''' Created on Jul 2, 2014 @author: roj-idl71 ''' import numpy from jroIO_base import LOCALTIME, JRODataReader, JRODataWriter from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation from schainpy.model.data.jroheaderIO import PROCFLAG, BasicHeader, SystemHeader, RadarControllerHeader, ProcessingHeader from schainpy.model.data.jrodata import Spectra class SpectraReader(JRODataReader, ProcessingUnit): """ Esta clase permite leer datos de espectros desde archivos procesados (.pdata). La lectura de los datos siempre se realiza por bloques. Los datos leidos (array de 3 dimensiones) son almacenados en tres buffer's para el Self Spectra, el Cross Spectra y el DC Channel. paresCanalesIguales * alturas * perfiles (Self Spectra) paresCanalesDiferentes * alturas * perfiles (Cross Spectra) canales * alturas (DC Channels) Esta clase contiene instancias (objetos) de las clases BasicHeader, SystemHeader, RadarControllerHeader y Spectra. Los tres primeros se usan para almacenar informacion de la cabecera de datos (metadata), y el cuarto (Spectra) para obtener y almacenar un bloque de datos desde el "buffer" cada vez que se ejecute el metodo "getData". Example: dpath = "/home/myuser/data" startTime = datetime.datetime(2010,1,20,0,0,0,0,0,0) endTime = datetime.datetime(2010,1,21,23,59,59,0,0,0) readerObj = SpectraReader() readerObj.setup(dpath, startTime, endTime) while(True): readerObj.getData() print readerObj.data_spc print readerObj.data_cspc print readerObj.data_dc if readerObj.flagNoMoreFiles: break """ pts2read_SelfSpectra = 0 pts2read_CrossSpectra = 0 pts2read_DCchannels = 0 ext = ".pdata" optchar = "P" dataOut = None nRdChannels = None nRdPairs = None rdPairList = [] def __init__(self, **kwargs): """ Inicializador de la clase SpectraReader para la lectura de datos de espectros. Inputs: dataOut : Objeto de la clase Spectra. Este objeto sera utilizado para almacenar un perfil de datos cada vez que se haga un requerimiento (getData). El perfil sera obtenido a partir del buffer de datos, si el buffer esta vacio se hara un nuevo proceso de lectura de un bloque de datos. Si este parametro no es pasado se creara uno internamente. Affected: self.dataOut Return : None """ #Eliminar de la base la herencia ProcessingUnit.__init__(self, **kwargs) # self.isConfig = False self.pts2read_SelfSpectra = 0 self.pts2read_CrossSpectra = 0 self.pts2read_DCchannels = 0 self.datablock = None self.utc = None self.ext = ".pdata" self.optchar = "P" self.basicHeaderObj = BasicHeader(LOCALTIME) self.systemHeaderObj = SystemHeader() self.radarControllerHeaderObj = RadarControllerHeader() self.processingHeaderObj = ProcessingHeader() self.online = 0 self.fp = None self.idFile = None self.dtype = None self.fileSizeByHeader = None self.filenameList = [] self.filename = None self.fileSize = None self.firstHeaderSize = 0 self.basicHeaderSize = 24 self.pathList = [] self.lastUTTime = 0 self.maxTimeStep = 30 self.flagNoMoreFiles = 0 self.set = 0 self.path = None self.delay = 60 #seconds self.nTries = 3 #quantity tries self.nFiles = 3 #number of files for searching self.nReadBlocks = 0 self.flagIsNewFile = 1 self.__isFirstTimeOnline = 1 # self.ippSeconds = 0 self.flagDiscontinuousBlock = 0 self.flagIsNewBlock = 0 self.nTotalBlocks = 0 self.blocksize = 0 self.dataOut = self.createObjByDefault() self.profileIndex = 1 #Always def createObjByDefault(self): dataObj = Spectra() return dataObj def __hasNotDataInBuffer(self): return 1 def getBlockDimension(self): """ Obtiene la cantidad de puntos a leer por cada bloque de datos Affected: self.nRdChannels self.nRdPairs self.pts2read_SelfSpectra self.pts2read_CrossSpectra self.pts2read_DCchannels self.blocksize self.dataOut.nChannels self.dataOut.nPairs Return: None """ self.nRdChannels = 0 self.nRdPairs = 0 self.rdPairList = [] for i in range(0, self.processingHeaderObj.totalSpectra*2, 2): if self.processingHeaderObj.spectraComb[i] == self.processingHeaderObj.spectraComb[i+1]: self.nRdChannels = self.nRdChannels + 1 #par de canales iguales else: self.nRdPairs = self.nRdPairs + 1 #par de canales diferentes self.rdPairList.append((self.processingHeaderObj.spectraComb[i], self.processingHeaderObj.spectraComb[i+1])) pts2read = self.processingHeaderObj.nHeights * self.processingHeaderObj.profilesPerBlock self.pts2read_SelfSpectra = int(self.nRdChannels * pts2read) self.blocksize = self.pts2read_SelfSpectra if self.processingHeaderObj.flag_cspc: self.pts2read_CrossSpectra = int(self.nRdPairs * pts2read) self.blocksize += self.pts2read_CrossSpectra if self.processingHeaderObj.flag_dc: self.pts2read_DCchannels = int(self.systemHeaderObj.nChannels * self.processingHeaderObj.nHeights) self.blocksize += self.pts2read_DCchannels # self.blocksize = self.pts2read_SelfSpectra + self.pts2read_CrossSpectra + self.pts2read_DCchannels def readBlock(self): """ Lee el bloque de datos desde la posicion actual del puntero del archivo (self.fp) y actualiza todos los parametros relacionados al bloque de datos (metadata + data). La data leida es almacenada en el buffer y el contador del buffer es seteado a 0 Return: None Variables afectadas: self.flagIsNewFile self.flagIsNewBlock self.nTotalBlocks self.data_spc self.data_cspc self.data_dc Exceptions: Si un bloque leido no es un bloque valido """ blockOk_flag = False fpointer = self.fp.tell() spc = numpy.fromfile( self.fp, self.dtype[0], self.pts2read_SelfSpectra ) spc = spc.reshape( (self.nRdChannels, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) ) #transforma a un arreglo 3D if self.processingHeaderObj.flag_cspc: cspc = numpy.fromfile( self.fp, self.dtype, self.pts2read_CrossSpectra ) cspc = cspc.reshape( (self.nRdPairs, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) ) #transforma a un arreglo 3D if self.processingHeaderObj.flag_dc: dc = numpy.fromfile( self.fp, self.dtype, self.pts2read_DCchannels ) #int(self.processingHeaderObj.nHeights*self.systemHeaderObj.nChannels) ) dc = dc.reshape( (self.systemHeaderObj.nChannels, self.processingHeaderObj.nHeights) ) #transforma a un arreglo 2D if not self.processingHeaderObj.shif_fft: #desplaza a la derecha en el eje 2 determinadas posiciones shift = int(self.processingHeaderObj.profilesPerBlock/2) spc = numpy.roll( spc, shift , axis=2 ) if self.processingHeaderObj.flag_cspc: #desplaza a la derecha en el eje 2 determinadas posiciones cspc = numpy.roll( cspc, shift, axis=2 ) #Dimensions : nChannels, nProfiles, nSamples spc = numpy.transpose( spc, (0,2,1) ) self.data_spc = spc if self.processingHeaderObj.flag_cspc: cspc = numpy.transpose( cspc, (0,2,1) ) self.data_cspc = cspc['real'] + cspc['imag']*1j else: self.data_cspc = None if self.processingHeaderObj.flag_dc: self.data_dc = dc['real'] + dc['imag']*1j else: self.data_dc = None self.flagIsNewFile = 0 self.flagIsNewBlock = 1 self.nTotalBlocks += 1 self.nReadBlocks += 1 return 1 def getFirstHeader(self): self.getBasicHeader() self.dataOut.systemHeaderObj = self.systemHeaderObj.copy() self.dataOut.radarControllerHeaderObj = self.radarControllerHeaderObj.copy() # self.dataOut.ippSeconds = self.ippSeconds # self.dataOut.timeInterval = self.radarControllerHeaderObj.ippSeconds * self.processingHeaderObj.nCohInt * self.processingHeaderObj.nIncohInt * self.processingHeaderObj.profilesPerBlock self.dataOut.dtype = self.dtype # self.dataOut.nPairs = self.nPairs self.dataOut.pairsList = self.rdPairList self.dataOut.nProfiles = self.processingHeaderObj.profilesPerBlock self.dataOut.nFFTPoints = self.processingHeaderObj.profilesPerBlock self.dataOut.nCohInt = self.processingHeaderObj.nCohInt self.dataOut.nIncohInt = self.processingHeaderObj.nIncohInt xf = self.processingHeaderObj.firstHeight + self.processingHeaderObj.nHeights*self.processingHeaderObj.deltaHeight self.dataOut.heightList = numpy.arange(self.processingHeaderObj.firstHeight, xf, self.processingHeaderObj.deltaHeight) self.dataOut.channelList = range(self.systemHeaderObj.nChannels) self.dataOut.flagShiftFFT = True #Data is always shifted self.dataOut.flagDecodeData = self.processingHeaderObj.flag_decode #asumo q la data no esta decodificada self.dataOut.flagDeflipData = self.processingHeaderObj.flag_deflip #asumo q la data esta sin flip def getData(self): """ First method to execute before "RUN" is called. Copia el buffer de lectura a la clase "Spectra", con todos los parametros asociados a este (metadata). cuando no hay datos en el buffer de lectura es necesario hacer una nueva lectura de los bloques de datos usando "readNextBlock" Return: 0 : Si no hay mas archivos disponibles 1 : Si hizo una buena copia del buffer Affected: self.dataOut self.flagDiscontinuousBlock self.flagIsNewBlock """ if self.flagNoMoreFiles: self.dataOut.flagNoData = True print 'Process finished' return 0 self.flagDiscontinuousBlock = 0 self.flagIsNewBlock = 0 if self.__hasNotDataInBuffer(): if not( self.readNextBlock() ): self.dataOut.flagNoData = True return 0 #data es un numpy array de 3 dmensiones (perfiles, alturas y canales) if self.data_spc is None: self.dataOut.flagNoData = True return 0 self.getBasicHeader() self.getFirstHeader() self.dataOut.data_spc = self.data_spc self.dataOut.data_cspc = self.data_cspc self.dataOut.data_dc = self.data_dc self.dataOut.flagNoData = False self.dataOut.realtime = self.online return self.dataOut.data_spc class SpectraWriter(JRODataWriter, Operation): """ Esta clase permite escribir datos de espectros a archivos procesados (.pdata). La escritura de los datos siempre se realiza por bloques. """ ext = ".pdata" optchar = "P" shape_spc_Buffer = None shape_cspc_Buffer = None shape_dc_Buffer = None data_spc = None data_cspc = None data_dc = None # dataOut = None def __init__(self, **kwargs): """ Inicializador de la clase SpectraWriter para la escritura de datos de espectros. Affected: self.dataOut self.basicHeaderObj self.systemHeaderObj self.radarControllerHeaderObj self.processingHeaderObj Return: None """ Operation.__init__(self, **kwargs) self.isConfig = False self.nTotalBlocks = 0 self.data_spc = None self.data_cspc = None self.data_dc = None self.fp = None self.flagIsNewFile = 1 self.nTotalBlocks = 0 self.flagIsNewBlock = 0 self.setFile = None self.dtype = None self.path = None self.noMoreFiles = 0 self.filename = None self.basicHeaderObj = BasicHeader(LOCALTIME) self.systemHeaderObj = SystemHeader() self.radarControllerHeaderObj = RadarControllerHeader() self.processingHeaderObj = ProcessingHeader() def hasAllDataInBuffer(self): return 1 def setBlockDimension(self): """ Obtiene las formas dimensionales del los subbloques de datos que componen un bloque Affected: self.shape_spc_Buffer self.shape_cspc_Buffer self.shape_dc_Buffer Return: None """ self.shape_spc_Buffer = (self.dataOut.nChannels, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) self.shape_cspc_Buffer = (self.dataOut.nPairs, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) self.shape_dc_Buffer = (self.dataOut.nChannels, self.processingHeaderObj.nHeights) def writeBlock(self): """ Escribe el buffer en el file designado Affected: self.data_spc self.data_cspc self.data_dc self.flagIsNewFile self.flagIsNewBlock self.nTotalBlocks self.nWriteBlocks Return: None """ spc = numpy.transpose( self.data_spc, (0,2,1) ) if not self.processingHeaderObj.shif_fft: spc = numpy.roll( spc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones data = spc.reshape((-1)) data = data.astype(self.dtype[0]) data.tofile(self.fp) if self.data_cspc is not None: data = numpy.zeros( self.shape_cspc_Buffer, self.dtype ) cspc = numpy.transpose( self.data_cspc, (0,2,1) ) if not self.processingHeaderObj.shif_fft: cspc = numpy.roll( cspc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones data['real'] = cspc.real data['imag'] = cspc.imag data = data.reshape((-1)) data.tofile(self.fp) if self.data_dc is not None: data = numpy.zeros( self.shape_dc_Buffer, self.dtype ) dc = self.data_dc data['real'] = dc.real data['imag'] = dc.imag data = data.reshape((-1)) data.tofile(self.fp) # self.data_spc.fill(0) # # if self.data_dc is not None: # self.data_dc.fill(0) # # if self.data_cspc is not None: # self.data_cspc.fill(0) self.flagIsNewFile = 0 self.flagIsNewBlock = 1 self.nTotalBlocks += 1 self.nWriteBlocks += 1 self.blockIndex += 1 # print "[Writing] Block = %d04" %self.blockIndex def putData(self): """ Setea un bloque de datos y luego los escribe en un file Affected: self.data_spc self.data_cspc self.data_dc Return: 0 : Si no hay data o no hay mas files que puedan escribirse 1 : Si se escribio la data de un bloque en un file """ if self.dataOut.flagNoData: return 0 self.flagIsNewBlock = 0 if self.dataOut.flagDiscontinuousBlock: self.data_spc.fill(0) if self.dataOut.data_cspc is not None: self.data_cspc.fill(0) if self.dataOut.data_dc is not None: self.data_dc.fill(0) self.setNextFile() if self.flagIsNewFile == 0: self.setBasicHeader() self.data_spc = self.dataOut.data_spc.copy() if self.dataOut.data_cspc is not None: self.data_cspc = self.dataOut.data_cspc.copy() if self.dataOut.data_dc is not None: self.data_dc = self.dataOut.data_dc.copy() # #self.processingHeaderObj.dataBlocksPerFile) if self.hasAllDataInBuffer(): # self.setFirstHeader() self.writeNextBlock() return 1 def __getBlockSize(self): ''' Este metodos determina el cantidad de bytes para un bloque de datos de tipo Spectra ''' dtype_width = self.getDtypeWidth() pts2write = self.dataOut.nHeights * self.dataOut.nFFTPoints pts2write_SelfSpectra = int(self.dataOut.nChannels * pts2write) blocksize = (pts2write_SelfSpectra*dtype_width) if self.dataOut.data_cspc is not None: pts2write_CrossSpectra = int(self.dataOut.nPairs * pts2write) blocksize += (pts2write_CrossSpectra*dtype_width*2) if self.dataOut.data_dc is not None: pts2write_DCchannels = int(self.dataOut.nChannels * self.dataOut.nHeights) blocksize += (pts2write_DCchannels*dtype_width*2) # blocksize = blocksize #* datatypeValue * 2 #CORREGIR ESTO return blocksize def setFirstHeader(self): """ Obtiene una copia del First Header Affected: self.systemHeaderObj self.radarControllerHeaderObj self.dtype Return: None """ self.systemHeaderObj = self.dataOut.systemHeaderObj.copy() self.systemHeaderObj.nChannels = self.dataOut.nChannels self.radarControllerHeaderObj = self.dataOut.radarControllerHeaderObj.copy() self.processingHeaderObj.dtype = 1 # Spectra self.processingHeaderObj.blockSize = self.__getBlockSize() self.processingHeaderObj.profilesPerBlock = self.dataOut.nFFTPoints self.processingHeaderObj.dataBlocksPerFile = self.blocksPerFile self.processingHeaderObj.nWindows = 1 #podria ser 1 o self.dataOut.processingHeaderObj.nWindows self.processingHeaderObj.nCohInt = self.dataOut.nCohInt# Se requiere para determinar el valor de timeInterval self.processingHeaderObj.nIncohInt = self.dataOut.nIncohInt self.processingHeaderObj.totalSpectra = self.dataOut.nPairs + self.dataOut.nChannels self.processingHeaderObj.shif_fft = self.dataOut.flagShiftFFT if self.processingHeaderObj.totalSpectra > 0: channelList = [] for channel in range(self.dataOut.nChannels): channelList.append(channel) channelList.append(channel) pairsList = [] if self.dataOut.nPairs > 0: for pair in self.dataOut.pairsList: pairsList.append(pair[0]) pairsList.append(pair[1]) spectraComb = channelList + pairsList spectraComb = numpy.array(spectraComb, dtype="u1") self.processingHeaderObj.spectraComb = spectraComb if self.dataOut.code is not None: self.processingHeaderObj.code = self.dataOut.code self.processingHeaderObj.nCode = self.dataOut.nCode self.processingHeaderObj.nBaud = self.dataOut.nBaud if self.processingHeaderObj.nWindows != 0: self.processingHeaderObj.firstHeight = self.dataOut.heightList[0] self.processingHeaderObj.deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] self.processingHeaderObj.nHeights = self.dataOut.nHeights self.processingHeaderObj.samplesWin = self.dataOut.nHeights self.processingHeaderObj.processFlags = self.getProcessFlags() self.setBasicHeader()