |
sizeOfdeltaHeight = 4 | |||
sizeOfnHeights = 4 | |||
sizeOfWindows = (sizeOfFirstHeight + sizeOfdeltaHeight + sizeOfnHeights)*self.processingHeaderObj.nWindows | |||
processingHeaderSize += sizeOfWindows | |||
|
r124 | ||
self.processingHeaderObj.size = processingHeaderSize | |||
|
r163 | ||
class FITS: | |||
name=None | |||
format=None | |||
array =None | |||
data =None | |||
thdulist=None | |||
|
r171 | prihdr=None | |
hdu=None | |||
|
r163 | ||
def __init__(self): | |||
pass | |||
def setColF(self,name,format,array): | |||
self.name=name | |||
self.format=format | |||
self.array=array | |||
a1=numpy.array([self.array],dtype=numpy.float32) | |||
self.col1 = pyfits.Column(name=self.name, format=self.format, array=a1) | |||
return self.col1 | |||
# def setColP(self,name,format,data): | |||
# self.name=name | |||
# self.format=format | |||
# self.data=data | |||
# a2=numpy.array([self.data],dtype=numpy.float32) | |||
# self.col2 = pyfits.Column(name=self.name, format=self.format, array=a2) | |||
# return self.col2 | |||
|
r171 | ||
|
r163 | def writeData(self,name,format,data): | |
self.name=name | |||
self.format=format | |||
self.data=data | |||
a2=numpy.array([self.data],dtype=numpy.float32) | |||
self.col2 = pyfits.Column(name=self.name, format=self.format, array=a2) | |||
return self.col2 | |||
|
r171 | def cFImage(self,idblock,year,month,day,hour,minute,second): | |
self.hdu= pyfits.PrimaryHDU(idblock) | |||
self.hdu.header.set("Year",year) | |||
self.hdu.header.set("Month",month) | |||
self.hdu.header.set("Day",day) | |||
self.hdu.header.set("Hour",hour) | |||
self.hdu.header.set("Minute",minute) | |||
self.hdu.header.set("Second",second) | |||
return self.hdu | |||
def Ctable(self,colList): | |||
self.cols=pyfits.ColDefs(colList) | |||
|
r163 | self.tbhdu = pyfits.new_table(self.cols) | |
return self.tbhdu | |||
|
r171 | ||
|
r163 | def CFile(self,hdu,tbhdu): | |
self.thdulist=pyfits.HDUList([hdu,tbhdu]) | |||
|
r171 | ||
|
r163 | def wFile(self,filename): | |
self.thdulist.writeto(filename) | |||
|
r171 | class SpectraHeisWriter(JRODataWriter): | |
set = None | |||
setFile = None | |||
idblock = None | |||
doypath = None | |||
subfolder = None | |||
|
r163 | def __init__(self, dataOutObj): | |
self.wrObj = FITS() | |||
self.dataOutObj = dataOutObj | |||
|
r171 | self.nTotalBlocks=0 | |
self.set = None | |||
self.setFile = 0 | |||
self.idblock = 0 | |||
self.wrpath = None | |||
self.doypath = None | |||
self.subfolder = None | |||
|
r163 | ||
def isNumber(str): | |||
""" | |||
Chequea si el conjunto de caracteres que componen un string puede ser convertidos a un numero. | |||
Excepciones: | |||
Si un determinado string no puede ser convertido a numero | |||
Input: | |||
str, string al cual se le analiza para determinar si convertible a un numero o no | |||
Return: | |||
True : si el string es uno numerico | |||
False : no es un string numerico | |||
""" | |||
try: | |||
float( str ) | |||
return True | |||
except: | |||
return False | |||
|
r171 | def setup(self, wrpath): | |
|
r163 | ||
if not(os.path.exists(wrpath)): | |||
os.mkdir(wrpath) | |||
self.wrpath = wrpath | |||
self.setFile = 0 | |||
def putData(self): | |||
name= time.localtime( self.dataOutObj.utctime) | |||
|
r171 | ext=".fits" | |
if self.doypath == None: | |||
self.subfolder = 'F%4.4d%3.3d_%d' % (name.tm_year,name.tm_yday,time.mktime(datetime.datetime.now().timetuple())) | |||
self.doypath = os.path.join( self.wrpath, self.subfolder ) | |||
os.mkdir(self.doypath) | |||
if self.set == None: | |||
self.set = self.dataOutObj.set | |||
self.setFile = 0 | |||
if self.set != self.dataOutObj.set: | |||
self.set = self.dataOutObj.set | |||
self.setFile = 0 | |||
#make the filename | |||
file = 'D%4.4d%3.3d%3.3d_%3.3d%s' % (name.tm_year,name.tm_yday,self.set,self.setFile,ext) | |||
|
r163 | ||
|
r171 | filename = os.path.join(self.wrpath,self.subfolder, file) | |
idblock = numpy.array([self.idblock],dtype="int64") | |||
header=self.wrObj.cFImage(idblock=idblock, | |||
year=time.gmtime(self.dataOutObj.utctime).tm_year, | |||
month=time.gmtime(self.dataOutObj.utctime).tm_mon, | |||
day=time.gmtime(self.dataOutObj.utctime).tm_mday, | |||
hour=time.gmtime(self.dataOutObj.utctime).tm_hour, | |||
minute=time.gmtime(self.dataOutObj.utctime).tm_min, | |||
second=time.gmtime(self.dataOutObj.utctime).tm_sec) | |||
c=3E8 | |||
freq=numpy.arange(-1*self.dataOutObj.nHeights/2.,self.dataOutObj.nHeights/2.)*(c/(2*self.dataOutObj.deltaHeight*1000)) | |||
colList = [] | |||
colFreq=self.wrObj.setColF(name="freq", format=str(self.dataOutObj.nFFTPoints)+'E', array=freq) | |||
colList.append(colFreq) | |||
nchannel=self.dataOutObj.nChannels | |||
for i in range(nchannel): | |||
col = self.wrObj.writeData(name="PCh"+str(i+1), | |||
format=str(self.dataOutObj.nFFTPoints)+'E', | |||
data=10*numpy.log10(self.dataOutObj.data_spc[i,:])) | |||
colList.append(col) | |||
data=self.wrObj.Ctable(colList=colList) | |||
self.wrObj.CFile(header,data) | |||
self.wrObj.wFile(filename) | |||
#update the setFile | |||
|
r163 | self.setFile += 1 | |
|
r171 | self.idblock += 1 | |
|
r163 | return 1 | |