##// END OF EJS Templates
AMISR Reader integration with Signal Chain Blocks, this time just only for Voltages to Profile Selection and Plotting Scope(Power,IQ) and Power Profile(dB). There is thwo python scripts as experiment's test.
AMISR Reader integration with Signal Chain Blocks, this time just only for Voltages to Profile Selection and Plotting Scope(Power,IQ) and Power Profile(dB). There is thwo python scripts as experiment's test.

File last commit:

r474:e3c42f4268a9
r474:e3c42f4268a9
Show More
jroprocessing.py
2065 lines | 65.4 KiB | text/x-python | PythonLexer
'''
$Author: dsuarez $
$Id: Processor.py 1 2012-11-12 18:56:07Z dsuarez $
'''
import os
import numpy
import datetime
import time
import math
from jrodata import *
from jrodataIO import *
from jroplot import *
try:
import cfunctions
except:
pass
class ProcessingUnit:
"""
Esta es la clase base para el procesamiento de datos.
Contiene el metodo "call" para llamar operaciones. Las operaciones pueden ser:
- Metodos internos (callMethod)
- Objetos del tipo Operation (callObject). Antes de ser llamados, estos objetos
tienen que ser agreagados con el metodo "add".
"""
# objeto de datos de entrada (Voltage, Spectra o Correlation)
dataIn = None
# objeto de datos de entrada (Voltage, Spectra o Correlation)
dataOut = None
objectDict = None
def __init__(self):
self.objectDict = {}
def init(self):
raise ValueError, "Not implemented"
def addOperation(self, object, objId):
"""
Agrega el objeto "object" a la lista de objetos "self.objectList" y retorna el
identificador asociado a este objeto.
Input:
object : objeto de la clase "Operation"
Return:
objId : identificador del objeto, necesario para ejecutar la operacion
"""
self.objectDict[objId] = object
return objId
def operation(self, **kwargs):
"""
Operacion directa sobre la data (dataOut.data). Es necesario actualizar los valores de los
atributos del objeto dataOut
Input:
**kwargs : Diccionario de argumentos de la funcion a ejecutar
"""
raise ValueError, "ImplementedError"
def callMethod(self, name, **kwargs):
"""
Ejecuta el metodo con el nombre "name" y con argumentos **kwargs de la propia clase.
Input:
name : nombre del metodo a ejecutar
**kwargs : diccionario con los nombres y valores de la funcion a ejecutar.
"""
if name != 'run':
if name == 'init' and self.dataIn.isEmpty():
self.dataOut.flagNoData = True
return False
if name != 'init' and self.dataOut.isEmpty():
return False
methodToCall = getattr(self, name)
methodToCall(**kwargs)
if name != 'run':
return True
if self.dataOut.isEmpty():
return False
return True
def callObject(self, objId, **kwargs):
"""
Ejecuta la operacion asociada al identificador del objeto "objId"
Input:
objId : identificador del objeto a ejecutar
**kwargs : diccionario con los nombres y valores de la funcion a ejecutar.
Return:
None
"""
if self.dataOut.isEmpty():
return False
object = self.objectDict[objId]
object.run(self.dataOut, **kwargs)
return True
def call(self, operationConf, **kwargs):
"""
Return True si ejecuta la operacion "operationConf.name" con los
argumentos "**kwargs". False si la operacion no se ha ejecutado.
La operacion puede ser de dos tipos:
1. Un metodo propio de esta clase:
operation.type = "self"
2. El metodo "run" de un objeto del tipo Operation o de un derivado de ella:
operation.type = "other".
Este objeto de tipo Operation debe de haber sido agregado antes con el metodo:
"addOperation" e identificado con el operation.id
con el id de la operacion.
Input:
Operation : Objeto del tipo operacion con los atributos: name, type y id.
"""
if operationConf.type == 'self':
sts = self.callMethod(operationConf.name, **kwargs)
if operationConf.type == 'other':
sts = self.callObject(operationConf.id, **kwargs)
return sts
def setInput(self, dataIn):
self.dataIn = dataIn
def getOutput(self):
return self.dataOut
class Operation():
"""
Clase base para definir las operaciones adicionales que se pueden agregar a la clase ProcessingUnit
y necesiten acumular informacion previa de los datos a procesar. De preferencia usar un buffer de
acumulacion dentro de esta clase
Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer)
"""
__buffer = None
__isConfig = False
def __init__(self):
pass
def run(self, dataIn, **kwargs):
"""
Realiza las operaciones necesarias sobre la dataIn.data y actualiza los atributos del objeto dataIn.
Input:
dataIn : objeto del tipo JROData
Return:
None
Affected:
__buffer : buffer de recepcion de datos.
"""
raise ValueError, "ImplementedError"
class VoltageProc(ProcessingUnit):
def __init__(self):
self.objectDict = {}
self.dataOut = Voltage()
self.flip = 1
def __updateObjFromAmisrInput(self):
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.dstFlag = self.dataIn.dstFlag
self.dataOut.errorCount = self.dataIn.errorCount
self.dataOut.useLocalTime = self.dataIn.useLocalTime
self.dataOut.flagNoData = self.dataIn.flagNoData
self.dataOut.data = self.dataIn.data
self.dataOut.utctime = self.dataIn.utctime
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.timeInterval = self.dataIn.timeInterval
self.dataOut.heightList = self.dataIn.heightList
self.dataOut.nProfiles = self.dataIn.nProfiles
pass
def init(self):
if self.dataIn.type == 'AMISR':
self.__updateObjFromAmisrInput()
if self.dataIn.type == 'Voltage':
self.dataOut.copy(self.dataIn)
# No necesita copiar en cada init() los atributos de dataIn
# la copia deberia hacerse por cada nuevo bloque de datos
def selectChannels(self, channelList):
channelIndexList = []
for channel in channelList:
index = self.dataOut.channelList.index(channel)
channelIndexList.append(index)
self.selectChannelsByIndex(channelIndexList)
def selectChannelsByIndex(self, channelIndexList):
"""
Selecciona un bloque de datos en base a canales segun el channelIndexList
Input:
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
Affected:
self.dataOut.data
self.dataOut.channelIndexList
self.dataOut.nChannels
self.dataOut.m_ProcessingHeader.totalSpectra
self.dataOut.systemHeaderObj.numChannels
self.dataOut.m_ProcessingHeader.blockSize
Return:
None
"""
for channelIndex in channelIndexList:
if channelIndex not in self.dataOut.channelIndexList:
print channelIndexList
raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
nChannels = len(channelIndexList)
data = self.dataOut.data[channelIndexList,:]
self.dataOut.data = data
self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
# self.dataOut.nChannels = nChannels
return 1
def selectHeights(self, minHei=None, maxHei=None):
"""
Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
minHei <= height <= maxHei
Input:
minHei : valor minimo de altura a considerar
maxHei : valor maximo de altura a considerar
Affected:
Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if minHei == None:
minHei = self.dataOut.heightList[0]
if maxHei == None:
maxHei = self.dataOut.heightList[-1]
if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
if (maxHei > self.dataOut.heightList[-1]):
maxHei = self.dataOut.heightList[-1]
# raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
minIndex = 0
maxIndex = 0
heights = self.dataOut.heightList
inda = numpy.where(heights >= minHei)
indb = numpy.where(heights <= maxHei)
try:
minIndex = inda[0][0]
except:
minIndex = 0
try:
maxIndex = indb[0][-1]
except:
maxIndex = len(heights)
self.selectHeightsByIndex(minIndex, maxIndex)
return 1
def selectHeightsByIndex(self, minIndex, maxIndex):
"""
Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
minIndex <= index <= maxIndex
Input:
minIndex : valor de indice minimo de altura a considerar
maxIndex : valor de indice maximo de altura a considerar
Affected:
self.dataOut.data
self.dataOut.heightList
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if (minIndex < 0) or (minIndex > maxIndex):
raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
if (maxIndex >= self.dataOut.nHeights):
maxIndex = self.dataOut.nHeights-1
# raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
nHeights = maxIndex - minIndex + 1
#voltage
data = self.dataOut.data[:,minIndex:maxIndex+1]
firstHeight = self.dataOut.heightList[minIndex]
self.dataOut.data = data
self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1]
return 1
def filterByHeights(self, window):
deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
if window == None:
window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight
newdelta = deltaHeight * window
r = self.dataOut.data.shape[1] % window
buffer = self.dataOut.data[:,0:self.dataOut.data.shape[1]-r]
buffer = buffer.reshape(self.dataOut.data.shape[0],self.dataOut.data.shape[1]/window,window)
buffer = numpy.sum(buffer,2)
self.dataOut.data = buffer
self.dataOut.heightList = numpy.arange(self.dataOut.heightList[0],newdelta*(self.dataOut.nHeights-r)/window,newdelta)
self.dataOut.windowOfFilter = window
def deFlip(self):
self.dataOut.data *= self.flip
self.flip *= -1.
def setRadarFrequency(self, frequency=None):
if frequency != None:
self.dataOut.frequency = frequency
return 1
class CohInt(Operation):
__isConfig = False
__profIndex = 0
__withOverapping = False
__byTime = False
__initime = None
__lastdatatime = None
__integrationtime = None
__buffer = None
__dataReady = False
n = None
def __init__(self):
self.__isConfig = False
def setup(self, n=None, timeInterval=None, overlapping=False):
"""
Set the parameters of the integration class.
Inputs:
n : Number of coherent integrations
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
overlapping :
"""
self.__initime = None
self.__lastdatatime = 0
self.__buffer = None
self.__dataReady = False
if n == None and timeInterval == None:
raise ValueError, "n or timeInterval should be specified ..."
if n != None:
self.n = n
self.__byTime = False
else:
self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line
self.n = 9999
self.__byTime = True
if overlapping:
self.__withOverapping = True
self.__buffer = None
else:
self.__withOverapping = False
self.__buffer = 0
self.__profIndex = 0
def putData(self, data):
"""
Add a profile to the __buffer and increase in one the __profileIndex
"""
if not self.__withOverapping:
self.__buffer += data.copy()
self.__profIndex += 1
return
#Overlapping data
nChannels, nHeis = data.shape
data = numpy.reshape(data, (1, nChannels, nHeis))
#If the buffer is empty then it takes the data value
if self.__buffer == None:
self.__buffer = data
self.__profIndex += 1
return
#If the buffer length is lower than n then stakcing the data value
if self.__profIndex < self.n:
self.__buffer = numpy.vstack((self.__buffer, data))
self.__profIndex += 1
return
#If the buffer length is equal to n then replacing the last buffer value with the data value
self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
self.__buffer[self.n-1] = data
self.__profIndex = self.n
return
def pushData(self):
"""
Return the sum of the last profiles and the profiles used in the sum.
Affected:
self.__profileIndex
"""
if not self.__withOverapping:
data = self.__buffer
n = self.__profIndex
self.__buffer = 0
self.__profIndex = 0
return data, n
#Integration with Overlapping
data = numpy.sum(self.__buffer, axis=0)
n = self.__profIndex
return data, n
def byProfiles(self, data):
self.__dataReady = False
avgdata = None
n = None
self.putData(data)
if self.__profIndex == self.n:
avgdata, n = self.pushData()
self.__dataReady = True
return avgdata
def byTime(self, data, datatime):
self.__dataReady = False
avgdata = None
n = None
self.putData(data)
if (datatime - self.__initime) >= self.__integrationtime:
avgdata, n = self.pushData()
self.n = n
self.__dataReady = True
return avgdata
def integrate(self, data, datatime=None):
if self.__initime == None:
self.__initime = datatime
if self.__byTime:
avgdata = self.byTime(data, datatime)
else:
avgdata = self.byProfiles(data)
self.__lastdatatime = datatime
if avgdata == None:
return None, None
avgdatatime = self.__initime
deltatime = datatime -self.__lastdatatime
if not self.__withOverapping:
self.__initime = datatime
else:
self.__initime += deltatime
return avgdata, avgdatatime
def run(self, dataOut, **kwargs):
if not self.__isConfig:
self.setup(**kwargs)
self.__isConfig = True
avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime)
# dataOut.timeInterval *= n
dataOut.flagNoData = True
if self.__dataReady:
dataOut.data = avgdata
dataOut.nCohInt *= self.n
dataOut.utctime = avgdatatime
dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt
dataOut.flagNoData = False
class Decoder(Operation):
__isConfig = False
__profIndex = 0
code = None
nCode = None
nBaud = None
def __init__(self):
self.__isConfig = False
def setup(self, code, shape):
self.__profIndex = 0
self.code = code
self.nCode = len(code)
self.nBaud = len(code[0])
self.__nChannels, self.__nHeis = shape
__codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex)
__codeBuffer[:,0:self.nBaud] = self.code
self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1))
self.ndatadec = self.__nHeis - self.nBaud + 1
self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex)
def convolutionInFreq(self, data):
fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
fft_data = numpy.fft.fft(data, axis=1)
conv = fft_data*fft_code
data = numpy.fft.ifft(conv,axis=1)
datadec = data[:,:-self.nBaud+1]
return datadec
def convolutionInFreqOpt(self, data):
fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
data = cfunctions.decoder(fft_code, data)
datadec = data[:,:-self.nBaud+1]
return datadec
def convolutionInTime(self, data):
code = self.code[self.__profIndex]
for i in range(self.__nChannels):
self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='valid')
return self.datadecTime
def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0):
if code == None:
code = dataOut.code
else:
code = numpy.array(code).reshape(nCode,nBaud)
dataOut.code = code
dataOut.nCode = nCode
dataOut.nBaud = nBaud
dataOut.radarControllerHeaderObj.code = code
dataOut.radarControllerHeaderObj.nCode = nCode
dataOut.radarControllerHeaderObj.nBaud = nBaud
if not self.__isConfig:
self.setup(code, dataOut.data.shape)
self.__isConfig = True
if mode == 0:
datadec = self.convolutionInTime(dataOut.data)
if mode == 1:
datadec = self.convolutionInFreq(dataOut.data)
if mode == 2:
datadec = self.convolutionInFreqOpt(dataOut.data)
dataOut.data = datadec
dataOut.heightList = dataOut.heightList[0:self.ndatadec]
dataOut.flagDecodeData = True #asumo q la data no esta decodificada
if self.__profIndex == self.nCode-1:
self.__profIndex = 0
return 1
self.__profIndex += 1
return 1
# dataOut.flagDeflipData = True #asumo q la data no esta sin flip
class SpectraProc(ProcessingUnit):
def __init__(self):
self.objectDict = {}
self.buffer = None
self.firstdatatime = None
self.profIndex = 0
self.dataOut = Spectra()
def __updateObjFromInput(self):
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.dstFlag = self.dataIn.dstFlag
self.dataOut.errorCount = self.dataIn.errorCount
self.dataOut.useLocalTime = self.dataIn.useLocalTime
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.heightList = self.dataIn.heightList
self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
# self.dataOut.nHeights = self.dataIn.nHeights
# self.dataOut.nChannels = self.dataIn.nChannels
self.dataOut.nBaud = self.dataIn.nBaud
self.dataOut.nCode = self.dataIn.nCode
self.dataOut.code = self.dataIn.code
self.dataOut.nProfiles = self.dataOut.nFFTPoints
# self.dataOut.channelIndexList = self.dataIn.channelIndexList
self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock
self.dataOut.utctime = self.firstdatatime
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
# self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT
self.dataOut.nCohInt = self.dataIn.nCohInt
self.dataOut.nIncohInt = 1
self.dataOut.ippSeconds = self.dataIn.ippSeconds
self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nFFTPoints*self.dataOut.nIncohInt
self.dataOut.frequency = self.dataIn.frequency
self.dataOut.realtime = self.dataIn.realtime
def __getFft(self):
"""
Convierte valores de Voltaje a Spectra
Affected:
self.dataOut.data_spc
self.dataOut.data_cspc
self.dataOut.data_dc
self.dataOut.heightList
self.profIndex
self.buffer
self.dataOut.flagNoData
"""
fft_volt = numpy.fft.fft(self.buffer,n=self.dataOut.nFFTPoints,axis=1)
fft_volt = fft_volt.astype(numpy.dtype('complex'))
dc = fft_volt[:,0,:]
#calculo de self-spectra
fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,))
spc = fft_volt * numpy.conjugate(fft_volt)
spc = spc.real
blocksize = 0
blocksize += dc.size
blocksize += spc.size
cspc = None
pairIndex = 0
if self.dataOut.pairsList != None:
#calculo de cross-spectra
cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex')
for pair in self.dataOut.pairsList:
cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:])
pairIndex += 1
blocksize += cspc.size
self.dataOut.data_spc = spc
self.dataOut.data_cspc = cspc
self.dataOut.data_dc = dc
self.dataOut.blockSize = blocksize
self.dataOut.flagShiftFFT = False
def init(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None):
self.dataOut.flagNoData = True
if self.dataIn.type == "Spectra":
self.dataOut.copy(self.dataIn)
return
if self.dataIn.type == "Voltage":
if nFFTPoints == None:
raise ValueError, "This SpectraProc.init() need nFFTPoints input variable"
if pairsList == None:
nPairs = 0
else:
nPairs = len(pairsList)
if ippFactor == None:
ippFactor = 1
self.dataOut.ippFactor = ippFactor
self.dataOut.nFFTPoints = nFFTPoints
self.dataOut.pairsList = pairsList
self.dataOut.nPairs = nPairs
if self.buffer == None:
self.buffer = numpy.zeros((self.dataIn.nChannels,
nProfiles,
self.dataIn.nHeights),
dtype='complex')
self.buffer[:,self.profIndex,:] = self.dataIn.data.copy()
self.profIndex += 1
if self.firstdatatime == None:
self.firstdatatime = self.dataIn.utctime
if self.profIndex == nProfiles:
self.__updateObjFromInput()
self.__getFft()
self.dataOut.flagNoData = False
self.buffer = None
self.firstdatatime = None
self.profIndex = 0
return
raise ValueError, "The type object %s is not valid"%(self.dataIn.type)
def selectChannels(self, channelList):
channelIndexList = []
for channel in channelList:
index = self.dataOut.channelList.index(channel)
channelIndexList.append(index)
self.selectChannelsByIndex(channelIndexList)
def selectChannelsByIndex(self, channelIndexList):
"""
Selecciona un bloque de datos en base a canales segun el channelIndexList
Input:
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
Affected:
self.dataOut.data_spc
self.dataOut.channelIndexList
self.dataOut.nChannels
Return:
None
"""
for channelIndex in channelIndexList:
if channelIndex not in self.dataOut.channelIndexList:
print channelIndexList
raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
nChannels = len(channelIndexList)
data_spc = self.dataOut.data_spc[channelIndexList,:]
self.dataOut.data_spc = data_spc
self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
# self.dataOut.nChannels = nChannels
return 1
def selectHeights(self, minHei, maxHei):
"""
Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
minHei <= height <= maxHei
Input:
minHei : valor minimo de altura a considerar
maxHei : valor maximo de altura a considerar
Affected:
Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
if (maxHei > self.dataOut.heightList[-1]):
maxHei = self.dataOut.heightList[-1]
# raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
minIndex = 0
maxIndex = 0
heights = self.dataOut.heightList
inda = numpy.where(heights >= minHei)
indb = numpy.where(heights <= maxHei)
try:
minIndex = inda[0][0]
except:
minIndex = 0
try:
maxIndex = indb[0][-1]
except:
maxIndex = len(heights)
self.selectHeightsByIndex(minIndex, maxIndex)
return 1
def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None):
newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
if hei_ref != None:
newheis = numpy.where(self.dataOut.heightList>hei_ref)
minIndex = min(newheis[0])
maxIndex = max(newheis[0])
data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1]
heightList = self.dataOut.heightList[minIndex:maxIndex+1]
# determina indices
nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0]))
avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0))
beacon_dB = numpy.sort(avg_dB)[-nheis:]
beacon_heiIndexList = []
for val in avg_dB.tolist():
if val >= beacon_dB[0]:
beacon_heiIndexList.append(avg_dB.tolist().index(val))
#data_spc = data_spc[:,:,beacon_heiIndexList]
data_cspc = None
if self.dataOut.data_cspc != None:
data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1]
#data_cspc = data_cspc[:,:,beacon_heiIndexList]
data_dc = None
if self.dataOut.data_dc != None:
data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1]
#data_dc = data_dc[:,beacon_heiIndexList]
self.dataOut.data_spc = data_spc
self.dataOut.data_cspc = data_cspc
self.dataOut.data_dc = data_dc
self.dataOut.heightList = heightList
self.dataOut.beacon_heiIndexList = beacon_heiIndexList
return 1
def selectHeightsByIndex(self, minIndex, maxIndex):
"""
Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
minIndex <= index <= maxIndex
Input:
minIndex : valor de indice minimo de altura a considerar
maxIndex : valor de indice maximo de altura a considerar
Affected:
self.dataOut.data_spc
self.dataOut.data_cspc
self.dataOut.data_dc
self.dataOut.heightList
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if (minIndex < 0) or (minIndex > maxIndex):
raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
if (maxIndex >= self.dataOut.nHeights):
maxIndex = self.dataOut.nHeights-1
# raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
nHeights = maxIndex - minIndex + 1
#Spectra
data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1]
data_cspc = None
if self.dataOut.data_cspc != None:
data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1]
data_dc = None
if self.dataOut.data_dc != None:
data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1]
self.dataOut.data_spc = data_spc
self.dataOut.data_cspc = data_cspc
self.dataOut.data_dc = data_dc
self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1]
return 1
def removeDC(self, mode = 2):
jspectra = self.dataOut.data_spc
jcspectra = self.dataOut.data_cspc
num_chan = jspectra.shape[0]
num_hei = jspectra.shape[2]
if jcspectra != None:
jcspectraExist = True
num_pairs = jcspectra.shape[0]
else: jcspectraExist = False
freq_dc = jspectra.shape[1]/2
ind_vel = numpy.array([-2,-1,1,2]) + freq_dc
if ind_vel[0]<0:
ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof
if mode == 1:
jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION
if jcspectraExist:
jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2
if mode == 2:
vel = numpy.array([-2,-1,1,2])
xx = numpy.zeros([4,4])
for fil in range(4):
xx[fil,:] = vel[fil]**numpy.asarray(range(4))
xx_inv = numpy.linalg.inv(xx)
xx_aux = xx_inv[0,:]
for ich in range(num_chan):
yy = jspectra[ich,ind_vel,:]
jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy)
junkid = jspectra[ich,freq_dc,:]<=0
cjunkid = sum(junkid)
if cjunkid.any():
jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2
if jcspectraExist:
for ip in range(num_pairs):
yy = jcspectra[ip,ind_vel,:]
jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy)
self.dataOut.data_spc = jspectra
self.dataOut.data_cspc = jcspectra
return 1
def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None):
jspectra = self.dataOut.data_spc
jcspectra = self.dataOut.data_cspc
jnoise = self.dataOut.getNoise()
num_incoh = self.dataOut.nIncohInt
num_channel = jspectra.shape[0]
num_prof = jspectra.shape[1]
num_hei = jspectra.shape[2]
#hei_interf
if hei_interf == None:
count_hei = num_hei/2 #Como es entero no importa
hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei
hei_interf = numpy.asarray(hei_interf)[0]
#nhei_interf
if (nhei_interf == None):
nhei_interf = 5
if (nhei_interf < 1):
nhei_interf = 1
if (nhei_interf > count_hei):
nhei_interf = count_hei
if (offhei_interf == None):
offhei_interf = 0
ind_hei = range(num_hei)
# mask_prof = numpy.asarray(range(num_prof - 2)) + 1
# mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1
mask_prof = numpy.asarray(range(num_prof))
num_mask_prof = mask_prof.size
comp_mask_prof = [0, num_prof/2]
#noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal
if (jnoise.size < num_channel or numpy.isnan(jnoise).any()):
jnoise = numpy.nan
noise_exist = jnoise[0] < numpy.Inf
#Subrutina de Remocion de la Interferencia
for ich in range(num_channel):
#Se ordena los espectros segun su potencia (menor a mayor)
power = jspectra[ich,mask_prof,:]
power = power[:,hei_interf]
power = power.sum(axis = 0)
psort = power.ravel().argsort()
#Se estima la interferencia promedio en los Espectros de Potencia empleando
junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]]
if noise_exist:
# tmp_noise = jnoise[ich] / num_prof
tmp_noise = jnoise[ich]
junkspc_interf = junkspc_interf - tmp_noise
#junkspc_interf[:,comp_mask_prof] = 0
jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf
jspc_interf = jspc_interf.transpose()
#Calculando el espectro de interferencia promedio
noiseid = numpy.where(jspc_interf <= tmp_noise/ math.sqrt(num_incoh))
noiseid = noiseid[0]
cnoiseid = noiseid.size
interfid = numpy.where(jspc_interf > tmp_noise/ math.sqrt(num_incoh))
interfid = interfid[0]
cinterfid = interfid.size
if (cnoiseid > 0): jspc_interf[noiseid] = 0
#Expandiendo los perfiles a limpiar
if (cinterfid > 0):
new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof
new_interfid = numpy.asarray(new_interfid)
new_interfid = {x for x in new_interfid}
new_interfid = numpy.array(list(new_interfid))
new_cinterfid = new_interfid.size
else: new_cinterfid = 0
for ip in range(new_cinterfid):
ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort()
jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]]
jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices
#Removiendo la interferencia del punto de mayor interferencia
ListAux = jspc_interf[mask_prof].tolist()
maxid = ListAux.index(max(ListAux))
if cinterfid > 0:
for ip in range(cinterfid*(interf == 2) - 1):
ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/math.sqrt(num_incoh))).nonzero()
cind = len(ind)
if (cind > 0):
jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/math.sqrt(num_incoh))
ind = numpy.array([-2,-1,1,2])
xx = numpy.zeros([4,4])
for id1 in range(4):
xx[:,id1] = ind[id1]**numpy.asarray(range(4))
xx_inv = numpy.linalg.inv(xx)
xx = xx_inv[:,0]
ind = (ind + maxid + num_mask_prof)%num_mask_prof
yy = jspectra[ich,mask_prof[ind],:]
jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx)
indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/math.sqrt(num_incoh))).nonzero()
jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/math.sqrt(num_incoh))
#Remocion de Interferencia en el Cross Spectra
if jcspectra == None: return jspectra, jcspectra
num_pairs = jcspectra.size/(num_prof*num_hei)
jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei)
for ip in range(num_pairs):
#-------------------------------------------
cspower = numpy.abs(jcspectra[ip,mask_prof,:])
cspower = cspower[:,hei_interf]
cspower = cspower.sum(axis = 0)
cspsort = cspower.ravel().argsort()
junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]]
junkcspc_interf = junkcspc_interf.transpose()
jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf
ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort()
median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:]))
median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:]))
junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag)
for iprof in range(num_prof):
ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort()
jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]]
#Removiendo la Interferencia
jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf
ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist()
maxid = ListAux.index(max(ListAux))
ind = numpy.array([-2,-1,1,2])
xx = numpy.zeros([4,4])
for id1 in range(4):
xx[:,id1] = ind[id1]**numpy.asarray(range(4))
xx_inv = numpy.linalg.inv(xx)
xx = xx_inv[:,0]
ind = (ind + maxid + num_mask_prof)%num_mask_prof
yy = jcspectra[ip,mask_prof[ind],:]
jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx)
#Guardar Resultados
self.dataOut.data_spc = jspectra
self.dataOut.data_cspc = jcspectra
return 1
def setRadarFrequency(self, frequency=None):
if frequency != None:
self.dataOut.frequency = frequency
return 1
def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None):
#validacion de rango
if minHei == None:
minHei = self.dataOut.heightList[0]
if maxHei == None:
maxHei = self.dataOut.heightList[-1]
if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
print 'minHei: %.2f is out of the heights range'%(minHei)
print 'minHei is setting to %.2f'%(self.dataOut.heightList[0])
minHei = self.dataOut.heightList[0]
if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei):
print 'maxHei: %.2f is out of the heights range'%(maxHei)
print 'maxHei is setting to %.2f'%(self.dataOut.heightList[-1])
maxHei = self.dataOut.heightList[-1]
# validacion de velocidades
velrange = self.dataOut.getVelRange(1)
if minVel == None:
minVel = velrange[0]
if maxVel == None:
maxVel = velrange[-1]
if (minVel < velrange[0]) or (minVel > maxVel):
print 'minVel: %.2f is out of the velocity range'%(minVel)
print 'minVel is setting to %.2f'%(velrange[0])
minVel = velrange[0]
if (maxVel > velrange[-1]) or (maxVel < minVel):
print 'maxVel: %.2f is out of the velocity range'%(maxVel)
print 'maxVel is setting to %.2f'%(velrange[-1])
maxVel = velrange[-1]
# seleccion de indices para rango
minIndex = 0
maxIndex = 0
heights = self.dataOut.heightList
inda = numpy.where(heights >= minHei)
indb = numpy.where(heights <= maxHei)
try:
minIndex = inda[0][0]
except:
minIndex = 0
try:
maxIndex = indb[0][-1]
except:
maxIndex = len(heights)
if (minIndex < 0) or (minIndex > maxIndex):
raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
if (maxIndex >= self.dataOut.nHeights):
maxIndex = self.dataOut.nHeights-1
# seleccion de indices para velocidades
indminvel = numpy.where(velrange >= minVel)
indmaxvel = numpy.where(velrange <= maxVel)
try:
minIndexVel = indminvel[0][0]
except:
minIndexVel = 0
try:
maxIndexVel = indmaxvel[0][-1]
except:
maxIndexVel = len(velrange)
#seleccion del espectro
data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1]
#estimacion de ruido
noise = numpy.zeros(self.dataOut.nChannels)
for channel in range(self.dataOut.nChannels):
daux = data_spc[channel,:,:]
noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt)
self.dataOut.noise = noise.copy()
return 1
class IncohInt(Operation):
__profIndex = 0
__withOverapping = False
__byTime = False
__initime = None
__lastdatatime = None
__integrationtime = None
__buffer_spc = None
__buffer_cspc = None
__buffer_dc = None
__dataReady = False
__timeInterval = None
n = None
def __init__(self):
self.__isConfig = False
def setup(self, n=None, timeInterval=None, overlapping=False):
"""
Set the parameters of the integration class.
Inputs:
n : Number of coherent integrations
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
overlapping :
"""
self.__initime = None
self.__lastdatatime = 0
self.__buffer_spc = None
self.__buffer_cspc = None
self.__buffer_dc = None
self.__dataReady = False
if n == None and timeInterval == None:
raise ValueError, "n or timeInterval should be specified ..."
if n != None:
self.n = n
self.__byTime = False
else:
self.__integrationtime = timeInterval #if (type(timeInterval)!=integer) -> change this line
self.n = 9999
self.__byTime = True
if overlapping:
self.__withOverapping = True
else:
self.__withOverapping = False
self.__buffer_spc = 0
self.__buffer_cspc = 0
self.__buffer_dc = 0
self.__profIndex = 0
def putData(self, data_spc, data_cspc, data_dc):
"""
Add a profile to the __buffer_spc and increase in one the __profileIndex
"""
if not self.__withOverapping:
self.__buffer_spc += data_spc
if data_cspc == None:
self.__buffer_cspc = None
else:
self.__buffer_cspc += data_cspc
if data_dc == None:
self.__buffer_dc = None
else:
self.__buffer_dc += data_dc
self.__profIndex += 1
return
#Overlapping data
nChannels, nFFTPoints, nHeis = data_spc.shape
data_spc = numpy.reshape(data_spc, (1, nChannels, nFFTPoints, nHeis))
if data_cspc != None:
data_cspc = numpy.reshape(data_cspc, (1, -1, nFFTPoints, nHeis))
if data_dc != None:
data_dc = numpy.reshape(data_dc, (1, -1, nHeis))
#If the buffer is empty then it takes the data value
if self.__buffer_spc == None:
self.__buffer_spc = data_spc
if data_cspc == None:
self.__buffer_cspc = None
else:
self.__buffer_cspc += data_cspc
if data_dc == None:
self.__buffer_dc = None
else:
self.__buffer_dc += data_dc
self.__profIndex += 1
return
#If the buffer length is lower than n then stakcing the data value
if self.__profIndex < self.n:
self.__buffer_spc = numpy.vstack((self.__buffer_spc, data_spc))
if data_cspc != None:
self.__buffer_cspc = numpy.vstack((self.__buffer_cspc, data_cspc))
if data_dc != None:
self.__buffer_dc = numpy.vstack((self.__buffer_dc, data_dc))
self.__profIndex += 1
return
#If the buffer length is equal to n then replacing the last buffer value with the data value
self.__buffer_spc = numpy.roll(self.__buffer_spc, -1, axis=0)
self.__buffer_spc[self.n-1] = data_spc
if data_cspc != None:
self.__buffer_cspc = numpy.roll(self.__buffer_cspc, -1, axis=0)
self.__buffer_cspc[self.n-1] = data_cspc
if data_dc != None:
self.__buffer_dc = numpy.roll(self.__buffer_dc, -1, axis=0)
self.__buffer_dc[self.n-1] = data_dc
self.__profIndex = self.n
return
def pushData(self):
"""
Return the sum of the last profiles and the profiles used in the sum.
Affected:
self.__profileIndex
"""
data_spc = None
data_cspc = None
data_dc = None
if not self.__withOverapping:
data_spc = self.__buffer_spc
data_cspc = self.__buffer_cspc
data_dc = self.__buffer_dc
n = self.__profIndex
self.__buffer_spc = 0
self.__buffer_cspc = 0
self.__buffer_dc = 0
self.__profIndex = 0
return data_spc, data_cspc, data_dc, n
#Integration with Overlapping
data_spc = numpy.sum(self.__buffer_spc, axis=0)
if self.__buffer_cspc != None:
data_cspc = numpy.sum(self.__buffer_cspc, axis=0)
if self.__buffer_dc != None:
data_dc = numpy.sum(self.__buffer_dc, axis=0)
n = self.__profIndex
return data_spc, data_cspc, data_dc, n
def byProfiles(self, *args):
self.__dataReady = False
avgdata_spc = None
avgdata_cspc = None
avgdata_dc = None
n = None
self.putData(*args)
if self.__profIndex == self.n:
avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
self.__dataReady = True
return avgdata_spc, avgdata_cspc, avgdata_dc
def byTime(self, datatime, *args):
self.__dataReady = False
avgdata_spc = None
avgdata_cspc = None
avgdata_dc = None
n = None
self.putData(*args)
if (datatime - self.__initime) >= self.__integrationtime:
avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
self.n = n
self.__dataReady = True
return avgdata_spc, avgdata_cspc, avgdata_dc
def integrate(self, datatime, *args):
if self.__initime == None:
self.__initime = datatime
if self.__byTime:
avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args)
else:
avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args)
self.__lastdatatime = datatime
if avgdata_spc == None:
return None, None, None, None
avgdatatime = self.__initime
try:
self.__timeInterval = (self.__lastdatatime - self.__initime)/(self.n - 1)
except:
self.__timeInterval = self.__lastdatatime - self.__initime
deltatime = datatime -self.__lastdatatime
if not self.__withOverapping:
self.__initime = datatime
else:
self.__initime += deltatime
return avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc
def run(self, dataOut, n=None, timeInterval=None, overlapping=False):
if n==1:
dataOut.flagNoData = False
return
if not self.__isConfig:
self.setup(n, timeInterval, overlapping)
self.__isConfig = True
avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime,
dataOut.data_spc,
dataOut.data_cspc,
dataOut.data_dc)
# dataOut.timeInterval *= n
dataOut.flagNoData = True
if self.__dataReady:
dataOut.data_spc = avgdata_spc
dataOut.data_cspc = avgdata_cspc
dataOut.data_dc = avgdata_dc
dataOut.nIncohInt *= self.n
dataOut.utctime = avgdatatime
#dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt * dataOut.nIncohInt * dataOut.nFFTPoints
dataOut.timeInterval = self.__timeInterval*self.n
dataOut.flagNoData = False
class ProfileConcat(Operation):
__isConfig = False
buffer = None
def __init__(self):
self.profileIndex = 0
def reset(self):
self.buffer = numpy.zeros_like(self.buffer)
self.start_index = 0
self.times = 1
def setup(self, data, m, n=1):
self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0]))
self.profiles = data.shape[1]
self.start_index = 0
self.times = 1
def concat(self, data):
self.buffer[:,self.start_index:self.profiles*self.times] = data.copy()
self.start_index = self.start_index + self.profiles
def run(self, dataOut, m):
dataOut.flagNoData = True
if not self.__isConfig:
self.setup(dataOut.data, m, 1)
self.__isConfig = True
self.concat(dataOut.data)
self.times += 1
if self.times > m:
dataOut.data = self.buffer
self.reset()
dataOut.flagNoData = False
# se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas
deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * 5
dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight)
class ProfileSelector(Operation):
profileIndex = None
# Tamanho total de los perfiles
nProfiles = None
def __init__(self):
self.profileIndex = 0
def incIndex(self):
self.profileIndex += 1
if self.profileIndex >= self.nProfiles:
self.profileIndex = 0
def isProfileInRange(self, minIndex, maxIndex):
if self.profileIndex < minIndex:
return False
if self.profileIndex > maxIndex:
return False
return True
def isProfileInList(self, profileList):
if self.profileIndex not in profileList:
return False
return True
def run(self, dataOut, profileList=None, profileRangeList=None):
dataOut.flagNoData = True
self.nProfiles = dataOut.nProfiles
if profileList != None:
if self.isProfileInList(profileList):
dataOut.flagNoData = False
self.incIndex()
return 1
elif profileRangeList != None:
minIndex = profileRangeList[0]
maxIndex = profileRangeList[1]
if self.isProfileInRange(minIndex, maxIndex):
dataOut.flagNoData = False
self.incIndex()
return 1
else:
raise ValueError, "ProfileSelector needs profileList or profileRangeList"
return 0
class SpectraHeisProc(ProcessingUnit):
def __init__(self):
self.objectDict = {}
# self.buffer = None
# self.firstdatatime = None
# self.profIndex = 0
self.dataOut = SpectraHeis()
def __updateObjFromInput(self):
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.dstFlag = self.dataIn.dstFlag
self.dataOut.errorCount = self.dataIn.errorCount
self.dataOut.useLocalTime = self.dataIn.useLocalTime
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()#
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()#
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.heightList = self.dataIn.heightList
# self.dataOut.dtype = self.dataIn.dtype
self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
# self.dataOut.nHeights = self.dataIn.nHeights
# self.dataOut.nChannels = self.dataIn.nChannels
self.dataOut.nBaud = self.dataIn.nBaud
self.dataOut.nCode = self.dataIn.nCode
self.dataOut.code = self.dataIn.code
# self.dataOut.nProfiles = 1
# self.dataOut.nProfiles = self.dataOut.nFFTPoints
self.dataOut.nFFTPoints = self.dataIn.nHeights
# self.dataOut.channelIndexList = self.dataIn.channelIndexList
# self.dataOut.flagNoData = self.dataIn.flagNoData
self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock
self.dataOut.utctime = self.dataIn.utctime
# self.dataOut.utctime = self.firstdatatime
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
# self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT
self.dataOut.nCohInt = self.dataIn.nCohInt
self.dataOut.nIncohInt = 1
self.dataOut.ippSeconds= self.dataIn.ippSeconds
self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nIncohInt
# self.dataOut.set=self.dataIn.set
# self.dataOut.deltaHeight=self.dataIn.deltaHeight
def __updateObjFromFits(self):
self.dataOut.utctime = self.dataIn.utctime
self.dataOut.channelIndexList = self.dataIn.channelIndexList
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.heightList = self.dataIn.heightList
self.dataOut.data_spc = self.dataIn.data
self.dataOut.timeInterval = self.dataIn.timeInterval
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.useLocalTime = True
# self.dataOut.
# self.dataOut.
def __getFft(self):
fft_volt = numpy.fft.fft(self.dataIn.data, axis=1)
fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,))
spc = numpy.abs(fft_volt * numpy.conjugate(fft_volt))/(self.dataOut.nFFTPoints)
self.dataOut.data_spc = spc
def init(self):
self.dataOut.flagNoData = True
if self.dataIn.type == "Fits":
self.__updateObjFromFits()
self.dataOut.flagNoData = False
return
if self.dataIn.type == "SpectraHeis":
self.dataOut.copy(self.dataIn)
return
if self.dataIn.type == "Voltage":
self.__updateObjFromInput()
self.__getFft()
self.dataOut.flagNoData = False
return
raise ValueError, "The type object %s is not valid"%(self.dataIn.type)
def selectChannels(self, channelList):
channelIndexList = []
for channel in channelList:
index = self.dataOut.channelList.index(channel)
channelIndexList.append(index)
self.selectChannelsByIndex(channelIndexList)
def selectChannelsByIndex(self, channelIndexList):
"""
Selecciona un bloque de datos en base a canales segun el channelIndexList
Input:
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
Affected:
self.dataOut.data
self.dataOut.channelIndexList
self.dataOut.nChannels
self.dataOut.m_ProcessingHeader.totalSpectra
self.dataOut.systemHeaderObj.numChannels
self.dataOut.m_ProcessingHeader.blockSize
Return:
None
"""
for channelIndex in channelIndexList:
if channelIndex not in self.dataOut.channelIndexList:
print channelIndexList
raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
nChannels = len(channelIndexList)
data_spc = self.dataOut.data_spc[channelIndexList,:]
self.dataOut.data_spc = data_spc
self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
return 1
class IncohInt4SpectraHeis(Operation):
__isConfig = False
__profIndex = 0
__withOverapping = False
__byTime = False
__initime = None
__lastdatatime = None
__integrationtime = None
__buffer = None
__dataReady = False
n = None
def __init__(self):
self.__isConfig = False
def setup(self, n=None, timeInterval=None, overlapping=False):
"""
Set the parameters of the integration class.
Inputs:
n : Number of coherent integrations
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
overlapping :
"""
self.__initime = None
self.__lastdatatime = 0
self.__buffer = None
self.__dataReady = False
if n == None and timeInterval == None:
raise ValueError, "n or timeInterval should be specified ..."
if n != None:
self.n = n
self.__byTime = False
else:
self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line
self.n = 9999
self.__byTime = True
if overlapping:
self.__withOverapping = True
self.__buffer = None
else:
self.__withOverapping = False
self.__buffer = 0
self.__profIndex = 0
def putData(self, data):
"""
Add a profile to the __buffer and increase in one the __profileIndex
"""
if not self.__withOverapping:
self.__buffer += data.copy()
self.__profIndex += 1
return
#Overlapping data
nChannels, nHeis = data.shape
data = numpy.reshape(data, (1, nChannels, nHeis))
#If the buffer is empty then it takes the data value
if self.__buffer == None:
self.__buffer = data
self.__profIndex += 1
return
#If the buffer length is lower than n then stakcing the data value
if self.__profIndex < self.n:
self.__buffer = numpy.vstack((self.__buffer, data))
self.__profIndex += 1
return
#If the buffer length is equal to n then replacing the last buffer value with the data value
self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
self.__buffer[self.n-1] = data
self.__profIndex = self.n
return
def pushData(self):
"""
Return the sum of the last profiles and the profiles used in the sum.
Affected:
self.__profileIndex
"""
if not self.__withOverapping:
data = self.__buffer
n = self.__profIndex
self.__buffer = 0
self.__profIndex = 0
return data, n
#Integration with Overlapping
data = numpy.sum(self.__buffer, axis=0)
n = self.__profIndex
return data, n
def byProfiles(self, data):
self.__dataReady = False
avgdata = None
n = None
self.putData(data)
if self.__profIndex == self.n:
avgdata, n = self.pushData()
self.__dataReady = True
return avgdata
def byTime(self, data, datatime):
self.__dataReady = False
avgdata = None
n = None
self.putData(data)
if (datatime - self.__initime) >= self.__integrationtime:
avgdata, n = self.pushData()
self.n = n
self.__dataReady = True
return avgdata
def integrate(self, data, datatime=None):
if self.__initime == None:
self.__initime = datatime
if self.__byTime:
avgdata = self.byTime(data, datatime)
else:
avgdata = self.byProfiles(data)
self.__lastdatatime = datatime
if avgdata == None:
return None, None
avgdatatime = self.__initime
deltatime = datatime -self.__lastdatatime
if not self.__withOverapping:
self.__initime = datatime
else:
self.__initime += deltatime
return avgdata, avgdatatime
def run(self, dataOut, **kwargs):
if not self.__isConfig:
self.setup(**kwargs)
self.__isConfig = True
avgdata, avgdatatime = self.integrate(dataOut.data_spc, dataOut.utctime)
# dataOut.timeInterval *= n
dataOut.flagNoData = True
if self.__dataReady:
dataOut.data_spc = avgdata
dataOut.nIncohInt *= self.n
# dataOut.nCohInt *= self.n
dataOut.utctime = avgdatatime
dataOut.timeInterval = dataOut.ippSeconds * dataOut.nIncohInt
# dataOut.timeInterval = self.__timeInterval*self.n
dataOut.flagNoData = False