##// END OF EJS Templates
Modificaciones en el numero de intergraciones, en la escala de db Range
Modificaciones en el numero de intergraciones, en la escala de db Range

File last commit:

r596:bf27846f03e1
r599:f46dc4c4834d
Show More
jroproc_voltage.py
1050 lines | 33.4 KiB | text/x-python | PythonLexer
import numpy
from jroproc_base import ProcessingUnit, Operation
from schainpy.model.data.jrodata import Voltage
class VoltageProc(ProcessingUnit):
def __init__(self):
ProcessingUnit.__init__(self)
# self.objectDict = {}
self.dataOut = Voltage()
self.flip = 1
def run(self):
if self.dataIn.type == 'AMISR':
self.__updateObjFromAmisrInput()
if self.dataIn.type == 'Voltage':
self.dataOut.copy(self.dataIn)
# self.dataOut.copy(self.dataIn)
def __updateObjFromAmisrInput(self):
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.dstFlag = self.dataIn.dstFlag
self.dataOut.errorCount = self.dataIn.errorCount
self.dataOut.useLocalTime = self.dataIn.useLocalTime
self.dataOut.flagNoData = self.dataIn.flagNoData
self.dataOut.data = self.dataIn.data
self.dataOut.utctime = self.dataIn.utctime
self.dataOut.channelList = self.dataIn.channelList
# self.dataOut.timeInterval = self.dataIn.timeInterval
self.dataOut.heightList = self.dataIn.heightList
self.dataOut.nProfiles = self.dataIn.nProfiles
self.dataOut.nCohInt = self.dataIn.nCohInt
self.dataOut.ippSeconds = self.dataIn.ippSeconds
self.dataOut.frequency = self.dataIn.frequency
self.dataOut.azimuth = self.dataIn.azimuth
self.dataOut.zenith = self.dataIn.zenith
self.dataOut.beam.codeList = self.dataIn.beam.codeList
self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList
self.dataOut.beam.zenithList = self.dataIn.beam.zenithList
#
# pass#
#
# def init(self):
#
#
# if self.dataIn.type == 'AMISR':
# self.__updateObjFromAmisrInput()
#
# if self.dataIn.type == 'Voltage':
# self.dataOut.copy(self.dataIn)
# # No necesita copiar en cada init() los atributos de dataIn
# # la copia deberia hacerse por cada nuevo bloque de datos
def selectChannels(self, channelList):
channelIndexList = []
for channel in channelList:
if channel not in self.dataOut.channelList:
raise ValueError, "Channel %d is not in %s" %(channel, str(self.dataOut.channelList))
index = self.dataOut.channelList.index(channel)
channelIndexList.append(index)
self.selectChannelsByIndex(channelIndexList)
def selectChannelsByIndex(self, channelIndexList):
"""
Selecciona un bloque de datos en base a canales segun el channelIndexList
Input:
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
Affected:
self.dataOut.data
self.dataOut.channelIndexList
self.dataOut.nChannels
self.dataOut.m_ProcessingHeader.totalSpectra
self.dataOut.systemHeaderObj.numChannels
self.dataOut.m_ProcessingHeader.blockSize
Return:
None
"""
for channelIndex in channelIndexList:
if channelIndex not in self.dataOut.channelIndexList:
print channelIndexList
raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
# nChannels = len(channelIndexList)
if self.dataOut.flagDataAsBlock:
"""
Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
"""
data = self.dataOut.data[channelIndexList,:,:]
else:
data = self.dataOut.data[channelIndexList,:]
self.dataOut.data = data
self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
# self.dataOut.nChannels = nChannels
return 1
def selectHeights(self, minHei=None, maxHei=None):
"""
Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
minHei <= height <= maxHei
Input:
minHei : valor minimo de altura a considerar
maxHei : valor maximo de altura a considerar
Affected:
Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if minHei == None:
minHei = self.dataOut.heightList[0]
if maxHei == None:
maxHei = self.dataOut.heightList[-1]
if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
if (maxHei > self.dataOut.heightList[-1]):
maxHei = self.dataOut.heightList[-1]
# raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
minIndex = 0
maxIndex = 0
heights = self.dataOut.heightList
inda = numpy.where(heights >= minHei)
indb = numpy.where(heights <= maxHei)
try:
minIndex = inda[0][0]
except:
minIndex = 0
try:
maxIndex = indb[0][-1]
except:
maxIndex = len(heights)
self.selectHeightsByIndex(minIndex, maxIndex)
return 1
def selectHeightsByIndex(self, minIndex, maxIndex):
"""
Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
minIndex <= index <= maxIndex
Input:
minIndex : valor de indice minimo de altura a considerar
maxIndex : valor de indice maximo de altura a considerar
Affected:
self.dataOut.data
self.dataOut.heightList
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if (minIndex < 0) or (minIndex > maxIndex):
raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
if (maxIndex >= self.dataOut.nHeights):
maxIndex = self.dataOut.nHeights
# raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
# nHeights = maxIndex - minIndex + 1
#voltage
if self.dataOut.flagDataAsBlock:
"""
Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
"""
data = self.dataOut.data[:,minIndex:maxIndex,:]
else:
data = self.dataOut.data[:,minIndex:maxIndex]
# firstHeight = self.dataOut.heightList[minIndex]
self.dataOut.data = data
self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex]
if self.dataOut.nHeights <= 1:
raise ValueError, "selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)
return 1
def filterByHeights(self, window):
deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
if window == None:
window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight
newdelta = deltaHeight * window
r = self.dataOut.nHeights % window
newheights = (self.dataOut.nHeights-r)/window
if newheights <= 1:
raise ValueError, "filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(self.dataOut.nHeights, window)
if self.dataOut.flagDataAsBlock:
"""
Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
"""
buffer = self.dataOut.data[:, :, 0:self.dataOut.nHeights-r]
buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nProfiles,self.dataOut.nHeights/window,window)
buffer = numpy.sum(buffer,3)
else:
buffer = self.dataOut.data[:,0:self.dataOut.nHeights-r]
buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nHeights/window,window)
buffer = numpy.sum(buffer,2)
self.dataOut.data = buffer
self.dataOut.heightList = self.dataOut.heightList[0] + numpy.arange( newheights )*newdelta
self.dataOut.windowOfFilter = window
def setH0(self, h0, deltaHeight = None):
if not deltaHeight:
deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
nHeights = self.dataOut.nHeights
newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight
self.dataOut.heightList = newHeiRange
def deFlip(self, channelList = []):
data = self.dataOut.data.copy()
if self.dataOut.flagDataAsBlock:
flip = self.flip
profileList = range(self.dataOut.nProfiles)
if not channelList:
for thisProfile in profileList:
data[:,thisProfile,:] = data[:,thisProfile,:]*flip
flip *= -1.0
else:
for thisChannel in channelList:
if thisChannel not in self.dataOut.channelList:
continue
for thisProfile in profileList:
data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip
flip *= -1.0
self.flip = flip
else:
if not channelList:
data[:,:] = data[:,:]*self.flip
else:
for thisChannel in channelList:
if thisChannel not in self.dataOut.channelList:
continue
data[thisChannel,:] = data[thisChannel,:]*self.flip
self.flip *= -1.
self.dataOut.data = data
def setRadarFrequency(self, frequency=None):
if frequency != None:
self.dataOut.frequency = frequency
return 1
class CohInt(Operation):
isConfig = False
__profIndex = 0
__withOverapping = False
__byTime = False
__initime = None
__lastdatatime = None
__integrationtime = None
__buffer = None
__dataReady = False
n = None
def __init__(self):
Operation.__init__(self)
# self.isConfig = False
def setup(self, n=None, timeInterval=None, overlapping=False, byblock=False):
"""
Set the parameters of the integration class.
Inputs:
n : Number of coherent integrations
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
overlapping :
"""
self.__initime = None
self.__lastdatatime = 0
self.__buffer = None
self.__dataReady = False
self.byblock = byblock
if n == None and timeInterval == None:
raise ValueError, "n or timeInterval should be specified ..."
if n != None:
self.n = n
self.__byTime = False
else:
self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line
self.n = 9999
self.__byTime = True
if overlapping:
self.__withOverapping = True
self.__buffer = None
else:
self.__withOverapping = False
self.__buffer = 0
self.__profIndex = 0
def putData(self, data):
"""
Add a profile to the __buffer and increase in one the __profileIndex
"""
if not self.__withOverapping:
self.__buffer += data.copy()
self.__profIndex += 1
return
#Overlapping data
nChannels, nHeis = data.shape
data = numpy.reshape(data, (1, nChannels, nHeis))
#If the buffer is empty then it takes the data value
if self.__buffer == None:
self.__buffer = data
self.__profIndex += 1
return
#If the buffer length is lower than n then stakcing the data value
if self.__profIndex < self.n:
self.__buffer = numpy.vstack((self.__buffer, data))
self.__profIndex += 1
return
#If the buffer length is equal to n then replacing the last buffer value with the data value
self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
self.__buffer[self.n-1] = data
self.__profIndex = self.n
return
def pushData(self):
"""
Return the sum of the last profiles and the profiles used in the sum.
Affected:
self.__profileIndex
"""
if not self.__withOverapping:
data = self.__buffer
n = self.__profIndex
self.__buffer = 0
self.__profIndex = 0
return data, n
#Integration with Overlapping
data = numpy.sum(self.__buffer, axis=0)
n = self.__profIndex
return data, n
def byProfiles(self, data):
self.__dataReady = False
avgdata = None
# n = None
self.putData(data)
if self.__profIndex == self.n:
avgdata, n = self.pushData()
self.__dataReady = True
return avgdata
def byTime(self, data, datatime):
self.__dataReady = False
avgdata = None
n = None
self.putData(data)
if (datatime - self.__initime) >= self.__integrationtime:
avgdata, n = self.pushData()
self.n = n
self.__dataReady = True
return avgdata
def integrate(self, data, datatime=None):
if self.__initime == None:
self.__initime = datatime
if self.__byTime:
avgdata = self.byTime(data, datatime)
else:
avgdata = self.byProfiles(data)
self.__lastdatatime = datatime
if avgdata == None:
return None, None
avgdatatime = self.__initime
deltatime = datatime -self.__lastdatatime
if not self.__withOverapping:
self.__initime = datatime
else:
self.__initime += deltatime
return avgdata, avgdatatime
def integrateByBlock(self, dataOut):
times = int(dataOut.data.shape[1]/self.n)
avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex)
id_min = 0
id_max = self.n
for i in range(times):
junk = dataOut.data[:,id_min:id_max,:]
avgdata[:,i,:] = junk.sum(axis=1)
id_min += self.n
id_max += self.n
timeInterval = dataOut.ippSeconds*self.n
avgdatatime = (times - 1) * timeInterval + dataOut.utctime
self.__dataReady = True
return avgdata, avgdatatime
def run(self, dataOut, **kwargs):
if not self.isConfig:
self.setup(**kwargs)
self.isConfig = True
if dataOut.flagDataAsBlock:
"""
Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis]
"""
avgdata, avgdatatime = self.integrateByBlock(dataOut)
else:
avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime)
# dataOut.timeInterval *= n
dataOut.flagNoData = True
if self.__dataReady:
dataOut.data = avgdata
dataOut.nCohInt *= self.n
dataOut.utctime = avgdatatime
# dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt
dataOut.flagNoData = False
class Decoder(Operation):
isConfig = False
__profIndex = 0
code = None
nCode = None
nBaud = None
def __init__(self):
Operation.__init__(self)
self.times = None
self.osamp = None
# self.__setValues = False
self.isConfig = False
def setup(self, code, osamp, dataOut):
self.__profIndex = 0
self.code = code
self.nCode = len(code)
self.nBaud = len(code[0])
if (osamp != None) and (osamp >1):
self.osamp = osamp
self.code = numpy.repeat(code, repeats=self.osamp, axis=1)
self.nBaud = self.nBaud*self.osamp
self.__nChannels = dataOut.nChannels
self.__nProfiles = dataOut.nProfiles
self.__nHeis = dataOut.nHeights
if dataOut.flagDataAsBlock:
self.ndatadec = self.__nHeis #- self.nBaud + 1
self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex)
else:
__codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex)
__codeBuffer[:,0:self.nBaud] = self.code
self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1))
self.ndatadec = self.__nHeis #- self.nBaud + 1
self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex)
def convolutionInFreq(self, data):
fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
fft_data = numpy.fft.fft(data, axis=1)
conv = fft_data*fft_code
data = numpy.fft.ifft(conv,axis=1)
datadec = data#[:,:]
return datadec
def convolutionInFreqOpt(self, data):
raise NotImplementedError
# fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
#
# data = cfunctions.decoder(fft_code, data)
#
# datadec = data#[:,:]
#
# return datadec
def convolutionInTime(self, data):
code = self.code[self.__profIndex]
for i in range(self.__nChannels):
self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='same')
return self.datadecTime
def convolutionByBlockInTime(self, data):
repetitions = self.__nProfiles / self.nCode
junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize))
junk = junk.flatten()
code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud))
for i in range(self.__nChannels):
for j in range(self.__nProfiles):
self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='same')
return self.datadecTime
def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None):
if not self.isConfig:
if code == None:
code = dataOut.code
else:
code = numpy.array(code).reshape(nCode,nBaud)
self.setup(code, osamp, dataOut)
self.isConfig = True
if dataOut.flagDataAsBlock:
"""
Decoding when data have been read as block,
"""
datadec = self.convolutionByBlockInTime(dataOut.data)
else:
"""
Decoding when data have been read profile by profile
"""
if mode == 0:
datadec = self.convolutionInTime(dataOut.data)
if mode == 1:
datadec = self.convolutionInFreq(dataOut.data)
if mode == 2:
datadec = self.convolutionInFreqOpt(dataOut.data)
dataOut.code = self.code
dataOut.nCode = self.nCode
dataOut.nBaud = self.nBaud
dataOut.data = datadec
dataOut.heightList = dataOut.heightList[0:self.ndatadec]
dataOut.flagDecodeData = True #asumo q la data esta decodificada
if self.__profIndex == self.nCode-1:
self.__profIndex = 0
return 1
self.__profIndex += 1
return 1
# dataOut.flagDeflipData = True #asumo q la data no esta sin flip
class ProfileConcat(Operation):
isConfig = False
buffer = None
def __init__(self):
Operation.__init__(self)
self.profileIndex = 0
def reset(self):
self.buffer = numpy.zeros_like(self.buffer)
self.start_index = 0
self.times = 1
def setup(self, data, m, n=1):
self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0]))
self.nHeights = data.nHeights
self.start_index = 0
self.times = 1
def concat(self, data):
self.buffer[:,self.start_index:self.profiles*self.times] = data.copy()
self.start_index = self.start_index + self.nHeights
def run(self, dataOut, m):
dataOut.flagNoData = True
if not self.isConfig:
self.setup(dataOut.data, m, 1)
self.isConfig = True
if dataOut.flagDataAsBlock:
raise ValueError, "ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False"
else:
self.concat(dataOut.data)
self.times += 1
if self.times > m:
dataOut.data = self.buffer
self.reset()
dataOut.flagNoData = False
# se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas
deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m
dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight)
dataOut.ippSeconds *= m
class ProfileSelector(Operation):
profileIndex = None
# Tamanho total de los perfiles
nProfiles = None
def __init__(self):
Operation.__init__(self)
self.profileIndex = 0
def incIndex(self):
self.profileIndex += 1
if self.profileIndex >= self.nProfiles:
self.profileIndex = 0
def isThisProfileInRange(self, profileIndex, minIndex, maxIndex):
if profileIndex < minIndex:
return False
if profileIndex > maxIndex:
return False
return True
def isThisProfileInList(self, profileIndex, profileList):
if profileIndex not in profileList:
return False
return True
def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None):
"""
ProfileSelector:
Inputs:
profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8)
profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30)
rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256))
"""
dataOut.flagNoData = True
self.nProfiles = dataOut.nProfiles
if dataOut.flagDataAsBlock:
"""
data dimension = [nChannels, nProfiles, nHeis]
"""
if profileList != None:
dataOut.data = dataOut.data[:,profileList,:]
dataOut.nProfiles = len(profileList)
dataOut.profileIndex = dataOut.nProfiles - 1
if profileRangeList != None:
minIndex = profileRangeList[0]
maxIndex = profileRangeList[1]
dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:]
dataOut.nProfiles = maxIndex - minIndex + 1
dataOut.profileIndex = dataOut.nProfiles - 1
if rangeList != None:
raise ValueError, "Profile Selector: Not implemented for rangeList yet"
dataOut.flagNoData = False
return True
else:
"""
data dimension = [nChannels, nHeis]
"""
if profileList != None:
dataOut.nProfiles = len(profileList)
if self.isThisProfileInList(dataOut.profileIndex, profileList):
dataOut.flagNoData = False
dataOut.profileIndex = self.profileIndex
self.incIndex()
return True
if profileRangeList != None:
minIndex = profileRangeList[0]
maxIndex = profileRangeList[1]
dataOut.nProfiles = maxIndex - minIndex + 1
if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex):
dataOut.flagNoData = False
dataOut.profileIndex = self.profileIndex
self.incIndex()
return True
if rangeList != None:
nProfiles = 0
for thisRange in rangeList:
minIndex = thisRange[0]
maxIndex = thisRange[1]
nProfiles += maxIndex - minIndex + 1
dataOut.nProfiles = nProfiles
for thisRange in rangeList:
minIndex = thisRange[0]
maxIndex = thisRange[1]
if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex):
# print "profileIndex = ", dataOut.profileIndex
dataOut.flagNoData = False
dataOut.profileIndex = self.profileIndex
self.incIndex()
break
return True
if beam != None: #beam is only for AMISR data
if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]):
dataOut.flagNoData = False
dataOut.profileIndex = self.profileIndex
self.incIndex()
return 1
raise ValueError, "ProfileSelector needs profileList, profileRangeList or rangeList parameter"
return 0
class Reshaper(Operation):
def __init__(self):
Operation.__init__(self)
self.updateNewHeights = True
def run(self, dataOut, shape):
if not dataOut.flagDataAsBlock:
raise ValueError, "Reshaper can only be used when voltage have been read as Block, getBlock = True"
if len(shape) != 3:
raise ValueError, "shape len should be equal to 3, (nChannels, nProfiles, nHeis)"
shape_tuple = tuple(shape)
dataOut.data = numpy.reshape(dataOut.data, shape_tuple)
dataOut.flagNoData = False
if self.updateNewHeights:
old_nheights = dataOut.nHeights
new_nheights = dataOut.data.shape[2]
factor = 1.0*new_nheights / old_nheights
deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * factor
dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight)
dataOut.nProfiles = dataOut.data.shape[1]
dataOut.ippSeconds *= factor
import collections
from scipy.stats import mode
class Synchronize(Operation):
isConfig = False
__profIndex = 0
def __init__(self):
Operation.__init__(self)
# self.isConfig = False
self.__powBuffer = None
self.__startIndex = 0
self.__pulseFound = False
def __findTxPulse(self, dataOut, channel=0, pulse_with = None):
#Read data
powerdB = dataOut.getPower(channel = channel)
noisedB = dataOut.getNoise(channel = channel)[0]
self.__powBuffer.extend(powerdB.flatten())
dataArray = numpy.array(self.__powBuffer)
filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same")
maxValue = numpy.nanmax(filteredPower)
if maxValue < noisedB + 10:
#No se encuentra ningun pulso de transmision
return None
maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0]
if len(maxValuesIndex) < 2:
#Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX
return None
phasedMaxValuesIndex = maxValuesIndex - self.__nSamples
#Seleccionar solo valores con un espaciamiento de nSamples
pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex)
if len(pulseIndex) < 2:
#Solo se encontro un pulso de transmision con ancho mayor a 1
return None
spacing = pulseIndex[1:] - pulseIndex[:-1]
#remover senales que se distancien menos de 10 unidades o muestras
#(No deberian existir IPP menor a 10 unidades)
realIndex = numpy.where(spacing > 10 )[0]
if len(realIndex) < 2:
#Solo se encontro un pulso de transmision con ancho mayor a 1
return None
#Eliminar pulsos anchos (deja solo la diferencia entre IPPs)
realPulseIndex = pulseIndex[realIndex]
period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0]
print "IPP = %d samples" %period
self.__newNSamples = dataOut.nHeights #int(period)
self.__startIndex = int(realPulseIndex[0])
return 1
def setup(self, nSamples, nChannels, buffer_size = 4):
self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float),
maxlen = buffer_size*nSamples)
bufferList = []
for i in range(nChannels):
bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN,
maxlen = buffer_size*nSamples)
bufferList.append(bufferByChannel)
self.__nSamples = nSamples
self.__nChannels = nChannels
self.__bufferList = bufferList
def run(self, dataOut, channel = 0):
if not self.isConfig:
nSamples = dataOut.nHeights
nChannels = dataOut.nChannels
self.setup(nSamples, nChannels)
self.isConfig = True
#Append new data to internal buffer
for thisChannel in range(self.__nChannels):
bufferByChannel = self.__bufferList[thisChannel]
bufferByChannel.extend(dataOut.data[thisChannel])
if self.__pulseFound:
self.__startIndex -= self.__nSamples
#Finding Tx Pulse
if not self.__pulseFound:
indexFound = self.__findTxPulse(dataOut, channel)
if indexFound == None:
dataOut.flagNoData = True
return
self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex)
self.__pulseFound = True
self.__startIndex = indexFound
#If pulse was found ...
for thisChannel in range(self.__nChannels):
bufferByChannel = self.__bufferList[thisChannel]
#print self.__startIndex
x = numpy.array(bufferByChannel)
self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples]
deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight
# dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6
dataOut.data = self.__arrayBuffer
self.__startIndex += self.__newNSamples
return