''' New Plots Operations @author: juan.espinoza@jro.igp.gob.pe ''' import time import datetime import numpy from schainpy.model.graphics.jroplot_base import Plot, plt from schainpy.utils import log EARTH_RADIUS = 6.3710e3 def ll2xy(lat1, lon1, lat2, lon2): p = 0.017453292519943295 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 r = 12742 * numpy.arcsin(numpy.sqrt(a)) theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) theta = -theta + numpy.pi/2 return r*numpy.cos(theta), r*numpy.sin(theta) def km2deg(km): ''' Convert distance in km to degrees ''' return numpy.rad2deg(km/EARTH_RADIUS) class SpectraPlot(Plot): ''' Plot for Spectra data ''' CODE = 'spc' colormap = 'jro' def setup(self): self.nplots = len(self.data.channels) self.ncols = int(numpy.sqrt(self.nplots) + 0.9) self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) self.width = 3.4 * self.ncols self.height = 3 * self.nrows self.cb_label = 'dB' if self.showprofile: self.width += 0.8 * self.ncols self.ylabel = 'Range [km]' def plot(self): if self.xaxis == "frequency": x = self.data.xrange[0] self.xlabel = "Frequency (kHz)" elif self.xaxis == "time": x = self.data.xrange[1] self.xlabel = "Time (ms)" else: x = self.data.xrange[2] self.xlabel = "Velocity (m/s)" if self.CODE == 'spc_moments': x = self.data.xrange[2] self.xlabel = "Velocity (m/s)" self.titles = [] y = self.data.heights self.y = y z = self.data['spc'] for n, ax in enumerate(self.axes): noise = self.data['noise'][n][-1] if self.CODE == 'spc_moments': mean = self.data['moments'][n, :, 1, :][-1] if ax.firsttime: self.xmax = self.xmax if self.xmax else numpy.nanmax(x) self.xmin = self.xmin if self.xmin else -self.xmax self.zmin = self.zmin if self.zmin else numpy.nanmin(z) self.zmax = self.zmax if self.zmax else numpy.nanmax(z) ax.plt = ax.pcolormesh(x, y, z[n].T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) if self.showprofile: ax.plt_profile = self.pf_axes[n].plot( self.data['rti'][n][-1], y)[0] ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, color="k", linestyle="dashed", lw=1)[0] if self.CODE == 'spc_moments': ax.plt_mean = ax.plot(mean, y, color='k')[0] else: ax.plt.set_array(z[n].T.ravel()) if self.showprofile: ax.plt_profile.set_data(self.data['rti'][n][-1], y) ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) if self.CODE == 'spc_moments': ax.plt_mean.set_data(mean, y) self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) class CrossSpectraPlot(Plot): CODE = 'cspc' colormap = 'jet' zmin_coh = None zmax_coh = None zmin_phase = None zmax_phase = None def setup(self): self.ncols = 4 self.nrows = len(self.data.pairs) self.nplots = self.nrows * 4 self.width = 3.4 * self.ncols self.height = 3 * self.nrows self.ylabel = 'Range [km]' self.showprofile = False def plot(self): if self.xaxis == "frequency": x = self.data.xrange[0] self.xlabel = "Frequency (kHz)" elif self.xaxis == "time": x = self.data.xrange[1] self.xlabel = "Time (ms)" else: x = self.data.xrange[2] self.xlabel = "Velocity (m/s)" self.titles = [] y = self.data.heights self.y = y spc = self.data['spc'] cspc = self.data['cspc'] for n in range(self.nrows): noise = self.data['noise'][n][-1] pair = self.data.pairs[n] ax = self.axes[4 * n] spc0 = 10.*numpy.log10(spc[pair[0]]/self.data.factor) if ax.firsttime: self.xmax = self.xmax if self.xmax else numpy.nanmax(x) self.xmin = self.xmin if self.xmin else -self.xmax self.zmin = self.zmin if self.zmin else numpy.nanmin(spc) self.zmax = self.zmax if self.zmax else numpy.nanmax(spc) ax.plt = ax.pcolormesh(x , y , spc0.T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) else: ax.plt.set_array(spc0.T.ravel()) self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise)) ax = self.axes[4 * n + 1] spc1 = 10.*numpy.log10(spc[pair[1]]/self.data.factor) if ax.firsttime: ax.plt = ax.pcolormesh(x , y, spc1.T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) else: ax.plt.set_array(spc1.T.ravel()) self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise)) out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) coh = numpy.abs(out) phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi ax = self.axes[4 * n + 2] if ax.firsttime: ax.plt = ax.pcolormesh(x, y, coh.T, vmin=0, vmax=1, cmap=plt.get_cmap(self.colormap_coh) ) else: ax.plt.set_array(coh.T.ravel()) self.titles.append( 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) ax = self.axes[4 * n + 3] if ax.firsttime: ax.plt = ax.pcolormesh(x, y, phase.T, vmin=-180, vmax=180, cmap=plt.get_cmap(self.colormap_phase) ) else: ax.plt.set_array(phase.T.ravel()) self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) class SpectralMomentsPlot(SpectraPlot): ''' Plot for Spectral Moments ''' CODE = 'spc_moments' colormap = 'jro' class RTIPlot(Plot): ''' Plot for RTI data ''' CODE = 'rti' colormap = 'jro' def setup(self): self.xaxis = 'time' self.ncols = 1 self.nrows = len(self.data.channels) self.nplots = len(self.data.channels) self.ylabel = 'Range [km]' self.cb_label = 'dB' self.titles = ['{} Channel {}'.format( self.CODE.upper(), x) for x in range(self.nrows)] def plot(self): self.x = self.data.times self.y = self.data.heights self.z = self.data[self.CODE] self.z = numpy.ma.masked_invalid(self.z) if self.decimation is None: x, y, z = self.fill_gaps(self.x, self.y, self.z) else: x, y, z = self.fill_gaps(*self.decimate()) for n, ax in enumerate(self.axes): self.zmin = self.zmin if self.zmin else numpy.min(self.z) self.zmax = self.zmax if self.zmax else numpy.max(self.z) if ax.firsttime: ax.plt = ax.pcolormesh(x, y, z[n].T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) if self.showprofile: ax.plot_profile = self.pf_axes[n].plot( self.data['rti'][n][-1], self.y)[0] ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, color="k", linestyle="dashed", lw=1)[0] else: ax.collections.remove(ax.collections[0]) ax.plt = ax.pcolormesh(x, y, z[n].T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) if self.showprofile: ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) ax.plot_noise.set_data(numpy.repeat( self.data['noise'][n][-1], len(self.y)), self.y) class CoherencePlot(RTIPlot): ''' Plot for Coherence data ''' CODE = 'coh' def setup(self): self.xaxis = 'time' self.ncols = 1 self.nrows = len(self.data.pairs) self.nplots = len(self.data.pairs) self.ylabel = 'Range [km]' if self.CODE == 'coh': self.cb_label = '' self.titles = [ 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] else: self.cb_label = 'Degrees' self.titles = [ 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] class PhasePlot(CoherencePlot): ''' Plot for Phase map data ''' CODE = 'phase' colormap = 'seismic' class NoisePlot(Plot): ''' Plot for noise ''' CODE = 'noise' def setup(self): self.xaxis = 'time' self.ncols = 1 self.nrows = 1 self.nplots = 1 self.ylabel = 'Intensity [dB]' self.titles = ['Noise'] self.colorbar = False def plot(self): x = self.data.times xmin = self.data.min_time xmax = xmin + self.xrange * 60 * 60 Y = self.data[self.CODE] if self.axes[0].firsttime: for ch in self.data.channels: y = Y[ch] self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) plt.legend() else: for ch in self.data.channels: y = Y[ch] self.axes[0].lines[ch].set_data(x, y) self.ymin = numpy.nanmin(Y) - 5 self.ymax = numpy.nanmax(Y) + 5 class SnrPlot(RTIPlot): ''' Plot for SNR Data ''' CODE = 'snr' colormap = 'jet' class DopplerPlot(RTIPlot): ''' Plot for DOPPLER Data ''' CODE = 'dop' colormap = 'jet' class SkyMapPlot(Plot): ''' Plot for meteors detection data ''' CODE = 'param' def setup(self): self.ncols = 1 self.nrows = 1 self.width = 7.2 self.height = 7.2 self.nplots = 1 self.xlabel = 'Zonal Zenith Angle (deg)' self.ylabel = 'Meridional Zenith Angle (deg)' self.polar = True self.ymin = -180 self.ymax = 180 self.colorbar = False def plot(self): arrayParameters = numpy.concatenate(self.data['param']) error = arrayParameters[:, -1] indValid = numpy.where(error == 0)[0] finalMeteor = arrayParameters[indValid, :] finalAzimuth = finalMeteor[:, 3] finalZenith = finalMeteor[:, 4] x = finalAzimuth * numpy.pi / 180 y = finalZenith ax = self.axes[0] if ax.firsttime: ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] else: ax.plot.set_data(x, y) dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, dt2, len(x)) self.titles[0] = title class ParametersPlot(RTIPlot): ''' Plot for data_param object ''' CODE = 'param' colormap = 'seismic' def setup(self): self.xaxis = 'time' self.ncols = 1 self.nrows = self.data.shape(self.CODE)[0] self.nplots = self.nrows if self.showSNR: self.nrows += 1 self.nplots += 1 self.ylabel = 'Height [km]' if not self.titles: self.titles = self.data.parameters \ if self.data.parameters else ['Param {}'.format(x) for x in range(self.nrows)] if self.showSNR: self.titles.append('SNR') def plot(self): self.data.normalize_heights() self.x = self.data.times self.y = self.data.heights if self.showSNR: self.z = numpy.concatenate( (self.data[self.CODE], self.data['snr']) ) else: self.z = self.data[self.CODE] self.z = numpy.ma.masked_invalid(self.z) if self.decimation is None: x, y, z = self.fill_gaps(self.x, self.y, self.z) else: x, y, z = self.fill_gaps(*self.decimate()) for n, ax in enumerate(self.axes): self.zmax = self.zmax if self.zmax is not None else numpy.max( self.z[n]) self.zmin = self.zmin if self.zmin is not None else numpy.min( self.z[n]) if ax.firsttime: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n] ) else: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.collections.remove(ax.collections[0]) ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n] ) class OutputPlot(ParametersPlot): ''' Plot data_output object ''' CODE = 'output' colormap = 'seismic' class PolarMapPlot(Plot): ''' Plot for weather radar ''' CODE = 'param' colormap = 'seismic' def setup(self): self.ncols = 1 self.nrows = 1 self.width = 9 self.height = 8 self.mode = self.data.meta['mode'] if self.channels is not None: self.nplots = len(self.channels) self.nrows = len(self.channels) else: self.nplots = self.data.shape(self.CODE)[0] self.nrows = self.nplots self.channels = list(range(self.nplots)) if self.mode == 'E': self.xlabel = 'Longitude' self.ylabel = 'Latitude' else: self.xlabel = 'Range (km)' self.ylabel = 'Height (km)' self.bgcolor = 'white' self.cb_labels = self.data.meta['units'] self.lat = self.data.meta['latitude'] self.lon = self.data.meta['longitude'] self.xmin, self.xmax = float( km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) self.ymin, self.ymax = float( km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) # self.polar = True def plot(self): for n, ax in enumerate(self.axes): data = self.data['param'][self.channels[n]] zeniths = numpy.linspace( 0, self.data.meta['max_range'], data.shape[1]) if self.mode == 'E': azimuths = -numpy.radians(self.data.heights)+numpy.pi/2 r, theta = numpy.meshgrid(zeniths, azimuths) x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) x = km2deg(x) + self.lon y = km2deg(y) + self.lat else: azimuths = numpy.radians(self.data.heights) r, theta = numpy.meshgrid(zeniths, azimuths) x, y = r*numpy.cos(theta), r*numpy.sin(theta) self.y = zeniths if ax.firsttime: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), x, y, numpy.ma.array(data, mask=numpy.isnan(data)), vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n]) else: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.collections.remove(ax.collections[0]) ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), x, y, numpy.ma.array(data, mask=numpy.isnan(data)), vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n]) if self.mode == 'A': continue # plot district names f = open('/data/workspace/schain_scripts/distrito.csv') for line in f: label, lon, lat = [s.strip() for s in line.split(',') if s] lat = float(lat) lon = float(lon) # ax.plot(lon, lat, '.b', ms=2) ax.text(lon, lat, label.decode('utf8'), ha='center', va='bottom', size='8', color='black') # plot limites limites = [] tmp = [] for line in open('/data/workspace/schain_scripts/lima.csv'): if '#' in line: if tmp: limites.append(tmp) tmp = [] continue values = line.strip().split(',') tmp.append((float(values[0]), float(values[1]))) for points in limites: ax.add_patch( Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) # plot Cuencas for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) values = [line.strip().split(',') for line in f] points = [(float(s[0]), float(s[1])) for s in values] ax.add_patch(Polygon(points, ec='b', fc='none')) # plot grid for r in (15, 30, 45, 60): ax.add_artist(plt.Circle((self.lon, self.lat), km2deg(r), color='0.6', fill=False, lw=0.2)) ax.text( self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), '{}km'.format(r), ha='center', va='bottom', size='8', color='0.6', weight='heavy') if self.mode == 'E': title = 'El={}$^\circ$'.format(self.data.meta['elevation']) label = 'E{:02d}'.format(int(self.data.meta['elevation'])) else: title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] self.titles = ['{} {}'.format( self.data.parameters[x], title) for x in self.channels] class ScopePlot(Plot): ''' Plot for Scope ''' CODE = 'scope' def setup(self): self.xaxis = 'Range (Km)' self.ncols = 1 self.nrows = 1 self.nplots = 1 self.ylabel = 'Intensity [dB]' self.titles = ['Scope'] self.colorbar = False colspan = 3 rowspan = 1 def plot_iq(self, x, y, channelIndexList, thisDatetime, wintitle): yreal = y[channelIndexList,:].real yimag = y[channelIndexList,:].imag title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y")) self.xlabel = "Range (Km)" self.ylabel = "Intensity - IQ" self.y = yreal self.x = x self.xmin = min(x) self.xmax = max(x) self.titles[0] = title for i,ax in enumerate(self.axes): title = "Channel %d" %(i) if ax.firsttime: ax.plt_r = ax.plot(x, yreal[i,:], color='b')[0] ax.plt_i = ax.plot(x, yimag[i,:], color='r')[0] else: #pass ax.plt_r.set_data(x, yreal[i,:]) ax.plt_i.set_data(x, yimag[i,:]) def plot_power(self, x, y, channelIndexList, thisDatetime, wintitle): y = y[channelIndexList,:] * numpy.conjugate(y[channelIndexList,:]) yreal = y.real self.y = yreal title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y")) self.xlabel = "Range (Km)" self.ylabel = "Intensity" self.xmin = min(x) self.xmax = max(x) self.titles[0] = title for i,ax in enumerate(self.axes): title = "Channel %d" %(i) ychannel = yreal[i,:] if ax.firsttime: ax.plt_r = ax.plot(x, ychannel)[0] else: #pass ax.plt_r.set_data(x, ychannel) def plot(self): if self.channels: channels = self.channels else: channels = self.data.channels thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]) scope = self.data['scope'] if self.data.flagDataAsBlock: for i in range(self.data.nProfiles): wintitle1 = " [Profile = %d] " %i if self.type == "power": self.plot_power(self.data.heights, scope[:,i,:], channels, thisDatetime, wintitle1 ) if self.type == "iq": self.plot_iq(self.data.heights, scope[:,i,:], channels, thisDatetime, wintitle1 ) else: wintitle = " [Profile = %d] " %self.data.profileIndex if self.type == "power": self.plot_power(self.data.heights, scope, channels, thisDatetime, wintitle ) if self.type == "iq": self.plot_iq(self.data.heights, scope, channels, thisDatetime, wintitle )