import numpy import math from scipy import optimize, interpolate, signal, stats, ndimage import re import datetime import copy import sys import importlib import itertools from jroproc_base import ProcessingUnit, Operation from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon class ParametersProc(ProcessingUnit): nSeconds = None def __init__(self): ProcessingUnit.__init__(self) # self.objectDict = {} self.buffer = None self.firstdatatime = None self.profIndex = 0 self.dataOut = Parameters() def __updateObjFromInput(self): self.dataOut.inputUnit = self.dataIn.type self.dataOut.timeZone = self.dataIn.timeZone self.dataOut.dstFlag = self.dataIn.dstFlag self.dataOut.errorCount = self.dataIn.errorCount self.dataOut.useLocalTime = self.dataIn.useLocalTime self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() self.dataOut.channelList = self.dataIn.channelList self.dataOut.heightList = self.dataIn.heightList self.dataOut.dtype = numpy.dtype([('real',' m): ss1 = m valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 power = ((spec2[valid] - n0)*fwindow[valid]).sum() fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) snr = (spec2.mean()-n0)/n0 if (snr < 1.e-20) : snr = 1.e-20 vec_power[ind] = power vec_fd[ind] = fd vec_w[ind] = w vec_snr[ind] = snr moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) return moments #------------------ Get SA Parameters -------------------------- def GetSAParameters(self): #SA en frecuencia pairslist = self.dataOut.groupList num_pairs = len(pairslist) vel = self.dataOut.abscissaList spectra = self.dataOut.data_pre[0] cspectra = self.dataOut.data_pre[1] delta_v = vel[1] - vel[0] #Calculating the power spectrum spc_pow = numpy.sum(spectra, 3)*delta_v #Normalizing Spectra norm_spectra = spectra/spc_pow #Calculating the norm_spectra at peak max_spectra = numpy.max(norm_spectra, 3) #Normalizing Cross Spectra norm_cspectra = numpy.zeros(cspectra.shape) for i in range(num_chan): norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) max_cspectra = numpy.max(norm_cspectra,2) max_cspectra_index = numpy.argmax(norm_cspectra, 2) for i in range(num_pairs): cspc_par[i,:,:] = __calculateMoments(norm_cspectra) #------------------- Get Lags ---------------------------------- class SALags(Operation): ''' Function GetMoments() Input: self.dataOut.data_pre self.dataOut.abscissaList self.dataOut.noise self.dataOut.normFactor self.dataOut.data_SNR self.dataOut.groupList self.dataOut.nChannels Affected: self.dataOut.data_param ''' def run(self, dataOut): data_acf = dataOut.data_pre[0] data_ccf = dataOut.data_pre[1] normFactor_acf = dataOut.normFactor[0] normFactor_ccf = dataOut.normFactor[1] pairs_acf = dataOut.groupList[0] pairs_ccf = dataOut.groupList[1] nHeights = dataOut.nHeights absc = dataOut.abscissaList noise = dataOut.noise SNR = dataOut.data_SNR nChannels = dataOut.nChannels # pairsList = dataOut.groupList # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) for l in range(len(pairs_acf)): data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] for l in range(len(pairs_ccf)): data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) return # def __getPairsAutoCorr(self, pairsList, nChannels): # # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan # # for l in range(len(pairsList)): # firstChannel = pairsList[l][0] # secondChannel = pairsList[l][1] # # #Obteniendo pares de Autocorrelacion # if firstChannel == secondChannel: # pairsAutoCorr[firstChannel] = int(l) # # pairsAutoCorr = pairsAutoCorr.astype(int) # # pairsCrossCorr = range(len(pairsList)) # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) # # return pairsAutoCorr, pairsCrossCorr def __calculateTaus(self, data_acf, data_ccf, lagRange): lag0 = data_acf.shape[1]/2 #Funcion de Autocorrelacion mean_acf = stats.nanmean(data_acf, axis = 0) #Obtencion Indice de TauCross ind_ccf = data_ccf.argmax(axis = 1) #Obtencion Indice de TauAuto ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') ccf_lag0 = data_ccf[:,lag0,:] for i in range(ccf_lag0.shape[0]): ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) #Obtencion de TauCross y TauAuto tau_ccf = lagRange[ind_ccf] tau_acf = lagRange[ind_acf] Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) tau_ccf[Nan1,Nan2] = numpy.nan tau_acf[Nan1,Nan2] = numpy.nan tau = numpy.vstack((tau_ccf,tau_acf)) return tau def __calculateLag1Phase(self, data, lagTRange): data1 = stats.nanmean(data, axis = 0) lag1 = numpy.where(lagTRange == 0)[0][0] + 1 phase = numpy.angle(data1[lag1,:]) return phase class SpectralFitting(Operation): ''' Function GetMoments() Input: Output: Variables modified: ''' def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): if path != None: sys.path.append(path) self.dataOut.library = importlib.import_module(file) #To be inserted as a parameter groupArray = numpy.array(groupList) # groupArray = numpy.array([[0,1],[2,3]]) self.dataOut.groupList = groupArray nGroups = groupArray.shape[0] nChannels = self.dataIn.nChannels nHeights=self.dataIn.heightList.size #Parameters Array self.dataOut.data_param = None #Set constants constants = self.dataOut.library.setConstants(self.dataIn) self.dataOut.constants = constants M = self.dataIn.normFactor N = self.dataIn.nFFTPoints ippSeconds = self.dataIn.ippSeconds K = self.dataIn.nIncohInt pairsArray = numpy.array(self.dataIn.pairsList) #List of possible combinations listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) indCross = numpy.zeros(len(list(listComb)), dtype = 'int') if getSNR: listChannels = groupArray.reshape((groupArray.size)) listChannels.sort() noise = self.dataIn.getNoise() self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) for i in range(nGroups): coord = groupArray[i,:] #Input data array data = self.dataIn.data_spc[coord,:,:]/(M*N) data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) #Cross Spectra data array for Covariance Matrixes ind = 0 for pairs in listComb: pairsSel = numpy.array([coord[x],coord[y]]) indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) ind += 1 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) dataCross = dataCross**2/K for h in range(nHeights): # print self.dataOut.heightList[h] #Input d = data[:,h] #Covariance Matrix D = numpy.diag(d**2/K) ind = 0 for pairs in listComb: #Coordinates in Covariance Matrix x = pairs[0] y = pairs[1] #Channel Index S12 = dataCross[ind,:,h] D12 = numpy.diag(S12) #Completing Covariance Matrix with Cross Spectras D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 ind += 1 Dinv=numpy.linalg.inv(D) L=numpy.linalg.cholesky(Dinv) LT=L.T dp = numpy.dot(LT,d) #Initial values data_spc = self.dataIn.data_spc[coord,:,h] if (h>0)and(error1[3]<5): p0 = self.dataOut.data_param[i,:,h-1] else: p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) try: #Least Squares minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) #Chi square error error0 = numpy.sum(infodict['fvec']**2)/(2*N) #Error with Jacobian error1 = self.dataOut.library.errorFunction(minp,constants,LT) except: minp = p0*numpy.nan error0 = numpy.nan error1 = p0*numpy.nan #Save if self.dataOut.data_param is None: self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) self.dataOut.data_param[i,:,h] = minp return def __residFunction(self, p, dp, LT, constants): fm = self.dataOut.library.modelFunction(p, constants) fmp=numpy.dot(LT,fm) return dp-fmp def __getSNR(self, z, noise): avg = numpy.average(z, axis=1) SNR = (avg.T-noise)/noise SNR = SNR.T return SNR def __chisq(p,chindex,hindex): #similar to Resid but calculates CHI**2 [LT,d,fm]=setupLTdfm(p,chindex,hindex) dp=numpy.dot(LT,d) fmp=numpy.dot(LT,fm) chisq=numpy.dot((dp-fmp).T,(dp-fmp)) return chisq class WindProfiler(Operation): __isConfig = False __initime = None __lastdatatime = None __integrationtime = None __buffer = None __dataReady = False __firstdata = None n = None def __calculateCosDir(self, elev, azim): zen = (90 - elev)*numpy.pi/180 azim = azim*numpy.pi/180 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) signX = numpy.sign(numpy.cos(azim)) signY = numpy.sign(numpy.sin(azim)) cosDirX = numpy.copysign(cosDirX, signX) cosDirY = numpy.copysign(cosDirY, signY) return cosDirX, cosDirY def __calculateAngles(self, theta_x, theta_y, azimuth): dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) zenith_arr = numpy.arccos(dir_cosw) azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): # if horOnly: A = numpy.c_[dir_cosu,dir_cosv] else: A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] A = numpy.asmatrix(A) A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() return A1 def __correctValues(self, heiRang, phi, velRadial, SNR): listPhi = phi.tolist() maxid = listPhi.index(max(listPhi)) minid = listPhi.index(min(listPhi)) rango = range(len(phi)) # rango = numpy.delete(rango,maxid) heiRang1 = heiRang*math.cos(phi[maxid]) heiRangAux = heiRang*math.cos(phi[minid]) indOut = (heiRang1 < heiRangAux[0]).nonzero() heiRang1 = numpy.delete(heiRang1,indOut) velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) SNR1 = numpy.zeros([len(phi),len(heiRang1)]) for i in rango: x = heiRang*math.cos(phi[i]) y1 = velRadial[i,:] f1 = interpolate.interp1d(x,y1,kind = 'cubic') x1 = heiRang1 y11 = f1(x1) y2 = SNR[i,:] f2 = interpolate.interp1d(x,y2,kind = 'cubic') y21 = f2(x1) velRadial1[i,:] = y11 SNR1[i,:] = y21 return heiRang1, velRadial1, SNR1 def __calculateVelUVW(self, A, velRadial): #Operacion Matricial # velUVW = numpy.zeros((velRadial.shape[1],3)) # for ind in range(velRadial.shape[1]): # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) # velUVW = velUVW.transpose() velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) velUVW[:,:] = numpy.dot(A,velRadial) return velUVW # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): def techniqueDBS(self, kwargs): """ Function that implements Doppler Beam Swinging (DBS) technique. Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, Direction correction (if necessary), Ranges and SNR Output: Winds estimation (Zonal, Meridional and Vertical) Parameters affected: Winds, height range, SNR """ velRadial0 = kwargs['velRadial'] heiRang = kwargs['heightList'] SNR0 = kwargs['SNR'] if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): theta_x = numpy.array(kwargs['dirCosx']) theta_y = numpy.array(kwargs['dirCosy']) else: elev = numpy.array(kwargs['elevation']) azim = numpy.array(kwargs['azimuth']) theta_x, theta_y = self.__calculateCosDir(elev, azim) azimuth = kwargs['correctAzimuth'] if kwargs.has_key('horizontalOnly'): horizontalOnly = kwargs['horizontalOnly'] else: horizontalOnly = False if kwargs.has_key('correctFactor'): correctFactor = kwargs['correctFactor'] else: correctFactor = 1 if kwargs.has_key('channelList'): channelList = kwargs['channelList'] if len(channelList) == 2: horizontalOnly = True arrayChannel = numpy.array(channelList) param = param[arrayChannel,:,:] theta_x = theta_x[arrayChannel] theta_y = theta_y[arrayChannel] azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) #Calculo de Componentes de la velocidad con DBS winds = self.__calculateVelUVW(A,velRadial1) return winds, heiRang1, SNR1 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): nPairs = len(pairs_ccf) posx = numpy.asarray(posx) posy = numpy.asarray(posy) #Rotacion Inversa para alinear con el azimuth if azimuth!= None: azimuth = azimuth*math.pi/180 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) else: posx1 = posx posy1 = posy #Calculo de Distancias distx = numpy.zeros(nPairs) disty = numpy.zeros(nPairs) dist = numpy.zeros(nPairs) ang = numpy.zeros(nPairs) for i in range(nPairs): distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) ang[i] = numpy.arctan2(disty[i],distx[i]) return distx, disty, dist, ang #Calculo de Matrices # nPairs = len(pairs) # ang1 = numpy.zeros((nPairs, 2, 1)) # dist1 = numpy.zeros((nPairs, 2, 1)) # # for j in range(nPairs): # dist1[j,0,0] = dist[pairs[j][0]] # dist1[j,1,0] = dist[pairs[j][1]] # ang1[j,0,0] = ang[pairs[j][0]] # ang1[j,1,0] = ang[pairs[j][1]] # # return distx,disty, dist1,ang1 def __calculateVelVer(self, phase, lagTRange, _lambda): Ts = lagTRange[1] - lagTRange[0] velW = -_lambda*phase/(4*math.pi*Ts) return velW def __calculateVelHorDir(self, dist, tau1, tau2, ang): nPairs = tau1.shape[0] nHeights = tau1.shape[1] vel = numpy.zeros((nPairs,3,nHeights)) dist1 = numpy.reshape(dist, (dist.size,1)) angCos = numpy.cos(ang) angSin = numpy.sin(ang) vel0 = dist1*tau1/(2*tau2**2) vel[:,0,:] = (vel0*angCos).sum(axis = 1) vel[:,1,:] = (vel0*angSin).sum(axis = 1) ind = numpy.where(numpy.isinf(vel)) vel[ind] = numpy.nan return vel # def __getPairsAutoCorr(self, pairsList, nChannels): # # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan # # for l in range(len(pairsList)): # firstChannel = pairsList[l][0] # secondChannel = pairsList[l][1] # # #Obteniendo pares de Autocorrelacion # if firstChannel == secondChannel: # pairsAutoCorr[firstChannel] = int(l) # # pairsAutoCorr = pairsAutoCorr.astype(int) # # pairsCrossCorr = range(len(pairsList)) # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) # # return pairsAutoCorr, pairsCrossCorr # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): def techniqueSA(self, kwargs): """ Function that implements Spaced Antenna (SA) technique. Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, Direction correction (if necessary), Ranges and SNR Output: Winds estimation (Zonal, Meridional and Vertical) Parameters affected: Winds """ position_x = kwargs['positionX'] position_y = kwargs['positionY'] azimuth = kwargs['azimuth'] if kwargs.has_key('correctFactor'): correctFactor = kwargs['correctFactor'] else: correctFactor = 1 groupList = kwargs['groupList'] pairs_ccf = groupList[1] tau = kwargs['tau'] _lambda = kwargs['_lambda'] #Cross Correlation pairs obtained # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) # pairsArray = numpy.array(pairsList)[pairsCrossCorr] # pairsSelArray = numpy.array(pairsSelected) # pairs = [] # # #Wind estimation pairs obtained # for i in range(pairsSelArray.shape[0]/2): # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] # pairs.append((ind1,ind2)) indtau = tau.shape[0]/2 tau1 = tau[:indtau,:] tau2 = tau[indtau:-1,:] # tau1 = tau1[pairs,:] # tau2 = tau2[pairs,:] phase1 = tau[-1,:] #--------------------------------------------------------------------- #Metodo Directo distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) winds = stats.nanmean(winds, axis=0) #--------------------------------------------------------------------- #Metodo General # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) # #Calculo Coeficientes de Funcion de Correlacion # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) # #Calculo de Velocidades # winds = self.calculateVelUV(F,G,A,B,H) #--------------------------------------------------------------------- winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) winds = correctFactor*winds return winds def __checkTime(self, currentTime, paramInterval, outputInterval): dataTime = currentTime + paramInterval deltaTime = dataTime - self.__initime if deltaTime >= outputInterval or deltaTime < 0: self.__dataReady = True return def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax, binkm=2): ''' Function that implements winds estimation technique with detected meteors. Input: Detected meteors, Minimum meteor quantity to wind estimation Output: Winds estimation (Zonal and Meridional) Parameters affected: Winds ''' # print arrayMeteor.shape #Settings nInt = (heightMax - heightMin)/binkm # print nInt nInt = int(nInt) # print nInt winds = numpy.zeros((2,nInt))*numpy.nan #Filter errors error = numpy.where(arrayMeteor[:,-1] == 0)[0] finalMeteor = arrayMeteor[error,:] #Meteor Histogram finalHeights = finalMeteor[:,2] hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) nMeteorsPerI = hist[0] heightPerI = hist[1] #Sort of meteors indSort = finalHeights.argsort() finalMeteor2 = finalMeteor[indSort,:] # Calculating winds ind1 = 0 ind2 = 0 for i in range(nInt): nMet = nMeteorsPerI[i] ind1 = ind2 ind2 = ind1 + nMet meteorAux = finalMeteor2[ind1:ind2,:] if meteorAux.shape[0] >= meteorThresh: vel = meteorAux[:, 6] zen = meteorAux[:, 4]*numpy.pi/180 azim = meteorAux[:, 3]*numpy.pi/180 n = numpy.cos(zen) # m = (1 - n**2)/(1 - numpy.tan(azim)**2) # l = m*numpy.tan(azim) l = numpy.sin(zen)*numpy.sin(azim) m = numpy.sin(zen)*numpy.cos(azim) A = numpy.vstack((l, m)).transpose() A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) windsAux = numpy.dot(A1, vel) winds[0,i] = windsAux[0] winds[1,i] = windsAux[1] return winds, heightPerI[:-1] def techniqueNSM_SA(self, **kwargs): metArray = kwargs['metArray'] heightList = kwargs['heightList'] timeList = kwargs['timeList'] rx_location = kwargs['rx_location'] groupList = kwargs['groupList'] azimuth = kwargs['azimuth'] dfactor = kwargs['dfactor'] k = kwargs['k'] azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) d = dist*dfactor #Phase calculation metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities velEst = numpy.zeros((heightList.size,2))*numpy.nan azimuth1 = azimuth1*numpy.pi/180 for i in range(heightList.size): h = heightList[i] indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] metHeight = metArray1[indH,:] if metHeight.shape[0] >= 2: velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities iazim = metHeight[:,1].astype(int) azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) A = numpy.asmatrix(A) A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() velHor = numpy.dot(A1,velAux) velEst[i,:] = numpy.squeeze(velHor) return velEst def __getPhaseSlope(self, metArray, heightList, timeList): meteorList = [] #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 #Putting back together the meteor matrix utctime = metArray[:,0] uniqueTime = numpy.unique(utctime) phaseDerThresh = 0.5 ippSeconds = timeList[1] - timeList[0] sec = numpy.where(timeList>1)[0][0] nPairs = metArray.shape[1] - 6 nHeights = len(heightList) for t in uniqueTime: metArray1 = metArray[utctime==t,:] # phaseDerThresh = numpy.pi/4 #reducir Phase thresh tmet = metArray1[:,1].astype(int) hmet = metArray1[:,2].astype(int) metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) metPhase[:,:] = numpy.nan metPhase[:,hmet,tmet] = metArray1[:,6:].T #Delete short trails metBool = ~numpy.isnan(metPhase[0,:,:]) heightVect = numpy.sum(metBool, axis = 1) metBool[heightVect phaseDerThresh)) metPhase[phDerAux] = numpy.nan #--------------------------METEOR DETECTION ----------------------------------------- indMet = numpy.where(numpy.any(metBool,axis=1))[0] for p in numpy.arange(nPairs): phase = metPhase[p,:,:] phDer = metDer[p,:,:] for h in indMet: height = heightList[h] phase1 = phase[h,:] #82 phDer1 = phDer[h,:] phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap indValid = numpy.where(~numpy.isnan(phase1))[0] initMet = indValid[0] endMet = 0 for i in range(len(indValid)-1): #Time difference inow = indValid[i] inext = indValid[i+1] idiff = inext - inow #Phase difference phDiff = numpy.abs(phase1[inext] - phase1[inow]) if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor sizeTrail = inow - initMet + 1 if sizeTrail>3*sec: #Too short meteors x = numpy.arange(initMet,inow+1)*ippSeconds y = phase1[initMet:inow+1] ynnan = ~numpy.isnan(y) x = x[ynnan] y = y[ynnan] slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) ylin = x*slope + intercept rsq = r_value**2 if rsq > 0.5: vel = slope#*height*1000/(k*d) estAux = numpy.array([utctime,p,height, vel, rsq]) meteorList.append(estAux) initMet = inext metArray2 = numpy.array(meteorList) return metArray2 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): azimuth1 = numpy.zeros(len(pairslist)) dist = numpy.zeros(len(pairslist)) for i in range(len(rx_location)): ch0 = pairslist[i][0] ch1 = pairslist[i][1] diffX = rx_location[ch0][0] - rx_location[ch1][0] diffY = rx_location[ch0][1] - rx_location[ch1][1] azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi dist[i] = numpy.sqrt(diffX**2 + diffY**2) azimuth1 -= azimuth0 return azimuth1, dist def techniqueNSM_DBS(self, **kwargs): metArray = kwargs['metArray'] heightList = kwargs['heightList'] timeList = kwargs['timeList'] azimuth = kwargs['azimuth'] theta_x = numpy.array(kwargs['theta_x']) theta_y = numpy.array(kwargs['theta_y']) utctime = metArray[:,0] cmet = metArray[:,1].astype(int) hmet = metArray[:,3].astype(int) SNRmet = metArray[:,4] vmet = metArray[:,5] spcmet = metArray[:,6] nChan = numpy.max(cmet) + 1 nHeights = len(heightList) azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) hmet = heightList[hmet] h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights velEst = numpy.zeros((heightList.size,2))*numpy.nan for i in range(nHeights - 1): hmin = heightList[i] hmax = heightList[i + 1] thisH = (h1met>=hmin) & (h1met8) & (vmet<50) & (spcmet<10) indthisH = numpy.where(thisH) if numpy.size(indthisH) > 3: vel_aux = vmet[thisH] chan_aux = cmet[thisH] cosu_aux = dir_cosu[chan_aux] cosv_aux = dir_cosv[chan_aux] cosw_aux = dir_cosw[chan_aux] nch = numpy.size(numpy.unique(chan_aux)) if nch > 1: A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) velEst[i,:] = numpy.dot(A,vel_aux) return velEst def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): param = dataOut.data_param if dataOut.abscissaList != None: absc = dataOut.abscissaList[:-1] # noise = dataOut.noise heightList = dataOut.heightList SNR = dataOut.data_SNR if technique == 'DBS': kwargs['velRadial'] = param[:,1,:] #Radial velocity kwargs['heightList'] = heightList kwargs['SNR'] = SNR dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function dataOut.utctimeInit = dataOut.utctime dataOut.outputInterval = dataOut.paramInterval elif technique == 'SA': #Parameters # position_x = kwargs['positionX'] # position_y = kwargs['positionY'] # azimuth = kwargs['azimuth'] # # if kwargs.has_key('crosspairsList'): # pairs = kwargs['crosspairsList'] # else: # pairs = None # # if kwargs.has_key('correctFactor'): # correctFactor = kwargs['correctFactor'] # else: # correctFactor = 1 # tau = dataOut.data_param # _lambda = dataOut.C/dataOut.frequency # pairsList = dataOut.groupList # nChannels = dataOut.nChannels kwargs['groupList'] = dataOut.groupList kwargs['tau'] = dataOut.data_param kwargs['_lambda'] = dataOut.C/dataOut.frequency # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) dataOut.data_output = self.techniqueSA(kwargs) dataOut.utctimeInit = dataOut.utctime dataOut.outputInterval = dataOut.timeInterval elif technique == 'Meteors': dataOut.flagNoData = True self.__dataReady = False if kwargs.has_key('nHours'): nHours = kwargs['nHours'] else: nHours = 1 if kwargs.has_key('meteorsPerBin'): meteorThresh = kwargs['meteorsPerBin'] else: meteorThresh = 6 if kwargs.has_key('hmin'): hmin = kwargs['hmin'] else: hmin = 70 if kwargs.has_key('hmax'): hmax = kwargs['hmax'] else: hmax = 110 if kwargs.has_key('BinKm'): binkm = kwargs['BinKm'] else: binkm = 2 dataOut.outputInterval = nHours*3600 if self.__isConfig == False: # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) #Get Initial LTC time self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() self.__isConfig = True if self.__buffer is None: self.__buffer = dataOut.data_param self.__firstdata = copy.copy(dataOut) else: self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready if self.__dataReady: dataOut.utctimeInit = self.__initime self.__initime += dataOut.outputInterval #to erase time offset dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax, binkm) dataOut.flagNoData = False self.__buffer = None elif technique == 'Meteors1': dataOut.flagNoData = True self.__dataReady = False if kwargs.has_key('nMins'): nMins = kwargs['nMins'] else: nMins = 20 if kwargs.has_key('rx_location'): rx_location = kwargs['rx_location'] else: rx_location = [(0,1),(1,1),(1,0)] if kwargs.has_key('azimuth'): azimuth = kwargs['azimuth'] else: azimuth = 51.06 if kwargs.has_key('dfactor'): dfactor = kwargs['dfactor'] if kwargs.has_key('mode'): mode = kwargs['mode'] if kwargs.has_key('theta_x'): theta_x = kwargs['theta_x'] if kwargs.has_key('theta_y'): theta_y = kwargs['theta_y'] else: mode = 'SA' #Borrar luego esto if dataOut.groupList is None: dataOut.groupList = [(0,1),(0,2),(1,2)] groupList = dataOut.groupList C = 3e8 freq = 50e6 lamb = C/freq k = 2*numpy.pi/lamb timeList = dataOut.abscissaList heightList = dataOut.heightList if self.__isConfig == False: dataOut.outputInterval = nMins*60 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) #Get Initial LTC time initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) minuteAux = initime.minute minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() self.__isConfig = True if self.__buffer is None: self.__buffer = dataOut.data_param self.__firstdata = copy.copy(dataOut) else: self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready if self.__dataReady: dataOut.utctimeInit = self.__initime self.__initime += dataOut.outputInterval #to erase time offset metArray = self.__buffer if mode == 'SA': dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) elif mode == 'DBS': dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y) dataOut.data_output = dataOut.data_output.T dataOut.flagNoData = False self.__buffer = None return class EWDriftsEstimation(Operation): def __correctValues(self, heiRang, phi, velRadial, SNR): listPhi = phi.tolist() maxid = listPhi.index(max(listPhi)) minid = listPhi.index(min(listPhi)) rango = range(len(phi)) # rango = numpy.delete(rango,maxid) heiRang1 = heiRang*math.cos(phi[maxid]) heiRangAux = heiRang*math.cos(phi[minid]) indOut = (heiRang1 < heiRangAux[0]).nonzero() heiRang1 = numpy.delete(heiRang1,indOut) velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) SNR1 = numpy.zeros([len(phi),len(heiRang1)]) for i in rango: x = heiRang*math.cos(phi[i]) y1 = velRadial[i,:] f1 = interpolate.interp1d(x,y1,kind = 'cubic') x1 = heiRang1 y11 = f1(x1) y2 = SNR[i,:] f2 = interpolate.interp1d(x,y2,kind = 'cubic') y21 = f2(x1) velRadial1[i,:] = y11 SNR1[i,:] = y21 return heiRang1, velRadial1, SNR1 def run(self, dataOut, zenith, zenithCorrection): heiRang = dataOut.heightList velRadial = dataOut.data_param[:,3,:] SNR = dataOut.data_SNR zenith = numpy.array(zenith) zenith -= zenithCorrection zenith *= numpy.pi/180 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) alp = zenith[0] bet = zenith[1] w_w = velRadial1[0,:] w_e = velRadial1[1,:] w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) winds = numpy.vstack((u,w)) dataOut.heightList = heiRang1 dataOut.data_output = winds dataOut.data_SNR = SNR1 dataOut.utctimeInit = dataOut.utctime dataOut.outputInterval = dataOut.timeInterval return #--------------- Non Specular Meteor ---------------- class NonSpecularMeteorDetection(Operation): def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): data_acf = dataOut.data_pre[0] data_ccf = dataOut.data_pre[1] pairsList = dataOut.groupList[1] lamb = dataOut.C/dataOut.frequency tSamp = dataOut.ippSeconds*dataOut.nCohInt paramInterval = dataOut.paramInterval nChannels = data_acf.shape[0] nLags = data_acf.shape[1] nProfiles = data_acf.shape[2] nHeights = dataOut.nHeights nCohInt = dataOut.nCohInt sec = numpy.round(nProfiles/dataOut.paramInterval) heightList = dataOut.heightList ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg utctime = dataOut.utctime dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) #------------------------ SNR -------------------------------------- power = data_acf[:,0,:,:].real noise = numpy.zeros(nChannels) SNR = numpy.zeros(power.shape) for i in range(nChannels): noise[i] = hildebrand_sekhon(power[i,:], nCohInt) SNR[i] = (power[i]-noise[i])/noise[i] SNRm = numpy.nanmean(SNR, axis = 0) SNRdB = 10*numpy.log10(SNR) if mode == 'SA': dataOut.groupList = dataOut.groupList[1] nPairs = data_ccf.shape[0] #---------------------- Coherence and Phase -------------------------- phase = numpy.zeros(data_ccf[:,0,:,:].shape) # phase1 = numpy.copy(phase) coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) for p in range(nPairs): ch0 = pairsList[p][0] ch1 = pairsList[p][1] ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter # phase1[p,:,:] = numpy.angle(ccf) #median filter coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter # coh1[p,:,:] = numpy.abs(ccf) #median filter coh = numpy.nanmax(coh1, axis = 0) # struc = numpy.ones((5,1)) # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) #---------------------- Radial Velocity ---------------------------- phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) velRad = phaseAux*lamb/(4*numpy.pi*tSamp) if allData: boolMetFin = ~numpy.isnan(SNRm) # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) else: #------------------------ Meteor mask --------------------------------- # #SNR mask # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) # # #Erase small objects # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) # # auxEEJ = numpy.sum(boolMet1,axis=0) # indOver = auxEEJ>nProfiles*0.8 #Use this later # indEEJ = numpy.where(indOver)[0] # indNEEJ = numpy.where(~indOver)[0] # # boolMetFin = boolMet1 # # if indEEJ.size > 0: # boolMet1[:,indEEJ] = False #Erase heights with EEJ # # boolMet2 = coh > cohThresh # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) # # #Final Meteor mask # boolMetFin = boolMet1|boolMet2 #Coherence mask boolMet1 = coh > 0.75 struc = numpy.ones((30,1)) boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) #Derivative mask derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) boolMet2 = derPhase < 0.2 # boolMet2 = ndimage.morphology.binary_opening(boolMet2) # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) boolMet2 = ndimage.median_filter(boolMet2,size=5) boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) # #Final mask # boolMetFin = boolMet2 boolMetFin = boolMet1&boolMet2 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) #Creating data_param coordMet = numpy.where(boolMetFin) tmet = coordMet[0] hmet = coordMet[1] data_param = numpy.zeros((tmet.size, 6 + nPairs)) data_param[:,0] = utctime data_param[:,1] = tmet data_param[:,2] = hmet data_param[:,3] = SNRm[tmet,hmet] data_param[:,4] = velRad[tmet,hmet] data_param[:,5] = coh[tmet,hmet] data_param[:,6:] = phase[:,tmet,hmet].T elif mode == 'DBS': dataOut.groupList = numpy.arange(nChannels) #Radial Velocities phase = numpy.angle(data_acf[:,1,:,:]) # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) velRad = phase*lamb/(4*numpy.pi*tSamp) #Spectral width # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) acf1 = data_acf[:,1,:,:] acf2 = data_acf[:,2,:,:] spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) # velRad = ndimage.median_filter(velRad, size = (1,5,1)) if allData: boolMetFin = ~numpy.isnan(SNRdB) else: #SNR boolMet1 = (SNRdB>SNRthresh) #SNR mask boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) #Radial velocity boolMet2 = numpy.abs(velRad) < 20 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) #Spectral Width boolMet3 = spcWidth < 30 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) # boolMetFin = self.__erase_small(boolMet1, 10,5) boolMetFin = boolMet1&boolMet2&boolMet3 #Creating data_param coordMet = numpy.where(boolMetFin) cmet = coordMet[0] tmet = coordMet[1] hmet = coordMet[2] data_param = numpy.zeros((tmet.size, 7)) data_param[:,0] = utctime data_param[:,1] = cmet data_param[:,2] = tmet data_param[:,3] = hmet data_param[:,4] = SNR[cmet,tmet,hmet].T data_param[:,5] = velRad[cmet,tmet,hmet].T data_param[:,6] = spcWidth[cmet,tmet,hmet].T # self.dataOut.data_param = data_int if len(data_param) == 0: dataOut.flagNoData = True else: dataOut.data_param = data_param def __erase_small(self, binArray, threshX, threshY): labarray, numfeat = ndimage.measurements.label(binArray) binArray1 = numpy.copy(binArray) for i in range(1,numfeat + 1): auxBin = (labarray==i) auxSize = auxBin.sum() x,y = numpy.where(auxBin) widthX = x.max() - x.min() widthY = y.max() - y.min() #width X: 3 seg -> 12.5*3 #width Y: if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): binArray1[auxBin] = False return binArray1 #--------------- Specular Meteor ---------------- class SMDetection(Operation): ''' Function DetectMeteors() Project developed with paper: HOLDSWORTH ET AL. 2004 Input: self.dataOut.data_pre centerReceiverIndex: From the channels, which is the center receiver hei_ref: Height reference for the Beacon signal extraction tauindex: predefinedPhaseShifts: Predefined phase offset for the voltge signals cohDetection: Whether to user Coherent detection or not cohDet_timeStep: Coherent Detection calculation time step cohDet_thresh: Coherent Detection phase threshold to correct phases noise_timeStep: Noise calculation time step noise_multiple: Noise multiple to define signal threshold multDet_timeLimit: Multiple Detection Removal time limit in seconds multDet_rangeLimit: Multiple Detection Removal range limit in km phaseThresh: Maximum phase difference between receiver to be consider a meteor SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor hmin: Minimum Height of the meteor to use it in the further wind estimations hmax: Maximum Height of the meteor to use it in the further wind estimations azimuth: Azimuth angle correction Affected: self.dataOut.data_param Rejection Criteria (Errors): 0: No error; analysis OK 1: SNR < SNR threshold 2: angle of arrival (AOA) ambiguously determined 3: AOA estimate not feasible 4: Large difference in AOAs obtained from different antenna baselines 5: echo at start or end of time series 6: echo less than 5 examples long; too short for analysis 7: echo rise exceeds 0.3s 8: echo decay time less than twice rise time 9: large power level before echo 10: large power level after echo 11: poor fit to amplitude for estimation of decay time 12: poor fit to CCF phase variation for estimation of radial drift velocity 13: height unresolvable echo: not valid height within 70 to 110 km 14: height ambiguous echo: more then one possible height within 70 to 110 km 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s 16: oscilatory echo, indicating event most likely not an underdense echo 17: phase difference in meteor Reestimation Data Storage: Meteors for Wind Estimation (8): Utc Time | Range Height Azimuth Zenith errorCosDir VelRad errorVelRad Phase0 Phase1 Phase2 Phase3 TypeError ''' def run(self, dataOut, hei_ref = None, tauindex = 0, phaseOffsets = None, cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, noise_timeStep = 4, noise_multiple = 4, multDet_timeLimit = 1, multDet_rangeLimit = 3, phaseThresh = 20, SNRThresh = 5, hmin = 50, hmax=150, azimuth = 0, channelPositions = None) : #Getting Pairslist if channelPositions is None: # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella meteorOps = SMOperations() pairslist0, distances = meteorOps.getPhasePairs(channelPositions) heiRang = dataOut.getHeiRange() #Get Beacon signal - No Beacon signal anymore # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) # # if hei_ref != None: # newheis = numpy.where(self.dataOut.heightList>hei_ref) # #****************REMOVING HARDWARE PHASE DIFFERENCES*************** # see if the user put in pre defined phase shifts voltsPShift = dataOut.data_pre.copy() # if predefinedPhaseShifts != None: # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 # # # elif beaconPhaseShifts: # # #get hardware phase shifts using beacon signal # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) # # else: # hardwarePhaseShifts = numpy.zeros(5) # # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') # for i in range(self.dataOut.data_pre.shape[0]): # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* #Remove DC voltsDC = numpy.mean(voltsPShift,1) voltsDC = numpy.mean(voltsDC,1) for i in range(voltsDC.shape[0]): voltsPShift[i] = voltsPShift[i] - voltsDC[i] #Don't considerate last heights, theyre used to calculate Hardware Phase Shift # voltsPShift = voltsPShift[:,:,:newheis[0][0]] #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** #Coherent Detection if cohDetection: #use coherent detection to get the net power cohDet_thresh = cohDet_thresh*numpy.pi/180 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) #Non-coherent detection! powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) #********** END OF COH/NON-COH POWER CALCULATION********************** #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** #Get noise noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) #Get signal threshold signalThresh = noise_multiple*noise #Meteor echoes detection listMeteors = self.__findMeteors(powerNet, signalThresh) #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** #Parameters heiRange = dataOut.getHeiRange() rangeInterval = heiRange[1] - heiRange[0] rangeLimit = multDet_rangeLimit/rangeInterval timeLimit = multDet_timeLimit/dataOut.timeInterval #Multiple detection removals listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) #************ END OF REMOVE MULTIPLE DETECTIONS ********************** #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** #Parameters phaseThresh = phaseThresh*numpy.pi/180 thresh = [phaseThresh, noise_multiple, SNRThresh] #Meteor reestimation (Errors N 1, 6, 12, 17) listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) #Estimation of decay times (Errors N 7, 8, 11) listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) #******************* END OF METEOR REESTIMATION ******************* #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** #Calculating Radial Velocity (Error N 15) radialStdThresh = 10 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) if len(listMeteors4) > 0: #Setting New Array date = dataOut.utctime arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) #Correcting phase offset if phaseOffsets != None: phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) #Second Pairslist pairsList = [] pairx = (0,1) pairy = (2,3) pairsList.append(pairx) pairsList.append(pairy) jph = numpy.array([0,0,0,0]) h = (hmin,hmax) arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) # #Calculate AOA (Error N 3, 4) # #JONES ET AL. 1998 # error = arrayParameters[:,-1] # AOAthresh = numpy.pi/8 # phases = -arrayParameters[:,9:13] # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) # # #Calculate Heights (Error N 13 and 14) # error = arrayParameters[:,-1] # Ranges = arrayParameters[:,2] # zenith = arrayParameters[:,5] # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) # error = arrayParameters[:,-1] #********************* END OF PARAMETERS CALCULATION ************************** #***************************+ PASS DATA TO NEXT STEP ********************** # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) dataOut.data_param = arrayParameters if arrayParameters is None: dataOut.flagNoData = True else: dataOut.flagNoData = True return def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): minIndex = min(newheis[0]) maxIndex = max(newheis[0]) voltage = voltage0[:,:,minIndex:maxIndex+1] nLength = voltage.shape[1]/n nMin = 0 nMax = 0 phaseOffset = numpy.zeros((len(pairslist),n)) for i in range(n): nMax += nLength phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) phaseCCF = numpy.mean(phaseCCF, axis = 2) phaseOffset[:,i] = phaseCCF.transpose() nMin = nMax # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) #Remove Outliers factor = 2 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) dw = numpy.std(wt,axis = 1) dw = dw.reshape((dw.size,1)) ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) phaseOffset[ind] = numpy.nan phaseOffset = stats.nanmean(phaseOffset, axis=1) return phaseOffset def __shiftPhase(self, data, phaseShift): #this will shift the phase of a complex number dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) return dataShifted def __estimatePhaseDifference(self, array, pairslist): nChannel = array.shape[0] nHeights = array.shape[2] numPairs = len(pairslist) # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) #Correct phases derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) if indDer[0].shape[0] > 0: for i in range(indDer[0].shape[0]): signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi # for j in range(numSides): # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) # #Linear phaseInt = numpy.zeros((numPairs,1)) angAllCCF = phaseCCF[:,[0,1,3,4],0] for j in range(numPairs): fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) phaseInt[j] = fit[1] #Phase Differences phaseDiff = phaseInt - phaseCCF[:,2,:] phaseArrival = phaseInt.reshape(phaseInt.size) #Dealias phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) # indAlias = numpy.where(phaseArrival > numpy.pi) # phaseArrival[indAlias] -= 2*numpy.pi # indAlias = numpy.where(phaseArrival < -numpy.pi) # phaseArrival[indAlias] += 2*numpy.pi return phaseDiff, phaseArrival def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power #find the phase shifts of each channel over 1 second intervals #only look at ranges below the beacon signal numProfPerBlock = numpy.ceil(timeSegment/timeInterval) numBlocks = int(volts.shape[1]/numProfPerBlock) numHeights = volts.shape[2] nChannel = volts.shape[0] voltsCohDet = volts.copy() pairsarray = numpy.array(pairslist) indSides = pairsarray[:,1] # indSides = numpy.array(range(nChannel)) # indSides = numpy.delete(indSides, indCenter) # # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) listBlocks = numpy.array_split(volts, numBlocks, 1) startInd = 0 endInd = 0 for i in range(numBlocks): startInd = endInd endInd = endInd + listBlocks[i].shape[1] arrayBlock = listBlocks[i] # arrayBlockCenter = listCenter[i] #Estimate the Phase Difference phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) #Phase Difference RMS arrayPhaseRMS = numpy.abs(phaseDiff) phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) indPhase = numpy.where(phaseRMSaux==4) #Shifting if indPhase[0].shape[0] > 0: for j in range(indSides.size): arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) voltsCohDet[:,startInd:endInd,:] = arrayBlock return voltsCohDet def __calculateCCF(self, volts, pairslist ,laglist): nHeights = volts.shape[2] nPoints = volts.shape[1] voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') for i in range(len(pairslist)): volts1 = volts[pairslist[i][0]] volts2 = volts[pairslist[i][1]] for t in range(len(laglist)): idxT = laglist[t] if idxT >= 0: vStacked = numpy.vstack((volts2[idxT:,:], numpy.zeros((idxT, nHeights),dtype='complex'))) else: vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), volts2[:(nPoints + idxT),:])) voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) vStacked = None return voltsCCF def __getNoise(self, power, timeSegment, timeInterval): numProfPerBlock = numpy.ceil(timeSegment/timeInterval) numBlocks = int(power.shape[0]/numProfPerBlock) numHeights = power.shape[1] listPower = numpy.array_split(power, numBlocks, 0) noise = numpy.zeros((power.shape[0], power.shape[1])) noise1 = numpy.zeros((power.shape[0], power.shape[1])) startInd = 0 endInd = 0 for i in range(numBlocks): #split por canal startInd = endInd endInd = endInd + listPower[i].shape[0] arrayBlock = listPower[i] noiseAux = numpy.mean(arrayBlock, 0) # noiseAux = numpy.median(noiseAux) # noiseAux = numpy.mean(arrayBlock) noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux noiseAux1 = numpy.mean(arrayBlock) noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 return noise, noise1 def __findMeteors(self, power, thresh): nProf = power.shape[0] nHeights = power.shape[1] listMeteors = [] for i in range(nHeights): powerAux = power[:,i] threshAux = thresh[:,i] indUPthresh = numpy.where(powerAux > threshAux)[0] indDNthresh = numpy.where(powerAux <= threshAux)[0] j = 0 while (j < indUPthresh.size - 2): if (indUPthresh[j + 2] == indUPthresh[j] + 2): indDNAux = numpy.where(indDNthresh > indUPthresh[j]) indDNthresh = indDNthresh[indDNAux] if (indDNthresh.size > 0): indEnd = indDNthresh[0] - 1 indInit = indUPthresh[j] if isinstance(indUPthresh[j], (int, float)) else indUPthresh[j][0] ##CHECK!!!! meteor = powerAux[indInit:indEnd + 1] indPeak = meteor.argmax() + indInit FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! j = numpy.where(indUPthresh == indEnd)[0] + 1 else: j+=1 else: j+=1 return listMeteors def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): arrayMeteors = numpy.asarray(listMeteors) listMeteors1 = [] while arrayMeteors.shape[0] > 0: FLAs = arrayMeteors[:,4] maxFLA = FLAs.argmax() listMeteors1.append(arrayMeteors[maxFLA,:]) MeteorInitTime = arrayMeteors[maxFLA,1] MeteorEndTime = arrayMeteors[maxFLA,3] MeteorHeight = arrayMeteors[maxFLA,0] #Check neighborhood maxHeightIndex = MeteorHeight + rangeLimit minHeightIndex = MeteorHeight - rangeLimit minTimeIndex = MeteorInitTime - timeLimit maxTimeIndex = MeteorEndTime + timeLimit #Check Heights indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) return listMeteors1 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): numHeights = volts.shape[2] nChannel = volts.shape[0] thresholdPhase = thresh[0] thresholdNoise = thresh[1] thresholdDB = float(thresh[2]) thresholdDB1 = 10**(thresholdDB/10) pairsarray = numpy.array(pairslist) indSides = pairsarray[:,1] pairslist1 = list(pairslist) pairslist1.append((0,4)) pairslist1.append((1,3)) listMeteors1 = [] listPowerSeries = [] listVoltageSeries = [] #volts has the war data if frequency == 30.175e6: timeLag = 45*10**-3 else: timeLag = 15*10**-3 lag = int(numpy.ceil(timeLag/timeInterval)) for i in range(len(listMeteors)): ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### meteorAux = numpy.zeros(16) #Loading meteor Data (mHeight, mStart, mPeak, mEnd) mHeight = int(listMeteors[i][0]) mStart = int(listMeteors[i][1]) mPeak = int(listMeteors[i][2]) mEnd = int(listMeteors[i][3]) #get the volt data between the start and end times of the meteor meteorVolts = volts[:,mStart:mEnd+1,mHeight] meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) #3.6. Phase Difference estimation phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) #3.7. Phase difference removal & meteor start, peak and end times reestimated #meteorVolts0.- all Channels, all Profiles meteorVolts0 = volts[:,:,mHeight] meteorThresh = noise[:,mHeight]*thresholdNoise meteorNoise = noise[:,mHeight] meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power #Times reestimation mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] if mStart1.size > 0: mStart1 = mStart1[-1] + 1 else: mStart1 = mPeak mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] if mEndDecayTime1.size == 0: mEndDecayTime1 = powerNet0.size else: mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() #meteorVolts1.- all Channels, from start to end meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] if meteorVolts2.shape[1] == 0: meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) ##################### END PARAMETERS REESTIMATION ######################### ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis if meteorVolts2.shape[1] > 0: #Phase Difference re-estimation phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting #Phase Difference RMS phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) #Data from Meteor mPeak1 = powerNet1.argmax() + mStart1 mPeakPower1 = powerNet1.max() noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] #Vectorize meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] meteorAux[7:11] = phaseDiffint[0:4] #Rejection Criterions if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation meteorAux[-1] = 17 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB meteorAux[-1] = 1 else: meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis PowerSeries = 0 listMeteors1.append(meteorAux) listPowerSeries.append(PowerSeries) listVoltageSeries.append(meteorVolts1) return listMeteors1, listPowerSeries, listVoltageSeries def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): threshError = 10 #Depending if it is 30 or 50 MHz if frequency == 30.175e6: timeLag = 45*10**-3 else: timeLag = 15*10**-3 lag = int(numpy.ceil(timeLag/timeInterval)) listMeteors1 = [] for i in range(len(listMeteors)): meteorPower = listPower[i] meteorAux = listMeteors[i] if meteorAux[-1] == 0: try: indmax = meteorPower.argmax() indlag = indmax + lag y = meteorPower[indlag:] x = numpy.arange(0, y.size)*timeLag #first guess a = y[0] tau = timeLag #exponential fit popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) y1 = self.__exponential_function(x, *popt) #error estimation error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) decayTime = popt[1] riseTime = indmax*timeInterval meteorAux[11:13] = [decayTime, error] #Table items 7, 8 and 11 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s meteorAux[-1] = 7 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time meteorAux[-1] = 8 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time meteorAux[-1] = 11 except: meteorAux[-1] = 11 listMeteors1.append(meteorAux) return listMeteors1 #Exponential Function def __exponential_function(self, x, a, tau): y = a*numpy.exp(-x/tau) return y def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): pairslist1 = list(pairslist) pairslist1.append((0,4)) pairslist1.append((1,3)) numPairs = len(pairslist1) #Time Lag timeLag = 45*10**-3 c = 3e8 lag = numpy.ceil(timeLag/timeInterval) freq = 30.175e6 listMeteors1 = [] for i in range(len(listMeteors)): meteorAux = listMeteors[i] if meteorAux[-1] == 0: mStart = listMeteors[i][1] mPeak = listMeteors[i][2] mLag = mPeak - mStart + lag #get the volt data between the start and end times of the meteor meteorVolts = listVolts[i] meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) #Get CCF allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) #Method 2 slopes = numpy.zeros(numPairs) time = numpy.array([-2,-1,1,2])*timeInterval angAllCCF = numpy.angle(allCCFs[:,[0,4,2,3],0]) #Correct phases derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) if indDer[0].shape[0] > 0: for i in range(indDer[0].shape[0]): signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) for j in range(numPairs): fit = stats.linregress(time, angAllCCF[j,:]) slopes[j] = fit[0] #Remove Outlier # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) # slopes = numpy.delete(slopes,indOut) # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) # slopes = numpy.delete(slopes,indOut) radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) meteorAux[-2] = radialError meteorAux[-3] = radialVelocity #Setting Error #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s if numpy.abs(radialVelocity) > 200: meteorAux[-1] = 15 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity elif radialError > radialStdThresh: meteorAux[-1] = 12 listMeteors1.append(meteorAux) return listMeteors1 def __setNewArrays(self, listMeteors, date, heiRang): #New arrays arrayMeteors = numpy.array(listMeteors) arrayParameters = numpy.zeros((len(listMeteors), 13)) #Date inclusion # date = re.findall(r'\((.*?)\)', date) # date = date[0].split(',') # date = map(int, date) # # if len(date)<6: # date.append(0) # # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] # arrayDate = numpy.tile(date, (len(listMeteors), 1)) arrayDate = numpy.tile(date, (len(listMeteors))) #Meteor array # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) #Parameters Array arrayParameters[:,0] = arrayDate #Date arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases arrayParameters[:,-1] = arrayMeteors[:,-1] #Error return arrayParameters class CorrectSMPhases(Operation): parameters = { 'phaseOffsets': global_type_pairsList, 'hmin': global_type_float, 'hmax': global_type_float, 'azimuth': global_type_float, 'channelPositions': global_type_pairsList, } def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): arrayParameters = dataOut.data_param pairsList = [] pairx = (0,1) pairy = (2,3) pairsList.append(pairx) pairsList.append(pairy) jph = numpy.zeros(4) phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) meteorOps = SMOperations() if channelPositions is None: # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella pairslist0, distances = meteorOps.getPhasePairs(channelPositions) h = (hmin,hmax) arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) dataOut.data_param = arrayParameters return class SMPhaseCalibration(Operation): __buffer = None __initime = None __dataReady = False __isConfig = False def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): dataTime = currentTime + paramInterval deltaTime = dataTime - initTime if deltaTime >= outputInterval or deltaTime < 0: return True return False def __getGammas(self, pairs, d, phases): gammas = numpy.zeros(2) for i in range(len(pairs)): pairi = pairs[i] phip3 = phases[:,pairi[0]] d3 = d[pairi[0]] phip2 = phases[:,pairi[1]] d2 = d[pairi[1]] #Calculating gamma # jdcos = alp1/(k*d1) # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) jgamma = -phip2*d3/d2 - phip3 jgamma = numpy.angle(numpy.exp(1j*jgamma)) # jgamma[jgamma>numpy.pi] -= 2*numpy.pi # jgamma[jgamma<-numpy.pi] += 2*numpy.pi #Revised distribution jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) #Histogram nBins = 64 rmin = -0.5*numpy.pi rmax = 0.5*numpy.pi phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) meteorsY = phaseHisto[0] phasesX = phaseHisto[1][:-1] width = phasesX[1] - phasesX[0] phasesX += width/2 #Gaussian aproximation bpeak = meteorsY.argmax() peak = meteorsY.max() jmin = bpeak - 5 jmax = bpeak + 5 + 1 if jmin<0: jmin = 0 jmax = 6 elif jmax > meteorsY.size: jmin = meteorsY.size - 6 jmax = meteorsY.size x0 = numpy.array([peak,bpeak,50]) coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) #Gammas gammas[i] = coeff[0][1] return gammas def __residualFunction(self, coeffs, y, t): return y - self.__gauss_function(t, coeffs) def __gauss_function(self, t, coeffs): return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): meteorOps = SMOperations() nchan = 4 pairx = pairsList[0] #x es 0 pairy = pairsList[1] #y es 1 center_xangle = 0 center_yangle = 0 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) ntimes = len(range_angle) nstepsx = 20 nstepsy = 20 for iz in range(ntimes): min_xangle = -range_angle[iz]/2 + center_xangle max_xangle = range_angle[iz]/2 + center_xangle min_yangle = -range_angle[iz]/2 + center_yangle max_yangle = range_angle[iz]/2 + center_yangle inc_x = (max_xangle-min_xangle)/nstepsx inc_y = (max_yangle-min_yangle)/nstepsy alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle penalty = numpy.zeros((nstepsx,nstepsy)) jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) jph = numpy.zeros(nchan) # Iterations looking for the offset for iy in range(int(nstepsy)): for ix in range(int(nstepsx)): d3 = d[pairsList[1][0]] d2 = d[pairsList[1][1]] d5 = d[pairsList[0][0]] d4 = d[pairsList[0][1]] alp2 = alpha_y[iy] #gamma 1 alp4 = alpha_x[ix] #gamma 0 alp3 = -alp2*d3/d2 - gammas[1] alp5 = -alp4*d5/d4 - gammas[0] # jph[pairy[1]] = alpha_y[iy] # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] # jph[pairx[1]] = alpha_x[ix] # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] jph[pairsList[0][1]] = alp4 jph[pairsList[0][0]] = alp5 jph[pairsList[1][0]] = alp3 jph[pairsList[1][1]] = alp2 jph_array[:,ix,iy] = jph # d = [2.0,2.5,2.5,2.0] #falta chequear si va a leer bien los meteoros meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) error = meteorsArray1[:,-1] ind1 = numpy.where(error==0)[0] penalty[ix,iy] = ind1.size i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) phOffset = jph_array[:,i,j] center_xangle = phOffset[pairx[1]] center_yangle = phOffset[pairy[1]] phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) phOffset = phOffset*180/numpy.pi return phOffset def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): dataOut.flagNoData = True self.__dataReady = False dataOut.outputInterval = nHours*3600 if self.__isConfig == False: # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) #Get Initial LTC time self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() self.__isConfig = True if self.__buffer is None: self.__buffer = dataOut.data_param.copy() else: self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready if self.__dataReady: dataOut.utctimeInit = self.__initime self.__initime += dataOut.outputInterval #to erase time offset freq = dataOut.frequency c = dataOut.C #m/s lamb = c/freq k = 2*numpy.pi/lamb azimuth = 0 h = (hmin, hmax) # pairs = ((0,1),(2,3)) #Estrella # pairs = ((1,0),(2,3)) #T if channelPositions is None: # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella meteorOps = SMOperations() pairslist0, distances = meteorOps.getPhasePairs(channelPositions) #Checking correct order of pairs pairs = [] if distances[1] > distances[0]: pairs.append((1,0)) else: pairs.append((0,1)) if distances[3] > distances[2]: pairs.append((3,2)) else: pairs.append((2,3)) # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] meteorsArray = self.__buffer error = meteorsArray[:,-1] boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) ind1 = numpy.where(boolError)[0] meteorsArray = meteorsArray[ind1,:] meteorsArray[:,-1] = 0 phases = meteorsArray[:,8:12] #Calculate Gammas gammas = self.__getGammas(pairs, distances, phases) # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 #Calculate Phases phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) phasesOff = phasesOff.reshape((1,phasesOff.size)) dataOut.data_output = -phasesOff dataOut.flagNoData = False dataOut.channelList = pairslist0 self.__buffer = None return class SMOperations(): def __init__(self): return def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): arrayParameters = arrayParameters0.copy() hmin = h[0] hmax = h[1] #Calculate AOA (Error N 3, 4) #JONES ET AL. 1998 AOAthresh = numpy.pi/8 error = arrayParameters[:,-1] phases = -arrayParameters[:,8:12] + jph # phases = numpy.unwrap(phases) arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) #Calculate Heights (Error N 13 and 14) error = arrayParameters[:,-1] Ranges = arrayParameters[:,1] zenith = arrayParameters[:,4] arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) #----------------------- Get Final data ------------------------------------ # error = arrayParameters[:,-1] # ind1 = numpy.where(error==0)[0] # arrayParameters = arrayParameters[ind1,:] return arrayParameters def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): arrayAOA = numpy.zeros((phases.shape[0],3)) cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) arrayAOA[:,2] = cosDirError azimuthAngle = arrayAOA[:,0] zenithAngle = arrayAOA[:,1] #Setting Error indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] error[indError] = 0 #Number 3: AOA not fesible indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] error[indInvalid] = 3 #Number 4: Large difference in AOAs obtained from different antenna baselines indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] error[indInvalid] = 4 return arrayAOA, error def __getDirectionCosines(self, arrayPhase, pairsList, distances): #Initializing some variables ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi ang_aux = ang_aux.reshape(1,ang_aux.size) cosdir = numpy.zeros((arrayPhase.shape[0],2)) cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) for i in range(2): ph0 = arrayPhase[:,pairsList[i][0]] ph1 = arrayPhase[:,pairsList[i][1]] d0 = distances[pairsList[i][0]] d1 = distances[pairsList[i][1]] ph0_aux = ph0 + ph1 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi #First Estimation cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) #Most-Accurate Second Estimation phi1_aux = ph0 - ph1 phi1_aux = phi1_aux.reshape(phi1_aux.size,1) #Direction Cosine 1 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) #Searching the correct Direction Cosine cosdir0_aux = cosdir0[:,i] cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) #Minimum Distance cosDiff = (cosdir1 - cosdir0_aux)**2 indcos = cosDiff.argmin(axis = 1) #Saving Value obtained cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] return cosdir0, cosdir def __calculateAOA(self, cosdir, azimuth): cosdirX = cosdir[:,0] cosdirY = cosdir[:,1] zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() return angles def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): Ramb = 375 #Ramb = c/(2*PRF) Re = 6371 #Earth Radius heights = numpy.zeros(Ranges.shape) R_aux = numpy.array([0,1,2])*Ramb R_aux = R_aux.reshape(1,R_aux.size) Ranges = Ranges.reshape(Ranges.size,1) Ri = Ranges + R_aux hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re #Check if there is a height between 70 and 110 km h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) ind_h = numpy.where(h_bool == 1)[0] hCorr = hi[ind_h, :] ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) hCorr = hi[ind_hCorr][:len(ind_h)] heights[ind_h] = hCorr #Setting Error #Number 13: Height unresolvable echo: not valid height within 70 to 110 km #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] error[indError] = 0 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] error[indInvalid2] = 14 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] error[indInvalid1] = 13 return heights, error def getPhasePairs(self, channelPositions): chanPos = numpy.array(channelPositions) listOper = list(itertools.combinations(range(5),2)) distances = numpy.zeros(4) axisX = [] axisY = [] distX = numpy.zeros(3) distY = numpy.zeros(3) ix = 0 iy = 0 pairX = numpy.zeros((2,2)) pairY = numpy.zeros((2,2)) for i in range(len(listOper)): pairi = listOper[i] posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) if posDif[0] == 0: axisY.append(pairi) distY[iy] = posDif[1] iy += 1 elif posDif[1] == 0: axisX.append(pairi) distX[ix] = posDif[0] ix += 1 for i in range(2): if i==0: dist0 = distX axis0 = axisX else: dist0 = distY axis0 = axisY side = numpy.argsort(dist0)[:-1] axis0 = numpy.array(axis0)[side,:] chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) axis1 = numpy.unique(numpy.reshape(axis0,4)) side = axis1[axis1 != chanC] diff1 = chanPos[chanC,i] - chanPos[side[0],i] diff2 = chanPos[chanC,i] - chanPos[side[1],i] if diff1<0: chan2 = side[0] d2 = numpy.abs(diff1) chan1 = side[1] d1 = numpy.abs(diff2) else: chan2 = side[1] d2 = numpy.abs(diff2) chan1 = side[0] d1 = numpy.abs(diff1) if i==0: chanCX = chanC chan1X = chan1 chan2X = chan2 distances[0:2] = numpy.array([d1,d2]) else: chanCY = chanC chan1Y = chan1 chan2Y = chan2 distances[2:4] = numpy.array([d1,d2]) # axisXsides = numpy.reshape(axisX[ix,:],4) # # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) # # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] # channel25X = int(pairX[0,ind25X]) # channel20X = int(pairX[1,ind20X]) # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] # channel25Y = int(pairY[0,ind25Y]) # channel20Y = int(pairY[1,ind20Y]) # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] return pairslist, distances # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): # # arrayAOA = numpy.zeros((phases.shape[0],3)) # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) # # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) # arrayAOA[:,2] = cosDirError # # azimuthAngle = arrayAOA[:,0] # zenithAngle = arrayAOA[:,1] # # #Setting Error # #Number 3: AOA not fesible # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] # error[indInvalid] = 3 # #Number 4: Large difference in AOAs obtained from different antenna baselines # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] # error[indInvalid] = 4 # return arrayAOA, error # # def __getDirectionCosines(self, arrayPhase, pairsList): # # #Initializing some variables # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi # ang_aux = ang_aux.reshape(1,ang_aux.size) # # cosdir = numpy.zeros((arrayPhase.shape[0],2)) # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) # # # for i in range(2): # #First Estimation # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] # #Dealias # indcsi = numpy.where(phi0_aux > numpy.pi) # phi0_aux[indcsi] -= 2*numpy.pi # indcsi = numpy.where(phi0_aux < -numpy.pi) # phi0_aux[indcsi] += 2*numpy.pi # #Direction Cosine 0 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) # # #Most-Accurate Second Estimation # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) # #Direction Cosine 1 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) # # #Searching the correct Direction Cosine # cosdir0_aux = cosdir0[:,i] # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) # #Minimum Distance # cosDiff = (cosdir1 - cosdir0_aux)**2 # indcos = cosDiff.argmin(axis = 1) # #Saving Value obtained # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] # # return cosdir0, cosdir # # def __calculateAOA(self, cosdir, azimuth): # cosdirX = cosdir[:,0] # cosdirY = cosdir[:,1] # # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() # # return angles # # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): # # Ramb = 375 #Ramb = c/(2*PRF) # Re = 6371 #Earth Radius # heights = numpy.zeros(Ranges.shape) # # R_aux = numpy.array([0,1,2])*Ramb # R_aux = R_aux.reshape(1,R_aux.size) # # Ranges = Ranges.reshape(Ranges.size,1) # # Ri = Ranges + R_aux # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re # # #Check if there is a height between 70 and 110 km # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) # ind_h = numpy.where(h_bool == 1)[0] # # hCorr = hi[ind_h, :] # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) # # hCorr = hi[ind_hCorr] # heights[ind_h] = hCorr # # #Setting Error # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km # # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] # error[indInvalid2] = 14 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] # error[indInvalid1] = 13 # # return heights, error