##// END OF EJS Templates
07/09/2017
07/09/2017

File last commit:

r1006:8363978b5396
r1027:f11c2da27e74
Show More
jroproc_bltr.py
575 lines | 22.2 KiB | text/x-python | PythonLexer
'''
Created on Oct 24, 2016
@author: roj- LouVD
'''
import numpy
import copy
import datetime
import time
from time import gmtime
from jroproc_base import ProcessingUnit
from schainpy.model.data.jrodata import Parameters
from numpy import transpose
from matplotlib import cm
import matplotlib.pyplot as plt
from matplotlib.mlab import griddata
class BLTRProcess(ProcessingUnit):
isConfig = False
'''
Processing unit for BLTR rawdata
Inputs:
self.dataOut.nmodes - Number of operation modes
self.dataOut.nchannels - Number of channels
self.dataOut.nranges - Number of ranges
self.dataOut.data_SNR - SNR array
self.dataOut.data_output - Zonal, Vertical and Meridional velocity array
self.dataOut.height - Height array (km)
self.dataOut.time - Time array (seconds)
self.dataOut.fileIndex -Index of the file currently read
self.dataOut.lat - Latitude coordinate of BLTR location
self.dataOut.doy - Experiment doy (number of the day in the current year)
self.dataOut.month - Experiment month
self.dataOut.day - Experiment day
self.dataOut.year - Experiment year
'''
def __init__(self, **kwargs):
'''
Inputs: None
'''
ProcessingUnit.__init__(self, **kwargs)
self.dataOut = Parameters()
# Filters
snr_val = None
value = None
svalue2 = None
method = None
factor = None
filter = None
npoints = None
status_value = None
width = None
self.flagfirstmode = 0
def run (self):
if self.dataIn.type == "Parameters":
self.dataOut.copy(self.dataIn)
def TimeSelect(self):
'''
Selecting the time array according to the day of the experiment with a duration of 24 hours
'''
k1 = datetime.datetime(self.dataOut.year, self.dataOut.month, self.dataOut.day) - datetime.timedelta(hours=5)
k2 = datetime.datetime(self.dataOut.year, self.dataOut.month, self.dataOut.day) + datetime.timedelta(hours=25) - datetime.timedelta(hours=5)
limit_sec1 = time.mktime(k1.timetuple())
limit_sec2 = time.mktime(k2.timetuple())
valid_data = 0
doy = self.dataOut.doy
t1 = numpy.where(self.dataOut.time[0, :] >= limit_sec1)
t2 = numpy.where(self.dataOut.time[0, :] < limit_sec2)
time_select = []
for val_sec in t1[0]:
if val_sec in t2[0]:
time_select.append(val_sec)
time_select = numpy.array(time_select, dtype='int')
valid_data = valid_data + len(time_select)
if len(time_select) > 0:
self.f_timesec = self.dataOut.time[:, time_select]
snr = self.dataOut.data_SNR[time_select, :, :, :]
zon = self.dataOut.data_output[0][time_select, :, :]
mer = self.dataOut.data_output[1][time_select, :, :]
ver = self.dataOut.data_output[2][time_select, :, :]
if valid_data > 0:
self.timesec1 = self.f_timesec[0, :]
self.f_height = self.dataOut.height
self.f_zon = zon
self.f_mer = mer
self.f_ver = ver
self.f_snr = snr
self.f_timedate = []
self.f_time = []
for valuet in self.timesec1:
time_t = time.gmtime(valuet)
year = time_t.tm_year
month = time_t.tm_mon
day = time_t.tm_mday
hour = time_t.tm_hour
minute = time_t.tm_min
second = time_t.tm_sec
f_timedate_0 = datetime.datetime(year, month, day, hour, minute, second)
self.f_timedate.append(f_timedate_0)
return self.f_timedate, self.f_timesec, self.f_height, self.f_zon, self.f_mer, self.f_ver, self.f_snr
else:
self.f_timesec = None
self.f_timedate = None
self.f_height = None
self.f_zon = None
self.f_mer = None
self.f_ver = None
self.f_snr = None
print 'Invalid time'
return self.f_timedate, self.f_height, self.f_zon, self.f_mer, self.f_ver, self.f_snr
def SnrFilter(self, snr_val,modetofilter):
'''
Inputs: snr_val - Threshold value
'''
if modetofilter!=2 and modetofilter!=1 :
raise ValueError,'Mode to filter should be "1" or "2". {} is not valid, check "Modetofilter" value.'.format(modetofilter)
m = modetofilter-1
print ' SNR filter [mode {}]: SNR <= {}: data_output = NA'.format(modetofilter,snr_val)
for k in range(self.dataOut.nchannels):
for r in range(self.dataOut.nranges):
if self.dataOut.data_SNR[r,k,m] <= snr_val:
self.dataOut.data_output[2][r,m] = numpy.nan
self.dataOut.data_output[1][r,m] = numpy.nan
self.dataOut.data_output[0][r,m] = numpy.nan
def OutliersFilter(self,modetofilter,svalue,svalue2,method,factor,filter,npoints):
'''
Inputs:
svalue - string to select array velocity
svalue2 - string to choose axis filtering
method - 0 for SMOOTH or 1 for MEDIAN
factor - number used to set threshold
filter - 1 for data filtering using the standard deviation criteria else 0
npoints - number of points for mask filter
'''
if modetofilter!=2 and modetofilter!=1 :
raise ValueError,'Mode to filter should be "1" or "2". {} is not valid, check "Modetofilter" value.'.format(modetofilter)
m = modetofilter-1
print ' Outliers Filter [mode {}]: {} {} / threshold = {}'.format(modetofilter,svalue,svalue,factor)
npoints = 9
novalid = 0.1
if svalue == 'zonal':
value = self.dataOut.data_output[0]
elif svalue == 'meridional':
value = self.dataOut.data_output[1]
elif svalue == 'vertical':
value = self.dataOut.data_output[2]
else:
print 'value is not defined'
return
if svalue2 == 'inTime':
yaxis = self.dataOut.height
xaxis = numpy.array([[self.dataOut.time1],[self.dataOut.time1]])
elif svalue2 == 'inHeight':
yaxis = numpy.array([[self.dataOut.time1],[self.dataOut.time1]])
xaxis = self.dataOut.height
else:
print 'svalue2 is required, either inHeight or inTime'
return
output_array = value
value_temp = value[:,m]
error = numpy.zeros(len(self.dataOut.time[m,:]))
if svalue2 == 'inHeight':
value_temp = numpy.transpose(value_temp)
error = numpy.zeros(len(self.dataOut.height))
htemp = yaxis[m,:]
std = value_temp
for h in range(len(htemp)):
if filter: #standard deviation filtering
std[h] = numpy.std(value_temp[h],ddof = npoints)
value_temp[numpy.where(std[h] > 5),h] = numpy.nan
error[numpy.where(std[h] > 5)] = error[numpy.where(std[h] > 5)] + 1
nvalues_valid = len(numpy.where(numpy.isfinite(value_temp[h]))[0])
minvalid = novalid*len(xaxis[m,:])
if minvalid <= npoints:
minvalid = npoints
#only if valid values greater than the minimum required (10%)
if nvalues_valid > minvalid:
if method == 0:
#SMOOTH
w = value_temp[h] - self.Smooth(input=value_temp[h], width=npoints, edge_truncate=1)
if method == 1:
#MEDIAN
w = value_temp[h] - self.Median(input=value_temp[h], width = npoints)
dw = numpy.std(w[numpy.where(numpy.isfinite(w))],ddof = 1)
threshold = dw*factor
value_temp[numpy.where(w > threshold),h] = numpy.nan
value_temp[numpy.where(w < -1*threshold),h] = numpy.nan
#At the end
if svalue2 == 'inHeight':
value_temp = numpy.transpose(value_temp)
output_array[:,m] = value_temp
if svalue == 'zonal':
self.dataOut.data_output[0] = output_array
elif svalue == 'meridional':
self.dataOut.data_output[1] = output_array
elif svalue == 'vertical':
self.dataOut.data_output[2] = output_array
return self.dataOut.data_output
def Median(self,input,width):
'''
Inputs:
input - Velocity array
width - Number of points for mask filter
'''
if numpy.mod(width,2) == 1:
pc = int((width - 1) / 2)
cont = 0
output = []
for i in range(len(input)):
if i >= pc and i < len(input) - pc:
new2 = input[i-pc:i+pc+1]
temp = numpy.where(numpy.isfinite(new2))
new = new2[temp]
value = numpy.median(new)
output.append(value)
output = numpy.array(output)
output = numpy.hstack((input[0:pc],output))
output = numpy.hstack((output,input[-pc:len(input)]))
return output
def Smooth(self,input,width,edge_truncate = None):
'''
Inputs:
input - Velocity array
width - Number of points for mask filter
edge_truncate - 1 for truncate the convolution product else
'''
if numpy.mod(width,2) == 0:
real_width = width + 1
nzeros = width / 2
else:
real_width = width
nzeros = (width - 1) / 2
half_width = int(real_width)/2
length = len(input)
gate = numpy.ones(real_width,dtype='float')
norm_of_gate = numpy.sum(gate)
nan_process = 0
nan_id = numpy.where(numpy.isnan(input))
if len(nan_id[0]) > 0:
nan_process = 1
pb = numpy.zeros(len(input))
pb[nan_id] = 1.
input[nan_id] = 0.
if edge_truncate == True:
output = numpy.convolve(input/norm_of_gate,gate,mode='same')
elif edge_truncate == False or edge_truncate == None:
output = numpy.convolve(input/norm_of_gate,gate,mode='valid')
output = numpy.hstack((input[0:half_width],output))
output = numpy.hstack((output,input[len(input)-half_width:len(input)]))
if nan_process:
pb = numpy.convolve(pb/norm_of_gate,gate,mode='valid')
pb = numpy.hstack((numpy.zeros(half_width),pb))
pb = numpy.hstack((pb,numpy.zeros(half_width)))
output[numpy.where(pb > 0.9999)] = numpy.nan
input[nan_id] = numpy.nan
return output
def Average(self,aver=0,nhaver=1):
'''
Inputs:
aver - Indicates the time period over which is averaged or consensus data
nhaver - Indicates the decimation factor in heights
'''
nhpoints = 48
lat_piura = -5.17
lat_huancayo = -12.04
lat_porcuya = -5.8
if '%2.2f'%self.dataOut.lat == '%2.2f'%lat_piura:
hcm = 3.
if self.dataOut.year == 2003 :
if self.dataOut.doy >= 25 and self.dataOut.doy < 64:
nhpoints = 12
elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_huancayo:
hcm = 3.
if self.dataOut.year == 2003 :
if self.dataOut.doy >= 25 and self.dataOut.doy < 64:
nhpoints = 12
elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_porcuya:
hcm = 5.#2
pdata = 0.2
taver = [1,2,3,4,6,8,12,24]
t0 = 0
tf = 24
ntime =(tf-t0)/taver[aver]
ti = numpy.arange(ntime)
tf = numpy.arange(ntime) + taver[aver]
old_height = self.dataOut.heightList
if nhaver > 1:
num_hei = len(self.dataOut.heightList)/nhaver/self.dataOut.nmodes
deltha = 0.05*nhaver
minhvalid = pdata*nhaver
for im in range(self.dataOut.nmodes):
new_height = numpy.arange(num_hei)*deltha + self.dataOut.height[im,0] + deltha/2.
data_fHeigths_List = []
data_fZonal_List = []
data_fMeridional_List = []
data_fVertical_List = []
startDTList = []
for i in range(ntime):
height = old_height
start = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(ti[i])) - datetime.timedelta(hours = 5)
stop = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(tf[i])) - datetime.timedelta(hours = 5)
limit_sec1 = time.mktime(start.timetuple())
limit_sec2 = time.mktime(stop.timetuple())
t1 = numpy.where(self.f_timesec >= limit_sec1)
t2 = numpy.where(self.f_timesec < limit_sec2)
time_select = []
for val_sec in t1[0]:
if val_sec in t2[0]:
time_select.append(val_sec)
time_select = numpy.array(time_select,dtype = 'int')
minvalid = numpy.ceil(pdata*nhpoints)
zon_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan
mer_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan
ver_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan
if nhaver > 1:
new_zon_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan
new_mer_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan
new_ver_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan
if len(time_select) > minvalid:
time_average = self.f_timesec[time_select]
for im in range(self.dataOut.nmodes):
for ih in range(self.dataOut.nranges):
if numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) >= minvalid:
zon_aver[ih,im] = numpy.nansum(self.f_zon[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im]))
if numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) >= minvalid:
mer_aver[ih,im] = numpy.nansum(self.f_mer[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im]))
if numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) >= minvalid:
ver_aver[ih,im] = numpy.nansum(self.f_ver[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im]))
if nhaver > 1:
for ih in range(num_hei):
hvalid = numpy.arange(nhaver) + nhaver*ih
if numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) >= minvalid:
new_zon_aver[ih,im] = numpy.nansum(zon_aver[hvalid,im]) / numpy.sum(numpy.isfinite(zon_aver[hvalid,im]))
if numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) >= minvalid:
new_mer_aver[ih,im] = numpy.nansum(mer_aver[hvalid,im]) / numpy.sum(numpy.isfinite(mer_aver[hvalid,im]))
if numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) >= minvalid:
new_ver_aver[ih,im] = numpy.nansum(ver_aver[hvalid,im]) / numpy.sum(numpy.isfinite(ver_aver[hvalid,im]))
if nhaver > 1:
zon_aver = new_zon_aver
mer_aver = new_mer_aver
ver_aver = new_ver_aver
height = new_height
tstart = time_average[0]
tend = time_average[-1]
startTime = time.gmtime(tstart)
year = startTime.tm_year
month = startTime.tm_mon
day = startTime.tm_mday
hour = startTime.tm_hour
minute = startTime.tm_min
second = startTime.tm_sec
startDTList.append(datetime.datetime(year,month,day,hour,minute,second))
o_height = numpy.array([])
o_zon_aver = numpy.array([])
o_mer_aver = numpy.array([])
o_ver_aver = numpy.array([])
if self.dataOut.nmodes > 1:
for im in range(self.dataOut.nmodes):
if im == 0:
h_select = numpy.where(numpy.bitwise_and(height[0,:] >=0,height[0,:] <= hcm,numpy.isfinite(height[0,:])))
else:
h_select = numpy.where(numpy.bitwise_and(height[1,:] > hcm,height[1,:] < 20,numpy.isfinite(height[1,:])))
ht = h_select[0]
o_height = numpy.hstack((o_height,height[im,ht]))
o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im]))
o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im]))
o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im]))
data_fHeigths_List.append(o_height)
data_fZonal_List.append(o_zon_aver)
data_fMeridional_List.append(o_mer_aver)
data_fVertical_List.append(o_ver_aver)
else:
h_select = numpy.where(numpy.bitwise_and(height[0,:] <= hcm,numpy.isfinite(height[0,:])))
ht = h_select[0]
o_height = numpy.hstack((o_height,height[im,ht]))
o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im]))
o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im]))
o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im]))
data_fHeigths_List.append(o_height)
data_fZonal_List.append(o_zon_aver)
data_fMeridional_List.append(o_mer_aver)
data_fVertical_List.append(o_ver_aver)
return startDTList, data_fHeigths_List, data_fZonal_List, data_fMeridional_List, data_fVertical_List
def prePlot(self,modeselect=None):
'''
Inputs:
self.dataOut.data_output - Zonal, Meridional and Vertical velocity array
self.dataOut.height - height array
self.dataOut.time - Time array (seconds)
self.dataOut.data_SNR - SNR array
'''
m = modeselect -1
print ' [Plotting mode {}]'.format(modeselect)
if not (m ==1 or m==0):
raise IndexError("'Mode' must be egual to : 1 or 2")
#
if self.flagfirstmode==0:
#copy of the data
self.data_output_copy = self.dataOut.data_output.copy()
self.data_height_copy = self.dataOut.height.copy()
self.data_time_copy = self.dataOut.time.copy()
self.data_SNR_copy = self.dataOut.data_SNR.copy()
self.flagfirstmode = 1
else:
self.dataOut.data_output = self.data_output_copy
self.dataOut.height = self.data_height_copy
self.dataOut.time = self.data_time_copy
self.dataOut.data_SNR = self.data_SNR_copy
self.flagfirstmode = 0
#select data for mode m
#self.dataOut.data_output = self.dataOut.data_output[:,:,m]
self.dataOut.heightList = self.dataOut.height[0,:]
data_SNR = self.dataOut.data_SNR[:,:,m]
self.dataOut.data_SNR= transpose(data_SNR)
if m==1 and self.dataOut.counter_records%2==0:
print '*********'
print 'MODO 2'
#print 'Zonal', self.dataOut.data_output[0]
#print 'Meridional', self.dataOut.data_output[1]
#print 'Vertical', self.dataOut.data_output[2]
print '*********'
Vx=self.dataOut.data_output[0,:,m]
Vy=self.dataOut.data_output[1,:,m]
Vmag=numpy.sqrt(Vx**2+Vy**2)
Vang=numpy.arctan2(Vy,Vx)
#print 'Vmag', Vmag
#print 'Vang', Vang
self.dataOut.data_output[0,:,m]=Vmag
self.dataOut.data_output[1,:,m]=Vang
prin= self.dataOut.data_output[0,:,m][~numpy.isnan(self.dataOut.data_output[0,:,m])]
print ' '
print 'VmagAverage',numpy.mean(prin)
print ' '
self.dataOut.data_output = self.dataOut.data_output[:,:,m]