##// END OF EJS Templates
Correcciones y se agrega metodo para guardar plots en disco, aun no funciona satisfactoriamente
Correcciones y se agrega metodo para guardar plots en disco, aun no funciona satisfactoriamente

File last commit:

r107:33fbc5472d1b
r110:fcb6f29e1f37
Show More
JRONoise.py
212 lines | 5.4 KiB | text/x-python | PythonLexer
import numpy
from Model.Spectra import Spectra
def hildebrand_sekhon(Data, navg):
"""
This method is for the objective determination of de noise level in Doppler spectra. This
implementation technique is based on the fact that the standard deviation of the spectral
densities is equal to the mean spectral density for white Gaussian noise
Inputs:
Data : heights
navg : numbers of averages
Return:
-1 : any error
anoise : noise's level
"""
divisor = 8
ratio = 7 / divisor
data = Data.reshape(-1)
npts = data.size #numbers of points of the data
if npts < 32:
print "error in noise - requires at least 32 points"
return -1.0
# data sorted in ascending order
nmin = int(npts/divisor + ratio);
s = 0.0
s2 = 0.0
data2 = data[:npts]
data2.sort()
for i in range(nmin):
s += data2[i]
s2 += data2[i]**2;
icount = nmin
iflag = 0
for i in range(nmin, npts):
s += data2[i];
s2 += data2[i]**2
icount=icount+1;
p = s / float(icount);
p2 = p**2;
q = s2 / float(icount) - p2;
leftc = p2;
rightc = q * float(navg);
if leftc > rightc:
iflag = 1; #No weather signal
# Signal detect: R2 < 1 (R2 = leftc/rightc)
if(leftc < rightc):
if iflag:
break
anoise = 0.0;
for j in range(i):
anoise += data2[j];
anoise = anoise / float(i);
return anoise;
def sorting_bruce(Data, navg):
sortdata = numpy.sort(Data)
lenOfData = len(Data)
nums_min = lenOfData/10
if (lenOfData/10) > 0:
nums_min = lenOfData/10
else:
nums_min = 0
rtest = 1.0 + 1.0/navg
sum = 0.
sumq = 0.
j = 0
cont = 1
while((cont==1)and(j<lenOfData)):
sum += sortdata[j]
sumq += sortdata[j]**2
j += 1
if j > nums_min:
if ((sumq*j) <= (rtest*sum**2)):
lnoise = sum / j
else:
j = j - 1
sum = sum - sordata[j]
sumq = sumq - sordata[j]**2
cont = 0
if j == nums_min:
lnoise = sum /j
return lnoise
class Noise:
"""
Clase que implementa los metodos necesarios para deternimar el nivel de ruido en un Spectro Doppler
"""
data = None
noise = None
dim = None
def __init__(self, data=None):
"""
Inicializador de la clase Noise para la la determinacion del nivel de ruido en un Spectro Doppler.
Inputs:
data: Numpy array de la forma nChan x nHeis x nProfiles
Affected:
self.noise
Return:
None
"""
self.data = data
self.dim = None
self.nChannels = None
self.noise = None
def setNoise(self, data):
"""
Inicializador de la clase Noise para la la determinacion del nivel de ruido en un Spectro Doppler.
Inputs:
data: Numpy array de la forma nChan x nHeis x nProfiles
Affected:
self.noise
Return:
None
"""
if data == None:
return 0
shape = data.shape
self.dim = len(shape)
if self.dim == 3:
nChan, nProfiles, nHeis = shape
elif self.dim == 2:
nChan, nHeis = shape
else:
raise ValueError, ""
self.nChannels = nChan
self.data = data.copy()
self.noise = numpy.zeros(nChan)
return 1
def byHildebrand(self, navg=1):
"""
Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
Return:
noiselevel
"""
daux = None
for channel in range(self.nChannels):
daux = self.data[channel,:,:]
self.noise[channel] = hildebrand_sekhon(daux, navg)
return self.noise
def byWindow(self, heiIndexMin, heiIndexMax, freqIndexMin, freqIndexMax):
"""
Determina el ruido del canal utilizando la ventana indicada con las coordenadas:
(heiIndexMIn, freqIndexMin) hasta (heiIndexMax, freqIndexMAx)
Inputs:
heiIndexMin: Limite inferior del eje de alturas
heiIndexMax: Limite superior del eje de alturas
freqIndexMin: Limite inferior del eje de frecuencia
freqIndexMax: Limite supoerior del eje de frecuencia
"""
data = self.data[:, heiIndexMin:heiIndexMax, freqIndexMin:freqIndexMax]
for channel in range(self.nChannels):
daux = data[channel,:,:]
self.noise[channel] = numpy.average(daux)
return self.noise
def bySort(self,navg = 1):
daux = None
for channel in range(self.nChannels):
daux = self.data[channel,:,:]
self.noise[channel] = sorting_bruce(daux, navg)
return self.noise