import os import zmq import time import numpy import datetime import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.ticker import FuncFormatter, LinearLocator from multiprocessing import Process from schainpy.model.proc.jroproc_base import Operation plt.ioff() func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime('%H:%M')) d1970 = datetime.datetime(1970,1,1) class PlotData(Operation, Process): CODE = 'Figure' colormap = 'jro' CONFLATE = False __MAXNUMX = 80 __missing = 1E30 def __init__(self, **kwargs): Operation.__init__(self, plot=True, **kwargs) Process.__init__(self) self.kwargs['code'] = self.CODE self.mp = False self.dataOut = None self.isConfig = False self.figure = None self.figure2 = None #JM modificatiom self.axes = [] self.localtime = kwargs.pop('localtime', True) self.show = kwargs.get('show', True) self.save = kwargs.get('save', False) self.colormap = kwargs.get('colormap', self.colormap) self.colormap_coh = kwargs.get('colormap_coh', 'jet') self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') self.showprofile = kwargs.get('showprofile', True) self.title = kwargs.get('wintitle', '') self.xaxis = kwargs.get('xaxis', 'frequency') self.zmin = kwargs.get('zmin', None) self.zmax = kwargs.get('zmax', None) self.xmin = kwargs.get('xmin', None) self.xmax = kwargs.get('xmax', None) self.xrange = kwargs.get('xrange', 24) self.ymin = kwargs.get('ymin', None) self.ymax = kwargs.get('ymax', None) self.__MAXNUMY = kwargs.get('decimation', 80) self.throttle_value = 5 self.times = [] def fill_gaps(self, x_buffer, y_buffer, z_buffer): if x_buffer.shape[0] < 2: return x_buffer, y_buffer, z_buffer deltas = x_buffer[1:] - x_buffer[0:-1] x_median = np.median(deltas) index = np.where(deltas > 5*x_median) if len(index[0]) != 0: z_buffer[::, index[0], ::] = self.__missing z_buffer = np.ma.masked_inside(z_buffer, 0.99*self.__missing, 1.01*self.__missing) return x_buffer, y_buffer, z_buffer def decimate(self): # dx = int(len(self.x)/self.__MAXNUMX) + 1 dy = int(len(self.y)/self.__MAXNUMY) + 1 # x = self.x[::dx] x = self.x y = self.y[::dy] z = self.z[::, ::, ::dy] return x, y, z def __plot(self): print 'plotting...{}'.format(self.CODE) if self.show: print 'showing' self.figure.show() self.figure2.show() self.plot() plt.tight_layout() self.figure.canvas.manager.set_window_title('{} {} - Date:{}'.format(self.title, self.CODE.upper(), datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S'))) self.figure2.canvas.manager.set_window_title('{} {} - Date:{}'.format(self.title, self.CODE.upper(), datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S'))) if self.save: figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE, datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S'))) print 'Saving figure: {}'.format(figname) self.figure.savefig(figname) figname2 = os.path.join(self.save, '{}_{}2.png'.format(self.CODE, datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S'))) print 'Saving figure: {}'.format(figname2) self.figure2.savefig(figname2) self.figure.canvas.draw() self.figure2.canvas.draw() def plot(self): print 'plotting...{}'.format(self.CODE.upper()) return def run(self): print '[Starting] {}'.format(self.name) context = zmq.Context() receiver = context.socket(zmq.SUB) receiver.setsockopt(zmq.SUBSCRIBE, '') receiver.setsockopt(zmq.CONFLATE, self.CONFLATE) receiver.connect("ipc:///tmp/zmq.plots") seconds_passed = 0 while True: try: self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK)#flags=zmq.NOBLOCK self.started = self.data['STARTED'] self.dataOut = self.data['dataOut'] if (len(self.times) < len(self.data['times']) and not self.started and self.data['ENDED']): continue self.times = self.data['times'] self.times.sort() self.throttle_value = self.data['throttle'] self.min_time = self.times[0] self.max_time = self.times[-1] if self.isConfig is False: print 'setting up' self.setup() self.isConfig = True self.__plot() if self.data['ENDED'] is True: print '********GRAPHIC ENDED********' self.ended = True self.isConfig = False self.__plot() elif seconds_passed >= self.data['throttle']: print 'passed', seconds_passed self.__plot() seconds_passed = 0 except zmq.Again as e: print 'Waiting for data...' plt.pause(2) seconds_passed += 2 def close(self): if self.dataOut: self.__plot() class PlotSpectraData(PlotData): CODE = 'spc' colormap = 'jro' CONFLATE = False def setup(self): ncolspan = 1 colspan = 1 self.ncols = int(numpy.sqrt(self.dataOut.nChannels)+0.9) self.nrows = int(self.dataOut.nChannels*1./self.ncols + 0.9) self.width = 3.6*self.ncols self.height = 3.2*self.nrows if self.showprofile: ncolspan = 3 colspan = 2 self.width += 1.2*self.ncols self.ylabel = 'Range [Km]' self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] if self.figure is None: self.figure = plt.figure(figsize=(self.width, self.height), edgecolor='k', facecolor='w') else: self.figure.clf() n = 0 for y in range(self.nrows): for x in range(self.ncols): if n >= self.dataOut.nChannels: break ax = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan), 1, colspan) if self.showprofile: ax.ax_profile = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan+colspan), 1, 1) ax.firsttime = True self.axes.append(ax) n += 1 def plot(self): if self.xaxis == "frequency": x = self.dataOut.getFreqRange(1)/1000. xlabel = "Frequency (kHz)" elif self.xaxis == "time": x = self.dataOut.getAcfRange(1) xlabel = "Time (ms)" else: x = self.dataOut.getVelRange(1) xlabel = "Velocity (m/s)" y = self.dataOut.getHeiRange() z = self.data[self.CODE] for n, ax in enumerate(self.axes): if ax.firsttime: self.xmax = self.xmax if self.xmax else np.nanmax(x) self.xmin = self.xmin if self.xmin else -self.xmax self.ymin = self.ymin if self.ymin else np.nanmin(y) self.ymax = self.ymax if self.ymax else np.nanmax(y) self.zmin = self.zmin if self.zmin else np.nanmin(z) self.zmax = self.zmax if self.zmax else np.nanmax(z) ax.plot = ax.pcolormesh(x, y, z[n].T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) divider = make_axes_locatable(ax) cax = divider.new_horizontal(size='3%', pad=0.05) self.figure.add_axes(cax) plt.colorbar(ax.plot, cax) ax.set_xlim(self.xmin, self.xmax) ax.set_ylim(self.ymin, self.ymax) ax.set_ylabel(self.ylabel) ax.set_xlabel(xlabel) ax.firsttime = False if self.showprofile: ax.plot_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0] ax.ax_profile.set_xlim(self.zmin, self.zmax) ax.ax_profile.set_ylim(self.ymin, self.ymax) ax.ax_profile.set_xlabel('dB') ax.ax_profile.grid(b=True, axis='x') ax.plot_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y, color="k", linestyle="dashed", lw=2)[0] [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()] else: ax.plot.set_array(z[n].T.ravel()) if self.showprofile: ax.plot_profile.set_data(self.data['rti'][self.max_time][n], y) ax.plot_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y) ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]), size=8) self.saveTime = self.max_time class PlotCrossSpectraData(PlotData): CODE = 'cspc' zmin_coh = None zmax_coh = None zmin_phase = None zmax_phase = None CONFLATE = False def setup(self): ncolspan = 1 colspan = 1 self.ncols = 2 self.nrows = self.dataOut.nPairs self.width = 3.6*self.ncols self.height = 3.2*self.nrows self.ylabel = 'Range [Km]' self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] if self.figure is None: self.figure = plt.figure(figsize=(self.width, self.height), edgecolor='k', facecolor='w') else: self.figure.clf() for y in range(self.nrows): for x in range(self.ncols): ax = plt.subplot2grid((self.nrows, self.ncols), (y, x), 1, 1) ax.firsttime = True self.axes.append(ax) def plot(self): if self.xaxis == "frequency": x = self.dataOut.getFreqRange(1)/1000. xlabel = "Frequency (kHz)" elif self.xaxis == "time": x = self.dataOut.getAcfRange(1) xlabel = "Time (ms)" else: x = self.dataOut.getVelRange(1) xlabel = "Velocity (m/s)" y = self.dataOut.getHeiRange() z_coh = self.data['cspc_coh'] z_phase = self.data['cspc_phase'] for n in range(self.nrows): ax = self.axes[2*n] ax1 = self.axes[2*n+1] if ax.firsttime: self.xmax = self.xmax if self.xmax else np.nanmax(x) self.xmin = self.xmin if self.xmin else -self.xmax self.ymin = self.ymin if self.ymin else np.nanmin(y) self.ymax = self.ymax if self.ymax else np.nanmax(y) self.zmin_coh = self.zmin_coh if self.zmin_coh else 0.0 self.zmax_coh = self.zmax_coh if self.zmax_coh else 1.0 self.zmin_phase = self.zmin_phase if self.zmin_phase else -180 self.zmax_phase = self.zmax_phase if self.zmax_phase else 180 ax.plot = ax.pcolormesh(x, y, z_coh[n].T, vmin=self.zmin_coh, vmax=self.zmax_coh, cmap=plt.get_cmap(self.colormap_coh) ) divider = make_axes_locatable(ax) cax = divider.new_horizontal(size='3%', pad=0.05) self.figure.add_axes(cax) plt.colorbar(ax.plot, cax) ax.set_xlim(self.xmin, self.xmax) ax.set_ylim(self.ymin, self.ymax) ax.set_ylabel(self.ylabel) ax.set_xlabel(xlabel) ax.firsttime = False ax1.plot = ax1.pcolormesh(x, y, z_phase[n].T, vmin=self.zmin_phase, vmax=self.zmax_phase, cmap=plt.get_cmap(self.colormap_phase) ) divider = make_axes_locatable(ax1) cax = divider.new_horizontal(size='3%', pad=0.05) self.figure.add_axes(cax) plt.colorbar(ax1.plot, cax) ax1.set_xlim(self.xmin, self.xmax) ax1.set_ylim(self.ymin, self.ymax) ax1.set_ylabel(self.ylabel) ax1.set_xlabel(xlabel) ax1.firsttime = False else: ax.plot.set_array(z_coh[n].T.ravel()) ax1.plot.set_array(z_phase[n].T.ravel()) ax.set_title('Coherence Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8) ax1.set_title('Phase Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8) self.saveTime = self.max_time class PlotSpectraMeanData(PlotSpectraData): CODE = 'spc_mean' colormap = 'jet' def plot(self): if self.xaxis == "frequency": x = self.dataOut.getFreqRange(1)/1000. xlabel = "Frequency (kHz)" elif self.xaxis == "time": x = self.dataOut.getAcfRange(1) xlabel = "Time (ms)" else: x = self.dataOut.getVelRange(1) xlabel = "Velocity (m/s)" y = self.dataOut.getHeiRange() z = self.data['spc'] mean = self.data['mean'][self.max_time] for n, ax in enumerate(self.axes): if ax.firsttime: self.xmax = self.xmax if self.xmax else np.nanmax(x) self.xmin = self.xmin if self.xmin else -self.xmax self.ymin = self.ymin if self.ymin else np.nanmin(y) self.ymax = self.ymax if self.ymax else np.nanmax(y) self.zmin = self.zmin if self.zmin else np.nanmin(z) self.zmax = self.zmax if self.zmax else np.nanmax(z) ax.plt = ax.pcolormesh(x, y, z[n].T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) ax.plt_dop = ax.plot(mean[n], y, color='k')[0] divider = make_axes_locatable(ax) cax = divider.new_horizontal(size='3%', pad=0.05) self.figure.add_axes(cax) plt.colorbar(ax.plt, cax) ax.set_xlim(self.xmin, self.xmax) ax.set_ylim(self.ymin, self.ymax) ax.set_ylabel(self.ylabel) ax.set_xlabel(xlabel) ax.firsttime = False if self.showprofile: ax.plt_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0] ax.ax_profile.set_xlim(self.zmin, self.zmax) ax.ax_profile.set_ylim(self.ymin, self.ymax) ax.ax_profile.set_xlabel('dB') ax.ax_profile.grid(b=True, axis='x') ax.plt_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y, color="k", linestyle="dashed", lw=2)[0] [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()] else: ax.plt.set_array(z[n].T.ravel()) ax.plt_dop.set_data(mean[n], y) if self.showprofile: ax.plt_profile.set_data(self.data['rti'][self.max_time][n], y) ax.plt_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y) ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]), size=8) self.saveTime = self.max_time class PlotRTIData(PlotData): CODE = 'rti' colormap = 'jro' def setup(self): self.ncols = 1 self.nrows = self.dataOut.nChannels self.width = 10 self.height = 2.2*self.nrows if self.nrows<6 else 12 if self.nrows==1: self.height += 1 self.ylabel = 'Range [Km]' self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] if self.figure is None: self.figure = plt.figure(figsize=(self.width, self.height), edgecolor='k', facecolor='w') else: self.figure.clf() self.axes = [] if self.figure2 is None: self.figure2 = plt.figure(figsize=(self.width, self.height), edgecolor='k', facecolor='w') else: self.figure2.clf() self.axes = [] ax = self.figure.add_subplot(1,1,1) #ax = self.figure( n+1) ax.firsttime = True self.axes.append(ax) ax = self.figure2.add_subplot(1,1,1) #ax = self.figure( n+1) ax.firsttime = True self.axes.append(ax) # for n in range(self.nrows): # ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) # #ax = self.figure( n+1) # ax.firsttime = True # self.axes.append(ax) def plot(self): self.x = np.array(self.times) self.y = self.dataOut.getHeiRange() self.z = [] for ch in range(self.nrows): self.z.append([self.data[self.CODE][t][ch] for t in self.times]) self.z = np.array(self.z) for n, ax in enumerate(self.axes): x, y, z = self.fill_gaps(*self.decimate()) xmin = self.min_time xmax = xmin+self.xrange*60*60 self.zmin = self.zmin if self.zmin else np.min(self.z) self.zmax = self.zmax if self.zmax else np.max(self.z) if ax.firsttime: self.ymin = self.ymin if self.ymin else np.nanmin(self.y) self.ymax = self.ymax if self.ymax else np.nanmax(self.y) plot = ax.pcolormesh(x, y, z[n].T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) divider = make_axes_locatable(ax) cax = divider.new_horizontal(size='2%', pad=0.05) #self.figure.add_axes(cax) #self.figure2.add_axes(cax) plt.colorbar(plot, cax) ax.set_ylim(self.ymin, self.ymax) ax.xaxis.set_major_formatter(FuncFormatter(func)) ax.xaxis.set_major_locator(LinearLocator(6)) ax.set_ylabel(self.ylabel) # if self.xmin is None: # xmin = self.min_time # else: # xmin = (datetime.datetime.combine(self.dataOut.datatime.date(), # datetime.time(self.xmin, 0, 0))-d1970).total_seconds() ax.set_xlim(xmin, xmax) ax.firsttime = False else: ax.collections.remove(ax.collections[0]) ax.set_xlim(xmin, xmax) plot = ax.pcolormesh(x, y, z[n].T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) ax.set_title('{} {}'.format(self.titles[n], datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')), size=8) self.saveTime = self.min_time class PlotCOHData(PlotRTIData): CODE = 'coh' def setup(self): self.ncols = 1 self.nrows = self.dataOut.nPairs self.width = 10 self.height = 2.2*self.nrows if self.nrows<6 else 12 if self.nrows==1: self.height += 1 self.ylabel = 'Range [Km]' self.titles = ['{} Ch{} * Ch{}'.format(self.CODE.upper(), x[0], x[1]) for x in self.dataOut.pairsList] if self.figure is None: self.figure = plt.figure(figsize=(self.width, self.height), edgecolor='k', facecolor='w') else: self.figure.clf() self.axes = [] for n in range(self.nrows): ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) ax.firsttime = True self.axes.append(ax) class PlotNoiseData(PlotData): CODE = 'noise' def setup(self): self.ncols = 1 self.nrows = 1 self.width = 10 self.height = 3.2 self.ylabel = 'Intensity [dB]' self.titles = ['Noise'] if self.figure is None: self.figure = plt.figure(figsize=(self.width, self.height), edgecolor='k', facecolor='w') else: self.figure.clf() self.axes = [] self.ax = self.figure.add_subplot(self.nrows, self.ncols, 1) self.ax.firsttime = True def plot(self): x = self.times xmin = self.min_time xmax = xmin+self.xrange*60*60 if self.ax.firsttime: for ch in self.dataOut.channelList: y = [self.data[self.CODE][t][ch] for t in self.times] self.ax.plot(x, y, lw=1, label='Ch{}'.format(ch)) self.ax.firsttime = False self.ax.xaxis.set_major_formatter(FuncFormatter(func)) self.ax.xaxis.set_major_locator(LinearLocator(6)) self.ax.set_ylabel(self.ylabel) plt.legend() else: for ch in self.dataOut.channelList: y = [self.data[self.CODE][t][ch] for t in self.times] self.ax.lines[ch].set_data(x, y) self.ax.set_xlim(xmin, xmax) self.ax.set_ylim(min(y)-5, max(y)+5) self.saveTime = self.min_time class PlotWindProfilerData(PlotRTIData): CODE = 'wind' colormap = 'seismic' def setup(self): self.ncols = 1 self.nrows = self.dataOut.data_output.shape[0] self.width = 10 self.height = 2.2*self.nrows self.ylabel = 'Height [Km]' self.titles = ['Zonal' ,'Meridional', 'Vertical'] self.clabels = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)'] self.windFactor = [1, 1, 100] if self.figure is None: self.figure = plt.figure(figsize=(self.width, self.height), edgecolor='k', facecolor='w') else: self.figure.clf() self.axes = [] for n in range(self.nrows): ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) ax.firsttime = True self.axes.append(ax) def plot(self): self.x = np.array(self.times) self.y = self.dataOut.heightList self.z = [] for ch in range(self.nrows): self.z.append([self.data[self.CODE][t][ch] for t in self.times]) self.z = np.array(self.z) self.z = numpy.ma.masked_invalid(self.z) cmap=plt.get_cmap(self.colormap) cmap.set_bad('white', 1.) for n, ax in enumerate(self.axes): x, y, z = self.fill_gaps(*self.decimate()) xmin = self.min_time xmax = xmin+self.xrange*60*60 if ax.firsttime: self.ymin = self.ymin if self.ymin else np.nanmin(self.y) self.ymax = self.ymax if self.ymax else np.nanmax(self.y) self.zmax = self.zmax if self.zmax else numpy.nanmax(abs(self.z[:-1, :])) self.zmin = self.zmin if self.zmin else -self.zmax plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n], vmin=self.zmin, vmax=self.zmax, cmap=cmap ) divider = make_axes_locatable(ax) cax = divider.new_horizontal(size='2%', pad=0.05) cax.set_ylabel(self.clabels[n]) self.figure.add_axes(cax) plt.colorbar(plot, cax) ax.set_ylim(self.ymin, self.ymax) ax.xaxis.set_major_formatter(FuncFormatter(func)) ax.xaxis.set_major_locator(LinearLocator(6)) ax.set_ylabel(self.ylabel) ax.set_xlim(xmin, xmax) ax.firsttime = False else: ax.collections.remove(ax.collections[0]) ax.set_xlim(xmin, xmax) plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n], vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) ax.set_title('{} {}'.format(self.titles[n], datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')), size=8) self.saveTime = self.min_time class PlotSNRData(PlotRTIData): CODE = 'snr' colormap = 'jet' class PlotDOPData(PlotRTIData): CODE = 'dop' colormap = 'jet' class PlotPHASEData(PlotCOHData): CODE = 'phase' colormap = 'seismic'