import itertools import numpy from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation from schainpy.model.data.jrodata import Spectra from schainpy.model.data.jrodata import hildebrand_sekhon from schainpy.utils import log @MPDecorator class SpectraProc(ProcessingUnit): def __init__(self): ProcessingUnit.__init__(self) self.buffer = None self.firstdatatime = None self.profIndex = 0 self.dataOut = Spectra() self.id_min = None self.id_max = None self.setupReq = False #Agregar a todas las unidades de proc def __updateSpecFromVoltage(self): self.dataOut.timeZone = self.dataIn.timeZone self.dataOut.dstFlag = self.dataIn.dstFlag self.dataOut.errorCount = self.dataIn.errorCount self.dataOut.useLocalTime = self.dataIn.useLocalTime try: self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() except: pass self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() self.dataOut.channelList = self.dataIn.channelList self.dataOut.heightList = self.dataIn.heightList self.dataOut.dtype = numpy.dtype([('real', ' maxHei): raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % ( minHei, maxHei)) if (minHei < self.dataOut.heightList[0]): minHei = self.dataOut.heightList[0] if (maxHei > self.dataOut.heightList[-1]): maxHei = self.dataOut.heightList[-1] minIndex = 0 maxIndex = 0 heights = self.dataOut.heightList inda = numpy.where(heights >= minHei) indb = numpy.where(heights <= maxHei) try: minIndex = inda[0][0] except: minIndex = 0 try: maxIndex = indb[0][-1] except: maxIndex = len(heights) self.selectHeightsByIndex(minIndex, maxIndex) return 1 def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): newheis = numpy.where( self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) if hei_ref != None: newheis = numpy.where(self.dataOut.heightList > hei_ref) minIndex = min(newheis[0]) maxIndex = max(newheis[0]) data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] heightList = self.dataOut.heightList[minIndex:maxIndex + 1] # determina indices nheis = int(self.dataOut.radarControllerHeaderObj.txB / (self.dataOut.heightList[1] - self.dataOut.heightList[0])) avg_dB = 10 * \ numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) beacon_dB = numpy.sort(avg_dB)[-nheis:] beacon_heiIndexList = [] for val in avg_dB.tolist(): if val >= beacon_dB[0]: beacon_heiIndexList.append(avg_dB.tolist().index(val)) #data_spc = data_spc[:,:,beacon_heiIndexList] data_cspc = None if self.dataOut.data_cspc is not None: data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] #data_cspc = data_cspc[:,:,beacon_heiIndexList] data_dc = None if self.dataOut.data_dc is not None: data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] #data_dc = data_dc[:,beacon_heiIndexList] self.dataOut.data_spc = data_spc self.dataOut.data_cspc = data_cspc self.dataOut.data_dc = data_dc self.dataOut.heightList = heightList self.dataOut.beacon_heiIndexList = beacon_heiIndexList return 1 def selectHeightsByIndex(self, minIndex, maxIndex): """ Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango minIndex <= index <= maxIndex Input: minIndex : valor de indice minimo de altura a considerar maxIndex : valor de indice maximo de altura a considerar Affected: self.dataOut.data_spc self.dataOut.data_cspc self.dataOut.data_dc self.dataOut.heightList Return: 1 si el metodo se ejecuto con exito caso contrario devuelve 0 """ if (minIndex < 0) or (minIndex > maxIndex): raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( minIndex, maxIndex)) if (maxIndex >= self.dataOut.nHeights): maxIndex = self.dataOut.nHeights - 1 # Spectra data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] data_cspc = None if self.dataOut.data_cspc is not None: data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] data_dc = None if self.dataOut.data_dc is not None: data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] self.dataOut.data_spc = data_spc self.dataOut.data_cspc = data_cspc self.dataOut.data_dc = data_dc self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] return 1 def removeDC(self, mode=2): jspectra = self.dataOut.data_spc jcspectra = self.dataOut.data_cspc num_chan = jspectra.shape[0] num_hei = jspectra.shape[2] if jcspectra is not None: jcspectraExist = True num_pairs = jcspectra.shape[0] else: jcspectraExist = False freq_dc = int(jspectra.shape[1] / 2) ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc ind_vel = ind_vel.astype(int) if ind_vel[0] < 0: ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof if mode == 1: jspectra[:, freq_dc, :] = ( jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION if jcspectraExist: jcspectra[:, freq_dc, :] = ( jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 if mode == 2: vel = numpy.array([-2, -1, 1, 2]) xx = numpy.zeros([4, 4]) for fil in range(4): xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) xx_inv = numpy.linalg.inv(xx) xx_aux = xx_inv[0, :] for ich in range(num_chan): yy = jspectra[ich, ind_vel, :] jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) junkid = jspectra[ich, freq_dc, :] <= 0 cjunkid = sum(junkid) if cjunkid.any(): jspectra[ich, freq_dc, junkid.nonzero()] = ( jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 if jcspectraExist: for ip in range(num_pairs): yy = jcspectra[ip, ind_vel, :] jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) self.dataOut.data_spc = jspectra self.dataOut.data_cspc = jcspectra return 1 def removeInterference(self, interf=2, hei_interf=None, nhei_interf=None, offhei_interf=None): jspectra = self.dataOut.data_spc jcspectra = self.dataOut.data_cspc jnoise = self.dataOut.getNoise() num_incoh = self.dataOut.nIncohInt num_channel = jspectra.shape[0] num_prof = jspectra.shape[1] num_hei = jspectra.shape[2] # hei_interf if hei_interf is None: count_hei = num_hei / 2 # Como es entero no importa hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei hei_interf = numpy.asarray(hei_interf)[0] # nhei_interf if (nhei_interf == None): nhei_interf = 5 if (nhei_interf < 1): nhei_interf = 1 if (nhei_interf > count_hei): nhei_interf = count_hei if (offhei_interf == None): offhei_interf = 0 ind_hei = list(range(num_hei)) # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 mask_prof = numpy.asarray(list(range(num_prof))) num_mask_prof = mask_prof.size comp_mask_prof = [0, num_prof / 2] # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): jnoise = numpy.nan noise_exist = jnoise[0] < numpy.Inf # Subrutina de Remocion de la Interferencia for ich in range(num_channel): # Se ordena los espectros segun su potencia (menor a mayor) power = jspectra[ich, mask_prof, :] power = power[:, hei_interf] power = power.sum(axis=0) psort = power.ravel().argsort() # Se estima la interferencia promedio en los Espectros de Potencia empleando junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( offhei_interf, nhei_interf + offhei_interf))]]] if noise_exist: # tmp_noise = jnoise[ich] / num_prof tmp_noise = jnoise[ich] junkspc_interf = junkspc_interf - tmp_noise #junkspc_interf[:,comp_mask_prof] = 0 jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf jspc_interf = jspc_interf.transpose() # Calculando el espectro de interferencia promedio noiseid = numpy.where( jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) noiseid = noiseid[0] cnoiseid = noiseid.size interfid = numpy.where( jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) interfid = interfid[0] cinterfid = interfid.size if (cnoiseid > 0): jspc_interf[noiseid] = 0 # Expandiendo los perfiles a limpiar if (cinterfid > 0): new_interfid = ( numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof new_interfid = numpy.asarray(new_interfid) new_interfid = {x for x in new_interfid} new_interfid = numpy.array(list(new_interfid)) new_cinterfid = new_interfid.size else: new_cinterfid = 0 for ip in range(new_cinterfid): ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() jspc_interf[new_interfid[ip] ] = junkspc_interf[ind[nhei_interf / 2], new_interfid[ip]] jspectra[ich, :, ind_hei] = jspectra[ich, :, ind_hei] - jspc_interf # Corregir indices # Removiendo la interferencia del punto de mayor interferencia ListAux = jspc_interf[mask_prof].tolist() maxid = ListAux.index(max(ListAux)) if cinterfid > 0: for ip in range(cinterfid * (interf == 2) - 1): ind = (jspectra[ich, interfid[ip], :] < tmp_noise * (1 + 1 / numpy.sqrt(num_incoh))).nonzero() cind = len(ind) if (cind > 0): jspectra[ich, interfid[ip], ind] = tmp_noise * \ (1 + (numpy.random.uniform(cind) - 0.5) / numpy.sqrt(num_incoh)) ind = numpy.array([-2, -1, 1, 2]) xx = numpy.zeros([4, 4]) for id1 in range(4): xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) xx_inv = numpy.linalg.inv(xx) xx = xx_inv[:, 0] ind = (ind + maxid + num_mask_prof) % num_mask_prof yy = jspectra[ich, mask_prof[ind], :] jspectra[ich, mask_prof[maxid], :] = numpy.dot( yy.transpose(), xx) indAux = (jspectra[ich, :, :] < tmp_noise * (1 - 1 / numpy.sqrt(num_incoh))).nonzero() jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ (1 - 1 / numpy.sqrt(num_incoh)) # Remocion de Interferencia en el Cross Spectra if jcspectra is None: return jspectra, jcspectra num_pairs = jcspectra.size / (num_prof * num_hei) jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) for ip in range(num_pairs): #------------------------------------------- cspower = numpy.abs(jcspectra[ip, mask_prof, :]) cspower = cspower[:, hei_interf] cspower = cspower.sum(axis=0) cspsort = cspower.ravel().argsort() junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( offhei_interf, nhei_interf + offhei_interf))]]] junkcspc_interf = junkcspc_interf.transpose() jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() median_real = numpy.median(numpy.real( junkcspc_interf[mask_prof[ind[list(range(3 * num_prof / 4))]], :])) median_imag = numpy.median(numpy.imag( junkcspc_interf[mask_prof[ind[list(range(3 * num_prof / 4))]], :])) junkcspc_interf[comp_mask_prof, :] = numpy.complex( median_real, median_imag) for iprof in range(num_prof): ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf / 2]] # Removiendo la Interferencia jcspectra[ip, :, ind_hei] = jcspectra[ip, :, ind_hei] - jcspc_interf ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() maxid = ListAux.index(max(ListAux)) ind = numpy.array([-2, -1, 1, 2]) xx = numpy.zeros([4, 4]) for id1 in range(4): xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) xx_inv = numpy.linalg.inv(xx) xx = xx_inv[:, 0] ind = (ind + maxid + num_mask_prof) % num_mask_prof yy = jcspectra[ip, mask_prof[ind], :] jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) # Guardar Resultados self.dataOut.data_spc = jspectra self.dataOut.data_cspc = jcspectra return 1 def setRadarFrequency(self, frequency=None): if frequency != None: self.dataOut.frequency = frequency return 1 def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): # validacion de rango if minHei == None: minHei = self.dataOut.heightList[0] if maxHei == None: maxHei = self.dataOut.heightList[-1] if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): print('minHei: %.2f is out of the heights range' % (minHei)) print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) minHei = self.dataOut.heightList[0] if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): print('maxHei: %.2f is out of the heights range' % (maxHei)) print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) maxHei = self.dataOut.heightList[-1] # validacion de velocidades velrange = self.dataOut.getVelRange(1) if minVel == None: minVel = velrange[0] if maxVel == None: maxVel = velrange[-1] if (minVel < velrange[0]) or (minVel > maxVel): print('minVel: %.2f is out of the velocity range' % (minVel)) print('minVel is setting to %.2f' % (velrange[0])) minVel = velrange[0] if (maxVel > velrange[-1]) or (maxVel < minVel): print('maxVel: %.2f is out of the velocity range' % (maxVel)) print('maxVel is setting to %.2f' % (velrange[-1])) maxVel = velrange[-1] # seleccion de indices para rango minIndex = 0 maxIndex = 0 heights = self.dataOut.heightList inda = numpy.where(heights >= minHei) indb = numpy.where(heights <= maxHei) try: minIndex = inda[0][0] except: minIndex = 0 try: maxIndex = indb[0][-1] except: maxIndex = len(heights) if (minIndex < 0) or (minIndex > maxIndex): raise ValueError("some value in (%d,%d) is not valid" % ( minIndex, maxIndex)) if (maxIndex >= self.dataOut.nHeights): maxIndex = self.dataOut.nHeights - 1 # seleccion de indices para velocidades indminvel = numpy.where(velrange >= minVel) indmaxvel = numpy.where(velrange <= maxVel) try: minIndexVel = indminvel[0][0] except: minIndexVel = 0 try: maxIndexVel = indmaxvel[0][-1] except: maxIndexVel = len(velrange) # seleccion del espectro data_spc = self.dataOut.data_spc[:, minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] # estimacion de ruido noise = numpy.zeros(self.dataOut.nChannels) for channel in range(self.dataOut.nChannels): daux = data_spc[channel, :, :] noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) self.dataOut.noise_estimation = noise.copy() return 1 class IncohInt(Operation): __profIndex = 0 __withOverapping = False __byTime = False __initime = None __lastdatatime = None __integrationtime = None __buffer_spc = None __buffer_cspc = None __buffer_dc = None __dataReady = False __timeInterval = None n = None def __init__(self): Operation.__init__(self) def setup(self, n=None, timeInterval=None, overlapping=False): """ Set the parameters of the integration class. Inputs: n : Number of coherent integrations timeInterval : Time of integration. If the parameter "n" is selected this one does not work overlapping : """ self.__initime = None self.__lastdatatime = 0 self.__buffer_spc = 0 self.__buffer_cspc = 0 self.__buffer_dc = 0 self.__profIndex = 0 self.__dataReady = False self.__byTime = False if n is None and timeInterval is None: raise ValueError("n or timeInterval should be specified ...") if n is not None: self.n = int(n) else: self.__integrationtime = int(timeInterval) self.n = None self.__byTime = True def putData(self, data_spc, data_cspc, data_dc): """ Add a profile to the __buffer_spc and increase in one the __profileIndex """ self.__buffer_spc += data_spc if data_cspc is None: self.__buffer_cspc = None else: self.__buffer_cspc += data_cspc if data_dc is None: self.__buffer_dc = None else: self.__buffer_dc += data_dc self.__profIndex += 1 return def pushData(self): """ Return the sum of the last profiles and the profiles used in the sum. Affected: self.__profileIndex """ data_spc = self.__buffer_spc data_cspc = self.__buffer_cspc data_dc = self.__buffer_dc n = self.__profIndex self.__buffer_spc = 0 self.__buffer_cspc = 0 self.__buffer_dc = 0 self.__profIndex = 0 return data_spc, data_cspc, data_dc, n def byProfiles(self, *args): self.__dataReady = False avgdata_spc = None avgdata_cspc = None avgdata_dc = None self.putData(*args) if self.__profIndex == self.n: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() self.n = n self.__dataReady = True return avgdata_spc, avgdata_cspc, avgdata_dc def byTime(self, datatime, *args): self.__dataReady = False avgdata_spc = None avgdata_cspc = None avgdata_dc = None self.putData(*args) if (datatime - self.__initime) >= self.__integrationtime: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() self.n = n self.__dataReady = True return avgdata_spc, avgdata_cspc, avgdata_dc def integrate(self, datatime, *args): if self.__profIndex == 0: self.__initime = datatime if self.__byTime: avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( datatime, *args) else: avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) if not self.__dataReady: return None, None, None, None return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc def run(self, dataOut, n=None, timeInterval=None, overlapping=False): if n == 1: return dataOut.flagNoData = True if not self.isConfig: self.setup(n, timeInterval, overlapping) self.isConfig = True avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, dataOut.data_spc, dataOut.data_cspc, dataOut.data_dc) if self.__dataReady: dataOut.data_spc = avgdata_spc dataOut.data_cspc = avgdata_cspc dataOut.data_dc = avgdata_dc dataOut.nIncohInt *= self.n dataOut.utctime = avgdatatime dataOut.flagNoData = False return dataOut