import os import time import glob import datetime from multiprocessing import Process import zmq import numpy import matplotlib import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator from schainpy.model.proc.jroproc_base import Operation from schainpy.utils import log jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90] blu_values = matplotlib.pyplot.get_cmap( 'seismic_r', 20)(numpy.arange(20))[10:15] ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( 'jro', numpy.vstack((blu_values, jet_values))) matplotlib.pyplot.register_cmap(cmap=ncmap) CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis', 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm', 'spectral')] EARTH_RADIUS = 6.3710e3 def ll2xy(lat1, lon1, lat2, lon2): p = 0.017453292519943295 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 r = 12742 * numpy.arcsin(numpy.sqrt(a)) theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)*numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) theta = -theta + numpy.pi/2 return r*numpy.cos(theta), r*numpy.sin(theta) def km2deg(km): ''' Convert distance in km to degrees ''' return numpy.rad2deg(km/EARTH_RADIUS) def figpause(interval): backend = plt.rcParams['backend'] if backend in matplotlib.rcsetup.interactive_bk: figManager = matplotlib._pylab_helpers.Gcf.get_active() if figManager is not None: canvas = figManager.canvas if canvas.figure.stale: canvas.draw() canvas.start_event_loop(interval) return class PlotData(Operation, Process): ''' Base class for Schain plotting operations ''' CODE = 'Figure' colormap = 'jro' bgcolor = 'white' CONFLATE = False __missing = 1E30 __attrs__ = ['show', 'save', 'xmin', 'xmax', 'ymin', 'ymax', 'zmin', 'zmax', 'zlimits', 'xlabel', 'ylabel', 'xaxis','cb_label', 'title', 'colorbar', 'bgcolor', 'width', 'height', 'localtime', 'oneFigure', 'showprofile', 'decimation', 'ftp'] def __init__(self, **kwargs): Operation.__init__(self, plot=True, **kwargs) Process.__init__(self) self.kwargs['code'] = self.CODE self.mp = False self.data = None self.isConfig = False self.figures = [] self.axes = [] self.cb_axes = [] self.localtime = kwargs.pop('localtime', True) self.show = kwargs.get('show', True) self.save = kwargs.get('save', False) self.ftp = kwargs.get('ftp', False) self.colormap = kwargs.get('colormap', self.colormap) self.colormap_coh = kwargs.get('colormap_coh', 'jet') self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') self.colormaps = kwargs.get('colormaps', None) self.bgcolor = kwargs.get('bgcolor', self.bgcolor) self.showprofile = kwargs.get('showprofile', False) self.title = kwargs.get('wintitle', self.CODE.upper()) self.cb_label = kwargs.get('cb_label', None) self.cb_labels = kwargs.get('cb_labels', None) self.labels = kwargs.get('labels', None) self.xaxis = kwargs.get('xaxis', 'frequency') self.zmin = kwargs.get('zmin', None) self.zmax = kwargs.get('zmax', None) self.zlimits = kwargs.get('zlimits', None) self.xmin = kwargs.get('xmin', None) self.xmax = kwargs.get('xmax', None) self.xrange = kwargs.get('xrange', 24) self.xscale = kwargs.get('xscale', None) self.ymin = kwargs.get('ymin', None) self.ymax = kwargs.get('ymax', None) self.yscale = kwargs.get('yscale', None) self.xlabel = kwargs.get('xlabel', None) self.decimation = kwargs.get('decimation', None) self.showSNR = kwargs.get('showSNR', False) self.oneFigure = kwargs.get('oneFigure', True) self.width = kwargs.get('width', None) self.height = kwargs.get('height', None) self.colorbar = kwargs.get('colorbar', True) self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) self.channels = kwargs.get('channels', None) self.titles = kwargs.get('titles', []) self.polar = False def __fmtTime(self, x, pos): ''' ''' return '{}'.format(self.getDateTime(x).strftime('%H:%M')) def __setup(self): ''' Common setup for all figures, here figures and axes are created ''' if self.CODE not in self.data: raise ValueError(log.error('Missing data for {}'.format(self.CODE), self.name)) self.setup() self.time_label = 'LT' if self.localtime else 'UTC' if self.data.localtime: self.getDateTime = datetime.datetime.fromtimestamp else: self.getDateTime = datetime.datetime.utcfromtimestamp if self.width is None: self.width = 8 self.figures = [] self.axes = [] self.cb_axes = [] self.pf_axes = [] self.cmaps = [] size = '15%' if self.ncols == 1 else '30%' pad = '4%' if self.ncols == 1 else '8%' if self.oneFigure: if self.height is None: self.height = 1.4 * self.nrows + 1 fig = plt.figure(figsize=(self.width, self.height), edgecolor='k', facecolor='w') self.figures.append(fig) for n in range(self.nplots): ax = fig.add_subplot(self.nrows, self.ncols, n + 1, polar=self.polar) ax.tick_params(labelsize=8) ax.firsttime = True ax.index = 0 ax.press = None self.axes.append(ax) if self.showprofile: cax = self.__add_axes(ax, size=size, pad=pad) cax.tick_params(labelsize=8) self.pf_axes.append(cax) else: if self.height is None: self.height = 3 for n in range(self.nplots): fig = plt.figure(figsize=(self.width, self.height), edgecolor='k', facecolor='w') ax = fig.add_subplot(1, 1, 1, polar=self.polar) ax.tick_params(labelsize=8) ax.firsttime = True ax.index = 0 ax.press = None self.figures.append(fig) self.axes.append(ax) if self.showprofile: cax = self.__add_axes(ax, size=size, pad=pad) cax.tick_params(labelsize=8) self.pf_axes.append(cax) for n in range(self.nrows): if self.colormaps is not None: cmap = plt.get_cmap(self.colormaps[n]) else: cmap = plt.get_cmap(self.colormap) cmap.set_bad(self.bgcolor, 1.) self.cmaps.append(cmap) for fig in self.figures: fig.canvas.mpl_connect('key_press_event', self.OnKeyPress) fig.canvas.mpl_connect('scroll_event', self.OnBtnScroll) fig.canvas.mpl_connect('button_press_event', self.onBtnPress) fig.canvas.mpl_connect('motion_notify_event', self.onMotion) fig.canvas.mpl_connect('button_release_event', self.onBtnRelease) if self.show: fig.show() def OnKeyPress(self, event): ''' Event for pressing keys (up, down) change colormap ''' ax = event.inaxes if ax in self.axes: if event.key == 'down': ax.index += 1 elif event.key == 'up': ax.index -= 1 if ax.index < 0: ax.index = len(CMAPS) - 1 elif ax.index == len(CMAPS): ax.index = 0 cmap = CMAPS[ax.index] ax.cbar.set_cmap(cmap) ax.cbar.draw_all() ax.plt.set_cmap(cmap) ax.cbar.patch.figure.canvas.draw() self.colormap = cmap.name def OnBtnScroll(self, event): ''' Event for scrolling, scale figure ''' cb_ax = event.inaxes if cb_ax in [ax.cbar.ax for ax in self.axes if ax.cbar]: ax = [ax for ax in self.axes if cb_ax == ax.cbar.ax][0] pt = ax.cbar.ax.bbox.get_points()[:, 1] nrm = ax.cbar.norm vmin, vmax, p0, p1, pS = ( nrm.vmin, nrm.vmax, pt[0], pt[1], event.y) scale = 2 if event.step == 1 else 0.5 point = vmin + (vmax - vmin) / (p1 - p0) * (pS - p0) ax.cbar.norm.vmin = point - scale * (point - vmin) ax.cbar.norm.vmax = point - scale * (point - vmax) ax.plt.set_norm(ax.cbar.norm) ax.cbar.draw_all() ax.cbar.patch.figure.canvas.draw() def onBtnPress(self, event): ''' Event for mouse button press ''' cb_ax = event.inaxes if cb_ax is None: return if cb_ax in [ax.cbar.ax for ax in self.axes if ax.cbar]: cb_ax.press = event.x, event.y else: cb_ax.press = None def onMotion(self, event): ''' Event for move inside colorbar ''' cb_ax = event.inaxes if cb_ax is None: return if cb_ax not in [ax.cbar.ax for ax in self.axes if ax.cbar]: return if cb_ax.press is None: return ax = [ax for ax in self.axes if cb_ax == ax.cbar.ax][0] xprev, yprev = cb_ax.press dx = event.x - xprev dy = event.y - yprev cb_ax.press = event.x, event.y scale = ax.cbar.norm.vmax - ax.cbar.norm.vmin perc = 0.03 if event.button == 1: ax.cbar.norm.vmin -= (perc * scale) * numpy.sign(dy) ax.cbar.norm.vmax -= (perc * scale) * numpy.sign(dy) elif event.button == 3: ax.cbar.norm.vmin -= (perc * scale) * numpy.sign(dy) ax.cbar.norm.vmax += (perc * scale) * numpy.sign(dy) ax.cbar.draw_all() ax.plt.set_norm(ax.cbar.norm) ax.cbar.patch.figure.canvas.draw() def onBtnRelease(self, event): ''' Event for mouse button release ''' cb_ax = event.inaxes if cb_ax is not None: cb_ax.press = None def __add_axes(self, ax, size='30%', pad='8%'): ''' Add new axes to the given figure ''' divider = make_axes_locatable(ax) nax = divider.new_horizontal(size=size, pad=pad) ax.figure.add_axes(nax) return nax self.setup() def setup(self): ''' This method should be implemented in the child class, the following attributes should be set: self.nrows: number of rows self.ncols: number of cols self.nplots: number of plots (channels or pairs) self.ylabel: label for Y axes self.titles: list of axes title ''' raise(NotImplementedError, 'Implement this method in child class') def fill_gaps(self, x_buffer, y_buffer, z_buffer): ''' Create a masked array for missing data ''' if x_buffer.shape[0] < 2: return x_buffer, y_buffer, z_buffer deltas = x_buffer[1:] - x_buffer[0:-1] x_median = numpy.median(deltas) index = numpy.where(deltas > 5 * x_median) if len(index[0]) != 0: z_buffer[::, index[0], ::] = self.__missing z_buffer = numpy.ma.masked_inside(z_buffer, 0.99 * self.__missing, 1.01 * self.__missing) return x_buffer, y_buffer, z_buffer def decimate(self): # dx = int(len(self.x)/self.__MAXNUMX) + 1 dy = int(len(self.y) / self.decimation) + 1 # x = self.x[::dx] x = self.x y = self.y[::dy] z = self.z[::, ::, ::dy] return x, y, z def format(self): ''' Set min and max values, labels, ticks and titles ''' if self.xmin is None: xmin = self.min_time else: if self.xaxis is 'time': dt = self.getDateTime(self.min_time) xmin = (dt.replace(hour=int(self.xmin), minute=0, second=0) - datetime.datetime(1970, 1, 1)).total_seconds() if self.data.localtime: xmin += time.timezone else: xmin = self.xmin if self.xmax is None: xmax = xmin + self.xrange * 60 * 60 else: if self.xaxis is 'time': dt = self.getDateTime(self.max_time) xmax = (dt.replace(hour=int(self.xmax), minute=59, second=59) - datetime.datetime(1970, 1, 1) + datetime.timedelta(seconds=1)).total_seconds() if self.data.localtime: xmax += time.timezone else: xmax = self.xmax ymin = self.ymin if self.ymin else numpy.nanmin(self.y) ymax = self.ymax if self.ymax else numpy.nanmax(self.y) Y = numpy.array([1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000]) i = 1 if numpy.where(abs(ymax-ymin) <= Y)[0][0] < 0 else numpy.where(abs(ymax-ymin) <= Y)[0][0] ystep = Y[i] / 5. for n, ax in enumerate(self.axes): if ax.firsttime: ax.set_facecolor(self.bgcolor) ax.yaxis.set_major_locator(MultipleLocator(ystep)) ax.xaxis.set_major_locator(MultipleLocator(ystep)) if self.xscale: ax.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{0:g}'.format(x*self.xscale))) if self.xscale: ax.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{0:g}'.format(x*self.yscale))) if self.xaxis is 'time': ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) ax.xaxis.set_major_locator(LinearLocator(9)) if self.xlabel is not None: ax.set_xlabel(self.xlabel) ax.set_ylabel(self.ylabel) ax.firsttime = False if self.showprofile: self.pf_axes[n].set_ylim(ymin, ymax) self.pf_axes[n].set_xlim(self.zmin, self.zmax) self.pf_axes[n].set_xlabel('dB') self.pf_axes[n].grid(b=True, axis='x') [tick.set_visible(False) for tick in self.pf_axes[n].get_yticklabels()] if self.colorbar: ax.cbar = plt.colorbar( ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10) ax.cbar.ax.tick_params(labelsize=8) ax.cbar.ax.press = None if self.cb_label: ax.cbar.set_label(self.cb_label, size=8) elif self.cb_labels: ax.cbar.set_label(self.cb_labels[n], size=8) else: ax.cbar = None if not self.polar: ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) ax.set_title('{} {} {}'.format( self.titles[n], self.getDateTime(self.max_time).strftime('%Y-%m-%dT%H:%M:%S'), self.time_label), size=8) else: ax.set_title('{}'.format(self.titles[n]), size=8) ax.set_ylim(0, 90) ax.set_yticks(numpy.arange(0, 90, 20)) ax.yaxis.labelpad = 40 def __plot(self): ''' ''' log.log('Plotting', self.name) try: self.plot() self.format() except Exception as e: log.warning('{} Plot could not be updated... check data'.format(self.CODE), self.name) log.error(str(e), '') return for n, fig in enumerate(self.figures): if self.nrows == 0 or self.nplots == 0: log.warning('No data', self.name) fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') fig.canvas.manager.set_window_title(self.CODE) continue fig.tight_layout() fig.canvas.manager.set_window_title('{} - {}'.format(self.title, self.getDateTime(self.max_time).strftime('%Y/%m/%d'))) fig.canvas.draw() if self.save and (self.data.ended or not self.data.buffering): if self.save_labels: labels = self.save_labels else: labels = range(self.nrows) if self.oneFigure: label = '' else: label = '-{}'.format(labels[n]) figname = os.path.join( self.save, self.CODE, '{}{}_{}.png'.format( self.CODE, label, self.getDateTime(self.saveTime).strftime( '%Y%m%d_%H%M%S'), ) ) log.log('Saving figure: {}'.format(figname), self.name) if not os.path.isdir(os.path.dirname(figname)): os.makedirs(os.path.dirname(figname)) fig.savefig(figname) def plot(self): ''' ''' raise(NotImplementedError, 'Implement this method in child class') def run(self): log.log('Starting', self.name) context = zmq.Context() receiver = context.socket(zmq.SUB) receiver.setsockopt(zmq.SUBSCRIBE, '') receiver.setsockopt(zmq.CONFLATE, self.CONFLATE) if 'server' in self.kwargs['parent']: receiver.connect( 'ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server'])) else: receiver.connect("ipc:///tmp/zmq.plots") while True: try: self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) if self.data.localtime and self.localtime: self.times = self.data.times elif self.data.localtime and not self.localtime: self.times = self.data.times + time.timezone elif not self.data.localtime and self.localtime: self.times = self.data.times - time.timezone else: self.times = self.data.times self.min_time = self.times[0] self.max_time = self.times[-1] if self.isConfig is False: self.__setup() self.isConfig = True self.__plot() except zmq.Again as e: # log.log('.', tag='', nl=False) if self.data: figpause(self.data.throttle) else: time.sleep(2) def close(self): if self.data: self.__plot() class PlotSpectraData(PlotData): ''' Plot for Spectra data ''' CODE = 'spc' colormap = 'jro' def setup(self): self.nplots = len(self.data.channels) self.ncols = int(numpy.sqrt(self.nplots) + 0.9) self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) self.width = 3.4 * self.ncols self.height = 3 * self.nrows self.cb_label = 'dB' if self.showprofile: self.width += 0.8 * self.ncols self.ylabel = 'Range [km]' def plot(self): if self.xaxis == "frequency": x = self.data.xrange[0] self.xlabel = "Frequency (kHz)" elif self.xaxis == "time": x = self.data.xrange[1] self.xlabel = "Time (ms)" else: x = self.data.xrange[2] self.xlabel = "Velocity (m/s)" if self.CODE == 'spc_mean': x = self.data.xrange[2] self.xlabel = "Velocity (m/s)" self.titles = [] y = self.data.heights self.y = y z = self.data['spc'] for n, ax in enumerate(self.axes): noise = self.data['noise'][n][-1] if self.CODE == 'spc_mean': mean = self.data['mean'][n][-1] if ax.firsttime: self.xmax = self.xmax if self.xmax else numpy.nanmax(x) self.xmin = self.xmin if self.xmin else -self.xmax self.zmin = self.zmin if self.zmin else numpy.nanmin(z) self.zmax = self.zmax if self.zmax else numpy.nanmax(z) ax.plt = ax.pcolormesh(x, y, z[n].T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) if self.showprofile: ax.plt_profile = self.pf_axes[n].plot( self.data['rti'][n][-1], y)[0] ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, color="k", linestyle="dashed", lw=1)[0] if self.CODE == 'spc_mean': ax.plt_mean = ax.plot(mean, y, color='k')[0] else: ax.plt.set_array(z[n].T.ravel()) if self.showprofile: ax.plt_profile.set_data(self.data['rti'][n][-1], y) ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) if self.CODE == 'spc_mean': ax.plt_mean.set_data(mean, y) self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) self.saveTime = self.max_time class PlotCrossSpectraData(PlotData): CODE = 'cspc' zmin_coh = None zmax_coh = None zmin_phase = None zmax_phase = None def setup(self): self.ncols = 4 self.nrows = len(self.data.pairs) self.nplots = self.nrows * 4 self.width = 3.4 * self.ncols self.height = 3 * self.nrows self.ylabel = 'Range [km]' self.showprofile = False def plot(self): if self.xaxis == "frequency": x = self.data.xrange[0] self.xlabel = "Frequency (kHz)" elif self.xaxis == "time": x = self.data.xrange[1] self.xlabel = "Time (ms)" else: x = self.data.xrange[2] self.xlabel = "Velocity (m/s)" self.titles = [] y = self.data.heights self.y = y spc = self.data['spc'] cspc = self.data['cspc'] for n in range(self.nrows): noise = self.data['noise'][n][-1] pair = self.data.pairs[n] ax = self.axes[4 * n] ax3 = self.axes[4 * n + 3] if ax.firsttime: self.xmax = self.xmax if self.xmax else numpy.nanmax(x) self.xmin = self.xmin if self.xmin else -self.xmax self.zmin = self.zmin if self.zmin else numpy.nanmin(spc) self.zmax = self.zmax if self.zmax else numpy.nanmax(spc) ax.plt = ax.pcolormesh(x, y, spc[pair[0]].T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) else: ax.plt.set_array(spc[pair[0]].T.ravel()) self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) ax = self.axes[4 * n + 1] if ax.firsttime: ax.plt = ax.pcolormesh(x, y, spc[pair[1]].T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) else: ax.plt.set_array(spc[pair[1]].T.ravel()) self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) coh = numpy.abs(out) phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi ax = self.axes[4 * n + 2] if ax.firsttime: ax.plt = ax.pcolormesh(x, y, coh.T, vmin=0, vmax=1, cmap=plt.get_cmap(self.colormap_coh) ) else: ax.plt.set_array(coh.T.ravel()) self.titles.append( 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) ax = self.axes[4 * n + 3] if ax.firsttime: ax.plt = ax.pcolormesh(x, y, phase.T, vmin=-180, vmax=180, cmap=plt.get_cmap(self.colormap_phase) ) else: ax.plt.set_array(phase.T.ravel()) self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) self.saveTime = self.max_time class PlotSpectraMeanData(PlotSpectraData): ''' Plot for Spectra and Mean ''' CODE = 'spc_mean' colormap = 'jro' class PlotRTIData(PlotData): ''' Plot for RTI data ''' CODE = 'rti' colormap = 'jro' def setup(self): self.xaxis = 'time' self.ncols = 1 self.nrows = len(self.data.channels) self.nplots = len(self.data.channels) self.ylabel = 'Range [km]' self.cb_label = 'dB' self.titles = ['{} Channel {}'.format( self.CODE.upper(), x) for x in range(self.nrows)] def plot(self): self.x = self.times self.y = self.data.heights self.z = self.data[self.CODE] self.z = numpy.ma.masked_invalid(self.z) if self.decimation is None: x, y, z = self.fill_gaps(self.x, self.y, self.z) else: x, y, z = self.fill_gaps(*self.decimate()) for n, ax in enumerate(self.axes): self.zmin = self.zmin if self.zmin else numpy.min(self.z) self.zmax = self.zmax if self.zmax else numpy.max(self.z) if ax.firsttime: ax.plt = ax.pcolormesh(x, y, z[n].T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) if self.showprofile: ax.plot_profile = self.pf_axes[n].plot( self.data['rti'][n][-1], self.y)[0] ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, color="k", linestyle="dashed", lw=1)[0] else: ax.collections.remove(ax.collections[0]) ax.plt = ax.pcolormesh(x, y, z[n].T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) if self.showprofile: ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) ax.plot_noise.set_data(numpy.repeat( self.data['noise'][n][-1], len(self.y)), self.y) self.saveTime = self.min_time class PlotCOHData(PlotRTIData): ''' Plot for Coherence data ''' CODE = 'coh' def setup(self): self.xaxis = 'time' self.ncols = 1 self.nrows = len(self.data.pairs) self.nplots = len(self.data.pairs) self.ylabel = 'Range [km]' if self.CODE == 'coh': self.cb_label = '' self.titles = [ 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] else: self.cb_label = 'Degrees' self.titles = [ 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] class PlotPHASEData(PlotCOHData): ''' Plot for Phase map data ''' CODE = 'phase' colormap = 'seismic' class PlotNoiseData(PlotData): ''' Plot for noise ''' CODE = 'noise' def setup(self): self.xaxis = 'time' self.ncols = 1 self.nrows = 1 self.nplots = 1 self.ylabel = 'Intensity [dB]' self.titles = ['Noise'] self.colorbar = False def plot(self): x = self.times xmin = self.min_time xmax = xmin + self.xrange * 60 * 60 Y = self.data[self.CODE] if self.axes[0].firsttime: for ch in self.data.channels: y = Y[ch] self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) plt.legend() else: for ch in self.data.channels: y = Y[ch] self.axes[0].lines[ch].set_data(x, y) self.ymin = numpy.nanmin(Y) - 5 self.ymax = numpy.nanmax(Y) + 5 self.saveTime = self.min_time class PlotSNRData(PlotRTIData): ''' Plot for SNR Data ''' CODE = 'snr' colormap = 'jet' class PlotDOPData(PlotRTIData): ''' Plot for DOPPLER Data ''' CODE = 'dop' colormap = 'jet' class PlotSkyMapData(PlotData): ''' Plot for meteors detection data ''' CODE = 'param' def setup(self): self.ncols = 1 self.nrows = 1 self.width = 7.2 self.height = 7.2 self.nplots = 1 self.xlabel = 'Zonal Zenith Angle (deg)' self.ylabel = 'Meridional Zenith Angle (deg)' self.polar = True self.ymin = -180 self.ymax = 180 self.colorbar = False def plot(self): arrayParameters = numpy.concatenate(self.data['param']) error = arrayParameters[:, -1] indValid = numpy.where(error == 0)[0] finalMeteor = arrayParameters[indValid, :] finalAzimuth = finalMeteor[:, 3] finalZenith = finalMeteor[:, 4] x = finalAzimuth * numpy.pi / 180 y = finalZenith ax = self.axes[0] if ax.firsttime: ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] else: ax.plot.set_data(x, y) dt1 = self.getDateTime(self.min_time).strftime('%y/%m/%d %H:%M:%S') dt2 = self.getDateTime(self.max_time).strftime('%y/%m/%d %H:%M:%S') title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, dt2, len(x)) self.titles[0] = title self.saveTime = self.max_time class PlotParamData(PlotRTIData): ''' Plot for data_param object ''' CODE = 'param' colormap = 'seismic' def setup(self): self.xaxis = 'time' self.ncols = 1 self.nrows = self.data.shape(self.CODE)[0] self.nplots = self.nrows if self.showSNR: self.nrows += 1 self.nplots += 1 self.ylabel = 'Height [km]' if not self.titles: self.titles = self.data.parameters \ if self.data.parameters else ['Param {}'.format(x) for x in xrange(self.nrows)] if self.showSNR: self.titles.append('SNR') def plot(self): self.data.normalize_heights() self.x = self.times self.y = self.data.heights if self.showSNR: self.z = numpy.concatenate( (self.data[self.CODE], self.data['snr']) ) else: self.z = self.data[self.CODE] self.z = numpy.ma.masked_invalid(self.z) if self.decimation is None: x, y, z = self.fill_gaps(self.x, self.y, self.z) else: x, y, z = self.fill_gaps(*self.decimate()) for n, ax in enumerate(self.axes): self.zmax = self.zmax if self.zmax is not None else numpy.max( self.z[n]) self.zmin = self.zmin if self.zmin is not None else numpy.min( self.z[n]) if ax.firsttime: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n] ) else: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.collections.remove(ax.collections[0]) ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n] ) self.saveTime = self.min_time class PlotOutputData(PlotParamData): ''' Plot data_output object ''' CODE = 'output' colormap = 'seismic' class PlotPolarMapData(PlotData): ''' Plot for meteors detection data ''' CODE = 'param' colormap = 'seismic' def setup(self): self.ncols = 1 self.nrows = 1 self.width = 9 self.height = 8 self.mode = self.data.meta['mode'] if self.channels is not None: self.nplots = len(self.channels) self.nrows = len(self.channels) else: self.nplots = self.data.shape(self.CODE)[0] self.nrows = self.nplots self.channels = range(self.nplots) if self.mode == 'E': self.xlabel = 'Longitude' self.ylabel = 'Latitude' else: self.xlabel = 'Range (km)' self.ylabel = 'Height (km)' self.bgcolor = 'white' self.cb_labels = self.data.meta['units'] self.lat = self.data.meta['latitude'] self.lon = self.data.meta['longitude'] self.xmin, self.xmax = float(km2deg(-50) + self.lon), float(km2deg(50) + self.lon) self.ymin, self.ymax = float(km2deg(-50) + self.lat), float(km2deg(50) + self.lat) log.error(type(self.ymin)) #print km2deg(-50) + self.lon, km2deg(50) + self.lon #print km2deg(-50) + self.lat, km2deg(50) + self.lat # self.polar = True def plot(self): for n, ax in enumerate(self.axes): data = self.data['param'][self.channels[n]] zeniths = numpy.linspace(0, self.data.meta['max_range'], data.shape[1]) if self.mode == 'E': azimuths = -numpy.radians(self.data.heights)+numpy.pi/2 r, theta = numpy.meshgrid(zeniths, azimuths) x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) x = km2deg(x) + self.lon y = km2deg(y) + self.lat else: azimuths = numpy.radians(self.data.heights) r, theta = numpy.meshgrid(zeniths, azimuths) x, y = r*numpy.cos(theta), r*numpy.sin(theta) self.y = zeniths if ax.firsttime: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.plt = ax.pcolormesh(#r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), x, y, numpy.ma.array(data, mask=numpy.isnan(data)), vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n]) else: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.collections.remove(ax.collections[0]) ax.plt = ax.pcolormesh(# r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), x, y, numpy.ma.array(data, mask=numpy.isnan(data)), vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n]) if self.mode == 'A': continue f = open('/home/jespinoza/workspace/schain_scripts/distrito.csv') for line in f: label, lon, lat = [s.strip() for s in line.split(',') if s] lat = float(lat) lon = float(lon) ax.plot(lon, lat, '.b', ms=2) ax.text(lon, lat, label.decode('utf8'), ha='center', va='bottom', size='8', color='black') if self.mode == 'E': title = 'El={}$^\circ$'.format(self.data.meta['elevation']) label = 'E{:02d}'.format(int(self.data.meta['elevation'])) else: title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] self.titles = ['{} {}'.format(self.data.parameters[x], title) for x in self.channels] self.saveTime = self.max_time