##// END OF EJS Templates
merge with v2.3
merge with v2.3

File last commit:

r1040:0bd48c063731
r1063:ecbe1f26c35b merge
Show More
jroproc_heispectra.py
344 lines | 10.1 KiB | text/x-python | PythonLexer
import numpy
from jroproc_base import ProcessingUnit, Operation
from schainpy.model.data.jrodata import SpectraHeis
class SpectraHeisProc(ProcessingUnit):
def __init__(self, **kwargs):
ProcessingUnit.__init__(self, **kwargs)
# self.buffer = None
# self.firstdatatime = None
# self.profIndex = 0
self.dataOut = SpectraHeis()
def __updateObjFromVoltage(self):
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.dstFlag = self.dataIn.dstFlag
self.dataOut.errorCount = self.dataIn.errorCount
self.dataOut.useLocalTime = self.dataIn.useLocalTime
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()#
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()#
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.heightList = self.dataIn.heightList
# self.dataOut.dtype = self.dataIn.dtype
self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
# self.dataOut.nHeights = self.dataIn.nHeights
# self.dataOut.nChannels = self.dataIn.nChannels
self.dataOut.nBaud = self.dataIn.nBaud
self.dataOut.nCode = self.dataIn.nCode
self.dataOut.code = self.dataIn.code
# self.dataOut.nProfiles = 1
self.dataOut.ippFactor = 1
self.dataOut.noise_estimation = None
# self.dataOut.nProfiles = self.dataOut.nFFTPoints
self.dataOut.nFFTPoints = self.dataIn.nHeights
# self.dataOut.channelIndexList = self.dataIn.channelIndexList
# self.dataOut.flagNoData = self.dataIn.flagNoData
self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
self.dataOut.utctime = self.dataIn.utctime
# self.dataOut.utctime = self.firstdatatime
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
# self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT
self.dataOut.nCohInt = self.dataIn.nCohInt
self.dataOut.nIncohInt = 1
# self.dataOut.ippSeconds= self.dataIn.ippSeconds
self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
# self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nIncohInt
# self.dataOut.set=self.dataIn.set
# self.dataOut.deltaHeight=self.dataIn.deltaHeight
def __updateObjFromFits(self):
self.dataOut.utctime = self.dataIn.utctime
# self.dataOut.channelIndexList = self.dataIn.channelIndexList
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.heightList = self.dataIn.heightList
self.dataOut.data_spc = self.dataIn.data
self.dataOut.ippSeconds = self.dataIn.ippSeconds
self.dataOut.nCohInt = self.dataIn.nCohInt
self.dataOut.nIncohInt = self.dataIn.nIncohInt
# self.dataOut.timeInterval = self.dataIn.timeInterval
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.useLocalTime = True
# self.dataOut.
# self.dataOut.
def __getFft(self):
fft_volt = numpy.fft.fft(self.dataIn.data, axis=1)
fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,))
spc = numpy.abs(fft_volt * numpy.conjugate(fft_volt))/(self.dataOut.nFFTPoints)
self.dataOut.data_spc = spc
def run(self):
self.dataOut.flagNoData = True
if self.dataIn.type == "Fits":
self.__updateObjFromFits()
self.dataOut.flagNoData = False
return
if self.dataIn.type == "SpectraHeis":
self.dataOut.copy(self.dataIn)
return
if self.dataIn.type == "Voltage":
self.__updateObjFromVoltage()
self.__getFft()
self.dataOut.flagNoData = False
return
raise ValueError, "The type object %s is not valid"%(self.dataIn.type)
def selectChannels(self, channelList):
channelIndexList = []
for channel in channelList:
index = self.dataOut.channelList.index(channel)
channelIndexList.append(index)
self.selectChannelsByIndex(channelIndexList)
def selectChannelsByIndex(self, channelIndexList):
"""
Selecciona un bloque de datos en base a canales segun el channelIndexList
Input:
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
Affected:
self.dataOut.data
self.dataOut.channelIndexList
self.dataOut.nChannels
self.dataOut.m_ProcessingHeader.totalSpectra
self.dataOut.systemHeaderObj.numChannels
self.dataOut.m_ProcessingHeader.blockSize
Return:
None
"""
for channelIndex in channelIndexList:
if channelIndex not in self.dataOut.channelIndexList:
print channelIndexList
raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
# nChannels = len(channelIndexList)
data_spc = self.dataOut.data_spc[channelIndexList,:]
self.dataOut.data_spc = data_spc
self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
return 1
class IncohInt4SpectraHeis(Operation):
isConfig = False
__profIndex = 0
__withOverapping = False
__byTime = False
__initime = None
__lastdatatime = None
__integrationtime = None
__buffer = None
__dataReady = False
n = None
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
# self.isConfig = False
def setup(self, n=None, timeInterval=None, overlapping=False):
"""
Set the parameters of the integration class.
Inputs:
n : Number of coherent integrations
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
overlapping :
"""
self.__initime = None
self.__lastdatatime = 0
self.__buffer = None
self.__dataReady = False
if n == None and timeInterval == None:
raise ValueError, "n or timeInterval should be specified ..."
if n != None:
self.n = n
self.__byTime = False
else:
self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line
self.n = 9999
self.__byTime = True
if overlapping:
self.__withOverapping = True
self.__buffer = None
else:
self.__withOverapping = False
self.__buffer = 0
self.__profIndex = 0
def putData(self, data):
"""
Add a profile to the __buffer and increase in one the __profileIndex
"""
if not self.__withOverapping:
self.__buffer += data.copy()
self.__profIndex += 1
return
#Overlapping data
nChannels, nHeis = data.shape
data = numpy.reshape(data, (1, nChannels, nHeis))
#If the buffer is empty then it takes the data value
if self.__buffer is None:
self.__buffer = data
self.__profIndex += 1
return
#If the buffer length is lower than n then stakcing the data value
if self.__profIndex < self.n:
self.__buffer = numpy.vstack((self.__buffer, data))
self.__profIndex += 1
return
#If the buffer length is equal to n then replacing the last buffer value with the data value
self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
self.__buffer[self.n-1] = data
self.__profIndex = self.n
return
def pushData(self):
"""
Return the sum of the last profiles and the profiles used in the sum.
Affected:
self.__profileIndex
"""
if not self.__withOverapping:
data = self.__buffer
n = self.__profIndex
self.__buffer = 0
self.__profIndex = 0
return data, n
#Integration with Overlapping
data = numpy.sum(self.__buffer, axis=0)
n = self.__profIndex
return data, n
def byProfiles(self, data):
self.__dataReady = False
avgdata = None
# n = None
self.putData(data)
if self.__profIndex == self.n:
avgdata, n = self.pushData()
self.__dataReady = True
return avgdata
def byTime(self, data, datatime):
self.__dataReady = False
avgdata = None
n = None
self.putData(data)
if (datatime - self.__initime) >= self.__integrationtime:
avgdata, n = self.pushData()
self.n = n
self.__dataReady = True
return avgdata
def integrate(self, data, datatime=None):
if self.__initime == None:
self.__initime = datatime
if self.__byTime:
avgdata = self.byTime(data, datatime)
else:
avgdata = self.byProfiles(data)
self.__lastdatatime = datatime
if avgdata is None:
return None, None
avgdatatime = self.__initime
deltatime = datatime -self.__lastdatatime
if not self.__withOverapping:
self.__initime = datatime
else:
self.__initime += deltatime
return avgdata, avgdatatime
def run(self, dataOut, n=None, timeInterval=None, overlapping=False, **kwargs):
if not self.isConfig:
self.setup(n=n, timeInterval=timeInterval, overlapping=overlapping)
self.isConfig = True
avgdata, avgdatatime = self.integrate(dataOut.data_spc, dataOut.utctime)
# dataOut.timeInterval *= n
dataOut.flagNoData = True
if self.__dataReady:
dataOut.data_spc = avgdata
dataOut.nIncohInt *= self.n
# dataOut.nCohInt *= self.n
dataOut.utctime = avgdatatime
# dataOut.timeInterval = dataOut.ippSeconds * dataOut.nIncohInt
# dataOut.timeInterval = self.__timeInterval*self.n
dataOut.flagNoData = False